
FUJITSU SEMICONDUCTOR
CONTROLLER MANUAL

CM81-00204-1E
FR FAMILY
F²MC FAMILY

32/16/8-BIT MICROCONTROLLER

SOFTUNE C COMPILER MANUAL

FR FAMILY
F²MC FAMILY

32/16/8-BIT MICROCONTROLLER

SOFTUNE C COMPILER MANUAL
FUJITSU LIMITED

PREFACE

■■■■ Objective of This Manual and Target Readers

This manual describes the F2MC-16 family C compiler (hereinafter referred to as the compiler)
usage procedures and libraries.

This manual is prepared for persons who use the above-mentioned compiler and create and
development application programs in C language.

This manual is to be read by persons who have a basic knowledge of each MCU (Micro
Controller Unit).

The compiler described in this manual conforms to the American National Standard for
Information Systems  Programming Language C, X3.159-1989 , which is abbreviated
"ANSI standard" in this manual.

■■■■ Notes on Trademarks

Microsoft and Windows are registered trademarks of Microsoft Corp.

UNIX is a registered trademark that X/Open Co., Ltd. has licensed in the United States and
other countries.

Other trademarks or registered trademarks are the property of their respective owners. The 
or  mark is not used within this manual.

■■■■ Composition of Manual

This manual consists of the following chapters.

Chapter 1 GENERAL

This chapter outlines the C compiler.

Chapter 2 SETUP OF SYSTEM EMVIRONMENT BEFORE USING C COMPILER

This chapter describes the C compiler operating environment variables.

Chapter 3 OPERATION

This chapter describes the command function specifications.

Chapter 4 OBJECT PROGRAM STRUCTURE

This chapter describes the information necessary for program execution.

Chapter 5 EXTENDED LANGUAGE SPECIFICATIONS

This chapter describes the extended language specifications supported by the compiler
and the limitations on compiler translation.

Chapter 6 EXECUTION ENVIRONMENT

This chapter describes the user program execution procedure to be performed in an
environment where no operating system exists.

Chapter 7 LIBRARY OVERVIEW

This chapter outlines the C libraries by describing the organization of files provided by the
libraries and the relationship to the system into which the libraries are incorporated.
i

Chapter 8 LIBRARY INCORPORATION

This chapter describes the processes and functions to be prepared for library use.

Chapter 9 COMPILER-DEPENDENT SPECIFICATIONS

This chapter describes the specifications that vary with the compiler.

Chapter 10 SIMULATOR DEBUGGER LOW-LEVEL FUNCTION LIBRARY

This chapter describes how to use the simulator debugger low-level function library.

APPENDIX

The Appendix gives a list of types, macros, and functions provided by the library and the
operations specific to the libraries(A,B). Notes when FFMC-16LX CPU is used are
described(C).

■■■■ Syntax Books

For C language syntax and standard library functions, refer to commercially available ANSI
standard compliant reference books.

■■■■ Reference Books

• The C Programming Language

(Brian W. Kernighan & Dennis M. Ritchie)

• Japanese edition entitled Programming Language C UNIX Type Programming Method and
Procedure

(Translated by Haruhisa Ishida; Kyoritsu Shuppan)

• American National Standard for Information Systems æ Programming Language C, X3.159-
1989

(Western Electric Company, Incorporated)

• UNIX System User's Manual System V

(Western Electric Company, Incorporated)

• UNIX System V Programmer Reference Manual

(AT&T Bell Laboratories)

• User Reference Manual UTS/5 Release 0.1

(Western Electric Company, Incorporated and Amdahl Corporation)

• UTS Command Reference Manual UTS/5 Release 0.1

(Western Electric Company, Incorporated and Amdahl Corporation)

• Japanese Industrial Standards Programming Language C

(Japan Standards Association)
ii

© 1999 FUJITSU LIMITED Printed in Japan

1. The contents of this document are subject to change without notice. Customers are advised to consult
with FUJITSU sales representatives beforeordering.

2. The information and circuit diagrems in this document presented as examples of semiconductor device
applications, and are not intended to be incorporated in devices for actual use. Also FUJITSU is unable
to assume responsibility for infringement of any patent rights or other rights of third parties arising from
the use of this information or circuit diagrams.

3. The contents of this document may not be reproduced or copied without the permission of FUJITSU
LIMITED.

4. FUJITSU semiconductor devices are intended for use in standard applications (computers, office
automation and other office equipments, industrial, communications, and measurement equipments,
personal or household devices, etc.).
CAUTION:
Customers considering the use of our products in special applications where failure or abnormal
operation may directly affect human lives or cause physical injury or property damage, or where
extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls,
sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to
consult with FUJITSU sales representatives before such use. The company will not be responsible for
damages arising from such use without prior approval.

5. Any semiconductor devices have inherently a certain rate of failure. You must protect against injury,
damage or loss from such failures by incorporating safety design measures into your facility and
equipment such as redundancy, fire protection, and prevention of over-current levels and other
abnormal operating conditions.

6. If any products described in this document represent goods or technologies subject to certain
restrictions on export under the Foreign Exchange and Foreign Trade Control Law of Japan, the prior
authorization by japanese government should be required for export of those products from Japan.
iii

USING THIS MANUAL

■■■■ Manual Configuration

Reading two facing pages enables you to understand the contents without turning the page.
The summary below the title will help you understand the outline of each chapter and section.

■■■■ How To Find Your Information

You can find information via the table of contents or the index at the end of the manual.

■■■■ Conventions

The following notational conventions are used in this manual.

[item] : The items enclosed within square brackets are omissible.

{item 1|item 2} : Either item 1 or item 2 must be specified. This rule also takes effect
when there are three or more items.

item ... : The specifying of this item can be repeated any number of times.

Examples set forth in this manual are based on the UNIX OS convention.

■■■■ Product Naming

Products in this manual are named as follows:

• Windows95 means Microsoft Windows95 operating system.

• WindowsNT means Microsoft WindowsNT Server network operating system Versions 3.51
and 4.0 and Microsoft WindowsNT Workstation operating system Versions 3.51 and 4.0.

• Windows means Microsoft Windows operating system Version 6.2.
iv

■ Layout of Facing Pages
v

vi

CONTENTS

CHAPTER 1 GENERAL ...1
1.1 C COMPILER FUNCTIONS ..2
1.2 BASIC PROCESS OF COMMANDS...3
1.3 C COMPILER BASIC FUNCTIONS...6

CHAPTER 2 SETUP OF SYSTEM EMVIRONMENT BEFORE USING C COMPILER.......9
2.1 FETOOL ..10
2.2 LIB911/LIB896...11
2.3 OPT907/OPT911/OPT896...12
2.4 INC907/INC911/INC896 ..13
2.5 TMP ...14
2.6 FELANG ..15

CHAPTER 3 OPERATION ...17
3.1 COMMAND LINE...18
3.2 COMMAND OPERANDS...19
3.3 FILE NAMES AND DIRECTORY NAMES...20
3.4 COMMAND OPTIONS...21
3.4.1 List of Command Options ...23
3.4.2 List of Command Cancel Options...26
3.5 DETAILS OF OPTIONS...28
3.5.1 Translation Control Related Options ..29
3.5.2 Preprocessor Related Options ...32
3.5.3 Data Output Related Options ...36
3.5.4 Language Specification Related Options ...43
3.5.5 Optimization Related Options...50
3.5.6 Output Object Related Options...58
3.5.7 Debug Information Related Options ...64
3.5.8 Command Related Options ..65
3.5.9 Linkage Related Options ..66
3.5.10 Option File Related Options ...68
3.6 OPTION FILES..69
3.7 MESSAGES GENERATED IN TRANSLATION PROCESS..71

CHAPTER 4 OBJECT PROGRAM STRUCTURE ...73
4.1 fcc907s COMMAND SECTION STRUCTURE ..74
4.2 fcc911s COMMAND SECTION STRUCTURE ..77
4.3 fcc896s COMMAND SECTION STRUCTURE ..79
4.4 MEMORY MODELS ..81
4.5 GENERATION RULES FOR NAMES USED BY COMPILER...83
4.6 fcc907s COMMAND BOUNDARY ALIGNMENT...84
4.7 fcc911s COMMAND BOUNDARY ALIGNMENT...85
4.8 fcc896s COMMAND BOUNDARY ALIGNMENT...86
4.9 fcc907s COMMAND BIT FIELD...87
4.10 fcc911s COMMAND BIT FIELD...89
vii

4.11 fcc896s COMMAND BIT FIELD.. 91
4.12 fcc907s COMMAND STRUCTURE/UNION.. 93
4.13 fcc911s COMMAND STRUCTURE/UNION.. 95
4.14 fcc896s COMMAND STRUCTURE/UNION.. 97
4.15 fcc907s COMMAND FUNCITON CALL INTERFACE... 98
4.15.1 fcc907s Command Stack Frame.. 99
4.15.2 fcc907s Command Argument .. 101
4.15.3 fcc907s Command Argument Extension Format ... 102
4.15.4 fcc907s Command Calling Procedure ... 103
4.15.5 fcc907s Command Register .. 104
4.15.6 fcc907s Command Return Value ... 105
4.16 fcc911s COMMAND FUNCTION CALL INTERFACE... 106
4.16.1 fcc911s Command Stack Frame.. 107
4.16.2 fcc911s Command Argument .. 109
4.16.3 fcc911s Command Argument Extension Format ... 111
4.16.4 fcc911s Command Calling Procedure ... 112
4.16.5 fcc911s Command Register .. 113
4.16.6 fcc911s Command Return Value ... 114
4.17 fcc896s COMMAND FUNCITON CALL INTERFACE... 115
4.17.1 fcc896s Command Stack Frame.. 116
4.17.2 fcc896s Command Argument .. 118
4.17.3 fcc896s Command Argument Extension Format ... 119
4.17.4 fcc896s Command Calling Procedure ... 120
4.17.5 fcc896s Command Register .. 121
4.17.6 fcc896s Command Return Value ... 122
4.18 fcc907s COMMAND INTERRUPT FUNCITON CALL INTERFACE ... 123
4.18.1 fcc907s Command Interrupt Stack Frame ... 124
4.18.2 fcc907s Command Interrupt Function Calling Procedure .. 125
4.19 fcc911s COMMAND INTERRUPT FUNCITON CALL INTERFACE ... 126
4.19.1 fcc911s Command Interrupt Stack Frame ... 127
4.19.2 fcc911s Command Interrupt Function Calling Procedure .. 128
4.20 fcc896s COMMAND INTERRUPT FUNCITON CALL INTERFACE ... 129
4.20.1 fcc896s Command Interrupt Stack Frame ... 130
4.20.2 fcc896s Command Interrupt Function Calling Procedure .. 131

CHAPTER 5 EXTENDED LANGUAGE SPECIFICATIONS ..133
5.1 ASSEMBLER DESCRIPITON FUNCTIONS .. 134
5.2 INTERRUPT CONTROL FUNCITONS... 141
5.3 I/O AREA ACCESS FUNCTION ... 146
5.4 direct AREA ACCESS FUNCTION ... 149
5.5 16-BIT/24-BIT ADDRESSING ACCESS FUNCTION ... 151
5.6 IN-LINE EXPANSION SPECIFYING FUNCTION... 153
5.7 SECTION NAME CHANGE FUNCTION... 154
5.8 REGISTER BANK NUMBER SETUP FUNCTION.. 156
5.9 INTERRUPT LEVEL SETUP FUNCTION... 157
5.10 SYSTEM STACK USE SPECIFYING FUNCTION ... 159
5.11 STACK BANK AUTOMATIC DISTINCTION FUNCTION ... 160
5.12 NO-REGISTER-SAVE INTERRUPT FUNC. FUNCTION ... 161
5.13 BUILT-IN FUNCTION ... 162
viii

5.14 PREDEFINED MACROS...167
5.15 LIMITATIONS ON COMPILER TRANSLATION..169

CHAPTER 6 EXECUTION ENVIRONMENT ..171
6.1 EXECUTION PROCESS OVERVIEW...172
6.2 STARTUP ROUTINE CREATION ...174

CHAPTER 7 LIBRARY OVERVIEW ..177
7.1 FILE ORGANIZATION...178
7.2 RELATIONSHIP TO LIBRARY INCORPORATING SYSTEM...181

CHAPTER 8 LIBRARY INCORPORATION ...183
8.1 LIBRARY INCORPORATION OVERVIEW..184
8.2 INITIALIZATION/TERMINATION PROCESS REQUIRED FOR LIBRARY USE.................................185
8.3 LOW-LEVEL FUNCTION TYPES..186
8.4 STANDARD LIBRARY FUNCTIONS AND REQUIRED PROCESS/LOW-LEVEL FUNCTIONS........187
8.5 LOW-LEVEL FUNCTION SPECIFICAITONS..188
8.5.1 open Function...189
8.5.2 close Function ..190
8.5.3 read Function..191
8.5.4 write Function ...192
8.5.5 lseek Function ..193
8.5.6 isatty Function ..194
8.5.7 sbrk Function ..195
8.5.8 _exit Function ...196
8.5.9 _abort Function...197

CHAPTER 9 COMPILER-DEPENDENT SPECIFICATIONS ...199
9.1 COMPILER-DEPENDENT LANGUAGE SPECIFICAITON DIFFERENTIALS200
9.2 FLOATING-POINT DATA FORMAT AND EXPRESSIBLE VALUE RANGE.......................................202

CHAPTER 0 SIMULATOR DEBUGGER LOW-LEVEL FUNCTION LIBRARY...............203
0.1 LOW-LEVEL FUNCTION LIBRARY OVERVIEW..204
0.2 fcc911s COMMAND LOW-LEVEL FUNCITON LIBRARY USE ..205
0.3 fcc907s COMMAND LOW-LEVEL FUNCITON LIBRARY USE ..207
0.4 fcc896s COMMAND LOW-LEVEL FUNCITON LIBRARY USE ..209
0.5 LOW-LEVEL FUNC. FUNCITON...210
0.6 LOW-LEVEL FUNCITON LIBRARY CHANGE..212

APPENDIX..215
Appendix A LIST OF TYPE, MACRO, VARIABLE, AND FUNCITON ..216
Appendix B OPERATIONS SPECIFIC TO LIBRARIES..221
Appendix C NOTES OF SIGNED DIVISION INSTRUCTION OF FFMC-16LX CPU....................................227
ix

FIGURES

Figure 1.1-1 C Compiler Structure ... 2

Figure 1.2-1 Relationship between Input Files and Output Files Generated by Options 5

Figure 1.2-1 (fcc907s Command) .. 5

Figure 1.2-2 Relationship between Input Files and Output Files Generated by Options 5

Figure 1.2-2 (fcc911s and fcc896s Commands) .. 5

Figure 3.7-1 Diagnostic Message Example ... 71

Figure 4.9-1 Example 1 of Bit Field Data Size and Boundary Alignment for fcc907s Command................... 87

Figure 4.9-2 Example 2 of Bit Field Data Size and Boundary Alignment for fcc907s Command................... 87

Figure 4.9-3 Example 3 of Bit Field Data Size and Boundary Alignment for fcc907s Command................... 88

Figure 4.10-1 Example 1 of Bit Field Data Size and Boundary Alignment for fcc911s Command................... 89

Figure 4.10-2 Example 2 of Bit Field Data Size and Boundary Alignment for fcc911s Command................... 89

Figure 4.10-3 Example 3 of Bit Field Data Size and Boundary Alignment for fcc911s Command................... 90

Figure 4.11-1 Example 1 of Bit Field Data Size and Boundary Alignment for fcc896s Command................... 91

Figure 4.11-2 Example 2 of Bit Field Data Size and Boundary Alignment for fcc896s Command................... 91

Figure 4.11-3 Example 3 of Bit Field Data Size and Boundary Alignment for fcc896s Command................... 92

Figure 4.12-1 Example 1 of Structure/Union Data Size and Boundary Alignment for fcc907s Command....... 93

Figure 4.12-2 Example 2 of Structure/Union Data Size and Boundary Alignment for fcc907s Command....... 93

Figure 4.12-3 Example 3 of Structure/Union Data Size and Boundary Alignment for fcc907s Command....... 94

Figure 4.13-1 Example 1 of Structure/Union Data Size and Boundary Alignment for fcc911s Command....... 95

Figure 4.13-2 Example 2 of Structure/Union Data Size and Boundary Alignment for fcc911s Command....... 95

Figure 4.13-3 Example 3 of Structure/Union Data Size and Boundary Alignment for fcc911s Command....... 96

Figure 4.15-1 fcc907s Command Stack Frame... 99

Figure 4.15-2 Example of Argument Transfer Relative to Callee Function.. 101

Figure 4.15-3 Stack Frame Prevailing at Calling in Compliance

with fcc907s Command Standard Linkage Regulations 103

Figure 4.15-4 Stack Frame Created by Callee Function in Compliance

with fcc907s Command Standard Linkage Regulations 103

Figure 4.16-1 fcc911s Command Stack Frame... 107

Figure 4.16-2 fcc911s Command Argument Format Stated in Standard Linkage Regulations 110

Figure 4.16-3 Argument Format for fcc911s Command Structure/Union Return Function Calling 110

Figure 4.16-4 Stack Frame Prevailing at Calling in Compliance

with fcc911s Command Standard Linkage Regulations 112

Figure 4.16-5 Stack Frame Created by Callee Function in Compliance

with fcc911s Command Standard Linkage Regulations 112

Figure 4.17-1 fcc896s Command Stack Frame ... 116

Figure 4.17-2 Example of Argument Transfer Relative to Callee Function.. 118
x

Figure 4.17-3 Stack Frame Prevailing at Calling in Compliance

with fcc896s Command Standard Linkage Regulations 120

Figure 4.17-4 Stack Frame Created by Callee Function in Compliance

with fcc896s Command Standard Linkage Regulations 120

Figure 4.18-1 fcc907s Command Interrupt Stack Frame ... 124

Figure 4.18-2 fcc907s Command Interrupt Vector Table.. 125

Figure 4.19-1 fcc911s Command Interrupt Stack Frame.. 127

Figure 4.19-2 fcc911s Command Interrupt Vector Table.. 128

Figure 4.20-1 fcc896s Command Interrupt Stack Frame.. 130

Figure 4.20-2 fcc896s Command Interrupt Vector Table.. 131

Figure 6.1-1 Relationship between Startup Routine and User Function Calling... 172

Figure 6.2-1 Example of DCLEAR Section ... 175

Figure 6.2-2 Example of DTRANS Section... 175

Figure 8.5-1 Area Change Brought About by sbrk Function Calling.. 195
xi

TABLES

Table 3.2-1 Relationship between Extensions and Command Processes .. 19

Table 3.4-1 List of Command Options .. 23

Table 3.4-2 List of fcc907s Command Options ... 24

Table 3.4-3 List of fcc911s Command Options ... 25

Table 3.4-4 List of fcc896s Command Options ... 25

Table 3.4-5 List of Command Cancel Options ... 26

Table 3.4-6 List of fcc907s Command Cancel Options ... 27

Table 3.4-7 List of fcc911s Command Cancel Options ... 27

Table 3.4-8 List of fcc896s Command Cancel Options ... 27

Table 3.5-1 Translation Control Related Option Exclusiveness... 29

Table 3.5-2 Relationship Among File Types, Translation Control Related Options,
and Processes30

Table 3.7-1 Relationship between Error Levels and Return Codes... 72

Table 4.1-1 fcc907s Command Section List .. 74

Table 4.2-1 fcc911s Command Section List .. 77

Table 4.3-1 fcc896s Command Section List.. 79

Table 4.4-1 List of Memory Models.. 81

Table 4.5-1 Label Generation Rules .. 83

Table 4.6-1 fcc907s Command Variable Assignment Rules.. 84

Table 4.7-1 fcc911s Command Variable Assignment Rules.. 85

Table 4.8-1 fcc896s Command Variable Assignment Rules.. 86

Table 4.15-1 fcc907s Command Argument Extension Format.. 102

Table 4.15-2 Register Regulations for fcc907s Command Function Call and Return Periods.................... 104

Table 4.15-3 fcc907s Command Return Value Interface Stated
in Standard Linkage Regulations105

Table 4.16-1 fcc911s Command Argument Extension Format.. 111

Table 4.16-2 Register Regulations for fcc911s Command Function Call and Return Periods.................... 113

Table 4.16-3 fcc911s Command Return Value Interface Stated
in Standard Linkage Regulations114

Table 4.17-1 fcc896s Command Argument Extension Format.. 119

Table 4.17-2 Register Regulations for fcc896s Command Function Call and Return Periods.................... 121

Table 4.17-3 fcc896s Command Return Value Interface Stated
in Standard Linkage Regulations122

Table 5.15-1 List of Translation Limitations ... 169

Table 6.1-1 fcc907s Command Register Status Prevailing at Return from User Program........................ 173
xii

Table 6.1-2 fcc911s Command Register Status Prevailing at Return from User Program173

Table 6.1-3 fcc896s Command Register Status Prevailing at Return from User Program173

Table 7.1-1 General-purpose Standard Library for fcc907s Command ...178

Table 7.1-2 Simulator Debugger Low-level Function Library for fcc907s Command.................................178

Table 7.1-3 fcc907s Command Section Name...179

Table 7.1-4 fcc911s Command Library Section Names...180

Table 7.1-5 fcc896s Command Library Section Names...180

Table 8.4-1 Standard Library Functions and Required Processes/Low-level Functions187

Table 9.1-1 Compiler-dependent Language Specification Differentials ..200

Table 9.2-1 Floating-point Data Format and Expressible Value Range ...202

Table 0.3-1 Libraries to be Linked for Load Module Creation...207

Table 0.5-1 fcc907s Command Predefined I/O Port...210

Table 0.5-2 fcc911s Command Predefined I/O Port...210
xiii

xiv

CHAPTER 1 GENERAL

This chapter outlines the C compiler. The C compiler is a language processor program
which translates source programs written in C language into the assembly language
for Fujitsu-provided various microcontroller units.

1.1 C COMPILER FUNCTIONS

1.2 BASIC PROCESS OF COMMANDS

1.3 C COMPILER BASIC FUNCTIONS
1

CHAPTER 1 GENERAL
1.1 C COMPILER FUNCTIONS

When a C source file is described, the C compiler generates an assembler source file
which is expressed in assembly language.

■ C Compiler Functions

The processing steps for assembler source file generation are indicated below.

• Preprocessing

Preprocessing is conducted by the preprocessor (cpp) which is a subcomponent of the
compiler. Preprocessing instructions (#if , #define , #include , etc.) in a C source are
interpreted and converted to a preprocessed C source.

• Compilation

Compilation is conducted by the compiler (ccom). The preprocessed C source is converted
to an assembler source.

For the use of the C compiler, the fcc907s , fcc911s , or fcc896s command is to be used.
These commands automatically call up the tools composing the C compiler (preprocessor and
compiler), and provides control over C source file compiling. The C compiler structure is shown
in Figure 1.1-1.

Figure 1.1-1 C Compiler Structure

In the subsequent sections, the C compiler translation process is explained using commands.
For the details of the command function specifications, see Chapter 3, Operation .

C source file

Preprocessor
(cpp)

Preprocessed
C source file

Compiler
(ccom)

Assembler
source file

Standard
header file

Message file

Message file

Stack use
information file
2

1.2 BASIC PROCESS OF COMMANDS
1.2 BASIC PROCESS OF COMMANDS

The basic process of commands is described below.
Each MCU has the following commands.

● fcc911s : For FR family
● fcc907s : For F 2MC-16L/16LX/16/16H/16F family
● fcc896s : For F 2MC-8L family

■ fcc907s Command Basic Process

The fcc907s command basically generates an object file from an described C source file. The
command regards any file with a .c extension as a C source file.

An example of using the fcc907s command is given below, where % is the command prompt.

[Example 1]

% fcc907s -cpu MB90F553A file.c

At the input given above, the command regards file.c as a C source file and, if no error is
detected, generates an object file (file.obj) in the current directory.

[Example 2]

% fcc907s -o outfile -cpu MB90F553A file.c

At the input given above, the command generates an object file (outfile). The command
operation process can be controlled by specifying options, such as -o .

■ fcc911s Command Basic Process

The fcc911s command basically generates an absolute file from an described C source file.
The command regards any file with a .c extension as a C source file.

An example of using the fcc911s command is given below, where % is the command prompt.

[Example 1]

% fcc911s -cpu MB91F154 file.c

At the input given above, the command regards file.c as a C source file and, if no error is
detected, generates an absolute file (file.abs) in the current directory.

[Example 2]

% fcc911s -o outfile -cpu MB91F154 file.c

At the input given above, the command generates an absolute file (outfile). The
command operation process can be controlled by specifying options, such as -o .
3

CHAPTER 1 GENERAL
■ fcc896s Command Basic Process

The fcc896s command basically generates an absolute file from an described C source file.
The command regards any file with a .c extension as a C source file.

An example of using the fcc896s command is given below, where % is the command prompt.

[Example 1]

% fcc896s -cpu MB89P935B file.c

At the input given above, the command regards file.c as a C source file and, if no error is
detected, generates an absolute file (file.abs) in the current directory.

[Example 2]

% fcc896s -o outfile -cpu MB89P935B file.c

At the input given above, the command generates an absolute file (outfile). The
command operation process can be controlled by specifying options, such as -o .

■ Options for Compiling Process Control

• -P option

When the -P option is specified, the command calls up the preprocessor only and performs
preprocessing to generate a preprocessed C source file in the current directory. The
extension of the generated file is changed to .i .

• -S option

When the -S option is specified, the command calls up the preprocessor and compiler and
performs preprocessing and compiling to generate an assembler source file in the current
directory. The extension of the generated file is changed to .asm.

• -c option (only for fcc911s and fcc896s commands)

When the -c option is specified, the command calls up the preprocessor, compiler, and
assembler and performs preprocessing, compiling, and assembling to generate an object file
in the current directory. The extension of the generated file is changed to .obj . Note that
this option cannot be specified for the fcc907s command.

• -o option

When the -o option is specified, the command generates the file specified in the command
line as a result of processing.

Output files generated according to the above options specifying can be used as the input files
for the fcc907s command. The input files and output files generated by options are shown in
Figures 1.2-1 and 1.2-2.
4

1.2 BASIC PROCESS OF COMMANDS
Figure 1.2-1 Relationship between Input Files and Output Files Generated by Options
(fcc907s Command)

Figure 1.2-2 Relationship between Input Files and Output Files Generated by Options
(fcc911s and fcc896s Commands)

fcc907s command file.i Compiler
file.asm

Specified file

-S

-S -o

file.c Preprocessor
file.i

Specified file

-P

-P -o

file.asm Assembler
file.c

Specified file
-o

fcc911s command
fcc896s command

file.i Compiler
file.asm

Specified file

-S

-S -o

file.c Preprocessor
file.i

Specified file

-P

-P -o

file.asm Assembler
file.obj

Specified file

file.obj Linker
file.abs

Specified file
-o

-c

-c -o
5

CHAPTER 1 GENERAL
1.3 C COMPILER BASIC FUNCTIONS

The C compiler functions are described below.
● Header file search
● Coordination with symbolic debugger
● Optimization

The symbolic debugger is a support tool for analyzing a program created in C
language.

■ Header File Search

The header file can be acquired using the C program #include instruction. When the absolute
pathname is specified, the header file enclosed within angular brackets (<>) is searched for in
the directory specified by absolute pathname. When the absolute pathname is not specified,
the standard directory is searched.

The standard header file is supplied by the C compiler.

The header file enclosed by double quotation marks (") is searched for in a directory specified
by the absolute pathname. If the absolute pathname is not specified, such a header file is
searched for in a directory having a file containing a #include line. If the header file is not
found in a directory having a file containing a #include line, the standard directory is searched
next.

The -I option makes it possible to add a directory for header file search.

[Example]

% fcc907s -cpu MB90F553A -I ../include file.c

% fcc911s -cpu MB91F154 -I ../include file.c

% fcc896s -cpu MB89P935B -I ../include file.c

At the input given above, the command searches for the header file enclosed within angular
brackets in the order shown below.

1. ../include

2. Standard directory

The header file enclosed by double quotation marks is searched for in the order shown below.

1. Current directory having a file containing a #include line

2. ../include

3. Standard directory

The -I option can be specified a desired number of times. When it is specified two or more
times, search operations are conducted in the specified order.
6

1.3 C COMPILER BASIC FUNCTIONS
■ Coordination with Symbolic Debugger

When the -g option is specified, the compiler generates the debug information to be used by
the symbolic debugger. When such information is generated, C language level debugging can
be accomplished within the symbolic debugger. Two types of symbol debuggers are available;
simulator debugger and emulator debugger.

When the optimization option is specified, the compiler attempts to ensure good code
generation by changing the computation target position and eliminating computations that are
judged to be unnecessary. To minimize the amount of data exchange with memory, the
compiler tries to retain data within a register. It is therefore conceivable that a break point
positioned in a certain line may fail to cause a break or that currently monitored certain address
data may fail to vary with the expected timing. It also well to remember that the debug data will
not be generated for an unused local variable or a local variable whose area need not be
positioned in a stack as a result of optimization.

Debugging must be conducted with the above considerations taken into account.

■ Optimization

When the -O option is specified, the compiler generates an object subjected to general-purpose
optimization.
7

CHAPTER 1 GENERAL
8

CHAPTER 2 SETUP OF SYSTEM EMVIRONMENT
BEFORE USING C COMPILER

This chapter describes the C compiler operating environment variables (for the setting
of environment variables, refer to the manual for each operating system). All the
environment variables can be omitted.
For the supply style, refer to the C Compiler Installation Manual .
The Windows95/WindowsNT version permits the use of long file names for the
directories to be set up as environment variables. For the characters applicable to
long file names, see 3.3, File Names and Directory Names .
[Setup Example]

set TMP=c:Fujitsu MCU tool

For environment variable setup, do not use double quotation marks (").

2.1 FETOOL

2.2 LIB911/LIB896

2.3 OPT907/OPT911/OPT896

2.4 INC907/INC911/INC896

2.5 TMP

2.6 FELANG
9

CHAPTER 2 SETUP OF SYSTEM EMVIRONMENT BEFORE USING C COMPILER
2.1 FETOOL

Specify the installation directory for the development environment.

■ FETOOL

[General Format 1] For UNIX OS

setenv FETOOL Installation directory

[General Format 2] For Windows

set FETOOL=Installation directory

The driver accesses the compiler, message file, include file, and other items via the path
specified by FETOOL.

When FETOOL setup is not completed, the parent directory for the directory where the activated
command exists (the /.. position of the directory where the command exists) is regarded as the
installation directory.

No more than one directory can be specified.

[Example] For UNIX OS

setenv FETOOL /usr/local/softune

[Example] For Windows

set FETOOL=c:\softune
10

2.2 LIB911/LIB896
2.2 LIB911/LIB896

Specify the directory that contains the library to which the fcc911s or fcc896s
command is linked by default.

■ LIB911/LIB896

[General Format 1] For UNIX OS

setenv LIB911 Library directory [: Directory 2 ...]

setenv LIB896 Library directory [: Directory 2 ...]

[General Format 2] For Windows

set LIB911=Library directory [; Directory 2 ...]

set LIB896=Library directory [; Directory 2 ...]

Specify the directory to which linking is effected by default.

If LIB911 setup is not completed, the directory placed at an offset from the directory specified
by FETOOL (${FETOOL}/lib/911 or ${FETOOL}/lib/896) is regarded as the default
library directory.

When two or more directories are specified, ":" (UNIX) or ";" (Windows) is interpreted as the
directory name delimiter.

[Example] For UNIX OS

setenv LIB911 /usr/local/softune/lib/911

setenv LIB896 /usr/local/softune/lib/896

[Example] For Windows

set LIB911=d:\softune\lib\911

set LIB896=d:\softune\lib\896
11

CHAPTER 2 SETUP OF SYSTEM EMVIRONMENT BEFORE USING C COMPILER
2.3 OPT907/OPT911/OPT896

Specify the directory for the default option file to be used by the command. For the
fcc907s command, set OPT907. For the fcc911s command, set OPT911. For the
fcc896s command, set OPT896.

■ OPT907/OPT911/OPT896

[General Format 1] For UNIX OS

setenv OPT907 Default option file directory

setenv OPT911 Default option file directory

setenv OPT896 Default option file directory

[General Format 2] For Windows

set OPT907=Default option file directory

set OPT911=Default option file directory

set OPT896=Default option file directory

Specify the directory for the default option file to be used by the driver.

If OPT907/OPT911/OPT896 setup is not completed, the directory placed at an offset from the
directory specified by FETOOL (${FETOOL}/lib/907 , ${FETOOL}/lib/911 , or
${FETOOL}/lib/896) is regarded as the default option file directory.

No more than one directory can be specified.

[Example] For UNIX OS

setenv OPT907 /usr/local/softune/lib/907

setenv OPT911 /usr/local/softune/lib/911

setenv OPT896 /usr/local/softune/lib/896

[Example] For Windows

set OPT907=c:\softune\lib\907

set OPT911=c:\softune\lib\911

set OPT896=c:\softune\lib\896
12

2.4 INC907/INC911/INC896
2.4 INC907/INC911/INC896

Specify the directory where a standard header file search is to be conducted by the
command. For the fcc907s command, set INC907 . For the fcc911s command, set
INC911 . For the fcc896s command, set INC896 .

■ INC907/INC911/INC896

[General Format 1] For UNIX OS

setenv INC907 Standard include directory

setenv INC911 Standard include directory

setenv INC896 Standard include directory

[General Format 2] For Windows

set INC907=Standard include directory

set INC911=Standard include directory

set INC896=Standard include directory

Specify the directory where the standard header file is to be searched for. The directory
specified by INC907/INC911/INC896 is regarded as the standard include directory.

If INC907C/INC911 setup is not completed, the directory placed at an offset from the directory
specified by FETOOL (${FETOOL}/lib/907/include , ${FETOOL}/lib/911/include , or
${FETOOL}/lib/896/include) is regarded as the standard header file directory.

No more than one directory can be specified.

[Example] For UNIX OS

setenv INC907 /usr/local/softune/lib/907/include

setenv INC911 /usr/local/softune/lib/911/include

setenv INC896 /usr/local/softune/lib/896/include

[Example] For Windows

set INC907=c:\softune\lib\907\include

set INC911=c:\softune\lib\911\include

set INC896=c:\softune\lib\896\include
13

CHAPTER 2 SETUP OF SYSTEM EMVIRONMENT BEFORE USING C COMPILER
2.5 TMP

Specify the directory for the temporary file to be used by the C compiler.

■ TMP

[General Format 1] For UNIX OS

setenv TMP Temporary directory

[General Format 2] For Windows

set TMP=Temporary directory

Specify the working directory for creating the temporary file to be used by the C compiler.

If TMP setup is not completed, the temporary file is created in the /tmp directory for UNIX OS or
in the current directory for Windows.

No more than one directory can be specified.

[Example] For UNIX OS

setenv TMP /usr/tmp

[Example] For Windows

set TMP=c:\tmp
14

2.6 FELANG
2.6 FELANG

Specify the code for messages.

■ FELANG

[General Format 1] For UNIX OS

setemv FELANG Message code

[General Format 2] For Windows

set FELANG=Message code

Specify the message code. The following codes can be specified.

• ASCII: Outputs messages in ASCII code
The generated messages are in English.
Select this code for a system without a Japanese language environment.

• EUC: Outputs messages in EUC code
The generated messages are in Japanese.

• SJIS: Outputs messages in SHIFT JIS code
The generated messages are in Japanese.

If FELANG setup is not completed, the ASCII code is considered to be selected.

[Example] For UNIX OS

setenv FELANG EUC

[Example] For Windows

set FELANG=SJIS
15

CHAPTER 2 SETUP OF SYSTEM EMVIRONMENT BEFORE USING C COMPILER
16

CHAPTER 3 OPERATION

This chapter describes the command function specifications.

3.1 COMMAND LINE

3.2 COMMAND OPERANDS

3.3 FILE NAMES AND DIRECTORY NAMES

3.4 COMMAND OPTIONS

3.5 DETAILS OF OPTIONS

3.6 OPTION FILES

3.7 MESSAGES GENERATED IN TRANSLATION PROCESS
17

CHAPTER 3 OPERATION
3.1 COMMAND LINE

The command line format is shown below.
● fcc907s [options] operands

● fcc911s [options] operands

● fcc896s [options] operands

■■■■ Command Line

Options and operands can be specified in the command line. They can be specified at any
position within the command line. Two or more options and operands can be specified.
Options can be omitted.

Option and operand entries are to be delimited by a blank character string. The command
recognizes the options and operands in the order shown below.

1.An entry beginning with a hyphen (-) is first recognized as an option. The subsequent
character string is interpreted to determine the option type.

2.As regards an option having an argument, the subsequent character string is regarded
as the argument.

3.The remaining entries in the command line are recognized as operands.

[Example]

%fcc907s file1.c -S -I /home/myincs file2.c

%fcc911s file1.c -S -I /home/myincs file2.c

%fcc896s file1.c -S -I /home/myincs file2.c

At first, -S and -I are regarded as options. Since the -I option has an argument, the
subsequent character string /home/myincs is regarded as the argument. The remaining
entries (file1.c and file2.c) are regarded as operands.

Options : -S , -I /home/myincs

Operands : file1.c , file2.c

■■■■ Command Process

The command calls up the preprocessor, compiler, assembler, and linker for all input files in the
order of their specifying, and performs preprocessing, compiling, assembling, and linking. The
results are output into files which are named by replacing the input file extensions with .obj .

[Example]

%fcc907s file1.c file2.c file3.c -cpu MB90F553A

Files named file1.c , file2.c , and file3.c are subjected to preprocessing, compiling,
and assembling so that files named file1.obj , file2.obj , and file3.obj are
generated.

%fcc911s file1.c file2.c file3.c -cpu MB91F154

%fcc896s file1.c file2.c file3.c -cpu MB89P935B

Files named file1.c , file2.c , and file3.c are subjected to preprocessing, compiling,
assembling, and linking so that files named file1.abs are generated.
18

3.2 COMMAND OPERANDS
3.2 COMMAND OPERANDS

One or more input files can be specified as operands.

■■■■ Command Operands

The command determines the file type according to the input file extension and performs an
appropriate process to suit the file type.

The extension cannot be omitted.

• File Specifying

C source files, preprocessed C source files, assembler source files, and object files can be
specified as operands.

• File Extension

The relationship between input file extensions and fcc907s command processes is shown
in Table 3-2-1. Note, however, that the associated process may be inhibited depending on
the option specifying.

[Example]

%fcc907s file1.c file2.i -cpu MB90F553A

A file named file1.c is subjected to preprocessing, compiling, and assembling. A file
named file2.i is then subjected to compiling and assembling to generate files named
file1.obj and file2.obj .

%fcc911s file1.c file2.i -cpu MB91F154

%fcc896s file1.c file2.i -cpu MB89P935B

A file named file1.c is subjected to preprocessing, compiling, and assembling. A file
named file2.i is then subjected to compiling, assembling, and linking, in order named, to
generate a file named file1.abs .

Table 3.2-1 Relationship between Extensions and Command Processes

Extension Command Process

.c
The file having this extension is regarded as a C source file and subjected to
preprocessing and subsequent processes.

.i
The file having this extension is regarded as a preprocessed C source file
and subjected to compiling and subsequent processes.

.asm
The file having this extension is regarded as a compiled assembler source
file and subjected to assembling and subsequent processes.

.obj
The file having this extension is regarded as an assembled object file and
subjected to linking and subsequent processes. For this type of file, the
fcc907s command does nothing.

.abs
The file having this extension is regarded as a linked absolute file, and an
error output is generated. No absolute file can be specified.
19

CHAPTER 3 OPERATION
3.3 FILE NAMES AND DIRECTORY NAMES

The following characters are applicable to file names and directory names.

■■■■ File Names and Directory Names

• Windows95/WindowsNT version

Alphanumeric characters, symbols except \ , / , : , * , ?, " , <, >, and |, Shift-JIS kanji codes,
and Shift-JIS 1-byte kana codes.

When long file name is specified as option and operand, it should be enclosed by double
quotation marks ("). However, do not use double quotation marks at setup environment
variable with this file name.

• Other Versions

Underbar (_) and alphanumeric characters (however, the first character must be the
underbar or alphabetical character).

• Module Name

The module name is based on a file name. It is formed by an underbar (_) and
alphanumeric characters (The first character must be alphabetic with an underbar). If other
characters are used for the file name, the characters that cannot be used for the module
name are converted to underbars. File names allowing identical module names should not
be used.
20

3.4 COMMAND OPTIONS
3.4 COMMAND OPTIONS

This section describes the command options.

■■■■ Option Syntax

The option consists of a hyphen (-) and one or more characters following the hyphen. Some
options have an argument. A blank character string must be positioned between an option and
an argument. The command options cannot be grouped for purposes of specifying. Grouping
is a technique of specifying which, for instance, uses a -Sg form to specify both the -S option
and -g option.

■■■■ Multiple Specifying of Same Option

If the same option is specified more than one time, only the last-specified option in the
command line is assumed to be valid.

[Example]

%fcc907s -o outfile file.c -o outobj -cpu MB90F553A

%fcc911s -o outfile file.c -o outobj -cpu MB91F154

%fcc896s -o outfile file.c -o outobj -cpu MB89P935B

The resultant output file name will be outobj .

• Options that are significant when specified more than one time

-D -f -I -INF -K -L -l -ra -ro -sc -T -U -x -Y

When the above options are specified more than one time, see details of options.

■■■■ Position within Command Line

The option's position within the command line does not have a special meaning. Options are
interpreted in the same manner no matter where in the command line they are specified.

[Example]

1) %fcc907s -C -E file1.c file2.c -cpu MB90F553A

2) %fcc907s file1.c -E file2.c -C -cpu MB90F553A

1) %fcc911s -C -E file1.c file2.c -cpu MB91F154

2) %fcc911s file1.c -E file2.c -C -cpu MB91F154

1) %fcc896s -C -E file1.c file2.c -cpu MB89P935B

2) %fcc896s file1.c -E file2.c -C -cpu MB89P935B

The same processing operations are performed for cases 1) and 2).

■■■■ Exclusiveness and Dependency

Some options are mutually exclusive or dependent on each other. For option exclusiveness
and dependency, see details of options.
21

CHAPTER 3 OPERATION
■■■■ Case Sensitiveness

As regards the options, their upper-case and lower-case characters are different from each
other. For example, the -O option is different from the -o option. However, the upper- and
lower-case characters of suboptions are not differentiated from each other. For example, the
-K eopt option is considered in the same as the -K EOPT option. The suboptions are the
character strings that follow the -K option or -INF option.
22

3.4 COMMAND OPTIONS
3.4.1 List of Command Options

When executed without argument specifying, the command outputs an option list to
the standard output. The options for the command are listed in Tables 3.4-1 to 3.4-4.
The options listed in the tables can be recognized by the command.

■■■■ List of Command Options

Table 3.4-1 List of Command Options

Specifying Format Function

-B Allows the C++ type comments(//)

-C Leaves a comment in the preprocessing result

-cmsg Outputs the compiling process end message to the standard output

-cpu MB number Specifies the MB number of the CPU to be used

-cwno Sets end code to 1 when warning given

-D name[=[tokens]] Defines the macro name

-E Performs preprocessing only and outputs the result to the standard output

-f filename Specifies the option file

-g Adds to the object the information necessary for debugging

-H Outputs the acquired header file pathname to the standard output

-help Outputs the option list to the standard output

-I dir Specifies the directory for head file search

-INF LIST Generates the assemble list

-INF {SRCIN|LINENO} Inserts the associated C source information as a comment into the assembler source

-INF STACK[=filename] Generates the stack use amount data

-J {a|c} Specifies the specification level of the language to be interpreted by the compiler

-K {DCONST|FCONST} Specifies the type of a real constant without a suffix

-K EOPT Effects optimization for changing the arithmetic operation evaluation procedure

-K LIB
Recognizes the standard function operation and implements in-line expansion/substitution
for other functions

-K NOALIAS
Effects optimization on the presumption that differing pointers do not indicate the same
area

-K NOINTLIB Effects no in-line expansion for interrupt related functions

-K NOUNROLL Inhibits loop unrolling

-K NOVOLATILE Does not consider __io qualifier variables to be volatile

-K REALOS Effects in-line expansion for the ITRON system call function

-K {SIZE|SPEED} Selects optimization with emphasis placed on the size and execution speed

-K {UCHAR|SCHAR} Specifies the mere char sign handling

-K {UBIT|SBIT} Specifies the mere int bit field sign handling

-kanji {SJIS|EUC} Specifies kanji code used in program

-O level Gives instructions for general-purpose optimization
23

CHAPTER 3 OPERATION
-o pathname Outputs the result to the pathname

-P Performs preprocessing only and outputs the result to .i

-S Performs processes up to compiling and outputs the result to .asm

-s defname=newname
[, attr [, address]]

Changes the section name

-T item, arg1 [, arg2 ...] Passes arguments to the tool

-U name Cancels the macro name definition

-V Outputs the executed compiler tool version information to the standard output

-w level Specifies the warning message output level

-Xdof Inhibits the default option file read operation

-x func [, func2 ...] Specifies the in-line expansion of functions

-xauto [size]
Specifies the in-line expansion of the functions whose logical line count is not less than
size

-Y item, dir Changes the item position to dir

Table 3.4-2 List of fcc907s Command Options

Specifying Format Function

-div905 Specifies the DIV/DIVW instruction is generated

-K ADDSP Releases actual argument areas altogether

-K ARRAY Optimization of array element access code.

-pack Packing of struct and union menbers.

-model {SMALL|MEDIUM|COMPACT|LARGE} Specifies the memory model

-ramconst Specifies that the mirror function will not be used

-varorder {SORT|NORMAL}
Specifies the rule of arrangement of external variables and static variables
in section

Table 3.4-1 List of Command Options (Continued)

Specifying Format Function
24

3.4 COMMAND OPTIONS
Table 3.4-3 List of fcc911s Command Options

Specifying Format Function

-c Performs processes up to assembling and outputs the result to .obj

-e name Specifies the entry of a program

-K {A1|A4} Specifies the minimum boundary alignment value for static data

-K {SCHEDULE|NOSCHEDULE} Specifies the recall of the scheduler

-K {SARG|DARG} Specifies the argument area acquisition type

-K {SHORTADDRESS[= {CODE|DATA}]
|LONGADDRESS[= {CODE|DATA}]}

Specifies the external symbol handling type

-L path1 [, path2 ...] Specifies the library path

-l lib1 [, lib2 ...] Specifies the library file name

-m Outputs a map file at the time of linking

-ra name = start/end Specifies the RAM area

-ro name = start/end Specifies the ROM area

-sc param Specifies the section arrangement

-startup file Specifies the startup file name

-varorder {SORT|NORMAL}
Specifies the rule of arrangement of external variables and static variables
in section

Table 3.4-4 List of fcc896s Command Options

Specifying Format Function

-c Performs processes up to assembling and outputs the result to .obj

-e name Specifies the entry of a program

-L path1 [, path2 ...] Specifies the library path

-l lib1 [, lib2 ...] Specifies the library file name

-K ADDSP Releases actual argument areas altogether

-K ARRAY Optimization of array element access code.

-m Outputs a map file at the time of linking

-ra name = start/end Specifies the RAM area

-ro name = start/end Specifies the ROM area

-sc param Specifies the section arrangement

-startup file Specifies the startup file name
25

CHAPTER 3 OPERATION
3.4.2 List of Command Cancel Options

The cancel options for the command are listed in Tables 3.4-5 to 3.4-8. The listed
options are used to cancel command options on an individual basis.

■■■■ List of Command Cancel Options

Table 3.4-5 List of Command Cancel Options

Specifying Format Function

-XB Cancels the -B option

-XC Cancels the -C option

-Xcmsg Cancels the -cmsg option

-Xcwno Cancels the -cwno option

-Xf Cancels the -f option

-Xg Cancels the -g option

-XH Cancels the -H option

-Xhelp Cancels the -help option

-XI Cancels the -I option

-INF NOLINENO Cancels the LINENO suboption

-INF NOLIST Cancels the LIST suboption

-INF NOSRCIN Cancels the SRCIN suboption

-INF NOSTACK Cancels the STACK suboption

-K ALIAS Cancels the NOALIAS suboption

-K INTLIB Cancels the NOINTLIB suboption

-K NOEOPT Cancels the EOPT suboption

-K NOLIB Cancels the LIB suboption

-K NOREALOS Cancels the REALOS suboption

-K UNROLL Cancels the NOUNROLL suboption

-K VOLATILE Cancels the NOVOLATILE suboption

-Xo Cancels the -o option

-Xs Cancels the -s option

-XT item Cancels the -T item specifying

-XV Cancels the -V option

-Xx Cancels the -x option

-Xxauto Cancels the -xauto option

-XY item Cancels the -Y item specifying
26

3.4 COMMAND OPTIONS
Table 3.4-6 List of fcc907s Command Cancel Options

Specifying Format Function

-K NOADDSP Cancels the ADDSP suboption

-K NOARRAY Cancels the ARRAY suboption

-Xpack Cancels the -pack option

-Xdiv905 Cancels the -div905 option

-Xramconst Cancels the -ramconst option

Table 3.4-7 List of fcc911s Command Cancel Options

Specifying Format Function

-Xe Cancels the -e option

-XL Cancels the -L option

-Xl Cancels the -l option

-Xm Cancels the -m option

-Xra Cancels the -ra option

-Xro Cancels the -ro option

-Xsc Cancels the -sc option

-Xstartup Cancels the -startup option

Table 3.4-8 List of fcc896s Command Cancel Options

Specifying Format Function

-Xe Cancels the -e option

-K NOADDSP Cancels the ADDSP suboption

-K NOARRAY Cancels the ARRAY suboption

-XL Cancels the -L option

-Xl Cancels the -l option

-Xm Cancels the -m option

-Xra Cancels the -ra option

-Xro Cancels the -ro option

-Xsc Cancels the -sc option

-Xstartup Cancels the -startup option
27

CHAPTER 3 OPERATION
3.5 DETAILS OF OPTIONS

This section details the options.

■■■■ Translation Control Related Options

The translation control related options are related to preprocessor, compiler, assembler, and
linker call control.

■■■■ Preprocessor Related Options

The preprocessor related options are related to preprocessor operations.

■■■■ Data Output Related Options

The data output related options are related to the command, preprocessor, and compiler data
outputs.

■■■■ Language Specification Related Options

The language specification related options are related to the specification of the language to be
recognized by the compiler.

■■■■ Optimization Related Options

The optimization related options are related to the optimization to be effected by the compiler.

■■■■ Output Object Related Options

The output object related options are related to the output object format.

■■■■ Debug Information Related Options

The debug information related options are related to the debug information to be referenced by
the symbolic debugger.

■■■■ Command Related Options

The command related options are related to the other tools recalled by commands.

■■■■ Linkage Related Options

The linkage related options are related to linkage.

■■■■ Option File Related Options

The option file related options are related to option files.
28

3.5 DETAILS OF OPTIONS
3.5.1 Translation Control Related Options

This section describes the options related to preprocessor, compiler, assembler, and
linker call control.

■■■■ Translation Control Related Options

The priorities of the translation control related options are defined as follows. They are not
related to the order of specifying.

-E > -P > -S > -c

The translation control related option exclusiveness is shown in Table 3.5-1.

If the -E and -P options are specified simultaneously, see the explanation below. The -c
option cannot be used with the fcc907s command.

The translation control related options are detailed below.

❍❍❍❍ -E

This option subjects all files to preprocessing only and outputs the result to the standard
output. The output result contains the preprocessing instruction generated by the
preprocessor, which is necessary for the compiler. The information targets for the
preprocessing instruction generated by the preprocessor are the #line and #pragma
instructions. If the -P option is specified together with the -E option, the preprocessing
instruction generated by the preprocessor is inhibited. If the input file is not a C source file, the
-E option does not do anything.

[Example]

%fcc907s -E -cpu MB90F553A sample.c

%fcc911s -E -cpu MB91F154 sample.c

%fcc896s -E -cpu MB89P935B sample.c

The sample.c preprocessing result is output to the standard output.

❍❍❍❍ -P

This option subjects a C source file to preprocessing only and outputs the result to the file
whose extension is changed to .i . Unlike the cases where the -E option is specified, the
output result does not contain the preprocessing instruction generated by the preprocessor. If
the input file is not a C source file, the -P option does not do anything.

Table 3.5-1 Translation Control Related Option Exclusiveness

Specified Option Option Invalidated

-E -S and -c

-P -S and -c

-S -c

-c None
29

CHAPTER 3 OPERATION
[Example]

%fcc907s -P -cpu MB90F553A sample.c

%fcc911s -P -cpu MB91F154 sample.c

%fcc896s -P -cpu MB89P935B sample.c

The sample.c preprocessing result is output to the sample.i .

❍❍❍❍ -S

This option performs processes up to compiling and outputs the resultant assembler source to
file extension changed to .asm . If the input is neither a C source file nor a preprocessed C
source file, the -S option does not do anything.

[Example]

%fcc907s -S -cpu MB90F553A sample.c

%fcc911s -S -cpu MB91F154 sample.c

%fcc896s -S -cpu MB89P935B sample.c

The sample.c preprocessing and compiling process result are output to the sample.asm .

❍❍❍❍ -c

This option performs processes up to assembling and outputs the resultant object to file
extension changed to .obj . If the input file is an object file, the -c option does not do anything.
The option cannot be used with the fcc907s command.

[Example]

%fcc911s -c -cpu MB91F154 sample.c

%fcc896s -c -cpu MB89P935B sample.c

The sample.c preprocessing and compiling process result is output to the sample.obj .

The relationship among file types, translation control related options, and processes is shown in
Table 3.5-2.

P: Preprocessing
C: Compiling
A: Assembling
L: Linking

Table 3.5-2 Relationship Among File Types, Translation Control Related Options,
and Processes

Option File Type (Extension) -E -P -S -c Nothing Specified

C source file (.c) P P P and C P, C and A P, C, A and L

Preprocessed C source file (.i) — — C C and A C, A and L

Assembler source file (.asm) — — — A A and L

Object file (.obj) — — — — L
30

3.5 DETAILS OF OPTIONS
The fcc907s command does not call linker.

[Example]

%fcc907s -E file1.c file2.i -cpu MB90F553A

%fcc911s -E file1.c file2.i -cpu MB91F154

%fcc896s -E file1.c file2.i -cpu MB89P935B

Subjects a file named file1.c to preprocessing only and outputs the result to the standard
output. Performs nothing for a file named file2.i .

%fcc907s -E file1.c file2.i file3.asm -cpu MB90F553A

%fcc911s -E file1.c file2.i file3.asm -cpu MB91F154

%fcc896s -E file1.c file2.i file3.asm -cpu MB89P935B

Subjects a file named file1.c to preprocessing and compiling and a file named file2.i to
compiling. Performs nothing for a file named file3.asm . As a result, files named file1.asm
and file2.asm are generated in the current directory.
31

CHAPTER 3 OPERATION
3.5.2 Preprocessor Related Options

This section describes the options related to preprocessor operations. If the
preprocessor is not called, the preprocessor related options are invalid.

■■■■ Preprocessor Related Options

The preprocessor related options are detailed below.

❍❍❍❍ -B

❍❍❍❍ -XB

The -B option allows C++ style comments. When specifying this option, // style in addition to /*
*/ style can be used.

The -XB option cancels the -B option.

❍❍❍❍ -C

❍❍❍❍ -XC

The -C option retains all comments except those which are in the preprocessing instruction line
as the preprocessing result. If the option is not specified, the comments are replaced by one
blank character.

The -XC option cancels the -C option.

[Output Example]

• Input:

/* Comment */

void func(void){}

• Operation:

fcc907s -C -E -cpu MB90F553A sample.c

fcc911s -C -E -cpu MB91F154 sample.c

fcc896s -C -E -cpu MB89P935B sample.c

• Output:

1 "test5.c"

/* Comment */

void func(void){}

❍❍❍❍ -D name [=[tokens]]

This option defines the macro name with the tokens used as the macro definition. The option
is equivalent to the following #define instruction.

#define name tokens

If =tokens entry is omitted, the value 1 is given as the tokens value. If the tokens entry is
omitted, the specified lexeme is deleted from the source file. The error related to the -D option
is the same as the error related to the #define instruction. This option can be specified more
than one time.
32

3.5 DETAILS OF OPTIONS
[Example]

%fcc907s -D os=m -D sys file.c -cpu MB90F553A

%fcc911s -D os=m -D sys file.c -cpu MB91F154

%fcc896s -D os=m -D sys file.c -cpu MB89P935B

In a file named file.c , processing is conducted on the assumption that the macro
definitions for os and sys are m and 1, respectively.

❍❍❍❍ -H

❍❍❍❍ -XH

The -H option outputs to the standard output the header file pathnames acquired during
preprocessing. The pathnames are sequentially output, one for each line, in the order of
acquisition. If there are any two exactly the same pathnames, only the first one will be output.
When this option is specified, the command internally sets up the -E option to subjects all files
to preprocessing only. However, the preprocessing result will not be output.

The -XH option cancels the -H option.

[Output Example]

• Input:

#include <stdio.h>

#include "head.h"

• Operation:

fcc907s -H -cpu MB90F553A sample.c

• Output:

/usr/softune/lib/907/include/stdio.h

./head.h

• Operation:

fcc911s -H -cpu MB91F154 sample.c

• Output:

/usr/softune/lib/911/include/stdio.h

./head.h

• Operation:

fcc896s -H -cpu MB89P935B sample.c

• Output:

/usr/softune/lib/896/include/stdio.h

./head.h

❍❍❍❍ -I dir

❍❍❍❍ -XI

The -I option changes the manner of header file search so that the directory specified by dir
will be searched prior to the standard directory. The standard directory is ${INC907}
(fcc907s command), ${INC911} (fcc911s command), or ${INC896} (fcc896s
command).
33

CHAPTER 3 OPERATION
This option can be specified more than one time. The search will be conducted in the order of
specifying. When the option is specified, the header file search will be conducted in the
following directories in the order shown below.

• Header file enclosed within angular brackets (< >)

1.Directory specified by the -I option

2.Standard directory
34

3.5 DETAILS OF OPTIONS
• Header file enclosed by double quotation marks (")

1.Directory having a file containing the #include line

2.Directory specified by the -I option

3.Standard directory

If a header file is specified by specifying its absolute path name, only the directory specified by
the specified absolute path name will be searched. If any nonexistent directory is specified, this
option is invalid.

The -XI option cancels the -I option.

❍❍❍❍ -U name

This option cancels the macro name definition specified by -D . The option is equivalent to the
following #undef instruction.

#undef name

If the same name is specified by the -D and -U options, the name definition will be canceled
without regard to the order of option specifying.

This option can be specified more than one time.

The error related to the -U option is the same as the error related to the #undef instruction.

[Example]

%fcc907s -U m -D n -D m file.c -cpu MB90F553A

%fcc911s -U m -D n -D m file.c -cpu MB91F154

%fcc896s -U m -D n -D m file.c -cpu MB89P935B

This will cancel the macro m definition specified by the -D option.
35

CHAPTER 3 OPERATION
3.5.3 Data Output Related Options

This section describes the options related to the command, preprocessor, and
compiler data outputs.

■■■■ Data Output Related Options

❍❍❍❍ -cmsg

This option outputs the compiling process completion message.

[Example]

• Operation:

fcc907s -cmsg -S -cpu MB90F553A sample.c

fcc911s -cmsg -S -cpu MB91F154 sample.c

fcc896s -cmsg -S -cpu MB89P935B sample.c

• Output:

COMPLETED C Compile, FOUND NO ERROR : sample.c

❍❍❍❍ -cwno

This option sets the end code to 1 when a warning-level error occurs. When the option is not
specified, the end code is 0.

❍❍❍❍ -help

❍❍❍❍ -Xhelp

The -help option outputs the option list to the standard output. The -Xhelp option cancels the
-help option.

[Example]

%fcc907s -help

%fcc911s -help

%fcc896s -help

Various command option lists are output to the standard output.

❍❍❍❍ -INF LINENO

❍❍❍❍ -INF NOLINENO

The -INF LINENO option inserts C source file line numbers into the assembler source file as
comments. The LINENO suboption cannot be specified simultaneously with the SRCIN suboption.

The NOLINENO suboption cancels the LINENO suboption.
36

3.5 DETAILS OF OPTIONS
[Output Example]

• Input:

void func(void){}

• Operation:

fcc907s -INF lineno -S -cpu MB90F553A sample.c

• Output:

_func:

 LINK #0

;;;; a.c, line 1

 UNLINK

 RET

• Operation:

fcc911s -INF lineno -S -cpu MB91F154 sample.c

• Output:

_func:

 ST RP, @-SP

 ENTER #4

;;;; a.c, line 1

L_func:

 LEAVE

 LD @SP+, RP

 RET

• Operation:

fcc896s -INF lineno -S -cpu MB89P935B sample.c

• Output:

_func:

;;;; e.c, line 1

L_func:

 RET

❍ -INF LIST

❍ -INF NOLIST

The -INF LIST option generates a file in the current directory and outputs the assemble list.
The name of the generated file is determined by changing the source file name extension to
.lst . Since the assemble list is generated at assembling, it is not generated when assembling
is not conducted. For the details of the assemble list, refer to the Assembler Manual .

The NOLIST suboption cancels the LIST suboption.
37

CHAPTER 3 OPERATION
[Example]

%fcc907s -INF list -c -cpu MB90F553A sample.c

%fcc911s -INF list -c -cpu MB91F154 sample.c

%fcc896s -INF list -c -cpu MB89P935B sample.c

The sample.c preprocessing, compiling, and assembling process result are output to the
sample.obj , and the resulting assemble list is output to the sample.lst .

❍❍❍❍ -INF SRCIN

❍❍❍❍ -INF NOSRCIN

The -INF SRCIN option inserts a C source file into the assembler source file as a comment.
The SRCIN suboption cannot be specified simultaneously with the LINENO suboption.

The NOSRCIN suboption cancels the SRCIN suboption.

[Output Example]

• Input:

void func(void){}

• Operation:

fcc907s -INF srcin -S -cpu MB90F553A sample.c

• Output:

_func:

 LINK #0

;;;; void func(void){}

 UNLINK

 RET

• Operation:

fcc911s -INF srcin -S -cpu MB91F154 sample.c

• Output:

_func:

 ST RP, @-SP

 ENTER #4

;;;; void func(void){}

L_func:

 LEAVE

 LD @SP+, RP

 RET

• Operation:

fcc896s -INF srcin -S -cpu MB89P935B sample.c
38

3.5 DETAILS OF OPTIONS
• Output:

_func:

;;;; void func(void){}

L_func:

 RET

❍❍❍❍ -INF STACK [=file]

❍❍❍❍ -INF NOSTACK

The -INF STACK [=file] option generates the specified file in the current directory and
outputs the stack use amount data. If no file is specified, the information in all the
simultaneously compiled files is output into files whose names are determined by changing the
source file extensions to .stk .

If the -K ADDSP option is simultaneously specified, stacks will not successively be freed so that
the generated stack use amount data is inaccurate. In such an instance, therefore, it is well to
remember that the maximum stack use amount data calculated by the MUSC may be smaller
than the actual maximum use amount. For stack use amount data utilization procedures and
data file specifications, refer to the MUSC Operation Manual .

The NOSTACK suboption cancels the STACK suboption.

[Output Example]

• Input:

extern void sub(void);

void func(void){sub();}

• Operation:

fcc907s -INF stack -S -cpu MB90F553A sample.c

• Output:

@sample.c

E=Extern S=Static I=Interrupt

{Stack} {E|S|I} {function name}

-> {E_S} {call function}

...

#

 4 E _func

 -> E _sub

• Operation:

fcc911s -INF stack -S -cpu MB91F154 sample.c
39

CHAPTER 3 OPERATION
• Output:

@sample.c

E=Extern S=Static I=Interrupt

{Stack} {E|S|I} {function name}

-> {E|S} {call function}

...

#

 8 E _func

 -> E _sub

• Operation:

fcc896s -INF stack -S -cpu MB89P935B sample.c

• Output:

@sample.c

E=Extern S=Static I=Interrupt

{Stack} {E|S|I} {function name}

-> {E|S} {call function}

...

#

 0 E _func

 -> E _sub

❍❍❍❍ -o pathname

❍❍❍❍ -Xo

The -o option uses the pathname as the output file name. If this option is not specified, the
default for the employed file format is complied with.

The -Xo option cancels the -o option.

[Example]

%fcc907s -o output.asm -S -cpu MB90F553A sample.c

%fcc911s -o output.asm -S -cpu MB91F154 sample.c

%fcc896s -o output.asm -S -cpu MB89P935B sample.c

The sample.c preprocessing and compiling process result are output to the output.asm .

❍❍❍❍ -V

❍❍❍❍ -XV

The -V option outputs the version information about each executed compiler tool to the
standard output. The -XV option cancels the -V option.
40

3.5 DETAILS OF OPTIONS
[Output Example for fcc911s Command]

FR Family Softune C Compiler V30L05

ALL RIGHT RESERVED, COPYRIGHT (C) FUJITSU LIMITED 1986

LICENSED MATERIAL - PROGRAM PROPERTY OF FUJITSU LIMITED

[Output Example for fcc907s Command]

FFMC-16 Family Softune C Compiler V30L03

ALL RIGHT RESERVED, COPYRIGHT (C) FUJITSU LIMITED 1986

LICENSED MATERIAL - PROGRAM PROPERTY OF FUJITSU LIMITED

[Output Example for fcc896s Command]

FFMC-8L Family Softune C Compiler V30L03

ALL RIGHT RESERVED, COPYRIGHT (C) FUJITSU LIMITED 1986

LICENSED MATERIAL - PROGRAM PROPERTY OF FUJITSU LIMITED

❍❍❍❍ -w level

This option specifies the output level of warning-type diagnostic messages. Levels 0 through 8
can be specified. When level 0 is specified, no warning messages will be generated. The
greater the level value, the more warning messages will be generated.

If the output level is not specified, -w 1 applies.

For the details of diagnostic messages, see 3.7, Messages Generated in Translation
Process .

[Output Example]

• Input:

const int a;

• Operation:

fcc907s -w 5 -S -cpu MB90F553A sample.c

fcc911s -w 5 -S -cpu MB91F154 sample.c

fcc896s -w 5 -S -cpu MB89P935B sample.c

• Output:

*** a.c(1) W1219C: ‘const’ a is not initialized.

[Warning item at each warning level]

• Level 0 : Warning-type diagnostic message is not generated.

• Level 1 : A basic warning-type diagnostic messages is generated.

• Level 2 : The following warning-type diagnostic messages in addition to level 1 is generated.

Warning of the variable not used in the function is generated.

Warning of the variable used before being initialized in the function is generated.

Warning of the presence of the use of the Static function is generated.

• Level 3 : The following warning-type diagnostic messages in addition to level 2 is generated.

When there is no return in the function which should return the value, warning is
generated.

When the value is not specified for return by the function which should return the
41

CHAPTER 3 OPERATION
value, warning is generated.

Warning of pragma which cannot be recognized is generated.

When the variable and the constant are compared in the comparison operation,
warning of the range of the value of the constant is generated.

• Level 4 : The following warning-type diagnostic messages in addition to level 3 is generated.

When the extern function is declared in the block, warning is generated.

When the struct/union is not defined in the external declaration of the struct/union
array, warning is generated.

When not the relational expression but the assignment expression, etc. are
described in the place where the conditional expression is expected, warning is
generated.

When the address of the auto variable is used as a return value of the function,
warning is generated.

• Level 5 : The following warning-type diagnostic messages in addition to level 4 is generated.

When there is a implicit int type declaration, warning is generated.

When there is no prototype declaration of the function, warning is generated.

When the constant is described in the condition expression, warning is generated.

When there is a implicit int type declaration of the parameter, warning is generated.

When the declaration overload the declaration before, warning is generated.

When the comma continues at enum member’s end, warning is generated.

When there is no initial value in the declaration with const, warning is generated.

When the address of the variable is compared with 0, warning is generated.

When the type is defined in the cast expression, warning is generated.

When register is specified for struct, union, and the array variable declaration,
warning is generated.

• Level 6 : The following warning-type diagnostic messages in addition to level 5 is generated.

When there is switch statement which is not default label, warning is generated.

• Level 7 : The following warning-type diagnostic messages in addition to level 6 is generated.

When the int type is used, warning is generated.

When the bitfield is neither int, signed int nor unsigned int type, warning is
generated.

• Level 8 : The following warning-type diagnostic messages in addition to level 7 is generated.

When the function is called with a pointer to the function, warning is generated.
42

3.5 DETAILS OF OPTIONS
3.5.4 Language Specification Related Options

This section describes the options related to the specifications of the language to be
recognized by the compiler.

■■■■ Language Specification Related Options

❍❍❍❍ -J {a|c}

This option specifies the language specification level to be interpreted by the compiler
(preprocessor included).

When -Ja is specified, interpretation is conducted in compliance with the ANSI specifications
including expansion specifications.

When -Jc is specified, interpretation is conducted in strict compliance with the ANSI
specifications. In response to the expansion specifications, a warning message is output.

If the option is not specified, -Ja applies.

[Example]

%fcc907s -J a file1.c -J c file2.c -cpu MB90F553A

%fcc911s -J a file1.c -J c file2.c -cpu MB91F154

%fcc896s -J a file1.c -J c file2.c -cpu MB89P935B

The -Jc option becomes valid so that files named file1.c and file2.c are interpreted in
strict compliance with the ANSI specifications.

■ -K {DCONST|FCONST}

When the FCONST suboption is specified, a floating-point constant whose suffix is not specified
will be handled as a float type.

When the DCONST suboption is specified, a floating-point constant whose suffix is not specified
will be handled as a double type.

If neither of the above two suboptions is specified, -K DCONST applies.

[Output Example]

• Input:

extern float f1,f2;

void func(void){ f1 = f2+1.0;}

• Operation:

fcc907s -K fconst -cpu MB90F553A -S sample.c
43

CHAPTER 3 OPERATION
• Output:

_func:

 LINK #0

 MOVL A, #1065353216

 MOVL RL2, A

 MOVL A, _f2

 CALLP FADD

 MOVL _F1, A

 UNLINK

 RET

• Operation:

fcc911s -K fconst -cpu MB91F154 -S sample.c

• Output:

_func:

 ST RP, @-SP

 ENTER #4

 LDI:32 #_f2, R12

 LD @R12, R4

 LDI #H'3F800000, R5

 CALL32 __addf, R12

 LDI:32 #_f1, R12

 ST R4, @R12

L_func:

 LEAVE

 LD @SP+, RP

 RET

• Operation:

fcc896s -K fconst -cpu MB89P935B -S sample.c
44

3.5 DETAILS OF OPTIONS
• Output:

_func:

 MOVW A, _f2+2

 PUSHW A

 MOVW A, _f2

 PUSHW A

 MOVW A, #0

 PUSHW A

 MOVW A, #16256

 PUSHW A

 CALL LFADD

 PUPW A

 MOVW _f1, A

 PUPW A

 MOVW _f2+2, A

L_func:

 RET

❍❍❍❍ -K NOINTLIB

❍❍❍❍ -K INTLIB

The NOINTLIB suboption calls a normal function without effecting in-line expansion of an
interrupt related function (__DI() , __EI() , and __set_il()).

The INTLIB suboption cancels the NOINTLIB suboption.

[Output Example]

• Input:

void func(void){ __DI();}

• Operation:

fcc907s -K nointlib -cpu MB90F553A -S sample.c

• Output:

_func:

 LINK #0

 CALL ___DI

 UNLINK

 RET

• Operation:

fcc911s -K nointlib -cpu MB91F154 -S sample.c
45

CHAPTER 3 OPERATION
• Output:

_func:

 ST RP, @-SP

 ENTER #4

 CALL32 __DI, R12

L_func:

 LEAVE

 LD @SP+, RP

 RET

• Operation:

fcc896s -K nointlib -cpu MB89P935B -S sample.c

• Output:

_func:

 CALL __DI

L_func:

 RET

❍❍❍❍ -K NOVOLATILE

❍❍❍❍ -K VOLATILE

The NOVOLATILE suboption does not recognize a __io qualifier attached variable as a
volatile type. Therefore, __io qualifier attached variables will be optimized.

The VOLATILE suboption cancels the NOVOLATILE suboption.

[Example]

%fcc907s -K novolatile -S -O -cpu MB90F553A sample.c

%fcc911s -K novolatile -S -O -cpu MB91F154 sample.c

%fcc896s -K novolatile -S -O -cpu MB89P935B sample.c

When an __io qualifier attached variable is processed in sample.c , it is not handled as a
__volatile qualifier attached variable, but is treated as the optimization target.

❍❍❍❍ -K {UCHAR|SCHAR}

This option specifies whether or not to treat the char type most significant bit as a sign bit.
When the UCHAR suboption is specified, the most significant bit will not be treated as a sign bit.
When the SCHAR suboption is specified, the most significant bit will be treated as a sign bit.

If neither of the above two suboptions is specified, -K UCHAR applies.
46

3.5 DETAILS OF OPTIONS
[Output Example]

• Input:

extern int data;

char c = -1;

void func(void){ data = c;}

• Operation:

fcc907s -K schar -cpu MB90F553A -S sample.c

• Output:

 MOVX A, _c; Code-extended

 MOVW _data, A

• Operation:

fcc911s -K sbit -cpu MB91F154 -S sample.c

• Output:

 LDI:32 #_c, R12

 LDUB @R12, R0

 EXTSB R0; Code-extended

 LDI:32 #_data, R12

 ST R0, @R12

• Operation:

fcc896s -K sbit -cpu MB89P935B -S sample.c

• Output:

 MOVW A, #0

 MOV A, _c; Code-extended

 MOVW _data, A

❍❍❍❍ -K REALOS

❍❍❍❍ -K NOREALOS

The REALOS suboption effects in-line expansion of the ITRON system call function. It can be
used in cases where a program running under REALOS is to be prepared. For the ITRON
system call function, refer to the REALOS/907 Kernel Manual .

When specifying the REALOS suboption, be sure to include the system call declaration header
file provided by the REALOS. If the REALOS suboption is specified without including the system
call declaration header file and system call in-line expansion is initiated, the operation is not
guaranteed, because it is possible that an adequate argument-type check has not been
completed.

The NOREALOS suboption cancels the REALOS suboption.
47

CHAPTER 3 OPERATION
[Output Example]

• Input:

#include "scdef_w.h"

void func(void){ ext_tsk;}

• Operation:

fcc907s -K realos -cpu MB90F553A -S sample.c

• Output:

INTP ext_tsk

BRA *

• Input:

#include "itron.h"

#include "realos.h"

void func(void){ ext_tsk();}

• Operation:

fcc911s -K realos -cpu MB91F154 -S sample.c

• Output:

 LDI:8 #-21, R12

 EXTSB R12

 INT #64

• Input:

#include "scdef_w.h"

void func(void){ ext_tsk;}

• Operation:

fcc896s -K realos -cpu MB89P935B -S sample.c

• Output:

INTP ext_tsk

BRA *

❍❍❍❍ -K {UBIT|SBIT}

This option specifies whether or not to treat the most significant bit as a sign bit in situations
where the char , short int , int , or long int type is selected as the bit field. When the
UBIT suboption is specified, the most significant bit will not be treated as a sign bit. When the
SBIT suboption is specified, the most significant bit will be treated as a sign bit.

If neither of the above two suboptions is specified, -K UBIT applies.

[Output Example]

• Input:

extern int data;

struct tag { int bf:1;}st = {-1};

void func(void){ data = st.bf;}
48

3.5 DETAILS OF OPTIONS
• Operation:

fcc907s -K sbit -cpu MB90F553A -S sample.c

• Output:

 MOVB A, _st:0

 EXT ; Code-extended

 MOVW _data, A

• Operation:

fcc911s -K sbit -cpu MB91F154 -S sample.c

• Output:

 LDI:32 #_st, R12

 LDUB @R12, R0

 EXTSB R0 ; Code-extended

 ASR #7, R0

 LDI:32 #_data, R12

 ST R0, @R12

• Operation:

fcc896s -K sbit -cpu MB89P935B -S sample.c

• Output:

 MOV A, _st+1

 MOVW A, #15

 CALL LSHLW

 MOVW A, #15

 CALL LSHLW ; Code-extended

 MOVW _data, A
49

CHAPTER 3 OPERATION
3.5.5 Optimization Related Options

This section describes the options related to optimization by the compiler.

■■■■ Optimization Related Options

❍❍❍❍ -K SIZE

This option selects an appropriate optimization combination with emphasis placed upon the
object size. The available options are shown below.

-O 3

-K EOPT

-K NOUNROLL

-K SHORTADDRESS

If any option (e.g, -O0) contradictory to the SIZE suboption is specified after the SIZE
suboption, such a contradictory option takes effect.

The -K SHORTADDRESS option can be specified for the fcc911s command only.

The -K SIZE option not only offers the optimization combination selection function, but also
makes it possible to issue a generation instruction for object size minimization and effect object
pattern switching.

❍❍❍❍ -K SPEED

This option selects an appropriate optimization combination with emphasis placed upon the
generated object execution speed. The available options are shown below.

-O 4

-K SHORTADDRESS

If any option (e.g, -O0) contradictory to the SPEED suboption is specified after the SPEED
suboption, such a contradictory option takes effect.

The -K SHORTADDRESS option can be specified for the fcc911s command only.

The -K SPEED option not only offers the optimization combination selection function, but also
makes it possible to issue a generation instruction for execution speed maximization and effect
object pattern switching.

❍❍❍❍ -O [level]

This option specifies the optimization level. Levels 0, 1, 2, 3, and 4 can be specified. The
higher the optimization level, the shorter the generated object execution time but the longer the
compilation time. Note that each optimization level contains lower optimization level functions.

One of the following levels is to be specified. When no level is specified, -02 applies.

-0 : Optimization Level 0

No optimization will be effected. This level is equivalent to cases where the -0 is not
specified.

-1 : Optimization Level 1

Optimization will be effected in accordance with detailed analyses of a program flow.
50

3.5 DETAILS OF OPTIONS
-2 : Optimization Level 2

The following optimization feature is exercised in addition to the feature provided by
optimization level 1.

• Loop Unrolling

Loop unrolling is performed to increase the execution speed by decreasing the loop count
when loop-count detection is possible. However, it tends to increase object size. Therefore,
this optimization should not be used in situations where object size is important.

[Before Unrolling]

for(i=0;i<3;i++){ a[i]=0;}

[After Unrolling]

a[0]=0;

a[1]=0;

a[2]=0;

-3 : Optimization Level 3

The following optimization features are exercised in addition to the features provided by
optimization level 2.

• Loop Unrolling (Extended)

Loops, including branch instructions, that have not been the target of optimization level-2
loop unrolling, are the target of this extended loop unrolling.

• Optimization Function Repeated Execution

In optimization function repeated execution, the optimization features except the loop
unrolling feature will be repeatedly executed until no more optimization is needed. However,
the translation time will increase.

-4 : Optimization Level 4

The following optimization features are exercised in addition to the features provided by
optimization level 3.

• Arithmetic Operation Evaluation Type Change (same as effected by -K EOPT specifying)

Performs optimization to change arithmetic operation evaluation type at compilation stage.
When this option is specified, there may be side effects on the execution results.

• Standard Function Expansion/Change (same as effected by -K LIB specifying)

Switches to a higher-speed standard function that recognizes standard function operations,
performs standard function in-line expansion, and performs identical operations. When this
option is specified, there may be side effects on the execution results. Since standard function
in-line expansion is implemented, the code size may increase.

❍❍❍❍ -K ADDSP

❍❍❍❍ -K NOADDSP

The -K option releases actual argument areas placed in the stacks for function calling. Since
the actual argument areas are released altogether for optimization purposes, the function calling
overhead decreases so that a smaller, higher-speed object results.

When -K ADDSP is specified, the stacks will not successively be released. Therefore, the stack
use amount data, which is generated upon -INF STACK option specifying, will be inaccurate.
In such an instance, it is well to remember that the maximum stack use amount data calculated
by the MUSC may be smaller than the actual maximum use amount.
51

CHAPTER 3 OPERATION
The NOADDSP suboption cancels the ADDSP suboption.

The option can be specified only for the fcc907s and fcc896s commands.

[Output Example]

• Input:

extern int i;

extern void sub(int);

void func(void){

 sub(i);

 sub(i);

}

• Operation:

fcc907s -K addsp -cpu MB90F553A -S sample.c

• Output:

 MOVW A, _i

 PUSHW A

 CALL _sub

 MOVW A, _i

 PUSHW A

 CALL _sub

 ADDSP #4; Releasing argument areas synthesized

❍❍❍❍ -K EOPT

❍❍❍❍ -K NOEOPT

The EOPT suboption effects optimization by changing the arithmetic operation evaluation type at
the compilation stage. When this option is specified, there may be side effects on the execution
results. This option takes effect only when it is specified simultaneously with the -O option.

The NOEOPT suboption cancels the EOPT suboption.

[Output Example]

• Input:

extern int i;

void func(int a, int b){

 i=a-100+b+100;

}

• Operation:

fcc907s -K eopt -O -cpu MB90F553A -S sample.c
52

3.5 DETAILS OF OPTIONS
• Output:

 MOVW A, @RW3+4

 ADDW A, @RW3+6 ; Order of arthmatic operation replaced

 MOVW _i, A

• Operation:

fcc911s -K eopt -O -cpu MB91F154 -S sample.c

• Output:

 ADD R5, R4 ; Order of arthmatic operation replaced

 LDI:32 #_i, R12

 ST R4, @R12

• Operation:

fcc896s -K eopt -O -cpu MB89P935B -S sample.c

• Output:

 MOVW A, @IX+4

 MOVW A, @IX+6

 CLRC

 ADDCW A ; Order of arthmatic operation replaced

 MOVW _i, A

❍❍❍❍ -K LIB

❍❍❍❍ -K NOLIB

The LIB suboption recognizes the standard function operation and replaces the standard
function with a higher-speed standard function which effects standard function in-line expansion
and performs the same operation as the original standard function. When this option is
specified, there may be side effects on the execution results. Since standard function in-line
expansion is implemented, the code size may increase. This option takes effect only when it is
specified simultaneously with the -O option.

The NOLIB suboption cancels the LIB suboption.

[Output Example]

• Input:

extern int i;

void func(void){

 i=strlen("ABC");

}

• Operation:

fcc907s -K lib -O -cpu MB90F553A -S sample.c

• Output:

 MOVN A, #3 ; Processing equivalent to strlen expanded

 MOVW _i, A
53

CHAPTER 3 OPERATION
• Operation:

fcc911s -K lib -O -cpu MB91F154 -S sample.c

• Output:

 LDI #3, R0 ; Processing equivalent to strlen expanded

 LDI:32 #_i, R12

 ST R0, @R12

• Operation:

fcc896s -K lib -O -cpu MB89P935B -S sample.c

• Output:

 MOVW A, #3 ; Processing equivalent to strlen expanded

 MOVW _i, A

❍❍❍❍ -K {LONGADDRESS [= {CODE|DATA}] | SHORTADDRESS [= {CODE|DATA}]}

The SHORTADDRESS suboption generates code on the presumption that the symbol (address) to
be loaded within the program is within the 20-bit expression range. This option can be specified
for the fcc911s command only. When CODE or DATA is specified, only the program code
section (CODE or CONST) symbols or data section (DATA or INIT) symbols are to be processed.
If the address is outside the 20-bit expression range, an error occurs at linking. A normal
operation is performed even if symbols other than those loaded in the program are positioned at
addresses in the 20-bit expression range.

The LONGADDRESS suboption handles a symbol address as a 32-bit address. This option can
be specified for the fcc911s command only.

If neither of the above two suboptions is specified, -K LONGADDRESS applies.

[Output Example]

• Input:

extern int i;

extern void sub(void);

void func(void){

 i=10;

 sub();

}

• Operation:

fcc911s -K shortaddress -O -S -cpu MB91F154 sample.c

• Output:

 LDI:20 #_i, R12; 20-bit symbol used

 LDI #10, R0

 ST R0, @R12

 CALL20 _sub, R12; 20-bit symbol used
54

3.5 DETAILS OF OPTIONS
❍❍❍❍ -K NOALIAS

❍❍❍❍ -K ALIAS

The NOALIAS suboption optimizes the data specified by the pointer on the assumption that the
pointer does not specify the same area as the other variables or pointers. This option takes
effect only when it is specified simultaneously with the -O option. The language specification
permits the pointer to point to the same area as any other variable or pointer. Therefore, when
using this option, check the program carefully.

The ALIAS suboption cancels the NOALIAS suboption.

[Output Example]

• Input:

extern int i;

extern int j;

void func9(int *p){

 *p=i+1;

 j=i+1;

}

• Operation:

fcc907s -K noalias -O -cpu MB90F553A -S sample.c

• Output:

 MOVW A, _i

 MOVN A, #1

 ADDW A

 MOVW RW4, A

 MOVW A, #RW3+4

 MOVW @AL, AH

 MOVW A, RW4

 MOVW _j, A ; Value of *p=i+1 reused

• Operation:

fcc911s -K noalias -O -cpu MB91F154 -S sample.c

• Output:

 LDI:32 #_i, R12

 LD @R12, R0

 LDI:32 #_j, R12

 ADD #1, R0

 ST R0, @R4

 ST R0, @R12 ; Value of *p=i+1 reused

• Operation:

fcc896s -K noalias -O -cpu MB89P935B -S sample.c
55

CHAPTER 3 OPERATION
• Output:

 MOVW A, _i

 INCW A

 MOVW @IX-2, A

 MOVW A, @IX+4

 MOVW @A, T

 MOVW A, @IX-2

 MOVW _j, A ; Value of *p=i+1 reused

❍❍❍❍ -K {SCHEDULE|NOSCHEDULE}

This option specifies whether or not to implement instruction scheduling. When the SCHEDULE
suboption is specified, instruction scheduling will be conducted. When the NOSCHEDULE
suboption is specified, instruction scheduling will not be conducted. If the option specifying is
omitted, the -O option specifying is complied with. When the -O option argument is 1 or
greater, the -K SCHEDULE is assumed to be specified. These option can be specified for the
fcc911s command only.

❍❍❍❍ -K NOUNROLL

❍❍❍❍ -K UNROLL

The NOUNROLL suboption inhibits loop unrolling optimization. Use this option when loop
unrolling optimization is to be inhibited with the -O2 to -O4 options specified.

The UNROLL suboption cancels the NOUNROLL suboption.

❍❍❍❍ -x function name 1 [, function name 2, ...]

❍❍❍❍ -Xx

The -x option effects in-line expansion, instead of function calling, of functions defined by a C
source. However, recursively called functions will not be subjected to in-line expansion. It
should also be noted that functions may not be subjected to in-line expansion depending on
asm statement use, structure/union type argument presence, setjmp function calling, and other
conditions. The option takes effect only when it is specified simultaneously with the -O option.

The -Xx option cancels the -x option.

[Output Example]

• Input:

extern int a;

static void sub(void){ a=1; }

void func(void){ sub(); }

• Operation:

fcc907s -cpu MB90F553A -O -x sub -S sample.c
56

3.5 DETAILS OF OPTIONS
• Output:

_func:

 MOVN A, #1

 MOVW _a, A

 RET

• Operation:

fcc911s -cpu MB91F154 -O -x sub -S sample.c

• Output:

_func:

 LDI #1, R0

 LDI:32 #_a, R12

 RET:D

 ST R0, @R12

• Operation:

fcc896s -cpu MB89P935B -O -x sub -S sample.c

• Output:

_func:

 MOVN A, #1

 MOVW _a, A

L_func:

 RET

❍❍❍❍ -xauto [size]

❍❍❍❍ -Xxauto

The -xauto option effects in-line expansion, instead of function calling, of functions whose
logical line count is not less than size . However, recursively called functions will not be
subjected to in-line expansion. It should also be noted that functions may not be subjected to
in-line expansion depending on asm statement use, structure/union type argument presence,
setjmp function calling, and other conditions.

If the size entry is omitted, the value 30 is assumed to be specified. The option takes effect
only when it is specified simultaneously with the -O option.

The -Xxauto option cancels the -xauto option.

❍❍❍❍ -K ARRAY

❍❍❍❍ -K NOARRAY

The ARRAY suboption optimizes the array element access code(e.g. a[i]++;). The ARRAY
suboption takes effect only when it is specified simultaneously with the -O option. However, a
part of optimization might be not effective when the ARRAY suboption is specified and the code
worsen according to the source program.

This option can be specified for the fcc907s and fcc896s commnad only.

The NOARRAY suboption cancels the ARRAY suboption.
57

CHAPTER 3 OPERATION
3.5.6 Output Object Related Options

This section describes the options related to output object formats.

■■■■ Output Object Related Options

❍❍❍❍ -cpu MB number

In this option, the MB number of the CPU actually used is specified in the CPU information file.
If the MB number not described in the CPU information file is specified, the compiler becomes
an error because series information on the CPU is taken from the CPU information file.

This option cannot be omitted.

[Example]

%fcc911s -S -cpu MB91F154 sample.c

%fcc907s -S -cpu MB90F553A sample.c

%fcc896s -S -cpu MB89P935B sample.c

❍❍❍❍ -div905

❍❍❍❍ -Xdiv905

The -div905 option and the -Xdiv905 option are the options concerning the CPU bug of "DIV
A,Ri" and "DIVW A,RWi" instructions of MB90500 series . This CPU bug is discribed to
Appendix C "Notes of Signed Division Instruction of FFMC-16LX CPU".

The -div905 option and the -Xdiv905 option can be specified only for the fcc907s command.
And, only when the MB number of MB90500 series is specified by the -cpu option, these
become effective.

The -div905 option generates signed division instruction(DIV and DIVW). Please specify this
option only when there is no problem even if the signed division instruction(DIV and DIVW) is
used.

The -Xdiv905 option cancels the -div905 option.

When the -div905 option and the -Xdiv905 option are omitted to the specification of the MB
number of MB90500 series for the -cpu option, the -Xdiv905 option is applied.

When the -Xdiv905 option is specified, not the signed division instruction(DIV and DIVW) but
Library Callis generated. Therefore, the amount of the stack use increases occasionally.
Moreover, __mul(), __div(), and __mod() which is a built-in function are generated as not
machine instructions but Library Callis.

❍❍❍❍ -model {SMALL|MEDIUM|COMPACT|LARGE}

This option specifies memory model. For the details of memory models, see 4.4, Memory
Models . The option can be specified for the fcc907s command only.

❍❍❍❍ -ramconst

❍❍❍❍ -Xramconst

Specify this option (-ramconst) when the mirror function is not to be used. When specified,
the option will position const -qualified static variables in the RAM.
58

3.5 DETAILS OF OPTIONS
When this option is specified, the compiler generates the CINIT section corresponding to the
CONST section, so that ROM data can be accessed with 16-bit symbols. The startup routine
must copy the CONST internal data to the CINIT .

This option does not work on CONST_module name sections that are generated relative to
large models, compact models, or __far -qualified variables.

The -Xramconst option cancels the -ramconst option.

These options can be specified for the fcc907s command only.

[Output Example]

• Input:

const int a=0x10;

• Operation:

fcc907s -ramconst -S -cpu MB90F553A sample.c

• Output:

 .SECTION CONST, CONST, ALIGN=2

 .ALIGN 2

 .DATA.H 16

 .SECTION CINIT, DATA, ALIGN=2

 .ALIGN 2

 .GLOBAL _2

_a:

 .RES.H 1

❍❍❍❍ -s defname=newname [, attr [, address]]

❍❍❍❍ -Xs

The -s option changes the compiler output section name from defname to newname, and
changes section type to attr .

In the fcc907s command, large models, compact models, medium models, and __far -
qualified variable or function section names can be specified by attaching FAR_ to the start.

The arrangement address can also be specified in the address position.

For compiler output section names, see 4.1, fcc907s Command Section Structure , 4.2,
fcc911s Command Section Structure , and 4.3, fcc896s Command Section Structure .
For selectable section types, refer to the Assembler Manual .

If the arrangement address is specified, the arrangement address cannot be specified relative to
the associated section at linking.

The -Xs option cancels the -s option.

[Output Example]

• Input:

void func(void){}

• Operation:

fcc907s -s CODE=PROGRAM, CODE, 0x1000 -S -cpu MB90F553A sample.c
59

CHAPTER 3 OPERATION
• Output:

 .SECTION PROGRAM, CODE, LOCATE=H’0:H’1000

;-------begin_of_function

 .GLOBAL _func

_func:

 LINK #0

 UNLINK

 RET

• Operation:

fcc911s -s CODE=PROGRAM, CODE, 0x1000 -S -cpu MB91F154 sample.c

• Output:

 .SECTION PROGRAM, CODE, LOCATE=H'00001000

;-------begin_of_function

 .GLOBAL _func

_func:

 ST RP, @-SP

 ENTER #4

L_main:

 LEAVE

 LD @SP+, RP

 RET

• Operation:

fcc896s -s CODE=PROGRAM, CODE, 0x1000 -S -cpu MB89P935B sample.c

• Output:

 .SECTION PROGRAM, CODE, LOCATE=H’1000

 .GLOBAL _func

_func:

L_func:

 RET

❍❍❍❍ -K {A1|A4}

This option specifies the minimum assignment boundary for external and static variables.

The A4 suboption selects a 4-byte boundary as the minimum assignment boundary. When the
4-byte minimum assignment boundary is used, increased code generation efficiency is provided
for in-line expansion of character string operations when -K lib is specified. Erroneous code
operations occur if boundary alignment is incorrect. Therefore, if an object for which the A4
suboption is specified is linked to an object for which the A4 suboption is not specified, erratic
operations may result. Also, generation of useless areas may be invoked by boundary
alignment causing the object increase.

The A1 suboption selects a 1-byte boundary as the minimum assignment boundary.
60

3.5 DETAILS OF OPTIONS
This option can be specified for the fcc911s command only. If neither of the above two
suboptions is specified, -K A1 applies.

[Output Example]

• Input:

char c;

• Operation:

fcc911s -K A4 -S -cpu MB91F154 sample.c

• Output:

.SECTION DATA, DATA, ALIGN=4

 .GLOBAL _c

_c:; Positioned at 4-byte boundary

 .RES.B 4

❍❍❍❍ -K {SARG|DARG}

This option specifies type of acquisition of area required for argument delivery to function.

When the DARG suboption is specified, dynamic allocation is achieved at function calling. This
effectively decreases the stack consumption.

On the other hand, when the SARG suboption is specified, allocation is performed at the
beginning of the caller function. In this case, the code size generally decreases with an
increase in execution speed. However, stack use tends to increase.

This option can be specified for the fcc911s command only. If neither of the above two
suboptions is specified, -K SARG applies.

[Output Example]

• Input:

extern void sub(int,int,int,int,int);

void func(void){ sub(1,2,3,4,5);}

• Operation:

fcc911s -K darg -S -cpu MB91F154 sample.c

• Output:

 LDI #1, R4

 LDI #2, R5

 LDI #3, R6

 LDI #4, R7

 LDI #5, R0

 ST R0, @-SP; The argument area is allocated dynamically.

 CALL32 _sub, R12

 ADDSP #4 ; The argument area is deallocated dynamically.
61

CHAPTER 3 OPERATION
❍❍❍❍ -varorder {SORT|NORMAL}

This option specifies how external variables and static variables in a section are aligned. When
SORT suboption is specified, to except the gap, external variables and static variables are
aligned by the size of alignment. When NORMAL suboption is specified, external variables
and static variables are aligned by the order of description. Variables specified __io qualifier
are always aligned by the order of description.

This option can be specified for the fcc911s and fcc907s command only. If neither of the
above two suboptions is specified, -varorder SORT applies.

• Input:

int i1;

char c;

int i2;

• Operation:

fcc911s -varorder NORMAL -S -cpu MB91F154 sample.c

• Output:

 .SECTION DATA, DATA, ALIGN=4

 .ALIGN 4

_i1: .RES.B 4

 .ALIGN 1

_c: .RES.B 1

 .ALIGN 4

_i2: .RES.B 4

• Operation:

fcc907s -varorder NORMAL -S -cpu MB90F553A sample.c

• Output:

 .SECTION DATA, DATA, ALIGN=2

 .ALIGN 2

_i1: .RES.B 2

_c: .RES.B 1

 .ALIGN 2

_i2: .RES.B 2
62

3.5 DETAILS OF OPTIONS
❍❍❍❍ -pack

❍❍❍❍ -Xpack

The -pack option packing the struct and union menbers.

This option can be specified for the fcc907s commnad only.

The -Xpack option cancels the -pack option.Input:

• Input:

struct tag {

 char a;

 int b;

 char c;

} s;

f() {s.b=0;}

• Operation:

fcc907s -cpu MB90F553A -S -pack sample.c

• Output:

 MOVN A, #0

 MOVW _s+1, A
63

CHAPTER 3 OPERATION
3.5.7 Debug Information Related Options

This section describes the options related to the debug information to be referenced
by the symbolic debugger.

■■■■ Debug Information Related Options

❍❍❍❍ -g

❍❍❍❍ -Xg

The -g option adds debug data to the object file. To assure debugging accuracy, you should
refrain from specifying the optimization option (-O[1-4]). If the optimization option is specified,
the compiler tries to assure better code output by changing the arithmetic operation target
position and omitting any arithmetic operations that are judged to be unnecessary. To minimize
the amount of data exchange with memory, the compiler tries to retain data within a register. It
is therefore conceivable that a break point positioned in a certain line may fail to cause a break
or that currently monitored certain address data may fail to vary with the expected timing. It also
well to remember that the debug data will not be generated for an unused local variable or a
local variable whose area need not be positioned in a stack as a result of optimization.
Debugging must be conducted with the above considerations taken into account.

The -Xg option cancels the -g option.
64

3.5 DETAILS OF OPTIONS
3.5.8 Command Related Options

This section describes the options related to the other tools called by the fcc907s .

■■■■ Command Related Options

❍❍❍❍ -Y item, dir

❍❍❍❍ -XY

The -Y option changes the item position to the dir directory. The -XY option cancels the -Y
option. The item is one of the following.

p: Changes the preprocessor pathname to dir

c : Changes the compiler pathname to dir

a: Changes the assembler pathname to dir

l : Changes the linker pathname to dir

[Example]

%fcc907s file.c -Y p, /home/newlib -cpu MB90F553A

%fcc911s file.c -Y p, /home/newlib -cpu MB91F154

Calls the preprocessor using /home/newlib/cpp as the path name.

❍❍❍❍ -T item, arg1 [, arg2 ...]

❍❍❍❍ -XT

The -T option passes arg to item as an individual compiler tool argument. The -XT option
cancels the

-T option.

Use a comma to separate arguments. To describe a comma as an argument, position a
backslash (\) immediately before the comma. The comma positioned after the backslash will
not be interpreted as a delimiter. To write a blank as an argument, describe a comma in place
of a blank.

For the options for various commands, refer to the associated manuals. The following can be
specified as the item .

a: Assembler

l : Linker

[Example]

%fcc907s -T a, -l, asmlist file.c -cpu MB90F553A

%fcc911s -T a, -l, asmlist file.c -cpu MB91F154

%fcc896s -T a, -l, asmlist file.c -cpu MB89P935B

Sequentially passes arguments -l and asmlist to the assembler. Therefore, the assemble
list asmlist will be generated as a result of command execution.
65

CHAPTER 3 OPERATION
3.5.9 Linkage Related Options

This section describes the options related to linkage.

■■■■ Linkage Related Options

❍❍❍❍ -e name

❍❍❍❍ -Xe

The -e option sets the entry symbol to name at linking. This option can be specified only for the
fcc911s and fcc896s commands. The -Xe option cancels the -e option. Since the option
definition is usually provided in the startup routine, this option does not have to be specified.

For details of the option, refer to the Linkage Kit Manual .

❍❍❍❍ -L path1 [, path2 ...]

❍❍❍❍ -XL

The -L option adds path to the library path used at linking to search for a library to be linked.
This option can be specified only for the fcc911s and fcc896s commands. If the option is not
specified, ${LIB911} or ${LIB896} is selected automatically.

The -XL option cancels the -L option.

For details of the option, refer to the Linkage Kit Manual .

❍❍❍❍ -l lib1 [, lib2 ...]

❍❍❍❍ -Xl

The -l option specifies the name (lib) of the library to be linked at linking. This option can be
specified only for the fcc911s and fcc896s commands. If the extension entry is omitted, the
.lib extension is added automatically.

The -Xl option cancels the -l option.

For the objects output by the compiler, by default, "lib911.lib " or "lib896.lib " are set as
the names of the libraries to be linked.

For the details of the option, refer to the Linkage Kit Manual .

❍❍❍❍ -m

❍❍❍❍ -Xm

The -m option generates a map file at linking. This option can be specified only for the
fcc911s and fcc896s commands.

A map file output with a file name with the .map extension is generated in the current directory.

The -Xm option cancels the -m option.
66

3.5 DETAILS OF OPTIONS
❍❍❍❍ -ra name = start/end

❍❍❍❍ -Xra

The -ra option specifies the RAM area at linking. This option can be specified only for the
fcc911s and fcc896s commands.

The -Xra option cancels the -ra option.

For details of the option, refer to the Linkage Kit Manual .

❍❍❍❍ -ro name = start/end

❍❍❍❍ -Xro

The -ro option specifies the ROM area at linking. This option can be specified only for the
fcc911s and fcc896s commands.

The -Xro option cancels the -ro option.

For details of the option, refer to the Linkage Kit Manual .

❍❍❍❍ -sc param

❍❍❍❍ -Xsc

The -sc option specifies the section arrangement at linking. This option can be specified only
for the fcc911s and fcc896s commands. If the option is not specified, -sc
IOPORT=0,*=0x1000 is selected automatically.

The -Xsc option cancels the -sc option.

For details of the option, refer to the Linkage Kit Manual .

❍❍❍❍ -startup filename

❍❍❍❍ -Xstartup

The -startup option selects filename as the object file name of the startup routine to be
linked at linking. This option can be specified only for the fcc911s and fcc896s commands.

If the option is not specified, "${FETOOL}/lib/911/startup.obj " or "${FETOOL}/lib/
896/startup.obj " is selected automatically.

The -Xstartup option cancels the -startup option.

For details of the startup routine, see Chapter 6, Execution Environment .
67

CHAPTER 3 OPERATION
3.5.10 Option File Related Options

This section describes the option file related options.

■■■■ Option File Related Options

❍❍❍❍ -f filename

❍❍❍❍ -Xf

The -f option is used to read the specified option file (filename). If the option file name does
not have an extension, an .opt extension will be added. The command options can be written
in an option file. For the details of an option file, see 3.6, Option Files .

The -Xf option cancels the -f option.

❍❍❍❍ -Xdof

This option specifies that the default option file will not be read. For the default option file, see
3.6, Option Files .
68

3.6 OPTION FILES
3.6 OPTION FILES

This section describes fcc907s command option files. With the option file feature, it is
possible to specify a bunch of options written in a file. This feature also permits you
to put startup options to be specified in a file.

■■■■ Option File

Option file reading takes place when an associated option is specified. This assures that the
same result is obtained as when an option is specified at the -f specifying position in the
command line.

If the option file name is without an extension, an .opt extension will be added.

■■■■ Option File General Format

All entries that can be made in a command line can be written in an option file.

A line feed in an option file is replaced by a blank.

A comment in an option file is replaced by a blank.

[Example]

-I /usr/include # Include specifying

-D F2MC16 # Macro specifying

-g # Debug data generation specifying

-S # Execution of processes up to compiling

■■■■ Option File Limitations

The length of a line that can be written in an option file is limited to 4095 characters.

The -f option can be written in an option file. However, nesting is limited to 8 levels.

The Kanji character code in the option file should be the same as using the host’s Kanji
character code. The operation is not guaranteed when the Kanji character code on the
command line and the Kanji character code in the option file are different.

OS Kanji character code which can be used

Windows ShiftJIS

Solaris2.x EUC

HP-UX10.x ShiftJIS
69

CHAPTER 3 OPERATION
■■■■ Acceptable Comment Entry in Option File

A comment can be started from any column.

A comment is to begin with a sharp (#). The entire remaining portion of the line serves as the
comment.

In addition, the following comments can also be used.

/* Comment */

// Comment

; Comment

[Example]

-I /usr/include # Include specifying

-D F2MC16 /* Macro specifying */

-g // Debug data generation specifying

-S ; Execution of processes up to compiling

■■■■ Default Option File

A preselected option file can be read to initiate command execution. The obtained result will be
the same as when an option is specified prior to another option specified in the command line.

The default option file name is predetermined as follows.

[For UNIX OS]

${OPT907}/fcc907.opt

${OPT911}/fcc911.opt

${OPT896}/fcc896.opt

[For Windows]

%OPT907%\fcc907.opt

%OPT911%\fcc911.opt

%OPT896%\fcc896.opt

The default option file name of the fcc907s command is "fcc907.opt ". The default option
file name of the fcc911s command is "fcc911.opt ". The default option file name of the
fcc896s command is "fcc896.opt ".

If the default option file does not exist in the specified directory, such a specifying is ignored.

To inhibit the default option file feature, specify the -Xdof option in the command line.
70

3.7 MESSAGES GENERATED IN TRANSLATION PROCESS
3.7 MESSAGES GENERATED IN TRANSLATION PROCESS

When an error is found in a source program or a condition which does not constitute a
substantial error but requires attention is encountered, diagnostic messages may be
generated at the time of translation.
For message outputs generated by tools other than the compiler, refer to the
respective manuals for the tool.

■■■■ Messages Generated in Translation Process

A diagnostic message output example is shown in Figure 3.7-1.

Figure 3.7-1 Diagnostic Message Example

■■■■ Tool Identifier

The tool identifier indicates the tool that has detected the error.

D: Driver

P: Preprocessor

C: Compiler

S: Scheduler

A: Assembler

L: Linker

■■■■ Error Level

The error level represents the diagnostic check result type.

Table 3.7-1 shows the relationship between various error levels and return codes and their
meanings..

*** test.c(4) E4110C: Identifier ″″″″ a″″″″ is not declared.

E 4 1 1 0 C

Source file name

Source logical line number

Error identification number

Tool identifier

Error number (4-digit)

Error level
71

CHAPTER 3 OPERATION
Table 3.7-1 Relationship between Error Levels and Return Codes

Error Level Return Code Meaning

I 0 Indicates a condition which does not constitute an error but requires attention

W 0
Indicates a minor error

Process execution continues without being interrupted. The return code can
be changed by the -cwno option.

E 2
Indicates a serious error

Process execution stops.

F 3
Indicates a fatal error which is related to quantitative limitations or system fail-
ure

Process execution stops.
72

CHAPTER 4 OBJECT PROGRAM STRUCTURE

This chapter describes the information necessary for program execution.

4.1 fcc907s COMMAND SECTION STRUCTURE

4.2 fcc911s COMMAND SECTION STRUCTURE

4.3 fcc896s COMMAND SECTION STRUCTURE

4.4 MEMORY MODELS

4.5 GENERATION RULES FOR NAMES USED BY COMPILER

4.6 fcc907s COMMAND BOUNDARY ALIGNMENT

4.7 fcc911s COMMAND BOUNDARY ALIGNMENT

4.8 fcc896s COMMAND BOUNDARY ALIGNMENT

4.9 fcc907s COMMAND BIT FIELD

4.10 fcc911s COMMAND BIT FIELD

4.11 fcc896s COMMAND BIT FIELD

4.12 fcc907s COMMAND STRUCTURE/UNION

4.13 fcc911s COMMAND STRUCTURE/UNION

4.14 fcc896s COMMAND STRUCTURE/UNION

4.15 fcc907s COMMAND FUNCITON CALL INTERFACE

4.16 fcc911s COMMAND FUNCTION CALL INTERFACE

4.17 fcc896s COMMAND FUNCITON CALL INTERFACE

4.18 fcc907s COMMAND INTERRUPT FUNCITON CALL INTERFACE

4.19 fcc911s COMMAND INTERRUPT FUNCITON CALL INTERFACE

4.20 fcc896s COMMAND INTERRUPT FUNCITON CALL INTERFACE
73

CHAPTER 4 OBJECT PROGRAM STRUCTURE
4.1 fcc907s COMMAND SECTION STRUCTURE

Table 4.1-1 shows the sections to be generated by the compiler and their meanings.
When a section name is accessed using a 24-bit symbol, its name used is the section
name plus the " _module name " attached to the end of the section name. The section
name specified by -s option becomes " FAR_SectionName ". The source file name is
used as the module name. If the section name is changed by the -s option, the
changed section name is used.

■ fcc907s Command Section Structure

The purpose of each section use and the relationship to the C language are explained below.

(1) Code section

Stores machine codes. This section corresponds to the procedure section for the C
language.

The default section name is CODE.

(2) Initialized section

Stores the initial value attached variable area. For the C language, this section corresponds
to the area for external variables without the const qualifier, static external variables, and
static internal variables.

The default section name is INIT .

Table 4.1-1 fcc907s Command Section List

No. Section Type Section Name Type
Boundary
Alignment

[Byte]
Write Initial Value

1 Code section CODE CODE 2 Disabled Provided

2 Initialized section INIT DATA 2 Enabled Not provided

3 Initial value of INIT DCONST CONST 2 Enabled Not provided

4 Constant section CONST CONST 2 Disabled Provided

5 RAM area of CONST CINIT DATA 2 Disabled Not provided

6 Data section DATA DATA 2 Enabled Not provided

7 Initialized direct section DIRINIT DIR 2 Enabled Not provided

8 Initial value of DIRINIT DIRCONST DIRCONST 2 Enabled Provided

9 Direct section DIRDATA DIR 2 Enabled Not provided

10 I/O section IO IO 2 Enabled Not provided

11 Vector section INTVECT DATA 2 Enabled Provided
74

4.1 fcc907s COMMAND SECTION STRUCTURE
(3) Initial value of DINIT

Stores the initial values for initial value attached variables. This section is located in the
ROM. It is necessary to copy the DCONST data to the INIT using the startup routine. If the
order of section output by the compiler is changed to the detriment of DCONST-to-INIT
correspondence, no subsequent operations will be guaranteed.

The default section name is DCONST.

(4) Constant section

Stores the write-protected initial value attached variable area. For the C language, this
section corresponds to the area for const qualifier attached external variables, static
external variables, and static internal variables.

The default section name is CONST.

(5) RAM area of CCONST

When the employed CPU type does not permit the use of the mirror function, this section can
be generated by specifying the -ramconst option. It is necessary to copy the CONST data
to the CINIT using the startup routine. If the order of section output by the compiler is
changed to the detriment of CONST-to-CINIT correspondence, no subsequent operations
will be guaranteed.

The default section name is CINIT .

(6) Data section

Stores the area for variables without the initial value. For the C language, this section
corresponds to the area for external variables (including those which are with the const
qualifier), static external variables, and static internal variables.

The default section name is DATA.

(7) Initialized direct section

Stores the area for __direct -qualified initial value attached variables. For the C language,
this section corresponds to the area for external variables, static external variables, and
static internal variables that are __direct -qualified and without the const qualifier.

The default section name is DIRINIT .

(8) Initial value of DIRINIT

Stores the initial values for the __direct -qualified initial value attached variables. This
section is located in the ROM. It is necessary to copy the DIRCONST data to the DIRINIT
using the startup routine. If the order of section output by the compiler is changed to the
detriment of DIRCONST-to-DIRINIT correspondence, no subsequent operations will be
guaranteed.

The default section name is DIRCONST.

(9) Direct section

Stores the area for the __direct -qualified variables without the initial value. For the C
language, this section corresponds to the area for __direct -qualified external variables
(including those which are provided with the const qualifier), static external variables, and
static internal variables.

The default section name is DIRDATA.
75

CHAPTER 4 OBJECT PROGRAM STRUCTURE
(10) I/O section

Stores the area for the __io -qualified variables. For the C language, this section
corresponds to the area for __io -qualified external variables (including those which are
provided with the const qualifier), static external variables, and static internal variables.

The default section name is IO .

(11) Vector section

Stores interrupt vector tables. For the C language, this section is generated only when the
generation of a vector table is specified by #pragma intvect .

The default section name is INTVECT.
76

4.2 fcc911s COMMAND SECTION STRUCTURE
4.2 fcc911s COMMAND SECTION STRUCTURE

The fcc911s command has the following six sections:
● Code section

● Initialized section

● Constant section

● Data section

● I/O section

● Vector section

■ fcc911s Command Section Structure

Table 4.2-1 shows the sections to be generated by the compiler and their meanings.

The purpose of each section use and the relationship to the C language are explained below.

(1) Code section

Stores machine codes. This section corresponds to the procedure section for the C
language.

(2) Initialized section

Stores the initial value attached variable area. For the C language, this section corresponds
to the area for external variables without the const qualifier, static external variables, and
static internal variables.

(3) Constant section

Stores the write-protected initial value attached variable area. For the C language, this
section corresponds to the area for const qualifier attached external variables, static
external variables, and static internal variables.

(4) Data section

Stores the area for variables without the initial value. For the C language, this section
corresponds to the area for external variables (including those which are with the const
qualifier), static external variables, and static internal variables.

Table 4.2-1 fcc911s Command Section List

No. Section Type
Section
Name

Type
Boundary
Alignment

[Byte]
Write Initial Value

1 Code section CODE CODE 2 Disabled Provided

2 Initialized section INIT DATA 4 Enabled Provided

3 Constant section CONST CONST 4 Disabled Provided

4 Data section DATA DATA 4 Enabled Not provided

5 I/O section IO IO 4 Enabled Not provided

6 Vector section INTVECT DATA 4 Enabled Provided
77

CHAPTER 4 OBJECT PROGRAM STRUCTURE
(5) I/O section

Stores the area for the __io -qualified variables. For the C language, this section
corresponds to the area for __io -qualified external variables (including those which are
provided with the const qualifier), static external variables, and static internal variables.

The default section name is IO.

(6) Vector section

Stores interrupt vector tables. For the C language, this section is generated only when
generation of a vector table is specified by #pragma intvect .

The default section name is INTVECT.
78

4.3 fcc896s COMMAND SECTION STRUCTURE
4.3 fcc896s COMMAND SECTION STRUCTURE

The fcc896s command has the following eight sections:
● Code section

● Initialized section

● Constant section

● Data section

● Initialized direct section

● Direct section

● I/O section

● Vector section

■ fcc896s Command Section Structure

Table 4.3-1 shows the sections to be generated by the compiler and their meanings.

The purpose of each section use and the relationship to the C language are explained below.

(1) Code section

Stores machine codes. This section corresponds to the procedure section for the C
language.

(2) Initialized section

Stores the initial value attached variable area. For the C language, this section corresponds
to the area for external variables without the const qualifier, static external variables, and
static internal variables.

Table 4.3-1 fcc896s Command Section List

No. Section Type
Section
Name

Type
Boundary
Alignment

[Byte]
Write Initial Value

1 Code section CODE CODE 1 Disabled Provided

2 Initialized section INIT DATA 1 Enabled Provided

3 Constant section CONST CONST 1 Disabled Provided

4 Data section DATA DATA 1 Enabled Not provided

5
Initialized direct sec-
tion

DIRINIT DIR 1 Enabled Provided

6 Direct section DIRDATA DIR 1 Enabled Not provided

7 I/O section IO IO 1 Enabled Not provided

8 Vector section INTVECT DATA 1 Enabled Provided
79

CHAPTER 4 OBJECT PROGRAM STRUCTURE
(3) Constant section

Stores the write-protected initial value attached variable area. For the C language, this
section corresponds to the area for const qualifier attached external variables, static
external variables, and static internal variables.

(4) Data section

Stores the area for variables without the initial value. For the C language, this section
corresponds to the area for external variables (including those which are with the const
qualifier), static external variables, and static internal variables.

(5) Initialized direct section

Stores the area for __direct -qualified initial value attached variables. For the C language,
this section corresponds to the area for external variables, static external variables, and
static internal variables that are __direct -qualified and without the const qualifier.

The default section name is DIRINIT .

(6) Direct section

Stores the area for the __direct -qualified variables without the initial value. For the C
language, this section corresponds to the area for __direct -qualified external variables
(including those which are provided with the const qualifier), static external variables, and
static internal variables.

The default section name is DIRVAR.

(7) I/O section

Stores the area for the __io -qualified variables. For the C language, this section
corresponds to the area for __io -qualified external variables (including those which are
provided with the const qualifier), static external variables, and static internal variables.

The default section name is IO .

(8) Vector section

Stores interrupt vector tables. For the C language, this section is generated only when
generation of a vector table is specified by #pragma intvect .

The default section name is INTVECT.
80

4.4 MEMORY MODELS
4.4 MEMORY MODELS

This section describes the memory models. The memory models exist in the F 2MC-
16L/16LX/16/16H/16F family architecture only.

■ Memory Models

Table 4.4-1 shows the memory models selectable for compilation and their meanings. The
compiler treats the code address and data address default set as a preselected memory model.
In cases where a __far/ __near type qualifier is attached to a variable or function, the type
qualifier specifying is complied with.

❍ Small Model

The small model is to be specified in situations where all codes and data can be positioned
within a 16-bit address space. Since all addresses are expressed using 16 bits, a compact,
high-speed program can be realized.

When using a product without the mirror function, it is necessary to specify the -ramconst
option for the purpose of securing a ROM data accessing area in RAM.

If the address size is specified by a type qualifier, such a specified address size is complied
with.

When calling a __near type qualified function from a __far type qualified function, both
functions must be positioned in the same section. The reason is that the PCB set up for __far
type qualified function calling is used as is for __near type qualified function calling.

❍ Medium Model

The medium model is to be specified in situations where codes can be positioned in a 24-bit
address space and data can be positioned in a 16-bit address space.

When using a product without the mirror function, it is necessary to specify the -ramconst
option for the purpose of securing a ROM data accessing area in RAM.

If the address size is specified by a type qualifier, such a specified address size is complied
with.

Table 4.4-1 List of Memory Models

Memory Model
Code Address

Space
Data Address

Space
Compile Option

Small model 16 bit 16 bit -model small

Medium model 24 bit 16 bit -model medium

Compact model 16 bit 24 bit -model compact

Large model 24 bit 24 bit -model large
81

CHAPTER 4 OBJECT PROGRAM STRUCTURE
❍ Compact Model

The compact model is to be specified in situations where codes can be positioned in a 16-bit
address space and data can be positioned in a 24-bit address space.

If the address size is specified by a type qualifier, such a specified address size is complied
with.

Variables have to be adjusted to the bank boundary. If not, the generated code cannot access
such variable correctly.

❍ Large Model

The large model is to be specified in situations where all codes and data can be positioned in a
24-bit address space. Since all addresses are expressed using 24 bits, the codes used are
redundant as compared to those for the small model.

If the address size is specified by a type qualifier, such a specified address size is complied
with.

Variables have to be adjusted to the bank boundary. If not, the generated code cannot access
such variable correctly.
82

4.5 GENERATION RULES FOR NAMES USED BY COMPILER
4.5 GENERATION RULES FOR NAMES USED BY COMPILER

This section describes the rules for the names used by the compiler.

■ Generation Rules for Names Used by Compiler

Table 4.5-1 shows the relationship between the names generated by the compiler and the C
language.

Note: The compiler internal generation number is placed at the no position.

Table 4.5-1 Label Generation Rules

C Language Counterpart Label Generated by Compiler

Function name _function name

External variable name _external variable name

Static variable name LI_no

Local variable name —

Virtual argument name —

Character string, derived type LS_no

Automatic variable initial value LS_no

Target location label L_no
83

CHAPTER 4 OBJECT PROGRAM STRUCTURE
4.6 fcc907s COMMAND BOUNDARY ALIGNMENT

This section describes the standard data type and boundary alignment. Table 4.6-1
shows the assignment rules.

■ fcc907s Command Boundary Alignment

Table 4.6-1 fcc907s Command Variable Assignment Rules

Variable Type
Assignment Size

[Byte]
Boundary Alignment

[Byte]

char 1 1

signed char 1 1

unsigned char 1 1

short 2 2

unsigned short 2 2

int 2 2

unsigned int 2 2

long 4 2

unsigned long 4 2

float 4 2

double 8 2

long double 8 2

near pointer/address 2 2

far pointer/address 4 2

Structure/union Explained later Explained later
84

4.7 fcc911s COMMAND BOUNDARY ALIGNMENT
4.7 fcc911s COMMAND BOUNDARY ALIGNMENT

This section describes the standard data type and boundary alignment. Table 4.7-1
shows the assignment rules.

■ fcc911s Command Boundary Alignment

Note: When the -K A4 option is specified, 4-byte boundary alignment may be effected in some
cases. The -K A4 option does not affect structure/union member boundary alignment.

Table 4.7-1 fcc911s Command Variable Assignment Rules

Variable Type
Assignment Size

[Byte]
Boundary Alignment

[Byte]

char 1 1

signed char 1 1

unsigned char 1 1

short 2 2

unsigned short 2 2

int 4 4

unsigned int 4 4

long 4 4

unsigned long 4 4

float 4 4

double 8 4

long double 8 4

Pointer/address 4 4

Structure/union Explained later Explained later
85

CHAPTER 4 OBJECT PROGRAM STRUCTURE
4.8 fcc896s COMMAND BOUNDARY ALIGNMENT

This section describes the standard data type and boundary alignment. Table 4.8-1
shows the assignment rules.

■ fcc896s Command Boundary Alignment

Table 4.8-1 fcc896s Command Variable Assignment Rules

Variable Type
Assignment Size

[Byte]
Boundary Alignment

[Byte]

char 1 1

signed char 1 1

unsigned char 1 1

short 2 1

unsigned short 2 1

int 2 1

unsigned int 2 1

long 4 1

unsigned long 4 1

float 4 1

double 8 1

long double 8 1

Pointer/address 2 1

Structure/union Explained later Explained later
86

4.9 fcc907s COMMAND BIT FIELD
4.9 fcc907s COMMAND BIT FIELD

This section describes the bit field data size and boundary alignment for the fcc907s
command.
The bit field data is assigned to a storage unit that has an adequate size for bit field
data retention and is located at the smallest address.

■ fcc907s Command Bit Field

Consecutive bit field data are packed at consecutive bits having the same storage unit, without
regard to the type, beginning with the LSB and continuing toward the MSB. An example is
shown in Figure 4.9-1.

Figure 4.9-1 Example 1 of Bit Field Data Size and Boundary Alignment for fcc907s Command

If a field to be assigned lies over a bit field type boundary, its assignment is completed by
aligning it with a boundary suitable for the type. An example is shown in Figure 4.9-2..

Figure 4.9-2 Example 2 of Bit Field Data Size and Boundary Alignment for fcc907s Command

When a bit field having a bit length of 0 is declared, it is forcibly assigned to the next storage
unit. An example is shown in Figure 4.9-3.

15 (MSB) 13 10 0 (LSB)

Unoccupied C B A

struct tag1 {
 int A:10;
 short B:3;
 char C:2;
};

struct tag2 {
 long int A:12; /* 4-byte boundary data */
 short B:5; /* 2-byte boundary data */
 char C:5; /* 2-byte boundary data */
};

31(MSB) 28 24 21 16 12 0 (LSB)

Unoccupied C AUnoccupied UnoccupiedB
87

CHAPTER 4 OBJECT PROGRAM STRUCTURE
Figure 4.9-3 Example 3 of Bit Field Data Size and Boundary Alignment for fcc907s Command

struct tag3 {
 int A:5;
 int B:5;
 int :0;
 int C:6;
};

Unoccupied

C
ABUnoccupied

15(MSB) 10 6 5 0 (LSB)

C

88

4.10 fcc911s COMMAND BIT FIELD
4.10 fcc911s COMMAND BIT FIELD

This section describes the bit field data size and boundary alignment for the fcc911s
command.
The bit field data is assigned to a storage unit that has an adequate size for bit field
data retention and is located at the smallest address.

■ fcc911s Command Bit Field

Consecutive bit field data are packed at consecutive bits having the same storage unit, without
regard to the type, beginning with the MSB and continuing toward the LSB. An example is
shown in Figure 4.10-1.

Figure 4.10-1 Example 1 of Bit Field Data Size and Boundary Alignment for fcc911s Command

If a field to be assigned lies over a bit field type boundary, its assignment is completed by
aligning it with a boundary suitable for the type. An example is shown in Figure 4.10-2.

Figure 4.10-2 Example 2 of Bit Field Data Size and Boundary Alignment for fcc911s Command

When a bit field having a bit length of 0 is declared, it is forcibly assigned to the next storage
unit. An example is shown in Figure 4.10-3.

struct tag1 {
 int A:10;
 short B:3;
 char C:2;
};

31(MSB) 21 18 16 0 (LSB)

UnoccupiedBA C Unoccupied

struct tag2 {
 int A:12; /* 4-byte boundary data */
 short B:5; /* 2-byte boundary data */
 char C:5; /* 1-byte boundary data */
};

A

31(MSB) 19 15 10 7 2 0 (LSB)

UnoccupiedCUnoccupied UnoccupiedB
89

CHAPTER 4 OBJECT PROGRAM STRUCTURE
Figure 4.10-3 Example 3 of Bit Field Data Size and Boundary Alignment for fcc911s Command

struct tag3 {
 int A:10;
 int B:5;
 int :0;
 int C:6;
};

31(MSB) 25 21 16 0 (LSB)

A B

UnoccupiedC

Unoccupied
90

4.11 fcc896s COMMAND BIT FIELD
4.11 fcc896s COMMAND BIT FIELD

This section describes the bit field data size and boundary alignment for the fcc896s
command.
The bit field data is assigned to a storage unit that has an adequate size for bit field
data retention and is located at the smallest address.

■ fcc896s Command Bit Field

Consecutive bit field data are packed at consecutive bits having the same storage unit, without
regard to the type, beginning with the LSB and continuing toward the MSB. An example is
shown in Figure 4.11-1.

Figure 4.11-1 Example 1 of Bit Field Data Size and Boundary Alignment for fcc896s Command

If a field to be assigned lies over a bit field type boundary, its assignment is completed by
aligning it with a boundary suitable for the type. An example is shown in Figure 4.11-2.

Figure 4.11-2 Example 2 of Bit Field Data Size and Boundary Alignment for fcc896s Command

When a bit field having a bit length of 0 is declared, it is forcibly assigned to the next storage
unit. An example is shown in Figure 4.11-3.

15 (MSB) 13 10 0 (LSB)

Unoccupied C B A

struct tag1 {
 int A:10;
 short B:3;
 char C:2;
};

struct tag2 {
 int A:12;
 int B:5;
};

31(MSB) 21 16 12 0 (LSB)

AUnoccupied UnoccupiedB
91

CHAPTER 4 OBJECT PROGRAM STRUCTURE
Figure 4.11-3 Example 3 of Bit Field Data Size and Boundary Alignment for fcc896s Command

struct tag3 {
 int A:5;
 int B:5;
 int :5;
 int C:6;
};

15(MSB) 10 6 5 0 (LSB)

Unoccupied A

C

B

Unoccupied
92

4.12 fcc907s COMMAND STRUCTURE/UNION
4.12 fcc907s COMMAND STRUCTURE/UNION

This section describes the structure/union data size and boundary alignment for the
fcc907s command. The structure/union data size is a multiple of the maximum
boundary alignment size of the members. Boundary alignment for the area itself is
accomplished by means of member maximum boundary alignment. The individual
members are subjected to boundary alignment in accordance with the member type.

■ fcc907s Command Structure/Union

Figures 4.12-1 to 4.12-3 show examples concerning structure/union data size and boundary
alignment.

Figure 4.12-1 Example 1 of Structure/Union Data Size and Boundary Alignment for fcc907s Command

Figure 4.12-2 Example 2 of Structure/Union Data Size and Boundary Alignment for fcc907s Command

struct st1 { char A; } → sizeof(st1) = 1 BYTE
struct st2 { short A; } → sizeof(st2) = 2 BYTES
struct st3 { char A; short B; } → sizeof(st3) = 4 BYTES
struct st4 { char A; int B; } → sizeof(st4) = 4 BYTES

struct tag3 {
 char A;
 short B;
};

15(MSB) 8 0 (LSB)

A

B

Unoccupied

struct tag4 {
 char A;
 int B;
};

15(MSB) 8 0 (LSB)

A

B

Unoccupied
93

CHAPTER 4 OBJECT PROGRAM STRUCTURE
Figure 4.12-3 Example 3 of Structure/Union Data Size and Boundary Alignment for fcc907s Command

struct tag5 {
 char A;
 struct tag6 {
 short A;
 char B;
 } S6;
};
 sizeof(tag5) = 6 BYTES
 sizeof(tag6) = 4 BYTES

15(MSB) 8 0 (LSB)

A

S6.A

S6.B Unoccupied

Unoccupied
94

4.13 fcc911s COMMAND STRUCTURE/UNION
4.13 fcc911s COMMAND STRUCTURE/UNION

This section describes the structure/union data size and boundary alignment for the
fcc911s command. The structure/union data size is a multiple of the maximum
boundary alignment size of the members. Boundary alignment for the area itself is
accomplished by means of member maximum boundary alignment. The individual
members are subjected to boundary alignment in accordance with the member type.

■ fcc911s Command Structure/Union

Figures 4.13-1 to 4.13-3 show examples concerning structure/union data size and boundary
alignment.

Figure 4.13-1 Example 1 of Structure/Union Data Size and Boundary Alignment for fcc911s Command

Figure 4.13-2 Example 2 of Structure/Union Data Size and Boundary Alignment for fcc911s Command

struct st1 { char A; } → sizeof(st1) = 1 BYTE
struct st2 { short A; } → sizeof(st2) = 2 BYTES
struct st3 { char A; short B; } → sizeof(st3) = 4 BYTES
struct st4 { char A; int B; } → sizeof(st4) = 8 BYTES

struct tag3 {
 char A;
 short B;
};

31(MSB) 23 15 0 (LSB)

A Unoccupied B

31(MSB) 23 0 (LSB)

A

B

struct tag4 {
 char A;
 int B;
};

Unoccupied
95

CHAPTER 4 OBJECT PROGRAM STRUCTURE
Figure 4.13-3 Example 3 of Structure/Union Data Size and Boundary Alignment for fcc911s Command

struct tag5 {
 char A;
 struct tag6 {
 short A;
 char B;
 } S6;
};
 sizeof(tag5) = 6 BYTES
 sizeof(tag6) = 4 BYTES

31(MSB) 23 15 0 (LSB

A A6.AUnoccupied

S6.B Unoccupied
96

4.14 fcc896s COMMAND STRUCTURE/UNION
4.14 fcc896s COMMAND STRUCTURE/UNION

This section describes the structure/union data size and boundary alignment for the
fcc896s command. The structure data size is equal to total of the member size. The
union data size is equal to the size of the maximum member.

■ fcc896s Command Structure/Union

struct st1 { char A; } →sizeof(st1) = 1 BYTE

struct st2 { short A; } →sizeof(st2) = 2 BYTES

struct st3 { char A; short B; } →sizeof(st3) = 3 BYTES

struct st4 { char A; char B; } →sizeof(st4) = 3 BYTES
97

CHAPTER 4 OBJECT PROGRAM STRUCTURE
4.15 fcc907s COMMAND FUNCITON CALL INTERFACE

The general rules for control transfer between functions are established as standard
regulations for individual architectures and are called standard linkage regulations. A
module written in C language can be combined with a module written using a different
method (e.g., assembler language) when the standard linkage regulations are
complied with.

■ fcc907s Command Function Call Interface

• Stack Frame

The stack frame construction is stipulated by the standard linkage regulations.

• Argument

Argument transfer relative to the callee function is effected via a stack or register.

• Argument Extension Format

When an argument is to be stored in a stack, the argument type is converted to an extended
format in accordance with the argument type.

• Calling Procedure

The caller function initiates branching to the callee function after argument storage.

• Register

The register guarantee stated in the standard linkage regulations and the register setup
regulations are explained later.

• Return Value

The return value interface stated in the standard linkage regulations is explained later.
98

4.15 fcc907s COMMAND FUNCITON CALL INTERFACE
4.15.1 fcc907s Command Stack Frame

The standard linkage regulations prescribe the stack frame construction.

■ fcc907s Command Stack Frame

The stack pointer (SP) always indicates the lowest order of the stack frame. Its address value
always represents the work boundary. Figure 4.15-1 shows the standard function stack frame
status.

Figure 4.15-1 fcc907s Command Stack Frame

(1) Return value address save area

This is the place where the start address of a return value storage area is stored for a
function which returns a structure/union/double or long double type.

When a structure/union is the return value, the start address of a area where the caller
function stores the return value is stored in accumulator AL and passed to the callee
function.

The callee function interprets the address stored in accumulator AL as the storage area start
address.

When the return value address stored in accumulator AL needs to be saved into memory,
the callee function saves the address in this return value address save area.

(2) Register save area

This is a register save area that must be guaranteed for the caller function. This area is not
secured when the register save operation is not needed.

(3) Local variable save area

This is the area for local variables and temporary variables.

(4) Old FP

This area stores the frame pointer (RW3) value of the caller function.

(5) Return address storage area

This area stores the caller function return address. When a function is called, this area is
set up by the caller function.

(Low)

SP →
Return value address save area

Register save area

FP →
Local variable save area

Old FP

Return address storage area

Virtual argument area

Return value area

(High)
99

CHAPTER 4 OBJECT PROGRAM STRUCTURE
(6) Actual argument area/virtual argument area

When a function is called, this area is used for argument transfer. When the argument is set
up by the caller function, this area is referred to as the actual argument area. When the
argument is referenced by the callee function, this area is referred to as the virtual argument
area.

For details, see 4.15.2, fcc907s Command Argument .

(7) Return value area

When a structure, union, double , or long double type return function is called, this area
is secured by the caller function. This area does not always have to be secured at this
location. However, the callee function performs processing on the assumption that this area
is secured in the stack. Therefore, if this area is secured outside the stack, no subsequent
operations will be guaranteed.

The compiler secures the double/long double type return function return value area
which overlaps the actual argument area. This is so done as to enhance the object
efficiency in some special cases. Therefore, when the double/long double type return
function stores the return value in the return value area, it must start with the highest-order
address and continue sequentially toward the lowest-order address. Further, a write
operation must be conducted after all the virtual arguments are completely referenced.
100

4.15 fcc907s COMMAND FUNCITON CALL INTERFACE
4.15.2 fcc907s Command Argument

Argument transfer relative to the callee function is effected via the stack. For an
argument less than 2 bytes long or an argument having a size which is not a multiple
of 2, an area having a size which is determined by reckoning a less-than-2-byte portion
as 2 bytes will be secured within the stack.
The actual argument area is allocated/deallocated by the caller function.

■ fcc907s Command Argument

Figure 4.15-2 shows an example of argument transfer relative to the callee function.

Figure 4.15-2 Example of Argument Transfer Relative to Callee Function

(Low)

1

Unoccupied

st

Unoccupied

2

(High)

struct A{char a; }st;
extern void sub(char,struct A,int};
sub(1,st,2);
101

CHAPTER 4 OBJECT PROGRAM STRUCTURE
4.15.3 fcc907s Command Argument Extension Format

When an argument is to be stored in the stack, its type is converted to an extended
type in accordance with the individual argument type. The argument is released by the
caller function after the return from the callee function is made.

■ fcc907s Command Argument Extension Format

Table 4.15-1 shows the argument extension format.

*1: The extended type represents an extended type that is provided when no argument type is
given. When a prototype declaration is made, it is complied with. For an argument less
than 2 bytes long or an argument having a size which is not a multiple of 2, an area having a
size which is determined by reckoning a less-than-2-byte portion as 2 bytes will be secured
within the stack even when extension is not effected.

*2: For an argument less than 2 bytes long or an argument having a size which is not a multiple
of 2, an area having a size which is determined by reckoning a less-than-2-byte portion as 2
bytes will be secured within the stack.

Table 4.15-1 fcc907s Command Argument Extension Format

Actual Argument Type Extended Type* 1
Stack Storage Size

[Byte]

char int 2

signed char int 2

unsigned char int 2

short No extension 2

unsigned short No extension 2

int No extension 2

unsigned int No extension 2

long No extension 4

unsigned long No extension 4

float double 8

double No extension 8

long double No extension 8

near pointer/address No extension 2

far pointer/address No extension 4

Structure/union *2 *2
102

4.15 fcc907s COMMAND FUNCITON CALL INTERFACE
4.15.4 fcc907s Command Calling Procedure

The caller function initiates branching to the callee function after argument storage.

■ fcc907s Command Calling Procedure

Figure 4.15-3 shows the stack frame prevailing at calling in compliance with the standard
linkage regulations.

Figure 4.15-3 Stack Frame Prevailing at Calling in Compliance
with fcc907s Command Standard Linkage Regulations

The callee function saves the caller function frame pointer (RW3) in the stack and then stores
the prevailing stack pointer value in the stack as the new frame pointer value. Subsequently,
the local variable area and caller function register save area are acquired from the stack to save
the caller register.

Figure 4.15-4 shows the stack frame that is created by the callee function in compliance with the
standard linkage regulations.

Figure 4.15-4 Stack Frame Created by Callee Function in Compliance
with fcc907s Command Standard Linkage Regulations

(Low)

(Caller function) SP →
Actual argument area

Return value area

Return value address storage area

Register save area

(Caller function) FP →
Local variable save area

:

(High)

: Area referenced by the callee function

(Low)

(Callee function) SP →
Return value address save area

Register save area

(Callee function) FP →
Local variable save area

Old FP

(Caller function) SP →
Return address storage area

Virtual argument area

Return value area

Return value address save area

Register save area

(Caller function) FP →
(High)

Local variable save area

:

103

CHAPTER 4 OBJECT PROGRAM STRUCTURE
4.15.5 fcc907s Command Register

This section describes the register guarantee and register setup regulations in the
standard linkage regulations.

■ fcc907s Command Register Guarantee

The callee function guarantees the following registers of the caller function.

• General-purpose registers RW0 to RW3, RW6, RW7, and USP (SSP)

The register guarantee is provided when the callee function acquires a new area from the stack
and saves the register value in that area. Note, however, that registers remaining unchanged
within the function are not saved. If such registers are altered using the asm statement, etc., no
subsequent operations will be guaranteed.

■ fcc907s Command Register Setup

Table 4.15-2 shows the register regulations for function call and return periods.

Note: There are no stipulations for situations where a function without the return value is called
or a function having a structure/union/double /long double type return value is called.

Table 4.15-2 Register Regulations for fcc907s Command Function Call and Return
Periods

Register Call Period Return Period

A Return value area address Return value*

RW0 to RW2 Not stipulated Call period value guaranteed

RW3 Frame pointer Call period value guaranteed

RW4 and WR5 Not stipulated Not stipulated

RW6 and RW7 Not stipulated Call period value guaranteed

USP (SSP) Stack pointer Call period value guaranteed
104

4.15 fcc907s COMMAND FUNCITON CALL INTERFACE
4.15.6 fcc907s Command Return Value

Table 4.15-3 shows the return value interface stated in the standard linkage
regulations.

■ fcc907s Command Return Value

Note: The caller function stores the start address of the return value storage area into AL and
then passes it to the callee function. The callee function interprets AL as the start
address of the return value storage area. When this address needs to be saved in
memory, the callee function secures the return value address save area and saves the
address in that area.

Table 4.15-3 fcc907s Command Return Value Interface Stated
in Standard Linkage Regulations

Return Value Type Return Value Interface

void None

char AL

signed char AL

unsigned char AL

short AL

unsigned short AL

int AL

unsigned int AL

long A

unsigned long A

float A

near pointer/address AL

far pointer/address A

double AL*

long double AL*

Structure/union AL*
105

CHAPTER 4 OBJECT PROGRAM STRUCTURE
4.16 fcc911s COMMAND FUNCTION CALL INTERFACE

The general rules for control transfer between functions are established as standard
regulations for individual architectures and are called standard linkage regulations. A
module written in C language can be combined with a module written using a different
method (e.g., assembler language) when the standard linkage regulations are
complied with.

■ fcc911s Command Function Call Interface

• Stack Frame

The stack frame construction is stipulated by the standard linkage regulations.

• Argument

Argument transfer relative to the callee function is effected via a stack or register.

• Argument Extension Format

When an argument is to be stored in a stack, the argument type is converted to an extended
format in accordance with the argument type.

• Calling Procedure

The caller function initiates branching to the callee function after argument storage.

• Register

The register guarantee stated in the standard linkage regulations and the register setup
regulations are explained later.

• Return Value

The return value interface stated in the standard linkage regulations is explained later.
106

4.16 fcc911s COMMAND FUNCTION CALL INTERFACE
4.16.1 fcc911s Command Stack Frame

The standard linkage regulations prescribe the stack frame construction.

■ fcc911s Command Stack Frame

The stack pointer (SP) always indicates the lowest order of the stack frame. Its address value
always represents the work boundary. Figure 4.16-1 shows the standard function stack frame
status.

Figure 4.16-1 fcc911s Command Stack Frame

(1) Actual argument area/virtual argument area

When a function is called, this area is used for argument transfer. When the argument is set
up by the caller function, this area is referred to as the actual argument area. When the
argument is referenced by the callee function, this area is referred to as the virtual argument
area. The area is allocated when all arguments cannot be placed on the argument register
at the time of argument transfer.

For details, see 4.16.2, fcc911s Command Argument .

(2) Local variable save area

This is the area for local variables and temporary variables.

(3) Old FP

This area stores the FP value of the caller function.

(4) Return address storage area

This area saves the RP. The RP stores the address of a return to the caller function for the
purpose of function calling.

(5) Register save area

This is a register save area that must be guaranteed for the caller function. This area is not
secured when the register save operation is not needed.

(Low)

SP →
Actual argument area

FP →
Local variable save area

Old FP

Return address storage area

Register save area

Hidden parameter save area

Argument register save area

Virtual argument area

(High) :
107

CHAPTER 4 OBJECT PROGRAM STRUCTURE
(6) Hidden parameter save area

This area stores the start address of the return value storage area for a structure/union
return function.

When a structure/union is used as the return value, the caller function stores the return value
storage area start address in register R4 and passes it to the caller function.

The callee function interprets the address stored in the R4 as the return value storage area
start address.

When register R4 needs to be saved into memory, the callee function saves it in the hidden
parameter save area. This area is not secured when the save operation is not needed.

(7) Argument register save area

This area saves the argument register. This area is not secured when the save operation is
not needed.

For details, see 4.16.2, fcc911s Command Argument .
108

4.16 fcc911s COMMAND FUNCTION CALL INTERFACE
4.16.2 fcc911s Command Argument

Arguments, the count of which equals the count of argument registers (4 words), are
positioned in registers R4 to R7 and delivered to the callee function. When a structure/
union return function is called, three argument registers (R5 to R7) are used because
the return value area address is stored in register R4.
Arguments not placed in the argument registers will be stored in the stack actual
argument area for transfer purposes.
When an 8-byte type argument is to be delivered using registers, it is divided into two
and placed in two registers for transfer.

■ fcc911s Command Argument

When argument registers must be saved to memory, the callee function secures an argument
register save area in the stack. In this case, a continuous argument register save area must be
established in the virtual argument area. The argument register save area must be allocated as
needed to cover the size of the argument register to be saved.

If the function has a variable count of arguments, it saves all argument registers in the argument
register save area.

[Example 1]

double d;

sub(d);

The high-order words of d are delivered by R4, and the low-order words of d are delivered by
R5.

[Example 2]

int a, b, c;

double d;

sub(a, b, c, d);

a is delivered by R4, b by R5, and c by R6. The high-order words of d are delivered by R7,
and the low-order words of d are delivered by the stack.

When a structure/union is to be delivered as an argument, the caller copies the structure to the
local variable area and passes the address of that area to the callee. In this case, if the
structure/union size is less than 4 bytes or is not divisible by 4, the less-than-4-byte fraction is
handled as one 4-byte unit.

[Example 3]

(Low)

R4 →

FP →
(High)

st

struct A st;
sub(st);
109

CHAPTER 4 OBJECT PROGRAM STRUCTURE
[Example 4]

When a function receiving a variable count of arguments is to be called, the arguments are
placed in registers in the same manner as for transfer. The called function stores all the
register-delivered arguments in the argument register save area in the stack.

The actual argument area is allocated/deallocated by the caller function, whereas the argument
register save area is allocated/deallocated by the callee function.

Figures 4.16-2 and 4.16-3 show the argument formats prescribed in the standard linkage
regulations.

Figure 4.16-2 fcc911s Command Argument Format Stated in Standard Linkage Regulations

Figure 4.16-3 Argument Format for fcc911s Command Structure/Union Return Function Calling

(Low)

–4

–3

–2

–1

FP →
(High)

st

Unoccupied

struct A {char a; } st;

(Low)

SP →
Fifth argument

:

:

nth argument

(High)

First argument → R4
Second argument → R5
Thid argument → R6
Fourth argument → R7

Note: Two argument registers are required
for 8-byte type arguments.

(Low)

SP →
Fourth argument

:

:

nth argument

(High)

Return value area address → R4
First argument → R5
Second argument → R6
Thid argument → R7

Note: Two argument registers are required
for 8-byte type arguments.
110

4.16 fcc911s COMMAND FUNCTION CALL INTERFACE
4.16.3 fcc911s Command Argument Extension Format

When an argument is to be stored in the stack, its type is converted to an extended
type in accordance with the individual argument type. The argument is freed by the
caller function after the return from the callee function is made.

■ fcc911s Command Argument Extension Format

Table 4.16-1 shows the argument extension format.

*1: The extended type represents an extended type that is provided when no argument type is
given. When a prototype declaration is made, it is complied with.

*2: When a structure/union is to be delivered as an argument, the caller copies it to the local
variable area and delivers the address of that area.

Table 4.16-1 fcc911s Command Argument Extension Format

Actual Argument Type Extended Type* 1
Stack Storage Size

[Byte]

char int 4

signed char int 4

unsigned char int 4

short int 4

unsigned short int 4

int No extension 4

unsigned int No extension 4

long No extension 4

unsigned long No extension 4

float double 8

double No extension 8

long double No extension 8

Pointer/address No extension 4

Structure/union — 4*2
111

CHAPTER 4 OBJECT PROGRAM STRUCTURE
4.16.4 fcc911s Command Calling Procedure

The caller function initiates branching to the callee function after argument storage.

■ fcc911s Command Calling Procedure

Figure 4.16-4 shows the stack frame prevailing at calling in compliance with the standard
linkage regulations.

Figure 4.16-4 Stack Frame Prevailing at Calling in Compliance
with fcc911s Command Standard Linkage Regulations

The callee function saves the caller function frame pointer (FP) in the stack and then stores the
prevailing stack pointer value in the stack as the new frame pointer value. Subsequently, the
local variable area and caller function register save area are acquired from the stack to save the
caller register.

Figure 4.16-5 shows the stack frame that is created by the callee function in compliance with the
standard linkage regulations.

Figure 4.16-5 Stack Frame Created by Callee Function in Compliance
with fcc911s Command Standard Linkage Regulations

(Low)

(Caller function) SP →
Actual argument area

(Caller function) FP →
(High)

Local variable save area

(Low)

(Callee function) SP →
Actual argument area

(Callee function) FP →
Local variable save area

Old FP

Return address storage area

Register save area

Hidden parameter save area

(Caller function) Old SP →
Argument register save area

Virtual argument area

(Caller function) Old FP →
(High)

Local variable save area

:

112

4.16 fcc911s COMMAND FUNCTION CALL INTERFACE
4.16.5 fcc911s Command Register

This section describes the register guarantee and register setup regulations in the
standard linkage regulations.

■ fcc911s Command Register Guarantee

The callee function guarantees the following registers of the caller function.

• General-purpose registers R8 to R11, R14, and R15

The register guarantee is provided when the callee function acquires a new area from the stack
and saves the register value in that area. Note, however, that registers remaining unchanged
within the function are not saved. If such registers are altered using the asm statement, etc., no
subsequent operations will be guaranteed.

■ fcc911s Command Register Setup

Table 4.16-2 shows the register regulations for function call and return periods.

*1: There are no stipulations for unused registers in situations where the argument is less than 4
words.

*2: There are no stipulations for situations where a function without the return value is called or
a function with a structure/union type return value is called.

*3: There are no stipulations for situations where the function to be called has a return value
other than a double or long double type.

Table 4.16-2 Register Regulations for fcc911s Command Function Call and Return
Periods

Register Call Period Return period

R4 Argument/return value area address*1 Return value*2

R5 Argument register*1 Return value*3

R6 and R7 Argument register*1 Not stipulated

R0 to R3 Not stipulated Not stipulated

R12 and R13 Not stipulated Not stipulated

R8 to R11 Not stipulated Call period value guaranteed

R14 Frame pointer (FP) Call period value guaranteed

R15 Stack pointer (SP) Call period value guaranteed
113

CHAPTER 4 OBJECT PROGRAM STRUCTURE
4.16.6 fcc911s Command Return Value

Table 4.16-3 shows the return value interface stated in the standard linkage
regulations.

■ fcc911s Command Return Value

*1: The 4 high-order bytes of a total of 8 bytes are stored in R4 and the remaining 4 low-order
bytes are stored in R5.

*2: When a structure/union is used as the return value, the caller function stores the start
address of the return value storage area into R4 and then passes it to the callee function.
The callee function interprets R4 as the start address of the return value storage area.
When this address needs to be saved in memory, the callee function secures the hidden
parameter save area and saves the address in that area.

Table 4.16-3 fcc911s Command Return Value Interface Stated
in Standard Linkage Regulations

Return Value Type Return Value Interface

void None

char R4

signed char R4

unsigned char R4

short R4

unsigned short R4

int R4

unsigned int R4

long R4

unsigned long R4

float R4

double R4 and R5*1

long double R4 and R5*1

Pointer/address R4

Structure/union R4*2
114

4.17 fcc896s COMMAND FUNCITON CALL INTERFACE
4.17 fcc896s COMMAND FUNCITON CALL INTERFACE

The general rules for control transfer between functions are established as standard
regulations for individual architectures and are called standard linkage regulations. A
module written in C language can be combined with a module written using a different
method (e.g., assembler language) when the standard linkage regulations are
complied with.

■ fcc896s Command Function Call Interface

• Stack Frame

The stack frame construction is stipulated by the standard linkage regulations.

• Argument

Argument transfer relative to the callee function is effected via a stack or register.

• Argument Extension Format

When an argument is to be stored in a stack, the argument type is converted to an extended
format in accordance with the argument type.

• Calling Procedure

The caller function initiates branching to the callee function after argument storage.

• Register

The register guarantee stated in the standard linkage regulations and the register setup
regulations are explained later.

• Return Value

The return value interface stated in the standard linkage regulations is explained later.
115

CHAPTER 4 OBJECT PROGRAM STRUCTURE
4.17.1 fcc896s Command Stack Frame

The standard linkage regulations prescribe the stack frame construction.

■ fcc896s Command Stack Frame

The stack pointer (SP) always indicates the lowest order of the stack frame. Its address value
always represents the work boundary. Figure 4.17-1 shows the standard function stack frame
status.

Figure 4.17-1 fcc896s Command Stack Frame

(1) Register save area

This is a register save area that must be guaranteed for the caller function. This area is not
secured when the register save operation is not needed.

(2) Local variable area

This is the area for local variables and temporary variables.

(Low)

SP →
Register save area

Local variable save area

FP →
Hidden parameter save area

Old IX

Return address storage area

Virtual argument area

(High)
116

4.17 fcc896s COMMAND FUNCITON CALL INTERFACE
(3) Hidden parameter save area

This area stores the start address of the return value storage area for a structure/union
return function.

When a structure/union is used as the return value, the caller function stores the return value
storage area start address in register EP and passes it to the caller function.

The callee function interprets the address stored in the EP as the return value storage area
start address.

When register EP needs to be saved into memory, the callee function saves it in the hidden
parameter save area. This area is not secured when the save operation is not needed.

(4) Old IX

This area stores the frame pointer (IX) value of the caller function.

(5) Return address storage area

This area stores the caller function return address. When a function is called, this area is
set up by the caller function.

(6) Actual argument area/virtual argument area

When a function is called, this area is used for argument transfer. When the argument is set
up by the caller function, this area is referred to as the actual argument area. When the
argument is referenced by the callee function, this area is referred to as the virtual argument
area.

For details, see 4.15.2, fcc907s Command Argument .
117

CHAPTER 4 OBJECT PROGRAM STRUCTURE
4.17.2 fcc896s Command Argument

Argument transfer relative to the callee function is effected via the stack. For an
argument less than 2 bytes long or an argument having a size which is not a multiple
of 2, an area having a size which is determined by reckoning a less-than-2-byte portion
as 2 bytes will be secured within the stack.
The actual argument area is allocated/deallocated by the caller function.

■ fcc896s Command Argument

Figure 4.17-2 shows an example of argument transfer relative to the callee function.

Figure 4.17-2 Example of Argument Transfer Relative to Callee Function

(Low)

Unoccupied

1

Unoccupied

st

2

(High)

struct A{char A; }st;
extern void sub(char,struct A,int};
sub(1,st,2);
118

4.17 fcc896s COMMAND FUNCITON CALL INTERFACE
4.17.3 fcc896s Command Argument Extension Format

When an argument is to be stored in the stack, its type is converted to an extended
type in accordance with the individual argument type. The argument is released by the
caller function after the return from the callee function is made.

■ fcc896s Command Argument Extension Format

Table 4.17-1 shows the argument extension format.

*1: The extended type represents an extended type that is provided when no argument type is
given. When a prototype declaration is made, it is complied with. For an argument less
than 2 bytes long or an argument having a size which is not a multiple of 2, an area having a
size which is determined by reckoning a less-than-2-byte portion as 2 bytes will be secured
within the stack even when extension is not effected.

*2: For an argument less than 2 bytes long or an argument having a size which is not a multiple
of 2, an area having a size which is determined by reckoning a less-than-2-byte portion as 2
bytes will be secured within the stack.

Table 4.17-1 fcc896s Command Argument Extension Format

Actual Argument Type Extended Type* 1
Stack Storage Size

[Byte]

char int 2

signed char int 2

unsigned char int 2

short No extension 2

unsigned short No extension 2

int No extension 2

unsigned int No extension 2

long No extension 4

unsigned long No extension 4

float double 8

double No extension 8

long double No extension 8

Pointer/address No extension 2

Structure/union *2 *2
119

CHAPTER 4 OBJECT PROGRAM STRUCTURE
4.17.4 fcc896s Command Calling Procedure

The caller function initiates branching to the callee function after argument storage.

■ fcc896s Command Calling Procedure

Figure 4.17-3 shows the stack frame prevailing at calling in compliance with the standard
linkage regulations.

Figure 4.17-3 Stack Frame Prevailing at Calling in Compliance
with fcc896s Command Standard Linkage Regulations

The callee function saves the caller function frame pointer (IX) in the stack and then stores the
prevailing stack pointer value in the stack as the new frame pointer value. Subsequently, the
local variable area and caller function register save area are acquired from the stack to save the
caller register.

Figure 4.17-4 shows the stack frame that is created by the callee function in compliance with the
standard linkage regulations.

Figure 4.17-4 Stack Frame Created by Callee Function in Compliance
with fcc896s Command Standard Linkage Regulations

(Low)

(Caller function) SP →

(Caller function) IX →

(High)

Actual argument area

Register save area

Local variable save area

Hidden parameter save area

Old IX

Return value address storage area

:

: Area referenced by the callee function

(Low)

(Callee function) SP →
Register save area

Local variable save area

(Callee function) IX →
Hidden parameter save area

Old IX

(Caller function) SP →
Return address storage area

Virtual argument area

Register save area

Local variable save area

(Caller function) IX →
(High)

Hidden parameter save area

:

120

4.17 fcc896s COMMAND FUNCITON CALL INTERFACE
4.17.5 fcc896s Command Register

This section describes the register guarantee and register setup regulations in the
standard linkage regulations.

■ fcc896s Command Register Guarantee

The callee function guarantees the following registers of the caller function.

• General-purpose registers R2 to R7, IX and SP

The register guarantee is provided when the callee function acquires a new area from the stack
and saves the register value in that area. Note, however, that registers remaining unchanged
within the function are not saved. If such registers are altered using the asm statement, etc., no
subsequent operations will be guaranteed.

■ fcc896s Command Register Setup

Table 4.17-2 shows the register regulations for function call and return periods.

Note: There are no stipulations for situations where a function without the return value is called
or a function having a structure/union/long /double /long double type return value is
called.

Table 4.17-2 Register Regulations for fcc896s Command Function Call and Return
Periods

Register Call Period Return Period

EP Return value area address Return value*

A and T Not stipulated Not stipulated

R0 and R1 Not stipulated Not stipulated

R2 to R7 Not stipulated Call period value guaranteed

IX Frame pointer Call period value guaranteed

SP Stack pointer Call period value guaranteed
121

CHAPTER 4 OBJECT PROGRAM STRUCTURE
4.17.6 fcc896s Command Return Value

Table 4.17-3 shows the return value interface stated in the standard linkage
regulations.

■ fcc896s Command Return Value

Note: The caller function stores the start address of the return value storage area into EP and
then passes it to the callee function. The callee function interprets EP as the start
address of the return value storage area. When this address needs to be saved in
memory, the callee function secures the return value address save area and saves the
address in that area.

Table 4.17-3 fcc896s Command Return Value Interface Stated
in Standard Linkage Regulations

Return Value Type Return Value Interface

void None

char EP

signed char EP

unsigned char EP

short EP

unsigned short EP

int EP

unsigned int EP

long EP*

unsigned long EP*

float EP*

double EP*

long double EP*

Pointer/address EP

Structure/union EP*
122

4.18 fcc907s COMMAND INTERRUPT FUNCITON CALL INTERFACE
4.18 fcc907s COMMAND INTERRUPT FUNCITON CALL
INTERFACE

The interrupt function can be written using the __interrupt type qualifier. If the
interrupt function is called by a method other than an interrupt, no subsequent
operations will be guaranteed. The function call interface within the interrupt function
is the same as stated in the standard linkage regulations.

■ fcc907s Command Interrupt Function Call Interface

• Interrupt Stack Frame

When an interrupt occurs, the stack is changed to the interrupt stack.

• Argument

No argument can be specified for the interrupt function. If any argument is specified for the
interrupt function, no subsequent operations will be guaranteed.

• Interrupt Function Calling Procedure

The interrupt function is called by an interrupt via the interrupt vector table. If the interrupt
function is called by any other method, no subsequent operations will be guaranteed.

• Register

As regards the interrupt function, all registers are guaranteed.

• Return Value

The interrupt function does not usually have a return value.
123

CHAPTER 4 OBJECT PROGRAM STRUCTURE
4.18.1 fcc907s Command Interrupt Stack Frame

When an interrupt occurs, the stack is changed to the interrupt stack.

■ fcc907s Command Interrupt Stack Frame

When an interrupt occurs, the stack pointer (USP) is replaced by the interrupt stack pointer
(SSP). Within the interrupt function, the interrupt stack pointer is used as the normal stack
pointer.

Figure 4.18-1 shows the interrupt stack frame status prevailing immediately after interrupt
generation.

Figure 4.18-1 fcc907s Command Interrupt Stack Frame

DPR ADB

DPB PCB

PC

PS

AL

AH

SP →

(Low)

(High)

MSB LSB
124

4.18 fcc907s COMMAND INTERRUPT FUNCITON CALL INTERFACE
4.18.2 fcc907s Command Interrupt Function Calling Procedure

The interrupt function is called by an interrupt via the interrupt vector table. If the
interrupt function is called by any other method, no subsequent operations will be
guaranteed.

■ fcc907s Command Interrupt Function Calling Procedure

Figure 4.18-2 shows an example interrupt vector table.

Figure 4.18-2 fcc907s Command Interrupt Vector Table

(Low)

FFFC00 →

FFFC04 →
Interrupt function address 255 Vector No. 255

:
:
:

(High)

Interrupt function address 1 Vector No. 1

Interrupt function address 0 Vector No. 0

:

125

CHAPTER 4 OBJECT PROGRAM STRUCTURE
4.19 fcc911s COMMAND INTERRUPT FUNCITON CALL
INTERFACE

The interrupt function can be written using the __interrupt type qualifier. If the
interrupt function is called by a method other than an interrupt, no subsequent
operations will be guaranteed. The function call interface within the interrupt function
is the same as stated in the standard linkage regulations.

■ fcc911s Command Interrupt Function Call Interface

• Interrupt Stack Frame

When an interrupt occurs, the stack is changed to the interrupt stack.

• Argument

No argument can be specified for the interrupt function. If any argument is specified for the
interrupt function, no subsequent operations will be guaranteed.

• Interrupt Function Calling Procedure

The interrupt function is called by an interrupt via the interrupt vector table. If the interrupt
function is called by any other method, no subsequent operations will be guaranteed.

• Register

As regards the interrupt function, all registers are guaranteed.

• Return Value

The interrupt function does not usually have a return value.
126

4.19 fcc911s COMMAND INTERRUPT FUNCITON CALL INTERFACE
4.19.1 fcc911s Command Interrupt Stack Frame

When an interrupt occurs, the stack is changed to the interrupt stack.

■ fcc911s Command Interrupt Stack Frame

When an interrupt occurs, the stack pointer (SP) is replaced by the interrupt stack pointer
(SSP). Within the interrupt function, the interrupt stack pointer is used as the normal stack
pointer.

Figure 4.19-1 shows the interrupt stack frame status prevailing immediately after interrupt
generation.

Figure 4.19-1 fcc911s Command Interrupt Stack Frame

(Low)

SP (SSP) →
PC prevailing at interrupt generation

PS prevailing at interrupt generation

(High) :
127

CHAPTER 4 OBJECT PROGRAM STRUCTURE
4.19.2 fcc911s Command Interrupt Function Calling Procedure

The interrupt function is called by an interrupt via the interrupt vector table. If the
interrupt function is called by any other method, no subsequent operations will be
guaranteed.

■ fcc911s Command Interrupt Function Calling Procedure

Figure 4.19-2 shows an example interrupt vector table.

Figure 4.19-2 fcc911s Command Interrupt Vector Table

When an interrupt is generated, the vector table corresponding to the interrupt vector number is
referenced according to the following calculation.

TBR + 0 × 3FC - (4 × vector number)

For the details of interrupts, refer to the FR20 Architecture Manual .

(Low)

TBR →
Interrupt function address 255 Vector No. 255

:
:
:

(High)

Interrupt function address 1 Vector No. 1

Interrupt function address 0 Vector No. 0

:

128

4.20 fcc896s COMMAND INTERRUPT FUNCITON CALL INTERFACE
4.20 fcc896s COMMAND INTERRUPT FUNCITON CALL
INTERFACE

The interrupt function can be written using the __interrupt type qualifier. If the
interrupt function is called by a method other than an interrupt, no subsequent
operations will be guaranteed. The function call interface within the interrupt function
is the same as stated in the standard linkage regulations.

■ fcc896s Command Interrupt Function Call Interface

• Argument

No argument can be specified for the interrupt function. If any argument is specified for the
interrupt function, no subsequent operations will be guaranteed.

• Interrupt Function Calling Procedure

The interrupt function is called by an interrupt via the interrupt vector table. If the interrupt
function is called by any other method, no subsequent operations will be guaranteed.

• Register

As regards the interrupt function, all registers are guaranteed.

• Return Value

The interrupt function does not usually have a return value.
129

CHAPTER 4 OBJECT PROGRAM STRUCTURE
4.20.1 fcc896s Command Interrupt Stack Frame

When an interrupt occurs, the stack is changed to the interrupt stack.

■ fcc896s Command Interrupt Stack Frame

Figure 4.20-1 shows the interrupt stack frame status prevailing immediately after interrupt
generation.

Figure 4.20-1 fcc896s Command Interrupt Stack Frame

(Low)

SP →
PS

PC

(High)
130

4.20 fcc896s COMMAND INTERRUPT FUNCITON CALL INTERFACE
4.20.2 fcc896s Command Interrupt Function Calling Procedure

The interrupt function is called by an interrupt via the interrupt vector table. If the
interrupt function is called by any other method, no subsequent operations will be
guaranteed.

■ fcc896s Command Interrupt Function Calling Procedure

Figure 4.20-2 shows an example interrupt vector table.

Figure 4.20-2 fcc896s Command Interrupt Vector Table

0xFFFF →
Reset vector

Reset mode

Vector 0

:
:

0xFFD0 →
Vector 20

Vector 21
131

CHAPTER 4 OBJECT PROGRAM STRUCTURE
132

CHAPTER 5 EXTENDED LANGUAGE SPECIFICATIONS

This chapter describes the extended language specifications supported by the
compiler and the limitations on compiler translation.

5.1 ASSEMBLER DESCRIPITON FUNCTIONS

5.2 INTERRUPT CONTROL FUNCITONS

5.3 I/O AREA ACCESS FUNCTION

5.4 direct AREA ACCESS FUNCTION

5.5 16-BIT/24-BIT ADDRESSING ACCESS FUNCTION

5.6 IN-LINE EXPANSION SPECIFYING FUNCTION

5.7 SECTION NAME CHANGE FUNCTION

5.8 REGISTER BANK NUMBER SETUP FUNCTION

5.9 INTERRUPT LEVEL SETUP FUNCTION

5.10 SYSTEM STACK USE SPECIFYING FUNCTION

5.11 STACK BANK AUTOMATIC DISTINCTION FUNCTION

5.12 NO-REGISTER-SAVE INTERRUPT FUNC. FUNCTION

5.13 BUILT-IN FUNCTION

5.14 PREDEFINED MACROS

5.15 LIMITATIONS ON COMPILER TRANSLATION
133

CHAPTER 5 EXTENDED LANGUAGE SPECIFICATIONS
5.1 ASSEMBLER DESCRIPITON FUNCTIONS

There are the following two assembler description functions.
● asm statement
● Pragma instruction

■ Description by asm Statement

When the asm statement is written, the character string literal is expanded as the assembler
instruction. This function makes it possible to write the asm statement inside and outside the
function.

[General Format]

__asm (Character string literal);

[Explanation]

When the statement is written inside the function, the assembler is expanded at the
written position.

When the statement is written outside the function, it is expanded as an independent
section. Therefore, if the statement is to be written outside the function, be sure to write
the section definition pseudo instruction to define the section. If the section is not
defined, no subsequent operations will be guaranteed.

When using a general-purpose register within the asm statement in the function during
fcc907s or fcc896s command execution, the user is responsible for register saving
and restoration. The accumulator can be freely used.

When using a general-purpose register within the asm statement in the function during
fcc911s command execution, the user is responsible for register saving and restoration.
However, the user need not to be conscious of general-purpose registers R0 to R3, R12,
and R13 because saving and restoring are performed by the compiler.

If the asm statement exists in a C source program, various optimization features are
inhibited even when the -O optimization option is specified.

[Output Example for fcc907s Command]

• Input:

/* When written inside the function */

extern int temp;

sample(){

 __asm(" MOVN A, #1");

 __asm(" MOVN _temp, A");

}

/* When written outside the function */

__asm(" .SECTION DATA, DATA, ALIGN=2");

__asm(" .ALIGN 2");

__asm(" .GLOBAL _a");

__asm(" _a: .RES.B 2");
134

5.1 ASSEMBLER DESCRIPITON FUNCTIONS
• Output:

 .SECTION CODE, CODE, ALIGN=2

CSEG CSEG

;-------begin_of_function

 .GLOBAL _sample

_sample:

 LINK #0

 MOVN A, #1

 MOVW _temp, A

 UNLINK

 RET

 .SECTION DATA, DATA, ALIGN=2

 .ALIGN 2

 .GLOBAL _a

_a: .RES.B 2

[Output Example for fcc911s Command]

• Input:

/* When written inside the function */

extern int temp;

sample(){

 __asm(" LDI #1, R0");

 __asm(" LDI:32 #_temp, R12");

 __asm(" ST R0, @R12");

}

/* When written outside the function */

__asm(" .SECTION DATA, DATA, ALIGN=4");

__asm(" .GLOBAL _a");

__asm("_a:");

__asm(" .RES.B 4");
135

CHAPTER 5 EXTENDED LANGUAGE SPECIFICATIONS
• Output:

 .SECTION CODE, CODE, ALIGN=2

;-------begin_of_function

 .GLOBAL _sample

_sample:

 ST RP, @-SP

 ENTER #4

 LDI #1, R0

 LDI:32 #_temp, R12

 ST R0, @R12

L_sample:

 LEAVE

 LD @SP+, RP

 RET

 .SECTION DATA, DATA, ALIGN=4

 .GLOBAL _a

_a:

 .RES.B 4

[Output Example for fcc896s Command]

• Input:

/* When written inside the function */

extern int temp;

sample(){

 __asm(" MOVW A, #1");

 __asm(" MOVW _temp, A");

}

/* When written outside the function */

__asm(" .SECTION DATA, DATA, ALIGN=1");

__asm(" .GLOBAL _a");

__asm(" _a: .RES.H 1");
136

5.1 ASSEMBLER DESCRIPITON FUNCTIONS
• Output:

 .SECTION CODE, CODE, ALIGN=1

 .GLOBAL _sample

_sample:

 MOVW A, #1

 MOVW _temp, A

L_sample:

 RET

 .SECTION DATA, DATA, ALIGN=1

 .GLOBAL _a

_a: .RES.H 1

■ Description by Pragma Instruction

The description between #pragma asm and #pragma endasm directly is expanded as the
assembler instruction. This function makes it possible to write the statement inside and outside
the function.

[General Format]

#pragma asm

Assembler description

#pragma endasm

[Explanation]

When the statement is written inside the function, the assembler is expanded at the
written position.

When the statement is written outside the function, it is expanded as an independent
section. Therefore, if the statement is to be written outside the function, be sure to write
the section definition pseudo instruction to define the section. If the section is not
defined, no subsequent operations will be guaranteed.

When using a general-purpose register within the asm statement in the function during
fcc907s or fcc896s command execution, the user is responsible for register saving
and restoration. The accumulator can be freely used.

When using a general-purpose register within the asm statement in the function during
fcc911s command execution, the user is responsible for register saving and restoration.
However, the user need not to be conscious of general-purpose registers R0 to R3, R12,
and R13 because saving and restoring are performed by the compiler.

If the assembler provided by #pragma asm/endasm exists in the C source program,
various optimization features are inhibited even when the -O optimization option is
specified.
137

CHAPTER 5 EXTENDED LANGUAGE SPECIFICATIONS
[Output Example for fcc907s Command]

• Input:

/* When written inside the function */

sample(){

#pragma asm

 MOVN A, #1

 MOVW _temp, A

#pragma endasm

}

/* When written outside the function */

#pragma asm

 .SECTION DATA, DATA, ALIGN=2

 .ALIGN 2

 .GLOBAL _a

_a: .RES.B 2

#pragma endasm

• Output:

 .SECTION DATA, DATA, ALIGN=2

;-------begin_of_function

 .GLOBAL _sample

_sample:

 LINK #0

 MOVN A, #1

 MOVW _temp, A

 UNLINK

 RET

 .SECTION DATA, DATA, ALIGN=2

 .ALIGN 2

 .GLOBAL _a

_a: .RES.B 2
138

5.1 ASSEMBLER DESCRIPITON FUNCTIONS
[Output Example for fcc911s Command]

• Input:

/* When written inside the function */

extern int temp;

sample(){

#pragma asm

 LDI #1, R0

 LDI:32 #_temp, R12

 ST R0, @R12

#pragma endasm

}

/* When written outside the function */

 .SECTION DATA, DATA, ALIGN=4

 .GLOBAL _a

_a:

 .RES.B 4

#pragma endasm

• Output:

 .SECTION CODE, CODE, ALIGN=2

;-------begin_of_function

 .GLOBAL _sample

_sample:

 ST RP, @-SP

 ENTER #4

 LDI #1, R0

 LDI:32 #_temp, R12

 ST R0, @R12

L_sample:

 LEAVE

 LD @SP+, RP

 RET

 .SECTION DATA, DATA, ALIGN=4

 .GLOBAL _a

_a:

 .RES.B 4
139

CHAPTER 5 EXTENDED LANGUAGE SPECIFICATIONS
[Output Example for fcc896s Command]

• Input:

/* When written inside the function */

extern int temp;

sample(){

#pragma asm

 MOVW A, #1

 MOVW _temp, A

#pragma endasm

}

/* When written outside the function */

#pragma asm

 .SECTION DATA, DATA, ALIGN=1

 .GLOBAL _a

_a: .RES.H 1

#pragma endasm

• Output:

 .SECTION CODE, CODE, ALIGN=1

 .GLOBAL _sample

_sample:

 MOVN A, #1

 MOVW _temp, A

L_sample:

 RET

 .SECTION DATA, DATA, ALIGN=1

 .GLOBAL _a

_a: .RES.H 1
140

5.2 INTERRUPT CONTROL FUNCITONS
5.2 INTERRUPT CONTROL FUNCITONS

There are the following five interrupt control functions.
● Interrupt mask setup function
● Interrupt mask disable function
● Interrupt level setup function
● Interrupt function description function
● Interrupt vector table generation function

■ Interrupt Mask Setup Function

[General Format]

void __DI(void);

[Explanation]

Expands the interrupt masking code

[Output Example]

• Input:

__DI();

• fcc907s Command Output:

AND CCR, #191

• fcc911s Command Output:

ANDCCR #0xef

• fcc896s Command Output:

CLRI

■ Interrupt Mask Disable Function

[General Format]

void __EI(void);

[Explanation]

Expands the interrupt masking disable code

[Output Example]

• Input:

__EI();

• fcc907s Command Output:

OR CCR, #64

• fcc911s Command Output:

ORCCR #0x10

• fcc896s Command Output:

SETI
141

CHAPTER 5 EXTENDED LANGUAGE SPECIFICATIONS
■ Interrupt Level Setup Function

[General Format]

void__set_il(int level);

[Explanation]

Expands the code for changing the interrupt level to level

[Output Example]

• Input:

__set_il(2);

• fcc907s Command Output:

MOV ILM, #2

• fcc911s Command Output:

STILM #2

• fcc896s Command Output:

MOVW A, PS

CLRI

MOVW A, #207

ANDW A

MOVW A, #32

ORW A

MOV PS, A

■ Interrupt Function Description Function

[General Format 1]

__interrupt void Interrupt function (void) { ... }

[General Format 2]

extern __interrupt void Interrupt function (void);

[Explanation]

The interrupt function can be written by specifying the __interrupt type qualifier.
Since the interrupt function is called by an interrupt, it is impossible to set up an argument
or obtain a return value.

If a function declared or defined by the __interrupt type qualifier is called by
performing the normal function calling procedure, no subsequent operations will be
guaranteed.
142

5.2 INTERRUPT CONTROL FUNCITONS
[Output Example]

• Input:

__interrupt void sample(void){ ... }

• fcc907s Command Output:

_sample:

 LINK #0

 UNLINK

 RETI

• fcc911s Command Output:

_func:

 STM (R12, R13)

 ST MDH, @-SP

 ST MDL, @-SP

 ST RP, @-SP

 ENTER #4

L_func:

 LEAVE

 LD @SP+, RP

 LD @SP+, MDL

 LD @SP+, MDH

 LDM (R12, R13)

 RETI
143

CHAPTER 5 EXTENDED LANGUAGE SPECIFICATIONS
• fcc896s Command Output:

_sample:

 PUSHW A

 XCHW A, T

 PUSHW A

 MOVW A, EP

 PUSHW A

 MOV A, R0

 SWAP

 MOV A, R1

 PUSHW A

L_sample:

 POPW A

 MOV R1, A

 SWAP

 MOV R0, A

 POPW A

 MOVW EP, A

 POPW A

 XCHW A, T

 POPW A

 RETI

■ Interrupt Vector Table Generation Function

[fcc907s Command General Format]

#pragma intvect Interrupt function name Vector number [Mode value]

#pragma defvect Interrupt function name

[Explanation]

#pragma intvect generates an interrupt vector table for which the interrupt function is
set.

#pragma defvect specifies the default interrupt function to be set for interrupt vectors
not specified by #pragma intvect .

The interrupt vector table is generated in an independent section named INTVEC.

When #pragma defvect is written, tables for all vectors are generated. Therefore, all
vector tables must be defined using the same translation unit. If #pragma defvect is
not used, #pragma intvect can be written using two or more translation units.

The definition cannot be formulated two or more times for the same vector number.
However, no error occurs if the definitions are for the same translation unit and are
identical.

No value other than an integer constant may be specified as the vector number. Specify
a vector number between 0 and 255.

No value other than an integer constant may be specified as the mode value.
144

5.2 INTERRUPT CONTROL FUNCITONS
[fcc911s Command General Format]

#pragma intvect Interrupt function name Vector number

#pragma defvect Interrupt function name

[Explanation]

#pragma intvect generates an interrupt vector table for which the interrupt function is
set.

#pragma defvect specifies the default interrupt function to be set for interrupt vectors
not specified by #pragma intvect .

The interrupt vector table is generated in an independent section named INTVECT.

All interrupt vector tables must be defined using the same translation unit (file). If
#pragma intvect or #pragma defvect is specified using two or more translation
units, no subsequent operations will be guaranteed.

The definition cannot be formulated two or more times for the same vector number.
However, no error occurs if the definitions are identical.

No value other than an integer constant may be specified as the vector number. Specify
a vector number between 0 and 255.

Reset vectors must always be arranged at 0xFFFFC. When setting TBR at locations
other than 0xFFC00, the reset vectors should be defined separately by the asm
statement.

[fcc896s Command General Format]

#pragma intvect Interrupt function name Vector number

#pragma defvect Interrupt function name

[Explanation]

#pragma intvect generates an interrupt vector table for which the interrupt function is
set.

#pragma defvect specifies the default interrupt function to be set for interrupt vectors
not specified by #pragma intvect .

The interrupt vector table is generated in an independent section named INTVEC.

When #pragma defvect is written, tables for all vectors are generated. Therefore, all
vector tables must be defined using the same translation unit. If #pragma defvect is
not used, #pragma intvect can be written using two or more translation units.

The definition cannot be formulated two or more times for the same vector number.
However, no error occurs if the definitions are for the same translation unit and are
identical.

No value other than an integer constant may be specified as the vector number. Specify
a vector number between 0 and 21.

No reset vector and reset mode are included in the vector table. They must be defined
separately by the asm statement.
145

CHAPTER 5 EXTENDED LANGUAGE SPECIFICATIONS
5.3 I/O AREA ACCESS FUNCTION

The I/O area operation variable can be defined by specifying the __io type qualifier.

■ I/O Area Access Function

[General Format]

extern __io Variable definition;

[Explanation]

A variable operating an I/O area defined at addresses between 0x00 and 0xff can be
defined by specifying the __io type qualifier.

Since a highly-efficient dedicated instruction is provided for I/O area access, a higher-
speed, more-compact object can be generated. This instruction cannot be used for
variables operating an I/O area positioned at addresses higher than 0xff. To define a
variable that accesses such an area, use the volatile type qualifier.

The initial value cannot be specified for variables for which the __io type qualifier is
specified.

When the specified variable is for a structure or union, it is assumed that all members are
positioned in the I/O area. The variable cannot be specified for structure or union
members. For the variable for which the __io type qualifier is specified, compilation is
conducted on the assumption that the volatile type qualifier is specified.

When the -K NOVOLATILE option is specified, the volatile type qualifier is not
assumed to be specified for the variable for which the __io type qualifier is specified.

[Output Example for fcc907s Command]

• Input:

#pragma section IOVAR=IOA,attr=IOSEG,locate=0x10

__io int a;

void func(void){ a=1;}
146

5.3 I/O AREA ACCESS FUNCTION
• Output:

 .SECTION IOA, IO, LOCATE=H’0:H’10

 .ALIGN 2

 .GLOBAL _a

_a:

 .RES.B 2

 .SECTION CODE, CODE, ALIGN=2

;-------begin_of_function

 .GLOBAL _func

_func:

 LINK #0

 MOVN A, #1

 MOVW I:_a, A

 UNLINK

 RET

[Output Example for fcc911s Command]

• Input:

#pragma section IO=IOA,attr=DATA,locate=0x10

__io int a;

void func(void){ a=1;}

• Output:

 .SECTION IOA, DATA, LOCATE=H’00000010

 .GLOBAL _a

_a:

 .RES.B 4

 .SECTION CODE, CODE, ALIGN=2

;-------begin_of_function

 .GLOBAL _func

_func:

 ST RP, @-SP

 ENTER #4

 LDI #1, R0

 MOV R0, R13

 DMOV R13, @_a

L_func:

 LEAVE

 LD @SP+, RP

 RET
147

CHAPTER 5 EXTENDED LANGUAGE SPECIFICATIONS
[Output Example for fcc896s Command]

• Input:

#pragma section IO=IOA,attr=DATA,locate=0x10

__io int a;

void func(void){ a=1;}

• Output:

 .SECTION IOA, IO, LOCATE=H’0:H’10

 .GLOBAL _a

_a:

 .RES.H 1

 .SECTION CODE, CODE, ALIGN=1

 .GLOBAL _func

_func:

 MOVW A, #1

 MOVW _a, A

L_func:

 RET
148

5.4 direct AREA ACCESS FUNCTION
5.4 direct AREA ACCESS FUNCTION

The direct area operation variable can be defined by specifying the __direct type
qualifier. It can be used with the fcc907s or fcc896s command only.

■ direct Area Access Function

[General Format]

__direct Variable definition;

[Explanation]

The direct area operation variable can be defined by specifying the __direct type
qualifier.

It makes it possible to specify that the pointer-specified object is the direct area.

When the specified variable for a structure or union, it is assumed that all members are
positioned in the direct area. The variable cannot be specified for structure or union
members.

Since highly-efficient dedicated instructions are provided for direct area accessing,
compact objection generation can be achieved at an increased speed.

In the fcc907s command, to make accessible the section (DIRVAR/DIRINIT)
generated by __direct type qualifying the variable, it is necessary to properly set up the
DPR with the startup routine.

In the fcc896s command, to make accessible the section (DIRVAR/DIRINIT)
generated by __direct type qualifying the variable, the sections must be arranged in
the 0x00 to 0xFF range. The area in this range is also used as the I/O area, so the
sections should be arranged in an area that is not used as the I/O area.
149

CHAPTER 5 EXTENDED LANGUAGE SPECIFICATIONS
[Output Example]

• Input:

int __direct p;

void sample(void){ p=1;}

• fcc907s Command Output:

 .SECTION DIRDATA, DIR, ALIGN=2

 .ALIGN 2

 .GLOBAL _p

_p:

 .RES.B 2

 .GLOAL LOADSPB

 .SECTION CODE, CODE, ALIGN=2

;-------begin_of_function

 .GLOBAL _sample

_sample:

 LINK #0

 MOVN A, #1

 MOVW S:_p, A

 UNLINK

 RET

• fcc896s Command Output:

 .SECTION DIRDATA, DIR, ALIGN=1

 .GLOBAL _p

_p:

 .RES.H 1

 .SECTION CODE, CODE, ALIGN=1

 .GLOBAL _sample

_sample:

 MOVW A, #1

 MOVW _p, A

L_sample:

 RET
150

5.5 16-BIT/24-BIT ADDRESSING ACCESS FUNCTION
5.5 16-BIT/24-BIT ADDRESSING ACCESS FUNCTION

The address space where variables are positioned can be specified by specifying the
__near/__far type qualifier. A highly efficient program can be generated by
specifying an appropriate address space. It is available for the fcc907s command
only.

■ 16-bit/24-bit Addressing Access Function

[General Format]

__near Variable definition;

__far Variable definition;

[Explanation]

The variable arrangement address space can be specified by specifying the __near/
__far type qualifier.

When the __near type qualifier is specified, variables can be positioned in the 16-bit
address space.

When the __far type qualifier is specified, variables can be positioned in the 24-bit
address space.

A highly efficient program can be generated by specifying an appropriate address space.

If the __near/__far type qualifier is omitted, the address space specified by the
memory model employed at the time of compilation is used as the default choice.

The local variable cannot be qualified.

When the far pointer is type-converted to the near pointer, the eight high-order bits are
discarded.

When the near pointer is type-converted to the far pointer, the DTB value is used for
the eight high-order bits.

When the local variable address is stored in the far pointer, the USB (or SSB) value is
used for the eight high-order bits. However, if the local variable address is stored in the
far pointer after it has been substituted (or cast) into the near pointer, the DTB value is
used so that erratic operations may result.

When a __near type qualified function is to be called from a __far type qualified
function, both functions must be positioned in the same section. The reason is that the
PCB set up for __far type qualified function calling is used as is for __near type
qualified function calling.

Variables have to be adjusted to the bank boundary. If not, the generated code cannot
access such variable correctly.

[Output Example]

• Input:

int __near p;

int __far q;

void sample(void){ p=1; q=2;}
151

CHAPTER 5 EXTENDED LANGUAGE SPECIFICATIONS
• Output:

 .SECTION DATA_e, DATA, ALIGN=2

FAR_DATA_S:

 .ALIGN 2

 .GLOBAL _q

_q:

 .RES.B 2

 .SECTION DATA, DATA, ALIGN=2

 .ALIGN 2

 .GLOBAL _p

_p:

 .RES.B 2

 .SECTION DATA_e, DATA, ALIGN=2

FAR_DATA_E:

 .SECTION CODE, CODE, ALIGN=2

;-------begin_of_function

 .GLOBAL _sample

_sample:

 LINK #0

 MOVN A, #1

 MOVW _p, A

 MOV A, #bnksym_q

 MOV ADB, A

 MOVN A, #2

 MOVW ADB:_q, A

 UNLINK

 RET
152

5.6 IN-LINE EXPANSION SPECIFYING FUNCTION
5.6 IN-LINE EXPANSION SPECIFYING FUNCTION

This function specifies the user definition function for in-line expansion. In-line
expansion can be specified with the -x option.

■ In-line Expansion Specifying Function

[General Format]

#pragma inline Function name [, Function name ...]

[Explanation]

Recursively called functions cannot be subjected to in-line expansion. It should also be
noted that functions may not be subjected to in-line expansion depending on asm
statement use, structure/union type argument presence, setjmp function calling, and
other conditions.

When there are two or more descriptions for the same translation unit or in-line expansion
is specified by an option, all the specified function names are valid.

The in-line expansion specifying is invalid if the -O option is not specified.
153

CHAPTER 5 EXTENDED LANGUAGE SPECIFICATIONS
5.7 SECTION NAME CHANGE FUNCTION

This function is used to change the section name or section attribute and sets the
section arrangement address.

■ Section Name Change Function

[General Format]

#pragma section DEFSECT[=NEWNAME][,attr=SECTATTR][,locate=ADDR]

[Explanation]

The section name output by the compiler is changed from DEFSECT to NENAME and the
section type is changed to SECTATTR.

In the fcc907s command, large, compact and medium models, and __far -type
qualified variables and functions can be assigned a section name by prefixing them with
FAR_.

It is also possible to select an arrangement address of ADDR.

For the section name output by the compiler, see 4.1, fcc907s Command Section
Structure , 4.2, fcc911s Command Section Structure , and 4.3, fcc896s Command
Section Structure . For the section type, refer to the Assembler Manual .

When an arrangement address is given, it cannot be specified for the section at linking.

This feature can be specified only once for the same section. When specifying it two or
more times, only the last specification is effective.

When the same section name is changed by -s option, only specification by the option is
effective.

[Output Example for fcc907s Command]

• Input:

#pragma section CODE=program,attr=CODE,locate=0xff

void main(void){}

• Output:

 .SECTION program, CODE, LOCATE=H’0:H’FF

;-------begin_of_function

 .GLOBAL _main

_main:

 LINK #0

 UNLINK

 RET
154

5.7 SECTION NAME CHANGE FUNCTION
[Output Example for fcc911s Command]

• Output:

 .SECTION program, CODE, LOCATE=H’000000FF

;-------begin_of_function

 .GLOBAL _main

_main:

 ST RP, @-SP

 ENTER #4

L_main:

 LEAVE

 LD @SP+, RP

 RET

[Output Example for fcc896s Command]

• Output:

 .SECTION program, CODE, LOCATE=H’FF

 .GLOBAL _main

_main:

L_main:

 RET
155

CHAPTER 5 EXTENDED LANGUAGE SPECIFICATIONS
5.8 REGISTER BANK NUMBER SETUP FUNCTION

This function is used to specify the register bank that the function uses. It is available
for the fcc907s or fcc896s command only.

■ Register Bank Number Setup Function

[General Format]

#pragma register(NUM)

#pragma noregister

[Explanation]

#pragma register specifies the register bank that the subsequently-defined function
uses.

#pragma noregister clears the register bank specifying.

An integer constant between 0 and 31 can be specified in the NUM position to specify the
register bank number. A hexadecimal, octal, or decimal number can be described.

Although the register bank number is changed at the beginning of the specified function,
remember that the new number does not revert to the previous number at completion of
function execution(the case of the interrupt function is excluded).

Always specify #pragma register and #pragma noregister as a set. Nesting is
not possible.

[Output Example]

• Input:

#pragma register(2)

void func(void){}

#pragma noregister

• fcc907s Command Output:

_func:

 MOV RP, #2

 LINK #0

 UNLINK

 RET

fcc896s Command Output:

_func:

 MOVW A, PS

 SWAP

 MOV A, #16

 SWAP

 MOVW PS, A

L_func:

 RET
156

5.9 INTERRUPT LEVEL SETUP FUNCTION
5.9 INTERRUPT LEVEL SETUP FUNCTION

This function is used to set the function interrupt level.

■ interrupt Level Setup Function

[General Format]

#pragma ilm(NUM)

#pragma noilm

[Explanation]

#pragma ilm specifies the interrupt level for the subsequently defined function.

#pragma noilm clears the interrupt level specifying.

In the fcc907s command, the integer constants 0 to 7 can be specified as NUM. In the
fcc911s command, the integer constants 0 to 31 can be specified as NUM. In the
fcc896s command, the integer constants 0 to 3 can be specified as NUM.

A hexadecimal, octal, or decimal number can be described.

Although the interrupt level is changed at the beginning of the specified function,
remember that the new interrupt level does not revert to the previous level at completion
of function execution.

Always specify #pragma ilm and #pragma noilm as a set. Nesting is not possible.

[Output Example]

• Input:

#pragma ilm(1)

void func(void){}

#pragma noilm

• fcc907s Command Output:

_func:

 MOV ILM, #1

 LINK #0

 UNLINK

 RET
157

CHAPTER 5 EXTENDED LANGUAGE SPECIFICATIONS
• fcc911s Command Output:

_func:

 STILM #1

 ST RP, @-SP

 ENTER #4

L_func:

 LEAVE

 LD @SP+, RP

 RET

• fcc896s Command Output:

_func:

 MOVW A, PS

 AND A, #207

 OR A, #16

 MOVW PS, A

L_func:

 RET
158

5.10 SYSTEM STACK USE SPECIFYING FUNCTION
5.10 SYSTEM STACK USE SPECIFYING FUNCTION

This function is used to notify the compiler that the system stack is used by the
function. It can be used with the fcc907s command only.

■ System Stack Use Specifying Function

[General Format]

#pragma ssb

#pragma nossb

[Explanation]

#pragma ssb notifies the compiler that the system stack is used by the subsequently-
defined function.

#pragma nossb clears such a specifying.

Always specify #pragma ssb and #pragma nossb as a set. Nesting is not possible.
#pragma ssb cannot be written between #pragma except and #pragma noexcept .

[Output Example]

• Input:

__far int *p;

#pragma ssb

void func(void){

 int a;

 p=&a;

]

#pragma nossb

• Output:

_func:

 LINK #2

 MOV A, SSB

 MOVEA A, @RW3+-2

 MOVL _p, A

 UNLINK

 RET
159

CHAPTER 5 EXTENDED LANGUAGE SPECIFICATIONS
5.11 STACK BANK AUTOMATIC DISTINCTION FUNCTION

This function is used to notify the compiler that the function is operative in both the
system stack and user stack. It can be used with the fcc907s command only.

■ Stack Bank Automatic Distinction Function

[General Format]

#pragma except

#pragma noexcept

[Explanation]

#pragma except notifies the compiler that the subsequently-defined function is operative
in both the system stack and user stack.

#pragma noexcept clears such a specifying.

Always specify #pragma except and #pragma noexcept as a set. Nesting is not
possible. #pragma except cannot be written between #pragma ssb and #pragma
nossb .

[Output Example]

• Input:

__far int *p;

#pragma except

void func(void){

 int a;

 p=&a;

]

#pragma noexcep t

• Output:

_func:

 LINK #2

 CALLP LOADSPB

 MOVEA A, @RW3+-2

 MOVL _p, A

 UNLINK

 RET
160

5.12 NO-REGISTER-SAVE INTERRUPT FUNC. FUNCTION
5.12 NO-REGISTER-SAVE INTERRUPT FUNC. FUNCTION

This function is used to specify "no function saving". It can be used with the fcc907s
or fcc896s command only.

■ No-register-save Interrupt Func. Function

[General Format]

__nosavereg Function definition

[Explanation]

The __nosavereg type qualifier can be specified to define a function that is not to be
saved to a register. This function is used to inhibit the register save operation when it is
not needed due to register bank switching.

Register bank switching can be performed using #pragma register . #pragma
register is usually used with __interrupt.

[Output Example]

• Input:

extern void sub(void);

#pragma register(5)

 __nosavereg __interrupt void func(void){sub();}

#pragma noregister

• fcc907s Command Output:

_func:

 MOV RP, #5

 LINK #0

 CALL _sub

 UNLINK

 RETI
161

CHAPTER 5 EXTENDED LANGUAGE SPECIFICATIONS
5.13 BUILT-IN FUNCTION

The following built-in functions are available.
● __wait_nop

● __mul

● __div

● __mod

● __mulu

● __divu

● __modu

■ __wait_nop Built-in Function

[General Format]

void __wait_nop(void);

[Explanation]

To properly time I/O access and interrupt generation, formerly, the NOP instruction was
inserted using the asm statement. However, when such a method is used, the asm
statement may occasionally inhibit various forms of optimization and greatly degrade the
file object efficiency.

When the __wait_nop() built-in function is written, the compiler outputs one NOP
instruction to the function call entry position. If the function call entry is performed a count
of times until all the issued NOP instructions are covered, timing control is exercised to
minimize the effect on optimization.

[Output Example]

• Input:

void sample(void){__wait_nop();}

• fcc907s Command Output:

_sample:

 LINK #0

 NOP

 UNLINK

 RET

CSEG ENDS

 END
162

5.13 BUILT-IN FUNCTION
• fcc911s Command Output:

_sample:

 ST RP, @-SP

 ENTER #4

 NOP

L_sample:

 LEAVE

 LD @SP+, RP

 RET

• fcc896s Command Output:

_sample:

 NOP

L_sample:

 RET

■ __mul Built-in Function

[General Format]

signed long __mul(signed int, signed int);

[Explanation]

This function multiplies signed 16-bit data by signed 16-bit data to return a signed 32-bit
result.

It is possible to avert a 16-bit computation-induced overflow by using this built-in function,
thereby increasing computation efficiency.

It can be used with the fcc907s command only. It expands only when the F2MC-16LX/
16F family MB number is specified as the -cpu option. However, this function is not
expanded in the MB90500 series when -div905 option is not specified.

[Output Example]

• Input:

extern signed int arg1,arg2;

extern signed long ans;

void sample(void){

 ans = __mul(arg1, arg2);

}

• fcc907s Command Output:

MOVW A, _arg1

MOLW A, _arg2

MOVL _ans, A
163

CHAPTER 5 EXTENDED LANGUAGE SPECIFICATIONS
■ __div Built-in Function

[General Format]

signed int __div(signed long, signed int);

[Explanation]

This function performs a division between signed 32-bit data and signed 16-bit data to
return a signed 16-bit result.

It is possible to achieve increased computation efficiency by using this built-in function.

It can be used with the fcc907s command only. It expands only when the F2MC-16LX/
16F family MB number is specified as the -cpu option. However, this function is not
expanded in the MB90500 series when -div905 option is not specified.

[Output Example]

• Input:

extern signed int arg2,ans;

extern signed long arg1;

void sample(void){

 ans = __div(arg1, arg2);

}

• fcc907s Command Output:

MOVL A, _arg1

MOLW RW0, _arg2

DIVW A, RW0

MOVW _ans, A

■ __mod Built-in Function

[General Format]

signed int __mod(signed long, signed int);

[Explanation]

This function performs a modulo operation between signed 32-bit data and signed 16-bit
data to return a signed 16-bit result.

It is possible to achieve increased computation efficiency by using this built-in function.

It can be used with the fcc907s command only. It expands only when the F2MC-16LX/
16F family MB number is specified as the -cpu option. However, this function is not
expanded in the MB90500 series when -div905 option is not specified.

[Output Example]

• Input:

extern signed int arg2,ans;

extern signed long arg1;

void sample(void){

 ans = __mod(arg1, arg2);

}

164

5.13 BUILT-IN FUNCTION
• fcc907s Command Output:

MOVL A, _arg1

MOLW RW0, _arg2

MODW RW0

MOVW A, RW0

MOVW _ans, A

■ __mulu Built-in Function

[General Format]

unsigned long __mulu(unsigned int, unsigned int);

[Explanation]

This function multiplies unsigned 16-bit data by unsigned 16-bit data to return an
unsigned 32-bit result.

It is possible to avert a 16-bit computation-induced overflow by using this built-in function,
thereby increasing computation efficiency.

It can be used with the fcc907s command only.

[Output Example]

• Input:

extern unsigned int arg1,arg2;

extern unsigned long ans;

void sample(void){

 ans = __mulu(arg1, arg2);

}

• fcc907s Command Output:

MOVW A, _arg1

MULUW A, _arg2

MOVL _ans, A

■ __divu Built-in Function

[General Format]

unsigned int __divu(unsigned long, unsigned int);

[Explanation]

This function performs a division between unsigned 32-bit data and unsigned 16-bit data
to return an unsigned 16-bit result.

It is possible to achieve increased computation efficiency by using this built-in function.

It can be used with the fcc907s command only.
165

CHAPTER 5 EXTENDED LANGUAGE SPECIFICATIONS
[Output Example]

• Input:

extern unsigned int arg2,ans;

extern unsigned long arg1;

void sample(void){

 ans = __divu(arg1, arg2);

}

• fcc907s Command Output:

MOVL A, _arg1

MOVW RW0, _arg2

DIVUW A, RW0

MOVW _ans, A

■ __modu Built-in Function

[General Format]

unsigned int __modu(unsigned long, unsigned int);

[Explanation]

This function performs a modulo operation between unsigned 32-bit data and unsigned
16-bit data to return an unsigned 16-bit result.

It is possible to achieve increased computation efficiency by using this built-in function.

It can be used with the fcc907s command only.

[Output Example]

• Input:

extern unsigned int arg2,ans;

extern unsigned long arg1;

void sample(void){

 ans = __modu(arg1, arg2);

}

• fcc907s Command Output:

MOVL A, _arg1

MOVW RW0, _arg2

MODUW RW0

MOVW A, RW0

MOVW _ans, A
166

5.14 PREDEFINED MACROS
5.14 PREDEFINED MACROS

This section describes the macro names predefined by the compiler.

■ Macros Stipulated by ANSI Standard

The ANSI standard stipulates the following macros.

■ Macros Predefined by fcc907s Command

The fcc907s command predefines the following macros.

■ Macros Predefined by fcc911s Command

The fcc911s command predefines the following macros.

Macro Name Description

__LINE__ Defines line number of current source line

__FILE__ Defines source file name

__DATA__ Defines source file translation date

__TIME__ Defines source file translation time

__STDC__

Macro indicating that the processing system meets requirements

When the -Ja option is specified, 0 is selected as the definition. When the -Jc option is specified, 1 is selected
as the definition.

Macro Name Description

__COMPILER_FCC907S__ Selects 1 as definition

__CPU_MB number__ Selects MB number specified by the -cpu option as definition

__CPU_16L__

Selects 1 as definition for macro of certain series name in accordance with MB number specified by
the -cpu option

__CPU_16LX__

__CPU_16F__

Macro Name Description

__COMPILER_FCC911S__ Selects 1 as definition

__CPU_MB number__ Selects MB number specified by the -cpu option as definition

__CPU_FR__ Selects 1 as definition
167

CHAPTER 5 EXTENDED LANGUAGE SPECIFICATIONS
■ Macros Predefined by fcc896s Command

The fcc896s command predefines the following macros.

Macro Name Description

__COMPILER_FCC896S__ Selects 1 as definition

__CPU_MB number__ Selects MB number specified by the -cpu option as definition

__CPU_8L__ Selects 1 as definition
168

5.15 LIMITATIONS ON COMPILER TRANSLATION
5.15 LIMITATIONS ON COMPILER TRANSLATION

Table 5.15-1 shows the translation limitations to be imposed when the compiler is
used. The table also indicates the minimum ANSI requirements to be met.

■ Limitations on Compiler Translation

Table 5.15-1 List of Translation Limitations

No. Function
ANSI

Standard
Compiler

1
Count of nesting levels for a compound statement, repetition control structure, and selection
control structure

15 ∞

2 Count of nesting levels for condition incorporation 8 ∞

3
Count of pointers, arrays, and function declarators (any combinations of these) for qualify-
ing one arithmetic type, structure type, union type, or incomplete type in a declaration

12 ∞

4 Count of nests provided by parentheses for one complete declarator 31 ∞

5 Count of nest expressions provided by parentheses for one complete expression 32 ∞

6 Count of valid leading characters of internal identifier or macro name 31 ∞

7 Count of valid leading characters of external identifier 6 254*

8 Count of external identifiers of one translation unit 511 ∞

9 Count of identifiers having the block valid range in one block 127 ∞

10 Count of macro names that can be simultaneously defined by one translation unit 1024 ∞

11 Count of virtual arguments in one function definition 31 ∞

12 Count of actual arguments for one function call 31 ∞

13 Count of virtual arguments in one macro definition 31 ∞

14 Count of actual arguments in one macro call 31 ∞

15 Maximum count of characters in one logical source line 509 ∞

16
Count of characters in a (linked) byte character string literal or wide-angle character string
literal (terminal character included)

509 ∞

17 Count of bytes of one arithmetic unit 32767

fcc896s:
65535

fcc907s:
65535

fcc911s:
4G

18 Count of nesting levels for #include file 8 252

19
Count of case name cards in one switch statement (excluding nested switch state-
ments)

257 ∞

20 Count of members of one structure or union 127 ∞

21 Count of enumerated type constants in one enumerated type 127 ∞

22 Count of structure or union nesting levels for one structure declaration array 15 ∞
169

CHAPTER 5 EXTENDED LANGUAGE SPECIFICATIONS
Note: Although the count of external identifier characters to be identified by the compiler is ∞,
only 255 characters are output to the assembler. If there are identifiers whose 254
leading characters are the same, an error may occur in the assembler.

Remarks: The ∞ symbol in the above table indicates the dependence on the memory size
available for the s ystem.
170

CHAPTER 6 EXECUTION ENVIRONMENT

This chapter describes the user program execution procedure to be performed in an
environment where no operating system exists.
It is conceivable that a user program may be executed in an environment where the
operating system exists or executed while no operating system support is provided.
In an environment in which the operating system exists, it is necessary to prepare the
setup process suitable for the environment.

6.1 EXECUTION PROCESS OVERVIEW

6.2 STARTUP ROUTINE CREATION
171

CHAPTER 6 EXECUTION ENVIRONMENT
6.1 EXECUTION PROCESS OVERVIEW

In an environment where no operating system exists, it is necessary to prepare the
startup routine which initiates user program execution.

■ Execution Process Overview

The main functions to be incorporated into the startup routine are as follows:

• Environment Initialization Necessary for Program Operation

This initialization must be described by the assembler and completed before user program
execution.

• User Program Calling

The void main(void) , which is normally used as the function that the startup routine calls
in the program start process, is to be called.

• Shutdown Process

After a return from the user program is made, the shutdown process necessary for the
system is to be performed to accomplish program termination.

Figure 6.1-1 shows the relationship between the startup routine and user function calling.

Figure 6.1-1 Relationship between Startup Routine and User Function Calling

The precautions to be observed in startup routine preparation are described below.

• Stack

When the user program is executed, the stack is used for return address, argument storage
area, automatic variable area, and register saving, etc. The stack must therefore be
provided with an adequate space.

• Register

When the startup routine calls the user program, it is essential that stack pointer setup be
completed. The user program operates on the presumption that the stack top is set as the
stack pointer. Further, when the startup routine returns from the user program, the register
status is as shown in Tables 6.1-1 to 6.1-3. This is because the employed interface is the
same as for register guarantee at the time of function calling.

Environment initial setup

User program calling

Shutdown process

Startup routine

User program

Library

Main(void)
172

6.1 EXECUTION PROCESS OVERVIEW
For register guarantee, see 4.15.5, fcc907s Command Register , 4.16.5, fcc911s Command
Register , and 4.17.5, fcc896s Command Register . If the guarantee of a register is called for
by the system while the value of that register is not guaranteed by the user program, it is neces-
sary to guarantee the value by the startup routine to initiate calling.

Table 6.1-1 fcc907s Command Register Status Prevailing at Return from User Program

Table 6.1-2 fcc911s Command Register Status Prevailing at Return from User Program

Table 6.1-3 fcc896s Command Register Status Prevailing at Return from User Program

.

Register Value Guarantee at Return

A Not provided

RW0 to RW2 Provided

RW3 Provided

RW4 and WR5 Not provided

RW6 and WR7 Provided

USP (SSP) Provided

Register Value Guarantee at Return

R0 to R7 Not provided

R12 to R13 Not provided

R8 and R11 Provided

R14 (FP) Provided

R15 (SP) Provided

Register Value Guarantee at Return

A, T and EP Not provided

R0 and R1 Not provided

R2 to R7 Provided

IX Provided

SP Provided
173

CHAPTER 6 EXECUTION ENVIRONMENT
6.2 STARTUP ROUTINE CREATION

This section describes the processes necessary for startup routine creation.

■ fcc907s Command Startup Routine Creation

1.Register Initial Setup

Perform initial setup for RP, ILM, DRP, SSB, SSP, DTB, USB, and USP.The register bank
uses one or more. Please setting DTB to 0.

2.Data Area Initialization

The C language specification guarantees the initialization of external variables without the
initial value and static variables to 0. Therefore, initialize the data area to 0.

For the initialization of __far type qualified variable sections, the compiler generates the
DCLEAR sections. These sections sequentially store the start addresses of the sections to be
cleared to zero and the section sizes. Therefore, use this section when initialization to zero is
intended.

For zero-clearing a section using the DCLEAR section, see Figure 6.2-1 . The DATA and
DIRDATA sections cannot be zero-cleared by this method, so they should be zero-cleared by
another method.

3.Initialization Data Area Duplication

When incorporating constant data or program into ROM, the default data positioned in the
ROM area needs to be copied to the RAM area.

For the initialization of __far type qualified, initial value attached variable sections, the
compiler generates the DTRANS section. This section sequentially stores the initial value
storage section start address, copy destination section start address, and section size data.
Therefore, use this section when performing the initial value duplication process.

For initialization of a section using the DTRANS section, see Figure 6.2-2 . The INIT and
DIRINIT sections cannot be initialized by this method, so they should be initialized by
another method.

4.Library Initial Setup

When using the libraries, open a file for standard input/output. For details, see 8.2,
Initialization/Termination Process Required for Library Use .

5.User Program Calling

Call the user program.

6.Program Shutdown Process

The close process must be performed for opened files. The normal end and abnormal end
processes must be prepared in accordance with the system.
174

6.2 STARTUP ROUTINE CREATION
Figure 6.2-1 Example of DCLEAR Section

Figure 6.2-2 Example of DTRANS Section

■ fcc911s Command Startup Routine Creation

1.Register Initial Setup

Set the stack pointer (SP) to the top of the stack (stack top).

2.Data Area Initialization

The C language specification guarantees the initialization of external variables without the
initial value and static variables to 0. Therefore, initialize the DATA sections to 0.

3.Initialization Data Area Duplication

When incorporating constant data or program into ROM, the data positioned in the ROM area
needs to be copied to the RAM area. However, this duplication step is unnecessary if such a
data rewrite operation will not performed within the user program.

The area to be incorporated into ROM is usually positioned in the INIT section. When
incorporation into ROM is specified, the linker automatically generates the following symbols
for the specified section name.

– ROM_ Specified section name

– RAM_ Specified section name

The above symbols indicate the ROM and RAM area start addresses, respectively. An
example specifying of incorporation into ROM for the INIT section is shown below.

Start address of DATA_module name 1

DCLEAR_S →

(Predefine the following items at startup)

Size of DATA_module name 1

Start address of DATA_module name 1

Size of DATA_module name 1

Calculating by #SIZEOF (DCLEAR)

Start address of DCONST_module name 1

DTRANS_S →

(Predefine the following items at startup)

Start address of INIT_module name 1

Size of INIT_module name 1

Calculating by #SIZEOF (DTRANS)

Start address of DCONST_module name 2

Start address of INIT_module name 2

Size of INIT_module name 2
175

CHAPTER 6 EXECUTION ENVIRONMENT
% fcc911s -ro ROM=ROM Address range -ra RAM=RAM Address
range -SC @INT=ROM, INIT=RAM ...

For the details of incorporation into ROM, refer to the Linkage Kit Manual .

4.Library Initial Setup

When using the libraries, open a file for standard input/output. For details, see 8.2,
Initialization/Termination Process Required for Library Use .

5.User Program Calling

Call the user program.

6.Program Shutdown Process

The close process must be performed for opened files. The normal end and abnormal end
processes must be prepared in accordance with the system.

■ fcc896s Command Startup Routine Creation

1.Register Initial Setup

Set the stack pointer (SP) to the top of the stack (stack top).

2.Data Area Initialization

The C language specification guarantees the initialization of external variables without the
initial value and static variables to 0. Therefore, initialize the DATA and DIRDATA sections to
0.

3.Initialization Data Area Duplication

When incorporating constant data or program into ROM, the data positioned in the ROM area
needs to be copied to the RAM area. However, this duplication step is unnecessary if such a
data rewrite operation will not performed within the user program.

The area to be incorporated into ROM is usually positioned in the INIT section. When
incorporation into ROM is specified, the linker automatically generates the following symbols
for the specified section name.

– ROM_ Specified section name

– RAM_ Specified section name

The above symbols indicate the ROM and RAM area start addresses, respectively. An
example specifying of incorporation into ROM for the INIT section is shown below.

% fcc896s -ro ROM=ROM Address range -ra RAM=RAM Address
range -SC @INT=ROM, INIT=RAM ...

For the details of incorporation into ROM, refer to the Linkage Kit Manual .

4.Library Initial Setup

When using the libraries, open a file for standard input/output. For details, see 8.2,
Initialization/Termination Process Required for Library Use .

5.User Program Calling

Call the user program.

6.Program Shutdown Process

The close process must be performed for opened files. The normal end and abnormal end
processes must be prepared in accordance with the system.
176

CHAPTER 7 LIBRARY OVERVIEW

This chapter outlines the C libraries by describing the organization of files provided by
the libraries and the relationship to the system into which the libraries are
incorporated.

7.1 FILE ORGANIZATION

7.2 RELATIONSHIP TO LIBRARY INCORPORATING SYSTEM
177

CHAPTER 7 LIBRARY OVERVIEW
7.1 FILE ORGANIZATION

This section describes the files furnished by the libraries. There are eighteen library
files and fourteen header files.

■ File Types

The following types of library files and header files are provided.

• fcc907s Command Library Files

Table 7.1-1 lists the general-purpose standard library for fcc907s command. Table 7.1-2 lists
the simulator debugger low-level function library for fcc907s command.

Note*: The ramconst libraries serve programs for which the -ramconst option is specified.
For the details of -ramconst , see 3.5.3, Data Output Related Options .

Table 7.1-1 General-purpose Standard Library for fcc907s Command

File Name Memory Model

lib907s.lib lib905s.lib lib902s.lib For small model

lib907m.lib lib905m.lib lib902m.lib For medium model

lib907c.lib lib905c.lib lib902c.lib For compact model

lib907l.lib lib905l.lib lib902l.lib For large model

lib907sr.lib lib905sr.lib lib902sr.lib For small model rasconst

lib907mr.lib lib905mr.lib lib902mr.lib For medium model ramconst

Table 7.1-2 Simulator Debugger Low-level Function Library for fcc907s Command

File Name Memory Model

lib907sif.lib lib905sif.lib lib902sif.lib For small model

lib907mif.lib lib905mif.lib lib902mif.lib For medium model

lib907cif.lib lib905cif.lib lib902cif.lib For compact model

lib907lif.lib lib905lif.lib lib902lif.lib For large model

lib907srif.lib lib905srif.lib
lib902srif.lib

For small model rasconst *

lib907mrif.lib lib905mrif.lib
lib902mrif.lib

For medium model ramconst *
178

7.1 FILE ORGANIZATION
• fcc911s Command Library Files

lib911.lib (General-purpose standard library)

lib911if.lib (Simulator debugger low-level function library)

• fcc896s Command Library Files

lib896.lib (General-purpose standard library)

lib896if.lib (Simulator debugger low-level function library)

• Header Files

assert.h

ctype.h

float.h

limits.h

math.h

setjmp.h

stdarg.h

stddef.h

stdio.h

stdlib.h

string.h

The following three header files define the macros and types that are used when the standard
library calls the low-level function library.

fcntl.h

unistd.h

sys/types.h

■ Library Section Names

The fcc907s command library section names vary with the memory model. Tables 7.1-3 to 7.1-
5 show the section names used by the libraries.

Table 7.1-3 fcc907s Command Section Name

Section Type Small Medium Compact Large

Code section CODE LIBCODE CODE LIBCODE

Data section DATA DATA LIBDATA LIBDATA

Initial value of DINIT DCONST DCONST LIBDCONST LIBDCONST

Initialized section INIT INIT LIBINIT LIBINIT

Constant section CONST CONST LIBCONST LIBCONST

RAM area of CCONST CINIT CINIT
179

CHAPTER 7 LIBRARY OVERVIEW
Table 7.1-4 fcc911s Command Library Section Names

Section Type Section Name

Code section CODE

Data section DATA

Initialized section INIT

Constant section CONST

Table 7.1-5 fcc896s Command Library Section Names

Section Type Section Name

Code section CODE

Data section DATA

Initialized section INIT

Constant section CONST
180

7.2 RELATIONSHIP TO LIBRARY INCORPORATING SYSTEM
7.2 RELATIONSHIP TO LIBRARY INCORPORATING SYSTEM

This section describes the relationship between the libraries and library incorporating
system.

■ System-dependent Processes

File input/output, memory management, and program termination procedures are the processes
dependent on the system. When such system-dependent processes are needed, the libraries
issue a call as a low-level function. For the details of low-level functions, see Chapter 8,
Library Incorporation .

When using the libraries, prepare such low-level functions in accordance with the system.

■ Low-level Function (System-dependent Process) Types

The low-level function types and their roles are summarized below. For the detailed feature
descriptions of low-level functions, see 8.5, Low-level Function Specifications .

• open : Function for opening a file in the system

• close : Function for closing a file in the system

• read : Function for reading characters from a file

• write : Function for writing characters into a file

• lseek : Function for changing the file position

• isatty : Function for checking whether a file is a terminal file

• sbrk : Function for dynamically acquiring/changing the memory

• _exit : Function for normal program ending

• _abort : Function for abnormal program ending
181

CHAPTER 7 LIBRARY OVERVIEW
182

CHAPTER 8 LIBRARY INCORPORATION

This chapter describes the processes and functions to be prepared for library use.

8.1 LIBRARY INCORPORATION OVERVIEW

8.2 INITIALIZATION/TERMINATION PROCESS REQUIRED FOR
LIBRARY USE

8.3 LOW-LEVEL FUNCTION TYPES

8.4 STANDARD LIBRARY FUNCTIONS AND REQUIRED
PROCESS/LOW-LEVEL FUNCTIONS

8.5 LOW-LEVEL FUNCTION SPECIFICAITONS
183

CHAPTER 8 LIBRARY INCORPORATION
8.1 LIBRARY INCORPORATION OVERVIEW

This section outlines library incorporation.

■ Processes and Functions Required for Library Use

File input/output, memory management, and program termination procedures are the processes
dependent on the system. Therefore, when such system-dependent processes are needed,
such processes are separated from the library, and whenever such processes are needed, they
will be called as a low-level function. Further, the stream area initialization and other processes
are required for library use.

The following processes and functions must be prepared for library use.

• Stream area initialization

• Standard input/output and standard error output file open and close processes

• Low-level function creation

At the time of library incorporation, the above processes and functions must be prepared in
accordance with the system.
184

8.2 INITIALIZATION/TERMINATION PROCESS REQUIRED FOR LIBRARY USE
8.2 INITIALIZATION/TERMINATION PROCESS REQUIRED FOR
LIBRARY USE

This section describes the initialization/termination process required for library use.

■ Initialization/Termination Process

Some standard library functions require the following processes, which are detailed in this
section.

• Steam area initialization

• Standard input/output and standard error output file opening and closing

For required functions, see 8.4, Standard Library Functions and Required Processes/Low-
level Functions .

■ Stream Area Initialization

The _stream_init function initializes the stream area. This function must be called by the
startup routine to initialize the stream area.

void _stream_init(void);

■ Standard Input/Output and Standard Error Output File Opening and Closing

The standard input/output and standard error output are to be opened or closed in a program.
Therefore, the opening process must be performed before main function calling and the closing
process must be performed after main function execution.

Use the startup routine to perform the opening process before main function calling and the
closing process after main function execution.

However, the _stream_init function correlates the file numbers 0, 1, and 2 to the stdin ,
stdout , and stderr streams. Therefore, the opening process need not be performed when
the system’s standard input, standard output, and standard error output are opened as the file
numbers 0, 1, and 2.

If the system’s standard input/output and standard error output are not opened or the file
numbers do not match, perform the following process to open the system’s files.

freopen("Standard input name" , "r", stdin);

freopen("Standard output name" , "w", stdout);

freopen("Standard error output name", "w" stderr);

Error detection concerning the above process should be conducted as needed.

Further, the file names specified by the open function must be written as the standard input/
output and standard error output names.

For the closing process, use the fclose function.
185

CHAPTER 8 LIBRARY INCORPORATION
8.3 LOW-LEVEL FUNCTION TYPES

This section outlines the standard library functions and required low-level functions.
The following types of low-level functions are required for the standard library
functions.

● File opening and closing (open and close)
● Input and output relative to file (read and write)
● File position change (lseek)
● File inspection (isatty)
● Memory area dynamic acquisition (sbrk)
● Program abnormal end and normal end (_abort and _exit)

The above processes are called from the associated standard libraries to manipulate
the system’s actual files or exercise program execution control.

■ Low-level Function Types

• File Opening and Closing

When the open function is called, the fopen and all other file opening functions open the
system’s actual files.

In like manner, the fclose and all other file closing functions close the system’s actual files
when the close function is called.

• Input and Output Relative to File

The scanf , printf , and other input/output functions perform input/output operations
relative to the system’s actual files when the read and write functions are called.

• File Position Change

The fseek and other file position manipulation functions acquire or change the system’s
actual file positions when the lseek function is called.

• File Inspection

Checks whether an open file is a terminal file.

• Memory Area Dynamic Acquisition

The malloc and other memory area dynamic acquisition functions acquire or free specific
memory areas when the sbrk function is called.

• Program Abnormal End and Normal End

The abort function and exit function call the _abort function and _exit function,
respectively, as the termination process.
186

8.4 STANDARD LIBRARY FUNCTIONS AND REQUIRED PROCESS/LOW-LEVEL FUNCTIONS
8.4 STANDARD LIBRARY FUNCTIONS AND REQUIRED
PROCESS/LOW-LEVEL FUNCTIONS

This section describes the standard library functions and associated initialization/
termination processes and low-level functions.

■ Standard Library Functions and Required Process/Low-level Functions

Table 8.4-1 shows the relationship between the standard library functions that use the
initialization and termination processes and low-level functions and the associated initialization
and termination processes and low-level functions.

Note*: When the abort function and exit function are called, they perform the closing process
for open files. Therefore, the file manipulation related low-level functions (open , close ,
read , write , lseek , and sbrk) and stream area initialization and like processes are
required.

In a program that is not using a file, the _abort function can be directly called instead of
the abort function.

In a program for which function registration is not completed using the atexit function,
the _exit function can be directly called instead of the exit function while no file is
being used.

In the above instances, file manipulation related low-level function use and stream area
initialization are not required.

Table 8.4-1 Standard Library Functions and Required Processes/Low-level Functions

Standard Library Function Low-level Function Initialization/Termination Process

assert ()
abort ()*

open ()
read ()
lseek ()
sbrk ()

close ()
write ()
isatty ()
_abort ()

Stream area initialization process standard input/output and
standard error output opening and closing

All stdio.h functions open ()
read ()
lseek ()
sbrk ()

close ()
write ()
isatty ()

Stream area initialization process standard input/output and
standard error output opening and closing

calloc ()
malloc ()
realloc ()
free ()

sbrk ()

exit ()* open ()
read ()
lseek ()
sbrk ()

close ()
write ()
isatty ()
_exit ()

Stream area initialization process standard input/output and
standard error output opening and closing
187

CHAPTER 8 LIBRARY INCORPORATION
8.5 LOW-LEVEL FUNCTION SPECIFICAITONS

There are various low-level functions. The open , close , read , write , lseek , and
isatty functions provide file processing. The sbrk function provides memory area
dynamic allocation. The _exit or _abort function is used to terminate a program by
calling the exit or abort function. These low-level functions must be created to suit
the system.

■ Low-level Function Specifications

Create the low-level functions in compliance with the specifications stated in this section.
188

8.5 LOW-LEVEL FUNCTION SPECIFICAITONS
8.5.1 open Function

Create the open function in compliance with the specifications stated in this section.
#incllude <fcntl.h>

int open(char *fname, int fmode, int p);

■ open Function

[Explanation]

In the mode specified by fmode , open the file having the name specified by fname . For
fmode specifying, a combination of the following flags (logical OR) is used. The third
argument p is a permission mode specified for the file when the specified file is newly made.
Whenever standard function fopen and freopen call the open function, 0777 is passed.

– O_RDONLY:

Opens a read-only file

– O_WRONLY:

Opens a write-only file

– O_RDWR:

Opens a read/write file

The above three flags are to be exclusively specified.

– O_CREAT:

Create this flag when the specified file does not exist. If the specified file already exists,
ignore this flag.

– O_TRUNC:

If any data remains in the file, discard such data to empty the file.

– O_APPEND:

Selects the append mode for file opening

The file position prevailing at the time of opening must be set so as to indicate the end of
the file. When writing into a file placed in this mode, start writing at the end of the file
without regard to the current file position.

– O_BINARY:

Specifies a binary file

Therefore, the file opened must be treated as a binary file. Files for which this is not
specified must be treated as text files.

When the name for standard input/output and standard error output, which is determined for
system environment setup, is specified as the file name for the first argument, allocate the
standard input/output and standard error output to the file to be opened.

[Return Value]

When file opening is successfully done, the file number must be returned. If file opening is
not successfully done, on the other hand, the value -1 must be returned.
189

CHAPTER 8 LIBRARY INCORPORATION
8.5.2 close Function

Create the close function in compliance with the specifications stated in this section.
int close(int fileno);

■ close Function

[Explanation]

The closing process must be performed for the file specified by fileno .

[Return Value]

When file closing is successfully done, the value 0 must be returned. If file closing is not
successfully done, the value -1 must be returned.
190

8.5 LOW-LEVEL FUNCTION SPECIFICAITONS
8.5.3 read Function

Create the read function in compliance with the specifications stated in this section.
int read(int fileno, char *buf, int size);

■ read Function

[Explanation]

From the file specified by fileno , size -byte data must be input into the area specified by
buf .

If the text file new line character is other than \n in the system environment at this time,
perform setup with the new line character converted to \n by the read function.

[Return Value]

When the input from the file is successfully done, the input character count must be returned.
If the input from the file is not successfully done, the value -1 must be returned. If the file
ends in the middle of the input sequence, a value smaller than size can be returned as the
input character count.
191

CHAPTER 8 LIBRARY INCORPORATION
8.5.4 write Function

Create the write function in compliance with the specifications stated in this section.
int write (int fileno, char *buf, int size);

■ write Function

[Explanation]

To the file specified by fileno , size -byte data in the area specified by buf must be
outputted. If the file is opened in the append mode, the output must always be appended to
the end of the file. If the text file new line character is other than \n in the system
environment at this time, the output must be generated with the system environment new
line character converted to \n by the write function.

[Return Value]

When the output to the file is successfully done, the output character count must be
returned. If it is not successfully done, the value -1 must be returned.
192

8.5 LOW-LEVEL FUNCTION SPECIFICAITONS
8.5.5 lseek Function

Create the lseek function in compliance with the specifications stated in this section.
#include <unistd.h>

long int lseek(int fileno, off_t offset, int whence);

■ lseek Function

[Explanation]

The file specified by fileno must be moved to a position that is offset bytes away from
the position specified by whence . The file position is determined according to the byte count
from the beginning of the file. The following three positions are to be specified by whence .

– SEEK_CUR:

Adds the offset value to the current file position

– SEEK_END:

Adds the offset value to the end of the file

– SEEK_SET:

Ass the offset value to the beginning of the file

[Return Value]

When the file position is successfully changed, the new file position must be returned. If it is
not successfully changed, -1L must be returned.
193

CHAPTER 8 LIBRARY INCORPORATION
8.5.6 isatty Function

Create the isatty function in compliance with the specifications stated in this
section.

int isatty(int fileno);

■ isatty Function

[Explanation]

The file specified by fileno is to be checked to see whether it is a terminal file. When the
file is a terminal file, true must be returned. If not, false must be returned.

[Return Value]

When the specified file is a terminal file, true must be returned. If not, false must be
returned.
194

8.5 LOW-LEVEL FUNCTION SPECIFICAITONS
8.5.7 sbrk Function

Create the sbrk function in compliance with the specifications stated in this section.
char *sbrk(INT SIZE);

■ sbrk Function

[Explanation]

The existing area must be enlarged by size bytes. If size is a negative quantity, the area
must be reduced.

If the sbrk function has not been called, furnish a size -byte area.

The area varies as shown below with sbrk function calling.

Return value = *1 (the end address of the area prevailing before the area change) + 1

Figure 8.5-1 Area Change Brought About by sbrk Function Calling

[Return Value]

When the area change is successfully made, the value to be returned must be determined
by adding the value 1 to the end address of the area prevailing before the area change. If
the sbrk function has not been called, the start address of the acquired area must be
returned. If the area change is not successfully made, the value (char)-1 must be
returned.

Before change

After a change
effected by a

plus size value

size bytes

size bytes

Existing area

After a change
effected by a

minus size value

Low

*1→

How
195

CHAPTER 8 LIBRARY INCORPORATION
8.5.8 _exit Function

Create the _exit function in compliance with the specifications stated in this section.
#include <stdlib.h>

void _exit(int status);

■ _exit Function

[Explanation]

The _exit function must bring the program to a normal end. When the status value is 0
or in the case of EXIT_SUCCESS, the successful end state must be returned to the system
environment. In the case of EXIT_FAILURE , the unsuccessful end state must be returned
to the system environment.

[Return Value]

The _exit function does not return to the caller.
196

8.5 LOW-LEVEL FUNCTION SPECIFICAITONS
8.5.9 _abort Function

Create the _abort function in compliance with the specifications stated in this
section.

void _abort(void);

■ _abort Function

[Explanation]

The _abort function must bring the program to an abnormal end.

[Return Value]

The _abort function does not return to the caller.
197

CHAPTER 8 LIBRARY INCORPORATION
198

CHAPTER 9 COMPILER-DEPENDENT SPECIFICATIONS

This chapter describes the specifications that vary with the compiler. The descriptions
set forth in this chapter relate to the JIS requirements which are standardized on the
basis of the ANSI standard.

9.1 COMPILER-DEPENDENT LANGUAGE SPECIFICAITON
DIFFERENTIALS

9.2 FLOATING-POINT DATA FORMAT AND EXPRESSIBLE VALUE
RANGE
199

CHAPTER 9 COMPILER-DEPENDENT SPECIFICATIONS
9.1 COMPILER-DEPENDENT LANGUAGE SPECIFICAITON
DIFFERENTIALS

Table 9.1-1 lists the compiler-dependent language specification differentials.

■ Compiler-dependent Language Specification Differentials

Table 9.1-1 Compiler-dependent Language Specification Differentials

Specification Differentials Associated JIS Requirements Compiler

Japanese language process support and
code system

5.2.1 Character Set
6.1.2 Identifier

No support
EUC and SJIS entries can be made
only in the comment.

Recognized character count of an iden-
tifier with an external binding

6.1.2 Identifier 30 Leasing characters

Differentiation between upper- and
lower-case alphabetical characters of
an identifier with an external binding

6.1.2 Identifier Treated as different characters

Character set element expression code
system

6.1.3 Constant ASCII code

Char type treatment and expressible value range 6.2.1.1 Character Type and
Integer Type

Unsigned*1

0 to 255

Floating-point data formats and sizes
float type
double/long double type

6.1.2.5 Type IEEE type*2

4 bytes
8 bytes

Whether or not to treat the start bit as signed bit when
following types specified as bit field

char, short int, int, and long int type

6.5.2.1 Structure Specifier and
Union Specifier

Not treated as a sign*1

Types that can be specified as bit field 6.5.2.1 Structure Specifier and
Union Specifier

char type
signed char type
unsigned char type
short int type
unsigned short int type
int type
unsigned int type
long int type
unsigned long int type

Structure or union type member boundary alignment
value

char type
signed char type
unsigned char type
short int type
unsigned short int type
int type
unsigned int type
long int type
unsigned long int type
float type
double type
long double type
Pointer type

6.5.2.1 Structure Specifier and
Union Specifier

fcc907s command/fcc911s com-
mand

1 byte / 1 byte
1 byte / 1 byte
1 byte / 1 byte
2 byte / 2 byte
2 byte / 2 byte
2 byte / 4 byte
2 byte / 4 byte
2 byte / 4 byte
2 byte / 4 byte
2 byte / 4 byte
2 byte / 4 byte
2 byte / 4 byte
2 byte / 4 byte
200

9.1 COMPILER-DEPENDENT LANGUAGE SPECIFICAITON DIFFERENTIALS
*1:Alterable through option use.

*2:See 9.2, Floating-point Data Format and Expressible Value Range .

*3:The other registers can be used when they are saved and recovered by the user.

Character constant expression code system for pre-
processor

6.8.1 Conditional Acquisition ASCII code

Registers that can be specified within asm statement fcc911s:R0-R3,R12 and R13*3

fcc907s,fcc896s:A, AL, and AH*3

ANSI-compliant standard library function support Refer to the volume entitled Librar-
ies .

Table 9.1-1 Compiler-dependent Language Specification Differentials (Continued)

Specification Differentials Associated JIS Requirements Compiler
201

CHAPTER 9 COMPILER-DEPENDENT SPECIFICATIONS
9.2 FLOATING-POINT DATA FORMAT AND EXPRESSIBLE
VALUE RANGE

Table 9.2-1 shows the floating-point data format and expressible value range.

■ Floating-point Data Format and Expressible Value Range

Table 9.2-1 Floating-point Data Format and Expressible Value Range

Floating-point Data Format Expressible Value Range

float type The exponent part is a value between 2 – 126 and 2 + 127.
The fractional portion of the mantissa (the integer portion is normal-
ized to 1) is binary and has 24-digit accuracy.

double type The exponent part is a value between 2 – 1022 and 2 + 1023.
The fractional part of the mantissa (the integer part is normalized to
1) is binary and has 53-digit accuracy.

long double type The exponent part is value between 2 – 1022 and 2 + 1023.
The fractional part of the mantissa (the integer part is normalized to
1) is binary and has 53-digit accuracy.
202

CHAPTER 10 SIMULATOR DEBUGGER LOW-LEVEL
FUNCTION LIBRARY

This chapter describes how to use the simulator debugger low-level function library.
The simulator debugger low-level function library is a library of the low-level functions
which are necessary when the standard library is used with the simulator debugger.

10.1 LOW-LEVEL FUNCTION LIBRARY OVERVIEW

10.2 fcc911s COMMAND LOW-LEVEL FUNCITON LIBRARY USE

10.3 fcc907s COMMAND LOW-LEVEL FUNCITON LIBRARY USE

10.4 fcc896s COMMAND LOW-LEVEL FUNCITON LIBRARY USE

10.5 LOW-LEVEL FUNC. FUNCITON

10.6 LOW-LEVEL FUNCITON LIBRARY CHANGE
203

CHAPTER 10 SIMULATOR DEBUGGER LOW-LEVEL FUNCTION LIBRARY
10.1 LOW-LEVEL FUNCTION LIBRARY OVERVIEW

This section outlines the low-level function library.

■■■■ Low-level Function Library Overview

The low-level function library offers the functions that are necessary when the standard library is
used with the simulator debugger. The main functions are as follows.

• File manipulation functions based on I/O port simulation (open , close , read , write ,
lseek , and isatty)

• Dynamic memory allocation function (sbrk)

In the simulator debugger, the program executed cannot terminate its own execution.
Therefore, prepare the _abort and _exit functions.

■■■■ File System Overview

The low-level function library uses the I/O port simulation function of the simulator debugger to
carry out standard input/output operations and input/output operations relative to files. These
operations are completed by performing input/output operations relative to one I/O port area
which is regarded as one file.

When the open function is called, it allocates a 1-byte area of the I/O port simulation area (I/O
section) defined by the low-level function library, and returns as the file number the offset from
the beginning of the allocated area.

The read function and write function perform input/output operations relative to the 1-byte
area allocated by the open function.

Input/output operations can be performed relative to the standard input/output and files when
such standard input/output and files are allocated to the above-mentioned area prior to program
execution using simulator debugger commands set inport and set outport .

The close function frees an already allocated area to render it reusable.

Since the file position cannot be changed in the simulator debugger, the value -1 is always
returned for the lseek function.

■■■■ Area Management

An already acquired external variable area is used as the area returned by the sbrk function.

When the sbrk function is called, area allocation begins with the lowest address of the area.
204

10.2 fcc911s COMMAND LOW-LEVEL FUNCITON LIBRARY USE
10.2 fcc911s COMMAND LOW-LEVEL FUNCITON LIBRARY USE

This section describes the load module creation and simulator debugger setup
procedures to be performed for low-level function library use.

■■■■ Initialization

No initialization is required except for _steam_init function calling.

When creating the startup routine in accordance with the system, call the _stream_init
function prior to main function calling.

■■■■ Load Module Creation

After completing creation of the necessary program, compile and link all the necessary modules.
No special option specifying is needed.

The following libraries and startup routine are linked.

• startup.obj

• Standard library (lib911.lib)

• Low-level function library (lib911if.lib)

The sections are arranged at the following addresses.

• IOPORT: Address 0

• STACK: Address 0x100000

• Other : Address 0x1000

To change the IOPORT section arrangement, specify the -sc IOPORT=address option at
compiling. Describe the section arrangement address at the address position.

■■■■ Simulator Debugger Setup

[Setup for Standard Input/Output Use]

set inport/ascii IOPORT, 0xff,$TERMINAL

set outport/ascii IOPORT+1, 0xff,$TERMINAL

Enter the address where the IOPORT section was positioned at linking in the above IOPORT
position. If the -sc option is not specified at linking, the following results.

set inport/ascii 0, 0xff,$TERMINAL

set outport/ascii 1, 0xff,$TERMINAL

Since the first three areas of the IOPORT section are used for standard input, standard output,
and standard error output, the other files are allocated to the fourth and subsequent areas (the
offset from the beginning of the IOPORT section is 3).

In other words, allocation is performed sequentially in the order of file opening (offset 3, offset 4,
etc.). Therefore, perform setup accordingly using the set inport and set outport
commands.
205

CHAPTER 10 SIMULATOR DEBUGGER LOW-LEVEL FUNCTION LIBRARY
To open a.doc as the input file and then open b.doc as the output file, setup as shown below.

set inport/ascii IOPORT+3,h’ff,"a.doc"

set outport/ascii IOPORT+4,h’ff,"b.doc"

■■■■ Example

Create a program that displays the character string "Hello!! " and initiate execution with the
simulator debugger.

main()

{

 printf("Hello!!"n");

}

Create a C-source file named test.c as shown above.

Compile using the following command.

% fcc911s -cpu MB91F154 test.c

At completion of the preceding step, test.abs is created. Execute the created file with the
simulator debugger.

After startup, input following commands.

> set inport/ascii h’0,h’ff,$TERMINAL

> set outport/ascii h’1,h’ff,$TERMINAL

> go , end

Since standard input is not involved in the above example, the set inport command can be
omitted.
206

10.3 fcc907s COMMAND LOW-LEVEL FUNCITON LIBRARY USE
10.3 fcc907s COMMAND LOW-LEVEL FUNCITON LIBRARY USE

This section describes the load module creation and simulator debugger setup
procedures to be performed for low-level function library use.

■■■■ Initialization

No initialization is required except for _steam_init function calling.

When creating the startup routine in accordance with the system, call the _stream_init
function prior to main function calling.

■■■■ Load Module Creation

After completing creation of the necessary program, compile and link all the necessary modules.

Link the following libraries in accordance with the memory model. Select a low-level library in
accordance with the host that starts the simulator debugger.

■■■■ Simulator Debugger Setup

Setup for standard input/output use is as follows.

[Example of Debugger Setup]

set inport/ascii 0, 0xff,$TERMINAL

set outport/ascii 1, 0xff,$TERMINAL

Table 0.3-1 Libraries to be Linked for Load Module Creation

Memory Model ramconst Standard Library Low-level Library

Small model

Specified
lib907s.lib
lib905s.lib
lib902s.lib

lib907sif.lib
lib905sif.lib
lib902sif.lib

Not specified
lib907sr.lib
lib905sr.lib
lib902sr.lib

lib907srif.lib
lib905srif.lib
lib902srif.lib

Medium model

Specified
lib907m.lib
lib905m.lib
lib902m.lib

lib907mif.lib
lib905mif.lib
lib902mif.lib

Not specified
lib907mr.lib
lib905mr.lib
lib902mr.lib

lib907mrif.lib
lib905mrif.lib
lib902mrif.lib

Compact model Specified
lib907c.lib
lib905c.lib
lib902c.lib

lib907cif.lib
lib905cif.lib
lib902cif.lib

Large model Specified
lib907l.lib
lib905l.lib
lib902l.lib

lib907lif.lib
lib905lif.lib
lib902lif.lib
207

CHAPTER 10 SIMULATOR DEBUGGER LOW-LEVEL FUNCTION LIBRARY
Since the first three areas of the I/O section are used for standard input, standard output, and
standard error output, the other files are allocated to the fourth and subsequent areas (the offset
from the beginning of the I/O section is 3).

In other words, allocation is performed sequentially in the order of file opening (offset 3, offset 4,
etc.). Therefore, perform setup accordingly using the set inport and set outport
commands.

To open a.doc as the input file and then open b.doc as the output file, setup as shown below.

set inport/ascii 3,h’ff,"a.doc"

set outport/ascii 4,h’ff,"b.doc"

■■■■ Example

Create a program that displays the character string "Hello!! " using the small model, and
initiate execution with the simulator debugger

main()

{

 printf("Hello!!"n");

}

Create a C-source file named test.c as shown above.

Compile using the following command. Setup the corresponding directory for LIBTOOL.

fcc907s test.c -model SMALL -cpu MB90F553A

flink907s LIBTOOL/start905s.obj test.obj -L LIBTOOL

-l lib905s.lib -l lib905sif.lib

-O test.abs -cpu MB90F553A

At completion of the preceding step, test.abs is created. Execute the created file with the
simulator debugger.

After startup, input following commands. end is a symbol defined within the startup routine.
Create the startup routine object as the one with the debug information.

> set inport/ascii h’0,h’ff,$TERMINAL

> set outport/ascii h’1,h’ff,$TERMINAL

> go , end

Since standard input is not involved in the above example, the set inport command can be
omitted.
208

10.4 fcc896s COMMAND LOW-LEVEL FUNCITON LIBRARY USE
10.4 fcc896s COMMAND LOW-LEVEL FUNCITON LIBRARY USE

This section describes the load module creation for low-level function library use.

■■■■ About the low-level library for the simulator debugger in the fcc896s command

In the library of the fcc896s command, the file operation function of the low level library for the
simulator debugger in the fcc896s command is not supported. Therefore, only the sbrk function
is registered in low level library lib896if.lib for the simulator debugger.

■■■■ Load Module Creation

Please compile and link all necessary modules after making a necessary program. It is not
necessary to specify a special option. The following library and the startup routine are linked.

• startup.obj

• Standard library (lib896.lib)

• Low-level function library (lib896if.lib)

■■■■ Example

The program which secures the area in 100 bytes by the malloc function is made and executes
the simulator debugger.

#include <stdlib.h>

main()

{

void *ptr;

ptr = malloc(100);

}

Create a C-source file named test.c as shown above.

Compile using the following command. Setup the corresponding directory for LIBTOOL.

fcc896s test.c -cpu MB89P935B -L LIBTOOL -l fcc896.lib

-l fcc896if.lib

At completion of the preceding step, test.abs is created. Execute the created file with the
simulator debugger.

After startup, input following commands. end is a symbol defined within the startup routine.
Create the startup routine object as the one with the debug information.

> go , end
209

CHAPTER 10 SIMULATOR DEBUGGER LOW-LEVEL FUNCTION LIBRARY
10.5 LOW-LEVEL FUNC. FUNCITON

This section describes the function specific to the simulator debugger low-level
functions.

■■■■ Special I/O Port

As far as the low-level functions are concerned, the first three bytes of the I/O section are
specified to function as the standard input, standard output, and standard error output,
respectively. For such bytes, files No. 1, 2, and 3 are allocated. They are initialized to the
opened state.

Tables 10.4-1 and 10.4-2 show the predefined I/O port.

The input from the standard input (file No. 0) is output to the standard output (file No. 1). The
input to the standard input (file No. 0) is discontinued if the new line character \n is entered.
However, when the input is fed from some other port, the input continues until the required
number of characters are read.

■■■■ open Function

The open function finds an unused I/O port area and then returns as the file number the area’s
offset from the beginning of the I/O section. In such an instance, the file name and open mode
are not to be specified. Even if files are opened using the same file name, differing file numbers
are assigned to them.

Files No. 0, 1, and 2 are initialized to the opened state. Therefore, the open function begins
allocation with file No. 3 unless files 0, 1, and 2 are subjected to the close process.

Table 0.5-1 fcc907s Command Predefined I/O Port

Address File Number File Type

0 0 Standard input

1 1 Standard output

2 2 Standard error output

Table 0.5-2 fcc911s Command Predefined I/O Port

Address File Number File Type

IOPORT 0 Standard input

IOPORT + 1 1 Standard output

IOPORT + 2 2 Standard error output
210

10.5 LOW-LEVEL FUNC. FUNCITON
■ read Function

The read function reads data from the I/O port area specified by the address which is
determined by adding the specified file number to the I/O section start address.

The input from file No. 0 is treated as a line input. When the new line character \n is entered,
the read function terminates even if the required character count is not reached. Further, this
input is output to the standard output (file No. 1). The input from a file numbered other than 0 is
treated as a block input. Reading continues until the required character count is reached.

■■■■ write Function

The write function writes data to the I/O port area specified by the address which is
determined by adding the specified file number to the I/O section start address. Unlike the
input, the operation does not vary with the I/O port area address.

■■■■ lseek Function

The file position cannot be specified in the simulator debugger. Therefore, the value -1, which
indicates an unsuccessful file position change, is always returned.

■■■■ isatty Function

In the case of file No. 1, 2, or 3, true is returned. In the other cases, false is returned.

■■■■ close Function

The close funciton releases the port related to the specified file number.

■■■■ sbrk Function

The simulator debugger does not provide a means of dynamic memory allocation. Therefore,
the sbrk function acquires a fixed area and uses it.

To change the area or its size, create an alternative function and substitute it for the sbrk
function with a librarian. For details, see 10.5, Low-level Function Library Change .
211

CHAPTER 10 SIMULATOR DEBUGGER LOW-LEVEL FUNCTION LIBRARY
10.6 LOW-LEVEL FUNCITON LIBRARY CHANGE

This section describes how to change the dynamic allocation area (heap).

■■■■ fcc907s Command Dynamic Allocation Area Change

Locate the following line in the sbrk.c source program list. Change the value in this line to the
dynamic allocation area size (in bytes).

#define HEEP_SIZE 16*1024

Use the following commands to compile and update the library. At compiling, specify the
section name shown in Table 7.1-1.

• For Small Model:

% fcc907s -O sbrk.c -model SMALL -cpu MB90F553A

% flib907s -r sbrk.obj lib905sif.lib -cpu MB90F553A

• For Large Model:

% fcc907s -O sbrk.c -model LARGE -s FAR_CSEG=CLIB

-s FAR_DCONST=DLCONST -s FAR_DINIT=DLINIT -s FAR_DVAR=DLVAR

-s FAR_CCONST+CLCONST -cpu MB90F553A

% flib907s -r sbrk.obj lib905lif.lib -cpu MB90F553A

■■■■ fcc907s Command sbrk.c Source Program List

The source program required for changing the dynamic area is shown below. The file name
must be sbrk.c .

#define HEEP_SIZE 16*1024

static long brk_siz = 0;

static char _heep[HEEP_SIZE];

#define _heep_size HEEP_SIZE

extern char *sbrk(int size)

{

 if (brk_siz + size > _heep_size || brk_siz + size < 0)

 return((char*)-1);

 brk_siz += size;

 return(_heep + brk_siz - size);

}

212

10.6 LOW-LEVEL FUNCITON LIBRARY CHANGE
■ fcc911s Command Dynamic Allocation Area Change

Locate the following line in the sbrk.c source program list. Change the value in this line to the
dynamic allocation area size (in bytes).

#define HEEP SIZE 16*1024

Use the following commands to compile and update the library.

% fcc911s -O -c sbrk.c

% flib911s -r sbrk.obj lib911if.lib

When the above change is made, the dynamic allocation area is secured as the sbrk.c static
external variable without being positioned at the beginning of the stack.

■■■■ fcc911s Command sbrk.c Source Program List

The source program required for changing the dynamic area is shown below. The file name
must be sbrk.c .

#define HEEP_SIZE 16*1024

static long brk_siz = 0;

#if HEEP_SIZE

typedef int _heep_t;

#define ROUNDUP(s) (((s)+sizeof(_heep_t)-1) & ~(sizeof(_heep_t)-1))

static _heep_t _heep[ROUNDUP(HEEP_SIZE)/sizeof(_heep_t)];

#define _heep_size ROUNDUP(HEEP_SIZE)

#else

extern char *_heep;

extern long _heep_size;

#endif

extern char *sbrk(int size)

{

 if (brk_siz + size > _heep_size || brk_siz + size < 0)

 return ((char *)-1);

 brk_siz += size;

 return ((char *)_heep + brk_siz - size);

}

213

CHAPTER 10 SIMULATOR DEBUGGER LOW-LEVEL FUNCTION LIBRARY
214

APPENDIX

The Appendix gives a list of types, macros, v ariables, and functions provided by the
library and the operations specific to the libraries(A,B). Notes when FFMC-16LX CPU is
used are described(C).

Appendix A List of Type, Macro, Variable, and Function

Appendix B Operation Specific to Libraries

Appendix C Notes of Signed Division Instruction of FFMC-16LX CPU
215

APPENDIX
Appendix A LIST OF TYPE, MACRO, VARIABLE, AND
FUNCITON

This section lists the types, macros, v ariables, and functions provided by the libraries.

■■■■ assert.h

• Function

assert

■■■■ ctype.h

• Macros

isalnum isalpha iscntrl isdigit isgraph

islower isprint ispunct isspace isupper

isxdigit tolower toupper

■■■■ errno.h

• Macros

EDOM ERANGE

• Variable

errno

■■■■ float.h

FLT_RADIX FLT_ROUNDS FLT_MANT_DIGT DBL_MANT_DIG

LDBL_MANT_DIG FLT_DIG DBL_DIG LDBL_DIG

FLT_MIN_EXP DBL_MIN_EXP LDBL_MIN_EXP FLT_MIN_10_EXP

DBL_MIN_10_EXP LDBL_MIN_10_EXP FLT_MAX_EXP DBL_MAX_EXP

LDBL_MAX_EXP FLT_MAX_10_EXP DBL_MAX_10_EXP LDBL_MAX_10_EXP

FLT_MAX DBL_MAX LDBL_MAX FLT_EPSILON

DBL_EPSILON LDBL_EPSILON FLT_MIN DBL_MIN

LDBL_MIN

■■■■ limits.h

MB_LEN_MAX CHAR_BIT SCHAR_MIN SCHAR_MAX UCHAR_MAX

CHAR_MIN CHAR_MAX INT_MIN INT_MAX UINT_MAX

SHRT_MIN SHRT_MAX USHRT_MAX LOGN_MIN LONG_MAX

ULONG_MAX
216

Appendix A LIST OF TYPE, MACRO, VARIABLE, AND FUNCITON
■■■■ math.h

• Macros

HUGE_VAL EDOM ERANGE

• Function

acos asin atan atan2 cos

sin tan cosh sinh tanh

exp frexp ldexp log log10

modf pow sqrt ceil fabs

floor fmod

■■■■ stdarg.h

• Type

va_list

• Macros

va_start va_arg va_end

■■■■ stddef.h

• Type

ptrdiff_t size_t

• Macros

NULL offsetof

■■■■ stdio.h(for the fcc911s command and the fcc907s command)

• Type

ptrdiff_t size_t FILE fpos_t

• Macros

NULL EOF SEEK_SET SEEK_CUR SEEK_END

_IONBF _IOLBF _IOFBF BUFSIZ stdin

stdoout stderr putchar putc getchar

getc offsetof

• Function

putchar putc getchar getc fclose

fflush fopen freopen setbuf setvbut

fprintf fscanf printf scanf sprintf

sscanf vfprintf vprintf vsprintf fgetc

fgets fputc fputs gets puts

ungetc fred fwrite fgetpos fseek

fsetpos ftell rewind clearerr feof

ferror
217

APPENDIX
■■■■ stdio.h(for the fcc896s command)

• Macros

BUFSIZ

• Function

sprintf sscanf vsprintf

■■■■ stdlib.h

• Type

ptrdiff_t size_t div_t ldiv_t

• Macros

NULL offsetof EXIT_FAILUREEXIT_SUCCESSRAND_MAX

• Function

atof atoi atol strtod strtol

strtoul rand srand calloc free

malloc realloc abort atexit exit

bsearch qsort abs div labs

ldiv

■■■■ string.h

• Type

ptrdiff_t size_t

• Macros

NULL offsetof

• Function

memcppy memmove strcpy strncpy strcat

strncat memcmp strcmp strncmp memchr

strchr strcspn strpbrk strrchr strspn

strstr strtok memset strlen

■■■■ fcntl.h

• Macros

O_RDONLY O_WRONLY O_RDWR 0_APPEND O_CREAT

O_TRUNC O_BINARY

■■■■ unistd.h

• Macros

SEEK_SET SEEK_CUR SEEK_END
218

Appendix A LIST OF TYPE, MACRO, VARIABLE, AND FUNCITON
■■■■ setjmp.h

• Type

jmp_buf

• Macros

setjmp

• Function

longjmp

■■■■ sys/types.hj

• Type

off_t
219

APPENDIX
220

Appendix B OPERATIONS SPECIFIC TO LIBRARIES
Appendix B OPERATIONS SPECIFIC TO LIBRARIES

This section describes the operations specific to the libraries.

■■■■ Operations Specific to Libraries

(1) Diagnostic information printed out by the assert function and assert function
termination operation

[Diagnostic Information]

< Program Diagnosis *** information of fail expression >

 file : File name expanded by __FILE__

 line : Line number expanded by __LINE__

 expression : Expression

[Termination Operation]

Same as the abort function calling.

(2) Inspection character sets for isalnum, isalpha, iscntrl, islower, isprint, and isupper
functions

– isalnum : 0 to 9, a to z , or A to Z

– isalpha : a to z or A to Z

– iscntrl : \100 to \037 , or \177

– islower : a to z

– isprint : \040 to \176

– isupper : A to Z

(3) Mathematical function return value upon definition area error occurrence

– qNaN

(4) Whether the mathematical function sets up the macro ERANGE value for errno upon
underflow condition occurrence

– ERANGE

– The detectable result value must be +0 or –0.

– The undetectable result value is undefined. It depends on the function.

(5) When the second actual argument for the fmod function is 0, the definition area error
must occur or the value 0 must be returned

The definition area error must occur.

(6) File buffering characteristics

[Input File Buffering Characteristics]

IOLBF , IOFBF: Full buffering.

IONBF: No buffering.
221

APPENDIX
[Output File Buffering Characteristics]

IOFBF: Full buffering.

IOLBF : Line buffering.

IONBF: No buffering.

[Full Buffering]

Buffering is conducted using all the preset buffer areas.

When the input function is called at the time of input from a file, any data remaining in the
buffer is returned as the input from the file. If the buffer is emptied of data or does not
have sufficient data, the input from the file is received until the buffer is filled up and then
only the necessary amount is returned as the input.

At the time of output to a file, the output function writes into the buffer instead of
outputting into the file. When the buffer is filled up by the write operation, the buffer
outputs its entire contents to the file.

[Line Buffering]

Buffering is conducted for each output line.

[No Buffering]

File input/output is implemented in compliance with the input/output request made by
input/output function calling.

Unlike the other buffering operations, no data will be saved into the memory.

(7) Pointer size for %p format conversion

The fcc907s command handles the small model and medium model using 16 bits, and the
large model and compact model using 32 bits.

(8) %p format conversion output format for fprintf function

– Small Model/Medium Model:

If the digit count is less than 4 in cases where the 4-digit hexadecimal notation is
employed, leading 0s are added as needed. The alphabetical characters used are
uppercased.

– Large Model/Compact Model:

Same as for the small model except that the digit count is 8.

Note: The fcc911s command handles using 32 bits.

(9) Expansion of format conversion specification in fprintf, printf, sprintf, vfprintf, vprintf
and vsprintf function of the fcc907s command

Expansion of %s and %n format conversion specification

– Small Model/Medium Model:

It can be ordered that it be a pointer from which __far is qualified to the corresponding
argument by specifying ’F’.

[Example]

#include <stdio.h>

__far char a[] = "abc";

main() { printf("%-16Fs\n", a); }

– Large Model/Compact Model:
222

Appendix B OPERATIONS SPECIFIC TO LIBRARIES
It can be ordered that it be a pointer from which __near is qualified to the corresponding
argument by specifying ’N’.

[Example]

#include <stdio.h>

__near char a[] = "abc";

main() { printf("%-16Ns\n", a); }

Expansion of %p format conversion specification

– Small Model/Medium Model:

It can be ordered that it be a pointer from which __far is qualified to the corresponding
argument by specifying ’l’.

[Example]

#include <stdio.h>

__far char a[] = "abc";

main() { printf("%lp\n", a); }

– Large Model/Compact Model:

It can be ordered that it be a pointer from which __near is qualified to the corresponding
argument by specifying ’h’.

[Example]

#include <stdio.h>

__near char a[] = "abc";

main() { printf("%hp\n", a); }

(10)%p format conversion input format for fscanf function

The fcc907s command adds leading 0s if the digit count is less than 4 (small model) or 8
(large model) when using upper- or lower-case alphabetic character-based hexadecimal
notation. If the digit count is less than 4 (small model) or 8 (large model), leading 0s are
added as needed. If the specified count of digits is exceeded, only the lower-order portion is
valid.

The fcc911s command adds leading 0s if the digit count is less than 8 when using the upper-
or lower-case alphabetic character-based hexadecimal notation. If the specified digit count
(8 digits) is exceeded, only the lower-order part is valid.

(11) Expansion of format conversion specification in fscanf, scanf and sscanf function of
the fcc907s command

– Small Model/Medium Model:

’F’ can be specified for all the format conversion specification except %%. It is shown that
this ’F’ is a pointer from which __far is qualified to the corresponding argument.

[Example]

#include <stdio.h>

__far int a;

int b;

main() { scanf("%Fd %d\n", &a, &b); }

– Large Model/Compact Model:

’N’ can be specified for all the format conversion specification except %%. It is shown that
this ’N’ is a pointer from which __near is qualified to the corresponding argument.
223

APPENDIX
[Example]

#include <stdio.h>

__near int a;

int b;

main() { scanf("%Nd %d\n", &a, &b); }

(12) interpretation of a single "-" character appearing at a position other than the start
and end of the scan-list relative to %[format conversion

A string of consecutive characters beginning with the character placed to the left of "-" and
ending with the character placed to the right of "-" is handled.

[Example]

%[a-c] is equal to %[abc].

(13) abort function operation relative to an open file

Closing takes place after flushing of all streams.

(14) Status returned by the exit function when the actual argument value is other than 0,
EXIT_SUCCESS, and EXIT_FAILURE

The status to be returned is the same as for EXIT FAILURE.

(15) Floating-point number limit values

– FLT_MAX 7F7F FFFF

– DBL_MAX 7FEF FFFF FFFF FFFF

– BLT_EPSILON 3400 0000

– DBL_EPSILON 3CB0 0000 0000 0000

– FLT_MIN 0080 0000

– DBL_MIN 0010 0000 0000 0000

(16) Limitations on setjmp function

The interrupt environment is not supported by the libraries. Therefore, the interrupt handler
cannot achieve environment saving and the return to the interrupt handler cannot be made.

(17) Limitations on va_start macro

Do not use the following variable definitions for the fcc896s command va_start macro
second argument.

– char type, unsigned char type, short type, or unsigned short type (however, the
pointer type for these types can be used.)

– Type having the register storage area class

– Function type

– Array type

– Type different from the type derived from existing actual argument extension

Do not use the following variable definitions for the fcc907s command va_start macro
second argument.

– char type or unsigned char type (however, the pointer type for these types can be
used.)

– Type having the register storage area class

– Function type
224

Appendix B OPERATIONS SPECIFIC TO LIBRARIES
– Array type

– Structure type

– Union type

– Type different from the type derived from existing actual argument extension

Do not use the following variable definitions for the fcc911s command va_start macro
second argument.

– char type, unsigned char type, short type, or unsigned short type (however, the
pointer type for these types can be used.)

– Type having the register storage area class

– Function type

– Array type

– Type different from the type derived from existing actual argument extension

(18)File types

Files that can be handled by the libraries are divided into two types; text files and binary files.
The libraries treat the text files and binary files in the same manner except for the difference
in the second argument of the open function called upon file opening.

When a binary file is specified, O_BINARY is added to the second argument of the open
function. For the open function argument, see 8.5.1, open Function .

(19) div_t type and ldiv_t type

div_t:struct {

 int quot;

 int rem;

 };

ldiv_t:struct {

 long int quot;

 long int rem;

 };

(20) abort function operations

When the abort function is called, all the open output streams are flushed and then all the
open streams are closed. Finally, the _abort function is called.

(21)Maximum count of functions that can be registered by the atexit function

Up to 20 functions can be registered.

(22)exit function operations

When the exit function is called, all the functions registered by the atexit function are
called in the reverse order of registration, all the open output streams are flushed, and then
all the open streams are closed.

Finally, the _exit function is called with the status value, which is delivered as the
argument, retained. When the status value is 0 or EXIT_SUCCESS, it indicates successful
termination. When the status value is EXIT_FAILURE , it indicates the unsuccessful
termination.
225

APPENDIX
226

Appendix C NOTES OF SIGNED DIVISION INSTRUCTION OF FFMC-16LX CPU
Appendix C NOTES OF SIGNED DIVISION
INSTRUCTION OF FFMC-16LX CPU

Notes when FFMC-16LX CPU is used are described.

■■■■ Devices

All devices (Eva, OTP, FLASH, Mask) of FFMC-16LX series.:

MB90520/A,MB90540,MB90550A,MB90560,MB90570/A,MB90580/B,MB90590,MB90595.

All devices of QCM16LX core.

■■■■ Notes in use

Normally remainder of the execution result of the signed division instruction ("DIV A,Ri" and
"DIVW A,RWi") is set bank "00" area. But above devices set remainder bank (DTB/ADB/USB/
SSB) area. When you use the signed division instruction, remainder is set at a bank area of the
DTB/ADB/USB/SSB registers value.

Details are shown as follows.

❍❍❍❍ Notes in use of "DIV A,Ri" and "DIVW A,RWi" instructions

The remainder of the execution result of the signed division instruction ("DIV A,Ri" and "DIVW
A,RWi") is stored in the address (bit0-15) which corresponds to the register of the instruction
operand of bank area (bit16-23) according to an undermentioned table. Therefore, please adjust
the corresponding bank register to "00" and use the "DIV A,Ri" and "DIVW A,RWi" instructions.

*1 select by S bit of CCR register

*2 S bit of CCR register is 0

Instruction Bank Register Address where the remainder is stored

DIV A,R0
DIV A,R1
DIV A,R4
DIV A,R5
DIVW A,RW0
DIVW A,RW1
DIVW A,RW4
DIVW A,RW5

DTB (DTB:bit16-23)+(0180h+RPx10h+8h:bit0-15)
(DTB:bit16-23)+(0180h+RPx10h+9h:bit0-15)
(DTB:bit16-23)+(0180h+RPx10h+Ch:bit0-15)
(DTB:bit16-23)+(0180h+RPx10h+Dh:bit0-15)
(DTB:bit16-23)+(0180h+RPx10h+0h:bit0-15)
(DTB:bit16-23)+(0180h+RPx10h+2h:bit0-15)
(DTB:bit16-23)+(0180h+RPx10h+8h:bit0-15)
(DTB:bit16-23)+(0180h+RPx10h+Ah:bit0-15)

DIV A,R2
DIV A,R6
DIVW A,RW2
DIVW A,RW6

ADB (ADB:bit16-23)+(0180h+RPx10h+Ah:bit0-15)
(ADB:bit16-23)+(0180h+RPx10h+Eh:bit0-15)
(ADB:bit16-23)+(0180h+RPx10h+4h:bit0-15)
(ADB:bit16-23)+(0180h+RPx10h+Ch:bit0-15)

DIV A,R3
DIV A,R7
DIVW A,RW3
DIVW A,RW7

USB *1
SSB *1

(USB *2:bit16-23)+(0180h+RPx10h+Bh:bit0-15)
(USB *2:bit16-23)+(0180h+RPx10h+Fh:bit0-15)
(USB *2:bit16-23)+(0180h+RPx10h+6h:bit0-15)
(USB *2:bit16-23)+(0180h+RPx10h+Eh:bit0-15)
227

APPENDIX
When the value of the bank register is "00", the remainder is stored in the register of the
instruction operand. However, the remainder is stored in bank (DTB/ADB/USB/SSB) area,
except when the value of the bank register is "00".

Example:

Case of DTB = 053H and RP = 003H

Address of R0 is 00180H+003H*010H+08H = 0001B8H. Bank register which used "DIV A,R0" is DTB
which address is 053H.

Therefore, the remainder of the execution result of "DIV A,R0" is preserved in memory which address is
05301B8H.

(Please refer to the explanation of the general register of the manual for Ri and RWi.)

■■■■ About avoiding the Notes

Please use this compiler and the assembler when you use the MB905XX series because the
one that the function to replace the signed division instruction with an equivalent instructions
was added will be changed in the compiler so as not to generate the signed division instruction
to have the program evade the Notes and developed and be offered in the assembler as
follows.

The kind which will be developed in the future will improve the Notes as MB904XX series.

Measures assembler : asm907a V03L04 or later fasm907s V30L04(Rev.300004) or later

Measures compiler : cc907 V02L06 or later fcc907s V30L02 or later

Moreover, this Notes can be avoided by having use in the FFMC-16L mode in a present
compiler.

■■■■ Supplementation explanation

❍❍❍❍ About the influence on the program which has developed Notes

The Notes can be confirmed which the operation by Eva-device on a system. Therefore, the
problem does not occur if a normal operation is confirmed in debugging though there is the
signed division instruction in the program.

In the program development by the assembler:

(1) There is no problem if "DIV A,Ri" and "DIVW A,RWi" are not used.

(2) There is no problem if each bank register is "00" though "DIV A,Ri" and "DIVW A,RWi"
are used.

(3) The DIV instructions excluding this does not have the problem.

In the program development by C compiler:

(1) In small model and medium model, there is no problem when the bank register which
__far type qualified data and nor corresponds is used by "00"(initial value).

(In small model and medium model, C compiler does not change the value of each bank
register initialized by the startup routine when there is no __far type qualified data.)

(2) There is a possibility that "DIV A,R2", "DIV A,R6", "DIVW A,RW2", and the "DIVW
A,RW6" instructions are influenced for either by ADB as follows even if the corresponding
bank register is used by "00h"(initial value).

- In small model and medium model, there is __far type qualified data.

- Compact model and large model are used.

(C compiler has the possibility to change the ADB register for the condition of (2))
228

Appendix C NOTES OF SIGNED DIVISION INSTRUCTION OF FFMC-16LX CPU
However, there is no problem in the program if a normal operation is confirmed in debugging.
229

APPENDIX
230

INDEX

Symbols

__div built-in function 164
__divu built-in function 165
__mod built-in function 164
__modu built-in function 166
__mul built-in function 163
__mulu built-in function.................. 165
__wait_nop built-in function 162
_abort function........................ 197
_exit function 196

Numerics

16-bit/24-bit addressing access function 151

A

access function 146, 149, 151
ANSI standard 167
area management 204
argument.........101, 102, 109, 111, 118, 119
asm statemen 134
assert.h............................. 216
automatic distinction function 160

B

bit field 87, 89, 91
boundary alignment 84, 85, 86
built-in function162, 163, 164, 165, 166

C

C COMPILER 2
calling procedure 103, 112, 120
case sensitiveness...................... 22
close function 190, 211
command cancel option 26
command line 18, 21
command operand 19
command option 23
command related option 28, 65
comment entry in option file 70
compiler 83
compiler translation 169
compiler-dependent language specification differential
200

ctype.h 216

D

data output related option 28, 36
debug information related option 28, 64
debugger setup 205, 207
default option file 70
dependency 21
description by asm statement 134
description by pragma instruction 137
direct area access function 149
directory name 20
dynamic allocation area change 212, 213

E

error level 71
error output file........................ 185
example..................... 206, 208, 209
exclusiveness.......................... 21
execution process 172
expressible value range 202
extension format............... 102, 111, 119

F

fcc896s command 4, 168
fcc896s command argument 118
fcc896s command argument extension format . 119
fcc896s command bit field................. 91
fcc896s command boundary alignment 86
fcc896s command calling procedure 120
fcc896s command function call interface 115
fcc896s command interrupt function call interface129
fcc896s command interrupt function calling procedure
131

fcc896s command interrupt stack frame...... 130
fcc896s command register guarantee 121
fcc896s command register setup 121
fcc896s command return value 122
fcc896s command section structure.......... 79
fcc896s command stack frame 116
fcc896s command startup routine creation 176
fcc896s command structure/union 97
fcc907s command 3, 167
fcc907s command argument 101
fcc907s command argument extension format . 102
fcc907s command bit field................. 87
fcc907s command boundary alignment 84
fcc907s command calling procedure 103
fcc907s command dynamic allocation area change...
212
231

INDEX
fcc907s command function call interface 98
fcc907s command interrupt function call interface123
fcc907s command interrupt function calling procedure
125

fcc907s command interrupt stack frame 124
fcc907s command register guarantee 104
fcc907s command register setup 104
fcc907s command return value 105
fcc907s command sbrk.c source program list .. 212
fcc907s command section structure.......... 74
fcc907s command stack frame 99
fcc907s command startup routine creation 174
fcc907s command structure/union 93
fcc911s command 3, 167
fcc911s command argument 109
fcc911s command argument extension format . 111
fcc911s command bit field................. 89
fcc911s command boundary alignment 85
fcc911s command calling procedure 112
fcc911s command dynamic allocation area change...
213

fcc911s command function call interface 106
fcc911s command interrupt function call interface126
fcc911s command interrupt function calling procedure
128

fcc911s command interrupt stack frame 127
fcc911s command register guarantee 113
fcc911s command register setup 113
fcc911s command return value 114
fcc911s command sbrk.c source program list .. 213
fcc911s command section structure.......... 77
fcc911s command stack frame 107
fcc911s command startup routine creation 175
fcc911s command structure/union 95
fcntl.h............................... 218
FELANG 15
FETOOL 10
file name 20
file system 204
file type 178
float.h 216
floating-point data format................. 202
function 184
function call interface 98, 106, 115
function description function 142

G

generation rule for name used by compiler..... 83

H

header file6

I

I/O area access function146
I/O port..............................210
INC896...............................13
INC907...............................13
INC911...............................13
initialization............... 185, 205, 207, 209
in-line expansion specifying function.........153
input................................185
interrupt func. function...................161
interrupt function call interface 123, 126, 129
interrupt function calling procedure.. 125, 128, 131
interrupt function description function142
interrupt level setup function 142, 157
interrupt mask disable function.............141
interrupt mask setup function141
interrupt stack frame 124, 127, 130
interrupt vector table generation function144
isatty function 194, 211

L

language specification...................200
language specification related option 28, 43
level setup function142
LIB89611
LIB91111
library...............................221
library function187
library section name179
library use............................184
limitation on compiler translation169
limits.h216
linkage related option 28, 66
list of command cancel option26
list of command option....................23
load module creation............ 205, 207, 209
low-level function 187, 188
low-level function (system-dependent process) type .
181

low-level function library204
low-level function type186
lseek function 193, 211

M

macro predefined by fcc896s command168
232

INDEX
macro predefined by fcc907s command...... 167
macro predefined by fcc911s command...... 167
macro stipulated by ANSI standard 167
mask disable function................... 141
mask setup function 141
math.h.......................... 216, 217
memory model......................... 81
message generated in translation process..... 71
module creation 205, 207, 209
multiple specifying of same option........... 21

N

name used by compiler 83
no-register-save interrupt func. function...... 161

O

open function..................... 189, 210
operation specific to library 221, 227
OPT896 12
OPT907 12
OPT911 12
optimization............................ 7
optimization related option 28, 50
option file.......................... 69, 70
option file general format 69
option file limitation...................... 69
option file related option 28, 68
option syntax 21
options for compiling process control.......... 4
output 185
output file 185
output object related option............. 28, 58

P

position within command line 21
pragma instruction 137
preprocessor related option 28, 32
process 184
process/low-level function................ 187

R

read function 191, 211
register bank number setup function 156
register guarantee 104, 113, 121
register setup................. 104, 113, 121
return value 105, 114, 122

S

sbrk function 195, 211
sbrk.c source program list 212, 213
section name change function............. 154
section structure.................. 74, 77, 79
sensitiveness 22
simulator debugger setup 205, 207
special I/O port........................ 210
specifying function 153, 159
stack bank automatic distinction function 160
stack frame 99, 107, 116
standard error output file................. 185
standard input/output 185
standard library function 187
startup routine creation 174, 175, 176
stdarg.h 217
stddef.h 217
stdio.h 217, 218
stdlib.h.............................. 218
stream area initialization 185
string.h 218, 219
structure 93, 95, 97
symbolic debugger 7
syntax 21
sys/types.h........................... 219
system stack use specifying function 159
system-dependent process 181

T

termination process 185
TMP 14
tool identifier 71
translation control related option 28, 29

U

union 93, 95, 97
unistd.h 218

V

vector table generation function............ 144

W

write function 192, 211
233

INDEX
234

CM81-00204-1E

FUJITSU SEMICONDUCTOR • CONTROLLER MANUAL

FR FAMILY

F²MC FAMILY

32/16/8-BIT MICROCONTROLLER

SOFTUNE C COMPILER MANUAL

September 1998 the first edition

Published FUJITSU LIMITED Electronic Devices

Edited Technical Communication Dept.

FUJITSU SEMICONDUCTOR FR FAMILY F²MC FAMILY 32/16/8-BIT MICROCONTROLLER SOFTUNE C COMPILER MANUAL

	CONTENTS
	FIGURES
	TABLES
	CHAPTER 1 GENERAL
	1.1 C COMPILER FUNCTIONS
	1.2 BASIC PROCESS OF COMMANDS
	1.3 C COMPILER BASIC FUNCTIONS

	CHAPTER 2 SETUP OF SYSTEM EMVIRONMENT BEFORE USING C COMPILER
	2.1 FETOOL
	2.2 LIB911/LIB896
	2.3 OPT907/OPT911/OPT896
	2.4 INC907/INC911/INC896
	2.5 TMP
	2.6 FELANG

	CHAPTER 3 OPERATION
	3.1 COMMAND LINE
	3.2 COMMAND OPERANDS
	3.3 FILE NAMES AND DIRECTORY NAMES
	3.4 COMMAND OPTIONS
	3.4.1 List of Command Options
	3.4.2 List of Command Cancel Options

	3.5 DETAILS OF OPTIONS
	3.5.1 Translation Control Related Options
	3.5.2 Preprocessor Related Options
	3.5.3 Data Output Related Options
	3.5.4 Language Specification Related Options
	3.5.5 Optimization Related Options
	3.5.6 Output Object Related Options
	3.5.7 Debug Information Related Options
	3.5.8 Command Related Options
	3.5.9 Linkage Related Options
	3.5.10 Option File Related Options

	3.6 OPTION FILES
	3.7 MESSAGES GENERATED IN TRANSLATION PROCESS

	CHAPTER 4 OBJECT PROGRAM STRUCTURE
	4.1 fcc907s COMMAND SECTION STRUCTURE
	4.2 fcc911s COMMAND SECTION STRUCTURE
	4.3 fcc896s COMMAND SECTION STRUCTURE
	4.4 MEMORY MODELS
	4.5 GENERATION RULES FOR NAMES USED BY COMPILER
	4.6 fcc907s COMMAND BOUNDARY ALIGNMENT
	4.7 fcc911s COMMAND BOUNDARY ALIGNMENT
	4.8 fcc896s COMMAND BOUNDARY ALIGNMENT
	4.9 fcc907s COMMAND BIT FIELD
	4.10 fcc911s COMMAND BIT FIELD
	4.11 fcc896s COMMAND BIT FIELD
	4.12 fcc907s COMMAND STRUCTURE/UNION
	4.13 fcc911s COMMAND STRUCTURE/UNION
	4.14 fcc896s COMMAND STRUCTURE/UNION
	4.15 fcc907s COMMAND FUNCITON CALL INTERFACE
	4.15.1 fcc907s Command Stack Frame
	4.15.2 fcc907s Command Argument
	4.15.3 fcc907s Command Argument Extension Format
	4.15.4 fcc907s Command Calling Procedure
	4.15.5 fcc907s Command Register
	4.15.6 fcc907s Command Return Value

	4.16 fcc911s COMMAND FUNCTION CALL INTERFACE
	4.16.1 fcc911s Command Stack Frame
	4.16.2 fcc911s Command Argument
	4.16.3 fcc911s Command Argument Extension Format
	4.16.4 fcc911s Command Calling Procedure
	4.16.5 fcc911s Command Register
	4.16.6 fcc911s Command Return Value

	4.17 fcc896s COMMAND FUNCITON CALL INTERFACE
	4.17.1 fcc896s Command Stack Frame
	4.17.2 fcc896s Command Argument
	4.17.3 fcc896s Command Argument Extension Format
	4.17.4 fcc896s Command Calling Procedure
	4.17.5 fcc896s Command Register
	4.17.6 fcc896s Command Return Value

	4.18 fcc907s COMMAND INTERRUPT FUNCITON CALL INTERFACE
	4.18.1 fcc907s Command Interrupt Stack Frame
	4.18.2 fcc907s Command Interrupt Function Calling Procedure

	4.19 fcc911s COMMAND INTERRUPT FUNCITON CALL INTERFACE
	4.19.1 fcc911s Command Interrupt Stack Frame
	4.19.2 fcc911s Command Interrupt Function Calling Procedure

	4.20 fcc896s COMMAND INTERRUPT FUNCITON CALL INTERFACE
	4.20.1 fcc896s Command Interrupt Stack Frame
	4.20.2 fcc896s Command Interrupt Function Calling Procedure

	CHAPTER 5 EXTENDED LANGUAGE SPECIFICATIONS
	5.1 ASSEMBLER DESCRIPITON FUNCTIONS
	5.2 INTERRUPT CONTROL FUNCITONS
	5.3 I/O AREA ACCESS FUNCTION
	5.4 direct AREA ACCESS FUNCTION
	5.5 16-BIT/24-BIT ADDRESSING ACCESS FUNCTION
	5.6 IN-LINE EXPANSION SPECIFYING FUNCTION
	5.7 SECTION NAME CHANGE FUNCTION
	5.8 REGISTER BANK NUMBER SETUP FUNCTION
	5.9 INTERRUPT LEVEL SETUP FUNCTION
	5.10 SYSTEM STACK USE SPECIFYING FUNCTION
	5.11 STACK BANK AUTOMATIC DISTINCTION FUNCTION
	5.12 NO-REGISTER-SAVE INTERRUPT FUNC. FUNCTION
	5.13 BUILT-IN FUNCTION
	5.14 PREDEFINED MACROS
	5.15 LIMITATIONS ON COMPILER TRANSLATION

	CHAPTER 6 EXECUTION ENVIRONMENT
	6.1 EXECUTION PROCESS OVERVIEW
	6.2 STARTUP ROUTINE CREATION

	CHAPTER 7 LIBRARY OVERVIEW
	7.1 FILE ORGANIZATION
	7.2 RELATIONSHIP TO LIBRARY INCORPORATING SYSTEM

	CHAPTER 8 LIBRARY INCORPORATION
	8.1 LIBRARY INCORPORATION OVERVIEW
	8.2 INITIALIZATION/TERMINATION PROCESS REQUIRED FOR LIBRARY USE
	8.3 LOW-LEVEL FUNCTION TYPES
	8.4 STANDARD LIBRARY FUNCTIONS AND REQUIRED PROCESS/LOW-LEVEL FUNCTIONS
	8.5 LOW-LEVEL FUNCTION SPECIFICAITONS
	8.5.1 open Function
	8.5.2 close Function
	8.5.3 read Function
	8.5.4 write Function
	8.5.5 lseek Function
	8.5.6 isatty Function
	8.5.7 sbrk Function
	8.5.8 _exit Function
	8.5.9 _abort Function

	CHAPTER 9 COMPILER-DEPENDENT SPECIFICATIONS
	9.1 COMPILER-DEPENDENT LANGUAGE SPECIFICAITON DIFFERENTIALS
	9.2 FLOATING-POINT DATA FORMAT AND EXPRESSIBLE VALUE RANGE

	CHAPTER 10 SIMULATOR DEBUGGER LOW-LEVEL FUNCTION LIBRARY
	10.1 LOW-LEVEL FUNCTION LIBRARY OVERVIEW
	10.2 fcc911s COMMAND LOW-LEVEL FUNCITON LIBRARY USE
	10.3 fcc907s COMMAND LOW-LEVEL FUNCITON LIBRARY USE
	10.4 fcc896s COMMAND LOW-LEVEL FUNCITON LIBRARY USE
	10.5 LOW-LEVEL FUNC. FUNCITON
	10.6 LOW-LEVEL FUNCITON LIBRARY CHANGE

	APPENDIX
	Appendix A LIST OF TYPE, MACRO, VARIABLE, AND FUNCITON
	Appendix B OPERATIONS SPECIFIC TO LIBRARIES
	Appendix C NOTES OF SIGNED DIVISION INSTRUCTION OF FFMC-16LX CPU

	INDEX
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W

