
QBASIC Programming for Kids

Introduction
You've probably used computers to play games, and to write reports for school. It's a lot
more fun to create your own games to play on the computer. This book will help you get
started by using QBASIC. QBASIC is a programming language. With a programming
language you can tell the computer what you want it to do. It's a lot like giving someone
directions to your house. The computer follows each step and does exactly what you tell
it. By programming the computer you can solve math problems, create art or music, and
even make new games. It's all up to you.

The best way to start with this book is to type in some of the small programs you'll find in
each of the chapters. You might need to work through Chapter 1 first. An adult can help
you get up to speed quickly. Then change the programs to do what you want them to do.
Before long, you'll be writing your own programs.

Introduction for Parents and Teachers
Kids love computers. They also like to create, and to have some control over the world
around them. The computer will do whatever it is told. It may not seem that way at times,
but it is true.

When I was a kid, all we had was the "old BASIC". It had line numbers and didn't teach
good structured programming habits. QBASIC is a much better learning tool. With the
information acquired from this book, one can move on to a more advanced QBASIC
book (if you can find one). After becoming proficient in QBASIC, one can move on to
more powerful languages like Visual Basic, Java, C, and eventually C++. I would suggest
a course of study like this:

• Logo - Teach FORWARD, LEFT, RIGHT, TO, REPEAT. This shows the basics
of programming. You can walk kids through all this step by step. You'll be
surprised how much they'll learn. Very young kids can have a lot of fun with
Logo. Just don't get too deep. Make sure it is a lot of fun.

• QBASIC - QBASIC is more like conventional programming languages than
Logo, so before getting too deep into Logo, it's a good idea to switch to QBASIC.
Kids will be resistant for two reasons: no more turtle (DRAW is similar, see the
Graphics chapter), and the fact that it's a new language. They'll get over it. You
can teach the basics of QBASIC interactively, but at some point, you need to turn

them loose with this book, and let them type in the examples and ask you
questions.

• Visual BASIC - All of the skills learned in QBASIC transfer nicely to Visual
BASIC. Here kids can finally learn to make real windows programs. Visual
BASIC also includes object oriented programming features that can be introduced
to help manage larger programs. Visual BASIC versions 4 through 6 have varying
levels of Object Oriented support, while Visual BASIC 7.0 (.net) is a complete
Object Oriented language.

• Java - Introduce "C" and its cousins gently with Java. Object Oriented
programming concepts can be introduced here or in Visual BASIC. Microsoft's
C# is another alternative to Java. The big draw here is being able to develop cool
applets to run on the web.

• C - Since "C" is probably the most marketable language of all, it has to be learned
if you are serious about a programming career. The big plus for "C" is raw speed.
Even compiled BASIC programs can't compete. When your kid starts really
pushing the limits of BASIC, keep mentioning "C" as being even better. That will
make them very curious.

• C++ - A better C, and object oriented programming concepts make C++ a must-
learn. Not to mention the fact that C++ programmers are hard to find and are very
well paid. The raw speed of C and the object oriented power of Java all wrapped
up into one.

• Assembler - At some point, the truth about what's really going on under the
covers must be told. Assembler can be introduced at any time throughout the
learning process to explain how the computer really works. Keep bringing it up as
being even faster than C.

Obviously, you'll have to determine when your child is ready to move from one language
to another. My rule is that QBASIC should be introduced at a point where children can
learn on their own from this book (10 or 11 years old). Then let them go and master it by
themselves. This gives them a huge feeling of accomplishment. As you see them reaching
the limits of what can be done, introduce them to other languages. The jump from
QBASIC to Visual BASIC should be made when it is obvious that your child's programs
could benefit from a Graphical User Interface (GUI). It's up to you to determine when
they are ready.

If you are an elementary school teacher interested in teaching programming or software
development (aka software engineering) to kids, I'd suggest starting with Logo at the
third or fourth grade level. Then move to QBASIC for fourth, fifth, sixth, etc.... Having to
teach a large number of students always presents a challenge as they will each have
different abilities. Computer programming fits in perfectly with a math curriculum since
it helps the students become more aware of numbers and how they "work". Because of
learning to program in BASIC, I understood trigonometry by seventh grade. I had to,
because the kinds of programs I was writing required that I understand trig, and apply it.
What could be a better motivation for learning? Beyond sixth grade, I suspect one could
introduce Visual BASIC, and continue on up through Java/C# and into C/C++ at the High

School level. If anyone has any experience teaching programming at the elementary or
middle school level, let me know what works for you, and I'll add it here.

At age 11, I learned from a book very similar in style to this one. It was the TRS-80
User's Manual and it came with my first Personal Computer, the Radio Shack TRS-80. I
haven't stopped programming since then. I hope this book has the same effect on your
kids (or maybe even you). Please email me with any comments or suggestions to improve
this book. My email address:

You can find more information on my Computer Science for Kids page:

http://tedfelix.com/cs4kids - Computer Science for Kids

And in case you are looking at a mirror site, the latest version of this book is always kept
here:

http://tedfelix.com/qbasic - QBASIC Programming for Kids

And for all you aspiring programmers in Poland, check out Damian's Polish translation at
http://deger.republika.pl/TedFelix/QBforKids.htm

I hope you and your kids have lots of fun.

http://tedfelix.com/email.html
http://deger.republika.pl/TedFelix/QBforKids.htm
http://tedfelix.com/qbasic
http://tedfelix.com/cs4kids

Chapter 1 - Getting Started
Getting to DOS
To run QBASIC we need to get to DOS.

If you are using Windows 3.1, you'll need to find the "Main" program group and look for
an icon called "MS-DOS Prompt". Double-click on it to get the "C:\WINDOWS>_" prompt
in a black window with white text.

In Windows 95, click on "Start", then "Programs", then "MS-DOS Prompt".

In Windows 98, try the Windows 95 steps above, then try the Windows ME steps below.
It is the same as one of those, but I don't have a Windows 98 machine handy to test.

In Windows ME, click on "Start", then "Programs", then "Accessories", then "MS-DOS
Prompt".

In Windows NT 4, I believe it was called the "Command Prompt". Try the steps
described for Windows 2000 below.

In Windows 2000, it is called the "Command Prompt" and you can find it by clicking on
Start, then Programs, then Accessories, then Command Prompt.

In Windows XP, it is called the "Command Prompt" and you can get to it by clicking on
Start, then All Programs, then Accessories, then Command Prompt.

You will get the black window with the "C:\WINDOWS>_" prompt.

Now you're ready for the next step.

Starting QBASIC
QBASIC may not be on your computer. Don't be alarmed, Appendix A shows you how to
get it there. At the "C:\WINDOWS>_" prompt, try typing:

 qbasic
and press the <Enter> key.

If you get a blue screen with something about a "Survival Guide", you made it!

http://www.tedfelix.com/qbasic/#appa%23appa

If instead you got something about a "Bad command or file name",

you need to check out Appendix A to get QBASIC installed on your machine. Don't
worry, we'll wait right here for you.

Survival Guide?
We won't be using the survival guide right now, so press the <Esc> (escape) key to get
the big blank blue screen.

Now we're ready to program.

Getting Out
If you need to leave QBASIC, you can click on "File" on QBASIC's menu and then
"Exit" to get back to DOS.

http://www.tedfelix.com/qbasic/#appa%23appa

At the "C:\WINDOWS>_" prompt, type:

 exit
and then press the <Enter> key to get rid of the DOS window.

Chapter 2 - PRINT
Follow Along
I'm assuming you will be following along with QBASIC in front of you. This won't be
much fun if you aren't. So power up the computer and get QBASIC's blue screen up in
front of you. Go ahead and press the <Esc> key to "clear this dialog box" when it asks
you.

QBASIC's Screen
Before we start, let's take a look at QBASIC's screen. At the top is QBASIC's menu. The
menu has the following items: File, Edit, View, Search, Run, Debug, Options, and Help.

Clicking on any of these with the mouse will show more selections.

Just under the menu is the word "Untitled". This means we haven't given the current
program a name. This will change when we learn to save programs. The big blue area
with the blinking cursor (_) is where we can enter our programs.

These are the most important areas to know for right now. We will learn more about the
rest of QBASIC's screen as we go along.

QBASIC Editor
If you've used your computer to do school work or write a report, you'll notice that most
of the editing keys (<Backspace>, <Delete>, <Insert>...) work just the way they always
do. In case you haven't used these keys before, here's a list:

• <Backspace> - Removes the character to the left of the cursor
• <Delete> - Removes the character at the cursor
• <Left Arrow> - Moves the cursor left
• <Right Arrow> - Moves the cursor right
• <Up Arrow> - Moves the cursor up
• <Down Arrow> - Moves the cursor down
• <Home> - Moves the cursor to the start of a line
• <End> - Moves the cursor to the end of a line

Your First Program.
With the blinking cursor (_) at the top-left corner of the screen, type this:

 PRINT "Welcome to QBASIC. Your wish is my command."
Make sure it looks exactly like that. The quotation marks (") are very important. If you
make any mistakes, use the <Backspace> key to correct them.

Running Your Program.
That's great, but what does it do? You have to run it to find out. Look for the word "Run"
on QBASIC's menu at the top of the screen. Click on it. Now you will see a menu with a
list of selections (Start, Restart, and Continue). Click on Start to run your program. You
may have to look around on the screen a bit, but you should find your message:

 C:\WINDOWS> qbasic
 Welcome to QBASIC. Your wish is my command.

PRINT
PRINT prints things to the screen. Don't forget to put what you want to say in double-
quotation marks (").

Press any key to continue?
At the bottom of the screen you will see a message "Press any key to continue". Press
<Enter> to get back to QBASIC. This is QBASIC's way of giving you enough time to see
what your program did.

As a cool shortcut, use ? for PRINT. Try it. Press <Enter> to start typing on a new line.
Now type this:

 ? "Programming is fun."
and press <Enter> again.

Isn't that nice? The ? becomes the word PRINT. That should save us a lot of typing in the
long run.

You can try running the program again (remember? Click on Run, then Start on the
menu). You should see something like this:

C:\WINDOWS> qbasic
Welcome to QBASIC. Your wish is my command.
Welcome to QBASIC. Your wish is my command.
Programming is fun.

Learned
• QBASIC screen
• Editing Keys
• PRINT
• Run | Start
• ?

Chapter 3 - CLS
It was probably a bit hard to find your messages on the screen with that last program.
Wouldn't it be nice to be able to clear all that stuff off the screen? "CLS", which stands
for CLear Screen, is just the ticket. You will need to put CLS at the very top of your
program to clear the screen before you print anything.

Inserting a new line at the top.
To make CLS the first line of your program, follow these steps:

• Press the <Home> key to get to the beginning of the current line.
• Press the <Up Arrow> key once or twice to get the cursor to the top of the

program.
• Press the <Enter> key to get a new line.
• Press the <Up Arrow> key once to get the cursor on the new blank line.
• Type CLS

Now your program should look like this:

 CLS
 PRINT "Welcome to QBASIC. Your wish is my command."
 PRINT "Programming is fun."

Run it. Remember, click on Run and then Start in QBASIC's menu. You can also run the
program by pressing the <Shift> key and holding it down while pressing <F5> (that's
what Shift+F5 means on the menu). Another handy shortcut.

That's much better. Only your message is on the screen, which is the way it should be.

Learned
• CLS
• Shift+F5

Chapter 4 - DO...LOOP
Let's start a new program. To get rid of the old program, click on "File" on QBASIC's
menu and you will see the File menu with New, Open..., Save, and others. Click on
"New". QBASIC will now tell you that your current program is not saved, and it will ask
if you want to "Save it now?". Let's not save it. You can always type it in again. Click on
< No > with the mouse. We'll learn how to save programs in Chapter 8.

Now you should have a clean blue screen. Type in this program:

 DO
 PRINT "Ted was here ";
 LOOP

Make sure you get the semi-colon (;) at the end of the PRINT line, and the space between
the word "here" and the last quotation mark. You don't need to use my name, put yours in
there instead ("Jack was here ", or whatever). Now run it.

DO...LOOP
DO and LOOP will do whatever is between the DO and the LOOP over and over again.

Give me a Break!
Ok, that's great. HOW DO I STOP IT!? Press the <Ctrl> (Control) key and hold it down
while pressing the <Pause> key. The <Pause> key is usually at the top of the keyboard
and all the way over to the right. This is called "pressing the <Break> key." Don't worry,
it doesn't really break your program, it just stops it and takes you back to QBASIC.
Maybe it should have been called the "brake" key.

On laptop keyboards, the break key might be a little harder to figure out. Sometimes you
have to press the "Fn" key followed by the key that says break. Sometimes it is color-
coded to help you figure it out. You'll know you have it when the program stops and the
editor comes back up.

Neatness Counts
Notice that PRINT has two spaces in front of it. This is called "indenting" and it makes
the program easier to read. You can see the beginning and the end of the DO...LOOP
more clearly. QBASIC doesn't care about indenting, only people do. It's important to
make your programs look nice so other people can read them.

Learned
• File | New
• DO...LOOP
• <Break>

Chapter 5 - INPUT

So far our programs have only talked to us. Let's write one that will listen. Get rid of the
previous program by clicking on File, then New on QBASIC's menu. Click on < No >
when it asks if you want to save the old program now. Try this:

 CLS
 INPUT "Enter your name: ", Name$
 PRINT "Hello, "; Name$; ". How are you today?"

Don't forget the comma (,) between "Enter your name: " and Name$. Run it. When it
asks, type your name, then press the <Enter> key.

What's in a "Name$"?
"Name$" is called a "variable". To be variable means that things can change. Try running
the program again, but this time type in a friend's name (don't forget the <Enter> key).
Sure enough, the message changes.

INPUT
INPUT Name$ takes what you type at the keyboard and puts it into the Name$ variable.
PRINT Name$ prints out what is in the Name$ variable.

Variables
Variables hold letters and numbers. The dollar sign ($) means this variable can hold
letters. These are called "string variables". Variables without a dollar sign can only hold
numbers. We'll be seeing them soon.

You can call your variables anything you want. Try going back through this program and
changing every "Name$" to "Fred$". What happens when you run it?

Another way to think of a variable is to imagine a small bucket with a
name on it. Put "Name$" on it. This is the bucket's (variable's) name. Now
take a piece of paper and write your name on it and drop it into the
imaginary bucket. Now the variable Name$ has your name in it. Computer
variables can only hold one piece of paper (one value) at a time.

PRINT and Variables
When you want to PRINT what's in a variable, leave off the double-quotation marks (").
This program will show you how this works:

 CLS

 INPUT "Enter your name: ", Name$
 PRINT "Name$"
 PRINT Name$

The first PRINT statement prints Name$ on the screen. The second PRINT statement
prints whatever name you entered.

Learned
• INPUT
• Variables

Chapter 6 - IF...THEN
Let's make that last program a little smarter. I want to be able to identify intruders playing
with my programs. Wouldn't it be great if the computer could recognize someone's name
and print a special message for them? How about this:

 CLS
 INPUT "Enter your name: ", Name$
 IF Name$="Mike" THEN
 PRINT "Go Away!"
 ELSE
 PRINT "Hello, "; Name$; ". How are you today?"
 END IF

You can change the Name$="Mike" to Name$="Joe", or whoever you want to go away
(like a brother or sister). Run the program and type in your name (hopefully it isn't Mike).
You should see the same old message as before. Now run it again and try entering "Mike"
(or "Joe" or whatever you changed it to).

"Mike" Is Not The Same As "mike"
If it didn't tell the right person to go away, make sure you typed the name correctly. In
QBASIC, "Mike" is not the same as "mike", so if you don't type the first letter in upper-
case, the program won't work. Make sure you enter the name exactly the way you put it
in the program.

IF...THEN
The "IF..THEN..ELSE..END IF" statement in this program checks to see if Name$ has
"Mike" in it. If so, then it does the PRINT statement after the "THEN". If Name$ isn't
"Mike", it does the PRINT statement after the "ELSE". "END IF" tells QBASIC that the
"IF" is over.

Conditions
The Name$="Mike" portion of the IF...THEN is called the "condition". With numbers
you can also check for "greater than" and "less than":

 CLS
 INPUT "Enter a number: ", Number
 IF Number < 100 THEN
 PRINT "Your number was less than 100"
 ELSE
 PRINT "Your number was greater than or equal to 100"
 END IF

If you want to check for "greater than", use "Number > 100". Equals works just like
before, "Number = 100". Another option is "not equal" which can be done like this:
"Number <> 100".

IF...THEN is one of the most powerful features of QBASIC. Using IF...THEN can make
your programs very interesting. It lets your program make decisions and do something
appropriate.

Learned
• IF...THEN...ELSE

Chapter 7 - Numbers
Computers are very good at math. Let's get the computer to do some math for us. Here's a
simple multiplication calculator:

 CLS
 INPUT "Enter the first number: ", A
 INPUT "Enter the second number: ", B
 PRINT "The answer is: "; A * B

If you have trouble finding the star (or asterisk "*") on the keyboard, it is usually above
the number 8. Run it, and enter two numbers. It does an excellent job multiplying for you.

Variables and Math
A and B are variables, just like Name$. Unlike Name$, A and B do not have a dollar-sign
after their names. This is because they are only holding numbers, not letters.

Star
"A * B" means "A times B". QBASIC doesn't use "X" for multiplication because you
might want to have a variable called "X".

What else?
Try changing the "A * B" to "A - B" for subtraction. "A + B" will do addition, and "A /
B" will do division. Why "/" for division? Because there's no division sign key on the
keyboard. At least I haven't found one.

Expressions
"A * B", "A + B", "A - B", and "A / B" are called mathematical expressions, or simply
"expressions".

Learned
• Variables with numbers
• INPUT with numbers
• Multiplication, Division, Addition, Subtraction
• Expressions

Chapter 8 - Saving
Before we get into some fairly big programs, let's look at how to save our masterpieces.

Location Is Everything
The first thing we need to think about is where we are going to save our programs. The
two main places we can save things are the hard disk, and onto a floppy disk. Let's look
at both places.

Saving To Floppy
Using a floppy is a good idea if you don't want other people looking at your programs.
The floppy can be removed from the computer and kept in a safe place. Floppies are also
good when you want to move programs from one computer to another.

Let's try it. Find a blank floppy and place it into the computer's floppy drive. The floppy
can have stuff on it, as long as there is some free space left. You'll need to have a
program up on the screen for this to work properly. Go back to the previous chapter and
type in the example if you need to get something up on the screen.

Click on "File" on QBASIC's menu, then "Save".

The "Save" dialog will appear on the screen. Notice that the cursor is in a box (field)
called "File Name:". Type this:

 a:\testsave

Be careful with that backslash "\". It isn't the same as the front-slash "/" which is on the
same key as the question mark "?". QBASIC is very picky about this.

Press the <Enter> key. What happened? Did you hear something? Where'd the "Save"
dialog go? Hmmmm, ok, hopefully that worked. How can we check? Let's try loading the
program back into QBASIC. Wait, it's already there. Ok, then let's clear it out and try to
get it back from the floppy. Remember how to get rid of a program? Hint: "File" then
"New" on the menu.

Loading From Floppy
Let's do it. Click on "File" then "Open..." on QBASIC's menu. Now you will see the
"Open" dialog. Type this:

 a:

and press the <Enter> key. Now you should see "TESTSAVE.BAS" in the box called
"Files". Two clicks oughta do it. Double-click on "TESTSAVE.BAS" and the program is
back from the floppy.

Saving To Hard Disk
The hard disk is the most convenient place to save programs. Since it is always in the
computer, your programs are always there for you to load when you need them.

Neatness Counts, Again
Hard Disks usually have a lot more information on them than a floppy. Because of this,
you need to be concerned about keeping things neat. You'll never be able to find what
you need otherwise. The best way to organize your collection of programs is to put them
into a "subdirectory" or "folder" on the hard disk.

Making Your Own Subdirectory
Let's make a folder on the hard disk for our programs. In Windows 95 we will need to use
Windows Explorer. In Windows 3.1 we will use File Manager. First, the Windows 95
way.

Making a Folder With Windows 95
Click on the "Start" button, then "Programs", then "Windows Explorer".

Now click on "File", then "New >", then "Folder" on the Windows Explorer menu.

Notice the words "New Folder" on the right-hand side of Windows Explorer.

Go ahead and type in a name for the new folder, but keep it short! QBASIC is an older
program that can't handle names bigger than 8 letters or numbers. I called mine
"TedsPrgs" meaning Ted's Programs. Call yours whatever you want, but no more than 8
characters, or it will look real funny to QBASIC.

Press the <Enter> key to create the folder. Good, that's done. We won't need to do that
again, unless you'd like to make another directory at a later date. Go ahead and close
Windows Explorer and get back to QBASIC.

Making a Folder With Windows 3.1
...

Saving In The Directory
Saving to the hard disk is only a little different from saving to a floppy. You'll need to
have a program up on the screen to save. Go back to the previous chapter and type in the
example if you need to get something up on the screen.

Click on "File" on QBASIC's menu, then "Save".

The "Save" dialog will appear on the screen. The cursor is in a box (field) called "File
Name:". Type this:

 c:\TedsPrgs

Once again, watch the backslash "\". Change "TedsPrgs" to whatever you named your
directory.

Press the <Enter> key. Now you will see a list of programs in that directory. Since you
haven't saved anything yet, there shouldn't be any programs there. Go ahead and type
this:

 testsave

and press the <Enter> key. Hmmm, no sound at all that time. Hard disks are much more
quiet than floppies. So, let's make sure it worked properly. First, get rid of what's on the
screen with a "File" then a "New".

Loading From Hard Disk
This is also very similar to the way we loaded a program from floppy. Click on "File"
then "Open..." on QBASIC's menu. This will bring up the "Open" dialog. Type this:

 c:\TedsPrgs

Like before, watch the backslash "\" and change "TedsPrgs" to whatever your folder was
called.

Now you should see "TESTSAVE.BAS" in the "Files" box. Double-click on
"TESTSAVE.BAS" to load it.

That wasn't too bad, was it? Once you figure out whether you want to save to floppy or
hard disk, you only need to remember one way to save and load.

Learned
• Saving to floppy
• Loading from floppy

• Creating a folder
• Saving to hard disk
• Loading from hard disk

Chapter 9 - SELECT CASE
IF...THEN...ELSE is fine if you only have two things you want to check. What if you
have 5 or 6 friends that might use your computer and you want the computer to say
something different to each of them? Try this:

 CLS
 INPUT "Enter your name: ", Name$
 SELECT CASE Name$
 CASE "Ted"
 PRINT "Greetings, oh powerful master"
 CASE "Mike"
 PRINT "Go away!"
 CASE ELSE
 PRINT "Hello, "; Name$; ". How are you?"
 END SELECT

Whew, that was a big one. Fortunately we learned how to save in Chapter 8. Save it if
you want before running it. Feel free to change "Ted" and "Mike" to "Laura" and "Robin"
or whoever.

SELECT CASE
SELECT CASE first checks Name$ for the value "Ted". If it finds it, it does the PRINT
after the CASE "Ted". When the PRINT is done, it skips over the rest of the CASEs. It
keeps checking against each CASE until it gets to CASE ELSE. If it hasn't found
anything, it will do whatever is after the CASE ELSE.

Just In CASE
SELECT CASE can also be used with numbers as well as strings. Here's a quick
example:

 CLS
 INPUT "Enter a number: ", Number
 SELECT CASE Number
 CASE 1234
 PRINT "Thank you for entering the secret number 1234"
 CASE 22
 PRINT "Well, 22 is an interesting number"
 CASE ELSE
 PRINT "You must not know the secret number"
 END SELECT

Learned

• SELECT CASE

Chapter 10 - Equals
So far, we've only let the user fill in our variables. We can fill in variables on our own
inside our programs too. Like this:

 CLS
 A = 1
 B = 2
 A$ = "Hello"
 PRINT A
 PRINT B
 PRINT A$

"A = 1" places the value 1 in the variable A. "B = 2" places the value 2 in the variable B.
A$ = "Hello" places the string "Hello" in the variable A$. You get the picture. Then the
program prints them out to prove to you that they are there.

See if you can figure out what this rather clever program will do. Then type it in and run
it to see if you were right.

 CLS
 Count = 1
 DO
 PRINT Count
 Count = Count + 1
 LOOP

Did you get it right? Did the output go by way too fast? You'll have to press Break to stop
it. Then take a closer look and see if you can see what's going on.

That program is what is called a "counter". It counts 1, 2, 3, 4... until it is stopped.

Chapter 11 - Random Numbers
Random numbers are numbers that you can't predict. Flipping a coin or rolling dice will
give you a random number. Random numbers are very important in games and in some
kinds of Math. Computers can generate random numbers pretty well. QBASIC's RND
function provides random numbers that we can use.

RND
RND is a special function that gives us a random number between 0 and 1. We can use
this in games to make things interesting. RND is perfect for rolling dice or flipping a
coin. First let's see RND in action:

 CLS
 PRINT RND
 PRINT RND

This program will print RND twice. Notice that you'll get two numbers that appear to be
unpredictable and random. But, try running the program again. You'll get the same
"random" numbers. This means your games would always be the same each time the user
runs them. Fortunately, there's a way to fix this.

RANDOMIZE TIMER
Using RANDOMIZE TIMER will make sure the random numbers you get are different
each time you run. Try this:

 CLS
 RANDOMIZE TIMER
 PRINT RND
 PRINT RND

Useful Random Numbers
Random numbers between 0 and 1 aren't really very useful. What you will need for a
game might be a random number between 1 and 6, like when you roll dice. To get
something more useful, we'll use math. Fortunately, computers are very good at math.

There are two problems we must solve to get the results we want. First, the range of
random numbers has to be expanded from 0 through 1 to 1 through 6. That's easily done
like this:

 CLS
 RANDOMIZE TIMER
 PRINT RND * 6 + 1
 PRINT RND * 6 + 1

By multiplying by 6, we increase the range to 0 through 5. By adding 1 we shift the range
up to 1 through 6. However, there's still a problem. All that decimal stuff. QBASIC's INT
function can be used to convert a decimal number to an integer (a number without a
decimal).

 CLS
 RANDOMIZE TIMER
 PRINT INT(RND * 6 + 1)
 PRINT INT(RND * 6 + 1)

Roll the Dice

Here's a program that rolls two dice and prints the value of each. The variables Die1 and
Die2 are used to hold the values of each die before printing. In a real game, Die1 and
Die2 would be used in some clever way to change the outcome of the game.

 CLS
 RANDOMIZE TIMER
 INPUT "Press ENTER to roll dice...", A$
 PRINT
 Die1 = INT(RND * 6 + 1)
 Die2 = INT(RND * 6 + 1)
 PRINT "Die 1: "; Die1
 PRINT "Die 2: "; Die2

PRINT By Itself
Note that in the last program there was a PRINT on a line by itself. Did you see what it
did? It simply printed a blank line on the screen. This can be useful for making the output
from your program look nicer.

Chapter 12 - The Fortune Teller
Here's a fun program that uses most of what we've learned so far to make a "Magic 8
Ball".

 CLS
 RANDOMIZE TIMER
 PRINT "I am the magical Fortune Teller."
 INPUT "Think of a question and press enter for your answer...", A$
 PRINT
 Answer = INT(RND * 5 + 1)
 SELECT CASE Answer
 CASE 1
 PRINT "Yes, definitely."
 CASE 2
 PRINT "Ask again, later."
 CASE 3
 PRINT "No way!"
 CASE 4
 PRINT "It is certain."
 CASE 5
 PRINT "Yes."
 END SELECT

As always, go ahead and customize it. Change "No way!" to "You bet!" to get a Fortune
Teller that never says "No".

Adding CASEs
Go ahead and try adding a new fortune. You'll need to change

Answer = INT(RND * 5 + 1)

to

Answer = INT(RND * 6 + 1)

since there will be 6 fortunes now. Then you will need to add a "CASE 6" and a PRINT to
print the new fortune.

Chapter 13 - DO...WHILE
Back in Chapter 4 we saw a DO...LOOP that went forever. There are a number of ways
to make a loop stop. One way is to use WHILE. This next program uses WHILE to make
sure the program will only go as long as Answer$ has the letter "y" in it.

 CLS
 DO
 INPUT "Enter the first number: ", A
 INPUT "Enter the second number: ", B
 PRINT "The answer is: "; A * B

 INPUT "Would you like to do it again (y/n)? ", Answer$
 LOOP WHILE Answer$="y"

The condition on the LOOP WHILE line is the same as a condition we might use in an
IF...THEN. In this case, we check to see if Answer$="y", and if it does, we continue
looping. If it doesn't, we fall out of the loop and our program ends.

You can add this feature to any program. Try adding it to the fortune teller.

Chapter 14 - OR and LEFT$
That last program works great, as long as the user always types in a lowercase "y". What
happens if the user types in "yes"? Since "yes" is not the same as "y" to the computer, the
test for Answer$="y" will fail, and the program will end. Probably not a good idea. We
have the same problem if our user enters a capital "Y". Try a few of these to see what I
mean.

There are several ways to make this program smarter and easier to use for our users. We
could have it check for a few different ways of saying yes by using "OR", like this:

 CLS
 DO
 INPUT "Enter the first number: ", A
 INPUT "Enter the second number: ", B
 PRINT "The answer is: "; A * B

 INPUT "Would you like to do it again (y/n)? ", Answer$
 LOOP WHILE Answer$="y" OR Answer$="Y"

This version will allow the user to enter "y" or "Y" and the program will run again. We
can get even more clever by using LEFT$ like this:

 CLS
 DO
 INPUT "Enter the first number: ", A
 INPUT "Enter the second number: ", B
 PRINT "The answer is: "; A * B

 INPUT "Would you like to do it again? ", Answer$
 FirstLetter$ = LEFT$(Answer$, 1)
 LOOP WHILE FirstLetter$="y" OR FirstLetter$="Y"

This version will let the user enter "Yes", "yes", or just about anything that starts with a
"y" because LEFT$ is used to only look at the first character in their answer. You could
even enter "yep" or "YEAH!" and the program will begin again.

This may seem to make the computer smarter, but we know what's really going on. To
prove the computer really isn't very smart, try entering "sure" or "yellow". It thinks "sure"
is "no", and "yellow" is "yes".

LEFT$
LEFT$ can be used to take a certain number of letters from the left side of a string
variable. As an example, if we have:

 A$="TEST"

Then LEFT$(A$,2) will give us "TE". LEFT$(A$,3) will give us "TES". The first
"parameter" you pass to LEFT$ is the string you want to work with. The second
parameter you pass to LEFT$ is the number of characters (letters) you want. Let's try a
program that uses LEFT$ in a different way:

 INPUT "Enter something:", A$
 PRINT A$
 PRINT LEFT$(A$,1)
 PRINT LEFT$(A$,2)
 PRINT LEFT$(A$,3)

This program will print the first character of whatever you enter, followed by the first two
characters, followed by the first three characters:

 Enter something: Jack
 Jack
 J
 Ja
 Jac

QBASIC also provides a RIGHT$() in case you were curious, and it works just like
LEFT$(). Try this:

 INPUT "Enter something:", A$
 PRINT A$
 PRINT RIGHT$(A$,1)
 PRINT RIGHT$(A$,2)
 PRINT RIGHT$(A$,3)

Here's an example of what that program will do:

 Enter something: Jack
 Jack
 k
 ck
 ack

Chapter 15 - COLOR
Tired of all this black and white? Then the COLOR statement is for you. Try this
program for size:

 CLS
 COLOR 2, 0
 PRINT "That's ";
 COLOR 3, 0
 PRINT "more ";
 COLOR 5, 0
 PRINT "like it!"

Color takes two numbers. The first number is the foreground color. The second number is
the background color. For example, if you want to print black on white instead of white
on black, use "COLOR 0,7". The colors each have their own number:

• 0 - Black
• 1 - Blue
• 2 - Green
• 3 - Cyan
• 4 - Red
• 5 - Magenta
• 6 - Yellow
• 7 - White

There are plenty of other colors too. Try the numbers from 8 through 15 to see what
colors you get. Basically, if you add 8 to any of the above colors, you get brighter
versions of the same color. Take blue which is 1 and add 8 and you get 9 which is bright
blue.

Blinking
Adding 16 to a color number gives you a blinking version. This doesn't work in a DOS
window, though. Press <ALT><ENTER> to switch to full-screen mode which will show
the blinking. Try this program:

 CLS
 COLOR 28, 0
 PRINT "*** WARNING ***"
 COLOR 15, 0
 PRINT "Programming can be too much fun!"

Color can be used in many ways to make your programs more interesting.

Chapter 16 - FOR...NEXT
A New Counter
FOR...NEXT is a loop like DO...LOOP, but a FOR...NEXT loop has its own counter built
in. Try this:

 CLS
 FOR I = 1 TO 10
 PRINT I
 NEXT I

Much better than our last counter. This one stops on its own after counting to 10.

A Color Chart
Here's a color chart program using a FOR...NEXT loop.

 CLS
 FOR I = 1 TO 15
 COLOR I, 0
 PRINT I; "*** COLOR ***"
 NEXT I

STEP
FOR...NEXT can also do "step counting". Try this:

 CLS
 FOR I = 2 TO 20 STEP 2
 PRINT I
 NEXT I

That will count by 2's from 2 to 20. STEP tells QBASIC what to count by. Try changing
it to count by 10's from 10 to 100.

FOR...NEXT can also count backwards if you use a negative STEP value:

 CLS
 FOR I = 10 TO 1 STEP -1
 PRINT I
 SLEEP 1
 NEXT I
 PRINT "BLAST OFF!"

"SLEEP 1" tells QBASIC to wait for one second, then continue.

Chapter 17 - Sound
If you just need a beep in your program, you can use BEEP:

 CLS
 INPUT "Press Enter to hear a beep", A$
 BEEP

SOUND lets you play a beep and tell it how high or low the beep will be, and how long it
will last. This program makes a 1000Hz beep for about 1 second:

 SOUND 1000, 18

SOUND is good for making sound effects. Here's a bomb dropping:

 FOR I = 4000 TO 1000 STEP -5
 SOUND I, .1
 NEXT I

If you want to play a song, PLAY is exactly what you need. Try this:

 PLAY "e8 d8 c8 d8 e8 e8 e4"

PLAY is like a little programming language inside of QBASIC. "e8" means play an
eighth note "e". If you are familiar with sheet music, this will make sense. Here's a scale:

 PLAY "c8 d8 e8 f8 g8 a8 b8 > c4"

The ">" greater than sign means "go up one octave". There are many more special
commands in PLAY. Check the QBASIC help for a list of all of them.

PLAY and Triplets
Here's a familiar tune that uses a trick to do triplets.

 PLAY "T180 <d8d8d8 T120 g2>d2"
 PLAY "T180 c8<b8a8 T120 >g2d4"
 PLAY "T180 c8<b8a8 T120 >g2d4"
 PLAY "T180 c8<b8>c8 T120 <a2>"

Since PLAY doesn't do triplets, you have to modify the tempo to get the right rhythm.
PLAY begins with a default tempo of "T120" which means 120 quarter notes per minute.
In the above song, we switch to T180 which is the triplet tempo for T120. By multiplying
our tempo by 1.5, we get the triplet tempo. When the triplets are done, we switch back to
the regular tempo. You can see in the above example that we switch back and forth
between the main tempo (T120) and the triplet tempo (T180) several times as needed.

As with everything, there's more than one way to do triplets. 8th note triplets can also be
called 12th notes, like this:

 PLAY "<d12d12d12g2>d2"
 PLAY "c12<b12a12>g2d4"
 PLAY "c12<b12a12>g2d4"
 PLAY "c12<b12>c12<a2>"

Using this technique, 16th note triplets are 24th notes, etc.... You just multiply the note
value by 1.5 instead of changing the tempo.

Each of these techniques has its advantages and disadvantages. The tempo-changing
technique uses more space, but the notes retain their values. The 12th note technique is
more compact, but not as easy to understand. Which one you use is up to you. Just make
sure the next person to read your code understands what you are doing. Comments are a
good idea.

Chapter 18 - LOCATE
LOCATE allows you to print in a specific place on the screen.

 CLS
 LOCATE 5, 10
 PRINT "Here"
 LOCATE 20, 70
 PRINT "There"

The two numbers after LOCATE are the coordinates where the print will be. Just like
coordinates in math class, these numbers give the row and the column. The first number
in LOCATE is the row, or how far down the screen the print will start. The second
number is the column, or how far over the print will start.

Let's use some random numbers, COLOR and LOCATE to make a more interesting
version of our first looping program:

 CLS
 DO
 Row = INT(RND * 23 + 1)
 Column = INT(RND * 79 + 1)
 LOCATE Row, Column
 Color1 = INT(RND * 15 + 1)
 COLOR Color1, 0
 PRINT "Ted was here!";
 LOOP

Kind of messy, but interesting.

How about a clock?

 CLS
 DO
 LOCATE 1, 1
 PRINT TIME$
 SLEEP 1
 LOOP

TIME$ is a special variable that contains the current time. Press Break to stop.

Chapter 19 - WIDTH
Use WIDTH 40 for big text. It changes the entire screen to wide text mode. Use WIDTH
80 to go back to normal size text.

 SCREEN 0
 WIDTH 40
 CLS
 PRINT "Wow! This is big!"
 INPUT "Press <Enter> to go back", A$
 WIDTH 80
 PRINT "That's more like it."

Unfortunately, you won't see the big text in a window. You'll have to press <Alt>-
<Enter> to switch to full-screen mode. Be sure to press <Alt>-<Enter> again to switch
back to window mode.

Chapter 20 - CHR$
There are many special symbols and other characters you can display that aren't on the
keyboard. Try this:

 CLS
 PRINT CHR$(1); CHR$(2)

That prints a couple of smiley faces. There are plenty of other characters too. This
program will show you many, but not all of them:

 CLS
 FOR I = 32 to 255
 PRINT I; CHR$(I); " ";
 NEXT I

Chapter 21 - Graphics
So far, we've only been dealing with text (words and numbers). How do we do pictures in
QBASIC? First, we need to use SCREEN to change from text mode to graphics mode.

SCREEN
SCREEN lets you select a "graphics" screen instead of the "text" screen we've been
using. This will let you draw pictures. In the next program, we'll use DRAW to draw a
square on the screen in SCREEN 12 graphics mode.

 SCREEN 12
 CLS
 DRAW "D100 R100 U100 L100"

There are many other SCREEN numbers you can use, but 12 is probably the easiest to
work with. It gives you a lot of space and the color numbers are familiar. QBASIC Help
explains all the possible values of SCREEN. You can always try them and see what
happens.

DRAW
DRAW is kind of like the turtle in the programming language Logo. With DRAW, you
can move around the screen and draw lines along the way. In the above example we used
the following DRAW commands:

• D100 - Go down 100 units
• R100 - Go right 100 units
• U100 - Go up 100 units
• L100 - Go left 100 units

DRAW can do a lot more than that. It is like PLAY. It's a small programming language
inside of QBASIC. Look at QBASIC Help for a complete description of everything it can
do. Here's a filled in box:

 SCREEN 12
 CLS
 DRAW "C15 D100 R100 U100 L100 BF1 P15,15"

"C15" sets the color to bright white. "BF1" moves into the square, then "P15,15" fills it
with bright white. Finally, here's something very Logo-like:

 SCREEN 12
 CLS
 FOR I = 0 TO 360 STEP 10
 DRAW "D100 R100 U100 L100 TA" + STR$(I)

 NEXT I

"TA" means to turn to a specific angle. STR$ converts the value in I to a string. This lets
DRAW turn to the angle in the variable I. It's not quite as easy as Logo, but it's still pretty
impressive.

LINE
QBASIC also lets you draw using a coordinate system. It's like drawing graphs on graph
paper. Try this:

 SCREEN 12
 CLS
 LINE (0, 0)-(320, 240), 15

LINE lets you draw a line between two points. The points are specified in (x, y)
coordinates. You may have seen this when learning about graphs in math class. In
QBASIC, the coordinates are almost the same. The only thing that is different is the Y
coordinate. In QBASIC, the Y coordinate is upside down. "0" is at the top, and bigger
numbers go toward the bottom of the screen.

"LINE (0, 0)-(320, 240), 15" draws a line starting at coordinate (0, 0) which is the upper
left corner of the screen. The line ends at (320, 240) which is the center of the screen. The
last number is the color (15 which is bright white).

Box
By adding a "B" to the end of a LINE statement, you can draw a box. Try this:

 SCREEN 12
 CLS
 LINE (0, 0)-(320, 240), 15, B

The first coordinate is the upper left corner while the second coordinate is the lower right.

Try "BF" instead of "B". Interesting?

CIRCLE
QBASIC can also draw circles using the CIRCLE statement:

 SCREEN 12
 CLS
 CIRCLE (320, 240), 100, 15

The coordinate (320, 240) tells the computer where to put the center of the circle. "100"
is the radius, or how big the circle will be. "15" is the color number (bright white again).

PAINT
Notice how that circle was not filled in. LINE has a "BF" option that will let us fill in the
boxes it draws. CIRCLE has no such option, so we have to use PAINT:

 SCREEN 12
 CLS
 CIRCLE (320, 240), 100, 15
 PAINT (320, 240), 15, 15

PAINT fills an area with a color. It stops painting when it runs into a certain color on the
screen. The coordinate (320, 240) tells PAINT where to start filling in, and the first "15"
tells PAINT to use bright white as the paint color. The second "15" tells PAINT to stop
painting when it runs into anything that is bright white.

Circle Art
Concentric circles are very easy to draw:

 SCREEN 12
 CLS
 FOR I = 5 TO 200 STEP 5
 CIRCLE (320, 240), I, 15
 NEXT I

With CIRCLE, PAINT and some random numbers, we can make some interesting
pictures:

 SCREEN 12
 CLS
 FOR I = 1 TO 50
 X = INT(RND * 640)
 Y = INT(RND * 480)
 R = INT(RND * 100)
 Color1 = INT(RND * 16)
 CIRCLE (X, Y), R, Color1
 PAINT (X, Y), Color1, Color1
 NEXT I

Chapter 22 - INKEY$
Up to now, we've been using INPUT to get things from the keyboard. The problem with
INPUT is that our program stops until the user presses the enter key. Wouldn't it be nice
to keep the program running and still be able to get input from the keyboard? INKEY$
will let you do this. Using INKEY$ is very important if you want to make "real-time"
game programs.

Let's fix the clock program to let the user press any key to stop the program. This way the
user doesn't have to know about the Break key.

 CLS
 LOCATE 3, 1
 PRINT "Press any key to exit"
 DO
 LOCATE 1, 1
 PRINT TIME$
 SLEEP 1
 LOOP WHILE INKEY$ = ""

Not bad at all. Now we don't need to teach the user about the Break key. We can do the
same thing in any of our other programs that need the Break key. If the user does not
press a key, INKEY$ returns nothing or "".

This next program will sit in a loop getting keys from the keyboard with INKEY$ and
printing them to the screen:

 CLS
 DO
 Key$ = INKEY$
 IF Key$ <> "" THEN
 PRINT Key$;
 END IF
 LOOP

That little program can be used to find the various secret codes used by INKEY$ to let
you know the arrow keys have been pressed. This is very useful in game programming
where the arrow keys might control a player in a game. If you press an arrow key, you'll
see that a space and a letter are generated.

Chapter 22.5 - String Functions
Concatenation
Concat-uh-what?! It's just a fancy word for putting things together, one after another. It's
much easier done than said. When you use the plus-sign "+" with strings, it doesn't add
them up. Instead, it puts them together.

 A$ = "Hello "
 B$ = "there!"
 C$ = A$ + B$
 PRINT C$

That will print "Hello there!" to the screen.

LEFT$() and RIGHT$()
LEFT$() and RIGHT$() let you work with parts of strings. Try this example:

 A$ = "Ted Felix"
 B$ = LEFT$(A$, 3)
 PRINT B$

LEFT$(A$, 3) means "take 3 characters from the left of A$". Since the 3 characters on
the left happen to be "Ted", this program prints "Ted" as expected. Try changing the
number to 2 or 5 and see what happens.

Once you understand LEFT$(), RIGHT$() is easy. Let's try it:

 A$ = "QBASIC is cool"
 B$ = RIGHT$(A$, 4)
 PRINT B$

RIGHT$(A$, 4) means "take 4 characters from the right of A$". This gives us "cool".

MID$()
LEFT$() gives us something from the left side of a string. RIGHT$() gives us something
from the right side of the string. MID$() gives us something from the middle of a string.
Try this:

 A$ = "one two three"
 B$ = MID$(A$, 5, 3)
 PRINT B$

MID$(A$, 5, 3) means "take 3 characters from the middle of A$, starting at the fifth
character". This gives us the word in the middle: "two".

You can also use MID$() to change a portion of what is in a string variable. Try this:

 A$ = "cabinet"
 PRINT A$
 MID$(A$, 4, 2) = "ar"
 PRINT A$

Here, we replaced the "in" in cabinet with "ar". This gives us a completely different
word.

This would be a pretty sneaky way to hide something like a password in a program.
Someone who didn't know how to program in QBASIC might not be able to figure it out.

LCASE$() and UCASE$()

If you need to convert a string to all uppercase or all lowercase, UCASE$() and LCASE$
() are exactly what you need.

 A$ = "Fly Away With Me"
 PRINT A$
 PRINT UCASE$(A$)
 PRINT LCASE$(A$)

You can use UCASE$() and LCASE$() to do "case-insensitive" tests. In other words,
upper and lower case are ignored. Here's an improvement to a previous program.

 CLS
 INPUT "Enter your name: ", Name$
 IF LCASE$(Name$) = "mike" THEN
 PRINT "Go Away!"
 ELSE
 PRINT "Hello, "; Name$; ". How are you today?"
 END IF

In this new version, the user can type "mike", "Mike" or even "MIKE" and the name will
be recognized.

STRING$() and SPACE$()
Let's say you need to print 20 stars on the screen in a line. You could do it like this:

 PRINT "********************"

But, there has got to be a better way. How about with a FOR loop?

 FOR I = 1 to 20
 PRINT "*";
 NEXT I
 PRINT

That works well, but QBASIC provides an even easier way to do this with STRING$().

 PRINT STRING$(20, "*")

The first argument to STRING$() is the number of times you want a character repeated.
The second argument is the character you want to repeat. So, STRING$(20, "*") means
"give me 20 stars".

If you want to print a lot of spaces, you could do it with STRING$():

 PRINT "A"; STRING$(20, " "); "B"

Or you can use SPACE$().

 PRINT "A"; SPACE$(20); "B"

FOR loops always make things interesting:

 FOR I = 0 to 20
 PRINT SPACE$(I); "QBASIC!"
 NEXT I

LEN()
LEN() gives you the length of a string. Try this:

 A$ = "Hello"
 PRINT LEN(A$)

As expected, that should print the number 5 since the word "Hello" has 5 characters.

LEN() is handy in FOR loops when you aren't sure how long the string is, and you don't
feel like counting it yourself:

 A$ = "Hello QBASIC!"
 FOR I = 1 to LEN(A$)
 PRINT LEFT$(A$, I)
 NEXT I

LEN() is very useful when you want the user to provide the string. Try this:

 INPUT "Enter a string: ", A$
 PRINT "The string you entered was"; LEN(A$); "characters long."

CHR$() and ASC()
Computers really only know about numbers. To make strings of letters, computers
convert letters to numbers so they can work with them. CHR$() and ASC() let you do the
same kinds of conversions.

CHR$() converts a number to a character. We've already seen this in a previous chapter.
Try this:

 FOR I = 14 to 255
 PRINT I; CHR$(I); " ";
 NEXT I

That program displays all the character numbers from 14 through 255 followed by the
characters that they represent. CHR$() is very useful for getting characters that aren't on
the keyboard. Like this:

 PRINT STRING$(40, CHR$(1))

There are some very interesting characters between CHR$(1) and CHR$(31). As an
example, CHR$(7) makes a beep. Try it:

 PRINT CHR$(7)

There are other interesting things as well. Play around with CHR$() a bit, and you'll find
several.

ASC() is the opposite of CHR$(). ASC() takes a character and tells you its number. Try
this:

 PRINT ASC("A")

That program prints 65 because the character code for a capital "A" is 65. The code that
QBASIC uses to convert letters to numbers is called "ASCII" (pronounced "askee").

INSTR()
INSTR() lets you search for a string in another string. If it finds the string, it will tell you
where it is. Try this:

 A$ = "Hello everyone"
 PRINT INSTR(A$, "every")

That program prints "7" because "every" is found at the 7th position in "Hello everyone".
If the string isn't found, INSTR() returns zero.

INSTR() can come in very handy when you want to break a string into pieces:

 A$ = "two pieces"
 SpacePos = INSTR(A$, " ")
 PRINT LEFT$(A$, SpacePos)
 PRINT RIGHT$(A$, LEN(A$) - SpacePos)

Chapter 23 - Comments and Constants
Most programming languages allow you to add notes to your programs that are ignored
by the computer. This lets you explain what you've done to someone else who might read
your program later. In QBASIC we use the apostrophe (') to begin a comment. Here's an
example:

 ' A program to draw boxes all over the screen
 ' This is a comment, QBASIC will ignore it
 SCREEN 12
 CLS
 ' Draw 50 boxes
 FOR I = 1 TO 50

 ' Pick the location of the box
 X1 = INT(RND * 640)
 Y1 = INT(RND * 480)
 X2 = INT(RND * 640)
 Y2 = INT(RND * 480)
 ' Pick the color for the box
 Color1 = INT(RND * 16)
 ' Draw the box
 LINE (X1, Y1) - (X2, Y2), Color1, BF
 NEXT I

The computer will ignore all those comment lines, but us humans can read them and
remember how a program works. Good programmers use comments to help others
understand what they have done. Comments can also help us remember what we did
when we come back to a program after working on something else for a while.

Constants
Another way to make your programs easier to understand is to use constants. Constants
look and act like variables, but they cannot be changed. Here's a useful program:

 CONST Pi = 3.141593
 INPUT "Enter the radius of a circle: ", Radius
 PRINT "The circumference is:"; 2 * Pi * Radius
 PRINT "The area is:"; Pi * Radius * Radius

If we didn't use the constant Pi, we would have to copy the number 3.141593 two places
in the above program. Using a constant makes the program easier to read and understand.
It also keeps us from making mistakes when copying.

Chapter 24 - Sub-Procedures (SUBs)
When programs get big, you need to break them into smaller pieces that are easier to
work with. QBASIC calls these pieces "sub-procedures" or SUBs. Other programming
languages have other names, like procedures, subroutines, or subprograms.

To work with SUBs in QBASIC, we need to look at the "SUBs" dialog box which shows
us a list of our SUBs. Select "View | SUBs..." from the menu to bring up the SUBs dialog
box. You can also press the F2 key to get there more quickly. In here, you can select a
SUB to work with, or you can select the main module. If you are just starting with a clean

slate (File | New) you'll see that the main module is called "Untitled", and there are no
SUBs.

You can define a new SUB in QBASIC simply by typing it in. This will jump you to the
view of the new SUB. Try typing this:

 SUB DrawCircle
 CIRCLE (320, 240), 100, 15
 END SUB

Notice that after you pressed enter on the first line, you were taken to a new screen with
just your new SUB in it. Now, if you go to the SUBs dialog box (View | SUBs...), you
can see that you have a SUB named "DrawCircle" and a Main Module named "Untitled".

Now we need to go back to the Main Module ("Untitled") to actually use the new SUB.
From the menu, select View | SUBs... to get the SUBs dialog box. Now double-click on
"Untitled" to get back to the Main Module. The screen will go blank, but don't worry,
your SUB is still out there. Now type this in and run it:

 SCREEN 12
 CLS
 DrawCircle

See? DrawCircle did what it was supposed to do.

Let's try adding another SUB. See if you can remember the steps on your own. Refer
back to the previous example if you need help.

 SUB PlayMary
 PLAY "e8 d8 c8 d8 e8 e8 e4"
 END SUB

Now we need to change the Main Module to use our new SUB. So, go back to the Main
Module, and change it to look like this:

 SCREEN 12
 CLS
 DrawCircle
 PlayMary

Now run it and you should see the circle and hear the song.

Dividing programs into smaller pieces like this will help you make sense out of big
programs.

Arguments

Sometimes you want to pass numbers or strings to a SUB. QBASIC lets you do this. Here
is a new version of the DrawCircle SUB:

 SUB DrawCircle2 (Radius)
 CIRCLE (320, 240), Radius, 15
 END SUB

This version lets us pass in the Radius. When we do this, Radius is called a "parameter"
or "argument" to our SUB. Here's how we would then pass an argument from the Main
Module:

 SCREEN 12
 CLS
 DrawCircle
 DrawCircle2 (20)
 PlayMary

We could also do something like this in our Main Module:

 SCREEN 12
 CLS
 FOR I = 5 TO 200 STEP 5
 DrawCircle2 (I)
 NEXT I

Changing Arguments
If you need to tell the main module something, you can change one of the arguments in
your SUB, and the main module will see the change.

 CLS
 I = 0
 AddOne(I)
 PRINT I

 SUB AddOne(X)
 X = X + 1
 END SUB

When you run that program, it will print the value 1 on the screen. This is because the
value of I is changed by the AddOne SUB. If you only need to return one value, a
FUNCTION is sometimes a better choice. FUNCTIONs are described later.

Scope
What if we had variables in the Main Module and in a SUB that happen to have the same
name. Would they be the same variable? Let's find out. Enter this SUB:

 SUB Scope

 PRINT "Scope says: "; X
 X = 23
 END SUB

And this Main Module:

 X = 15
 Scope
 PRINT "Main Module says: "; X

And run it. What happened? Scope said "0" because to Scope, X was a new variable.
Main Module said 15, because Scope didn't change Main Module's X, it changed it's own
X. Scope's X and Main Module's X are different variables.

Variables that you create in a SUB cannot be seen by the Main Module. Variables in the
Main Module cannot be seen by a SUB. If you need to share variables, you can pass them
as arguments to the SUB.

Global Data
It is possible to make variables in the Main Module available to SUBs without passing
them as arguments. Add a "SHARED X" to the Scope SUB like this:

 SUB Scope
 SHARED X
 PRINT "Scope says: "; X
 X = 23
 END SUB

Now when you run it, you'll see that the Scope SUB can now see the Main Module's X.
Scope no longer has its own X. This is called "Global Data" (since it can be seen by
everyone) and should be avoided if you can. Most programmers consider this dangerous
since it is hard to know which SUB might change a global variable.

You can also make a variable global to all SUBs from the Main Module by adding a
"DIM SHARED" to the main module before you set X to 15:

 DIM SHARED X
 X = 15
 Scope
 PRINT "Main Module says: "; X

This makes it easier to see which variables are global since they can be found in the Main
Module. The problem is that this makes a variable global to every SUB in your program.
Usually, only some SUBs need to see a global variable. It is better to use SHARED
within your SUB in that case.

Object Oriented Programming

When you start worrying about SUBs and the Main Module sharing variables, you are
probably ready to begin learning Object Oriented programming. Object Oriented
programming makes it easier to share variables between SUBs and still write code that is
easy to understand. Visual BASIC, Java, and C# are programming languages that provide
Object Oriented programming features, and are fairly easy to learn.

STATIC
Notice that each time you call a SUB, its variables are lost after the SUB is over. Here's
an example:

 SUB Counter
 C = C + 1
 PRINT C
 END SUB

 CLS
 Counter
 Counter
 Counter

Not a very good counter, since it always prints "1". We can use STATIC to tell QBASIC
that we don't want C to go away after the SUB is over. Then we will get the behavior we
expect. Change the Counter SUB like this:

 SUB Counter
 STATIC C
 C = C + 1
 PRINT C
 END SUB

That's much better.

Object Oriented programming languages offer many ways to avoid the use of STATIC
variables. If you find yourself making lots of STATIC variables, it is probably time to
learn an Object Oriented programming language.

Functions
Functions are just like SUBs, but they return a value. Here's an example:

 FUNCTION Add (X, Y)
 Add = X + Y
 END FUNCTION

And here's a Main Module to go with it:

 PRINT Add(3, 4)

Well, I DECLARE!
As you've been entering the example programs in this chapter, you may have noticed that
the QBASIC editor adds "DECLARE" statements to the programs. Why does it do this?
The DECLARE statement is a warning to QBASIC to let it know that there are SUBs or
FUNCTIONs in this program. Without this warning, QBASIC would have no idea what
we mean when we call a SUB or FUNCTION. It would think it had found a syntax error
and the program would stop.

Fortunately, QBASIC handles making DECLAREs for us. Unfortunately, in larger
programs, it might put the DECLAREs someplace that looks ugly. Fortunately, you can
move the DECLAREs anywhere you want (as long as it is before the FUNCTION or
SUB is first used) and QBASIC still takes care of the rest.

Chapter 25 - Data Structures
Built-In Types
QBASIC offers five built-in types. Each of these types can be specified by a single
character after the variable name. You can also specify a type using a DIM statement. It
is important to pick the right types when you are writing a program. The following
descriptions of each type will help you make the right decisions.

Single-Precision

The single-precision type handles numbers with decimals. You can go up to seven digits
with a single-precision variable. In a DIM statement, use "SINGLE" to create a single-
precision variable. The type-character for a single-precision variable is "!". Unless you do
something special, any variable without a type character is single-precision. Here are
some examples of creating and using single-precision variables:

 X = 1.5
 DIM Y AS SINGLE
 Y = 2.1
 Z! = 2.5

 PRINT X; Y; Z!

Notice that the DIM statement can be used to tell QBASIC the type of a variable. Then
you don't need to use a type character for that variable.

String

The string type handles strings of characters. You cannot do math with string variables.
In a DIM statement, use "STRING" to create a string variable. The type-character for a
string variable is "$". Here are some examples of creating and using string variables:

 X$ = "Hello"
 DIM Y AS STRING
 Y = "Goodbye"

 PRINT X$
 PRINT Y

Integer

The integer type handles numbers without decimals. Integers may range from -32768 to
32767. Math with integers may be faster than math with single-precision variables. For
programs that have to run very fast, using integers might be useful. In a DIM statement,
use "INTEGER" to create an integer variable. The type-character for an integer variable
is "%". Here are some examples of creating and using integer variables:

 X% = 32
 DIM Y AS INTEGER
 Y = 55

 PRINT X%; Y

Since math with integers is very fast, you will commonly see the following line near the
beginning of QBASIC programs:

 DEFINT A-Z

This tells QBASIC to stop assuming that every variable is single-precision, and instead to
assume that all variables are integers. This way you don't need to use DIM or the "%"
symbol throughout your program to make all your variables integers.

Long-Integer

The long-integer type handles numbers without decimals. Long-integers may range from
-2147483648 to 2147483647. Math with long-integers is usually almost as fast as math
with integers. For programs that have to run very fast, using long-integers might be
useful. In a DIM statement, use "LONG" to create a long-integer variable. The type-
character for a long-integer variable is "&". Here are some examples of creating and
using long-integer variables:

 X& = 65536
 DIM Y AS LONG
 Y = 121072

 PRINT X&; Y

Double-Precision

The double-precision type handles numbers with decimals. You can go up to fifteen
digits with a double-precision variable. Double-precision variables are used where very
accurate math is needed. In a DIM statement, use "DOUBLE" to create a double-
precision variable. The type-character for a double-precision variable is "#". Here are
some examples of creating and using double-precision variables:

 X# = 3.14159265358979
 DIM Y AS DOUBLE
 Y = 1.23456789012345

 PRINT X#; Y

Arrays
An array lets you store a list of things. Arrays are very similar to variables, but they hold
more than one thing. Try this:

 N$(0) = "Ted"
 N$(1) = "Jack"
 N$(2) = "Jill"
 N$(3) = "Fred"

 FOR I = 0 TO 3
 PRINT N$(I)
 NEXT I

The number inside the parenthesis "(1)" is called the "subscript". N$(0) is usually
pronounced "N dollar sub zero", although I've also heard it called "N string sub zero".

Arrays can also store numbers.

 FOR I = 0 TO 10
 A(I) = I * 2
 NEXT I

 FOR I = 0 TO 10
 PRINT A(I)
 NEXT I

Arrays are limited to holding only 11 items (0 through 10). If you go over 10, you'll get a
"Subscript out of range" error. To make bigger arrays, you can use DIM to tell QBASIC
how big the array will be:

 DIM A(20)

 FOR I = 0 TO 20
 A(I) = I * 2
 NEXT I

 FOR I = 0 TO 20
 PRINT A(I)
 NEXT I

Arrays are perfect for programs that need to keep a list of things. You could use arrays to
make a phone book program, or a program that keeps track of the people in your class at
school.

TYPE
Sometimes you'll want to put a bunch of different kinds of variables together because all
together they describe something. QBASIC's TYPE statement lets you create your own
collections of variables. Here's an example:

 TYPE FriendType
 FullName AS STRING * 20
 PhoneNumber AS STRING * 14
 END TYPE

 DIM Friend AS FriendType

 Friend.FullName = "Joe Blow"
 Friend.PhoneNumber = "1-310-555-1212"

 PRINT Friend.FullName; ": "; Friend.PhoneNumber

TYPE makes our new type, or collection of variables. DIM makes a new variable of that
type. When we work with types, we use the variable name, followed by a dot ("."),
followed by the name of the variable in the TYPE.

Since TYPE lets you use a single variable to represent a collection of variables, you can
use TYPE to pass many parameters to a SUB at once. This may be a good way to avoid
using SHARED too much in a SUB.

In QBASIC, a TYPE can hold any of the built-in types. A TYPE can also hold another
TYPE. However, a TYPE cannot hold an array. Visual BASIC allows that, but not
QBASIC.

A Database
Using arrays and TYPEs together allows you to create what is known as a database. Try
this:

 TYPE FriendType
 FullName AS STRING * 20
 PhoneNumber AS STRING * 14
 END TYPE

 ' The database
 DIM Friends(2) AS FriendType

 ' Fill the database with names and numbers
 Friends(0).FullName = "Joe Blow"
 Friends(0).PhoneNumber = "1-310-555-1212"

 Friends(1).FullName = "Jack Sprat"
 Friends(1).PhoneNumber = "1-340-555-6545"

 Friends(2).FullName = "Carol Christmas"
 Friends(2).PhoneNumber = "1-350-555-2421"

 ' Print out the entire database
 FOR I = 0 TO 2
 PRINT Friends(I).FullName; ": "; Friends(I).PhoneNumber
 NEXT I

Chapter 25.5 - Type Conversion
STR$() and VAL()
Up to now, we've been using string variables to hold strings and number variables to hold
numbers. What if we really need to do some math with numbers that are in a string
variable? Or maybe we need to get some numbers into a string variable somehow.
QBASIC provides the STR$() and VAL() functions to help us out.

STR$() will let us convert from a number to a string. Like this:

 A = 25 ' A can only hold numbers
 PRINT A
 B$ = STR$(A) ' Convert A to a string, store in B$
 PRINT B$

VAL() will let us convert from a string to a number. Like this:

 A$ = "25" ' Can't do any math with a string variable
 PRINT A$
 B = VAL(A$) ' Convert A$ to a number, store in B
 PRINT B

Converting Numbers
Need to cover CINT(), FIX(), INT(), CDBL(), CSNG(), CLNG()

Chapter 25.75 - PRINT USING

Chapter 25.9 - DATA and READ
Loading an array with a lot of values can get pretty boring.

 ' Load up the array
 A(0) = 10
 A(1) = 24
 A(2) = 31
 A(3) = 15
 A(4) = 67
 A(5) = 34
 A(6) = 87
 A(7) = 92
 A(8) = 14
 ' ... This could go on for quite a while

 FOR I = 0 TO 8
 PRINT A(I)
 NEXT I

To save space, and typing, QBASIC provides the DATA and READ statements. You can
place a list of data values in a DATA statement and read them into an array using READ.
The following program will do exactly what the previous program does.

 DATA 10, 24, 31, 15, 67, 34, 87, 92, 14

 FOR I = 0 TO 8
 READ A(I)
 NEXT I

 FOR I = 0 TO 8
 PRINT A(I)
 NEXT I

QBASIC skips the DATA statements in the code. It only pays attention to them when it
finds a READ statement. Each time a READ happens, QBASIC takes a value from the
DATA statement and places it in the variable in the READ statement.

RESTORE
RESTORE tells QBASIC which DATA statement to start READing from. You might
need to load several different arrays in your program. RESTORE lets you organize the
DATA statements any way you want.

 Names:
 DATA Fred, Joe, Jack, Sue
 Values:
 DATA 10, 24, 31, 15, 67, 34, 87, 92, 14

 ' Start with the DATA statement after "Values:"
 RESTORE Values
 FOR I = 0 TO 8
 READ A(I)
 NEXT I

 ' Start with the DATA statement after "Names:"
 RESTORE Names
 FOR I = 0 TO 8
 READ N$(I)
 NEXT I

RESTORE tells QBASIC to start reading at the next DATA statement after a label. A
label is a name like "Names:" or "Values:". Notice that when we make a new label, we
use a colon ":", but when we use the label in the RESTORE statement, we drop the colon.

Loading a Database
DATA statements are perfect for loading a database. Here's a new version of the database
example using DATA statements this time.

 DATA "Joe Blow", "1-310-555-1212"
 DATA "Jack Sprat", "1-340-555-6545"
 DATA "Carol Christmas", "1-350-555-2421"

 TYPE FriendType
 FullName AS STRING * 20
 PhoneNumber AS STRING * 14
 END TYPE

 ' The database
 DIM Friends(2) AS FriendType

 ' Read in the database from the DATA statements
 FOR I = 0 TO 2
 READ Friends(I).FullName, Friends(I).PhoneNumber
 NEXT I

 ' Print out the entire database
 FOR I = 0 TO 2
 PRINT Friends(I).FullName; ": "; Friends(I).PhoneNumber
 NEXT I

Chapter 26 - Reading and Writing Files
Up to now, our programs have depended on us, the programmer, to give them data to
work with. This wouldn't work very well for a phone book program. The user should be
the one to fill in the names and phone numbers. QBASIC will let us get information from
the user with INPUT. But when the program ends, that information is gone.

Writing to a file
The solution to this problem is to let the user enter their information, then the program
will store that information in a file on the hard disk. QBASIC offers a number of ways to
do this. Try this:

 INPUT "Enter your name: ", Name$
 OPEN "testfile.txt" FOR OUTPUT AS #1
 WRITE #1, Name$
 CLOSE #1

When you run that program, and enter your name, it will place your name in a file on the
hard disk called "testfile.txt". You can use Notepad to find it and make sure your name is
there. You might need to figure out where QBASIC put the file. That can be a little
tricky. If you exit QBASIC, and from the DOS prompt enter this:

 type testfile.txt

You should see your name, or whatever you entered. The "type" command at the DOS
prompt copies the contents of a file to the screen. You could also try this:

 notepad testfile.txt

That should bring up notepad with your file. When you are working with files, it is a
good idea to know how to bring them up in notepad. This way you can look at them to
see if they contain what you expected.

OPEN, WRITE, and CLOSE
There are three statements, OPEN, WRITE, and CLOSE that are needed to write
information to a file. The OPEN statement tells QBASIC three things:

1. The name of the file (testfile.txt)
2. Whether we want to write to the file (OUTPUT) or read from the file (INPUT)
3. The file number (#1 in this example)

Once the file is opened, we will use the file number to let QBASIC know which file we
want to write to. You could have many files open at the same time, so the file number lets
QBASIC know which file you want to work with.

The WRITE statement tells QBASIC which file we want to write to (#1), and what we
want to write (Name$). It is very much like a PRINT statement, but instead of sending
the information to the screen, WRITE sends the information to a file.

Finally, we need to CLOSE the file, to let QBASIC know that we are done. Otherwise,
QBASIC might not write anything to the file at all. The CLOSE statement only needs to
know which file you want to close, so it only requires the file number.

Reading from a file
The following program will get the name and print it on the screen:

 OPEN "testfile.txt" FOR INPUT AS #1
 INPUT #1, Name$
 CLOSE #1
 PRINT Name$

There are three main things that are different in this program if you compare it to the
previous program.

1. The OPEN statement uses "INPUT" instead of "OUTPUT". This tells QBASIC
that we plan to get data from the file.

2. The INPUT statement, which you've seen before, is used to read from a file. The
#1 tells it that we want to read from file #1. When we've used INPUT in other
programs, there was no #1. Without a file number, INPUT gets information from
the keyboard. With a file number, it gets information from a file.

3. Instead of getting something from the user at the beginning of the program, we
display what was read from the file at the end with a good ol' PRINT statement.

One thing that hasn't changed at all is the CLOSE statement. We CLOSE file #1 so that
QBASIC knows we are done with it. While we probably won't lose any data if we don't
CLOSE in this case, it is still a good thing to do. QBASIC can only open so many files,
so if you leave some open, you might not be able to open any more.

Logging
Sometimes it can be very useful to write to a file while a program is running so that you
can look at what happened later. This is called "logging". We can use the "APPEND"
option in the OPEN statement to open a file and simply keep adding to the end of it.

 OPEN "logfile.txt" FOR APPEND AS #1
 PRINT #1, "Program Run: "; TIME$
 CLOSE #1

 CLS
 INPUT "What is your name"; Name$
 PRINT "Hello, "; Name$

 OPEN "logfile.txt" FOR APPEND AS #1
 PRINT #1, "Program Stopped: "; TIME$
 CLOSE #1

We've logged two things in this program, the program's start time, and it's end time. Run
the program a few times, then exit QBASIC and type:

 notepad logfile.txt

That will show you what is in your log.

Input Files
Ideas: Fortune Teller using a text file as input. This would combine file input with arrays.

Keeping Track of Things
Let's say we want our program to remember who it is registered to. We also want it to
count how many times it has been run. We could try something like this:

 CLS
 INPUT "Enter your name to register this program: ", Name$
 PRINT "Thank you, "; Name$
 RunCount = RunCount + 1
 PRINT "This program is registered to: "; Name$
 PRINT "This program has been run"; RunCount; "times."
 PRINT "We hope you have enjoyed it."

But that doesn't work. Why? Because QBASIC can't remember the value of the variables
Name$ and RunCount from one run of the program to the next.

To fix this, we need to use a file. We can read the file before the program starts, and write
the file back out when the program is finished. We will save the user's name and the
number of times the program has been run in this file.

The code to do this is a bit more complex than what we've done so far. This is because
QBASIC handles file errors in a strange way. Our program must handle one file error.
The first time it is run, there will be no registration file for it to read. So the OPEN will
fail. We have to handle this, or our program won't work.

' If there are any problems, QBASIC will jump to ErrorHandler below.
ON ERROR GOTO ErrorHandler

' This is the error code that is filled in by the error handler
DIM ErrorCode AS INTEGER

CLS

' Always reset this before doing something you want to check
ErrorCode = 0
' Try to get the name and run count from the file
OPEN "register.txt" FOR INPUT AS #1

' If the file wasn't found
IF ErrorCode = 53 THEN
 ' Get the name from the user
 INPUT "Enter your name to register this program: ", Name$
 PRINT "Thank you, "; Name$
 ' And set the run count to 0
 RunCount = 0
ELSE
 ' Get the user's name and the run count from the file
 INPUT #1, Name$, RunCount
 CLOSE #1
END IF

RunCount = RunCount + 1
PRINT "This program is registered to: "; Name$
PRINT "This program has been run"; RunCount; "times."
PRINT "We hope you have enjoyed it."

' Save the name and run count for the next run
OPEN "register.txt" FOR OUTPUT AS #1
WRITE #1, Name$, RunCount
CLOSE #1

' This END prevents us from running the error handler at the
' end of the program. It causes the program to stop, just
' like pressing the Break key.
END

' QBASIC will jump here if an error occurs
ErrorHandler:
' We have to move the error code into a variable or we won't
' see it because ERR is set to zero after the handler is done.
ErrorCode = ERR
RESUME NEXT

Handling File Errors
"ON ERROR GOTO ErrorHandler" tells QBASIC that if there is a problem, the program
should immediately jump to "ErrorHandler:" which you will see near the end of the
program. There we can get the error code which is in a QBASIC variable called "ERR"
and copy it to our own variable "ErrorCode". If we don't do this, we will lose the error
code stored in ERR. RESUME NEXT tells QBASIC to continue from where the error
occurred.

I try very hard to avoid using GOTO in my programs. Programs that use GOTO can be
very hard to understand. Unfortunately, in this case, QBASIC leaves us with no
alternative. We have to use a GOTO. So, I've tried to come up with the simplest solution
that keeps the code from being too hard to follow. With this little error handler in place,
we can simply assume that ErrorCode will contain the error number when something
goes wrong. Just don't forget to reset it or you will be looking at old errors!

Binary I/O
As opposed to...
How to do it.
What is the difference? Unformatted, unreadable.
Why is it a good thing? Small, unreadable to prying eyes, fast.
Sample: Write out a few numbers and strings. Examine with notepad. Read them back in.

Random I/O
Up to this point we have been using what is called "Sequential I/O". Sequential means
"one after another". I/O stands for Input/Output. When we write the user's name and the
run count to the file, we write them one after another. This is sequential output. When we
read the name and run count, we read them one after another. Name first, then run count.
This is sequential input. All together, this adds up to Sequential Input and Output, or
Sequential I/O.

Random I/O lets you read and write data to any part of a file in any order you want. It is
very useful when you have very large files, and you don't have enough time or memory to
read everything in the file sequentially (one after another). Random I/O lets you jump
right to the data you want in a file, and read or write it.

Even in very large and complex programs, Random I/O is rarely used due to its
complexity. Imagine if the program has a bug and it writes to the wrong location in the
file. The file could be destroyed because of this. We won't cover Random I/O here. But,
if you need it, it's in QBASIC.

Chapter 27 - Sample Programs
Read the Manual
You've learned a lot. If you've made it through this far, and you are still having fun, then
it's time to make up some of your own programs. QBASIC's help is what you should read
through whenever you are curious about everything else QBASIC can do. It can do a lot
more than what I've shown you in this book.

Some of the samples that follow may do things that you haven't seen mentioned in the
book. See if you can find out what these new things are by looking them up in the help
that comes with QBASIC.

Number Guesser

In this game, the computer picks a number between 1 and 10. You have to try and guess
the number.

 CLS
 RANDOMIZE TIMER
 PRINT "Welcome to Number Guesser"
 PRINT "I'm thinking of a number between 1 and 10."
 Number = INT(RND * 10 + 1)
 DO
 INPUT "What is your guess? ", Guess
 IF Guess = Number THEN
 PRINT "Correct!"
 EXIT DO
 ELSE
 PRINT "Try again"
 END IF
 LOOP

Addition Facts

Alarm Clock

More Samples
I have a few more samples on my "SupaSoft" website. Just look for "QBASIC". Here are
a few that you can find there:

Note: If you are typing in these web addresses, make sure you use capital letters exactly
the way they are shown. For example, make sure you type "SupaSoft", not "supasoft". If
you are getting "Not Found" messages in your web browser, this is probably why.

http://www.tedfelix.com/SupaSoft/snowflak.html - Snowflake: Snowflake Generator.

http://www.tedfelix.com/SupaSoft/strsplt2.html - Star Split 2: Starfield simulation.

http://www.tedfelix.com/SupaSoft/willtell.html - William Tell: Pretend to be William
Tell and try to shoot the arrow off your victim's head.

http://www.tedfelix.com/SupaSoft/capture.html - Capture: Try to trap two robots in a
maze of blocks.

http://www.tedfelix.com/SupaSoft - My freeware site. Look for QBASIC in the program
descriptions to find the QBASIC samples.

http://www.tedfelix.com/SupaSoft/index.html
http://www.tedfelix.com/SupaSoft/capture.html
http://www.tedfelix.com/SupaSoft/willtell.html
http://www.tedfelix.com/SupaSoft/strsplt2.html
http://www.tedfelix.com/SupaSoft/snowflak.html

Appendix A - Finding and Installing
QBASIC

If you see a message like "Bad command or file name" then you need to get QBASIC on
your machine.

Unfortunately this isn't the easiest thing in the world to do. You might want to get
someone to walk through this with you.

On the Internet
There are several places on the internet where you can get a copy of qbasic. Usually the
file is called "qbasic.zip". Here are some places I've found it:

• http://www.svatopluk.com/qbtutor/tut1.htm - QBASIC tutorial at King
Svatopluk's Court

There are probably a lot of other places to find it too. Using a search engine like
www.google.com and searching for "qbasic.zip" usually does a good job. If you end up
looking for qbasic this way, be sure to get the "version 1.1 interpreter". That is the
version of qbasic I used to write this book. It is the most easy to use, and least
complicated. Once you are used to 1.1, you can try and find 4.5 which has some very nice
features.

Once you have qbasic.zip, you then need to unzip it and move qbasic.exe and qbasic.hlp
to c:\windows\command . Someone who is familiar with "zip" files can help you do this.

Windows 95
QBASIC is on the Windows 95 CD-ROM. Put the Windows 95 CD in your CD-ROM
drive. It will pop-up a window that you can go ahead and close (click on the "X" in the
upper right corner of the window).

http://www.google.com/
http://www.svatopluk.com/
http://www.svatopluk.com/
http://www.svatopluk.com/qbtutor/tut1.htm

DOS Or Windows?

There are two ways to get the QBASIC files onto your computer. Using the DOS prompt
is the fastest method, but you need to know your CD-ROM drive's drive letter (e.g. "d:",
"e:" or "z:"). The method described in the "Windows Explorer" section is a bit slower, but
you don't need to know the CD-ROM drive's drive letter.

DOS Prompt

You should already be at a DOS prompt from trying to start QBASIC. This makes things
easier. I am going to assume your CD-ROM drive is drive letter "d:". If it isn't, substitute
the correct drive letter in the "copy" command below. Type the following (<Enter>
means "Press the <Enter> key"):

 c: <Enter>
 cd \windows\command <Enter>
 copy d:\other\oldmsdos\qbasic.* <Enter>

That should have copied qbasic.exe and qbasic.hlp to your computer. Skip to the
"Finished" section to check if all went well.

Windows Explorer

If you don't want to try the DOS method, Windows Explorer can also be used to get
QBASIC on your computer. We need Windows Explorer (not Internet Explorer) to copy
the QBASIC files from the CD and into your c:\windows\command directory. Click on
the "Start" button, then "Programs", then "Windows Explorer". On the left you will see a
list of the drives on your computer. Look for the CD-ROM drive (it has a little picture of
a CD and it should say "Windows95" next to it). Click on the picture. In the right column
you will see a list of directories on the CD.

Finding QBASIC. Double-Click on "Other", then double-click on Oldmsdos. Now you
will see a list of files. Go through the list until you find the two files with the name
Qbasic. One is QBASIC itself, and the other is a help file.

Selecting the two QBASIC files. We want to copy these two files to the
c:\windows\command directory. Click on the first Qbasic file to turn it blue. This means
it is selected. We also need the other Qbasic file. Press and hold the <Ctrl> key while you
click on the other Qbasic file. They should both be blue now. This means they are both
selected.

Copying To The Clipboard. Press the <Ctrl> key and hold it down while pressing the
C key. This will copy the files to the clipboard.

Destination C:\Windows\Command. Now click on "Tools" on the Windows Explorer
menu, then click on "Go To...". Type this:

 c:\windows\command
and press the <Enter> key.

Pasting From The Clipboard. Now press the <Ctrl> key and hold it down while
pressing the V key. This will paste the qbasic files from the clipboard and into the
c:\windows\command directory.

Finished
Whew! That should do it.

You can close Windows Explorer (if you used it), get back to your DOS prompt window
(C:\WINDOWS>_ or C:\WINDOWS\COMMAND>_) and type:

 qbasic
and press the <Enter> key.

QBASIC Books
"QBASIC by Example", Greg M. Perry - One of the last QBASIC books still in print.
A really good book that has the right attitude. Teaches the right way to program with
QBASIC. I only took issue with the fact that TYPE is introduced in the random file I/O
chapter instead of earlier alongside arrays. The fact that TYPE is the first step toward
object oriented programming makes it very important to introduce it on its own. Check it
out on Amazon: Qbasic by Example (Programming (Que))

"Absolute Beginner's Guide to QBASIC", Greg M. Perry - Perry's earlier book. Out of
print, but very good. You can pick up a cheap used copy on Amazon by clicking here:
Absolute Beginner's Guide to Qbasic

"QBASIC for Students", Michael Trombetta - I have this book but haven't had time to
thumb through it and form an opinion. It is intended for a High School programming
class.

"Microsoft QuickBASIC Bible", The Waite Group - Comprehensive reference,
although I don't like the way GOTOs are used and introduced. While the authors are
cautious to warn against the use of GOTOs, they proceed to use them in their SELECT
CASE examples. No examples are given of the limited situations when GOTOs are
appropriate. Other than this, a very good reference. Check it out on Amazon: Waite
Group's Microsoft Quickbasic Bible

More Books
Click here for QBASIC books at Amazon.

http://www.amazon.com/exec/obidos/redirect?link_code=ur2&tag=tedfelixshome-20&camp=1789&creative=9325&path=tg%2Fbrowse%2F-%2F3988%2Fref%3Dbr_bx_c_2_9
http://www.amazon.com/exec/obidos/redirect?link_code=as2&path=ASIN/1556152620&tag=tedfelixshome-20&camp=1789&creative=9325
http://www.amazon.com/exec/obidos/redirect?link_code=as2&path=ASIN/1556152620&tag=tedfelixshome-20&camp=1789&creative=9325
http://www.amazon.com/exec/obidos/redirect?link_code=as2&path=ASIN/0672303426&tag=tedfelixshome-20&camp=1789&creative=9325
http://www.amazon.com/exec/obidos/redirect?link_code=as2&path=ASIN/1565294394&tag=tedfelixshome-20&camp=1789&creative=9325

Here are some titles I've found at Amazon. I don't know anything about these since I
haven't reviewed them.

"QBasic for Beginners", Fenton, et al.

"Qbasic", Susan K. Baumann, et al. - Apparently, this one was used in high schools to
teach QBASIC.

"QBASIC Programming for Dummies", Douglas A. Hergert - The famous Dummies
series. Reviewers at Amazon indicate that this book isn't as gentle as it should be.

"Programming With Qbasic" (Prisma Be an Expert! Series: Computerbooks for Young
People) ISBN 1-853-65346-2 Special Order from www.amazon.com.

"Building with BASIC: A Programming Kit for Kids" Gayle Arthur, Alpha Books
1992, ISBN 0-672-30057-5. Uses QBASIC. Out of Print.

"QBASIC Using Subprograms 2nd ed", James S. Quasney

"Quickbasic and QBASIC Using Modular Structure", Julia Case Bradley There are
two editions, one from 10/1993 and one from 11/1995 called the "Alternate Edition" that
includes some added Visual BASIC info.

My old TRS-80 books that I learned from:

"TRS-80 Micro Computer System: User's Manual for Level 1", Dr. David A. Lien.
This is the book I started with back in 1979. A PDF copy is available at http://www.trs-
80.com

"TRS-80 Level-II", Dr. David A. Lien

Other Websites
• Google's list of QBASIC tutorials
• http://www.network54.com/Forum/13959

QBASIC Forum - talk to other folks who use QBASIC.
• http://www.ethanwiner.com/

Ethan Winer's site - His book "BASIC Techniques and Utilities" is available for
download here.

• http://piptol.qbasicnews.com/webring/goring.php?action=all - The QBASIC web
ring - lots of other interesting QBASIC sites.

• http://deger.republika.pl/ - QBASIC info in Polish. Here you'll also find a Polish
translation of this book at http://deger.republika.pl/TedFelix/QBforKids.htm

http://deger.republika.pl/TedFelix/QBforKids.htm
http://deger.republika.pl/
http://piptol.qbasicnews.com/webring/goring.php?action=all
http://www.ethanwiner.com/
http://www.network54.com/Forum/13959
http://directory.google.com/Top/Computers/Programming/Languages/BASIC/QBasic_and_QuickBasic/Tutorials/
http://www.trs-80.com/
http://www.trs-80.com/

• http://www.libertybasic.com - Another flavor of BASIC for windows. I don't
recommend LibertyBASIC, because its graphics support is difficult to use. It is
very important that a programming language have an easy way for kids to play
with graphics.

• http://www.qwerty.com/basic.htm
• http://www.conklinsystems.com/retro/trsman.shtml - Takes me back. I managed

to land a paper copy of the old TRS-80 manual, and you can download a PDF if
you are interested. See above.

Copyright 2007, Ted Felix, All Rights Reserved
May be copied or translated freely for non-commercial use.

http://www.conklinsystems.com/retro/trsman.shtml
http://www.qwerty.com/basic.htm
http://www.libertybasic.com/

	QBASIC Programming for Kids
	Introduction
	Introduction for Parents and Teachers
	Chapter 1 - Getting Started
	Getting to DOS
	Starting QBASIC
	Survival Guide?
	Getting Out

	Chapter 2 - PRINT
	Follow Along
	QBASIC's Screen
	QBASIC Editor
	Your First Program.
	Running Your Program.
	PRINT
	Press any key to continue?
	Learned

	Chapter 3 - CLS
	Inserting a new line at the top.
	Learned

	Chapter 4 - DO...LOOP
	DO...LOOP
	Give me a Break!
	Neatness Counts
	Learned

	Chapter 5 - INPUT
	What's in a "Name$"?
	INPUT
	Variables
	PRINT and Variables
	Learned

	Chapter 6 - IF...THEN
	"Mike" Is Not The Same As "mike"
	IF...THEN
	Conditions
	Learned

	Chapter 7 - Numbers
	Variables and Math
	Star
	What else?
	Expressions
	Learned

	Chapter 8 - Saving
	Location Is Everything
	Saving To Floppy
	Loading From Floppy
	Saving To Hard Disk
	Neatness Counts, Again
	Making Your Own Subdirectory
	Making a Folder With Windows 95
	Making a Folder With Windows 3.1
	Saving In The Directory
	Loading From Hard Disk
	Learned

	Chapter 9 - SELECT CASE
	SELECT CASE
	Just In CASE
	Learned

	Chapter 10 - Equals
	Chapter 11 - Random Numbers
	RND
	RANDOMIZE TIMER
	Useful Random Numbers
	Roll the Dice
	PRINT By Itself

	Chapter 12 - The Fortune Teller
	Adding CASEs

	Chapter 13 - DO...WHILE
	Chapter 14 - OR and LEFT$
	LEFT$

	Chapter 15 - COLOR
	Blinking

	Chapter 16 - FOR...NEXT
	A New Counter
	A Color Chart
	STEP

	Chapter 17 - Sound
	PLAY and Triplets

	Chapter 18 - LOCATE
	Chapter 19 - WIDTH
	Chapter 20 - CHR$
	Chapter 21 - Graphics
	SCREEN
	DRAW
	LINE
	Box
	CIRCLE
	PAINT
	Circle Art

	Chapter 22 - INKEY$
	Chapter 22.5 - String Functions
	Concatenation
	LEFT$() and RIGHT$()
	MID$()
	LCASE$() and UCASE$()
	STRING$() and SPACE$()
	LEN()
	CHR$() and ASC()
	INSTR()

	Chapter 23 - Comments and Constants
	Constants

	Chapter 24 - Sub-Procedures (SUBs)
	Arguments
	Changing Arguments
	Scope
	Global Data
	Object Oriented Programming
	STATIC
	Functions
	Well, I DECLARE!

	Chapter 25 - Data Structures
	Built-In Types
	Single-Precision
	String
	Integer
	Long-Integer
	Double-Precision

	Arrays
	TYPE
	A Database

	Chapter 25.5 - Type Conversion
	STR$() and VAL()
	Converting Numbers

	Chapter 25.75 - PRINT USING
	Chapter 25.9 - DATA and READ
	RESTORE
	Loading a Database

	Chapter 26 - Reading and Writing Files
	Writing to a file
	OPEN, WRITE, and CLOSE
	Reading from a file
	Logging
	Input Files
	Keeping Track of Things
	Handling File Errors
	Binary I/O
	Random I/O

	Chapter 27 - Sample Programs
	Read the Manual
	Number Guesser
	Addition Facts
	Alarm Clock
	More Samples

	Appendix A - Finding and Installing QBASIC
	On the Internet
	Windows 95
	DOS Or Windows?
	DOS Prompt
	Windows Explorer

	Finished

	QBASIC Books
	More Books

	Other Websites

