
IEEE Instrumentation and Measurement
Technology Conference
St. Paul, Minnesota, USA, May 18-21, 1988

A SIMULATION TOOL FOR VIRTUAL LABORATORY EXPERIMENTS
IN A WWW ENVIRONMENT

Alessandro Ferrero’, Vincenzo Piuri2

Dipartimento di Elettrotecnica, Politecnico di Milano, P.za L. da Vinci 32, 20133 Milano, Italy
Phone: +39-2-2399-375 1, Fax: +39-2-2399-3703, Email: ferrero @bottani.etec.polimi.it

2Dipartimento di Elettronica e Informazione, Politecnico di Milano, P.za L. da Vinci 32, 20133 Milano, Italy
Phone: +39-2-2399-3606, Fax: +39-2-2399-3411, Email: piuri@elet.polimi.it

Abstract - Virtual instruments and distributed systems are
of great interest to create advanced and flexible teaching
and experimentation environments for measurement
technologies at limited costs. The availability of simple and
efficient technological supports to dissemination and
remote use of virtual systems becomes attractive to increase
the dqfusion of experimental practice disregarding the
number of students and their location as well as the variety
of instruments and measurement procedures directly
available for experimentation.

I. INTRODUCTION

During the recent years, the interest for didactic applications
both of the software tools for the development of Virtual
Instruments and the tools for the computer interconnection at
great distance has increased steadily. This interest is mainly
due to the cost of the experimental laboratories at Universities
with a large number of students. A second, but not less
important reason, is the importance that teaching methods,
based on the correct use of new technologies, are expected to
assume in the near future. Besides, distance learning for
continuous training is becoming a key factor to maintain the
leading edge and to improve the quality of production,
products and personnel in many small and medium
enterprises.

From this point of view, instruments’ simulators are not
actually expected to replace the real instruments. Real
instruments and practical in-field experimentation cannot be
replaced in curricula of experimental subjects, like the
electrical and electronic measurements and instrumentation.
However, they can be an extraordinary-powerful auxiliary
didactic tool for the student, in order to help him to become
acquainted with the instrument and its controls and operations
both in the class and remotely.

The actual effectiveness of these new didactic methods
is however conditioned by the solution of the following
practical problems:

Building simulators is a time consuming job. The
software developing tools based on graphic, object-
oriented programming methods, make this job easier, but
are generally expensive and a run-time license must be
purchased also for running the simulator, and not only the
development tool. Careful measures must therefore be
taken when the access to simulators is allowed from
outside the University’s campus.
The highest effectiveness of virtual didactic laboratories
is attained when the laboratories can be accessed from
outside the University’s campus. This way the students
are given the possibility to revise the instruments’
properties and characteristics at any time, and from any
place (including home).
The most adequate media for remote access is presently
Internet. The simulators can be installed in a WWW
server, and the access to these resources can be organized
as WWW pages. If this solution is adopted, the resident
software must be adequately protected, and only few files
should be downloaded on the client computer, so that the
access time to the server is also limited. These files should
also be automatically removed from the client computer,
at the end of the simulation session, so that the simulation
software is protected, and no additional licenses are
required.
Sharing of resources and experiences among Universities.
The use of a global communication network, like Internet,
and high level, highly standardized languages like HTML
and Java allow for the allocation of the different
simulation programs on different servers, possibly located
at long distance from each other. This way, different
Universities with similar curricula might join in a

(0-7803-4797-8/98/$10.00 1998 IEEE) 102

developing team and distribute the burden of developing
the simulators on a larger number of programmers. Each
University might develop one instrument simulator, put it
on its own WWW server, and make it available, through a
proper link, to all other Universities in the team.

This paper shows how the above ideas can be practically
applied to realize a virtual laboratory, based on the well-
known, widely-used environment LabView by National
Instruments [3], and distributed through Internet by means of
the WWW services. Virtual instruments are realized in the
standard way within the LabView environment, while
distribution is assured both by a suitable WWW server [5]
and software environment. An interface architecture is
proposed between LabView and WWW environments, as
well as an access method to the WWW server, especially
developed in order to guarantee a high level protection of the
resident software and minimize the server access time.

11. SPECIFICATION OF THE SYSTEM
FUNCTION ALITES

A virtual laboratory for measurement and instrumentation
should realize an integrated environment for creation and
distribution of simulators of instruments and systems through
a computer network. The availability of component libraries
allows the user to dynamically build his measurement bench
by using a personal computer only.

The main goals pursued in the present research and
experimental implementation were:
1

.
e

.

.

. . .

. .

.

.

definition of a modular approach to virtual instruments
and bench design,
definition of standard environment and tools to create the
instrument and bench components,
definition of a standard interface among component
simulators to allow easy interfacing, even if realized by
different persons,
creation of an instrument and component database,
definition of a distribution system supporting sharing of
components and simulators,
definition of a distribution environment complying the
most-used computer network standards,
definition of a software environment supporting
workgroup and remote didactic activities,
realization of a user-friendly interface,
definition of a flexible approach to experimentation,
realization of a simulation engine allowing dynamic
connection of components,
supporting simultaneous access of many users,
identification, control and monitoring of the users and all
accesses to the system,
effectiveness of the simulation by adopting a
decentralized strategy,
efficiency of the network connection,
protection of the copyright of the simulation software,

protection of the distribution server from possible external
attacks,
identification of a low-cost hardware and software
architecture for wide and cheap use of the distribution
environment and simulators.

111. THE SYSTEM ARCHITECTURE

To achieve the goals mentioned in the previous section, a
client-server distributed environment [6] was designed and
implemented, as shown in Figure 1. The clients may be
connected to the server on the same Local Area Network
within the laboratory or the same campus as well as remotely.

University
Laboratory -

Data Base
Server

Client

Remote
Laboratory Client Computer

Network

Client
connections

Users
.

Figure 1 : The client-server hardware environment

The WWW technology is used to realize the hypertext
distribution system for the simulator components and engine.
Components are created by using LabView and stored in the
server database. Then, the user assembles the components to
create a single instrument or a whole bench. The client
downloads the desired components and the simulation engine
from the WWW server. Simulation is performed directly on
the client site. Security is provided by user authentication on
the server. Software protection is achieved by continuous
checking of the connection between clients and server.

To achieve a standard component distribution system,
the WWW technologies (including the HTML, CGI and Java
languages) were adopted, allowing portability and
independence through different client hardware/software
architectures. Availability of standard portable languages is in
fact instrumental to provide independence of the application
on the client system on which it is executed. Since the
languages mentioned above are interpreted and not compiled,
instructions are not definitely bounded to a given hardware
architecture and to a given operating system. They can be
moved through the computer network without any problem,
needing only the presence of a software interpreter (the
internet browser suitable for the www technologies) on the
receiving computer: only this interpreter must be compiled
for the specific hardware and operating system. As a

103

consequence, it is necessary to realize only one version of
each instrumentation component. It will then be able to run on
any computer architecture (from a personal computer to a
workstation and even to larger computer with users connected
through X-window terminals) as well as on any operating
system (from MS-DOS with MS-Windows, to MS-
Windows9.5, to MS-WindowsmT, to the different versions of
Unix). The WWW browser can nowadays be considered a
standard component of any computer installation: therefore,
our approach automatically fit on any hardware/software
environment widely available both in the university
laboratories and at home for remote training.

The multimedia technology supported by the WWW
browsers allows for creating more sophisticated user
interfaces, by simulating the real instruments and components
in a realistic way.

Web Web
Sewer Browser

Database
Management

System

Server

Instruments

Figure 2: The client-server software environment

The software structure of the realized environment, both
on the server and the client, is shown in Figure 2. In this
experimental realization, the server is implemented by using a
Hewlett-Packard 9000 7 15/50 workstation running HP-UX
9.0 with TCPAP network protocol, the mSQL database by
Hughes Technologies, and the HTTPD WWW server by
NCSA with some configuration extensions [4]. The clients
are IBM-compatible personal computers running MS-DOS
with MS-Windows 3.11 as well as MS-Windows95; the
WWW browsers are Netscape Navigator 3.0 and MS-
Explorer 3.0, or subsequent versions. The virtual laboratory
environment on the server manages the distribution of the
simulation engine and the instrument components. The virtual
laboratory environment on the client is the simulation engine
executing the virtual instruments.

IV. BUILDING VIRTUAL INSTRUMENTS

To guarantee future diffusion and enhancement of the
distributed virtual laboratory, de facto standards were
preferred to implement thc simulated instruments. In

particular, LabView was adopted since it is the most widely-
used software environment to create virtual instruments both
in the academy and the industry.

The goal is to create virtual benches of instruments and
signal generators on which students can practically observe
and try their behavior, their characteristics, and their use. The
basic structure of the measurement workbench is composed
therefore by the following components:

virtual signal generators, simulating the real systems of
which physical quantities have to be measured, . virtual instruments, simulating the measurement
operation performed by real instruments on the physical
quantities.

Both the virtual signal generators and the virtual instruments
can be implemented as separated components on workstations
or personal computers in the virtual environment provided by
LabView. They can be subsequently shared by the single
users, provided that suitable mcasures are taken to protect the
intellectual propcrty both of the simulation environment and
the individual components.

A first solution to share the definitions of components
consists of storing them on a file server so that all users can
easily download the desircd ones. This also simplifics the
distribution of the components within the whole laboratory
through the use of computer network supports. When students
like to experiment with the virtual workbench, they must
select the desired components and connect them together
within the LabView environment running on their
workstation, by linking the inputs of each component to the
outputs generated by other components. This resembles the
operations physically performed in setting up a real
workbench by using real generators and instruments. Finally,
the workbench can be simulated, by starting the simulation
engine embedded in LabView.

The above operations are executed easily by students
with non-marginal skills on LabView, computers, and
networking. However, they may become insuperable
obstacles for other students so that the effectiveness and wide
usability of practical experimentation and continuous training
may be limited drastically. Besides, linking the components
on the workstation to generate the executable code of the
workbench needs the availability of a development license of
the LabView environment for each workstation, due to
software copyright rules. On the other hand, linking the
components on the server generates an executable code of the
workbench that must incorporate the run-time support of the
LabView environment to be executed on the workstation
without local installation of the LabView development
system. Software copyright rules impose acquisition of a
sufficient number of run-time licenses, but this number may
increase dramatically since distribution, subsequent
dissemination and use of the executable code of the
workbenches cannot be controlled. Moreover, the executable
code of the workbenches could be even used outside the
university laboratory without paying the royalties for the

104

embedded run-time support to National Instruments and
without paying any fee for the use of the component database
developed by the university.

For all the above reasons and drawbacks, the proposed
environment considers therefore a guided creation of the
workbench as well as a strict control of the workbench
distribution to protect the intellectual property of the
components, the simulation environment, and the LabView
engine. To achieve the above goals, the creation of the
workbench and the related executable code are split into
separate phases, which are executed partly on the WWW
server and partly on the client in cooperation with the server.

The component definitions are created off-line by
experts in the instrumentation and measurement procedures,
by using the visual editor of LabView. These definitions
(which are not yet executable) are stored in files in the
component database of the WWW server. They are in a
format that can be read and interpreted by LabView as any
other interpreted language, instead of being compiled with the
run-time support and executed by the workstation processor.

The student will simply need to select among such
predefined components representing instruments or
generators to build his own workbench. The selection is
supported by an easy-to-use WWW interface based on
graphics and visual operations. To simplify dynamic linking
of the selected components, a standard bench framework is
provided. It is a virtual instrument definition, which is written
in the interpreted language of LabView and contains the
space for two signal generators and two instruments (this set
up is typical of most of the didactic experiments in the area of
electrical and electronic measurements). The user must only
select which specific component must place in each of these
slots: the corresponding definition file is associated to the slot
as an external procedure to be interpreted during simulation.
The system manager can easily modify the component
number by changing the characteristic parameters of the
standard bench framework available on the server; users must
reload the framework so that changes take effect.

To perform simulation of the components in the virtual
workbench, a simulation engine must be used with the
selected component definitions. The developed engine
contains the run-time support of LabView configured to
interpret the standard bench framework with the component
definition selected by the user. The engine contains also
suitable check points to verify the user authorizations.
Interpretation allows to guarantee modularity and protection
of the intellectual property, though it is slightly slower than
direct execution of executable code.

4 ________
Termination

End of simulation Phase

V. NETWORKING CREATION AND SIMULATION
OF VIRTUAL INSTRUMENTS

To download the simulation engine and the instrument
components as well as to create the virtual instruments and
guarantee the intellectual property, modular interconnection
and management of clients and server are necessary.

The user activates and operates in the virtual laboratory
by performing the following steps, as shown in Figure 3:

connect io the home page of the WWW server,
identify the user authorization through username and
password and obtain the use of a floating license of the
virtual simulation software,
select the instrument components available in the
database from the instrument menu,
dynamically link the selected instrument components to
create the desired virtual instrument to be simulated on
the client,
download the created virtual instrument,
activate the simulation engine on the client with the
created virtual instrument,
terminate the simulation session by releasing the server
connection and the floating license.

Computer
Client Network Server

Username, Password,
Component list

Web-based
Services

Connect Phase
...................................

I .c I
Simulation

Phase

v I

Component
Data Base

Figure 3: Operation of the simulation environment

The first time the client WWW browser connects to the
WWW server, the simulation engine (about 1.2 MBytes) is
automatically downloaded from the server itself. This avoids
the need for distributing the software for the virtual
laboratory through floppy disks or manually from the server.
The self-decompressing and self-installing engine creates the
necessary directories, executable files and configuration data
on the client. The WWW browser configuration is
automatically updated to allow direct recognition and
management of the virtual instrument bench created on the
server. This is obtained by introducing the standard file
extension .VIS identifying such files. Whenever one of
them is clicked by the user, it is downloaded from the server;
then, the management program extracts and decompresses the
components, sets up the simulation environment, and starts
the simulation engine by feeding it with the virtual instrument
bench definition without any further user operation.

When the WWW browser connects to the WWW server,
a welcome page asks the user to provide his username and
password for authentication. These data are sent to a CGI
script on the server for analysis and database comparison.

105

The user can now select the desired instrument
components among the ones currently available in the
component database. Since the whole workbench is virtually
simulated, i.e., not only the instruments but also the measured
signals, the user must select also the desired simulators of
virtual signal generators. These components are connected in
the standard framework provided by the system.
Configuration of the virtual bench is now sent to a CGI script
on the server for analysis, dynamic linking of the selected
components, and creation of the file containing the virtual
bench definition for the simulation engine. The file is stored
in a compressed format to limit the network overhead during
downloading. The server holds the workbench files of each
user in a separate directory to allow subsequent reuse of
definitions while avoiding overriding among different users.
A result HTML page is generated and presented to the user: it
contains the link to the files on the server for the simulation
engine. By clicking on such a link, the user can download
such a file (about 100 kBytes) and start the simulation as
discussed above.

The simulation engine executes the virtual instrument
definition created by the user. At first, the engine reads the
configuration file and sets up its internal parameters and
configuration to accommodate the instrument structure for the
simulation. Then, it loads the definition of the instrument
components and creates the data structures supporting
efficient simulation. The instrument simulation is performed
and the connection to the server is verified for periodic
authorization checking. During the first part of each
simulation cycle, the signal generators are executed to create
input signals for the instruments, which are run during the
second part of the cycle. The simulation continues until the
user hits the OFF or the EXIT buttons. In the first case, the
simulation is suspended; in the second one, it is terminated,
the whole environment is cleared, and the server connection
closed.

To support the interconncction of clients to the server,
standard protocols widely adopted in the worldwide
community are used. This allows any perspective user of the
simulation environment for virtual laboratories to simply plug
his client computer to the international network and obtain the
simulation environment and the instrumentation components
directly from the server without any preliminary acquisition
of specific software.

The standard protocols for networking adopted in our
work are at different levels as shown in Figure 4 [2,5,6]:
4 TCP/IP defines the physical interconnection, data

transfer and message routing management. This is the
typical protocol suite adopted in any Unix network as
well as in the standard Internet.
FTP specifies the file transfer method between computers
on the TCPAP protocol suite, It is used to move long
messages containing files around the network: in this
case, it is used to transfer the simulation engine and the
components from the server database to the clients.

4

. HTTP is the application protocol defining the connection
to the web server and the transfer methods for hypertexts
between client and server by using the TCP/IP protocol
suite as well as the FTP whenever necessary for large
data.

Server

Web Server

Virtual
Laboratory

Environment

Component list

Components

Client

Web Browser

Instruments

Laboratory I Simulation Vutua' I
Figure 4: The network protocol hierarchy

One of the most critical issues in using a networked
environment over a standard open network is security [1,2,6].
This widely studied problem concerns the privacy of data and
programs (in this case, the necessity of guaranteeing the
intellectual property both of the simulation engine and the
instrument components as well as the passwords), the
dissemination of viruses, and the attacks of hackers.

To guarantee privacy, encryption methods can be
adopted to protect the communications between server and
client; this requires that both the server and the clients use the
same secure data encryption mechanism. In the implemented
system, the SHTTP protocol (Secure HTTP, integrated in the
standard HTTP environments) was used, even if it is specific
for hypertexts. Higher security techniques could be
envisioned but their costs and their limited availability
discourage their application.

To protect the copyright on the simulation engine
software and the virtual instruments, the concept of floating
license was adopted. A given number of licenses are
associated to the server and paid by the server owner. When a
connection is authorized, one of the licenses is considered
used by such a connection. No more than the given number of
licenses can be simultaneously running, i.e., no more than
such a number of users can run the simulation environment of
the virtual laboratory. To guarantee that this limit is never
exceeded, the engine running on the client frequently contact
the authorization daemon on the server to verify the user
authorization: if negative or no answer is received from the
server, the simulation engine aborts its operations.
Authorization is validated by encrypted mcssage exchange
between the client and the server, according to a suitable
encoding and checking protocol. This reduces the overall data
transferred between server and client at the beginning of the
simulation, because the engine can be freely distributed and
stored on the clients without breaking copyrights. On the

106

other hand, since the components and the virtual workbench
are not able to run without the simulation engine and cannot
be stored on the client separately from it, the run-time
verification of the user authorization allows also for saving
their intellectual property.

To protect the server, several techniques can be taken
into account, e.g., access restriction based on user
identification, firewalls, encryption. For simplicity and cost
reasons with respect to their effectiveness and the relevance
of the system to be protected, an approach based on access
restriction through user validation was adopted. User
operations are controlled through verification of the password
and the IP address either of the client or the gateway through
which the client connects to the server. This implies some
management overhead since it becomes necessary both to
grant passwords and register enabled IP addresses. A suitable
protected HTML page is provided on the server to simplify
the authorization management. Accurate software engineering
techniques and test procedures are then required to write
good and reliable CGI scripts for client-server application
connection, in order to avoid bugs allowing undesired
entrance to possible hackers.

VI. CONCLUSIONS

The paper presented a simulation environment supporting
experiments in a virtual laboratory by using WWW
technologies. The use of de facto standards and user-friendly
solutions lets a high number of people (even with minimum
knowledge on computers) access the system and benefit from
advanced training without requiring creation of huge and
expensive laboratories with many working benches. Only few
real instruments will be required in the laboratories to provide
the final refinement of practice and operating abilities of the
students. In turn, this allows universities and other
educational environments to reduce the investments for each
kind of equipment and, as a consequence, to increase the
number of innovative and different equipment, with obvious
benefits for the students. The system was tested successfully
in a virtual laboratory with 20 clients operating
simultaneously as well as for remote dialup connections at
14400 bps.

Further developments are directly supported by our
WWW standard approach. The hypertext technologies of the
WWW solution allow for creating navigation paths through
the material available on the web site. For example,
explanatory and help pages can be attached to the
components in order to provide enhanced on-line tutoring to
students, to answer indirectly to most of their questions on the
real instruments and on the simulation environment arising
during the use of the simulator and the virtual systems.

Besides, a hypertext book can be realized to guide and
support the students with advanced self-training approaches, a
complementary tool for traditional teaching. Within such a
book, experiments can be set up to test immediately the
acquired knowledge and verify the comprehension degree on

the field. The multimedia technologies are in this case
instrumental to enhance the readability and understandability
of the book by reconstructing as much as possible the real
working environment through images, graphics, short movies,
sounds, and so on.

Such learning approaches are becoming more and more
attractive in our society where continuous training is the key
factor to maintain the leading edge in any industrial area due
to the evolving technologies as well as to qualify the
personnel for new and alternative works. Availability of
systems supporting practical experience at low cost through
simulation on any standard low-cost computing architecture
(e.g., the personal computers) is relevant to guarantee a wide
use and facilitate remote training, even out of the working
hours and out of traditional educational environments.

A further extension concerns distributed creation and
maintenance of the component database. Due to the
intrinsically distributed nature of the environment, several
educational Institutions can cooperate to realize a higher
number and more accurate virtual components that can be
shared through the network, by exploiting the specific
abilities and knowledge of each Institution.

Finally, the modular structure of the virtual laboratory
environment allows to introduce more realistic experiments
by replacing the simulated signal generators with acquisition
boards to measure quantities in the field. On the other hand,
intrinsic distribution allows also to introduce remote
acquisition boards distributed over the network for remote
measurements (e.g., see[7]).

ACKNOWLEDGEMENT

The authors wish to thank Nicola Simeoni and Paolo Teruzzi
for their support in the experimental phase.

REFERENCES

V. Ahuja, Network and Internet Security, Boston, MA,
Academic Press, 1996
D. Comer, Internetworking with TCP/IP, Prentice-Hall,
1994
LabVIEW User Manual, National Instruments, 1996
NCSA H T V d Development Team, “NCSA HTTPd
Tutorials,” http://hoohoo.ncsa.uiuc.edu/docs/tutorials/, 1996
J. Niederst, Designing for the Web, O’Relly & Associates
Inc., 1996
A.S. Tanenbaum, Computer Networks, Prentice Hall, 1988
M. Bertocco, F. Ferraris, C. Offelli, M. Parvis, “Training of
programmable instrumentation: a student laboratory,” Proc.
XIV IMEKO World Congress, Tampere, Finland, June 1997

107

http://hoohoo.ncsa.uiuc.edu/docs/tutorials

