
1. Logic Programming and Prolog: A First Glimpse 

We shall learn to write computer programs in a non-procedural way. The primary objective of 
this is to open our mind to a new way of looking at computing.  

Procedural programming basically views the computer as a device characterized by a large 
uniform store of memory cells and a processing unit which is able to access the memory cells 
and to perform - in a strictly sequential way - some arithmetic and logical operations on their 
contents. A program for such a von Neumann machine is a sequence of instructions to perform 
such operations, and an additional set of control instructions (If, While, Goto, ...) which can 
affect the next instruction to be executed, possibly depending on the content of some memory 
cell. Procedural programs describe in detail, how a given set of variables (= memory cells) 
should be manipulated in order to get a solution of the given problem. 

On the other hand, declarative (or definitional or non-procedural) programming expresses 
the knowledge about the problem and  formulates the objective (or the goal). From a complete 
description of the facts and rules of a problem situation, the computer should then be able to 
find the solution using logical deduction.  Ideally, a declarative program specifies what is to 
be solved and not how it should be done. 

A simple example may explain the difference of the two programming paradigms: the 
threading of a maze. The problem is to find a way from a given starting point to a given end 
point. In a procedural program the maze is typically represented as a data structure, and an 
algorithm specifies step-by-step how to try the different possible paths. In a declarative 
program, on the other hand, the maze and the possible moves define "the rules of the game". 
The computer is told to "play the game", according to these rules, and with the objective of 
finding a path from the starting point to the end point. 

There are several different approaches to declarative programming. The two most important 
ones are logic programming and functional programming. Typical functional programming 
languages are Lisp and (in some sense) Mathematica. 

The main idea behind logic programming is that deduction (i.e. the construction of logical 
consequences) can be viewed as a form of computation, and that the declarative statement of 
the form 

P if Q and R and S 

can also be interpreted procedurally as: 

To solve P, solve Q and R and S. 

We shall start with some simple examples of logic (and Prolog) programs and return to some 
more theoretical considerations later. 

First Steps: Facts, Queries, and Rules 

A logic database is comprised of a set of facts and rules. Facts can define relations just as in 
relational databases. 

We start with a hypothetical family which we define using two relations between persons, 
parent-child and husband-wife, and the attribute male. We shall then declare rules for other 
relationships. 
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                                      alex        lina 
 
 
 
                 romeo          julia                   rosa 
 
 
 
oscar       eva        peter           ruth         silvia 
 
 
 
      ida        bruno     georg      irma       otto    pascal 
 
 
 
                                      olga       jean     marie 
 
 
 
                                                     tina 
 
 
 
 
% parent(X,Y) means: X is the 
% father or the mother of Y 
 
parent(alex,julia). 
parent(alex,rosa). 
parent(lina,julia). 
parent(lina,rosa). 
parent(romeo,peter). 
parent(julia,peter). 
parent(rosa,silvia). 
parent(oscar,ida). 
parent(eva,ida). 
parent(eva,bruno). 
parent(peter,bruno). 
parent(peter,georg). 
parent(peter,irma). 
parent(ruth,georg). 
parent(ruth,irma). 
parent(silvia,otto). 
parent(silvia,pascal). 
parent(irma,olga). 
parent(irma,jean). 
parent(otto,olga). 
parent(otto,jean). 
parent(jean,tina). 
parent(marie,tina). 
 

% male(X) means:  
% X is a man 
 
male(alex). 
male(romeo). 
male(oscar). 
male(peter). 
male(bruno). 
male(georg). 
male(otto). 
male(pascal). 
male(jean). 
 
% husband(X,Y) means:  
% X is the husband of Y 
 
husband(alex,lina). 
husband(romeo,julia). 
husband(oscar,eva). 
husband(peter,ruth). 
husband(otto,irma). 
husband(jean,marie). 
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The above family database is stored - one fact per line - in a source-text file named 
family.pl. It can be imported (consulted) into the Prolog interpreter with the following 
command: 

?-  

We can then ask questions (queries) about the family, like the following: 

?- parent(eva,bruno). 

 

?- parent(georg,otto). 

 

?- parent(silvia,X). 

 

 

 

?- parent(Y,ida). 

 

 

?- husband(U,V). 

 

 

?- husband(_,irma). 

 

?- husband(M,_). 

 

 

 

Note that facts and queries are syntactically identical: they are both terms. They are 
distinguished by their context only.   

Queries can always be interpreted as goals: Instead of asking "Is there an X such that 
parent(silvia,X) is true?"  we can also put it imperatively: "Try to find an X such that you can 
prove parent(silvia,X)!". Therefore, we shall use the terms "query" and "goal" 
interchangeably.  
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The following is called a conjunctive goal: 

?- parent(eva,X), male(X). 

 

In logic programs (and also in goals),  the comma (,) denotes logical and. In the above 
conjunctive goal, X is a shared variable. The query reads: "Is there an X such that both 
parent(eva,X) and male(X)?". Evidently, this is the case for X=bruno, the son of eva. Let us 
consider some other conjunctive goals: 

?- parent(X,Y), parent(Y,peter). 

 

 

?- parent(W,Z), husband(otto,Z). 

 

 

?- parent(X,Y), male(X). 

 

 

The last query appparently  returns all pairs of persons (X,Y) for which X is the father of Y. 
This brings us to the third and most important statement class in logic programming, the rules. 
A rule is a statement of the form: 

A  :-  B1, B2, .... Bn. 

where n ≥ 0. A is the head of the rule, and the Bi's are its body. 

A rule expressing the father relationship is: 

 

 

Similarly, the grandfather relationship can be described as: 

 

 

Rules can be viewed in two different ways:  

(1) Procedural reading: To answer the query "Is X the father of Y?", answer the 
conjunctive query  "Is X a parent of Y and is X male?". 

(2) Logical implication: X is the father of Y    if   X is a parent of Y and X is male. 

The second interpretation explains why we shall read the symbol :-  as if. 
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Let us develop some more rules: 
 
 % brother(X,Y) :- X is the brother of Y. 
 
  
 
 
% uncle(X,Y) :- X is the uncle of Y. 
 
 
 
 
% female(X) :- X is a female person. 
 
 
 
 
% sister(X,Y) :- X is the sister of Y. 
 
  
 
 
% has_son(X) :- the person X has a son. 
 
 
 
 
% married(X,Y) :- X and Y are married (to each other). 
 
  
 
 
 
 
 
% brother_in_law(X,Y) :- X is the brother-in-law of Y. 
 
  
 
 
 
 

 

Facts and rules are collectively called Horn clauses, or clauses, for short. It should be noted 
that a fact is just a special case of a rule, the case where n = 0. If a relation, such as parent or 
brother_in_law, is declared with more than one clause, these clauses are to be considered as 
alternatives. 
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The following relations are even more interesting and some of them give an idea of more 
advanced concepts of logic programming. 
 
 
% ancestor(X,Y) :- X is an ancestor of Y. 
 
 
 
 
 
 
 
 
 
% relatives(X,Y) :- X and Y are relatives. 
 
 
 
 
 
 
 
 
% ancestors(As,X) :- As is the set of all ancestors of X. 
 
 
 
 

% descendants(Ds,X) :- Ds is the set of all descendants of X 
 

 

 

 

Exercises 

(1.1) Develop rules for the following relations and attributes: mother, niece, female_cousin, 
mother_in_law, daughter_in_law, is_grandmother, has_both_parents and implement them as 
Prolog programs.  Experiment with different forms of queries. 

(1.2) Modify the rules for brother and sister so that they only recognize full siblings, i.e. those 
that have the same (known) mother and father. 

(1.3) The relation teaching_plan is intended to describe the teaching situation at our college. 
Some typical facts in this relation could be: teaching_plan(a3,bregy,english), 
teaching_plan(i3t,hett,theoinfo),  or teaching_plan(i2w,businger,mathematics). A second 
relation, division, describes which classes belong to which division, e.g. division(a3,auto), 
division(i3w,info). Write queries with the following meanings: (a) Does businger teach at the 
auto division? (b) Who teaches mathematics at the info division. (c) What division does bregy 
teach english at? (d) What subjects are taught at the electro division? (e) Who teaches in more 
than one division? (f) Who should take English lessons? 
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Although Prolog has not been invented primarily as a programming language for doing 
arithmetics, it can be used to do mathematics just like any other programming language. The 
next example, taken from recreational mathematics, should give a first impression on how to 
achieve this. Details shall be treated later in the course. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Exercise (1.4) Try to solve the following puzzle. 
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Summary 

• Logic programming consists of defining relations and querying about  relations. 

• A program consists of facts and rules, which we collectively call clauses. A set of 
facts and rules about the same relation is called a predicate. 

• Querying about relations, by means of goals,  resembles querying a database. 
Prolog's answer to a query consists of a set of objects that satisfy the question 
(query). 

• In Prolog, to establish whether an object satisfies a query is often a complicated 
process that involves logical inference and exploring among alternatives. All this is 
done automatically by the Prolog system and is, in principle, hidden from the user. 

• Two types of interpretation (or meaning) of Prolog programs are distinguished: 
declarative and procedural. 

• The following concepts have been discussed:  Clause, fact, rule, query, goal, head 
and body of a rule, recursive rule, predicate, variable, a goal succeeds or fails. 

• Special built-in predicates allow for arithmetic calculations, with a notation similar to 
the one of well-established procedural programming languages (e.g. Pascal). 
Arithmetic assignment is achieved by the is predicate. 
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2. Syntax and Meaning of Prolog Programs 

The syntax of a programming language defines whether a given sequence of symbols is a 
legal sentence in the language. Prolog programs are built from terms. Each term is written as a 
sequence of characters. We distinguish between four categories of characters: 

upper-case letters: A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 

lower-case letters: a b c d e f g h i j k l m n o p q r s t u v w x y z 

digits: 0 1 2 3 4 5 6 7 8 9 

sign characters: + - * / \ ^ < > ~ :  .  ? @ # $  & 

There are actually more sign characters than shown in the fourth row, but others have special 
meanings and shall be introduced later. 

Prolog is case-sensitive, i.e zebra, Zebra, zeBra, and ZEBRA are four different names. 

As already mentioned, almost everything in Prolog is a term: We already know facts, rules, 
and queries. 

A term is either a constant, a variable, or a compound term. We can represent this as a syntax 
diagram as follows: 

 

 

 

 

 

 

 

Constants are thought of naming specific objects or specific relationships. A constant is 
either an atom or a number.   

We already know names for objects and relationships, such as alex or parent. Some 
special symbols, such as :- or  \=  are also atoms. There are two kinds of atoms: those 
made of  letters and digits, and those made up from signs. The first kind must begin with a 
lower-case letter. Those atoms made from signs normally are made up from signs only. 
Sometimes it may be desirable to have an atom beginning with a captal letter or a digit. For 
this case, an atom may be enclosed in single quotes:  then the atom may have any character in 
its name. Finally, the underscore  character may be placed in the middle of an atom to 
improve readability. The following are examples of valid atoms: 

alex   nil   =   'Spirit-of-Biel-Bienne'  \+  spirit_3    

And the following are not valid atoms: 

239   IS_Biel   _alpha   c++ 
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Numbers are the second kind of constants. Integers and floating point numbers are supported.  
Examples: 

15   -2398  85.753  -81.92E-7 

Characters are stored as small integers: their ASCII code. There is some controversy about 
character strings in Prolog. Some implementations (e.g. SWI, Turbo) have strings as a 
separate data type, others (e.g. Aquarius) treat strings as lists of characters only. The ISO 
standard draft (1993) does not mention strings. 

 

Variables  are the second kind of terms in Prolog. Variables begin with a capital letter or an 
underscore sign. A variable stands for some object that we may not be able to name. 
Examples of valid variables are: 

X   Y   Answer   Spirit_3   _8a  

Sometimes one needs to use a variable, but its name will never be used. In these cases we can 
use the anonymous variable, i.e the single underscore character. For example, in our family 
problem, if we want to ask the system whether person eva is married, we would write: 

?- married(eva,_). 

Several anonymous variables in the same clause need not be given consistent interpretations. 
This is a characteristic peculiar to the anonymous variable. 

 

Compound terms  or structures are the third kind of terms in Prolog. A compound term can 
be described by the following syntax diagram: 

 

 

 

 

 

 

The functor is an atom which can be considered as the name of the structure. The components 
of the structure are themselves terms, enclosed in round brackets and separated by commas. 
The number of components is sometimes called the arity of the compound term. Example: 

vehicle('Spirit_3', driver('Balmer'), speed(129), rank(R)) 

 

Operators are sometimes a convenient way of writing functors. For example, arithmetic 
operations are commonly written as operators rather than functors. When we write the 
arithmetic expression  x + y * z  we call the plus sign and the multiply sign operators. If we 
had to write the expression x + y * z  in the normal way for structures, it would look like this: 
+(x,*(y,z)).   
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It is important to note that the operators do not cause any arithmetic to be carried out. So, in 
Prolog, 3 + 4 does not mean the same thing as 7. The term 3 + 4 is just another way of writing 
+(3,4), which is a data structure. In order to evaluate such a term numerically we have to use 
the is predicate, as we saw in the ginger bread example. 

Operators are characterized by three things: position, precedence and associativity.  

Position:  prefix,  infix,  or postfix. 

Precedence: an integer that determines the order in which operators group their operands. 

Associativity: left or right 

 

Data types. We have seen that constants can have different data types: atoms, integers, 
floating point numbers (strings). However, Prolog is not a typed language. Variables are not 
declared to be of a certain type. A variable can stand for any term, be it simple or compound. 
Type conversions between integers and floating point numbers are performed automatically 
when needed.  

As we shall see later, variables may be bound (or instantiated) to atoms or compound terms 
during the execution of a Prolog program.  There are several built-in predicates which allow 
for the verification of the type of a term at run-time. Examples: 

var(T)  integer(T)  float(T)  atom(T)  atomic(T) ... 

 

Exercises 

(2.1)  Find out which of the following sentences are legal Prolog terms and explain them: 

a  Beta  \+  delta(X,chi(Y,gamma))  sigma(2,5.6)  Spirit('3') 

3*8.45+a   +(7,3)   .(alfa,X)    X \== Y 

(2.2)  Using your user's manual and by experiment, find out how your Prolog interpreter treats 
character strings. Try the following goals and explain what happens: 

?- S = "Hello world". 

?- A = 'Hello world'. 

(2.3)  Try to find out what operators are built-in in your Prolog interpreter. What are their 
position, precedence and associativity. Are there operators having more than one meaning? 

(2.4)   Experiment with your Prolog interpreter and explain what happens. Try the following 
goals: 

?- X = *(3,+(4,5)). 

?- X = +(3,*(4,5)). 

?- X = *(3,*(4,5)). 

?- X = *(*(3,4),5). 
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The Meaning of a Logic Program 

In logic programming, the basic idea can be summarized in the two metaphorical equations: 

 

 program =   

 

 computation =   

 

A logic program is a set of axioms, or rules, defining relationships between objects. A 
computation is a deduction of consequences of the program. The set of all consequences of 
the given axioms is the meaning of the program. 

Example: In our family program, we have defined facts for the parent and male relationships, 
and we have set up rules for the brother and uncle relationship. Using these rules, it is 
possible to deduct the fact that bruno is the uncle of olga. Therefore the goal  

 ?-  

is within the meaning of our program. On the other hand, the goal 

 ?-  

cannot be found as being a consequence of the program; therefore it is not within its meaning.  

We say that a logic program P is correct with respect to some intended meaning M if the 
meaning of the program M(P) is a subset of M, i.e. any consequence of P is in M. For 
example, in the context of our family problem, the following logic program for the 
relationship brother-in-law is correct (but not complete, see below): 

 

Note that every person X for which the goal  

 ?-  

succeeds, is indeed the brother-in-law of the respective person Y. 

We say that a logic program P is complete with respect to some intended meaning M if  M is a 
subset of the meaning of the program M(P), i.e. the program can "produce" all intended 
consequences (but perhaps more than that). For example, the following program for the 
brother relationship is a complete (but not correct) logic program: 

 

 

In a complete and correct program P the meaning of the program M(P) is equal to the 
intended meaning M. 

 The art of logic programming is to construct concise and elegant programs that have the 
desired meaning, i.e. correct and complete programs. 
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We have said that the meaning of a logic program  is the set of all its consequences. Logical 
consequences are obtained by applying deduction rules. We shall discuss three deduction 
rules: 

(1) identitity 

(2) generalisation 

(3) instantiation 

The first and most simple deduction rule is  

Identity:   

This is, of course, almost trivial. In the context of a logic program it says for instance that, if 
there is a fact  

  

in the program then the goal (or query) 

 ?-  

will succeed. 

The second and third rule are more complicated. First, we need to define some additional 
notions. Remember that terms are the single data structure in logic programs. We already 
know their inductive definition: 

 A term is either a constant or a variable or a compound term.  A compound term 
comprises a functor and one or more arguments  which are terms themselves. 

Terms not containing any variables are called ground. 

Examples:    alfa(beta,gamma(delta))     

 alfa(X,beta)      

A variable in a logic program stands for an unspecified entity. A substitution S is a finite 
(possibly empty) set  of pairs of the form Xi = ti , where Xi is a variable and  ti is a term. Xi 
must be different from Xj  for  i ≠ j, and may not occur in any  tj .  

Example:  S =  

Substitutions can be applied to terms. The result of applying a substitution S to a term T, 
denoted by TS, is the term obtained from T by replacing every occurrence of Xi by ti for every 
pair Xi = ti in S. 

Example: Let T be the term parent(X,peter) and S = {X = eva, Y = alex}. Then 
TS is the term  

 

A term A is called an instance of  the term B iff there is a substitution S such that A = BS. 

Example: parent(eva,peter) is an instance of parent(eva,Z), the substitution is 
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Let us now recall what the meaning of a query is, if it contains variables. Consider, for 
example, the following goal: 

 ?-  

This reads as follows: "Is there a person X such that parent(X,pascal) can be deduced from the 
program?"  We say that the variables in a query are existentially quantified. Of course, there is 
such a person, X = silvia, since we have the fact parent(silvia,pascal) in our program. This is 
the second deduction rule: 

Generalisation:  

 

Remember:     parent(silvia,pascal) is an instance of  parent(X,pascal). 

Variables can also be used in facts and rules. If they appear in facts or in the head of a rule 
they are universally quantified: 

father(X,Y) :- ... is a rule which says that for any X and Y , X is the father of Y, etc.... 

relatives(X,X).  expresses the fact that relatives is a reflexive relationship for any X 

knows(X,Y). could stand for the fact that anybody knows everybody 

Of course, from the fact  knows(X,Y)  we can deduce the fact knows(peter,silvia). This is the 
third deduction rule: 

Instantiation:  

 

Unification: One of the most important issues of logic programming is the concept of 
unification. Informally, unification is the "attempt" to make two terms equal. According to 
this, the functor  '='  is used in Prolog to perform unification. 

Let us start with an example. Consider the following two terms: 

 t1 =   

 t2 =   

Is it possible that t1 means the same thing as t2 , i.e.   

Yes, we need the substitution 

 

 

Therefore t1 can be made equal to t2 ,  we say that t1 and t2 are unifiable. 

Unification can be defined mathematically as follows: 

 A substitution U is a unifier of two terms t1 and t2 iff  the instance t1U is identical to 
t2U. Terms are said to be unifiable if there exists a unifier for them. Otherwise they 
are not unifiable. 
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A unifier is a most general unifier MGU of terms if any other unifier U of these terms is an 
instance of it. A most general unifier always exists for terms if they are unifiable. The most 
general unifier MGU of terms can be found using a non-deterministic algorithm, called 
"Herbrand algorithm" , which is presented on the next page (source: ISO/IEC Prolog 
Committee Draft Standard, March 1993). However, in practice, unifying terms and finding an 
MGU is not a very difficult task, as we shall see in the following examples: 

(1) t1 =  plan(i3,F,X). 

 t2 =  plan(Y,Z,prof(W)). 

A unifier U would be  

  

However, this is not the most general unifier. Instead 

 

is a most general unifier. 

(2)  Try to unify the following term pairs, and if this is possible note the MGU. 

(2a) race(darwin,adelaide,dist(D)) = race(X,Y,dist(3000))  

  

 

(2b) race(X,Y,dist(D)) = race(darwin,Z,W) 

 

 

(2c) pilot(spirit3,name(Z)) = pilot(X,balmer) 

 

 

(2d) drives(X,road(darwin,Y)) = drives(balmer,road(W,Z)) 

 

 

(2e) add(0,X,X) = add(Y,3,Z) 

 

 

(2f) mult(1,X,X) = mult(5,8,Y) 



Logic Programming and Prolog 16 
______________________________________________________________  

An Abstract Interpreter for Logic Programs 

We have alread said that a logic program is a set of axioms, and a computation is a 
constructive proof of a goal statement. The computation progresses via goal reduction. In 
order to explain and understand the details of this process we shall use an abstract interpreter 
for logic programs. It is a non-deterministic algorithm working with a resolvent, i.e. a 
conjunction of goals to be proved. 

Input: a logic program P, and a goal G 

Output: GT if this was the instance of G deduced from P, or failure. 

Algorithm: Initialize the resolvent to be G, the input goal. 
 While the resolvent is not empty do 
  (1) Choose a goal A from the resolvent and a fresh* 
  copy of a clause A' :- B1,B2, ...Bn. , n ≥ 0, from P, 
  such that A and A' unify with most general unifier T 
  (exit if no such goal and clause exist). 
  (2) Remove A from the resolvent and add B1,B2, ...Bn  at its place. 
  (3) Apply T to the resolvent and to G. 
 If the resolvent is empty output G, else output failure. 

* fresh copy means: rewrite the clause with variables not yet used. 

An example computation follows on the next page. 

There are two choices in our abstract interpreter: choosing the goal to reduce and choosing the 
clause to effect the reduction. These must be resolved in any realization of the computation 
model. The nature of the choices is fundamentally different. 

The choice of goal to reduce is arbitrary; it does not matter which is chosen for the 
computation to succeed. If there is a successful computation by choosing a given goal, then 
there is a successfull computation by chosing any other goal. 

The choice of the clause to effect the reduction is, in general, non-deterministic. Not every 
choice will lead to a successful computation.  

For some computations, for example, the computation of finding a solution for the goal 
?- father(oscar,X) there is always only one clause from the program which can 
reduce each goal. Such a computation is called deterministic. 

The alternative choices that can be made by the abstract interpreter, when trying to prove a 
goal, implicitely define a search tree. In order to be sure not to "loose" a solution, the 
interpreter should search the whole tree. As we all know, there are different strategies to 
traverse a  tree. 

(1) Breadth-first search (or level-order tree traversal) explores the search tree "in parallel" and 
guarantees that, if there is a finite proof of the goal (i.e. a finite successful path in the search 
tree), it will be found. 

(2) Depth-first search. In contrast to the breadth-first strategy, the depth-first search does not 
guarantee finding a proof even if one exists, since the search tree may have infinite paths. A 
depth-first search of the tree might get lost in an infinite path, never finding a finite successful 
path, even if one exists. 

In technical terms, the breadth-first strategy defines a complete proof procedure for logic 
programs, whereas the depth-first strategy is incomplete.  
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Example computationon the abstract interpreter: Given our family program, let us follow the 
search for an uncle of olga. Remember the clauses for the brother and uncle relationship: 

   brother(X,Y) :-  parent(P,X), parent(P,Y), male(X), X \= Y. 

   uncle(X,Y) :- brother(X,Z), parent(Z,Y). 
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The Execution Model of Prolog 

In spite of its incompleteness, depth-first search is the strategy incorporated in Prolog, for 
practical reasons. The following defines Prolog's execution mechanism (or inference engine): 

 Prolog's execution mechanism is obtained from the abstract interpreter by 
choosing the leftmost goal in the resolvent, instead of an arbitrary one, and by 
replacing the nondeterministic choice of a clause in the program by sequential 
search for a unifiable clause and backtracking. 

In other words, Prolog adopts a stack scheduling policy. It maintains the resolvent as a stack, 
pops the top goal for reduction, and pushes the derived goals on the resolvent stack. 

The main difference between logic programs and Prolog programs is that the order of the 
clauses and the order of the goals within the body of a rule are very important in Prolog 
programs. Remember that the Prolog interpreter chooses the clauses from top to bottom, and 
reduces the goals from left to right. The effect of good (or bad) decisions about rule order and 
goal order can be immense. There can be orders of magnitude of difference in efficiency in 
the performance of Prolog programs. In extreme, correct logic programs will fail to give 
solutions due to nontermination. 

Exercises:   

(2.5) Try to find out the influence of rule order and goal order by experimenting with the 
following predicates. Use different flow patterns. 

(a) father1(X,Y) :- parent(X,Y), male(X). 

(b) What happens in (a) if the facts of   parent/2  are reordered? 

(c) ancestor1(X,Y) :- parent(X,Y). 
 ancestor1(X,Y) :- parent(X,P), ancestor1(P,Y). 

(d) ancestor2(X,Y) :- parent(X,P), ancestor2(P,Y). 
 ancestor2(X,Y) :- parent(X,Y). 

(e) father2(X,Y) :- male(X), parent(X,Y). 

(f) ancestor3(X,Y) :- parent(X,Y). 
 ancestor3(X,Y) :- parent(P,Y), ancestor3(X,P). 

(g) ancestor4(X,Y) :- parent(X,Y). 
 ancestor4(X,Y) :- ancestor4(X,P), parent(P,Y). 

(h) ancestor5(X,Y) :- parent(X,Y). 
 ancestor5(X,Y) :- ancestor5(X,Z), ancestor5(Z,Y). 

(2.6)  Revise the predicates brother/2 and uncle/2 and determine the optimal goal 
order for the following flow patterns (represented by some typical goals). Hint: use time/1. 

(a) (o,i) ?- uncle(X,olga). 

(b) (i,o) ?- uncle(peter,Y). 

(c) (o,o) ?- uncle(X,Y). 
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Summary 

• In Prolog, almost everything is a term: atoms and numbers, variables and structures 
(compound terms). 

• Compound terms are constructed by means of functors. A functor is defined by its 
name and arity. For some predicates operators are a convenient way of writing 
functors.  

• The lexical scope of variables is one clause. Thus the same variable name in two 
clauses means two different variables. 

• Constants can have different data types: atoms, integers, floating point numbers, 
characters, (strings). However, variables are not bound to a particular data type. 

• In logic programming, the program is a set of axioms. A computation is a 
constructive proof of a statement. The set of all consequences of the given axioms is 
the meaning of the program. It is found by applying deduction rules: identity, 
generalisation, and instantiation. 

• Variables that appear in a fact or in the head of a rule are universally quantified (for 
all X ...).  All others are existentially quantified (there is an X, such ...). 

• Unification is the operation that takes two terms and tries to make them identical by 
instantiating the variables in both terms. It is the single, very powerful matching 
operation that in effect performs a number of tasks for which other programming 
languages use different operations: comparisons (recursive!), assignment statements, 
and parameter passing. 

• The execution mechanism of Prolog, its inference engine, is based on a goal-driven 
algorithm known as abstract interpreter. It maintains a stack of goals as resolvent 
and applies a sequential search for unifiable clauses, and backtracking.   

• The declarative meaning of a logic program does not depend on the order of the 
clauses and the order of goals in clauses. However, the procedural meaning does 
depend on the order of clauses and goals. It can affect the efficiency of the program; 
on unsuitable order may even lead to infinite recursive calls. 
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3. Arithmetics 

Prolog is mainly a language for symbolic computation where the need for numerical 
calculation is relatively modest. Accordingly, the means for numerical computing in Prolog 
are rather simple. Some of the predefined operators can be used for basic arithmetic 
operations: addition (+), subtraction(-), multiplication (*), division (/ and //), modulo (mod), 
and power (^). Some mathematical functions, like sqrt(), trigonometric functions, random() 
and some others are usually predefined. See the manual of your Prolog system for details. 

Precedence and associativity of the arithmetic operators are defined in such a way that the 
usual rules for the evaluation of arithmetic expressions apply. Therefore you write down 
arithmetic expressions just like in other programming languages (e.g. Pascal). There is only 
one little problem. The following query is a naive attempt to request arithmetic computation: 

   ?- X = 1 + 2 * 3. 

Prolog will quietly answer: 

   X =  

The reason for that is simple: the expression 1 + 2 * 3 merely denotes a term +(1,*(2,3)) and 
the '=' forces Prolog to unify this term with the variable X. There is nothing in the above goal 
to actually activate the multiplication and addition operations. In order to force an evaluation 
we need to use the is operator: 

   ?- X is 1 + 2 * 3. 

There are other operators that force evaluation as well: >, <, >=, =<, =:=, =\= 

Some practical examples  
 

1. Population statistics of some European countries (1985) 
 
% pop(C,P) :- the population of  
% the country C is 1000 * P  
 
pop('B', 9858). 
pop('D', 77655). 
pop('DK', 5112). 
pop('F', 55138). 
pop('GR', 9935). 
pop('GB', 56648). 
pop('IRL', 3537). 
pop('I', 57128). 
pop('L', 366). 
pop('NL', 14484). 
pop('P', 10229). 
pop('E', 37409). 
pop('A', 7558). 
pop('S', 8358). 
pop('SF', 4910). 
pop('CH', 6374). 
 

% area(C,A) :- the area of the 
%    country C is A square km 
 
area('B', 30518). 
area('D', 357050). 
area('DK', 43069). 
area('F', 543965). 
area('GR', 131957). 
area('GB', 244046). 
area('IRL', 70283). 
area('I', 301225). 
area('L', 2586). 
area('NL', 41785). 
area('P', 92082). 
area('E', 497477). 
area('A', 83849). 
area('S', 449964). 
area('SF', 338145). 
area('CH', 41288). 
 

 
% density(C,D) :- the population density of the country C 
%    is D inhabitants per square kilometer 
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We can ask the following questions: 

(a)   What is the population density of Switzerland? 

   ?-  

(b)   Are there countries with a population density less than 50 persons per square kilometer? 

   ?- 

(c)     What countries are smaller than Switzerland? 

   ?- 

Let us write one more predicate: 

% bigger_than(A) :- there is a country bigger than A square km 

 

 

How can we find the biggest country? 

   ?- 

 

2. Let us compute the number of completely balanced binary trees having N nodes. A binary 
tree is completely balanced if for any node the following property holds: the number of nodes 
in its left subtree and the number of nodes in its right subtree differ by not more than 1.  
 
% ncbbt(N,T) :- T is the number of completely  
%    balanced binary trees having N nodes 
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3. Factorial and greatest common divisor: 

% fact(N,F) :- F is N! 

 

 

 

 

% gcd(X,Y,G) :- G is the greatest common divisor of X and Y 
 

 

 

 

 

 

 

Some Prolog systems (e.g. SWI-Prolog) allow for the registration of arithmetic functions: 

   ?- arithmetic_function(gcd/2). 

   ?- G is gcd(24,36). 

   G = 12 

 

 4. Fibonacci numbers. 

% fib(N,F) :- F is the N'th Fibonacci number. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

There is a problem with this solution: it is terribly inefficient, because intermediate results are 
calculated over and over again. Let's have a look at a much more efficient solution as we 
would program it in Java (we suppose n > 0 is guaranteed): 
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int fibo(int n) { 
    if (n == 1) return 1; 
    int k = 2, fk = 1, fkm1 = 1, hold; 
    // Assertion: k<=n and fk=f(k) and fkm1=f(k-1) 
    while (k < n) { 

            // Assertion: k<n and fk=f(k) and fkm1=f(k-1) 
        hold = fk + fkm1; 
        k = k + 1; 
        fkm1 = fk; 
        fk = hold; 
        // Assertion: k<=n and fk=f(k) and fkm1=f(k-1) 
    } 
    // Assertion: k=n and fk=f(k) 
    return fk; 
} 

The above algorithm can also be programmed without a while-loop in a purely recursive way: 
 
int fibo(int n) { 
    if (n == 1) return 1; 
    if (n > 1) return fibo(n,2,1,1); 
    return 0; // never happens; compiler! 
} 
 
int fibo(int n, int k, int fk, int fkm1) { 
    // Assertion: k<=n and fk=f(k) and fkm1=f(k-1) 
    if (k == n) return fk; 
    if (k < n) return fibo(n, k+1, fk+fkm1, fk); 
    return 0; // never happens; compiler! 
} 

 How can we implement the idea in Prolog? 
 
 
% fibo(N,F) :- F is the N'th Fibonacci number 
% Iterative solution 

 
 
 
 
 
 
 
 
% fibo(N,F,K,FK,FKm1) :- F = fib(N), we know  
% that FK = fib(K) and FKm1 = fib(K-1). (i,o,i,i,i) 
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Exercises 

(3.1) The predicate fact/2 as developed in the course is not tail-recursive. Try to apply the idea 
we discussed for the fibo problem in order to rewrite fact/2 in such a way that it becomes an 
iterative (tail-recursive) program. 

(3.2) In a (height-) balanced binary tree the following property holds for every node: the 
depth of its left subtree and the depth of its right subtree differ by not more than 1. How many 
different balanced binary trees of depth 5 are there? Write a predicate nbbt(D,N) to 
calculate the number N of distinct balanced binary trees of depth D. 

(3.3) Write a predicate prime(P) that succeeds if and only if P is a prime number. 

(3.4) One of the operations often used in cryptology is modular exponentiation:  (A^B) mod 
M, where A, B are non-negative integers, M is a positive integer. Write a predicate 
power_mod(A,B,M,P) that computes (A^B) mod M and returns the result in P. Try to 
keep intermediate results as small as possible: they should never exceed M*M. Can your 
program handle to query  ?- power_mod(9876,2345678,1357,P) ? 

(3.5) The harmonic series Sn = 1 + 1/2 + 1/3 + 1/4 + 1/5 + ... + 1/n , n = 1, 2, 3, ... is known to 
be divergent, i.e. Sn exceeds every given limit M, if only n is choosen sufficiently large. Write 
a Prolog program that calculates the smallest n such that Sn  > M, for a given limit M. 

(3.6) Egyptian camel problem: Find four positive integers, A, B, C, and D that satisfy the 
equation  1/A + 1/B + 1/C + 1/D = 1.  Hints: (1) Without loss of generality we can assume 
that A <= B <= C <= D. (2) Use the predefined predicate between/3 to generate integer 
values. (3) The original camel puzzle was A = 2, B = 3, C = 9. 

 

Summary 

• Built-in predicates are used to do arithmetics. 

• Arithmetic operations have to be explicitely requested with the predefined predicate 
is. There are built-in predicates associated with the predefined operators +, -, *, /, //, 
mod, and others. 

• At the time when arithmetic evaluation is carried out, all arguments must already be 
instantiated to numbers. 

• The values of arithmetic expressions can be compared by operators such as <, >, =<, 
etc. These operators force the evaluation of their arguments. 

• Iterative algorithms can be programmed in Prolog using accumulator varibales and 
tail-recursive auxiliary predicates. 
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4. Lists and Trees 

The list is a simple data structure widely used in non-numerical programming. In Prolog it is 
probably the most frequently used data structure. Graphically, a list is a linear sequence of 
items. 

In chapter 1 we have defined the descendants/2 predicate, which returns the set of  
descendants of a given person, as in 

   ?- descendants(Ds,silvia). 

   Ds = [jean,olga,otto,pascal,tina] 

The result of this query is a list of atoms in Prolog notation. Other examples of Prolog lists 
are: 

   [2,3,5,7,11,13] 

   [olga, 17, book('Bratko','Prolog', N), 35.4, a] 

 

The last example shows that the items of a list do not have to be of the same type. 

 

A list containing  no elements is called empty. The empty list is a special Prolog atom:[]. 

If a list is not empty it can be viewed as consisting of two things: 

(1) the first item, called the head of the list 

(2) the remaining part of the list, called the tail. 

For example, in the list [jean,olga,otto,pascal,tina], the head of the list is the 
atom jean, its tail is the list [olga,otto,pascal,tina] 

It is important to note that head and tail of a list have different quality. In general, the head 
can be any Prolog object (constant, variable, compound term); the tail is always a list. 

 

In order to allow the programmer to separate head and tail of a list, Prolog provides a 
syntactical extension, the vertical bar (|). Consider, for example, the following goals: 

   ?- [Head|Tail] = [jean,olga,otto,pascal,tina]. 

   Head = jean 
   Tail = [olga,otto,pascal,tina] 

   ?- [Head|Tail] = [4711]. 

   Head = 4711 
   Tail = [] 

   ?- [Head|Tail] = []. 
   No 
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In fact, the vertical bar notation is more general: we can list  any number of elements, 
separated with commas, followed by '|'  and the list of remaining items. For example: 

   ?- [A,B,C|Tail] = [jean,olga,otto,pascal,tina]. 

   A = jean 
   B = olga 
   C = otto 
   Tail = [pascal,tina] 

 

Let us now develop some predicates to manipulate lists. Whenever dealing with lists, 
remember their recursive definition: 

A list is either empty or it consist of a first item (head) and a 
remainder (tail) which is itself a list. 

 
 
% element(X,L) :- X is an element of the list L 
%    Note: See the predefined predicate member/2 
 
 
 
 
 
 
 
 
% prefix(P,L) :- P is a prefix list of the list L 
%    Example: [2,3,5] is a prefix list of [2,3,5,7,11] 
 
 
 
 
 
 
 
 
% suffix(S,L) :- S is a suffix list of the list L 
%    Example: [5,7,11] is a suffix list of [2,3,5,7,11] 
 
 
 
 
 
 
 
 
% partlist(U,L) :- U is a consecutive part of the list L 
%    Example: [5,7] is a partlist of [2,3,5,7,11] 
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% conc(X,Y,Z) :- the list Z is the result of concatenating 
%    the list X and the list Y 
%    Note: See the predefined predicate append/2 
 
 
 
 
 
 
 
 
% del(X,L1,L2) :- the list L2 is obtained by deleting  
%    the element X from the list L1 
%    Note: See the predefined predicates delete/3 and select/3 
 
 
 
 
 
 
 
 

We can use the del/3 predicate to elegantly define another predicate that inserts elements into 
a list: 

% ins(X,L1,L2) :- L2 is the result of inserting X into the 
%     the list L1 
 
 
 
 
 
 
 
Using del/2 or ins/2, it is fairly easy to write a predicate that permutes the elements of a list: 
 
% permu1(L1,L2) :- L2 is a permutation of the list L1 
 
 
 
 
 
 
 
 
 
% permu2(L1,L2) :- L2 is a permutation of the list L1 
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For the next predicates we assume that the elements of the lists are numbers. 
 
% sum_list(L,S) :- S is the sum of the numbers in the list L 
 
 
 
 
 
 
 
 
 

The above predicate sum_list/2 is not tail-recursive. An alternative is the following: 
 
% sum_list(L,S) :- S is the sum of the numbers in the list L 
 
 
 
 
% sum_list(L,S,A) :- S is A plus the sum of the numbers in L 
 
 
 
 
 
 
 
% scalar_product(X,Y,P) :- P is the dot-product of the vectors 
%    X and Y. Vectors are lists in Prolog. 
 
 
 
 
 
 
 
 
 
 
 
We have emphasized the fact that a non-empty list is composed of two things, a head and a 
tail. We can therefore conceive a non-empty list as a compound term having two arguments: 
head and tail. Prolog uses the special functor ./2 to denote this sort of term. Thus, the 
bracket notation is nothing else than a convenient way of writing compound terms with this 
functor. Example: 
 
[alfa,beta,gamma]  is the same as:  
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Exercises  

(4.1) A probability vector is a list of non-negative real values whose sum equals 1. Write a 
predicate probability_vector/1 that checks whether a given list is a probability 
vector. Allow for a certain numerical inaccuracy due to rounding errors. Try to find a solution 
which fails as soon as possible if the list does not satisfy the rules for a probability vector. 

(4.2) Write a predicate maximum/2 to find the greatest number in a list. What is a sensible 
value for the maximum of an empty list? 

(4.3) Write a predicate monotonic/1 to test whether a given list is a (non-strictly) 
monotonic sequence of numbers. We define: an empty list is not monotonic. 

(4.4) Develop a predicate range/3 to generate the list of all integers of a given interval, in 
ascending order. Example: range(3,7,L) should unify L with the list [3,4,5,6,7]. 
range(X,Y,L) should fail if  X > Y. Do not use the predefined predicate between/3. 

(4.5) Write a predicate rev/2 to reverse the order of the element of a list. Example: 
rev([2,3,5,7],L) should unify L with [7,5,3,2]. Use the predefined predicate 
time/1 to compare your solution with a predefined predicate reverse/2 (if these 
predefined predicates are available). 

(4.6)  A palindrome is a list that reads the same forward and backward, e.g. [1,3,7,11,7,3,1] or 
[o,t,t,o]. Write a predicate palindrome/1 to check whether or not a list is a palindrome. 

(4.7) Try to find out what exactly the following predicate does: 
 
sqr(X,Y) :- number(X), Y is X*X. 
sqr([],[]). 
sqr([X|Xs],[Y|Ys]) :- sqr(X,Y), sqr(Xs,Ys). 
 
Example goal:  ?- sqr([1,[2,3]],M). 

(4.8) Define a predicate subsets/2 that generates all subsets of a given set. Example: 
subsets([a,b,c],S) should unify S (via backtracking) with [a,b,c], [a,b], 
[a,c], [a], [b,c], [b], [c], and []. 

(4.9) Data compression through run length coding. A list of items, e.g. [2,2,2,1,1,7,7,7,7, 
5,5,5] shall be encoded into a list of codes, e.g. [c(2,3),c(1,2),c(7,4),c(5,3)], where each 
element c(X,N) represents a "run" of N consecutive items X. Write two predicates, 
encode/2 to translate a list of items into a code list, and decode/2 to perform the inverse 
translation. 

(4.10) Lions club. In a zoological garden there is a row of cages where wild animals can be 
locked up. However, if two lions are confined in adjacent cages they start roaring at each 
other and get very aggressive. Therefore one has decided to never put two lions next to each 
other, but to let at least one empty cage between them. If there are n cages in a row, how 
many ways are there to lock up lions? Write a predicate lions/2 that generate lists of 1's 
and 0's denoting lions and empty cages respectively. A description of the predicate could be:  
 
% lions(N,L) :- L is a list of N 1's and 0's, denoting lions 
%    and empty cages, respectively. Between two lions there 
%    is at least one empty cage. 
% (integer, list)  (i,i), nondeterm (i,o) 

A solution of  lions(7,L) would be (among many others) L = [0,1,0,0,1,0,1]. 
The predicate lions/2 should generate all solutions by backtracking. 
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How many solutions are there for a given N? 

Binary Trees 

 

A binary tree is either empty or it consists of a root, a left subtree, 
and a right subtree. Both subtrees are themselves binary trees. 

 

This very useful definition can be immediately translated into Prolog terms: 

• An empty tree is denoted by the atom nil. 

• A non-empty tree is written as a term  t(X,L,R), with X representing the root and 
L and R representing the left and right subtree, respectively. 

 

Example: 

 T = t(a,t(b,nil,nil),t(c,t(d,nil,nil),nil)) 

 

 

 

Using this notation, we can implement many algorithms on binary trees as comparatively 
simple Prolog predicates. For the moment we assume that the binary trees are instantiated 
when the following predicates are invoked. In chapter 6 we are going to discuss other flow 
patterns as well. 
 
%  nodes(T,N) :- the binary tree T has N nodes 
% (tree,integer);  (i,*)  
  
 
 
 
 
 
 
 
 
 
 
 
% depth(T,D) :- the binary tree T has depth D.  
% (tree,integer); (i,*) 
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% leaves(T,L) :- the binary tree T has L leaves. 
% (tree,integer); (i,*) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
% cbal(T,N) :- T is a completely balanced tree with N nodes  
% (tree,integer); (i,*) 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
almost_equal(X,Y) :-  
 
 
 
% preorder(T,L) :- L is the preorder sequence of T 
% (tree,list); (i,i),(i,o) 
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We conclude this section with a discussion of a binary search tree which is sometimes also 
called a binary dictionary. Such a data structure can be used if there is an ordering relation 
between the data stored in the nodes. 

We say that a non-empty tree t(X,Left,Right) is ordered from left to right if: 

(1)  all the nodes in the left subtree, Left, are less than X; and 

(2) all the nodes in the right subtree, Right, are greater than X; and 

(3) both subtrees are also ordered. 

We assume that there are no duplicate data elements. Furthermore, we introduce comparison 
operators @< and @> to denote 'less than' and 'greater than', with respect to a standard order 
of terms. 

Suppose now that T is a binary dictionary, and we want to find out, whether a data element X 
is stored in one of the nodes of T: 

% in(X,T) :- X is in the binary dictionary T 

 

 

 

 

 

 

How can we insert a new data item into an existing binary dictionary? The following 
predicate does the job: 

% add(X,T1,T2) :- the binary dictionary T2 is obtained by  
% adding the item X to the binary dictionary T1 

 

 

 

 

 

 

 

 

Deleting a node from a binary tree is a more serious problem which we leave as a challenging 
exercise. 
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General Trees 

A general tree, or simply  tree, consists of a distiguished node, called the root, and an ordered 
set of subtrees which are trees themselves. 

A forest is an ordered set of trees. 

Note that with this set of definitions a tree cannot be empty, but a forest can. 

In Prolog, we can represent a an ordered set as a list, and therefore the natural representation 
of a tree is a term  t(Root,Forest), where Forest is a list that is either empty or contains 
subtrees, which in turn are terms of the type t(Root,Forest). 

 

Example: 

t(a,[t(b,[t(c,[]),t(d,[]),t(e,[])]), 

     t(f,[t(g,[])]), 

     t(h,[t(j,[]),t(k,[])]) 

    ]) 

 

 

Evidently, the above notation is not very easy to trace for a human reader. A much more 
convenient notation for the above tree would be: 

 

 

We shall return to this notation in a moment. But first, let us write some simple predicates: 
 
 
% nodes(T,N) :- the general tree T has N nodes 
% (tree,integer) (i,*) 
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The degree of a general tree is defined as the maximum number of subtrees that a node of the 
tree has. For instance, the tree of our above example has degree 3.  
 
% degree(T,D) :- the general tree T has degree D 
% (tree,integer) (i,*) 
 
 
 
 
 
 
 
 
 
 
 
 

 

We shall now develop a predicate which prints a tree in the human-friendly string notation 
mentioned at the beginning of this section. The starting point is the syntax of the string 
representation. 

 

 

 

 

 

 

 

 

% print_tree(T) :- print the tree T in human-friendly form 

 

 

 

 

 

 

 

It should be noted that the above predicate print_tree/1 performs a depth-first order tree 
traversal. 
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Exercises 

(4.11) Define a predicate is_tree/1 to check whether or not a given (instantiated) term is a 
binary tree, according to our definition.  

(4.12) Write a predicate hbal/2 with the following meaning: 
 

% hbal(T,D) :- T is a height-balanced tree of depth D 
% (binary_tree,integer); (i,*) 
 

(4.13) Define predicates inorder/2 and  postorder/2 with the following meaning: 
 

% inorder(T,L) :- L is the inorder sequence of T 
% (binary_tree,list) (i,*) 

 
% postorder(T,L) :- L is the postorder sequence of T 
% (binary_tree,list); (i,*) 

(4.14) Modify the predicate in/2 by adding a third argument Path, so that Path is a list 
representing the path between the root of the binary dictionary and the item X. 

(4.15) Develop a predicate balanced_tree/2 to create a completely balanced binary 
dictionary with a given number N of nodes. The nodes should contain the integer numbers 1 
to N as data items. 

(4.16) Define a predicate del/3 to delete a given node (holding a data item X) from a binary 
dictionary. Hint: A predicate delmin/3  which deletes the minimal element from a binary 
dictionary could be helpful in certain situations. 

(4.17) Write a predicate depth/2 to determine the depth of a general tree. 

(4.18) Develop a predicate bottom_up/2 that traverses a general tree in bottom-up order 
and puts the contents of the nodes in a list. 

Summary 

• The list is a frequently used data structure. It is either empty or consists of a head and 
a tail which is a list as well. Prolog provides a special notation for lists. 

• Common operations on lists are: membership, prefix, suffix, partlist, concatenation, 
adding and removing an element,  permutation.  

• A binary tree is either empty or consists of a root node and two subtrees which are 
binary trees as well. It is elegantly represented in Prolog using a special atom (nil) 
and a term t(Root,Left,Right). Several tree traversal methods can be programmed as 
recursive predicates in a most succinct way. 

• A general tree consists of a root node and a (possibly empty) ordered set of subtrees 
which are general trees themselves. An ordered set of trees is called a forest. In 
Prolog, a general tree can be represented as a term t(Root,Forest), where Forest is 
either [] or a list of terms representing general trees. 
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5. Programming Techniques 

Generate-and-Test 

Many combinatorial problems can be successfully solved using a method commonly known 
as generate-and-test. One process, or routine, generates the set of of candidate solutions to the 
problem, and another process, or routine, tests the candidates, trying to find one, or all, of the 
candidates which actually solve the problem. 

Typically, generate-and-test programs are easier to construct than programs that compute the 
solution directly, but they are also less efficient. A standard technique for optimizing 
generate-and-test programs is to try to "push" the tester inside the generator, as "deep" as 
possible. We shall develop this concept in this chapter. 

In Prolog, it is easy to write generate-and-test programs. Such programs typically have the 
following main structure: 

 

 

The following combinatorial problem is typical for many others, which can be successfully 
solved using the generate-and-test paradigm. 

Problem: The postal service of Utopia sells four different types of stamps: 1, 4, 12, and 21 
UCs (Utopian Cents). Utopian law does not allow to put more than five stamps on a letter. 
How can a given postage amount A be composed? 

Examples: 37 = 21 + 12 + 4   or   28 = 21 + 4 + 1 + 1 + 1 

For some amounts (e.g. A = 28) there are several different solutions, for others there is no 
solution (e.g. A = 73). 

Try  A = 32. 

 

 

We are going to develop an elegant solution in a step-wise approach. For all versions, we 
suppose the following description of the main predicate: 

 
% post(A,Ss) :- Ss is a list of not more than 5 stamps  
% with a total value of A  (+,?) 

 

We assume a predicate stamp/1 with the following facts: 
 
stamp(21). 
stamp(12). 
stamp(4). 
stamp(1). 
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In a first version, we solve the problem with a pure generate-and-test concept: 
 

 
 
 
 
 
% stamplist(L,N) :- L is a list of not more than N stamps 
% (?,+) 
 
 
 
 
 
 
 
 
 
 
 
 
% sum(L,S) :- S is the sum of the numbers in the list L. 
 
sum(L,S) :- sumlist(L,S,0). 
 
sum([],S,S). 
sum([X|Xs],S,A) :- B is A + X, sum(Xs,S,B). 

The above solution is correct. However, we get all permutations of the stamp list. How can we 
avoid this? One possibility is to take care that the stamps in the list are sorted descendingly. 
This can be achieved as follows (version 2): 

 
 
 
 

 
 
% stamplist(L,N,M) :- L is a list of not more than N 
% stamps. The stamp values in L are in (non-strictly) 
% descending order and the first stamp in L has a value 
% not greater than M. (?,+,+) 
 

 

 

 

 

 

This solution correctly avoids permutations. However, our program is still rather inefficient 
because many solution candidates, i.e. stamp lists, with a sum much greater than the goal 
amount A are generated in the process. For instance, in finding a solution for A = 32, lists like 
[21,21,21,21,21] are generated and then rejected by the tester sum/2. In order to improve 
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this, we can  push the tester sum/2 into the generator stamplist. It turns out that we can 
even eliminate the tester completely. This is our version 3: 

 
 
 
% stamplist(L,N,M,A) :- L is a list of not more than N 
% stamps. The stamp values in L are in (non-strictly) 
% descending order, the first stamp in L has a value 
% not greater than M and the total value of the stamps  
% in L is A. (?,+,+,+) 
 
 
 
 
 
 
 
 
 
 

 

The efficiency improvement can be demonstrated when we compare the number of  
inferences reported for the goal: 

 
?- time(post(32,Stamps)).  Version 1: 
 
       Version 2: 
 
       Version 3: 

 

Another famous problem in computer science is the Eight Queens Problem: The objective is 
to place eight queens on a chessboard so that no two queens are attacking each other; i.e., no 
two queens are in the same row, the same column, or on the same diagonal. We generalize 
this original problem by allowing for an arbitrary dimension N of the chessboard.  

We represent the positions of the queens as a list of numbers 1..N. 
Example: [1,5,8,6,3,7,2,4] means that the queen in the first column is 
in row 1, the queen in the second column is in row 5, etc. By using 
the permutations of the numbers 1..N we guarantee that no two 
queens are in the same row. The only test that remains to be made is 
the diagonal test. A queen placed at column X and  row Y occupies 
two diagonals: one of them, with number C = X-Y, goes from 
bottom-left to top-right, the other one, numbered D = X+Y, goes 
from top-left to bottom-right.  

The first version is a simple generate-and-test solution. 
 
% queens(N,Qs) :- Qs is a solution of the N-queens problem 
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The following predicates, which have been introduced earlier in the course, are used as the 
solution candidate generator: 

 
% range(A,B,L) :- L is the list of numbers A..B 
 
range(A,A,[A]). 
range(A,B,[A|L]) :- A < B, A1 is A+1, range(A1,B,L). 
 
% permu(Qs,Ys) :- Ys is a permutation of the list Qs 
 
permu([],[]). 
permu(Qs,[Y|Ys]) :- del(Y,Qs,Rs), permu(Rs,Ys). 
 
del(X,[X|Xs],Xs). 
del(X,[Y|Ys],[Y|Zs]) :- del(X,Ys,Zs). 
 

The tester is the following predicate: 

 
% test(Qs) :- the list Qs represent non-attacking queens 

 

 
 
% test(Qs,X,Cs,Ds) :- the queens in Qs, representing 
% columns X to N, are not in conflict with other queens 
% (in columns 1 to X-1) which occupy the diagonals  
% Cs and Ds (+,+,+,+) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Our program is correct; all the 92 solutions to the Eight Queens Problem are found in less 
than a second on a modern PC. However, as in the previous example, many hopeless solution 
candidates are completely generated and then rejected by the tester. We can do much better by 
pushing the tester inside the generator, as follows: 

 
% queens(N,Qs) :- Qs is a solution of the N-queens problem 
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The combined generator/tester is the following predicate: 
 
% permu_test(Ys,Qs,X,Cs,Ds) :- Qs is a permutation of the 
% numbers in the list Ys, representing queens in columns X 
% to N, which are not in conflict with other queens (in 
% columns 1 to X-1) which occupy the diagonals Cs and Ds 
% (+,?,+,+,+) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Compare the number of  inferences reported for the goal: 
 
?- time((queens(8,Qs), write(Qs), nl, fail)).  

 
 
 
Version 1: 
 
 
Version 2: 
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Tracing Prolog Programs  

There are several predefined predicates which enable the Prolog programmer to watch his or 
her program as it runs. One of them, trace/0, turns on exhaustive tracing, which means that 
the program is halted several times during the execution of every goal (and subgoal). The 
four-port-tracing model of Prolog can best be visualized with boxes that symbolize 
predicates. 

 

 

 

 

 

Calling a goal means entering the CALL port of the corresponding predicate box. If the goal 
can be satisfied, the box is exited through the EXIT port. Later on, it can happen that another 
goal "further down the line" fails, which causes the program control to return to the predicate 
box from its "rear" entrance (which is not a port in the four-port tracing model). If there is no 
(more) way to satisfy the goal the box is exited through the FAIL port. 

Let us now consider the internal structure of the predicate box. As an example, we take the 
well-known brother_in_law/2 predicate: 

 
% brother_in_law(X,Y) :- X is the brother-in-law of Y. 
 
brother_in_law(X,Y) :- brother(X,P), married(P,Y). 
brother_in_law(X,Y) :- husband(X,W), sister(W,Y). 

 

 

 

 

 

 

 

 

 

According to the two rules of the predicate brother_in_law/2, its box is subdivided into 
two main sub-boxes, each of them containing the predicate boxes of the respective right-hand 
sides. A REDO port connects the two sub-boxes. Furthermore,  there is a "switchbox" at the 
right end of the main predicate box. The position of the "switch" is memorized and used to 
find the right way back, if program control should return through the "rear entrance". Finally, 
there is a small box at the bottom which really isn't important, except for the coherent 
interpretation of tracing outputs. It only connects the REDO port of the last sub-box  with the 
FAIL port of the main box. 
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Each predicate box within a sub-box is, of course, again subdivided internally, according to 
this scheme. The effect is that the boxes are recursively nested just like Russian "Babouschka" 
dolls. For example, the very first sub-box of the brother_in_law/2 predicate,  
brother/2, has an internal structure, according to the single rule of this predicate: 

 
   brother(X,Y) :- parent(P,X), parent(P,Y), male(X), X \= Y. 

 

 

 

 

 

 

We shall now trace the execution of the following goal: 

   ?- leash(-all), trace, brother_in_law(romeo,rosa). 
    

   Call:  (  6) brother_in_law(romeo, rosa) 
   Call:  (  7) brother(romeo, L344) 
   Call:  (  8) parent(L392, romeo) 
   Fail:  (  8) parent(L392, romeo) 
   Redo:  (  7) brother(romeo, L344) 
   Fail:  (  7) brother(romeo, L344) 
   Redo:  (  6) brother_in_law(romeo, rosa) 
   Call:  (  7) husband(romeo, L344) 
   Exit:  (  7) husband(romeo, julia) 
   Call:  (  7) sister(julia, rosa) 
   Call:  (  8) parent(L392, julia) 
   Exit:  (  8) parent(alex, julia) 
   Call:  (  8) parent(alex, rosa) 
   Exit:  (  8) parent(alex, rosa) 
   Call:  (  8) female(julia) 
   Call:  (  9) male(julia) 
   Fail:  (  9) male(julia) 
   Exit:  (  8) female(julia) 
   Call:  (  8) julia \= rosa 
   Exit:  (  8) julia \= rosa 
   Exit:  (  7) sister(julia, rosa) 
   Exit:  (  6) brother_in_law(romeo, rosa) 
 
Yes 

 

It should be mentioned that the recursive box structure we used to explain tracing, is in fact 
established dynamically during the execution of the program. It is a picture for the dynamics 
of the stack, which is used, just like in other programming languages, to store procedure calls  
(= goals). In general, the maximum depth of the recursion depends on the particular goal and 
cannot be predicted at the time when the program is written. The actual depth of the recursion 
is indicated in the trace listing. 
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Controlling Backtracking 

Prolog provides a system predicate, called cut, for affecting the procedural behaviour of 
programs. The cut, denoted !, can be used to prevent Prolog from following fruitless 
computation paths that the programmer knows could not produce solutions. 

The use of cut is controversial. Many of its uses can only be interpreted procedurally, in 
contrast to the declarative style of programming which makes the real power of Prolog. 
However, used sparingly, the cut can considerably improve the efficiency of programs, 
without compromising their clarity. 

We start with a program that separates a list: 
 
% split(Ls,Es,Os) :- the list Ls of integers is split 
%    into two lists, Es and Os, containing even and odd 
%    numbers, respectively. 
% (list,list,list)  (i,o,o) 

 

 

 

 

 

 

 

 

 

Splitting a list of integer numbers Ls into two lists according to the specification of the 
split/3 predicate is a deterministic operation. Only one of the three clauses applies for 
each goal (and sub-goal) in a given computation. The programmer knows that if the second 
clause can be successfully applied, the third is sure to fail. However, in general, the Prolog 
system cannot find out whether or not two clauses are mutually exclusive. Therefore it must 
leave choice points in order to allow for later REDO calls. Technically, this means that 
recursive predicate calls must be kept on a stack.  This can make the program execution 
inefficient, both in terms of runtime and memory usage. 

We can help the system by indicating that clauses are mutually exclusive, i.e. the computation 
is determinsitic. In our example, this is done with a cut (!) in the second clauses of the 
split/3 predicate. To show the difference, we experiment with the following goals: 

  
?- split([2,3,4,5,7,0,11,12],Es,Os). 
 
?- time(split([2,3,4,5,7,0,11,12],Es,Os)). 
 
?- time((split([2,3,4,5,7,0,11,12],Es,Os), fail)). 
 
?- space(split([2,3,4,5,7,0,11,12],Es,Os)). 
 



Logic Programming and Prolog 44 
______________________________________________________________  

?- split(L,[2,4,8,0,12],[1,5,3,7]). 
 

The exact way how the cut works can best be explained in the box notation we know from the 
previous section. Consider the following Prolog program: 

 
a(1). 
a(2). 
b(1). 
c(1). 
c(2). 
d(1). 
d(2). 
 
g([0,0,0,0]). 
g([A,B,C,D]) :- a(A), b(B), !, c(C), d(D). 
g([7,7,7,7]). 
 

 

 

 

 

 

 

 

 

 

Try to satisfy the following goals (use also trace and space/2): 
 
?- g(X). 
 
?- g([X,7,X,X]). 

 

Operationally, the cut is handled as follows: The goal, !, succeeds and commits Prolog to all 
the choices made since the parent goal (in our example: g) was unified with the head of the 
clause the cut occurs in.  

Arithmetic calculations are very often purely deterministic, and therefore the cut is often used 
in the arithmetic predicates. As an example, let us reconsider the factorial predicate: 
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We have said that the cut can be used to express determinism (as we did in the examples 
split/3 and fact/2). Textbooks on Prolog programming have impressed a name for cuts 
which are used in this way: 

 

 

Typically, green cuts are added to correct logic programs, and nothing else is changed. 

There is, however, a more dangerous use of the cut: 

 

 

In our split/3 program, why shouldn't we omit the test goal odd(X) from the third 
clause? If a number isn't even, it has got to be odd! 

But, what happens, if  we do omit the test and call the goal: 
 
?- split([1,2,3,alfa,5,6,7],Es,Os) 

We might argue that this was not originally intended. However, the behaviour of the program 
has changed in a way that the specification of the split/3 predicate is no longer valid. 

A more serious example is the following predicate: 
 
% minimum(X,Y,M) :- M is the minimum of X and Y 
 
 
 
 
 
 
 
?-  

 

It should be noted that the predicate minimum/3 gives correct results when the flow pattern 
(i,i,o) is used. But, for the flow pattern (i,i,i) the program is no longer correct! 

As already pointed out, red cuts are a very dangerous thing. They may completely destroy the 
declarative clarity of a logic program. For this reason they should be avoided as much as 
possible by the "normal" programmer. 

There are a few situations in which red cuts are needed. The most prominent one is the cut-fail 
combination, as used in the definition of negation-as-failure. In order to avoid a collision with 
the predefined not/1 predicate we define our own negation predicate: 

 
% neg(G) :- the goal G cannot be proven 

 



Logic Programming and Prolog 46 
______________________________________________________________  

The potential danger of negation-as-failure can be demonstrated with a simple example: 
 
unmarried_student(X) :- neg(married(X)), student(X). 
 
student(romulus). 
 
married(remus). 
 
 
?- unmarried_student(X). 
 

It should be noted that the built-in predicate not/1 (or \+/1) is defined in a similar way and 
gives the same incorrect result as our private negation predicate neg/1. 

As a general rule, in order to prevent this type of errors, care should be taken that there are no 
uninstantiated variables inside a negated goal. In our example, the problem can be solved 
with the clause: 

 
unmarried_student(X) :- student(X), neg(married(X)). 

Our example shows, that a cut, even "hidden" in another predicate, can have an effect on the 
correct goal order in a clause. 

Our last case shows, how the cut can be used to turn Prolog into an ordinary procedural 
programming language: 

 
% if_then_else(C,T,E) :- if C then T else E 

 

 

 

 

 

We conclude this section with three rules of programming style: 

• Don't use cuts. 

• Don't use cuts, except when you are sure you need them. 

• Don't use cuts, except perhaps green ones, to improve space and/or runtime 
efficiency. Green cuts express determinism and are added to correct logic programs. 
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The Prolog Program Database 

Prolog offers the possibility that a running program modifies itself. Facts and rules can be 
added and removed while a program is running. This feature is controversial. Some people 
argue that programs and data should be strictly separated. On the other hand, some problems 
of artificial intelligence seem to require this feature. 

Clauses can be added to a program using one of the assert/1 predicates: 

 

 

A typical way of using assert/1 is to store derived solutions for later use. This technique is 
sometimes called caching. 

 Let us reconsider the primitive version of the Fibonacci predicate: 
 
% fib(N,F) :- F is the N'th Fibonacci number 
 
fib(0,1). 
fib(1,1). 
fib(N,F) :- N > 1, 
   N1 is N - 1, N2 is N - 2, 
   fib(N1,F1), fib(N2,F2), 
   F is F1 + F2. 

We already know that this solution is inefficient, because intermediate results are calculated 
and thrown away. If they were memorized, the program could be much more efficient. In the 
following version of the program, we store all the known Fibonacci numbers in a database 
predicate fibo/2: 

 
% fibo(N,F) :- F is the known N'th Fibonacci number 
 
 
 
 
 
% fib(N,F) :- F is the N'th Fibonacci number 

 

 

 

 

 

We can demonstrate the effect of clause assertion with the following goal sequence: 
 
?- listing(fibo). 
 
?- fib(20,F). 
 
?- listing(fibo). 
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Clauses can be removed from the program database with the retract/1 and 
retractall/1 predicates. In our example, the predicate fibo/2 can be reinitialized to its 
original state with the following predicate: 

 
init_fibo :-  
   retractall(fibo(_,_)),  
   assert(fibo(0,1)),  
   assert(fibo(1,1)). 
 

In the Fibonacci example, the program stores new facts, i.e. ground terms during execution. 
However, self-modifying Prolog programs can be much more sophisticated, but also more 
risky! An example is the following solution of the famous problem of the Towers of Hanoi. 

 
% hanoi(N,A,B,C,Ms) :- Ms is the sequence of moves required 
%    to move N discs from peg A to peg B using peg C as an 
%    intermediary according to the rules of the Towers of 
%    Hanoi puzzle. 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

The way hanoi/5 works can best be understood by studying the following goal sequence: 
 
% ?- listing(hanoi). 
 
% ?- time(do_hanoi(5,[a,b,c],Ms)). 
 
% ?- listing(hanoi). 
 
% ?- time(do_hanoi(5,[1,2,3],Ms)). 
 

 

It should be mentioned, once again, that many computer scientists think that self-modifying 
programs are a dangerous and archane concept - dirty tricks - that should be avoided. 
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Loops and Extra-Logical Predicates 

There is a class of predicates in Prolog that lie outside the logic programming model, and are 
called extra-logical predicates. These predicates achieve a side effect in the course of being 
satisfied as a logical goal. Input/output predicates are the most prominent group of extra-
logical predicates. 

In general, Prolog implementations provide a large variety of different forms of I/O 
predicates. We are not going to discuss the technical subtleties here. Consult the manual of 
your Prolog implementation for details. 

The basic predicate for input is read/1. The goal read(X) reads a term from the current 
input stream, usually from the terminal, and unifies it with X. read(X) succeeds if this 
unification is successful, otherwise it fails. Normally, X is a variable argument; then read(X) 
always succeeds (provided there is no syntax error in the term read from the input stream).  

The basic predicate for output is write/1. The goal write(X) prints the term X on the 
current output stream, usually the terminal (screen). write(X) always succeeds.  

Neither read(X) nor write(X) nor any other I/O predicate give alternative solutions on 
backtracking; i.e. they normally succeed once, but never more than once. 

The following is a first simple example for basic I/O: 
 
 
print_father :- 
   write('Whose father are you looking for:'), 
   read(Child), 
   find_father(Father,Child), 
   writeln(['The father of ', Child, ' is ', Father,'.']). 
 
find_father(F,C) :- father(F,C), !. 
find_father(unknown,_). 
 
writeln([X|Xs]) :- write(X), writeln(Xs). 
writeln([]) :- nl. 

 

Prolog allows for I/O redirection using streams. See the descriptions of the predefined 
predicates see, tell, seen, told, seeing, telling, and maybe others.  

Furthermore, there are predicates for simple character I/O, for more sophisticated term I/O, 
and, depending on the implementation, for other forms of formated I/O and  file I/O and for 
interaction with the underlying operating system. 

Our example print_father/0, above, uses a useful utility predicate writeln/1, 
analogous to the Pascal command. (Actually, in SWI-Prolog, we could have used 
writef/2, instead.) 

writeln/1 shows a first form of program loop:  tail-recursion. 

We can construct interactive loops based on the idea of tail-recursion. The technique is well-
established in procedural programming, under the name 'look-ahead read' The following 
example shows the method. Suppose, in the above example, we want to give the user the 
opportunity to find the father of more than one person. 
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print_fathers :-  
   write('Fathers. Type done to stop the loop.'), nl, 
   get_person(P), print_father(P). 
 
print_father(done) :- !. 
print_father(C) :-  
   find_father(F,C), 
   writef('The father of %w is %w.\n',[C,F]), !, 
   get_person(P), print_father(P). 
    
get_person(P) :-  
   nl, write('Whose father are you looking for:'), read(P). 

 

The general scheme for tail-recursion based loops can be formulated generically as follows: 

 

 

 

 

 

Due to the cuts in the above do_/1 predicate, the program is iterative and deterministic. It 
can be run efficiently on a system with tail recursion optimization, always using the same 
small amount of stack space. Note that our generic predicate get_/1 must provide the atom 
done_ at the end of the loop.  

Tail-recursion based loops are, in some sense, the equivalent of while loops in other 
programming languages. 

 

In Prolog, there is another method to program loops, which is frequently used in situations, 
where multiple solutions are found using backtracking. These loops are called failure-driven 
loops, and they correspond, more or less, to repeat loops in other programming languages. 
Failure-driven loops are useful only when used in conjunction with extra-logical predicates 
with side effects, e.g. I/O predicates. 

As an example, let us study a program to print the (known) grandparents of a given person. 
 
 
print_grand_parents :- 
   write('Whose grand-parents are you looking for:'), 
   read(Person), 
   print_grant_parents(Person). 
 
print_grant_parents(P) :- 
   grand_parent(G,P), 
   writef('%w is a grand-parent of %w.\n',[G,P]), 
   fail. 
print_grant_parents(P) :- 
   writef('%w has no (more) known grand-parents.\n',[P]). 
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The repetition in failure-driven loops is due to a predicate, in our example 
grand_parent/2, which produces several solutions using backtracking. 

There is a funny predicate, repeat/0, which does nothing else than producing an unlimited 
number of alternative solutions by backtracking. It is defined as follows: 

 

 

repeat/0 must be used with a goal that plays the role of an 'until' statement in other 
programming languages. The following example demonstrates the technique: 

 
do_squares :- 
   write('Squares. Enter 0 to stop the loop.'), nl, 
   repeat, 
      write('x   ='), read(X), 
      Y is X*X, 
      write('x^2 = '), write(Y), nl, 
   X = 0, !. 
 

In some Prolog systems, failure-driven interactive loops are more efficiently implemented 
than tail-recursion based loops. This may be important for cases like mouse event responses 
and the like. 

We conclude this discussion about loops with a construct similar to a for-loop in other 
programming languages. The following predicate generates all integers in a given interval by 
backtracking. In many implementations, the predicate is predefined. 

 
% between(Low,High,Value) :- Low and High are integers, 
%    High >= Low. If Value is bound to an integer, 
%    Low <= Value <= High. When Value is a variable it is 
%    successively bound to all integers from Low to High. 
 

Using this predicate, we can write a program that prints all prime numbers of a given interval: 
 
% primes(L,H) :- print the prime numbers in L..H 
 
 

 

 

 

 

 

 

We have shown that failure-driven loops can be used to collect alternative solutions created 
by backtracking. We can, for instance, write the solutions to the terminal (or a file). However, 
with the techniques we have seen so far, we cannot put the solutions in a list or another data 
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structure. The built-in predicates bagof/3, setof/3, and findall/3  serve this 
purpose. Their use is simple. Follow the manual of your implementation. 

If, for some reason, it is not possible to use one of these built-in predicates, the assert/retract 
mechanism can be used to save results in a "global" fashion. The method can be explained 
with the example already introduced in chapter 3. There, we had defined the following 
predicates, in order to find the biggest country: 

 
% bigger_than(A) :- there is a country bigger than A sq-km 
 
bigger_than(A) :- area(_,B), B > A. 
 
% biggest(C,A) :- C is the biggest country, its area is A 
 
biggest(C,A) :- area(C,A), \+ bigger_than(A). 

The disadvantage of this solution is that, in general, area/2 is called many times for the 
same country. If area/2 was not a simple database predicate, but a complicated calculation, 
the predicate biggest/2 would be very inefficient. Note that area/2 generates multiple 
results by backtracking, and we need to compare the results in order to compute the 
maximum. The following is a solution based on a global database predicate leader/2:  

 
% biggest(C,A) :- C is the biggest country, its area is A 
 
biggest(_,_) :- 
   init_leader,  
   area(C,A), 
      update_leader(C,A), 
   fail. 
biggest(C,A) :- leader(C,A).  
 
init_leader :-  
   retractall(leader(_,_)), 
   area(C,A), !,  
   assert(leader(C,A)). 
 
update_leader(C,A) :- 
   leader(_,M), 
   (A =< M, ! 
   ; 
   retract(leader(_,_)), 
   assert(leader(C,A))). 
 

In addition to the assert/retract method, some Prolog systems offer other mechanisms to store 
"global" variables. Check your user's manual for details. 

Exercises 

(5.1) This is a simple variant of the Knapsack Problem, a famous combinatorial problem. 
Given a set S of positive integer numbers and a number A. Find the subset U of S such that A 
is the sum of the numbers in U. Try to solve the problem with a generate-and-test method. 
Find a way to "push" the tester inside the generator in order to make the solution more 
efficient. The solution should be a predicate, defined as follows: 

 
% knapsack(S,A,U) :- U is a subset of S with the sum A 
% (integer-list,integer,integer-list) (i,i,o) 
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Try, for example, the following goal: 
  
?- knapsack([45,34,21,76,43,23,47,121,59,93],481,U) 

(5.2) Based on the Utopia program developed in the course, write a tail-recusive loop 
predicate, specified as follows: 

 
% utopia(Lower,Upper) :- print the decomposition(s) of  
%    all integer values between Lower and Upper limit. 

The output on the screen should look like this: 
 
?- utopia(15,20). 
15 = [1,1,1,12] 
16 = [4,12] = [1,1,1,1,12] = [4,4,4,4] 
17 = [1,4,12] = [1,4,4,4,4] 
18 = [1,1,4,12] 
19 = [1,1,1,4,12] 
20 = [4,4,12] = [4,4,4,4,4] 

(5.3) Write the predicate specified as follows: 
 
% no_utopia(Lower,Upper,Ls) :- Ls is the list of all 
%    amounts between Lower and Upper limit which do not 
%    have a legal decomposition 

Example: 
 
?- no_utopia(50,80,Ls). 
Ls = [72,73,74,77,80]  

Hint: If you use the setof/3 predicate then your program is a one-liner!  

(5.4) Processor scheduling. Suppose that P identical processors can process jobs waiting in a 
job queue.Whenever a processor is finished with its job, it takes the next job from the queue, 
until the queue gets empty. We assume that the jobs are independent from each other, i.e. their 
order doesn't matter for the result of the computation. However, their order does matter for the 
time S until the last job is done. For example, if Js=[25,20,11,17,33,14,8,12,15] is the list of 
job execution times for a system with P=3 parallel processors, then an ideal job sequence is 
[33,25,20,17,15,11,14,12,8], with S=52. Write a predicte to find out an ideal job sequence: 

 
% schedule(Js,P,Is,S) :- given the job execution times Js 
%    and the number of processors P, Is is an ideal job 
%    sequence and S is the time when the last job finishes. 
% (number-list,integer,number-list,number) (i,i,o,o) 

Try a pure generate-and-test method first. Then, preclude permutations which lead to a total 
time larger than what has been found as optimum so far. This is not an easy exercise. 
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Summary 

• Many combinatorial problems can be solved using generate-and-test methods. 
Shifting the tester process "inside" the generator process is a standard optimization 
technique. 

• Prolog programs can be debugged usig a four-port tracing model. Program control is 
monitored at four ports: CALL, EXIT, REDO, and FAIL. 

• Backtracking is controlled with a system predicate, called the cut, denoted !. The 
goal ! succeeds and commits Prolog to all the choices made since the parent goal was 
unified with the clause the cut occurs in. 

• Green cuts express determinism, while red cuts are used to omit explicit conditions. 
Good programming style forbids the use of red cuts in ordinary programs. Green cuts 
can be used to improve stack space and/or runtime efficiency. 

• Negation-as-failure is the implementation of the not predicate in Prolog. The not 
predicate can never be used to instantiate a variable. 

• In Prolog it is possible that a running program modifies itself. The predefined 
predicates assert and retract are used for this purpose. 

• Input/output to the terminal and/or to a file system is achieved by extra-logical 
predicates. Terms, even very complicated compound terms,  can be written and read 
at once. I/O stream redirection makes it easy to perform input/output from and to 
files. 

• Loops can be programmed in Prolog in two ways: tail-recursion based or failure-
driven. The former is the equivalent of while loops with look-ahead read in other 
programming languages, while the latter correspond to repeat-until loops. A 
predicate between/3 helps in implementing for-loops as failure-driven loops. 
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6. Advanced Topics 

This chapter introduces two advanced programming techniques: incomplete data structures 
and, a particularly useful special case thereof, difference-lists. 

Incomplete Data Structures 

Let us start with a problem from recreational mathematics: 

Problem:  Thee friends came first, second and third in a programming competition. Each of 
them had a different first name, liked a different sport, and had a different nationality. 
Michael likes basketball, and did better than the American. Simon, the Swiss, did better than 
the tennis player. The cricket player came first. Who is the Australian? What sport does 
Richard play? 

We are going to represent each friend as a term  

 

The scores table is a list of friends, the head being the winner of the competition. 

 

We can define some auxiliary predicates: 
 
fname(fr(Name,_,_),Name). 
 
sport(fr(_,Sport,_),Sport). 
 
natio(fr(_,_,Natio),Natio). 
 
first(X,[X|_]). 
 
better(X,Y,[X,Y,_]). 
better(X,Y,[X,_,Y]). 
better(X,Y,[_,X,Y]). 
 
element(X,[X|_]). 
element(X,[_|Xs]) :- element(X,Xs). 
 

It is now easy to translate the problem description into a Prolog program: 
 
friends :-  
   fname(A,'Michael'), sport(A,'basketball'), 
   better(A,B,Fs), 
   natio(B,'American'), 
   fname(C,'Simon'), natio(C,'Swiss'),  
   better(C,D,Fs), 
   sport(D,'tennis'), 
   sport(E,'cricket'), first(E,Fs), 
   element(X,Fs), natio(X,'Australian'), fname(X,XName), 
   element(Y,Fs), fname(Y,'Richard'), sport(Y,YSport), 
   write(XName), write(' is the Australian.'), nl, 
   write('Richard plays '), write(YSport), write('.'), nl. 
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The above predicate is a good example for an almost pure declarative program. But, what 
exactly happens when it is executed by a Prolog interpreter? We can use program tracing to 
understand the predicate in a step-by-step manner. 

Two important things happen right at the beginning of the program: 
 
 
fname(A,'Michael') 
 
 
better(A,B,Fs) 
 

The above goals create terms (data structures) that are only partially instantiated. The goals 
further down the program fill in more and more information, until there are only two variables 
left in the scores table: a nationality and a first name. These are then instantiated by the 
"queries" Who is the Australian? and What sport does Richard play?  

This technique of partially instantiated data structures or incomplete data structures, can be 
used to solve many of the classical problems of artificial intelligence.  

Managing a Pool of Variables 

An interesting variant of the well-known element/2 (or member/2) predicate is the 
following: 

 
el(X,[X|_]) :- !. 
el(X,[_|Xs]) :- el(X,Xs). 

Find out what the following goal does: 
 
?- el(alfa,L), el(bravo,L), el(charlie,L), el(bravo,L). 
 
L =  

Apparently, the list L in the above example is open-ended, i.e. we can add further elements to 
it using the el/2 predicate. This behaviour can be exploited to manage a pool of Prolog-like 
variables. We define a variable, in our sense, as a term  

 
v(Name,Value)   Example: v(alfa,25) 

where Name is an atom, the name of the variable, and Value denotes an integer, at least in 
our current example. Observe what happens, when the following conjunctive goal is called: 

 
?- el(v(alfa,25),E), el(v(beta,B),E), el(v(gamma,33),E), 
   el(v(alfa,A),E), el(v(beta,C),E), el(v(beta,20),E). 
 
E =  

The example shows, how we can "define" a variable for the "environment" E whether or not 
an actual value is already known. It also demonstrates how we can "assign" a value to a 
variable defined earlier, and how we can "look up" the value of a such a variable. However, 
there is a problem. Consider the following goal: 

 
?- el(v(alfa,25),E), el(v(alfa,A),E), el(v(alfa,33),E). 
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The result is not exactly what we had intended. Alfa should not be allowed to enter twice into 
the environment E. We can solve this problem easily with the following predicate: 

 
bind0(Name,Value,Env) :- el(v(Name,V),E), !, V = Value. 
 

Now, consider the goal: 
 
?- bind0(alfa,25,E), bind0(alfa,A,E), bind0(alfa,33,E). 
 
 
 

We now suppose that, for some reason, it is not allowed, that the same value is assigned to 
more than one variable. This is, of course, not the normal behaviour of Prolog-like variables. 
But, it is appropriate for some mathematical puzzles, where different symbols stand for 
different values. We shall further assume that the values that can be assigned to the variables 
are single digit integer numbers. The additional properties can be guaranteed with the 
following very powerful predicate: 

 
 
bind(Name,Val,Env) :-  
   el(v(Name,V),Env), nonvar(V), !, V = Val. 
bind(Name,Val,Env) :-  
   between(0,9,Val), el(v(N,Val),Env), N = Name. 
 

We can test the bind/3 predicate with the following queries: 
 
% ?- bind(a,1,E), bind(b,2,E), bind(a,A,E). 
% ?- bind(a,1,E), bind(b,2,E), bind(a,1,E). 
% ?- bind(a,1,E), bind(b,2,E), bind(a,3,E). 
% ?- bind(a,1,E), bind(b,2,E), bind(c,5,E). 
% ?- bind(a,1,E), bind(b,2,E), bind(c,2,E). 
% ?- bind(a,1,E), bind(b,2,E), bind(c,X,E), X < 7. 
 

The following program is a demonstration for the use of the bind/3 predicate. It solves a 
class of mathematical puzzles, known as cryptarithmetic. Example: SEND+MORE=MONEY. 

The main program is the following predicate: 
 
% puzzle(S1,S2,S3) :- solve a mathematical puzzle of the 
%    class S1 + S2 = S3, where Si denote strings of  
%    characters which must be replaced by digits. 
 
puzzle(S1,S2,S3) :- 
   str_rev_char_list(S1,L1), 
   str_rev_char_list(S2,L2), 
   str_rev_char_list(S3,L3), 
   help(S1,S2,S3,E), 
   plus_list(L1,L2,0,L3,E), 
   write_solution(S1,S2,S3,E), 
   fail. 
puzzle(_,_,_). 
    

Note the failure-driven loop we use in order to find all solutions, if there is more than one. 
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As the addition has to be performed from right to left, and lists are easily accessible from left 
to right, we first reverse the order of the characters in the given strings. This is done by the 
predicate str_rev_char_list/2 which uses two predefined predicates. 

 
% str_rev_char_list(S,L) :- L is the list of the characters  
%   (ASCII codes) of the string S in reverse order. 
 
str_rev_char_list(S,L) :-  
   string_to_list(S,L1), reverse(L1,L). 
 

The heart of the program is the predicate plus_list/5, which actually "does" the addition: 
 
% plus_list(L1,L2,Carry,L3,Env) :- assign digits to the  
%    characters in the lists L1, L2, and L3, such that a  
%    correct (left-right mirrored) addition scheme results. 
%    Store the assignments in Env. Carry (0 or 1) must be  
%    added to the leftmost position. 
 
plus_list([],[],0,[],_) :- !. 
plus_list([],[],1,[Ch],E) :- !, bind(Ch,1,E). 
plus_list([],[Y|Ys],C_in,[Z|Zs],E) :- !,  
   bind(Y,YVal,E), 
   plus(0,YVal,C_in,ZVal,C_out), 
   bind(Z,ZVal,E), 
   plus_list([],Ys,C_out,Zs,E). 
plus_list([X|Xs],[],C_in,[Z|Zs],E) :- !, 
   bind(X,XVal,E), 
   plus(XVal,0,C_in,ZVal,C_out),  
   bind(Z,ZVal,E), 
   plus_list(Xs,[],C_out,Zs,E). 
plus_list([X|Xs],[Y|Ys],C_in,[Z|Zs],E) :-  
   bind(X,XVal,E), bind(Y,YVal,E), 
   plus(XVal,YVal,C_in,ZVal,C_out),  
   bind(Z,ZVal,E), 
   plus_list(Xs,Ys,C_out,Zs,E). 
 
plus(A,B,C_in,S,C_out) :- Sum is A + B + C_in,  
   S is Sum mod 10, C_out is Sum // 10. 
 

Finally, an auxiliary predicate help/4 makes the program more efficient if the result string 
S3 is longer than the operand strings S1 and S2.  

 
% help(S1,S2,S3,E) binds the most significant digit of the  
%    result string S3 to 1 if both operands S1 and S2 are  
%    shorter than the result S3. The predicate is used for  
%    performance improvement only. 
 
help(S1,S2,S3,E) :-  
   atom_length(S1,L1),  
   atom_length(S2,L2),  
   atom_length(S3,L3), 
   L3 > L1, L3 > L2, !,  
   name(S3,[C|_]), bind(C,1,E). 
help(_,_,_,_). 
 

The remainder of the program deals with output formatting, and is not discussed here. 
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Difference-lists 

In chapter 4 we have developed a predicate which concatenates two lists: 
 
% conc(X,Y,Z) :- the list Z is the result of concatenating  
%    the list X and the list Y  
 
conc([],Ys,Ys). 
conc([X|Xs],Ys,[X|Zs]) :- conc(Xs,Ys,Zs). 
 

Although elegant, the predicate conc/3 is not very efficient. Consider, for example, the goal 
 
?- conc([1,2,3,4],[5,6,7],L) 
 

The first list ([1,2,3,4]) must be completely traversed, element by element. This is the same 
situation as in procedural programming languages, where lists are represented as records, 
linked by pointers: 

 

 

 

 

 

When concatenation is a frequent operation it is a common practice in procedural languages to  
use a tail-pointer in addition to the usual anchor pointer. 

In Prolog, evidently, there are no explicit pointers. However, in some sense, the idea of a tail-
pointer has been adapted.The concept is known under the name difference-lists. 

Consider the following lists: 
 
 
F =  [2,  3,  5,  7,  11,  13,  15,  17] 
 
 
G =                  [11,  13,  15,  17] 
 
 
H =                            [15,  17] 
 
 

We define the following sequences as difference-lists:  
 
A:  2 - 3 - 5 - 7             A =  
 
B:  11 - 13                   B =  

It is now almost trivial that the concatenation of  the sequences  A and B becomes 
 
 
C: 2 - 3 - 5 - 7 - 11 - 13    C =  
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The given concatenation example works fine because G occurs both in A and B in an 
appropriate way. We define: 

Two difference lists R-S and U-V are called compatible if and only if S = U. 

For compatible difference-list there is a simple rule for concatenation: 
 
% conca(A,B,C) :- C is the concatenation of the two 
%    compatible difference-lists A and B 
 
 

 

Of course, one could argue that the above predicate is not very useful because it is only 
applicable for compatible difference-lists. However, the art of Prolog programming is to 
choose the instantiation pattern in such a way that the difference-list become compatible 
during the concatenation. We shall demonstrate this below. 

Let us first develop a predicate that performs the transformation of ordinary lists into 
difference-list, and vice versa. 

 
% list_dl(L,D) :- D is the difference list representation  
%    of the list L.  

 

 

 

We observe the execution of the following program: 
 
 
?- list_dl([1,2,3],D1), 
 
list_dl([4,5],D2), 
 
conca(D1,D2,D3), 
 
D3 = L3 - []. 
 
 

Unfortunately, the above definition for list_dl/2 doesn't work for certain instantiation 
patterns. For example, the goal   

 
?- list_dl(L,[a,b,c|R]-R). 

should return  L = [a,b,c].  Instead of doing this, the SWI-Prolog system crashes, 
because the interpreter falls into an infinite instantiation loop. The reason is that the 
unification algorithm apparently does not perform the so-called occurs check. You can check 
whether your Prolog system does execute the occurs check by calling the following goal: 

 
?- X = alfa(beta,X). 

If the system returns 'No' then it does the occurs check. Otherwise you will probably need to 
restart the Prolog system (or even reboot your computer). 
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The following is a version of the list_dl/2 predicate that works even for the above 
mentioned instantiation pattern: 

 
 
% list_dl(L,D) :- D is the difference-list representation  
%    of the list L. A better solution 
 
list_dl(L0,T-T) :- L0 == [], !.                 % for (i,*) 
list_dl([],T1-T2) :- T1 == T2, !.               % for (o,i) 
list_dl([X|Xs],[X|Zs]-T) :- list_dl(Xs,Zs-T).   % for both 

 

Most interestingly, and ironicly, the clever conca/3 predicate is almost never explicitely 
used in practice. In most applications, the concatenation is done implicitely - hidden in the 
code of another predicate. 

 

A simple example is the solution of the Hanoi puzzle: 
 
% hanoi(N,A,B,C,Ms) :- Ms is the sequence of moves required 
%    to move N discs from peg A to peg B using peg C as an 
%    intermediary according to the rules of the Towers of 
%    Hanoi puzzle. 
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A typical situation where difference-lists are useful, is the implementation of a FIFO queue. 
Such a data structure is needed, for example, if a tree has to be traversed in breadth-first order 
(or level-order).  

Let us suppose we represent binary trees in the way defined in chapte 4, i.e. as terms t(X,L,R), 
where  X stands for a value stored in a node, and L and R represents left and right subtree, 
respectively. A program that traverses a binary tree in level-order and prints the sequence of 
nodes to the screen, is the following: 

 
% levelorder(BinTree) :- print the nodes of BinTree in 
%    level-order sequence. 
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Another occasion where difference-lists are extremely useful is string parsing. Let us return to 
our string representation of multiway trees, explained in chapter  4 (see pages 34ff). Suppose 
we have the following string: 

 
a{b{c,d,e},f{g},h{j,k}} 

How can we construct the corresponding term t(Root,Forest) that represents the tree, 
according to our convention? In order to develop a solution we need again the syntax 
diagrams (see page 35): 

 

 

 

 

 

 

 

 

We first transform the string (actually a Prolog atom) into a list of characters (ASCII values, 
and then call a predicate p_tree/2 that parses a tree, according to the above syntax 
diagram: 

 
% tree(S,T) :- T is the tree represented by the atom S 
 
tree(S,T) :- name(S,L), p_tree(L-[],T). 
 
p_tree(L1-L6,t(X,[T1|Ts])) :- 
   p_root(L1-L2,X), 
   p_symbol(L2-L3,'{'), !, 
   p_tree(L3-L4,T1), 
   p_forest(L4-L5,Ts), 
   p_symbol(L5-L6,'}'). 
p_tree(L1-L2,t(X,[])) :-  
   p_root(L1-L2,X). 
 
p_forest(L1-L4,[T1|Ts]) :- 
   p_symbol(L1-L2,','), !, 
   p_tree(L2-L3,T1), 
   p_forest(L3-L4,Ts). 
p_forest(L-L,[]). 
 
p_root([C|L]-L,X) :- is_letter(C), name(X,[C]). 
 
is_letter(C) :- between(97,122,C), !.   % a - z 
is_letter(C) :- between(65,90,C).       % A - Z 
 
p_symbol([C|L]-L,X) :- name(X,[C]). 

Note: The built-in predicate name(A,L) transforms an atom A into a list L of ASCII values 
or vice versa. Example: ?- name(alfa,[97,108,102,97]). -> Yes. 
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A Tiny German-to-French Translator 

We conclude this chapter with a more elaborate program to demonstrate how difference-lists 
can be used in natural language processing. It is our objective to write a program to translate 
very simple sentences of a particular type (in perfect tense) from German to French.  

Here are some examples: 

German:  Der Hund  hat  die Katze  gebissen. 

 

French:  Le chien  a  mordu  le chat. 

  

German:  Du  hast  die Zeitungen  nicht  gelesen. 

 

French:  Tu  n'  as  pas  lu  les journaux. 

 

 

Evidently, there are a number of difficult problems with these translations. One of them is the 
order of the sentence parts (subject, auxiliary verb, object)  which is different in the two 
languages.  

In Prolog, we can use difference-lists in order to solve this problem quite elegantly. The 
following is the heart of the translator program: 

 
 
translate(GL,FS) :- 
   maplist(decapitalize,GL,GLD), 
   t_phrase(GLD-['.'],FL-['.']), 
   polish(FL,[F1|Fs]), 
   capitalize(F1,F2), 
   concat_atom([F2|Fs],FS). 
 
 
t_phrase(G0-G4,F0-F4) :-  
   t_subj(G0-G1,F0-F1,PersonNumber),  
   t_auxv(G1-G2,F1-F2,PersonNumber), 
   t_acc_obj(G2-G3,F3-F4),  
   t_part(G3-G4,F2-F3), !. 
t_phrase(G0-G5,F0-F6) :-  
   t_subj(G0-G1,F0-F1,PersonNumber),  
   t_auxv(G1-G2,F2-F3,PersonNumber), 
   t_acc_obj(G2-G3,F5-F6),  
   t_neg(G3-G4,F1-F2,F3-F4), 
   t_part(G4-G5,F4-F5), !. 
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The following is the complete Prolog code of the translator program. 
 
% German to french translator fragment    werner.hett@hta-bi.bfh.ch)  
% 1992 (Turbo-Prolog)  7-Dec-1993 (adapted to SWI-Prolog) 
% 13-Feb-2002 completely rewritten for SWI-Prolog 
 
% The translator can translate simple sentences in perfect tense, 
% e.g. "Der Hund hat die Katze gebissen.", "Martin hat die Zeitungen  
% nicht gelesen.", or "Die Kinder haben Pferde gesehen." 
 
% Start the translator by calling the predicate go.  
% Stop with an empty line. 
 
% The translator is a good example for the use of difference-lists. 
 
translate(GL,FS) :-               % GL is the list of the german words 
   maplist(decapitalize,GL,GLD),  % make all words lower-case 
   t_phrase(GLD-['.'],FL-['.']),  % do the translation 
   polish(FL,[F1|Fs]),            % insert apostrophes, e.g. j'ai ... 
   capitalize(F1,F2),             % make first french word upper-case 
   concat_atom([F2|Fs],FS).       % convert word list into a string 
 
t_phrase(G0-G4,F0-F4) :-  
   t_subj(G0-G1,F0-F1,PersonNumber),  
   t_auxv(G1-G2,F1-F2,PersonNumber), 
   t_acc_obj(G2-G3,F3-F4),  
   t_part(G3-G4,F2-F3), !. 
t_phrase(G0-G5,F0-F6) :-  
   t_subj(G0-G1,F0-F1,PersonNumber),  
   t_auxv(G1-G2,F2-F3,PersonNumber), 
   t_acc_obj(G2-G3,F5-F6),  
   t_neg(G3-G4,F1-F2,F3-F4), 
   t_part(G4-G5,F4-F5), !. 
 
t_subj(['ich'|GR]-GR,['je'|FR]-FR,1) :- !. 
t_subj(['du'|GR]-GR,['tu'|FR]-FR,2) :- !. 
t_subj(['er'|GR]-GR,['il'|FR]-FR,3) :- !. 
t_subj(['sie'|GR]-GR,['elle'|FR]-FR,3). 
t_subj(['wir'|GR]-GR,['nous'|FR]-FR,4) :- !. 
t_subj(['ihr'|GR]-GR,['vous'|FR]-FR,5) :- !. 
t_subj(['sie'|GR]-GR,['ils'|FR]-FR,6) :- !. 
t_subj(G0-G2,F0-F2,3) :- 
   g_art(G0-G1,Det,singular,GenderG),  
   t_noun(G1-G2,F1-F2,singular,GenderG,GenderF),  
   f_art(F0-F1,Det,singular,GenderF), !. 
t_subj(G0-G2,F0-F2,6) :- 
   g_art(G0-G1,Det,plural,GenderG),  
   t_noun(G1-G2,F1-F2,plural,GenderG,GenderF),  
   f_art(F0-F1,Det,plural,GenderF), !. 
t_subj([X|GR]-GR,[X|FR]-FR,3).  % proper names (not translated) 
    
g_art(['der'|GR]-GR,det,singular,masc). 
g_art(['die'|GR]-GR,det,singular,fem). 
g_art(['das'|GR]-GR,det,singular,neut). 
g_art(['den'|GR]-GR,det,singular,masc). 
g_art(['ein'|GR]-GR,nondet,singular,masc). 
g_art(['ein'|GR]-GR,nondet,singular,neut). 
g_art(['eine'|GR]-GR,nondet,singular,fem). 
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g_art(['einen'|GR]-GR,nondet,singular,masc). 
g_art(['die'|GR]-GR,det,plural,masc). 
g_art(['die'|GR]-GR,det,plural,fem). 
g_art(['die'|GR]-GR,det,plural,neut). 
g_art(G-G,nondet,plural,masc). 
g_art(G-G,nondet,plural,fem). 
g_art(G-G,nondet,plural,neut). 
 
f_art(['le'|FR]-FR,det,singular,masc). 
f_art(['la'|FR]-FR,det,singular,fem). 
f_art(['les'|FR]-FR,det,plural,_). 
f_art(['un'|FR]-FR,nondet,singular,masc). 
f_art(['une'|FR]-FR,nondet,singular,fem). 
f_art(['des'|FR]-FR,nondet,plural,_). 
 
t_noun([G|GR]-GR,[F|FR]-FR,singular,GenderG,GenderF) :- 
   dict_noun(G,_,GenderG,F,_,GenderF), !. 
t_noun([G|GR]-GR,[F|FR]-FR,plural,GenderG,GenderF) :- 
   dict_noun(_,G,GenderG,_,F,GenderF), !. 
       
t_auxv(['habe'|GR]-GR,['ai'|FR]-FR,1). 
t_auxv(['hast'|GR]-GR,['as'|FR]-FR,2). 
t_auxv(['hat'|GR]-GR,['a'|FR]-FR,3). 
t_auxv(['haben'|GR]-GR,['avons'|FR]-FR,4). 
t_auxv(['habt'|GR]-GR,['avez'|FR]-FR,5). 
t_auxv(['haben'|GR]-GR,['ont'|FR]-FR,6). 
 
t_acc_obj(G0-G2,F0-F2) :- 
   g_art(G0-G1,Det,Number,GenderG),  
   t_noun(G1-G2,F1-F2,Number,GenderG,GenderF),  
   f_art(F0-F1,Det,Number,GenderF), !. 
t_acc_obj([X|GR]-GR,[X|FR]-FR).  % proper names (not translated) 
 
t_neg(['nicht'|GR]-GR,['ne'|FR1]-FR1,['pas'|FR2]-FR2). 
 
t_part([G|GR]-GR,[F|FR]-FR) :- dict_verb(G,F), !. 
 
% The following are some auxiliary predicates 
 
% capitalize(W1,W2) :- make the first letter upper-case 
capitalize(W1,W2) :-  
   atom_chars(W1,[X|Xs]), char_type(Y,to_upper(X)), 
   atom_chars(W2,[Y|Xs]).  
 
% decapitalize(W1,W2) :- make the first letter lower-case 
decapitalize(W1,W2) :-  
   atom_chars(W1,[X|Xs]), char_type(Y,to_lower(X)), 
   atom_chars(W2,[Y|Xs]).  
 
% polish(FL1,FL2) :- insert apostrophes in cases like j'ai 
polish([X,'.'],[X,'.']) :- !. 
polish([X1,X2|Xs],[X1M|Ys]) :-  
   atom_chars(X1,X1L), last(C1,X1L), a_or_e(C1),  
   atom_chars(X2,[C2|_]), vowel(C2), !, 
   trailing_quote(X1L,X1ML), 
   atom_chars(X1M,X1ML), 
   polish([X2|Xs],Ys). 
polish([X|Xs],[X,' '|Ys]) :- polish(Xs,Ys). 
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a_or_e('a'). 
a_or_e('e'). 
 
vowel('a'). 
vowel('e'). 
vowel('i'). 
vowel('o'). 
vowel('u'). 
vowel('y'). 
vowel('h').  % not always correct ! 
 
trailing_quote([_],['\'']) :- !. 
trailing_quote([X|Xs],[X|Ys]) :- trailing_quote(Xs,Ys). 
 
% The following is a very primitive german to french dictionary 
 
dict_noun('hund','hunde',masc,'chien','chiens',masc). 
dict_noun('katze','katzen',fem,'chat','chats',masc). 
dict_noun('pferd','pferde',neut,'cheval','chevaux',masc). 
dict_noun('affe','affen',masc,'singe','singes',masc). 
dict_noun('kind','kinder',neut,'enfant','enfants',masc). 
dict_noun('frau','frauen',fem,'femme','femmes',fem). 
dict_noun('freund','freunde',masc,'ami','amis',masc). 
dict_noun('zeitung','zeitungen',fem,'journal','journaux',masc). 
dict_noun('brot','brote',neut,'pain','pains',masc). 
dict_noun('wasser','wasser',neut,'eau','eaux',fem). 
dict_noun('wein','weine',masc,'vin','vins',masc). 
dict_noun('velo','velos',neut,'bicyclette','bicyclettes',fem). 
dict_noun('auto','autos',neut,'bagnole','bagnoles',fem). 
dict_noun('blume','blumen',fem,'fleur','fleurs',fem). 
 
dict_verb('gelesen','lu'). 
dict_verb('gesehen','vu'). 
dict_verb('verkauft','vendu'). 
dict_verb('bestraft','punis'). 
dict_verb('gekocht','bouilli'). 
dict_verb('gefahren','conduit'). 
dict_verb('gemacht','fait'). 
dict_verb('genommen','pris'). 
dict_verb('verraten','trahi'). 
dict_verb('getrunken','bu'). 
dict_verb('gebissen','mordu'). 
 
do_translate([]) :- !. 
do_translate(G) :- translate(G,F), !, write('French = '), write(F), 
nl. 
do_translate(_) :- !, 
   write('I\'m sorry, I cannot translate that. Please try again.'), 
nl. 
    
go :- 
   prompt1('German > '), readln(GS), 
   do_translate(GS), 
   GS \= [], go. 
go. 
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Exercises 

(6.1) Zebra puzzle: There are five houses, each of a different colour and inhabited by a man of 
a different nationality, with a different pet, drink, and brand of cigarettes. 

  
1. The Englishman lives in the red house. 
2. The Spaniard owns the dog. 
3. Coffee is drunk in the green house. 
4. The Ukrainian drinks tea. 
5. The green house is immediately to the right of the ivory house. 
6. The Winston smoker owns snails. 
7. Kools are smoked in the yellow house. 
8. Milk is drunk in the middle house. 
9. The Norwegian lives in the first house on the left. 
10. The Chesterfields smoker lives in the house next to the man  with the fox. 
11. Kools are smoked in the house next to the house where the horse is kept. 
12. The Lucky Strike smoker drinks orange juice. 
13. The Japanese smokes Parliaments. 
14. The Norwegian lives next to the blue house. 

Who owns the zebra? Who drinks water? 

(6.2) Write a predicate level_order/2 that constructs the level-order sequence of the 
nodes of a binary tree. Use the difference-list technique. 

(6.3) Write a predicate length_dl/2 with the following specification: 
 
% length_dl(L1-L2,N) :- the difference list L1-L2 contains  
%    N elements. The predicate is applicable for the  
%    following instantiation patterns: 
% 
% ?- length_dl([a,b,c]-[],N).       ->  N = 3 
% ?- length_dl([a,b,c|T]-T,N).      ->  N = 3, T = _ 
% ?- length_dl([a,b,c|T]-[c|T],N).  ->  N = 2, T = _ 
% ?- length_dl(S-T,3).       -> S = [_,_,_|T], T = _ 
 

(6.4) Hamming's problem. This is a classical programming problem: Determine all natural 
numbers, up to a given limit, that are multiples of 2, 3 and 5 only. In other words: Compute 
the natural numbers 2q3r5s with q,r,s ∈ N0, in ascending order. There is an elegant solution to 
the problem which makes use of three fifo queues, one for the multiples of 2, another one for 
the multiples of 3, and the third one for the multiples of 5. A step in the algorithm consists of 
removing the (globally) smallest number from the front of (some of) the queues and 
appending its multiples to all three queues. Use difference-lists to implement the fifo queues. 

(6.5) Write a predicate breadth_first/1 that prints out  the breadth-first order sequence 
of the nodes of a given multiway tree. See chapter 4 for details of the term representing a tree. 

(6.6) Let us suppose that the objects stored in the nodes of a binary tree are single lower-case 
letters. We can then represent the tree as a string, as shown in the following example: 
a(b,c(d,e(f(,g),))). Use syntax diagrams to develop a predicate that constructs the tree from its 
string representation. 
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(6.7) Find out what the following program does and how it works. Try to predict the 
behaviour of each predicate as exactly as possible, and then experiment with your Prolog 
interpreter. 

 
% in(X,T) :- ??? 
  
in(X,t(X,_,_)) :- !. 
in(X,t(Y,Left,_)) :- X @< Y, !, in(X,Left). 
in(X,t(Y,_,Right)) :- X @> Y, in(X,Right). 
 
% sh(T) :- ??? 
 
sh(T) :- var(T), !, write('_ '). 
sh(t(X,Left,Right)) :-  
   write(X), write(' '), sh(Left), sh(Right). 
 
% do(T) :- ??? 
 
do(T) :- in(2,T),in(5,T),in(7,T),in(3,T),in(7,T),sh(T). 
 

Suppose a data structure T has been constructed with a sequence of in/2 calls. Write a 
predicate that prints all nonvar elements of T in ascending order.  

 

Summary 

• Incomplete data structures can be very useful for problems in which relations 
between objects are given (or determined) in an irregular, complicated pattern. 
Examples are some types of scheduling problems, where many different and 
complicated boundary conditions must be met. 

• The idea of incomplete data structures lead to the powerful programming technique 
of difference-lists. This techique uses lists of elements, with the last element being  a 
variable; i.e. a (yet)  uninstantiated remainder list. 

• Difference-lists can be used to implement FIFO queues. 

• Another important application of difference-lists is string parsing. 
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