

5000 Series5000 Series5000 Series5000 Series

DLL DriverDLL DriverDLL DriverDLL Driver

USER USER USER USER MAMAMAMANUALNUALNUALNUAL

T
e
c
h
n
m
a
n
 E
le
c
tr
o
n
ic
s
 L
td
.

 PAGE 1

Contents
Overview... 3

System Set Up.. 3

Using the 5000Hal.dll and examples.. 4

Use with Multiple Communication Channels 5

Maximising System Performance.. 6

Command Set Summary... 8

Set-Up Commands .. 11

Open a Communication Channel ... 11

Close a Communication Channel... 14

Identify Module Type .. 15

Get the Name of a Module ... 17

Check a Module’s Online Status .. 19

Digital Input Commands... 20

Read a Single Input or Output.. 20

Read a Module’s Inputs or Outputs.. 21

Digital Output Commands.. 23

Write to a Single Digital Output .. 23

Set a Module’s Outputs (Unmasked) 24

Set A Module’s Outputs (Masked) ... 26

Analogue Input Commands ... 28

Read a Single Analogue Input.. 28

Set a Single Input Type .. 30

Check for New Reading Available.. 32

Identify a Single Input Type.. 33

Analogue Output Commands .. 34

PAGE 2

Set an Analogue Output ... 34

Error Handling Commands .. 36

Last Error Number .. 36

Last Error String ... 37

Error Codes.. 38

General Errors .. 39

Digital Module Errors .. 40

Analogue Module Errors... 41

Serial Port Specific Errors .. 42

5101 PCI Specific Errors .. 43

Serial Specific Set Up Commands .. 46

Set Upper Scan Boundary.. 46

Set Lower Scan Boundary.. 47

Serial Specific Digital Input Latch Commands 48

Set a Module’s Latch Edges... 48

Peek a Single Latch.. 51

Read and Clear a Module’s Latches .. 52

Peek Module Latches ... 54

OptomuxString(text string less checksum)............................... 56

CmdString(text string sent)... 57

StringResponseAvailable()... 58

StringResponse().. 59

Reference ... 60

Number Base Conversion Table .. 60

Glossary of terms used .. 61

 PAGE 3

Overview

The 5000 Series Driver has been written as an interface to the
Control-it™ distributed I/O modules, to provide simple yet flexible
commands, make writing your applications easy.

Along with the command set, the driver also offers a performance
boost by taking on the task of polling the modules that would
otherwise be passed to the user.

Immediately after start-up the driver begins interrogating each
address to determine where modules exist and what type they are.
Once a map of the system is established, the driver polls the known
I/O positions, storing an image of their states on the PC. This means
that any ‘Read’ calls can be returned to the application immediately,
without the need to wait for a response from the module. ‘Write’
commands are queued in memory and executed automatically.

The driver also handles soft errors, automatically retrying failed
commands before returning any errors to the user.

In the background, the driver will continue to interrogate unused
addresses, in order to automatically update the system map if a new
module is added. The module is then immediately available to
receive commands.

Each command uses an intuitive name that reflects the operation it
performs and is the same for C/C++, Delphi and Visual Basic.

System Set Up

1. Install the PC interface device.

• If using the Control-it™ 5101 board, ensure it is installed
and running correctly (refer to the 5101 Users Manual for
further details).

• If using a serial port converter, ensure it is running correctly
(refer to the appropriate Users Manual for further details).

2. Connect the Control-it™ remote modules as described in the
appropriate Installation Manual, making careful note of the
addresses.

PAGE 4

3. Use the P5000Demo program as described in the Installation
Manual, to ensure the correct operation of the system.

4. Place the 5000hal.dll and appropriate inclusion file in your
application folder as described in Using the 5000Hal.dll
below.

Using the 5000Hal.dll and examples

The 5000Hal.dll contains all the commands used by the Control-it™
modules and must be accessible by your application program. This
means either placing it in the same directory as the application or
including it in the path command in your autoexec.bat.

For simplicity, the parameters and returns used with the various
commands are all 32-bit integers, unless stated otherwise.

Inclusions

Each language requires a specific external file to be included for
using the driver commands. These directories also contain
examples.

C++

5000Hal.h
(on CD-ROM under \PCSoft\5000 Series Driver\C++)

5000Hal.lib must also be linked during compiling.
(On CD-ROM under \PCSoft\5000 Series Driver\C++)

Delphi

p5000Hal.pas

(on CD-ROM under \PCSoft\5000 Series Driver\Delphi)

Visual Basic

5000Hal.bas

(on CD-ROM under \PCSoft\5000 Series Driver\Visual Basic)

 PAGE 5

Use with Multiple Communication
Channels

When required, a system may be set up using more than one
communication channel, for instance to increase the maximum
number of modules.

The 5000Hal.dll can handle up to 99 serial ports and four 5101 Hi-
Speed PCI cards, vastly increasing the number of modules that may
be attached to a single PC. However, since two modules attached to
two different channels may have the same address, it is necessary
to modify the command set to accommodate this.

When using multiple communication channels, all commands are
modified by the addition of the prefix M_ (capital M underscore) and
the communication channel number (deviceNum) as the first
argument.

Example: aIn(moduleNum, positionNum)

becomes

M_aIn(deviceNum, moduleNum, positionNum)

The multiple-channel version of each command is included in the
following command descriptions.

PAGE 6

Maximising System Performance

A number of techniques can be used to improve the update rate of
both individual modules and the system as a whole, maximising the
performance of your distributed I/O system.

• Cluster Input Modules at low addresses

Set all input modules, digital or analogue, to the lowest
possible addresses.

The 5000 series driver polls all input modules in the
foreground, starting at address 0, up to the highest known
input module address. As the driver must check that an
address is used, and that an input module is attached, keeping
the highest input address as low as possible reduces this
checking.

NB – The performance gain from this may not be enough to
warrant changing from more intuitive address choices.

• Set the Upper and Lower Scan Boundaries (COM port
systems only)

Set Upper Scan Boundary (page 46) to the highest address
used in the system and the Lower Scan Boundary (page 47) to
the first address used.

The 5000 series driver updates its ‘system map’ by continually
checking all possible module addresses one-by-one. Although
this occurs in the background of normal operation, requiring
few resources, each unused address must time-out before the
driver can return to the foreground. Setting the scan
boundaries removes the need for the 5000 series driver to
check, and time-out, addresses that will never be used in the
system.

Hi-Speed systems only have 31 possible addresses and 690k
baud rate (as opposed to the COM port’s 256 address and
115.2k baud rate maximum), so do not require this option.

 PAGE 7

• Turn off unused Analogue Inputs

By setting the input type (page 30) of any unused inputs to 0
i.e. disabled, the refresh rate for a particular position can be
increased to a maximum of 10 per second (1 input enabled).

Analogue modules update their internal input registers by
continually sampling all enabled inputs. Each sample takes
100mS, so a single-ended (16 I/P) module, with all positions
enabled, will take a maximum of 1.6 seconds to update a
particular position.

PAGE 8

Command Set Summary

The following is a quick reference for the commands available with
the 5000 Series Driver.

All parameters and returns are signed-32-bit-integers unless
otherwise stated. Floats are to the IEEE 32bit standard.

On/Off style parameters should be 1 for On and 0 for Off.

Description Command Page

Universal Commands

Set-Up

Open a communication
channel

openDevice(deviceNum, baudRate) 11

Close a communication
channel

closeDevice() 13

Identify a module type moduleType(moduleNum) 15

Identify a module name moduleName(moduleNum) 17

Check online status moduleOnlineStatus (moduleNum) 19

Digital Input

Read single digital
position

dIn(moduleNum, positionNum) 20

Read whole module dInModule(moduleNum) 21

Digital Output

Write single digital output
dOut(moduleNum, positionNum,
desiredState)

23

Write whole module dOutModule(moduleNum, outData) 24

Write masked outputs
dOutModuleMasked(moduleNum, outData,
mask)

26

Analogue Inputs

Read input aIn(moduleNum, positionNum). Float return 28

Set input type aSetType(moduleNum, positionNum, type) 30

 PAGE 9

Identify input type aGetType(moduleNum, positionNum) 33

New reading available aNewReading(moduleNum, positionNum) 32

Analogue Outputs

Set output
aOut(moduleNum, outputNum,
outputCurrent)

34

Error Handling

Last error number getLastErrNum() 36

Last error string getLastErrStr() 37

Serial Port Specific Commands

Set-Up

Set upper scan boundary setUpperBoundary(lastModule) 46

Set lower scan boundary setLowerBoundary(firstModule) 47

Digital Input Latches

Set latches dInSetLatch(modulenum, latchMask) 48

Read and clear single
latch

dInLatchGet(modulenum, positionNum) 50

Peek single latch dInLatchPeek(modulenum, positionNum) 51

Read and clear module
latches

dInModuleLatchGet(comNumber,
modulenum)

52

Peek module latches
dInModuleLatchPeek(comNumber,
modulenum)

54

Direct Serial commands (for advanced users)

Send an Optomux cmd OptomuxString(text string less checksum) 56

Send an command string CmdString(text string to send) 57

Check response
available

StringResponseAvailable() 58

Get response StringResponse() string return 59

Hi-Speed Specific Commands

Status Commands

Check online status moduleOnlineStatus(moduleNum) 19

PAGE 10

Multiple Interface Commands

When more than one
High-Speed card or serial
port is used

Above commands begin with M_, and
deviceNum is first parameter

e.g.

M_aIn(deviceNum, moduleNum,
positionNum)

5

 PAGE 11

Set-Up Commands

Open a Communication Channel

Description

This command must be used prior to all other commands.

Provides access to the RS485 interface, e.g. a 5101 PCI card, or a
serial port with a converter attached.

deviceNum indicates the communication channel you wish to capture
for use with all following commands.

The M_openDevice command can be used to open multiple channels
by repeating it with different deviceNum values. The channels are
defined in Table 1 below.

deviceNum deviceName Communication Channel

0 DEVICE_CLOSED Invalid device number

1 DEVICE_COM1 Serial COM port 1

2 DEVICE_COM2 Serial COM port 2

3 DEVICE_COM3 Serial COM port 3

… … continues as above …

99 DEVICE_COM99 Serial COM port 99

100 DEVICE_5101_0 5101 PCI card – Board Number 0

101 DEVICE_5101_1 5101 PCI card – Board Number 1

102 DEVICE_5101_2 5101 PCI card – Board Number 2

103 DEVICE_5101_3 5101 PCI card – Board Number 3

Table 1 - deviceNum, deviceName and associated Communication Channels

PAGE 12

The second parameter defines the baud rate when opening a serial
port. For systems using Hi-Speed cards, this value is ignored and
can be left as 0. Table 2 details the available baud rates.

Baud rate

0 [Hi-Speed cards only]

1200

2400

4800

9600

19,200

38,400

57,600

115,200

Table 2- Available Baud Rates for Serial Channels

Syntax

 openDevice(deviceNum, baud-rate)

 M_openDevice(deviceNum, baud-rate)

Returns

No Return

 PAGE 13

Examples

To communicate with a module connected to COM2, at 19200 baud,
you must capture that port using

openDevice(2, 19200)

OR

openDevice(DEVICE_COM2, 19200)

To capture a 5101 PCI card, number 1, use

openDevice(101, 0)

OR

openDevice(DEVICE_5101_0, 0)

To capture COM ports 2 and 3 use

M_openDevice(2, 19200)

M_openDevice(3, 19200)

PAGE 14

Close a Communication Channel

Description

This command must be used before terminating the control program
to avoid system errors.

Closes the communication channel and frees the memory space.

Syntax

closeDevice()

M_closeDevice(deviceNum)

Returns

No Return.

Examples

To release the communication channel before terminating your
application, use

closeDevice()

To release COM2, when more than one channel is open, use

M_closeDevice(2)

 PAGE 15

 Identify Module Type

Description

Identify the type of module at the given moduleNum.

Modules Supported

All

Syntax

 moduleType(moduleNum)

 M_moduleType(deviceNum, moduleNum)

PAGE 16

Returns

Returns an integer identifying the module type as listed in Table 3.
When viewed as a hexadecimal number, each pair of digits identifies
the positions’ type, e.g. 10(hex) is 8 outputs and 20(hex) is 8 inputs.

Return
(Hex)

Module Type Description
I/O

Configuration

0000 No board found

1010 5020 Digital output module 16 Digital O/P

1020 5030 Digital I/O module 8 Digital O/P
8 Digital I/P

2020 5040 Digital input module 16 Digital I/P

0040 5050/8 Differential analogue input
module with no Outputs.

8 Analogue I/P

4040 5050/16 Single-Ended analogue input
module with no Outputs.

16 Analogue I/P

3040 5050/8/OUT Differential analogue input
module with 2 Outputs.

8 Analogue I/P
2 Analogue O/P

5040 5050/16/OUT Single-Ended analogue input
module with 2 Outputs.

16 Analogue I/P
2 Analogue O/P

Table 3 - Module Type returns

Examples

With a 5030 I/O module at address 12, using

modID = moduleType(12)

modID will contain the value 1020(hex).

 PAGE 17

Get the Name of a Module

Description

Return a string, naming the module at moduleNum.

Modules Supported

All

Syntax

 moduleName(moduleNum)

 M_moduleName(deviceNum, moduleNum)

Returns

Returns one of the following strings:

• NotPresent

• NotScanned

• Unknown

• 5020

• 5030

• 5040

• 5050Single

• 5050Diff

• 5050SingleOut

• 5050DiffOut

PAGE 18

Examples

With a 5030 I/O module at address 12, using

modName = moduleName(12)

modName will point to the string “5030”.

 PAGE 19

Check a Module’s Online Status

Description

This command is only available on Hi-Speed systems

Returns 1 if module is, or has been online. Used to diagnose the
system if an error is encountered, e.g. after communication time-out
error, moduleOnlineStatus can be checked to discover whether
module has ever been connected.

Modules Supported

All

Syntax

moduleOnlineStatus (moduleNum)

M_moduleOnlineStatus (deviceNum, moduleNum)

Returns

Returns an Integer.

1 – Module is, or has been, online.

0 – Module has never been online.

Examples

To check the online status on module 14, use

online = moduleOnlineStatus(14)

If online contains 1, the module is, or has been, online.

PAGE 20

Digital Input Commands

Read a Single Input or Output

Description

Reads the state of a single digital input position.

This command can also be used to read back the state of digital
outputs.

Modules Supported

5020, 5030, 5040

Syntax

dIn (moduleNum, positionNum)

M_dIn (deviceNum, moduleNum, positionNum)

Returns

Returns an integer where 0 is false and 1 is true.

Examples

To find the state of input 5 on the module at address 12, use

inState = dIn (12, 5)

If inState equals 1, the input is high.

 PAGE 21

Read a Module’s Inputs or Outputs

Description

Read all the states of a module's inputs.

This command can also be used to read the module’s output states.

Modules Supported

5020, 5030, 5040

Syntax

dInModule(moduleNum)

M_dInModule(deviceNum, moduleNum)

Returns

Returns an Integer. The lower 16 bits represent a module position,
where bit 0 represents position 0 and bit 15 represents position 15.

0 = Off

1 = On

Examples

A 5040 module, at address 12, has inputs 1, 3, 6, 12 & 15 on. Using

inState = dInModule(12)

inState will hold the value 904AHex, as calculated below.

PAGE 22

Module Input
Positions

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Input state (1 is
on) as Binary

1 0 0 1 0 0 0 0 0 1 0 0 1 0 1 0

Hex equivalent 9 0 4 A

The Hex equivalent value was calculated using the Bin to Hex
conversion table on page 60.

 PAGE 23

Digital Output Commands

Write to a Single Digital Output

Description

Sets the state of a single digital output.

desiredState is an integer where 0 is OFF and 1 is ON.

NB Since desiredState is an integer, any value other than 0 is taken
as ON.

Modules Supported

5020, 5030

Syntax

dOut(moduleNum, positionNum, desiredState)

M_dOut(deviceNum, moduleNum, positionNum, desiredState)

Returns

No return.

Examples

To turn on output 3 on the module at address 6, use

dOut(6, 3, 1)

To turn off output 15 on the module at address 2, use

dOut(2, 15, 0)

PAGE 24

Set a Module’s Outputs (Unmasked)

Description

Sets the state of all the module's outputs.

The lower 16 bits of outData represent the output positions. Bit 0
represents position 0 and bit 15 represents position 15.

0 = Off

1 = On

With this command, all outputs must be set every time. Therefore, to
leave a position in its current state, its previous setting must be
repeated.

Modules Supported

5020, 5030

Syntax

dOutModule(moduleNum, outData)

M_dOutModule(deviceNum, moduleNum, outData)

Returns

No returns.

 PAGE 25

Examples

A 5020 module, at address 12, requires outputs 1, 3, 6, 12 & 15 ON,
and the rest OFF. Use

dOutModule(12, 904Ahex)

The value for outData, 904Ahex, is calculated below.

Module Output
Positions

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Output state (1 is
on) as Binary

1 0 0 1 0 0 0 0 0 1 0 0 1 0 1 0

Hex equivalent 9 0 4 A

The Hex equivalent value was calculated using the Bin to Hex
conversion table on page 60.

PAGE 26

Set A Module’s Outputs (Masked)

Description

Same as ‘Set Module’s Outputs (Unmasked)’ with the addition of a
mask, allowing positions to remain unchanged without having to
repeat their previous settings.

outData is the same as for ‘Set Module’s Outputs (Unmasked)’

Only positions with a 1 set in mask will be altered by this call.

The lower 16 bits of mask represent the output positions. Bit 0
represents position 0 and bit 15 represents position 15.

0 - Position remains unchanged

1 - Position will respond to call

Modules Supported

5020, 5030

Syntax

dOutModuleMasked(moduleNum, outData, mask)

Returns

No Returns

 PAGE 27

Examples

A 5020 module, at address 12, requires outputs 1, 6 & 12 ON, 3 &
15 OFF, and all others unchanged. Use

dOutModule(12, 1042hex, 904Ahex)

The value for outData, 1042hex, is calculated below. Note that the
unchanged positions can be set to either 1 or 0, without affecting the
module, but in this example they default to 0.

Module Output
Positions

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Output state (1 is
on) as Binary

0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0

Hex equivalent 1 0 4 2

The value for mask, 904Ahex, is calculated below.

Module Output
Positions

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Outputs to be
changed (as
Binary)

1 0 0 1 0 0 0 0 0 1 0 0 1 0 1 0

Hex equivalent 9 0 4 A

The Hex equivalent value was calculated using the Bin to Hex
conversion table on page 60.

PAGE 28

Analogue Input Commands

 Read a Single Analogue Input

Description

Reads the state of a single analogue input position.

A position’s input type must be set before it can be read correctly.
By default this is 0-10Vdc. See Set a Single Input Type (page 30).

Modules Supported

5050

Syntax

aIn(moduleNum, positionNum)

M_aIn(deviceNum, moduleNum, positionNum)

Returns

Returns a 32 bit float, in units as per Table 4 below.

Input Range Units

+/- 1V Volts

+/- 10V Volts

+/- 20mA mA

J 0 – 760oC oC

K 0 - 1000oC oC

T 100-400oC oC

Table 4 - Input ranges and units

 PAGE 29

Examples

A module on a Hi-Speed system at address 12 has 4.8540V on
input 3. The input is set to the 10V range. Using

voltage = aIn(12, 3)

voltage will contain 4.8540.

PAGE 30

Set a Single Input Type

Description

Sets and stores the input type of each position in non-volatile
memory on the module as per table 5. This must match the Input
Type Jumper settings as described in Jumper Configuration in the
Installation Manual.

This command can also turn unused positions off, thereby
increasing the module’s update rate per enabled input.

By default the Input Type is set to 2 (0-10Vdc).

The input type must be set correctly before the input can be read.

Input Type
Character

Input Range

0 Disabled input

1 +/- 1V

2 +/- 10V

3 +/- 20mA

4 J 0 - 760oC

5 K 0 - 1000oC

6 T 100-400oC

Table 5 - Input Types

Modules Supported

5050

Syntax

aSetType(moduleNum, positionNum, type)

M_aSetType(deviceNum, moduleNum, positionNum, type)

Returns

 PAGE 31

No return

Examples

To use a K type temperature probe attached to input 6, on a module
at address 4, it must first be set to this type using

setType(4, 6, 5)

To turn off an unused input – position 13 on module 7, in order to
increase the scanning rate of the remaining inputs use

setType(7, 13, 0)

PAGE 32

Check for New Reading Available

Description

Allow checking to see if a new reading is available for an analogue
position.

newReading is set to 0 after aIn is called, and is only set to 1 after a
new sample is available.

This command is used to eliminate repeated aIn calls to the same
sample.

Modules Supported

5050

Syntax

 aNewReading(moduleNum, positionNum)

Returns

0 - no new reading is available since the last aIn call.

1 - a new reading is available.

Examples

Before reading input 4, on module 16, you can check that a new
reading is available (since last read), by using

ready = newReading(16, 4)

If ready is 0, no new sample is available since the input was last
read.

 PAGE 33

Identify a Single Input Type

Description

Returns an integer that represents the input type as per table 5
(page 30).

Modules Supported

5050

Syntax

aGetType(moduleNum, positionNum)

M_aGetType(deviceNum, moduleNum, positionNum)

Returns

An integer, identifying the module type, as per table 5, page 30.

Examples

To check the type of input 5, on module 15 – that was previously
disabled, use

typeCheck = getType(15, 5)

typeCheck will be zero, as per Table 6 (page 34).

PAGE 34

Analogue Output Commands

Set an Analogue Output

Description

If the 5050 has two optional 4-20mA outputs fitted, this command
sets their output current.

The outputs are located at positions (outputNum) 14 &15. Position
numbers 0 & 1 may also be used for 14 & 15 respectively.

NB: On 16 input (single ended) modules, these positions do not
clash with input positions 14 & 15. aOut will write to the outputs while
aIn will read from the inputs.

The output current (outputCurrent) is set in µAmps as per Table xx.

Range outputCurrent Actual Current

Minimum 3500 3.5mA

Step 1 1µA

Maximum 20000 20mA

Table 6 - Analogue Output Range

NB: The outputs are electrically isolated and therefore require the 4-
20mA supply for power. The outputs cannot be set without it. Also, if
power is removed, they will lose their settings.

Modules Supported

5050 with outputs

Syntax

aOut(moduleNum, outputNum, outputCurrent)

M_aOut(deviceNum, moduleNum, outputNum, outputCurrent)

 PAGE 35

Returns

No return

Examples

To set output 14, on module 23, to 8.32mA, use

aOut(23, 14, 8320)

PAGE 36

Error Handling Commands

Last Error Number

Description

Returns an integer representing the last error number encountered.
If 0, there is no error.

The error number is set after every call to the network and is cleared
by a call to getLastErrStr() or resetErrNum().

Modules Supported

All

Syntax

getLastErrNum()

M_getLastErrNum(deviceNum)

Returns

Refer to Error Codes (page 38) for an explanation of error returns.

Examples

An attempt is made to read an input on a module at address 12.
When the command execution is checked using

cmdChk = getLastErrStr()

cmdChk holds the error code 3. This means that no module is
present at address 12 and the command has not been successful.

 PAGE 37

 Last Error String

Description

Returns a string representing the last error number encountered.
Use this call to display an error message to the user.

The error string is cleared by a call to getLastErrStr() or resetErrNum().

Modules Supported

All

Syntax

getLastErrStr()

M_getLastErrStr(deviceNum)

Returns

Refer to Error Codes (page 38) for an explanation of error string
returns.

Example

An attempt is made to read an input on a module at address 12 but
the error number 3 is returned by getLastErrNum(). By using

txbMsg.Caption = getLastErrStr()

the "Attempted to access a module that is not

present." message is displayed to the user in the text box
txbMsg.

PAGE 38

Error Codes

This chapter describes the various error codes encountered when
calling the Control-it™ modules.

Every call to the DLL will set an error code that can be viewed using
the ‘Last Error Number’ command from the previous chapter. In
most cases this will be 0 (No error).

Error code Description Page

0 No error 39

1 Illegal module number 39

2 Illegal position number 39

3 Module not present 39

4 Illegal board number 39

10 Write to input 40

11 Not a digital module 40

20 No analogue output fitted 41

21 Not an analogue module 41

22 Analogue input disabled 41

30 Not a serial COM port system 42

31 Invalid serial COM port number 42

32 Serial port could not be opened 42

33 Could not start serial thread 42

34 Module number outside range 42

40 Windriver not found 43

41 Control-it 5101 board not found 43

42 Non-functional Control-it 5101 board detected 43

43 Null handle used 43

44 Invalid handle used 43

45 Wrong version of Windriver 43

46 5101 not opened 43

47 Incorrect 5101 number 43

50 Not a Hi-Speed system 43

Table 7 - Error codes

 PAGE 39

General Errors

No Error

Number: 0

String: Nil

No error was encountered when the call was executed.

Illegal Module Number

Number: 1

String: "Illegal module number specified. Must be

between 0 and 30 inclusive."

The program has attempted to call a module number that is out of
range.

• moduleNum must be between 0 and 30.

Illegal Position Number

Number: 2

String: "Illegal position number. Must be between

0 and 15 inclusive."

The program has attempted to call a position number that is out of
range.

• positionNum must be between 0 and 15.

Module Not Present

Number: 3

String: "Attempted to access a module that is not

present.”

The program has attempted to call a module that is not present.

PAGE 40

• Check the address jumper settings on the target module
(refer Installation Guide in this manual). moduleNum must
equal this setting.

Illegal Board Number

Number: 4

String: "Illegal board number. Must be between 0

and 3 inclusive.”

The program has attempted to use a 5101 PCI card number that is
not valid.

Digital Module Errors

Write to Input

Number: 10

String: "Attempted to write to an input.”

An attempt was made to write to an input, so no action occurs

• Check that you are writing to the correct module.

• Check that the module has digital outputs fitted.

Not a Digital Module

Number: 11

String: "Attempted digital call to non-digital

module.”

A module was found at this address, but it is not a digital module so
calling digital routines is not possible.

• Check the address jumper settings on the target module (refer
Installation Guide in this manual). moduleNum must equal this
setting.

 PAGE 41

Analogue Module Errors

No Analogue Output Fitted

Number: 20

String: "Attempted to write to an input.”

An attempt was made to write to a module without an analogue
output position.

• Check that you are writing to the correct module.

• Check that the module has analogue outputs fitted.

Not an Analogue Module

Number: 21

String: "Attempted analog call to non-analog

module.”

A module was found at this address, but it is not an analogue
module so calling analogue routines is not possible.

• Check the address jumper settings on the target module (refer
Installation Guide in this manual). moduleNum must equal this
setting.

Analogue Input Disabled

Number: 22

String: "Attempted to read a disabled analog

input.”

The called analogue input is disabled.

• Use aSetType(modNum, posNum) to enable input.

PAGE 42

Serial Port Specific Errors

Not a Serial COM Port system

Number: 30

String: "”

A Serial COM Port specific command was used on a non Serial
COM Port system.

Invalid Serial COM Port number

Number: 31

String: ""

Windows could not find the port specified by the device number on
your computer.

Serial port could not be opened

Number: 32

String: ""

Windows could not open the port.

• Most likely another program (or instance of this DLL) is
using it.

Could not start Serial Thread

Number: 33

String: ""

Could not start serial thread for this port. Open failed.

 PAGE 43

Module number outside range

Number: 34

String: ""

Tried to access a module that is outside the range of modules
defined by setLowerBoundary and setUpperBoundary.

5101 PCI Specific Errors

WinDriver not found

Number: 40

String: "Could not find WinDriver on the system”

The WinDriver for the Control-it™ 5101 was not found.

• Check that windrvr.vxd is in the windows\system\vmm32
directory for Win 95 & 98, or windrvr.sys is in the
windows\system32\drivers directory for Win 2000 & NT.

• If necessary, re-install driver software from 5000 SDK CD-
ROM.

Control-it™ 5101 Board not found

Number: 41

String: "No 5101 High-Speed cards detected.”

There were no PCI cards found with DevId & VendorId matching
5101.

• Ensure the card is properly fitted in the PCI slot.

• Install the card in another empty PCI slot.

• Use ‘Add New Hardware’ in the Control Panel to install
manually.

PAGE 44

Non-functional Control-it™ 5101 board found

Number: 42

String: "5101 Modules detected. Could not open

any.”

A card was found, but it was not a functional 5101. This error will
occur if the last application did not close the board correctly.

• Restart the computer

• Ensure close5101Hal is called at the end of the application.

Null Handle Used

Number: 43

String: "Call made with a null handle (i.e. a

closed board)”

A call was made to a channel that has not been opened.

• Ensure that openDevice(deviceNum) is the first call made to the
board.

• Use getLastErrNum immediately after openDevice(deviceNum) to
verify that the channel has opened correctly. The return value
must be 0.

Invalid handle Used

Number: 44

String: "Call made with an invalid handle (i.e.

not between 0 - 3)”

A call was made to a channel using an invalid deviceNum. Must be
between 1 and 103 inclusive.

• Check that code uses the correct deviceNum.

 PAGE 45

Wrong version of Windriver

Number: 45

Strings: "Windriver was found, but it was the

wrong version for this DLL”

Windriver version on the system is older than the expected version.
Use the 5000 SDK CD-ROM to repair your installation.

5101 not opened

Number: 46

Strings: "Opened at least 1 5101 module - but it

was not functional.”

No 5101s could be opened.

Incorrect 5101 number

Number: 47

Strings: "Could not open requested board.”

A 5101 was opened, but it was not the correct board number
requested.

Not a Hi-Speed system

Number: 50

Strings: "Call made to a 5101 specific routine

with a device that is not a 5101.”

A 5101 specific command was used on a non Hi-Speed system.

PAGE 46

Serial Specific Set Up Commands

Set Upper Scan Boundary

Description

Allows the highest address used in a network to be identified. This
increases system performance by removing the need to scan
unused addresses at the top of the range.

lastModule is the highest address used, inclusive.

Modules Supported

All

Syntax

setUpperBoundary(lastModule)

M_setUpperBoundary(lastModule)

Returns

No return.

Examples

A system has modules installed with addresses ranging from 3 to
24. To prevent scanning modules that do not exist, set the upper
boundary using

setUpperBoundary(24)

 PAGE 47

Set Lower Scan Boundary

Description

Allows the lowest address used in a network to be identified. This
increases system performance by removing the need to scan
unused addresses at the bottom of the range.

firstModule is the lowest address used, inclusive.

Modules Supported

All

Syntax

Boundary(firstModule)

M_setLowerBoundary(firstModule)

Returns

No return.

Examples

A system has modules installed with addresses ranging from 3 to
24. To prevent scanning modules that do not exist, set the lower
boundary using

setLowerBoundary(3)

PAGE 48

Serial Specific Digital Input Latch
Commands

Latched inputs are used to identify an event that may be too quick to
read via the normal scanning method. Once set to either rising or
falling edge, an input’s latch register will go high and stay high after
that edge is seen, even if the input changes state again, and is only
reset low after the latch has been read. This gives the operating
system the ability to monitor narrow pulses or to check for an event
in a less time-critical way.

Set a Module’s Latch Edges

Description

Set inputs to trigger on either rising or falling edge.

The lower 16 bits of latchEdges represent the input positions. Bit 0
represents Pos 0 and the bit 15 represents Pos 15.

 1 – Set input to trigger on falling edges

 0 - Set input to trigger on rising edges

With this command, all inputs must be set every time, however an
input may still be read as normal using dIn(moduleNum, positionNum).
Therefore, once edge latching is started, all inputs on the specified
module may be read as either normal inputs or latches.

Modules Supported

5030, 5040

Syntax

dInSetLatch(moduleNum, latchEdges)

M_dInSetLatch(deviceNum, moduleNum, latchEdges)

 PAGE 49

Returns

No return.

Examples

A 5040 module, at address 12, requires outputs 1, 6 & 12 to latch
falling edges, 3 & 15 to latch rising edges, and all others to remain
as normal inputs. To set this use

dInSetLatch (12, 1042hex) *

The value for latchEdges, 1042hex, is calculated below. Note that the
normal input positions can be set to either 1 or 0, but in this example
they default to 0.

Module Output
Positions

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Output state (1 is
high) as Binary

0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0

Hex equivalent 1 0 4 2

The Hex equivalent value was calculated using the Bin to Hex
conversion table on page 60.

Although the normal inputs (0, 2, 4, 5, 7-11, 13 & 14) have be set to
trigger their latches on rising edges, their current state is can still be
returned using dIn(moduleNum, positionNum).

 * 1042hex = 0x1042 in C, $1042 in Delphi, $H1042 in VB.

PAGE 50

Read and Clear a Single Latch

Description

Read the latch state of the selected input and then reset to zero. 1
indicates that the input has been triggered, and 0 indicates that it
has not.

NB - A triggered input is always set to 1, irrespective of whether it is
rising or falling edge triggered.

Modules Supported

5030, 5040

Syntax

dInLatchGet(moduleNum, positionNum)

M_dInLatchGet(deviceNum, moduleNum, positionNum)

Returns

1 – Input has been triggered by appropriate edge.

0 – input has not been triggered.

Examples

Input 3 on the module at address 13 is set to rising edge latch.
Using

edgeCheck = dInLatchGet(13, 3)

edgeCheck contains a 1. This indicates that a rising edge has
occurred at the input since it was last read. Input 3’s latch state is
now automatically reset to 0.

 PAGE 51

Peek a Single Latch

Description

Read the latch state of the selected input but do not reset to zero. 1
indicates that the input has been triggered, and 0 indicates that it
has not.

NB - A triggered input is always set to 1, irrespective of whether it is
rising or falling edge triggered.

Modules Supported

5030, 5040

Syntax

dInLatchPeek(moduleNum, positionNum)

M_dInLatchPeek(deviceNum, moduleNum, positionNum)

Returns

1 – Input has been triggered by appropriate edge.

0 – input has not been triggered.

Examples

Input 3 on the module at address 13 is set to rising edge latch.
Using

edgePeek = dInLatchPeek(13, 3)

edgePeek contains a 1. This indicates that a rising edge has occurred
at the input since it was last read. Input 3’s latch state remains set
until dInLatchGet is called.

PAGE 52

Read and Clear a Module’s Latches

Description

Read the latch states of all the inputs of the selected module, and
then reset them to zero. 1 indicates that an input has been triggered,
and 0 indicates that it has not.

NB - A triggered input is always set to 1, irrespective of whether it is
rising or falling edge triggered.

Modules Supported

5030, 5040

Syntax

dInModuleLatchGet(moduleNum, positionNum)

M_dInModuleLatchGet(deviceNum, moduleNum, positionNum)

Returns

Returns an Integer. The lower 16 bits represent a module position,
where the LSB is position 0 and the 16th bit is position 15.

1 – Input has been triggered by appropriate edge.

0 – input has not been triggered.

Examples

A 5040 module, at address 12, has latches 1, 3, 6, 12 & 15
triggered. Using

inState = dInModuleLatchGet(12)

inState will hold the value 904AHex, as calculated below. The latches
are then reset to zero.

 PAGE 53

Module Input
Positions

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Input state (1 is
high) as Binary

1 0 0 1 0 0 0 0 0 1 0 0 1 0 1 0

Hex equivalent 9 0 4 A

The Hex equivalent value was calculated using the Bin to Hex
conversion table on page 60.

PAGE 54

Peek Module Latches

Description

Read the latch states of all the inputs of the selected module, but do
not reset to zero. 1 indicates that an input has been triggered, and 0
indicates that it has not.

NB - A triggered input is always set to 1, irrespective of whether it is
rising or falling edge triggered.

Modules Supported

5030, 5040

Syntax

dInModuleLatchPeek(moduleNum, positionNum)

M_dInModuleLatchPeek(deviceNum, moduleNum,

positionNum)

Returns

Returns an Integer. The lower 16 bits represent a module position,
where the LSB is position 0 and the 16th bit is position 15.

1 – Input has been triggered by appropriate edge.

0 – input has not been triggered.

Examples

A 5040 module, at address 12, has latches 1, 3, 6, 12 & 15
triggered. Using

inState = dInModuleLatchPeek(12)

 PAGE 55

inState will hold the value 904AHex, as calculated below. The latches
remain set until dInModuleLatchGet is called.

Module Input
Positions

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Input state (1 is
high) as Binary

1 0 0 1 0 0 0 0 0 1 0 0 1 0 1 0

Hex equivalent 9 0 4 A

The Hex equivalent value was calculated using the Bin to Hex
conversion table on page 60.

PAGE 56

OptomuxString(text string less checksum)

Description

An optomux command can be sent directly to a desired module.

Modules Supported

All

Syntax

The first character needs to be the > sign. No checksum or carriage
return is necessary.

OptomuxString(text string less checksum)

M_OptomuxString(deviceNum,text string less checksum)

Returns

No return from command sent, but module will respond. See
StringResponseAvailable() and StringResponse()

Examples

Turn on outputs 8 and 10 on 5030.

optomuxString('>01J0500')

If multiple channels were in use then the command would be

M_optomuxString(deviceNum,'>01J0500')

 PAGE 57

CmdString(text string sent)

Description

A text string can be sent directly out a serial channel. It is not limited
to Optomux protocol.

Modules Supported

All 5000 series modules, and also other serial devices.

Syntax

The text is free format.

CmdString(text string)

M_CmdString(deviceNum,text string)

Returns

No return from command sent. A response from the remote unit can
be checked for by using StringResponseAvailable() and
StringResponse()

Examples

Send text out through the 5258 adressable converter at address 7.
The converter is selected and “ hello world ” is sent through the
converter. “HeAdEr07T” causes the 5258 to open its RS232
channel. “HeAdEr07F” closes the 5258 channel once “ hello world “
has passed through.

 CmdString('HeAdEr07T hello world HeAdEr07F ')

If multiple channels were in use then the command would be

 M_CmdString(DeviceNum,'HeAdEr07T hello world HeAdEr07F ')

PAGE 58

StringResponseAvailable()

Description

Allows checking for a response from the remote module to an
OptomuxString(), or CmdString().

StringResponseAvailable() is set to 0 if no response received, and 1
if a response received. The receiving routine waits for a complete
message to be received before returning a 1.

Modules Supported

All 5000 series modules, and also other serial devices.

Syntax

 StringResponseAvailable();

 M_StringResponseAvailable(deviceNum);

Returns

0 - no response available

1 – response available

Examples

Check for response and then collect data.

if (StringResponseAvailable()) = 1 then

 yourDataString := StringResponse()

 PAGE 59

StringResponse()

Description

Allows reading back a response from the remote module to an
OptomuxString(), or CmdString() command.

StringResponseAvailable() is set to 0 if no response received, and 1
if a response received. The receiving routine waits for a complete
message to be received before returning a 1.

Modules Supported

All 5000 series modules, and also other serial devices.

Syntax

 StringResponse();

 M_StringResponse(deviceNum);

Returns

String or string pointer depending on language used.

Examples

Check for response and then collect data.

if (StringResponseAvailable()) = 1 then

 yourDataString := StringResponse()

PAGE 60

Reference

Number Base Conversion Table

Hexadecimal – Binary – Decimal Conversion Table

Decimal

Most Significant Bytes Least Significant Bytes

Hex Binary

IV III II I

0 0 0 0 0 0 0 0 0

1 0 0 0 1 4096 256 16 1

2 0 0 1 0 8192 512 32 2

3 0 0 1 1 12288 768 48 3

4 0 1 0 0 16384 1024 64 4

5 0 1 0 1 20480 1280 80 5

6 0 1 1 0 24576 1536 96 6

7 0 1 1 1 28672 1792 112 7

8 1 0 0 0 32768 2048 128 8

9 1 0 0 1 36864 2304 144 9

A 1 0 1 0 40960 2560 160 10

B 1 0 1 1 45056 2816 176 11

C 1 1 0 0 49152 3072 192 12

D 1 1 0 1 53248 3328 208 13

E 1 1 1 0 57344 3584 224 14

F 1 1 1 1 61440 3840 240 15

Using the table:

• Decimal value = IV+III+II+I

e.g. D42 (Hex) = 0+3328+64+2 = 3394 (Dec)

• Binary value is a group of four bits for each hexadecimal
character.

e.g. D42 (Hex) = 1101,0100,0010 (Bin)

 PAGE 61

Glossary of terms used

deviceNum The integer representing the communication
channel that a particular module is attached to, e.g.
3 is COM port 3 and 103 is 5101 PCI card number
3.

Input A position on a module that can be read but not
written to. Writing to it will produce an error.

Integer A signed 32-bit number in the range of -147483648
to 2147483647. Also known as Longint, or
DoubleWord.

Module A remote module e.g. Control-it™ 5030

moduleNum An integer representing the address of the target
module.
In a serial port system, moduleNum is from 0 to
256. In a Hi-Speed system, moduleNum is from 0
to 30.
The module addresses are set by jumpers on the
modules themselves. Refer to the Installation
Guide in this manual for more detail.

Output A position on a module that can be written to.
Reading it will return the current state that has
been requested.

Position Each digital module has 16 unique positions. These
can either be inputs or outputs. The position
numbers range from 0 to 15.

positionNum The number of the target position on the remote
module from 0 to 15.

5000SeriesDriverManual.doc Rev C

PAGE 62

 PAGE 63

PAGE 64

	Overview
	System Set Up
	Using the 5000Hal.dll and examples

	Use with Multiple Communication Channels
	Maximising System Performance
	Command Set Summary
	Set-Up Commands
	Open a Communication Channel
	Close a Communication Channel
	 Identify Module Type
	Get the Name of a Module
	Check a Module's Online Status

	Digital Input Commands
	Read a Single Input or Output
	Read a Module's Inputs or Outputs

	Digital Output Commands
	Write to a Single Digital Output
	Set a Module's Outputs (Unmasked)
	Set A Module's Outputs (Masked)

	Analogue Input Commands
	Read a Single Analogue Input
	Set a Single Input Type
	Check for New Reading Available
	Identify a Single Input Type

	Analogue Output Commands
	Set an Analogue Output

	Error Handling Commands
	Last Error Number
	 Last Error String

	Error Codes
	General Errors
	Digital Module Errors
	Analogue Module Errors
	Serial Port Specific Errors
	5101 PCI Specific Errors

	Serial Specific Set Up Commands
	Set Upper Scan Boundary
	Set Lower Scan Boundary

	Serial Specific Digital Input Latch Commands
	Set a Module's Latch Edges
	Peek a Single Latch
	Read and Clear a Module's Latches
	Peek Module Latches
	OptomuxString(text string less checksum)
	CmdString(text string sent)
	StringResponseAvailable()
	StringResponse()

	Reference
	Number Base Conversion Table
	Glossary of terms used

