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Abstract

We illustrate how to fit multilevel models in the MLwiN package seamlessly from
within Stata using the Stata program runmlwin. We argue that using MLwiN and Stata
in combination allows researchers to capitalize on the best features of both packages. We
provide examples of how to use runmlwin to fit continuous, binary, ordinal, nominal and
mixed response multilevel models by both maximum likelihood and Markov chain Monte
Carlo estimation.
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1. Introduction

Multilevel models are becoming increasingly popular in the social, behavioral and medical
sciences. These models are described variously as multilevel models, random effects models,
mixed models, and hierarchical linear models. A range of text books provide introductory
(Hox 2010), intermediate (Raudenbush and Bryk 2002; Snijders and Bosker 2012) and ad-
vanced (Goldstein 2011) treatment of these models while two recent handbooks describe the
latest developments (de Leeuw and Meijer 2008; Hox and Roberts 2010).

1.1. MLwiN software

MLwiN is a specialized software package for fitting multilevel models (Rasbash, Charlton,
Browne, Healy, and Cameron 2009). At the time of going to press, the most recent ver-
sion of MLwiN is version 2.26 and our discussion relates to this version. MLwiN can esti-
mate multilevel models for continuous, binary (logistic, probit, complementary log-log), count
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(Poisson, negative binomial), ordinal (ordered logistic, ordered probit) and nominal responses
(unordered logistic, unordered probit). MLwiN provides fast estimation by both iterative
generalized least squares (Goldstein 1986, IGLS,), which results in maximum likelihood es-
timates, and by Bayesian estimation using Markov chain Monte Carlo (MCMC) methods
(Browne 2012). The latter allows a range of more advanced multilevel models to be fitted,
including: multilevel multivariate mixed response type models (simultaneous equation models
or multiprocess models), multilevel cross-classified models (crossed random effects models),
multilevel multiple membership models, multilevel spatial models (disease mapping models),
multilevel measurement error models, and multilevel multiple imputation models (missing
data models). The MLwiN Users’ Manual (Rasbash, Steele, Browne, and Goldstein 2012)
and MLwiN MCMC Manual (Browne 2012) give step-by-step instructions on how to fit these
models. MLwiN runs under Windows and information on how to obtain the package can be
found on the software’s website (http://www.bristol.ac.uk/cmm/software/mlwin/). ML-
wiN is free to the UK academic community thanks to funding from the UK Economic and
Social Research Council (ESRC). An unrestricted 30-day trial version of MLwiN is available
to readers simply wishing to explore the software.

MLwiN is usually run interactively through a series of drop-down menus, interactive modeling
windows, and dialog boxes. A unique feature of MLwiN is its point-and-click Equations
window which allows users to specify and read the results of their multilevel models using
standard mathematical notation. These features provide an excellent environment for teaching
and learning multilevel modeling, but are less useful when performing multilevel analyzes for
research purposes where researchers typically wish to fit a large number of models and to
interpret each of these through calculating and graphing model predictions. Carrying out
such an analysis using MLwiN’s point-and-click interface is laborious and error prone. While
MLwiN provides a macro language for carrying out longer analyzes in a documentable and
reproducible manner, the command syntax is difficult to use and is supported by limited
documentation. Most MLwiN users stick with the point-and-click interface and will therefore
not use the more advanced multilevel modeling features present in MLwiN as they typically
require the most point-and-click steps.

1.2. Stata software

Stata (StataCorp. 2011) is a general purpose package for statistics, publication quality graphics
and data management and is widely used by applied researchers, particularly those in health
research and in economics. At the time of going to press, the most recent version of Stata is
version 12.1 and our discussion relates to this version. Stata provides hundreds of standard and
more advanced commands for statistical modeling, including commands to fit three types of
multilevel model which we describe below. Stata’s graphics commands make it easy to generate
many of the graphs popular in multilevel analysis, including: trellis plots, quantile-quantile
(Q-Q) plots, ‘caterpillar’ plots, funnel plots, and thematic maps for spatial data. Stata’s
data-management commands give users complete control over all types of multilevel data:
you can combine and reshape large multilevel datasets, manage variables at different levels of
data hierarchies, and calculate statistics across groups or replicates. Stata also has advanced
tools for managing specialized forms of multilevel data, including panel/longitudinal data and
discrete time survival data. Finally, Stata has an intuitive command syntax and allows one to
write do-files (scripts) which makes it easy to fit long series of models and to perform associated
analyzes in a documentable and reproducible manner. These features are fully documented
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in the comprehensive Stata manual series (http://www.stata-press.com/manuals/), while
dedicated books on statistical modeling, graphics, data management and programming in
Stata are published in the Stata Press series (http://www.stata-press.com/books/).

Stata provides the xtmixed, xtmelogit and xtmepoisson commands for fitting multilevel
continuous, binary (logistic only) and count (Poisson only) response models, respectively.
However, we if all that is required are two-level random intercept models, then the simpler
and computationally faster xtreg, xtlogit and xtpoisson commands can be employed, re-
spectively. An excellent introduction to all these commands is provided in Rabe-Hesketh and
Skrondal (2012a) and Rabe-Hesketh and Skrondal (2012b). These commands, however, can-
not fit multilevel binary probit models or multilevel negative binomial count models. There
is also no provision for fitting multilevel ordinal and nominal response models. Estimation
is by maximum likelihood; there is no provision for Bayesian estimation. While these three
commands offer some provision for fitting cross-classified models, the implementation of these
models as constrained hierarchical models is computationally inefficient and only proves fea-
sible in models with few random effects fitted to small datasets. Stata also cannot fit many
of the more advanced multilevel models available in MLwiN including multilevel multivari-
ate mixed response type models, multilevel multiple membership models, multilevel spatial
models, multilevel measurement error models and multilevel multiple imputation models.

Stata is also a programming language, and this has led many users to write their own add-on
packages. In terms of multilevel analysis, the most prominent of these is the gllamm command
(Rabe-Hesketh, Skrondal, and Pickles 2004). This command allows one to fit a much wider
range of multilevel models than that provided by Stata’s own commands, including some
models which can also not be fitted in MLwiN. This command can also fit many latent variable
models including structural equation and latent class models. An important disadvantage of
gllamm is that it is computationally slow, even for simple models such as those that can be
fitted by Stata’s own commands. Using gllamm to fit realistically complex multilevel models
with many random effects to large datasets can prove prohibitively time consuming.

There are several other user-written commands for running external software packages to
perform multilevel modeling within Stata. These include: sabrestata for running the Sabre
package for fast maximum likelihood estimation of multiprocess event/response sequences
(Crouchley, Stott, and Pritchard 2009); hlm for running the hierarchical linear modeling
(HLM) software (Raudenbush, Bryk, and Congdon 2012); realcomimpute for running the
REALCOM-IMPUTE software for multilevel multiple imputation (Carpenter, Goldstein, and
Kenward 2011); runmplus for running the MPlus software for multilevel structural equation
modeling (Muthén and Muthén 2012); and winbugs (Thompson, Palmer, and Moreno 2006)
for Bayesian model fitting in the WinBUGS package (Spiegelhalter, Thomas, Best, and Lunn
2003). We shall not review these commands further here.

1.3. The runmlwin command

We have developed the runmlwin command to be able to fit the full range of multilevel models
available in MLwiN seamlessly from within Stata. The command allows the user to fit models
by both the IGLS and MCMC algorithms and provides full control over all aspects of model
specification and estimation. The runmlwin command works by writing, sending and then
running an MLwiN macro file for the specified model in MLwiN and then returns, stores and
displays the model results in Stata at which point the user can take full advantage of Stata’s


http://www.stata-press.com/manuals/
http://www.stata-press.com/books/

4 runmlwin: Run MLwiN from within Stata

many hypothesis testing, model comparison, graphics and other post-estimation commands
to aid their interpretation and analysis.

The runmlwin command requires Stata 9 or later and can be downloaded and installed from
within Stata by issuing the following command

. ssc install runmlwin

When using runmlwin for the first time, users must specify the full path name of the MLwiN
executable using a global macro called MLwiN_path. Users must substitute the path name
that is correct for them

. global MLwiN_path "C:\Program Files\MLwiN v2.26\i386\mlwin.exe"

The rest of this article takes a practical approach to describing runmlwin rather than a formal
description of the command’s syntax. Readers seeking the latter should consult the runmlwin
help file (Leckie and Charlton 2013).

. help runmlwin

We shall present worked examples based on two datasets analyzed in the MLwiN User and
MCMC Manuals. Section 2 considers multilevel continuous response models while Section 3
considers multilevel binary response models. In these two sections we focus on relatively simple
models which can be fitted by both runmlwin and Stata’s own multilevel modeling commands
xtmixed and xtmelogit. We do this to make our description of runmlwin as accessible
as possible to both existing MLwiN and Stata users but also to readers who currently use
other software. A Stata do-file to replicate all analyzes is provided in the Supplementary
materials. Section 4 demonstrates a selection of more advanced models that can only be
fitted by runmlwin. Section 5 concludes.

2. Continuous response models

In this section we consider how to fit two-level random intercept and random slope models
to continuous response variables. We use the London schools’ exam scores data analyzed in
Chapters 2-7 of the MLwiN User Manual.

The data are a sub-sample of examination results from six inner London Education Authorities
(school districts). The examination is the General Certificate of Secondary Education (GCSE)
taken at the end of compulsory schooling, normally when students are 16 years of age. The
continuous response variable is student’s exam score. A key aim of the original analysis was to
establish whether some schools were more effective than others in promoting students’ learning
and development, taking account of variations in the characteristics of students when they
started secondary school (Goldstein, Rasbash, Yang, Woodhouse, Pan, Nuttall, and Thomas
1993). The data have a two-level hierarchical structure, with 4,059 students (level 1) nested
within 65 schools (level 2). The data can be read into Stata by running the following command

. use "http://www.bristol.ac.uk/cmm/media/runmlwin/tutorial.dta", clear

The data include the following variables
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e school: school identifier;
e student: student identifier;

e normexam: student’s exam score at age 16, normalized to have a standard normal dis-
tribution;

e cons: equal to the number 1 for each student and is used as the intercept term in the
models;

e standlrt: student’s score at age 11 on the London reading test (LRT), standardized;
e girl: student’s gender (0: boy; 1: girl);

e schgend: school’s gender (1: mixed school; 2: boys’ school; 3: girls’ school).

2.1. Variance components model

The simplest multilevel model we might consider for these data is a two-level students-within-
schools random intercept model where we make no adjustments for predictor variables. This
model is referred to as a variance components model as it decomposes the response variation
into separate level-specific variance components. The model is written as

normexam;; = 3y + u; + €;;
uj ~ N (O, O'g)
€ij ~ N (0, O'Z)

where normexam;; is the age 16 exam score for student 4 in school j, By is the intercept
measuring the mean score across all schools, u; is a school level random effect, and e;; is
a student level residual error. The u; and e;; are assumed independent of one another and
normally distributed with zero means and constant variances o2 and 2. Multilevel models
are typically described in terms of their fixed part (that part involving parameters fixed across
the whole sample) and their random part (that part involving the random effects and residual
error). In this very simple model, the fixed part is simply Sy, while the random part is u;+e;;.

The degree of clustering (dependence) in the data can be summarized by the intraclass cor-
relation coefficient (ICC) and the variance partition coefficient (VPC). In this simple model,
the formulas for these two coefficients coincide o2/ (02 + ¢2). The ICC measures the ex-
pected correlation between two students from the same school, while the VPC measures the
proportion of total variance which lies at the school level.

When specifying the runmlwin syntax to fit this model, it is helpful to think of each right
hand side term in the above model equation as being associated with an explanatory variable
which is equal to the number 1 for all observations in the data. In our data the variable cons
plays this role and so we can rewrite the model equation as

normexam;; = Bocons + ujcons + e;;cons

where cons appears once in the fixed part of the model, once in the random part of the model
at level 2 and once in the random part of the model at level 1. The runmlwin command for
fitting this model is then
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Figure 1: MLwiN software: The Equations window shows the specified model.

. runmlwin normexam cons, level2(school: comns) levell(student: cons)

While the structure of this syntax will be transparent to Stata users, it will be less clear for
readers unaccustomed to Stata and so we shall discuss it in some detail. The syntax begins
with the command runmlwin and then defines the response variable normexam followed by
the list of predictors included in the fixed part of the model, here only cons. Next appears a
comma which denotes the end of the fixed part of the model and the start of the random part
of the model. The first term after the comma, level2(school: cons), specifies the random
part of the model at level 2. Within the parentheses, the level identifier, school, is specified
before the colon while all variables made random at level 2, here only cons, are specified after
the colon. The second term after the comma, levell(student: cons), specifies the random
part of the model at level 1. Again the level identifier, here student, is specified before the
colon while all variables made random at this level, here only cons, are specified after the
colon.

Running the above command fits the specified model by writing, sending and then running
an MLwiN macro file in MLwiN. The MLwiN software automatically opens and displays the
specified model in the Equations window using standard mathematical notation (Figure 1).

At this point the macro pauses and the user is presented with a choice to either click the
Resume macro button to fit the model or to click the Abort macro button to terminate the
macro. Users should click the Abort macro button if they wish to use MLwiN interactively
prior to manually fitting their model or if the model displayed in the Equations window does
not match the desired model. At this point we again emphasize the pedagogic value of the
MLwiN Equations window as an aid to better understanding and interpreting the statistical
models being specified and fitted.

In our case, the model displayed in the Equations window matches the model we wish to
estimate and so we click the Resume button to fit the model. MLwiN then iterates until
convergence. When the model has converged, the Equations window updates and displays
the parameter estimates, standard errors and deviance statistic for the converged model (Fig-
ure 2).

At this point the macro pauses for a second time and the user is again presented with a choice
to either click the Resume macro button, this time to send the model results back to Stata, or
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Figure 2: MLwiN software: The Equations window shows the parameter estimates, standard
errors and deviance statistics for the converged model.

to click the Abort macro button to terminate the macro. Users should click the Abort macro
button if they wish to use MLwiN interactively, for example to take advantage of MLwiN’s
own post-estimation facilities. In our case, we wish to return the model results to Stata and
so we click the Resume macro button. Stata will then return, store and display the runmlwin
command and its associated model output in the Stata Results window.

. runmlwin normexam cons, level2(school: cons) levell(student: cons)

MLwiN 2.26 multilevel model Number of obs = 4059
Normal response model
Estimation algorithm: IGLS
I No. of Observations per Group
Level Variable | Groups Minimum Average Maximum
________________ - =
school | 65 2 62.4 198
Run time (seconds) = 1.28
Number of iteratiomns = 3
Log likelihood = -5505.3242
Deviance = 11010.648
normexam | Coef.  Std. Err. z P>|z| [95% Conf. Intervall
_____________ +________________________________________________________________
cons | -.0131668 .0536254 -0.256 0.806 -.1182706 .091937
Random-effects Parameters | Estimate Std. Err. [95% Conf. Intervall

_____________________________ Fm—————————
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Level 2: school
.1686251 .0324466 .1050309 .2322194

.8477613 .0189712 .8105786 .8849441

The formatting of the model output follows that of other Stata estimation commands. The
top left and right blocks of output report that MLwiN 2.26 was used to fit a normal response
model to an estimation sample of 4,059 observations (students) using the IGLS algorithm.

The first table of output summarizes the multilevel structure of the data and informs us that
the model is fitted to 65 schools where the number of students per school ranges from 2 to
198 with an average of 62.4 students. (This table plays the role of the MLwiN Hierarchy
Viewer window.)

The next block of output reports that runmlwin took 1.28 seconds and 3 iterations of the
IGLS algorithm to fit the model. The log-likelihood and deviance statistics are also presented.

The second table of output reports the fixed part parameters. The intercept 3y is estimated
to be —0.013 with standard error 0.054. Recall that the response is approximately normalized
and so an estimated intercept of effectively zero is expected. The z ratio, p value and 95%
confidence intervals are also reported, but in this example are of little substantive interest.

The final table of output reports the random part parameters. The between-school variance
02 is estimated to be 0.169 while the within-school variance o2 is estimated to be 0.848. We
can calculate the ICC using the display command, where we refer to the parameter estimates
by their internal runmlwin names: G2 is referred to as [RP2] var (cons) while 52 is referred to

as [RP1]var(cons). (The display command corresponds to the CALC macro in MLwiN.)

. display [RP2]var(cons)/([RP2]var(cons) + [RP1]var(cons))
.16590652

Interpreted as an ICC, the correlation in exam scores between schoolmates is 0.166. Inter-
preted as a VPC, 16.6% of the variation in exam scores lies between schools. There are clearly
substantial differences in students’ scores between schools.

Following Stata convention, standard errors and 95% confidence intervals are presented for
the two variance components, however we caution against using them to test whether the
between school differences are statistically significant. This is because z-tests and 95% confi-
dence intervals assume asymptotic normal sampling distributions while variances are known to
have positively skewed sampling distributions. The preferred way to test the between-school
variance is to use Stata’s lrtest command to perform a likelihood ratio test to compare
the above model to a single-level model with no school effects (not shown). (The 1lrtest
command corresponds to the MLwiN Tail Areas window.) Doing this confirms that there
are indeed significant differences between schools (y3 = 498.72, p < 0.001); students from
the same school are therefore significantly more alike than students from different schools. A
multilevel approach to analyze the data is clearly favored over a single-level approach.

When we ran the above runmlwin command, we clicked the Resume macro button twice
in order to return the model results to Stata. We can add the nopause option to prevent
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runmlwin from pausing in this way. When we do this the results are automatically returned
to Stata. This option proves essential when performing simulation studies using runmlwin.

. runmlwin normexam cons, level2(school: cons) levell(student: cons) nopause

2.2. Random intercept model with predictor variables

In our next model, we adjust for students’ age 11 scores, student gender and school gender.
We adjust for school gender by including a boys’ school dummy variable and a girls’ school
dummy variable (the reference category is mixed sex schools). We create these variables in
Stata with the generate command. (The generate command corresponds to the CALC
macro in MLwiN.)

. generate boysch = (schgend==2)
. generate girlsch = (schgend==3)

The model is written as
normexam;; = 3 + Sistandlrt;; + fogirl;; + fsboysch; + Sagirlsch; + u; + €;;
uj ~ N (O, 03)
eij ~ N (0, O'S)

To fit this model using runmlwin we simply add the four new predictors to the list of variables
that appear in the runmlwin syntax for fixed part of the model.

When we fit multilevel models, it is often of interest to examine empirical Bayes estimates
of the random effects to assess whether the random effects are (approximately) normally
distributed and to make inferences about specific groups. We can retrieve the empirical Bayes
estimates of the school random effects by specifying the level 2 random part of the model as
level2(school: cons, residuals(u)) where the term residuals(u) is an option which
only applies to this part of the model. The option requests that the random effects’ estimates
and standard errors are returned to Stata as two new variables u0 and uOse where the user
can change the variable stub u by specifying a different string within residuals(). All
the functionality of the MLwiN Residuals window (Setting tab) is contained within this
residuals() option.

We spread the runmlwin command for this model over three lines using three slashes /// to
denote line continuation. We specify the nogroup option to suppress the table summarizing
the multilevel structure of the estimation sample as this is the same as before.

. runmlwin normexam cons standlrt girl boysch girlsch, ///
> level2(school: cons, residuals(u)) ///
> levell(student: cons) nopause nogroup

MLwiN 2.26 multilevel model Number of obs = 4059
Normal response model

Estimation algorithm: IGLS

Run time (seconds) = 1.62
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Number of iterations = 4

Log likelihood = -4662.7134

Deviance = 0325.4268
normexam | Coef. Std. Err. z P>|z| [95% Conf. Intervall]
_____________ +________________________________________________________________
cons | -.1681502 .0539988 -3.11 0.002 -.273986 -.0623144
standlrt | .5599642 .0124436 45.00 0.000 .5355752 .5843531
girl | .1672281 .0340818 4.91 0.000 .100429 .2340273
boysch | .1776197 .1107521 1.60 0.109 -.0394504 .3946897
girlsch | .1589596 .0872538 1.82 0.068 -.0120547 .3299739

Random-effects Parameters | Estimate Std. Err. [95% Conf. Intervall
_____________________________ S
Level 2: school |

var(cons) | .0811055 .0161794 .0493945 .1128165
_____________________________ O
Level 1: student |

var(cons) | .5622733 .012581 .5376149 .5869316

The response is normalized and so the fixed part parameters are scaled in standard deviation
units. Age 11 scores are standardized and so a one standard deviation increase in age 11 score
is associated with a significant 0.560 standard deviation increase in age 16 score, holding all
other variables constant (z = 45.00, p < 0.001). Having adjusted for age 11 scores, girls in
mixed sex schools score 0.167 standard deviations higher than boys in mixed sex schools. Boys
in boys schools score 0.178 standard deviations higher than boys in mixed sex schools while
girls in girls’ schools score 0.159 standard deviations higher than girls in mixed sex schools.
Neither single-sex school effects is significant. A Wald test confirms that the two effects are
also not significantly different from one another (x? = 0.02, p = 0.880). All the functionality
of the MLwiN Intervals and tests window is contained within this test command.

. test boysch = girlsch

( 1) [FP1lboysch - [FPllgirlsch = 0

chi2( 1)
Prob > chi2

0.02
0.8796

These results suggest that we might constrain the boys’ school and girls’ school effects to be
the same and we could do this by specifying the constraints() option. (It is not possible
to specify constraints when using Stata’s xtmixed, xtmelogit and xtmepoisson commands.)
Equivalently, we can remove the boys’ and girls’ school dummy variables and replace them
with a single-sex school dummy variable. Either way, the single-sex school effect is estimated
(results not shown) to be 0.165 and significant (z = 2.17, p = 0.030). Thus, students in
single-sex schools score 0.165 standard deviations higher than students of the same sex in
mixed sex-schools.
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Figure 3: Quantile-quantile plot of the school effects plotted in Stata.
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Figure 4: Caterpillar plot of the school effects plotted in Stata.

When we ran the above runmlwin command, two new variables, u0 and uOse, appeared in
the Stata Variables window. These store the empirical Bayes estimates and standard errors
of the school random effects, respectively. While there are only 65 schools, these two variables
have 4,059 observations, one for each student in the data. The estimate and standard error
for each school is simply replicated across all the students within each school. In what follows,
we want to base our analysis on just one observation per school and so we create a dummy
variable to pick one observation per school at random.

11
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. egen pickone_school = tag(school)

Next we use the gnorm graph command to produce quantile-quantile plots to check whether
the random effects are normally distributed. If the random effects are normally distributed,
all the data should be plotted along the 45 degree line. We use the aspectratio(1) option to
specify a one-to-one relationship between the height and the width of the graph’s plot region.
If desired, further options can be added to alter the axes titles and the spacing of the ticks on
the axes. All the graphical functionality of the MLwiN Residuals window can be replicated
using Stata’s many graph commands.

. gnorm u0 if pickone_school==1, aspectratio(1)

The resulting graph is shown in Figure 3. While the 65 schools do not all lie on the line,
they all lie close to the line suggesting that the predicted effects are approximately normally
distributed.

Next we shall produce a ‘caterpillar plot’ of the school effects. The school effects are plotted
in ascending rank order and presented with 95% confidence intervals so we can examine those
schools which differ significantly from the average school. First we use the egen command
and the rank () function to rank the school effects by the magnitude of their predicted effects.

. egen uOrank = rank(u0) if pickone_school==

We then use the serrbar graph command to produce the caterpillar plot. The first variable
after the command must contain the predicted effects, the second the associated standard
errors and the third the rank of the predicted effects. We use the scale(1.96) option to
obtain 95% confidence limits and the yline(0) option to plot a horizontal line at zero which
represents the average school in the data. Again, many further options can be added to
improve the look and feel of this graph.

. serrbar u0 uOse uOrank if pickone_school==1, scale(1.96) yline(0)

The resulting graph is shown in Figure 4. The plot shows that approximately two-thirds of
schools cannot be distinguished from the overall average.

Using Stata’s count command we see that 12 schools are significantly less effective than
average, while 11 schools are significantly more effective than average.

count 1if pickone_school==1 & u0 + 1.96%*ulse < 0
12

count if pickone_school==1 & u0 - 1.96*ulse > 0
11

We finish our analysis of this model by dropping u0 and uOse from the data and then storing
the model results, naming them as model2, as we shall refer back to them later.

. drop u0O uOse
. estimates store model2
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2.3. Random slope model

Model 3 is a two-level random slope model where we allow the coefficient of standlrt;; to
vary randomly across schools. Thus, we allow the relationship between age 11 and age 16
scores to be potentially stronger in some schools than others.

normexam;; = Bo+51 standlrt;; —I—ngirlij+53boyschj+54girlschj Fugj+ur;jstandlrt;;+e;;

Uoj ~N 0 0'50
Uy 0 )"\ oun ony
€ij ~ N (0, U?)

In the level 2 random part of the model, 02, measures the variability in schools’ intercepts,
02, measures the variability in schools’ slopes and 0,01 measures the extent to which schools’
intercepts and slopes covary. The correlation between schools’ intercepts and slopes can be

[ 2 2
calculated as oy,01/4/050051-

To fit this model using runmlwin, we simply add standlrt to the list of variables made
random at level 2

. runmlwin normexam cons standlrt girl boysch girlsch, ///
> level2(school: cons standlrt, residuals(u)) ///
> levell(student: cons) nopause nogroup

MLwiN 2.26 multilevel model Number of obs = 4059
Normal response model
Estimation algorithm: IGLS

Run time (seconds) = 1.56
Number of iterations = 4
Log likelihood = -4640.5601
Deviance = 9281.1201
normexam | Coef. Std. Err z P>|z]| [95% Conf. Intervall
_____________ +________________________________________________________________
cons | -.1888196 .0513513 -3.68 0.000 -.2894662 -.0881729
standlrt | .554426 .019938 27 .81 0.000 .5153482 .5935038
girl | .1682632 .0338217 4,98 0.000 .1019739 .2345525
boysch | .1798662 .0991404 1.81 0.070 -.0144454 .3741778
girlsch | .1748232 .0787633 2.22 0.026 .02045 .3291965
Random-effects Parameters Estimate Std. Err [95% Conf. Intervall

Level 2: school

cov(cons,standlrt) .0201009 .0064875 .0073856 .0328162
var (standlrt) .0146521 .0044111 .0060065 .0232977

I
+
I
var (cons) | .0795418 .0159664 .0482482 .1108353
I
I
+
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Level 1: student |
var (cons) | .5501983 .0124031 .5258886 .574508

The fixed part of the model adjusts for the same set of predictors as in Model 2 and, as
expected, leads to very similar parameter estimates.

In the random part of the model at level 2 we see that the intercept variance is estimated
to be 0.080 while the slope variance is estimated to be 0.015. We will plot graphs to aid
our interpretation of these estimates below. Using the display command to refer to the
parameter estimates by their internal runmlwin names, we calculate the correlation between
intercept and slopes to be 0.589

. display [RP2]cov(cons\standlrt)/sqrt ([RP2]var(cons)*[RP2]var (standlrt))
.58879988

We can use the estimates table command to display the Model 2 and Model 3 parameter
estimates side by side. We use the stats(N deviance 11) option to additionally display the
sample sizes, deviances and log-likelihoods. The remaining three options specify the display
precision of the parameter estimates and summary statistics and the width of the Variable
column, respectively.

estimates store model3
estimates table model2 model3, ///
> stats(N deviance 11) b(}4.3f) stfmt(},4.0f) varwidth(18)

Variable | model2 model3
___________________ e
FP1 I

cons | -0.168 -0.189

standlrt | 0.560 0.554

girl | 0.167 0.168
boysch | 0.178 0.180
girlsch | 0.159 0.175
___________________ e
RP2 |
var (cons) | 0.081 0.080
cov(cons\standlrt) | 0.020
var (standlrt) | 0.015
___________________ o
RP1 I
var(cons) | 0.562 0.550
___________________ o ——————————
Statistics |
N | 4059 4059
deviance | 9325 9281
11 | -4663 -4641
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We can use the 1rtest command to perform a likelihood ratio test to compare this model to
the previous random intercept model. The test shows that allowing the effect of age 11 scores
to vary across schools leads to a significant improvement in model fit (x3 = 44.31, p < 0.001).
Thus, in some schools the relationship between age 11 and age 16 scores is indeed significantly
stronger than it is in others schools.

. lrtest model2 model3

Likelihood-ratio test LR chi2(2)
(Assumption: model2 nested in model3) Prob > chi2

44 .31
0.0000

To get a better sense of the variability in the school intercepts and slopes we can use
the generate command, referring once again to the parameter estimates by their internal
runmlwin names, to calculate the predicted age 16 score for each student based only on their
age 11 scores. All the functionality of the MLwiN Predictions window can be replicated in
this way.

Bo + Blstandlrtij + 1oj + 1 jstandlrt;;

. generate ypred = [FP1]cons + [FP1]standlrt*standlrt + u0 + ul*standlrt

We then plot these predicted age 16 scores against students’ age 11 scores to graphically
illustrate the extent to which schools differ from one another. All the functionality of the
MLwiN Customized Graphs window can be replicated using Stata’s many graph commands.

. sort school standlrt
. line ypred standlrt, comnect(a)

The resulting graph is shown in Figure 5. The school lines fan outwards and so the differences
between schools appear more pronounced for students with high age 11 scores than they do
for students with low age 11 scores.

The exact relationship for how the between school variance changes as a function of age 11
scores is given by the level 2 variance function.

var (ug; + uijstandlrt;;) = JZO + 204018tandlrt;; + 031 standlrt?j
We can use the generate command to calculate the predicted between school variance for
each student. All the functionality of the MLwiN Variance window can be replicated in this

way.

. generate lev2var = [RP2]var(cons) + 2*[RP2]cov(cons\standlrt)*standlrt ///
> + [RP2]var(standlrt)*standlrt~2

Plotting these predictions against students’ age 11 scores clearly shows that the between
school variance increases with age 11 scores (Figure 6).

. line lev2var standlrt, sort



16 runmlwin: Run MILwilN from within Stata
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Figure 5: Predicted school lines plotted in Stata.
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Figure 6: School-level variance function plotted in Stata.

In this section we have focused on using runmlwin to fit two-level models for continuous re-
sponses. As with xtmixed, runmlwin can also fit continuous response multilevel models with
three or more levels, cross-classifications and sampling weights. However, unlike xtmixed,
runmlwin can additionally fit continuous response multilevel models with multivariate re-
sponses, multiple membership structures, complex level 1 variance functions (heteroskedas-
ticity), and linear constraints.
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3. Binary response models

In this section we consider how to fit two-level random intercept and random slope models
to binary response variables. We use the Bangladeshi contraceptive use data analyzed in
Chapter 9 of the MLwiN User Manual and Chapter 10 of the MLwiN MCMC Manual. Before
we describe these data, we first discuss estimation of discrete response multilevel models. The
likelihood of the observed data in discrete response multilevel models does not generally have
a closed-form expression and so approximate methods of estimation must be used. MLwiN
offers two approximate methods: quasi-likelihood and MCMC methods.

The idea behind quasi-likelihood methods is to approximate discrete response multilevel mod-
els as continuous response multilevel models so that the standard IGLS algorithm can be
applied. MLwiN provides four quasi-likelihood methods: first and second order marginal
quasi-likelihood (MQL1, MQL2) and first and second order penalized quasi-likelihood (PQL1,
PQL2). All four methods have been shown to be biased, particularly if sample sizes within
level 2 units are small or the response proportion is extreme. These methods should therefore
only be used for model exploration; any final model should be fitted by MCMC. PQL2 is
the most accurate of the four quasi-likelihood methods, but the least stable and the slowest
to converge while MQL1 is the least accurate, but the most stable and fastest to converge.
Thus, when fitting exploratory models, MLwiN users will often first fit their models by MQL1
and then use these estimates as starting values for running additional iterations by PQL2.
The MLwiN User Manual provides an accessible introduction to quasi-likelihood methods,
explained in the context of the MLwiN software. Technical details are given in Goldstein
(2011).

MCMC is a simulation approach. After assigning starting values (e.g., the quasi-likelihood
estimates) and prior distributions for the model parameters, a Markov chain is used to se-
quentially sample subsets of parameters from their conditional posterior distributions given
current values of the other parameters. (We do not simulate directly from the joint poste-
rior as it is generally intractable.) After an initial burn-in period, when the chain converges
to its stationary distribution, the chain is run for a further monitoring period. The means
and standard deviations of the sampled parameters from the monitoring period are used as
parameter estimates and standard errors while the 2.5th and 97.5th quantiles of these chains
provide Bayesian 95% credible intervals, analogous to 95% confidence intervals. When vague
or diffuse prior distributions are specified (the default in MLwiN), the parameter estimates
are essentially maximum likelihood estimates. The MLwiN MCMC Manual provides an ac-
cessible introduction to MCMC methods, in the context of the MLwiN software. Technical
details are given in Goldstein (2011).

The data are a sub-sample from the 1989 Bangladesh Fertility Survey (Huq and Cleland
1990). The binary response variable that we consider refers to whether a woman was using
contraception at the time of the survey. The full sample was analyzed in Amin, Diamond, and
Steele (1997), but with a four-category response that distinguishes between different types
of contraceptive method. We shall present ordinal and nominal models for this response in
Section 4. The aim of this analysis is to identify factors associated with use of contraception
and to examine the extent of between-district variation in contraceptive use. The data have a
two-level hierarchical structure, with 2,867 women (level 1) nested within 60 districts (level 2).

. use "http://www.bristol.ac.uk/cmm/media/runmlwin/bang.dta", clear

The data contain the following variables

17
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e woman: woman identifier;
e district: district identifier;
e use: woman’s contraception use (0: no contraception; 1 contraception);

e use4: woman’s contraceptive use status and method (1: male or female sterilization; 2:
modern reversible method; 3: traditional method; 4: no contraception);

e 1c: number of living children (0: none; 1: one; 2: two; 3: three or more);
e age: woman'’s age (in years), centered on the sample mean of 30 years;
e urban: woman’s area of residence (0: rural; 1: urban);

e educ: woman’s level of education (1: none; 2: lower primary; 3: upper primary; 4:
secondary);

e hindu: woman’s religion (0: Muslim; 1: Hindu);
e dlit: proportion of women in district who are literate;
e dpray: proportion of Muslim women in district who pray daily (a measure of religiosity);

e cons: equal to the number 1 for each woman and is used as the intercept term in the
models.

3.1. Variance components model
The two-level women-within-districts variance components model for these data is written as
use;; ~ Bernoulli (1)
logit (7i;) = Bo + u;
u; ~ N (O7 03)

where use;; is the binary response for whether woman ¢ in district j uses contraception, g
is the intercept measuring the log-odds of using contraception in the average district and wu;
is a district level random effect assumed normally distributed with zero mean and a constant
variance o2. No woman-level residual error appears in the linear predictor.

We can fit this model using runmlwin and the discrete() option where we specify the
distribution(binomial), 1ink(logit) and denominator(cons) sub options to request a
binomial response model with a logit link function and a denominator (number of binomial
trials) equal to one for each observation. We specify the pql2 sub option to fit the model by
PQL2 as opposed to default estimation by MQL1. In contrast to continuous response models,
we do not make cons random at level 1 as the model does not include a woman-level residual
error.

runmlwin use comns, ///
level2(district: coms) ///
levell(woman:) ///
discrete(distribution(binomial) link(logit) denominator (cons) pql2) ///
nopause

vV VvV Vv Vv
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MLwiN 2.26 multilevel model Number of obs = 2867
Binomial logit response model
Estimation algorithm: IGLS, PQL2

| No. of Observations per Group
Level Variable | Groups Minimum Average Maximum
________________ +__________________________________________
district | 60 3 47.8 173
Run time (seconds) = 1.53
Number of iterations = 5
use | Coef. Std. Err. z P>|z]| [95% Conf. Intervall
_____________ +________________________________________________________________
cons | -.5101292 .0808406 -6.31 0.000 -.6685739 -.3516845
Random-effects Parameters | Estimate Std. Err. [95% Conf. Intervall
_____________________________ +——__—___-__——______-__——_____—-__—___—_——-—_—_—_
Level 2: district |
var(cons) | .2650954 .0703541 .1272039 .4029869

The formatting of the model output is similar to that for continuous response models and
again follows that of other Stata estimation commands. The top left and right blocks of output
report that MLwiN 2.26 was used to fit a binomial logit response model to an estimation
sample of 2,867 observations (women) using the IGLS algorithm and PQL2. The first table
of output informs us that the model is fitted to 60 districts where the number of women
per district ranges from 3 to 173 with an average of 47.8 women. The next block of output
reports that runmlwin took 1.53 seconds and 5 iterations of the IGLS algorithm to fit the
model. Importantly, no log-likelihood or deviance statistic is reported as the model is fitted
by quasi-likelihood methods rather than by maximum likelihood.

As quasi-likelihood estimates are known to be biased, we refit the model by MCMC by simply
adding the mcmc (on) option to the previous runmlwin command. MLwiN will then fit the
model using its default MCMC estimation settings: vague prior distributions, a burn-in period
of 500 iterations followed by a monitoring period of 5,000 iterations. (runmlwin options are
available to alter all of these estimation settings.) Initial values must always be provided for
MCMC estimation. The initsprevious option is specified in order to provide the PQL2
parameter estimates from the previous model as starting values for the current model.

runmlwin use cons, ///
level2(district: coms) ///
levell(woman:) ///
discrete(distribution(binomial) link(logit) denom(cons)) ///
mcmc (on) initsprevious nopause nogroup

vV VvV Vv Vv
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MLwiN 2.26 multilevel model Number of obs = 2867
Binomial logit response model
Estimation algorithm: MCMC

Burnin = 500

Chain = 5000

Thinning = 1

Run time (seconds) = 12.7

Deviance (dbar) = 3678.37

Deviance (thetabar) = 3636.22

Effective no. of pars (pd) = 42.15

Bayesian DIC = 3720.52
use | Mean Std. Dev. ESS P [95% Cred. Intervall]

_____________ +________________________________________________________________
cons | ~-.5078102  .0870904 133 0.000  -.6763612  -.335745

Random-effects Parameters | Mean Std. Dev. ESS [95% Cred. Intl]

Level 2: district
.2853694 .0808969 704 .1547615 .4686836

var (cons)

The top left block of output states that it took 12.7 seconds to run the model for the default
burn-in period of 500 iterations and monitoring period of 5,000 iterations.

In the fixed part parameters table, the first and second columns of numbers present the means
(parameter estimates) and standard deviations (standard errors) of the parameter posterior
distributions. In contrast to model output after fitting by IGLS, the third and fourth columns
do not present the usual z ratios and p values as MCMC does not assume that the parameters
follow asymptotic normal sampling distributions. Instead, column three presents the effective
sample size (ESS) for each parameter, an estimate of the equivalent number of independent
iterations that the chain represents. The ESS will typically be less than the number of actual
iterations because the chains are positively autocorrelated (they are Markov chains). Column
four presents one-tailed p values based on the posterior distributions. For a positive estimate,
the p value is the proportion of that parameter’s posterior distribution that is below zero. For
a negative estimate, the p value is the proportion of that parameter’s posterior distribution
that is above zero. The fifth and sixth columns give the 2.5th and 97.5th quantiles of the
posterior distribution, resulting in 95% Bayesian credible intervals.

The intercept [y is estimated to be -0.508 and is interpreted as the log-odds of using contra-
ception in the average district. The corresponding odds and probability of using contraception
are derived as exp (fp) and exp (8o)/ {1 + exp (o)} and are estimated to be 0.602 and 0.375,
respectively. Thus, almost 40% of the women use some method of contraception.

. display exp([FP1]cons)

.60181196
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. display exp([FP1]cons)/(1 + exp([FP1]cons))
.375707

The ESS is 133, implying that the sample of 5,000 values is only equivalent to only 133
independent iterations. We might therefore choose to refit the model specifying a longer

burn-in and monitoring period.

In the random part parameters table, the between-district variance o2 is estimated to be

0.285. The ESS for this parameter is 704 and so its parameter chain is less autocorrelated
than the intercept’s parameter chain. In Section 1, we discussed the ICC and VPC statistics
for measuring clustering or dependence in continuous response data. In the case of binary and
other discrete response models, there is no single ICC or VPC value as the level 1 variance is
a function of the mean. A popular solution is to formulate the model in terms of a continuous
latent response variable which underlies the observed binary response. It can then be shown
that the ICC and VPC statistics, in terms of the underlying latent response, are calculated
as 02/(02 4+ 72/3). In our case, the latent variable underlying women’s observed behavior
would be interpreted as their propensity to use contraception.

. display [RP2]var(cons)/([RP2]var(cons) + (_pi~2)/3)
.0798183

Thus, the expected correlation in the propensity to use contraception between two women
from the same district is just 0.080. Interpreted as a VPC we would say that 8% of the
variation in womens’ propensity to use contraception lies between districts.

In addition to runmlwin, we have also developed a second command mcmcsum (distributed
with runmlwin) to calculate more detailed graphical and statistical MCMC diagnostics for
the parameter chains. The mcmcsum command replicates all the functionality of the MLwiN
Trajectories window. For example, specifying the mcmcsum command’s trajectories op-
tion produces trajectory plots (trace plots) of the deviance statistic and each model parameter.
The resulting graph is shown in Figure 7.

. mcmcsum, trajectories

We can examine a specific parameter chain in detail by listing it after the mcmcsum command
and then specifying the fiveway option to produce a five-way MCMC graphical diagnostic
plot. We do this below for the between-district variance o2.

. mcmcsum [RP2]var(cons), fiveway

The resulting graph is shown in Figure 8. On the first row, the left panel plots the trace
of the chain while the right panel plots a smoothed histogram of the chain. The smoothed
histogram shows the posterior distribution of the between-district variance to be positively
skewed. On the second row, the left panel is an auto-correlation function (ACF) plot showing
the autocorrelation between iteration ¢ and ¢ — k& while the right panel is a partial auto-
correlation function (PACF) showing the autocorrelation between iteration t and t — k, having
accounted for iterations ¢t — 1,...,¢t — (k — 1). The less correlated the chain the better. Here
the chain looks moderately correlated and we may wish to run the chain for longer. The

21
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Figure 7: Deviance and parameter chains plotted in Stata.

Figure 8: Five-way MCMC graphical diagnostics plot plotted in Stata.
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single graph on the third row plots the Monte Carlo standard error (MCSE), an indication of
how much error is in the mean estimate due to the fact that MCMC is used. As the number
of iterations increases the MCSE tends to 0. The MCSE can be used to calculate how long
to run the chain to achieve a mean estimate with a particular desired MCSE. Full details are
provided in the MLwiN MCMC Manual.

Specifying the mecmcsum command for a specific parameter with no options gives an expanded
set of summary statistics for that parameter. These include the mode, median and other quan-
tiles of the posterior distribution along with the Brooks-Draper and Raftery-Lewis statistics
for helping to judge burn-in length. Full details are provided in the MLwiN MCMC Manual.

. mcmcsum [RP2]var (cons)

[RP2] var (cons)

Percentiles
Mean .28563694 0.5% .1298765 Thinned Chain Length 5000
MCSE of Mean .0020629 2.5% .1547615 Effective Sample Size 704
Std. Dev. .0808969 5% .1700509 Raftery Lewis (2.5%) 12246
Mode .2678715 25% .2277897 Raftery Lewis (97.5%) 7558
P(mean) 0 Brooks Draper (mean) 3271
P (mode) 0 50% .2773703

P(median) 0
75% .3309639
95% .4328758
97.5Y% .4686836
99.5Y% .5472924

Finally, it is worth comparing the PQL2 and MCMC estimates. For this particular model
and dataset the differences between the PQL2 and MCMC results are in fact rather small.
Recall that quasi-likelihood estimates become more biased the smaller sample sizes are within
level 2 units and the more extreme the response proportion. In our case, we have both large
level 2 units (there are on average 48 women per district) and a non-extreme overall response
proportion (the probability of using contraception in the average district is estimated to be
0.376).

3.2. Random intercept model with predictor variables

In our next model we adjust for woman’s age, number of living children, whether the woman
lives in an urban or rural area of residence, education status and religion.

use;; ~ Bernoulli (7;;)
logit (m;;) = Bo + Blageij + [2lcl;; + fB3lc2;; + B4lc3plusij + Bsurban;;
—i—,@’@edlprimij + ,37edupriml-j + ,Bgedsecplusij + Bohindu;; + u;
Uj ~ N (0, 03)

The number of living children and women’s education levels are both entered into the model
as series of dummy variables. We start by generating these dummy variables
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lcl = (lc==1)

1c2 = (1c==2)

lc3plus = (1c==3)
edlprim = (educ==2)
eduprim = (educ==3)
edsecprim = (educ==4)

. generate
. generate
. generate
. generate
. generate
. generate

Next, we fit the model by MCMC, where we first fit the model by PQL2 to obtain sensi-
ble starting values for the model parameters. We prefix the runmlwin command with the
quietly command to suppress the PQL2 model output. In the MCMC model, we specify the
burnin(1000) and chain(10000) sub options within mcmc () to illustrate how to manually
specify the burn-in and monitoring period.

quietly runmlwin use cons age lcl 1c2 lc3plus urban ///
edlprim eduprim edsecplus hindu, ///
level2(district: coms) ///
levell(woman:) ///
discrete(distribution(binomial) link(logit) denom(cons) pql2) ///
nopause

V V. VvV Vv Vv -

runmlwin use cons age lcl 1c2 1lc3plus urban ///
edlprim eduprim edsecplus hindu, ///
level2(district: comns, residuals(u)) ///
levell(woman:) ///
discrete(distribution(binomial) link(logit) denom(cons)) ///
mcme (burnin(1000) chain(10000)) initsprevious nopause nogroup

V V.V Vv Vv

MLwiN 2.26 multilevel model Number of obs = 2867
Binomial logit response model
Estimation algorithm: MCMC
Burnin = 1000
Chain = 10000
Thinning = 1
Run time (seconds) = 72
Deviance (dbar) = 3391.73
Deviance (thetabar) = 3343.66
Effective no. of pars (pd) = 48.07
Bayesian DIC = 3439.79
use | Mean Std. Dev ESS P [95% Cred. Interval]
_____________ o
cons | -2.058425 .1369046 160  0.000 -2.332103 -1.788479
age | -.0170395 .0065595 501 0.005 -.029798  -.0042716
lcl | 1.147392 .1319565 486  0.000 .8803015 1.410263
1lc2 | 1.5051 .1436951 309 0.000 1.223534 1.78126
lc3plus | 1.497378 .1421594 207  0.000 1.220985 1.770245
urban | .5231315 .1058621 1019  0.000 .3170539 . 7259818
edlprim | .2506106 .1325655 1617  0.029 -.0066221 .5117957
eduprim | . 7319607 .1434418 1799  0.000 .4501632 1.015892
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edsecplus | 1.18517 .1267956 1292 0.000 .9327023 1.436409
hindu | .4295443 .126547 1621 0.000 .1771066 .6758361
Random-effects Parameters | Mean  Std. Dev. ESS [95% Cred. Int]

Level 2: district
.2576323 .0762447 1163 .1383612 .4352944

var (cons)

The age effect is negative and its 95% credible interval does not include zero implying a sig-
nificant negative effect of age; older women are less likely to use contraception all else being
equal. All three living children dummy variables are positive and their 95% credible intervals
similarly exclude zero and so women with children appear significantly more likely to use con-
traception than childless women, particularly those women with two or three children. Urban
also has a significant positive effect and so women living in urban areas appear more likely to
use contraception than similar women living in rural areas. The education dummy variables
are positive and increase in magnitude with increasing levels of education suggesting that the
more educated women are the more likely they are to use contraception. Finally, the Hindu
effect is positive and significant and so Hindu women are more likely to use contraception
than otherwise equivalent Muslim women.

All parameters are measured on the log-odds (logit) scale. We can redisplay them as odds
ratios by rerunning the runmlwin command with only the or option. We additional specify
the noheader and noretable options to suppress the header and also the random effects table
from also being redisplayed.

. runmlwin, noheader noretable or

use | 0dds Ratio Std. Dev ESS P [95% Cred. Intervall]
_____________ e e
cons | .128853 .0176396 165 0.000 .0970913 .1672143

age | .983126 .0064464 500 0.005 .9706416 .9957376

lcl | 3.177508 .4211868 495 0.000 2.411627 4.097032

1c2 | 4.551389 .6584419 310 0.000 3.39918 5.937334
lc3plus | 4.515563 .6501625 207 0.000 3.390527 5.872294
urban | 1.696776 .1798448 1028  0.000 1.373077 2.066759
edlprim | 1.296161 .1728697 1612  0.029 .9933997 1.668284
eduprim | 2.100653 .3028464 1794  0.000 1.568568 2.761826
edsecplus | 3.297643 .4197159 1288  0.000 2.541367 4.205568
hindu | 1.548892 .1963568 1635 0.000 1.193758 1.965676

For example, women living in urban areas are 1.697 times more likely to use contraception
than similar women living in rural areas. The standard deviations, ESS and credible intervals
are also all rescaled. For example, the 95% credible interval for this urban odds ratio is (1.373,
2.067).
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In the random part of the model the between-district variance is now estimated to be 0.258
compared to 0.285 in the variance components model. The ICC and VPC are therefore now
lower than they were previously suggesting that even though all the predictors are level 1
variables, they have explained away relatively more variation between districts than within
districts. There is clearly substantial district variation in women’s background characteristics
across the sample.

3.3. Random slope models

In our next model we introduce a random coefficient to allow the magnitude of the urban-rural
differential to vary across districts.

use;; ~ Bernoulli ()

logit (m;;) = Bo + 51ageij + [olcly; + P3lc2;; + ,34103p1usij + Bsurban;;

+Beedlprim;; + freduprim;; + Ssedsecplus,; + Sohindu;; + uok + usk

(o) =5{(0) (2 )

To fit this model using runmlwin, we simply add urban to the list of variables made random at
level 2. We specify orthogonal within mcmc () to reparameterize the model using orthogonal
fixed effects. This reparameterization tends to make the MCMC chains less autocorrelated
and so we can typically run the model for fewer iterations to achieve the same ESS for each
parameter. Indeed the ESS for the fixed part parameters are mostly higher than they were
in the previous model where we ran the monitoring period for twice as many iterations.

quietly runmlwin use cons age 1lcl 1c2 1c3plus urban ///
edlprim eduprim edsecplus hindu, ///
level2(district: cons urban) ///
levell(woman:) ///
discrete(distribution(binomial) link(logit) denom(cons) pql2) ///
nopause

vV V.V Vv Vv

runmlwin use cons age lcl 1c2 1c3plus urban ///
edlprim eduprim edsecplus hindu, ///
level2(district: cons urban, residuals(u)) ///
levell (woman:) ///
discrete(distribution(binomial) link(logit) denom(cons)) ///
mcmc (orthogonal) initsprevious nopause nogroup

V V. VvV Vv Vv -

MLwiN 2.26 multilevel model Number of obs = 2867
Binomial logit response model
Estimation algorithm: MCMC

Burnin = 500
Chain = 5000
Thinning = 1

Run time (seconds) = 45.3
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Deviance (dbar) = 3359.47
Deviance (thetabar) = 3296.27
Effective no. of pars (pd) = 63.20
Bayesian DIC = 3422.67
use | Mean Std. Dev ESS P [95% Cred. Intervall
_____________ e
cons | -2.093502  .145026 323 0.000  -2.383879  -1.822029
age | -.0186721  .0065416 1175 0.002  -.0317001  -.0058585
lcl | 1.165411 .1348019 1022 0.000 .8921169 1.426872
1c2 | 1.530448 .1514643 974 0.000 1.233069 1.824439
lc3plus | 1.53144 .1508309 1135 0.000 1.249121 1.833495
urban | .5722347 .1383094 316 0.000 .2983797 .8484937
edlprim | .2443008 .1245475 1150 0.023 .0061003 .4831241
eduprim | .730011 .146977 1030 0.000 .436473 1.021763
edsecplus | 1.179433 .1267397 1128 0.000 .9300272 1.420014
hindu | .5035544 .1301246 706 0.000 .253488 . 7734384
Random-effects Parameters | Mean Std. Dev ESS [95% Cred. Int]
_____________________________ o
Level 2: district |
var(cons) | .4004016 .1170398 289 .218859 .6746963
cov(cons,urban) | -.2860598 .1187465 171 -.561482 -.0959287
var (urban) | .3917124 .1653934 146 .1442434 .7695333

The fixed part of the model adjusts for the same set of predictors as before and, as expected,
leads to very similar parameter estimates. In the random part of the model, the between
district variance is now a function of urban

2 2 2
var (upj + usjurban;;) = o5 + 20y0surban;; + o, 5urban’;

The residual variance between districts for women living in rural areas (urban;; = 0) is
estimated by o2,

. display [RP2]var(cons)

.40040159

while the residual variance between districts for women living in urban areas (urban;;= 1) is
2 2

. display [RP2]var(cons) + 2*[RP2]cov(cons\urban) + [RP2]var (urban)

.21999443
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These results show that there is greater district-level variation in the probability of using
contraception in rural areas than in urban areas.

Finally, we will include the two district-level explanatory variables, d1it and dpray, to see
whether they explain some of the district-level variation in urban and rural areas.

use;; ~ Bernoulli ()

logit (m;;) = Bo + Brage;; + B2lclij + B31c2;; + B4lc3plus,;; + Ssurban;
+fBgedlprim,; + Sreduprim;; + fsedsecplus,;; + Sghindu;;

—l—ﬁmdlitj + 611dprayj + Uk + Usk

Uok | N 0 050
Usp, 0 )7\ ouws 055
Fitting this model gives the following model results

quietly runmlwin use cons age lcl 1c2 lc3plus urban ///
edlprim eduprim edsecplus hindu dlit dpray, ///
level2(district: coms urban) ///
levell(woman:) ///
discrete(distribution(binomial) link(logit) denom(cons) pql2) ///
nopause

V V. VvV Vv Vv -

runmlwin use cons age lcl 1c2 1c3plus urban ///
edlprim eduprim edsecplus hindu dlit dpray, ///
level2(district: cons urban) ///
levell(woman:) ///
discrete(distribution(binomial) link(logit) denom(cons)) ///
mcmc (orthogonal) initsprevious nopause nogroup

vV V.V Vv Vv

MLwiN 2.26 multilevel model Number of obs = 2867
Binomial logit response model
Estimation algorithm: MCMC

Burnin = 500

Chain = 5000

Thinning = 1

Run time (seconds) = 51.4

Deviance (dbar) = 3356.43

Deviance (thetabar) = 3292.10

Effective no. of pars (pd) = 64.33

Bayesian DIC = 3420.76
use | Mean Std. Dev ESS P [95% Cred. Intervall]

_____________ e e
cons | -1.735759  .2942317 118 0.000  -2.329606 -1.162001
age | -.0185978  .0067268 1147  0.003  -.0312961  -.0046087
lcl | 1.182757 .1326589 999 0.000 .9278888 1.440731
1c2 | 1.545269 .1500845 924 0.000 1.245595 1.842595
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lc3plus | 1.547397 .1539206 1028 0.000 1.248998 1.854816

urban | .5263794 .1589417 114 0.001 .2011249 .8388008

edlprim | .2402252 .13064 1177 0.028 -.0114425 .5070141

eduprim | .7391772 .1477399 1114 0.000 .4453486 1.03165

edsecplus | 1.20151 .1321474 963 0.000 .9412796 1.457263

hindu | .5010918 .1375902 595  0.000 .235527 .7780737

dlit | 2.217206 1.76005 203 0.108 -1.273744 5.675169

dpray | -1.426267 .5541483 164 0.004 -2.505237 -.4128276
Random-effects Parameters | Mean  Std. Dev ESS [95% Cred. Int]

_____________________________ e e

Level 2: district |

var(cons) | .3684094 .1166008 252 .1841991 .6359417

cov(cons,urban) | -.2918086 .1311375 144 -.5992982 -.08096

var(urban) | .4562388 .2106555 111 .1412175 .9463967

The effect of the proportion of literate women in the district has a positive, but non-significant
effect on the probability of using contraception. District-level religiosity has a significant
negative effect, with women living in districts with higher levels of religiosity being less likely
to use contraception. The residual between-district variation is now 0.368 for rural areas and
0.241 for urban areas and so some of district-level variation in rural areas is explained by
differences in religiosity, but the variation in urban areas is almost unchanged.

. display [RP2]var(cons)

.36840943

. display [RP2]var(cons) + 2%[RP2]cov(cons\urban) + [RP2]var (urban)
.24103108

In this section we have focused on using the runmlwin command to fit two-level logistic models
for binary responses. As with xtmelogit, we can extend these models to include three or more
levels, cross-classifications, and binomial (proportion) responses. However, unlike xtmelogit,
runmlwin can additionally fit models with different link functions (probit and complementary
log-log) and can also fit multivariate binary and binomial response models.

4. More advanced models

In this section we briefly consider how to fit three more advanced multilevel models using
runmlwin: a multilevel multivariate mixed response type model, a multilevel ordinal response
model and a multilevel nominal response model. These models cannot be fitted using Stata’s
multilevel modeling commands (xtmixed, xtmelogit and xtmepoisson). For simplicity we
continue to analyze the education and demography example datasets introduced in the last
two sections.
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4.1. Multivariate mixed response type model

In this example we fit a multivariate mixed response type model to the London exam scores
data. Specifically, we fit a two-level students-within-schools bivariate response model for
students’ age 11 scores standlrt and a dichotomized version of students’ age 16 scores pass
which equals 1 if normexam is positive and 0 otherwise. The model is a random intercept
model where we only adjust for student gender. We formulate the binary response in terms of
an underlying latent response passj; which can be interpreted as the propensity with which
student ¢ in school j passes their exam.

standlrt;; = (()1) + ﬁ%l)girlij + “5'1) + 62('31')

pass}; = 85 + A1 girl, +u)” + e

(1) 2
(o) =40 (2 )}
ug-) 0 Ou(1,2)  Oy(2)
o 0 o2)
(72) ~N 0)’'\ o o?
€ij e(1,2) e(2)

Since pass;; is unobservable, its variance 03(2) is not identified, but is implicitly set by
choosing the link function (logit: 03(2) = 72 /3; probit: 03(2) = 1). We shall specify the probit
link function.

To specify this multivariate mixed response type model using runmlwin, we introduce paren-
theses into the fixed and random parts of the model which include the equation() option to
declare which variables appear in which response equation. To ease model interpretation, we
use the corr option to present the level 2 and level 1 covariance parameters as correlations.
Fitting this model first by IGLS MQL1 and then by MCMC produces

quietly runmlwin (standlrt cons girl, eq(1)) (pass comns girl, eq(2)), ///
level2(school: (cons, eq(1)) (comns, eq(2))) ///
levell(student: (comns, eq(1))) ///
discrete(distribution(normal binomial) link(probit) denom(cons cons)) ///
nopause

vV V.V Vv -

runmlwin (standlrt cons girl, eq(1)) (pass cons girl, eq(2)), ///

> level2(school: (cons, eq(1)) (comns, eq(2))) ///

> levell(student: (cons, eq(1))) ///

> discrete(distribution(normal binomial) link(probit ) denom(cons cons)) ///
> mcme (orthogonal) initsprevious ///

> nopause nogroup corr

MLwiN 2.26 multilevel model Number of obs = 4059

Multivariate response model
Estimation algorithm: MCMC

Burnin = 500
Chain = 5000
Thinning = 1

Run time (seconds) = 290
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Deviance (dbar) =
Deviance (thetabar) =
Effective no. of pars (pd) =
Bayesian DIC =

| Mean Std. Dev ESS P [95% Cred. Intervall
_____________ e
standlrt |
cons_1 | -.1185641 .050478 a7 0.006 -.2214012 -.0248286
girl 1 | .1551671 .0419346 192 0.000 .0746792 .2366822
_____________ e
pass |
cons_2 | -.0964004 .0770889 28 0.098 —-.2447352 .0519815
girl_2 | .1944707 .0536904 182 0.000 .0885649 .2924222

Level 2: school

|
+
|
var(cons_1) | .0976565 .020842 1160 .063758 .14618
corr(cons_1,cons_2) | .7361008 .0724239 934 .5699684 .8553826
var(cons_2) | .2071477 .0450404 886 .1338541 .3140524

+

|

|

|

I

Level 1: student
.9012652 .0196933 354 .8633361 .9412403
.5898498 .0146979 344 .5624947 .6196466

var(cons_1)
corr(cons_1,bcons_2)
var (bcons_2)

In terms of age 11 scores, we see that girls are predicted to score 0.155 of a standard deviation
higher at age 11 than boys. In terms of passing their age 16 exams, girls are again predicted
to outperform boys: 54% of girls are predicted to pass their age 16 exams compared to 46%
of boys.

. display normal ([FP2]cons_2)

.46160127

. display normal ([FP2]cons_2 + [FP2]girl_2)
.53906177

The correlations between students’ age 11 scores and their propensity to pass their age 16
exams are (0.736 and 0.590 at the school and student level, respectively. Unsurprisingly, schools
with the highest scoring intakes tend to perform best five years later. Similarly, within schools,
the higher scoring students at age 11 are the ones which perform best at age 16. These results
are consistent with those reported in Section 2.
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In the above example, we have fitted a two-level bivariate response model where the fixed
and random parts of the model are the same for both response equations. However, we
can also use runmlwin to specify more complex multilevel multivariate mixed response type
models. We can extend the above model to fit three- and higher-level hierarchical data,
cross-classified data and response vectors with three or more response variables of potentially
varying types (continuous and binary). We can also specify different fixed and random parts
in each response equation, allowing certain variables to appear in some equations and not
others. We can also specify some parameters to be common (constrained) across equations
while others are separately estimated. Random coefficients and variance functions can be
added to any equation at any level in the usual way.

4.2. Ordinal response model

In this example we fit an ordinal logistic model to the Bangladeshi contraceptive use data.
Specifically, we fit a two-level women-within-districts ordinal response model to the four cat-
egory contraceptive use variable use4. We view the four categories of contraception as being
increasingly effective means of birth control: using no contraception (use4;; = 4) is the
least effective means, then traditional methods (use4;; = 3), then modern reversible methods
(use4;; = 2), and finally sterilization is the most effective means (use4;; = 1). The model is
a random intercept model where we only adjust for women’s age, number of living children
and whether she lives in an urban area. We set the fourth category of the response (using no
contraception) to be the reference category.

use4;; ~ Multinomial (7r

1 _(2) _3)
ij 2 Tij o T )

log (71'%(;)/71'1(]2’3’4)) = ﬁél) + ﬂlageij + falcly; + f3lc2;; + 541C3plusij + Bsurban;; + u;
log (771(;’2)/71'5”4)) = B82) + ﬁlageij + f2lcl;; + [B31c2;; + B4103plusij + Bsurban;; + u;

log (WS’Z’S)/WZ(?)) = 5(()3) + Brage;; + B2lclij + B31c2;; + B4lc3plus;; + Bsurban;; + u;

u; ~ N (0, O'Z)

(2 ®3)

The terms i T and 7;;” denote the probabilities of using method 1, 2 and 3, respectively,
while 71'1(]27374), Z(Jl ’2), 7'['5’74) and ﬂl(; 23) are different cumulative probabilities. The response has

four categories and so the model is set up as three log-odds contrasts. The first log odds
contrast models the log odds of using method 1 versus methods 2, 3 or 4. The second log
odds contrast models the log odds of using method 1 or 2 versus using methods 3 or 4. The
third log odds contrast models the log odds of using methods 1, 2 or 3 versus using method
4. Thus, in each log-odds contrast we contrast more effective approaches to birth control
with less effective approaches. Separate intercepts (threshold parameters) are estimated in
each log-odds contrast. The effects of all predictor variables are assumed constant across the
log-odds contrasts (proportional odds assumption).

Fitting this model first by IGLS MQL1 and then by MCMC produces

. quietly runmlwin use4 cons (age 1cl 1c2 lc3plus urban, contrast(1/3)), ///
> level2(district: (comns, contrast(1/3))) ///
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> levell(woman:) ///

>

> nopause

> level2(district: (cons, contrast(1/3))) ///
> levell(woman:) ///

>

> mcmc (orthogonal) initsprevious ///

>

nopause nogroup

MLwiN 2.26 multilevel model

Ordered multinomial logit response model

Estimation algorithm: MCMC

Number of obs

runmlwin use4 cons (age lcl 1c2 1lc3plus urban, contrast(1/3)), ///

discrete(dist(multinomial) link(ologit) denom(cons) basecategory(4)) ///

discrete(dist(multinomial) link(ologit) denom(cons) basecategory(4)) ///

2867

Contrast | Log-odds
_____________ +____________________
1| 1vs. 234
2|1 12vs. 34
31 123vs. 4
Burnin = 500
Chain = 5000
Thinning = 1
Run time (seconds) = 61.5
Deviance (dbar) = 5874.57
Deviance (thetabar) = 5826.78
Effective no. of pars (pd) = 47.79
Bayesian DIC = 5922.36
Mean Std. Dev
Contrast 1
cons_1 -3.536198 1511914
Contrast 2
cons_2 -2.137839 1398857
Contrast 3
cons_3 -1.645083 1367751
age_123 -.0150755 .0062137
1c1_123 1.048174 .1251156
1c2_123 1.382455 .1331677

1c3plus_123
urban_123

1.281889 .1411943
.6650735 .0924569

-.0275777
.8017691
1.124834
1.005635

.480046

-.0031782
1.295756
1.64314
1.563928
.8432043

33
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Level 2: district

var (cons_123) .2615968 .0794832 426 .1442128 .4547639

Age has a significant negative effect and so younger women are significantly more likely to
use more effective approaches to birth control than older women. All three living children
dummy variables are positive and significant and so women with children, particularly those
with two or three children, appear significantly more likely to use more effective approaches to
birth control than childless women. Urban also has a significant positive effect and so women
living in urban areas also appear more likely to use more effective means of birth control.

4.3. Nominal response model

In this example we fit a nominal logistic model to the Bangladeshi contraceptive use data.
Specifically, we fit a two-level women-within-districts nominal response model to the four
category contraceptive use variable use4. The model is a random intercept model where we
adjust for the same variables as in our previous example and we again set the fourth category
of use4 (no contraception) to be the reference category. Thus, the model has three equations
contrasting the log-odds of using each method of contraception against the reference of using
no contraception.

1 (2 (3)>

T

use4;; ~ Multinomial (Fij T T

log (WQ)/W(@) = 561) + B§1)ageij + ﬁél)lclij + /Bgl)lczj + ﬁ§1)1c3p1usij + 5él)urbanij +ulb)

ij [ "ig J
log (WZ-(]?)/WZ(?)) = 582) + B%z)ageij + Béz)lclij + 5§2)102¢j + B§2)1c3p1usij + ﬁéQ)urbanij + u§2)
log (WZ(?)/WZ(;L)) = ﬂég) + B%S)ageij + 553)lc1ij + 6§3)102ij + 54(13)103p1usij + ﬂég)urbanij + u§3)

uy! 0 Tu)
u§2) ~ N 0|, oua2 03(2) ,
u? 0 Ou(13) Ou(23) Ty

Fitting this model first by IGLS MQL1 and then by MCMC produces

. quietly runmlwin use4 cons age lcl 1c2 lc3plus urban, ///

> level2(district: cons, residuals(u)) ///

> levell (woman:) ///

> discrete(dist (multinomial) link(mlogit) denom(cons) basecategory(4)) ///
> nopause

runmlwin use4 cons age lcl 1c2 lc3plus urban, ///
level2(district: comns) ///
levell(woman:) ///
discrete(dist(multinomial) link(mlogit) denom(cons) basecategory(4)) ///
mcmc (orthogonal) initsprevious ///
nopause nogroup

V V.V Vv Vv
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MLwiN 2.26 multilevel model Number of obs = 2867
Unordered multinomial logit response model
Estimation algorithm: MCMC
Contrast | Log-odds
_____________ e
1] 1vs. 4
2| 2vs. 4
3| 3vs. 4
Burnin = 500
Chain = 5000
Thinning = 1
Run time (seconds) = 170
Deviance (dbar) = 5582.35
Deviance (thetabar) = 5479.14
Effective no. of pars (pd) = 103.21
Bayesian DIC = 5685.55
| Mean Std. Dev ESS P [95% Cred. Intervall
_____________ e
Contrast 1 |
cons_1 | -4.082737 .3217545 222 0.000 -4.748469 -3.523268
age_1 | .0220265 .0096253 1326 0.012 .0030931 .0408361
lci_1 | 2.190912 .3368988 317 0.000 1.573424 2.887145
1c2_1 | 2.647792 .3368055 303 0.000 2.003088 3.326137
lc3plus_1 | 2.436404 .3372546 349 0.000 1.789113 3.12222
urban_1 | .2708482 .1652604 695 0.041 -.0449046 .603516
_____________ e e
Contrast 2 |
cons_2 | -2.686565 .1658037 297 0.000 -3.0176 -2.369953
age_2 | -.0670038 .0093544 965 0.000 -.0850417 -.0481877
lci_2 | 1.070755 .1540116 1030 0.000 .7800555 1.379321
1c2_2 | 1.375661 .1791258 995 0.000 1.022076 1.713762
lc3plus_2 | 1.328719 .1933557 997 0.000 .9555698 1.712443
urban_2 | 1.2434 .1220864 548 0.000 .9994968 1.48343
_____________ e
Contrast 3 |
cons_3 | -2.789423 .1983549 537 0.000 -3.186918 -2.409306
age_3 | .000286 .0099567 1140 0.485 -.0193697 .0192972
lc1_3 | . 7973608 .234925 797 0.001 .3292199 1.257956
1c2_3 | 1.15957 .2321483 940 0.000 .7110318 1.613051
1lc3plus_3 | 1.206419 .2372543 880 0.000 . 7445371 1.672309
urban_3 | .2561048 .1722062 77 0.070 -.0845745 .5930236
Random-effects Parameters | Mean Std. Dev ESS [95% Cred. Int]
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+
Level 2: district |
var(cons_1) | .5185827 .1566131 364 .2756147 .8967777
cov(cons_1,cons_2) | .2668872 .0970831 261 .1126262 .4930946
var(cons_2) | .2783497 .0927847 189 .1362191 .4950176
cov(cons_1,cons_3) | .2278537 .1053358 359 .0573296 .4664064
cov(cons_2,cons_3) | .0964096 .0780254 325 -.0387304 .271509
var(cons_3) | .3636968 .1254203 346 .171915 .6547303

To aid our interpretation of the model results, we can calculate and then graph predicted
probabilities of using each method of contraception. The commands to generate these predic-
tions and graphs are somewhat more complex than those presented for earlier examples and
so we do not describe them here (see Supplementary materials for full details).

Figure 9 illustrates how the predicted probability of using each method of contraception
changes by woman’s age and whether that woman lives in a rural or urban area. (Predictions
are calculated for a woman with two living children living in the average state). Figure 10
illustrates how the predicted probability of using each method of contraception changes by
the number of living children a woman has, whether that woman lives in a rural or urban
area and by which district the women lives in. (Predictions are calculated for a 30 year-old
womarn).

Figure 9 suggests that the probability of not using contraception increases with age. Among
the three alternative methods of contraception, the probability of using traditional methods
appears to decrease with age while the probability of using modern reversible method and
particularly sterilization increases with age. The figure also suggests that the probability
of using no contraception is much lower in urban areas than it is in rural areas while the
probability of using traditional method is much higher in urban areas than it is in rural
areas. The probabilities of using modern reversible methods and sterilization appear similar
for women living in rural and urban areas.

Figure 10 suggests that the probability of not using contraception is highest for childless
women, reduces for women with one child and is slightly lower again for women with two or
more children. The probability of using each of the three different methods of contraception
are all substantially higher for women with living children, particularly for those women with
two or three living children, than they are for childless women. As in Figure 9, we see that
women living in urban areas are much more likely to use contraception than women living in
rural areas. Plotting the district specific probabilities of using each method of contraception,
illustrates the substantial heterogeneity in woman’s contraceptive use between districts; in
some districts women are far more likely to use contraception than in other districts.

Finally, in the random part parameters table of the model output, the random effects cor-
relations are all positive suggesting that districts with high (low) use of one type of method
relative to using no contraception also tend to have high (low) use of other methods relative
to using no contraception. The highest correlation is between the use of sterilization and the
use of modern reversible methods which is expected as both of these types of method are
promoted by family planning programs.



Journal of Statistical Software 37

Rural Urban

1.00

0.75+

0.50

Probability

0.254

0.004

T T T T T T T
15 20 25 30 35 40 45 50 15 20 25 30 35 40 45 50
Woman's age (years)

No contraception ———-—- Traditional method
— — — Modern method =~ --------ee- Sterilisation

Figure 9: Category probabilities against age plotted in Stata.
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Figure 10: Category probabilities against number of living children plotted in Stata.

5. Conclusions

We have illustrated how to run MLwiN seamlessly from within Stata using the runmlwin com-
mand. The runmlwin command allows all models fitted in MLwiN to now be fitted within
Stata and therefore greatly expands the range of multilevel modeling options available to Stata
users. We note that where there is overlap with Stata’s existing commands, runmlwin will
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often fit these models considerably more quickly. A very important advantage of operating
MLwiN via runmlwin as opposed to through its point-and-click interface is that this makes
carrying out reproducible and fully documented analyzes extremely easy. The annotated do-
file which accompanies this article and replicates all of the presented Stata output is a case
in point. More broadly, running MLwiN from within Stata allows users to take advantage
of Stata’s excellent statistics, graphics and data management commands to prepare and de-
scriptively analyze their multilevel datasets. After fitting a model by runmlwin, users can
apply Stata’s comprehensive hypothesis testing, model comparison, and multilevel graphics
facilities to aid model interpretation and to communicate their results.

We have created a dedicated runmlwin web site to provide users with further information and
resources (http://www.bristol.ac.uk/cmm/software/runmlwin/). Readers can learn more
about the wide range of models which can be fitted by downloading the different conference
presentations we have given. Readers seeking more detail can then download Stata do-files and
log-files which allow them to replicate every example presented in the two MLwiN manuals.
A complete description of the command syntax and every modeling and estimation option is
provided in the 28-page help file (Leckie and Charlton 2013). Finally, the website provides
an active user forum where we encourage users to post their queries.
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