INFORMATIK
BERICHTE

355 — 11/2009

Spatiotemporal Pattern Queries

Mahmoud Attia Sakr, Ralf Hartmut Guting

@ FernUniversitat in Hagen

Fakultat fur Mathematik und I nfor matik
Postfach 940
D-58084 Hagen

Spatiotemporal Pattern Queries

Mahmoud A.Sakr' 2, Ralf H.Giting #!

#1Database Systems for New Applications, FernUniverit Hagen
58084 Hagen, Germany
*2Faculty of Computer and Information Sciences, Universitfio Shams
Cairo, Egypt
'mahroud. sakr @ er nuni - hagen. de
2r hg@ er nuni - hagen. de

November 16, 2009

Abstract

Spatiotemporal pattern queries allow for querying moviibgeots by their movement profiles.
That is, one can specify for example temporal order comgain the fulfillment of predicates on
moving objects. We propose a complete design for spaticteshjpattern queries in the context
of spatiotemporal DBMSs. The design builds on the well distabd concept ofifted predicates
Hence, unlike previous approaches, it is not restrictegpific sets of predicates. It can express
a wide range of spatiotemporal patterns including varigpes of predicates such as kNN, range,
metric, topological, set operations, aggregations, digadirection, and boolean operations. Our
design covers the language integration in SQL, the evalnaif the queries, and the integration
with the query optimizer. We also propose a simple languagdéfining temporal constraints. The
approach allows for queries that were never available. \Weige a complete implementation in C++
and Prolog in the context of theeBoNDoOplatform. The implementation is made publicly available
online as a 8coNDOPIlugin. We have also included in the Plugin automatic seffipt repeating the
experiments in this paper.

1 Introduction

Moving objects are objects that change their position and/ or extent with tirmeingithe trajectories
of these objects stored in a suitable database system allows for issuingespptical queries. One can
query, for example, for animals which crossed a certain lake duringaircéime or for the total length
of a car trajectory inside a certain zone.

Spatiotemporal pattern queries provide a more complex query frameworkdaing objects. In
particular, they specify a temporal order among a set of spatiotempa@dicptes. They are used to
filter a set of trajectories and pass only those which fulfill a certain relatiexact temporal ordering of
predicates during their movement.

The term Spatiotemporal Patterns (STP) is used in the literature with differeanings. In the
database literature, the research on STP goes in two directions, nametyidiait;aand database query.
Although there is no clear cut between both areas, it happened that thauligeclusters itself into these
two classes.

From the data mining perspective, STPs refer to the collective movememtibelalso called group
patterns. The methods analyze simultaneous movements and the interactioenbetjests (e.g. pat-
terns like leadership, play, fighting, migration, trend-setting, ... etc). Téwareh in this direction aims
at developing a toolbox of data mining algorithms and visual analytic techniquesdvement analysis.
For example, algorithms for the flock, leadership, convergence araipter patterns are presented in

[13]. More systematically, Dodge et al. [8], presented a classificatidtheomovement patterns. They
gave examples for different classes and referred to relevant miningtalgs in the literature. The next
logical step is to build tools that can, more generally, identify classes of patter

In this paper, we are interested in the other perspective. It is focusétkadevelopment of query
methods that can be added to extensible spatiotemporal DBMS. Thesengitigyds should allow the
user to query for database objects that depict individual spatiotempaitalrns. In this sense, every
object/tuple can individually answer the user query. This is the intuitive wgyéoy the moving objects
by their movement profiles.

The pattern is a set of spatiotemporal predicates that are related to eachytbmporal constraints.
For example, suppose predicatesQ, and R that can hold over a time interval or a single instant. We
would like to be able to express spatiotemporal pattern conditions like the fotjowin

e P then (later)Q thenR.
e P ending before 8:30 the®) for no more than 1 hour.
e (QthenR) during P.
The predicate$’, O, R, etc. might be of the form:
e Vehicle X is on roadiV.
e The extent of the storm aréais larger than 4 square kms.
e The speed of air plang is between 400 and 500 km/h.

The literature in this perspective refers to spatiotemporal patterns usfagedif names:

e They are calledpatiotemporal patternis [9] and [17].

¢ In[20] they are calledhverse elementary querieShey arénversebecause the user already knows
how to describe the pattern and wants to retrieve objects depicting the pattesns opposite to
looking for afrequent patternThey areeslementaryn the sense that one trajectory can individually
answer the query. This is opposite to gynoptic querieshat target collective patterns similar to
the data mining approach.

e In [21] they are calledrajectory based queridsecause they rely on sequential information in the
trajectory. This is in contrast tcoordinate based querighat concentrate on a single part of the
trajectory.

We call them spatiotemporal patterns (STP). So far, there exist onlyrigwopals for handling STP
gueries. A language based approach is proposed by Mouza andkRI§duThey discretize the spatial
space into labeled zones (e.g. a spatial grid), and the temporal dimensiairsiant-size intervals.
The trajectories are strings of labels that show the visiting order of the Tekspatterns are represented
as regular expressions. Thanks to this representation, the problentabfimgea spatiotemporal pattern
is reduced to matching a regular expression against a set of stringgelefélteriou et. al. [17] propose
efficient algorithms that use a specialized index structure to evaluate S¥Regjgonsisting of spatial
and nearest neighbor predicates. Another discussion by Erwig [Bhesi some ideas to extend the
spatiotemporal predicates [11] towards spatiotemporal patterns. Wesltbmudetails and limitations of
these approaches in more detail in Section 6.

Our contributions are the following:

e We propose a new approach for answering STP queries that is hmaegy general and powerful
class of predicates, the so-called lifted predicates [16]. They arepasvgrful as they are simply
the time dependent version of arbitrary static predicates. Instead ofirejua bool value (like
standard predicates) they returmaving(bool) (a boolean function of time). Our approach allows
one to formulate temporal constraints on the results of arbitrary expressiamning such moving
booleans. Formulating STP queries over lifted predicates allows for a aidgerof queries that
are not addressed before.

e Thanks to the clean design, the proposed approach can be easilysgktesdpport more complex
patterns. In Section 5, we describe an extension that further incribesespressive power.

¢ In contrast to previous work we are able to actually integrate STP quetiethanquery optimizer.
Obviously for an efficient execution of pattern queries on large da¢sbid®e use of indexes is
mandatory. In Section 7 we consider how STP queries can be mapped dpyetyeoptimizer to
efficient index accesses.

e We propose a simple language for describing the relationship between twealstée.g. Allen’s
operators). The language makes it easier, from the user point oftei@xpress interval relations
without the need to memorize their names.

e We provide the complete implementation for the proposed design in the contéa 8coNDO
platform [4]. The implementation is made publicly available ase@ &\NDO Plugin and can be
downloaded from the Plugin web site [1]. Parallel to this paper, we haiteewia user manual
describing how to install and run our spatiotemporal pattern algebra withirce b0 system.

¢ We also provide automatic scripts to repeat the experiments in this papercripits are installed
during the installation of the Plugin. In Section 11 we describe the detailedguoe to repeat the
experiments. The scripts, together with the well documented source coddegu in the Plugin,
allow the readers to explore our approach, further elaborate on it,angdare with other future
approaches.

The rest of this paper is organized as follows. Section 2 gives a brig&fbaund about the problem
domain and recalls some necessary definitions from previous work in moklijagts databases. In Sec-
tion 3, we outline the proposed approach. Section 4 formalizes the spatiotdipatiern predicate as a
constraint satisfaction problem. Then we describe the evaluation algorithi@sction 5, the basic spa-
tiotemporal pattern predicate is extended into a more expressive versictiorsé reviews the previous
related work. In Section 7 we show how to integrate our approach seatylesth the query optimizers.
Section 8 is dedicated to the technical aspects of the implementation iretteN® o framework. The
experimental evaluation is shown in Section 9. In Section 10, we demonstmatgpplication examples
that emphasize the expressive power of our approach. Section theaAgpendices at the end of the
paper describe the experimental repeatability. Finally we conclude in Sd&ion

2 Moving Objects Databases

Moving objects can be abstracted as geometries that change their posidion extent with time. In
previous work [16], [12], and [7], a model for representing andrging moving objects is proposed.
The work is based on abstract data types (ADT). Wwvingtype constructor is used to construct the
moving counterpart of every static data type. Moving geometries aresesiesd using three abstractions;
moving(point), moving(region) andmouving(line). Simple data types (e.@uteger, bool, real) are also
mapped tanovingtypes. In theabstract mode]16], moving objects are modeled as temporal functions
that map time to geometry or value. For example, moving points are modeled as authie 3D space
(i.e. time to the 2D space).

In [12] a discrete data model implementing the abstract model is defined.ll Eata types in the
abstract model, correspondidscretetypes whose domains are defined in terms of finite representations
are introduced. In the discrete model, moving types are represented dlicttbrepresentation as units.

Definition 1 A data typemoving(c) is a temporally ordered sequence of units. Every unit is a pair (
Instant — «). The semantic of a unit is that at any time instant during the intdrvtedde value of the
instance can be calculated from the temporal funcfiariant — «. Units are not allowed to temporally
overlap, yet gaps are possible (i.e. periods during which the value objbet is undefined).

O

Themoving(point), for example, is modeled as a temporally ordered list of units. Every ungaga
that consists of a time interval and a linear function in time. The semantics of & tindt the position
of the point at any time instance within the interval is obtained by evaluating theotairipnction. This
is illustrated in Figure 1.

Figure 1: The sliced representation of@ving(point)

["2003-11-20-06:06" "2003-11-20-06:06:08.692"[, (16229.252.0), (16673.0 1387.0,]

[2003-11-20-06:06:08.692” "2003-11-20-06:06:24.7766673.0 1387.0), (16266.0 1672.0)

[2003-11-20-06:06:24.776” "2003-11-20-06:06:32.26416266.0 1672.0), (16444.0 1818.0)

['2003-11-20-06:06:32.264” "2003-11-20-06:06:39.13916444.0 1818.0), (16144.0 2227.0)

The model offers a large number of operations that fall in three classes:

1. Static operations over the non-moving types. Examples are the topolpgichitates, set opera-
tions and aggregations.

2. Spatiotemporal operations offered for the temporal types (e.qg. trajexfta moving(point), area
of a moving(region)).

3. Lifted operations offered for combinations of moving and non-movingsy®Basically they are
time dependent versions of the static operations.

Lifted operations are obtained by a mechanism cakealporal lifting All the static operations de-
fined for non-moving types are uniformly and consistently made applicable wotinesponding moving
types. For example, a static predicate and its corresponding lifted predreadefined as follows.

Definition 2 A static predicatds a function with the signature
P; x x P, — bool

whereP,; is any static data type (e.@uteger, point, region). O

Example: FernUninsideHagen.
Definition 3 A lifted predicates a function with the signature
P x ..o X Pux T Pyyp X ..x T P, —7 bool

where7 is themovingtype constructor. It can be applied to any static data type and returns itsgnovin
counterpart. A lifted predicate is obtained by allowing one or more of theypeteas of a static predicate
to be of amovingdata type. Consequently, the return type is@ing(bool), also denotednbool. [

4

Example: TrainRE1206insideHagen.

The large number of operations in the second and third classes of opsraitmw for spatiotemporal
gueries that involve an arbitrary set of spatiotemporal conditions. Tdikeshort, however, of expressing
a relative temporal order of the conditions. Spatiotemporal pattern ptedi€aTPP), that we propose
in this paper, allow for expressing such temporal order. The importainsgatiotemporal patterns for
many fields of application is illustrated in [9].

Our design builds on the concept of lifted predicates, hence we can &aghage a considerable
part of the available infrastructure.

3 Spatiotemporal Pattern Predicates

In this section we describe the proposed model. We do so using a seriefinitiahs with examples.

Definition 4 A predicate aliags a query level unique identifier that identifies a predicate. d

Example: TrainRE1206 inside Hageas REHagenPredicate
We compose the spatiotemporal pattern predicate using a set of lifted pesdi€aedicate aliases
are needed to refer to the different lifted predicates in a user query.

Definition 5 A temporal connectors an infix binary predicate/constraint that accepts twiwol pa-
rameters and enforces a certain temporal arrangement between thef gfaéis units. The operation has
the signature

mbool x mbool — bool

O

Assume the expressiaf © @@ whereP and(are lifted predicates each returningabool value.
Let the set of time intervals of the units during whiéhis true be calledP”’"¢ and similarlyQ'"“¢ for
Q. The temporal connectoy is evaluated by calculating the Cartesian produd®6f¢ andQ'“¢, then
applying the temporal constraint on every pair of time intervals. The temporadector is satisfied
if one or more pairs satisfy the constraint and we call such a psimpgorted assignmenfTemporal
connectors can be simple or vectors as shown in Definitions 6, 7.

Definition 6 Simple temporal connectoese temporal connectors that enforce only one interval rela-
tionship. The set of simple temporal connectors is inspired from the 13 Allgrerators [5] with the
addition that the intervals may degenerate into time instants. Hence 26 simple teogoorectors are
possible. O

We use a simple language for writing the simple connectors. The letietenote the begin and end
time instants of the left hand side argument. Similaéfhare the begin and end of the right hand side.
The order of letters describes the constraint, that is, a sequémeeans: < b. The dot symbol denotes
the equality constraint, hence, the sequemédemeansa = b. Table 1 lists the 26 possible temporal
constraints with their graphical illustration.

A temporal connector can alternatively be written as a vector of simple tefrqmomaectors.

Definition 7 A vector temporal connectas a set of simple temporal connectors. Vectors are interpreted
as the disjunction of their constituent simple temporal connectors. H8heector temporal connectors
are possible. In the following we use the operatecas a tool for constructing these vectors (e.qg.
vec(aabb, abab, a.bab)). O

Now we define the spatiotemporal pattern predicate.

Table 1: Simple temporal connectors

Connector | lllustration | Connector | lllustration
Both arguments are intervals (Allen’s operators)
aabb aaaa abba aaaaaaaa

bbbb bbbb
bbaa aaaa || a.bab aaaa
bbbb bbbbbbbb
aa.bb aaaa a.bba aaaaaaaa
bbbb bbbb
bb.aa aaaa baa.b aaaa
bbbb bbbbbbbb
abab aaaa aba.b aaaaaa
bbbb bbbb
baba aaaa a.ba.b aaaa
bbbb bbbb
baab aaaa
bbbbbbbb
The LHS argument is an instant
a.abb a bb.a.a a
bbbb bbbb
a.a.bb a bba.a a
bbbb bbbb
ba.ab a
bbbb
The RHS argument is an instant
b.baa aaaa aa.b.b aaaa
b b
b.b.aa aaaa aab.b aaaa
b b
ab.ba aaaa
b
Both arguments are instants
a.ab.b a b.ba.a a
b b
a.a.b.b a
b

Definition 8 A spatiotemporal pattern predica{§TPP) is a tripldt, L, C') wheret is a tuple containing
at least one moving objeck; is a set of aliased lifted predicates that apply to the moving objecai
C'is a set of binary constraints. Every binary constrairtt'iis in the formZ; © L; where® is a temporal
connector (simple or vector). The predicate is fulfilled if and only if the eatsdns of the set of aliased
predicated. fulfill all the constraints inC'. In SQL, we use the operatpatternto write spatiotemporal

pattern predicates.

g

Example: A query for possible bank robbers may look for the cars whitdred a gas station, kept close
to the bank for a while, then drove away fast. The query may be writterllag/fo

SELECT c. | i cencenunber
FROM cars c¢, landmark |
WHERE | .type = "gas station" and
pattern([c.trip inside |.region
di stance(c.trip,

as gas,

bank) < 50.0 as bnk,

speed(c.trip) > 100000 as | eaving],

[gas vec(aabb) bnk,

bnk vec(abab,

aa. bb, aabb)

| eavi ng])

The predicatgatternin this query gets, as input, single tuples from the set of tuples generated by
the SELECT FROMclauses. This is already the first parameter to the STPP. Every tuple cotitain
attributetrip, a moving(point) that stores the car’s trajectory. The STPP includes three lifted predicates
with aliasesgas bnk andleaving each of which returns aoving(bool). Two constraints apply to the
lifted predicates; a simple temporal connector between the first and thedspmdicate, and a vector
temporal connector between the second and third predicate. The fisttaiat states that the car came
close to the bank after it has left the gas station. The second constralnit ma@re tricky. We wish to say
that the car left the bank area quickly. This means that the car startedrfasty have started normally
and then sped up after a while. Therefore we use a vector temporaaonto state all possibilities.

For syntactic elegance, we allow for defining names for the temporal ctomse Using thdet
statement, it is possible to write

| et then = vec(abab, aa.bb, aabb);
let later = vec(aabb);

SELECT c. | i cencenunber
FROM cars c, |andmark |
WHERE | .type = "gas station" and
pattern([c.trip inside |.region as gas,
di stance(c.trip, bank) < 50.0 as bnk,
speed(c.trip) > 100000 as | eaving],
[gas later bnk, bnk then |eaving])

4 Evaluating Spatiotemporal Pattern Predicates

The spatiotemporal pattern predicate can be modeled as a ConstraintcBatigfaoblem (CSP).

Definition 9 Formally, aconstraint satisfaction problems defined as a tripleX, D, C'), whereX is a

set of variablesD is a set of initial domains an€@' is a set of constraints. Each variabie € X has a
non-empty domairD; € D. CSP algorithms remove values from the domains during evaluation once it
is discovered that the values cannot be part of a solution. Each dobgtrmlves a subset of variables
and specifies the allowable combinations of values for this subset. An amsigjfor a subset of variables

is supportedf it satisfies all constraints. A solution to the CSP is in tursupported assignmenof all
variables. O

The definition of CSP maps to the definition of spatiotemporal pattern prediddtewvariables map
to the lifted predicates and their evaluations are the variable domains. Ther&¢mmmanectors are the
constraints, hence only binary constraints (i.e. constraints involvinglgxtao variables) exist.

A CSP having only binary constraints is calleshary CSPand can be represented graphically in a
constraints graphThe nodes of the graph are the variables and the links are the binastyaiots. Two
nodes are linked if they share a constraint. The neighborhood of @lemathe constraints graph are
all variables that are directly linked to it. The spatiotemporal pattern prediéatfilled if and only if
its corresponding CSP has at least one supported assignment.

CSPs are usually solved using variants of the backtracking algorithm. |gtuétlam is a depth-first
tree search that starts with an empty list of assigned variables and vetytsis to find a solution (i.e.
a supported assignments of all variables). In every call, backtrackitg @new variable to its list and
tries all the possible assignments. If an assignment is supported, a negivecall is made. Otherwise
the algorithm backtracks to the last assigned variable. The algorithm respdmential time and space.

Constraint propagation methods [6] (also called local consistency méttanlseduce the domains
before backtracking to improve the performance. Examples are the AR€ISTency and Neighborhood
Inverse Consistency (NIC) algorithms. They detect and remove somesvism the variable domains
that cannot be part of a solution. Local consistency algorithms do raoagtee backtrack-free search.

7

To have the nice property of backtrack-free search one would nestfdecen-consistency (equivalent
to global consistency), which is again exponential in time and space.

The solvers for CSPs assume that the domains of the variables are kn@dnance. This is,
however, a precondition that we wish to avoid. In STPP, calculating theidarha variable is equivalent
to evaluating the corresponding lifted predicate. Since this can be expemg wish to delay the
evaluation of the domains.

The proposed algorithi8olve Patterriries to solve the sub-CSP &f— 1 variables C'S P;_4) first
and then to extend it t@'S P,. Therefore, an early stop is possible if a solution todh®P,_; cannot
be found.

It uses three data structures: the SA list (for Supported Assignmerg#genda and the Constraint
Graph. The Agenda keeps a list of variables that are not yet consbynibe algorithm. One variable
from the Agenda is consumed in every iteration. Every supported asgigimtée SA list is a solution
for the sub-CSP consisting of the variables that have been evaluatad boiferationk there are: — 1
previously evaluated variables and one newly evaluated variahlevfth domainD;). Every entry in
SA at this iteration is a solution for th€ SP._,. To extend the SA, the Cartesian product of SA and
Dy, is calculated. Then only the entries that constitute a solutiorCf®FP, are kept in SACSP;, is
constructed using the consumed variables and their correspondirtgaiioissn the constraint graph.

Algorithm Solve Pattern
i nput: variables, constraints
output: whether the CSP consistent or not

1. dear SA Agenda and Constraint G aph

2. Add all variables to Agenda

3. Add all constraints to the Constraint G aph
4. WH LE Agenda not enpty

(a) Pick a variable X; fromthe Agenda

(b) Calculate the variable domain D; (i.e. evaluate the
corresponding lifted predicate)

(c) Extend SAwith D;
(d) IF SAis enpty return Not Consi st ent

5. return Consi stent

Algorithm Extend
input: i, D;; the index and the domain of the newly eval uated vari abl e

1. IF SAis enpty

(a) FOREACH interval I in Dy

i. INSERT a new row sa in SA having sa[i]= I and
undefined for all other variables

ELSE

(a) set SA = the Cartesian product SA x D,

(b) Construct the subgraph CSP, that involves the
variables in SA fromthe Constraint G aph.

(c) FOREACH row sa in SA
i. |F sa does not satisfy the CSP,, renmove sa from SA

The methodology for picking the variables from the Agenda has a bigteiffethe run time. The
best method will choose the variables so that inconsistencies are detasmtedrer example, suppose an
STPP having four predicates with aliases, w, andz. The constraints are vec(abab) z, v later z,
andw vec(bb.a.a) x. If the variables are picked in sequential ordew, w, thenz, the space and time
costs are the maximum. Sineev, andw are not connected by any constraints, the SA is populated by
the Cartesian product of their domains in the first three iterations. Thel dittierato SA starts in the
fourth iteration afterr is picked.

The function that picks the variables from the Agenda chooses the leriabcording to theicon-
nectivity rankin the Constraint Graph. The connectivity rank of a variable is the summafids o
individual connectivities in the Constraint Graph. If a given variableisnected to an Agenda variable
with a constraint, it gets 0.5 connectivity score for this constraint. This misanh®valuating this vari-
able contributes 50% in evaluating the constraint because the other vasigbilenot evaluated. If the
other variable in the constraint is a non-Agenda variable (i.e. a variabléstblieady evaluated), the
connectivity score is 1. Back again to the example, in the first iteration, teblesu, v, andw have
connectivity ranks of 0.5, whereashas 1.5. Therefore; is picked in the first iteration. In the second
iterationu, v, andw have equal connectivity ranks of 1, so the algorithm picks any of them.

This variable picking methodology tries to maximize the number of evaluated aoristm every
iteration with the hope that they filter the SA list and detect inconsistencieasasgossible.

The time cost of th&olve Patterralgorithm is

ZHdkxek

i=1 k=1

wheren is the number of variabled,, is the number of values in the domain of t#é variable and:y,
is the number of constraints S P,. The storage cost is

n i
> 1la
=1 k=1

The algorithm runs it (ed™) and takesD(d"™) space.

The exponential time and space costs are not prohibitive in this case. Dhisagse the calculations
done within the iterations are simple comparisons of time instances. Moreay@uber of variables
in an STP query is expected to be less than 8 in the normal caseSdlte Patterralgorithm is more
focused on minimizing the number of evaluated lifted predicates (statement the afgorithm). The
cost of evaluating the lifted predicates varies, but it is expected to besixpebecause the evaluation
usually requires retrieving and processing the complete trajectory of thengholject. The run time
analysis of many lifted predicates is illustrated in [7].

5 Extending the Definition of STPP

Back to the example of bank robbers, a sharp eyed reader will noticénthatovided SQL statement
can retrieve undesired tuples. Suppose that long enough traject@iksrin the database. A car that
entered a gas station in one day, passed close to the bank in the nexidlayaghird day sped up will
be part of the result. To avoid this, we would like to constrain the period legtheaving the gas station
till speeding up to be at most 1 hour.

Indeed the proposed design is flexible so that such an extension is eagrate. The idea is that
after the STPP is evaluated, thel data structure contains all the supported assignments. As illustrated
before, a supported assignment assigns an interval to each liftedgigediering which it is satisfied.

At the same time the interval values of all variables satisfy all the constrainte IBTRP. Now that we

know the time intervals, we can impose more constraints on them. For examplatevthat the period
between leaving the gas station (first predicate) till speeding up (thirdcptedlmust be at most 1 hour.
To implement the extension, two changes are required:

1. Change step 5 in thgolve Patterralgorithm tor et ur n SA.
2. Extend the definition of STPP (Definition 8) by Definition 10.

Definition 10 An extended spatiotemporal pattern predicadenotecpatternexin SQL, is a quadruple
(t, P,C, f) where(t, P,C) is an STPP and is a boolean expression that filters the list of supported
assignments SA after solving the STPP. O

The processing of extended STPP is done in two parts that both musedudte first part processes
the triple(t, P, C) as described above. The second part, which is processed only aftardbess of the
first part, evaluates the boolean expression. Hence, conditions ontt84 lése possible.

Syntactically, the user is provided with two functiostart andend. They accept a predicate alias
and return the start and end of the assigned interval. Note that SA mayersdweral supported as-
signments. The expressighis tested iteratively against each entry in SA till it is true; otherwise, the
extended STPP fails.

Example: The SQL for the bank robbers example is rewritten as follows:

SELECT c. | i cencenumnber
FROM cars c, |andmark |
WHERE | .type = "gas station" and
patternex([c.trip inside |.region as gas,
di stance(c.trip, bank) < 50.0 as bnk,
speed(c.trip) > 100000 as | eaving],
[gas later bnk, bnk then |eaving],
start (leaving) - end(gas) < 1)

More complex conditions can be issued in the second part. The time intervalsecased, for
example, to retrieve parts from the moving object trajectory to express addiipatial conditions. For
example, the query for possible bank robbers may more specifically lottkd@ars which entered a gas
station, made a round or more surrounding the bank, then drove awaydasheck that the car made a
round surrounding the bank, a possible solution is to check the part o&thimjectory close to the bank
for self intersection. The query may be written as follows

SELECT c. | i cencenunber
FROM cars ¢, landmark |
WHERE | .type = "gas station" and
patternex([c.trip inside |.region as gas,
di stance(c.trip, bank) < 50.0 as bnk
speed(c.trip) > 100000 as | eaving],
[gas later bnk, bnk then |eaving],
i sSel flntersecting(
trajectoryPart(c.trip, start(bnk), end(bnk))) and
(start(leaving) - end(bnk)) < 1)

wheretrajectoryPartcomputes the spatial trajectory of the moving object between two time instants and
isSelflntersectinghecks a line for self intersection.

6 Related Work

Although our technical development is not yet finished, we discuss dehatek already at this point of
the paper. This is because none of the related work addresses issuesyooptimization and system
integration that we study below.

10

A theory and a design for spatiotemporal pattern queries, although impatamot yet well estab-
lished. Only few proposals exist. In [19], a model that relies on a diserete of the spatiotemporal
space is presented. The 2D space is partitioned in a finite set of useddpértitions, called zones.
The time axis is partitioned into constant-sized intervals. Every spatial partaore) is given a label.
The trajectories are then represented as strings of labels. If the mo\jiex ehtered in a zona, for
example, the characteris appended to its trajectory. If the same object moved to bomed stayed
there for three time units then the stribbbis appended and so on. The pattern is composed in the user
query as a formal expression, which is then evaluated using efficiérg statching techniques.

Their approach is not general in the sense that the space and time havpddiboned. The par-
titioning depends on the intended application and has to be done in advaceovdr, only patterns
that describe the change of location of moving points can be expressedapproach leaves back all
other kinds of predicates (e.g. topological, metric, distance) as well as tyfies of moving objects
(e.g. moving regions).

In[17], an index structure and efficient algorithms to evaluate STP auidré consist of spatial and
neighborhood predicates is presented. They addressed the prdbéemjaint neighborhood queries
(e.g. find all objects that were as close as possible to A atTirthen were as close as possible to B at
time T5). The two NN conditions in this query have to be evaluated conjointly. In atloeds, an object
which minimizes the sum of the two distances at the two time points is the answer ofiénis g

Again the approach addresses only limited kinds of predicates, and bandléng points only.
Moreover, it is not extensible in the context of systems. The evaluatiorgirtdicates (lifted predicates
in our case) is an integral part of the evaluation of the STPP. Hencdgtiréfams have to be extended for
every predicate. An extensible design for a DBMS requires separatngviiuation of the predicates
from the evaluation of the STPP. This is not the case in the approach Jof Qk¥the other hand, the
evaluation of the predicates within the STPP allows for more efficient evatudtiallows also for the

conjoint neighborhood queries that are not possible in our approach.

The series of publications [10], [11], [9], and [22] provide a caterformalism for spatiotemporal
predicates and developments. A spatiotemporal development is a compaositierstbuilt as an alternat-
ing sequence of spatiotemporal and spatial predicates, and they areliesispatiotemporal predicates.
They describe the change, wrt. time, in the spatial relationship between twiagravjects. Consider,
for example, a moving point/ P and a moving regiod/ R. The developmend/ P Crosses M R is
defined as:

Crosses= Disjoint neet |Inside neet Disjoint

where meet is a spatial predicate that yields true when its two arguments taeltbther, and Disjoint
is a spatiotemporal predicate that yields true when its two arguments aresapatyally disjoint. The
spatiotemporal predicates, denoted by being capitalized, differ frompthtgakpredicates in that, the
former hold at time intervals while the later hold at instants. Spatiotemporal ¢eweltts consider two
spatiotemporal objects and precisely describe the change in their topbleditenship. In this sense,
they can be thought of as describimjcro STP

Complex spatiotemporal developments can be defined by means of regulas®gns over other
spatial and spatiotemporal predicates [10], [11]. To evaluate a demeltfor a pair of moving objects,
one has to find a connected alternating sequence of time intervals and idstamgswvhich the constitut-
ing sequence of spatiotemporal and spatial predicates hold. If suiifiopéng of time cannot be found,
the development yields false.

In contrast, our approach does not partition the moving objects. We éwahepredicates for the
complete movement, by means of lifted predicates, then evaluate the STPPevesuhing moving
booleans. This difference in formalizing STP predicates has the followdingerjuences:

1. The spatiotemporal developments by Erwig and Schneider [10], i@ Hegpable of describing the
change in the topological relationship between two moving objects (i.e. topalqgiedicates).
They cannot handle other kinds of predicates.

11

2. A pattern that is described by a spatiotemporal development is restricted taoving objects.
A natural way of describing the movement pattern of an object would invts\ieteractions with
many other objects in the spatiotemporal space. This is inherent to oursapgyecause the lifted
predicate can be independently parameterized.

3. The formalism of spatiotemporal developments requires that the constiputdgates are ful-
filled in a connected sequence of time intervals and instants. Our appraatoce freely express
all the possible interval relationships.

4. Spatiotemporal developments, in contrast to our approach, canpresepatterns involving non-
spatial moving objects (e.aroving(integer)).

The first and third limitations of spatiotemporal predicates were partially discuby Erwig in
[9]. He outlined some ideas (without proposing a full fledged design) tergdize the spatiotempo-
ral developments towards spatiotemporal patterns. The last point simotreea kind of patterns that
is not addressed by the three reviewed approaches, that is temptteahga It is possible to use a
moving(integer), for example, to encode the T-shirt number of the player who posséssdall in a
soccer game. We would like to be able to express patterns on this (e.g. fihd attacks where player
10 passes to 4, then 4 passes to 20). Although such purely temporahpditer patterns not involv-
ing moving objects) are not in the focus of our design, they are a nic#t tfghe proposed modular
two steps design. Since the lifted predicate (first step) can process wmupmring objects, the STP
predicate (second step) leverages this capability for free.

Furthermore, the extended STP predicate in Section 5 increases thestxpmower by making it
possible for the user to access the fulfillment times of the lifted predicates.

In the other hand, our approach can not currently express repettgrelternations in the pattern, in
contrast to Mouza and Rigaux [19], and Erwig and Schneider [11ficDifies are in the language inte-
gration in SQL, and the modification of our CSP-based evaluation algorithnaddfess this limitation
in the future work.

7 Optimizing Spatiotemporal Pattern Predicates

In Section 4 we explained the evaluation of the spatiotemporal pattern peeditee proposed algorithm
is efficient because it avoids the unnecessary evaluation of lifted ptedidn the context of large-scale
DBMS, this is not enough. Obviously for an efficient execution of pattpreries on large databases
the use of indexes is mandatory. It should be triggered by the query optichigag the creation of the
executable plans.

In this section, we demonstrate a generic procedure for integrating the SitiPquery optimizers.
We do not assume a specific optimizer or optimization technique. The optimizewe/aorequired
to have some basic features that will probably be available in any query optimiz the following
subsection, we describe these basic assumptions.

7.1 Query Optimization

A typical query optimizer contains two basic modules; tbariter and theplanner[18]. The rewriter
uses some heuristics to transform a query into another equivalenttipaeig, hopefully, more efficient
or easier to handle in further optimization phases. The planner creates faser query (or the rewritten
version) the set of possiblexecution plangpossibly restricted to some classes of plans). Finally it
applies a selection methodology (e.g. cost based) to select the best plan.

We assume that the query optimizer contains the rewriter and the planner siodi@also assume
that it supports the data types and operations on moving objects, in SQtaiesdas described in [16]
and [12].

12

7.2 Query Optimization for Spatiotemporal Pattern Predicaes

One observation that we like to make clear is that the STPP itself does n&sprdatabase objects
directly. Instead, the first operation applied is the evaluation of the liftedigates that compose the
STPP. The idea, hence, is to design a general framework for optimizinkiftéte predicates within
the STPP. This framework should trigger the optimizer to use the availablegsdex the currently
supported lifted predicates as well as for those that might be added intthre.fut should utilize the
common index structures. Although specialized indexes, as in [17], daevachigher performance,
the overhead of maintaining them within a system is high and they only sere#isparposes, which
makes them unfavorable in the context of systems.

The idea is to add each of the lifted predicates, in a modified form, as anstatrdard predicate
to the query, that is, a predicate returning a boolean value. The stamedlidate is chosen according
to the lifted predicate, so that the fulfillment of the standard predicate implieshihdifted predicate
is fulfilled at least once. This is done during query rewriting. The additistzandard predicates in the
rewritten query trigger the planner to use the available indexes. To illusteatded, the following query
shows how the bank robbers query in Section 3 is rewritten.

SELECT c. | i cencenunber
FROM cars c, |andmark |
VWHERE | .type = "gas station" and
pattern([c.trip inside |.region as gas,
di stance(c.trip, bank) < 50.0 as bnk
speed(c.trip) > 100000 as |eaving],
[gas | ater bnk, bnk then |eaving])
and
c.trip passes |.region and
somet i mes(di stance(c.trip, bank) < 50.0) and
soneti mes(speed(c.trip) > 100000)

The three lifted predicates in the STRPi nsi de y,di stance(x, y) < z,andspeed(Xx)
< y are mapped to the standard predicatepasses y, soneti nmes(di stance(x, y) < z),
andsoneti nes(speed(x) < y), respectively. Hersometimes) is a predicate that accepts a
mowing(bool) and yields true if the argument ever assumes true during its lifetime, othefaisse
Each of the standard predicates ensures that the corresponding ddtédate is fulfilled at least once, a
necessary but not sufficient condition for {hetternpredicate to be fulfilled. Clearly, the rewritten query
is equivalent to the original query.

The choice of the standard predicate depends on the type of the lifteidaieednd the types of the
arguments. For example, the lifted spatial range predicates (i.e. the spajétion can be described
by a box) are mapped into tlpassestandard predicate. The passes predicate [16], in this example, is
fulfilled if the carc. t ri p ever passed the gas stationr egi on. If passedails, then we know that
insideis never true and thaiatternwill also fail. The planner should have for the added passes predicate
already some optimization rule available (e.g. use a spatial R-tree index wditabe). In Section 9.2.2
we show an optimized query written in the SONDO executable language.

To generalize this solution, we define a table of mappings between the liftdid qtes (or groups of
them) and the standard predicates. Clearly, this mapping is extensible fortéldepliEdicates that can
be introduced in the future. The mapping for the set of lifted predicatgsopedl in [16] is shown in
Table 2.

For the lifted spatial range predicates, they map passesand the available translation rules for
passes do the rest. Thiestancéx, y) < zis conceptually equivalent to a lifted spatial range predicate,
where the spatial range is the minimum bounding box of the static argumentiedtbyz in every side.
Other types of lifted predicates are mapped isbonetimes We need to provide translation rules that
translatesometime(s) into index lookups. For every type of lifted predicates, one suchlatos rule
is required. For example, ttemmetime@red), wherePredis a lifted left range predicate, searches for a

13

Table 2: Mapping lifted predicates into standard predicates.

Lifted Predicates Type Standard Predicates
o=« lifted spatial | o passesy
mpoint X point — mbool | range
mregion X region — mbool
o inside «
mpoint X region — mbool
mpoint X points — mbool
mpoint X line — mbool
mregion X region — mbool
mregion X points — mbool
mregion X line — mbool
o intersectsa
mregion X points — mbool
mregion X region — mbool
mregion X line — mbool
o=« lifted equality | sometimes§ = «)
mant X int — mbool
mbool X bool — mbool
mstring X string — mbool
mreal X real — mbool
c<=a,0< lifted left sometimesg <= a),
mint X ant — mbool | range sometimes{ <)
mbool X bool — mbool
mstring X string — mbool
mreal X real — mbool
o>=a, 0>« lifted right sometimesf >= «),
mint X int — mbool | range sometimes§ > «)
mbool x bool — mbool
mstring X string — mbool
mreal X real — mbool
distanceg , o) < threshold lifted spatial | o passeenlargeRect(bboxi), threshold, threshold)
mpoint X region — mreal range
mpoint X point — mreal
mreqgion X point — mreal
mregion X region — mreal
Other lifted predicates? sometimesP)

B-tree defined on the units of the moving object, and performs a left raaagetsin the B-tree. We show
examples for these translation rules withinBG®NDOIn Section 8.2.

This two steps optimization helps to develop a general framework for optimizengotmetimes)
predicate, which may also appear directly in the user queries. Note thatmadternatively rewrite all
lifted predicates int@ometimes), and provide translation rules accordingly. It remains an implementa-
tion decision, which approach to use.

8 The Implementation in SECONDO

SECONDO [4], [14], [15] is an extensible DBMS platform that does not presumgexific database
model. Rather it is open for new database model implementations. For exanspla,litd be possible to
implement relational, object-oriented, spatial, temporal, or XML models.

SECONDO consists of three loosely coupled modules: the kernel, GUI and query oetimrhe
kernel includes the command manager, query processor, algebraenamagstorage manager. The

14

kernel may be extended by algebra modules. In an algebra module odefo@new data types and/or
new operations. The integration of the new types and/or operations inéglgnguage is then achieved
by adding syntax rules to the command manager.

The SEcoNDoOkernel accepts queries in a special syntax called@bDoexecutable languagdhe
SQL-like syntax is provided by the optimizer. For more information abagt@& Do modules see [4]
and [3]. For more information about extending@NDO see the documentation on [2].

If it is the case that a new data type needs a special graphical useadst€@UI) for display, the
SECONDO GUI module is also extensible by adding viewer modules. Several viewésttbat can
display different data types. Moving objects, for example, are animate@ iHdhseviewer with a time
slider to navigate forwards and backwards.

A large part of the moving objects database model presented in [16],[[12ihat we also assume
in the paper, is realized inEEONDO. That is, the current SconDoO version 2.9.1 includes the algebra
modules, the viewer modules, and the optimizer support for moving objedtg fallowing subsections,
we describe the implementation of our STPP EC®ND02.9.1. This implementation is available as a
SECONDOPIugin as explained in Section 11.

8.1 Extending the Kernel

We have implemented the STPP in thec®NDokernel in a new algebra module call&d PatternAlge-
bra. The algebra contains:

1. One data typstvector The class represents the temporal connectors. Simple temporal casnecto

are treated as a special case of vector temporal connectors (i.e.sveatomg only one element).
The SEcoNDO operatorvecis used to create astvectorinstance. The operator accepts a set of
strings from Table 1, and constructs steectorinstance accordingly.

Example:vec("aabb", "a.abb", "a.a.bb").

2. Thestconstraintoperator. The operator represents a constraint within the STPP. TiadLsig of
the operator is

string X string X stvector — bool

The first and second parameters are the aliases for two lifted predicates.
Example:st constrai nt ("predi catel”, "predicate2", vec("a.a.bb")).

3. Thestpatternoperator. The operator implements the STPP, Section 4. It has the signature
tuple x AliasedPredicateList x ConstraintList — bool

where theAliased Predicate List is a list of lifted predicates, each of which has an alias, and the
ConstraintList is a list of thestconstraint operators.

4. The stpatternexoperator. The operator implements the extended STPP, Section 5. It has the

signature
tuple x AliasedPredicateList x ConstraintListx bool — bool

5. Thestartand theendoperators described in Section 5. They accegi-#g representing a predi-
cate alias and return the start or end of the corresponding time interval$ilist. The operators
have the signature

string — wnstant

15

Using these operators, the query for bank robbers can be writteBG D0 executable language
as follows:

query cars feed {c}
| andnark feed {l}
filter[.typel = "gas station"]
pr oduct
filter[.
stpatternex[gas: .tripc inside .regionl,
bnk: distance(.trip.c, bank) < 50.0,
| eavi ng: speed(.trip-c) > 100000;

stconstraint("gas", "bnk", vec("aabb")),
stconstraint ("bnk", "leaving", vec("abab", "aa.bb", "aabb"));
duration2real (start("leaving") - end("gas")) < (1/24)]]
consune

wherefeedis a postfix operator that scans a relation sequentially and converts it itremaansof tuples.
The query performs a cross product between the tuples afaterelation and the tuples ddndmark
relation that has the valligas station” in their typeattribute. The resulting tuple stream after the cross
product is filtered using the extended STP predisfatternex Finally, theconsumeperator converts
the resulting tuple stream into a relation, so that it can be displayed.

8.2 Extending the Optimizer

The SEcoNDpoOoptimizer is written in Prolog. It implements an SQL-like query language whichnstra
lated into an optimized query inERONDO executable language. The&eSoNDO optimizer includes a
separate rewriting module that can be switched on and off by setting the optiopitiens. The plan-
ner implements a novel cost based optimization algorithm which is basstiastest path search in a
predicate order graph The predicate order graph (POG) is a weighted graph whose nopleseat
sets of evaluated predicates and whose edges represent predizataining all possible orders of pred-
icates. For each predicate edge from nade nodey, so-called plan edges are added that represent
possible evaluation methods for this predicate. Every complete path via gas gdthe POG from the
bottom-most node (i.e. zero evaluated predicates) till the top-most nodel(ipredicates evaluated)
represents a different execution plan. Different paths/executios pigamesent different orderings of the
predicates and different evaluation methods. The plan edges of tHeayaweighted by their estimated
costs, which in turn are based on given selectivities. Selectivities oigated are either retrieved from
prerecorded values, or estimated by sending selection or join queriesatihsamples of the involved
relations to the SconDOKkernel and reading the cardinality of the results. The algorithm is desldnibe
more detail in [15] as well as in theeEBONDO programmers guide [2].

Our extension to the optimizer has three major parts: query rewriting, opelasaription, and
translation rules. In the query rewriting, we choose to rewrite all the liftedipates intesometimes).
This is because an accurate rewriting based on the mapping in Table 2eethdt we know the data

types of the arguments. Th&SoNDooptimizer knows the data types only after query rewriting is done.
Following are the Prolog rules that do the rewriting:

inferPatternPredi cates([], []).
i nf erPatternPredicates([Pred| Preds],
[sometimes(Pred)| Preds2]):-

assert(removefilter(sonmetines(Pred))),
i nferPatternPredi cat es(Preds, Preds2).

where theinferPatternPredicateccepts the list of the lifted predicates within the STPP as a first argu-
ment, and yields the a list of rewritten predicates in the second argument.d@iti®@al sometimes)

16

predicates are kept in the tablemovefilter(.), so that it is possible to exclude them from the
executable plan afterwards.

In the operator descriptions, we annotated the lifted predicates by the# (gpue lifted left range)
as in Table 2. Then we provided translation rulesfometimes) for every type of lifted predicates.
Following is an example for such a rule:

i ndexsel ectLifted(arg(N), Pred) =>
get t upl es(rdup(sort (w ndow ntersectsS(
dbobj ect (I ndexNane), BBox))), rel(Name, *))

Pred =..[Op, Argl, Arg2?],
((Argl = attr(_, _, _), Attr= Argl) ;
(Arg2 = attr(_, _,), Attr= Arg2)),
argurrent (N, rel (Narme, *)),

get TypeTree(Argl, _, [, _, T1]),
get TypeTree(Arg2, _, [_, _, T2]),

i sLi ft edSpati al RangePred(Cp, [T1, T2]),
(

(nenmberchk(T1, [rect, rect2, region, point, line, points, sline]),
BBox= bbox(Argl)
).

(nmenmberchk(T2, [rect, rect2, region, point, line, points, sline]),
BBox= bbox(Ar g2)
)
)
hasl ndex(rel (Namre,), Attr, DC ndex, spatial(rtree, unit)),
dcName2ext er nal Name(DCi ndex, | ndexNane) .

where this rule translates thited spatial rangepredicates into an R-tree window query, as indicated in
the rule header. The> operator can be read &anslates into It means that the expression to the right
is the translation of the expression to the left, if the conditions in the rule boldly Ate body of the
rule starts by inferring the types of the arguments of the lifted predicate withisaimetimes). Then

it uses them to make sure that the predicate is of theltftpd spatial range Finally, it checks whether

a spatial R-tree index on the involved relation and attribute is available in thegatatries to find a
spatial R-tree built on the units of the moving object. Similar translation rulesrakéded for other
types of indexes. The optimized query in Section 9.2.2 shows the effecs# thanslation rules.

9 Experimental Evaluation

We proceed with an experimental evaluation of the proposed technigaénfEntion is to give an insight
into the performance. It is clear that the runtime of an STP predicate depenthe number and types
of the lifted predicates. Therefore, we show two experiments. The firasunes only the overhead of
evaluating the spatiotemporal pattern predicate. That is, we set the timdudtavg the lifted predicates
to negligible values.

In the second experiment, we generate random STP predicates withgvatyitbers of lifted pred-
icates and constraints and measure the run time of the queries. The expeaisoegvaluates the opti-
mization of STPP. Every query is run twice; once without invoking the optiméed another time with
the optimizer being invoked.

The experiments use tleerlintestdatabase that is available with the free distribution BESNDO.
The experiments are run on &SONDO platform installed on a Linux machine. The machine is a
Pentium-4 dual-core 3.0 GHz processor with 2 GBytes main memory.

17

9.1 The Overhead of Evaluating STPP

To perform the first experiment, we add two operatorseaSNDG;, randommboolandpassmboolThe
operatorandommboobccepts aninstant and creates ambool object whose definition time starts at the
given time instant, and consists of a random number of units. The op@agemboomimics a lifted
predicate. It accepts the name of@hool database object, loads the object and returns it. More details
are given below.

9.1.1 Preparing the Data

This section describes how the test data for the first experiment is créldtedandommboobperator
is used to create a set of 30 randamool instances and store them as database objects. The operator
createsmbool objects with a random number of units varying between 0 and 20. The fiitsttarts
at the time instant provided in the argument. Every unit has a random dubstieeen 2 and 50000
milliseconds. The value of the first unit is randomly setrige or false The value of every other unit
is the negation of its preceding unit. Hence, the minimal representation neguit¢12] of the moving
types in £CONDOIs met. That is, adjacent units can not be further merged because thediffavent
values.

The 30mbool objects are created by callimgandombool (now()) 30 consecutive times. This
increases the probability that the definition times of the objects temporally overlap

9.1.2 Generating the Queries

The queries of the first experiment are selection queries consistingedfiltar condition in the form
of an STPP. The queries are generated with different experimentalysettiat is, different numbers of
lifted predicates and constraints in the STPP. The number of lifted predieates between 2 and 8. The
number of constraints varies between 1 and 16. The queries are revagahfor every combination.
For example, it does not make sense to generate STPP with 2 lifted predindt&® constraints. For
N lifted predicates, the number of constraints varies betwgen 1 and2/N. The rationale of this is
that, if the number of constraints is less than— 1, then the constraint network can not be complete
(i.e. some predicates are not referenced within constraints). On thehathdy having more tha2/ww
constraints increases the probability of contradicting constraints. Foy experimental setting, 100
random queries are evaluated and the average run time is recorded.

A query with 3 lifted predicates and 2 constraints, for example, looks like:

query thousand feed
filter][.
stpattern[a: passnbool (nb5),
b: passnbool (nh13),
c: passnbool (nb3);
stconstraint("b", "a", later),
stconstraint("b", "c", vec("abab")]]
count

wherequery t housand f eed streams théhousandelation, which contains 1000 tuples. For every
tuple, the STPRtpatternis evaluated. Note that the predicate does not depend on the tuples., That is
same predicate is executed 1000 times in the query. This is to minimize the effbettohe taken by
SECONDO'to prepare for query execution. The lifted predicates are all in the féqmassmbool (X),
whereX is one of the 30 stored randombool objects.

The constraints are generated so that the constraint graph is complettart\lgy initializing a set
calledconnectedhaving one randomly selected alias. For every constraint, the two aliasesnaomly
chosen from the set of aliases in the query, so that at least one of #lengb to the setonnectedThe
other alias is added to the sginnectedf it was not already a member. After the required number of

18

constraints is generated, we check the completeness of the graph. Ibitéemplete, the process is
repeated till we get a connected graph. The temporal connector figr @mestraint is randomly chosen
from a set containing 31 temporal connectors namely, the 26 simple temparaators in Table 1 and
5 vector temporal connectors (later, follows, immediately, meanwhile, anyl {$teown in Appendix A).

Before running the queries, we query for the @0ool objects so that they are loaded into the
database buffer. The measured run times should, hence, show tleayef evaluating the STPP
in SECONDObecause other costs are made negligible.

9.1.3 Results

The results are shown in Figure 2. The number of lifted predicates is dbast®¥. Increasing the
number of lifted predicates and constraints in the STPP does not havat&ffeet on the run time. This
is a direct result of the early pruning strategy in B@ve Patterralgorithm. The results show that the
evaluation of STPP is efficient in terms of run time.

0.1} -

0

Q 07 T T T T T T T T

% N=2 —&—
N=3 —x—

B~ 06 N=3 —=— |

o N=4 —o—

© 05 N=5 —e—

8 N=6 —a—

04l N=7 —a— |

Q A/A/\"\/\A—A—A

Q o3} i

n WA\A

8 0.2 -

(@)

O

[¢D)

7))

0 I I I I I I I I
0 2 4 6 8 10 12 14 16

Number of Constraints

Figure 2: The overhead of evaluating STPPs

9.2 STPP with Optimization

The second experiment is intended to evaluate the run time of STP querddso dvaluates the effect
of the proposed optimization. Unlike the first experiment, the STPPs in thisimgrg contain lifted
predicates. We generate 10 random queries for every experimetiia$) sad record the average run
time. Every query is run twice; without being optimized, and after optimization.

9.2.1 Preparing the Data

The queries use thErains20relation. It is generated by replicating the tuples of Thains relation in
the berlintestdatabase 20 times. THeainsrelation was created by simulating the underground trains
of the city Berlin. The simulation is based on the real train schedules andahen@erground network
of Berlin. The simulated period is about 4 hours in one day. The scheMaiof20is similar toTrains
with the additional attribut&eriat

Trains20[Serialint, 1d: int, Line: int, Up: bool, Trip: mpoint]
where Trip is anmpoint representing the trajectory of the train. The relation contains 11240 tupdes a
has a disk size of 158 MB. To evaluate the optimizer, a spatial R-tree intled Gaains2QTrip_sptuni
is built on the units of the Trip attribute. A set of 300 points is also created tede in the queries. The
points represent geometries of the top 300 tuples irRixaurantselation in theberlintestdatabase.

19

9.2.2 Generating the Queries

The queries are generated in the same way as in the first experiment. Ingbigment, however, we
use actual lifted predicates insteadpalssmboolEvery lifted predicate in the STPP is randomly chosen
from

1. distance(triprandomPoin} < randomDistance
2. speed(trip)> randomSpeed

whererandomPointis apoint object selected randomly from the 300 restaurant paiatsjomDistance
ranges between 0 and 50, alathdomSpeedanges between 0 and 30. Ttlistancé., .) < . is a sample
for the lifted predicates that can be mapped into index access, so thatnvevalaate the optimizer.
While the queries in the first experiment are created directly in #e0BIDO executable language, they
are created here inEEONDO SQL. It is an SQL-like syntax that looks similar to the standard SQL, but
obeys Prolog rules. The main differences are that everything is writtewar loase, and lists are placed
within square brackets.

Here is one query example from the generated queries:

SELECT count (*)
FROM trai ns20
WHERE pattern([distance(trip, pointl70) < 18.0 as a,
speed(trip) > 11.0 as b],
[stconstraint("a", "b", vec("b.ba.a"))])

wherepatternis the SQL operator equivalent gipatternin the executable language. The rewritten
version of the query as generated by the rewriting module of #@oSiDO optimizer is:

SELECT count (*)
FROM t r ai ns20
VWHERE [pattern([distance(trip, pointl70) < 18.0 as a,
speed(trip) > 11.0 as b],
[stconstraint("a", "b", vec("b.ba.a"))]),
soneti mes(di stance(trip, pointl70) < 18.0),
soneti mes(speed(trip) > 11.0)]

Finally, the optimal execution plan is:

Trai ns20_Tri p_spt uni
wi ndowi nt ersect sS[enl ar geRect (bbox(poi nt 170), 18.0, 18.0)]
sort rdup Trains20 gettuples
filter[sometimes((distance(.Trip,pointl70) < 18.0))]
{0. 00480288, 1.69712}
project[Trip]
filter[. stpattern[a: (distance(.Trip, pointl70) < 18.0),
b: (speed(.Trip) > 11.0);
stconstraint("a", "b", vec("b.ba.a"))]]
{0. 00480288, 1.49038}
filter[sonetinmes((speed(.Trip) > 11.0))]
{0. 883731, 1.48077}
count

where the predicates are placed within fitter[] operator, which means that they belong to thieere
clause in SQL. The rewriter generates for the two lifted predicates in thsalkiguery two standard
sometimegpredicates. The predicatmmetimesdistancé., .) < .) is handled by the optimizer as a
special kind of range predicate. Since the optimizer can find the spatiakeRAlex that we created, it
is used. The index access part in the query is:

20

Trai ns20_Tri p_spt uni w ndow nt er sect sS[enl ar geRect (.,

]

This part expands the minimum bounding boxpmint170by the distance threshold value 18.0. The
enlarged box is intersected with the R-tree to get the candidate tuple id’se3tef the query retrieves
the data of the candidate tuples and performs the query. The pairs of raibdbeeen the curly brackets
do not affect the semantics of the query. They are estimated predicattivsiids and run time statistics
used to help estimate the query execution progress.

9.2.3 Results

In Figure 3, the chart to the left shows the average run times of the niiminpd STP queries. The chart
to the right shows the average run times of their optimized counterpartsN Thagain the number of
lifted predicates. The run times of the optimized STPP are very promising.

Non-Optimized Queries Optimized Queries

N=2
cn 30 . 30 N=3
] N=3
-g 25 25 N4
S 20 N=2, . 20 N=5
O N=3 —x— N=6
I8 15 N=3 - 1 15 N=7
N=4 —e— |
N 10 Noe 10 ‘
5 N=6 —=— 5 Q
0 | | | | | NI= 7 TH| 0 — R4 g;"?';‘« “‘Zj\‘/:
2 4 6 8 10 12 1_4 16 2 4 6 8 10 12 :!.4 16
Number of Constraints Number of Constraints

Figure 3: The run times for STP queries on Tirains20relation

The high peak in the optimized queries chartNat= 2 and Number of Constraints = 2s be-
cause it happened that five of the ten generated queries havepedy.) < . predicates. Since the
sometimespeed.) < .) predicate does not map into index access, the average run time for tkis-exp
mental setting is close to the non-optimized version.

10 Application Examples

To illustrate the expressive power of the proposed approach, werlieshe following two subsections
more examples for STP queries. Section 10.1 demonstrates a scenarid-gadied Ali. It is about a
kid called Ali, who moves on the street network of Cairo (the capital of Eg\y¢) makes several trips
riding in several cars. We want to query for these cars using their mougmafiles.

In Section 10.2, we demonstrate example queries that the reader can trifhienself in SEconDO.
The queries are based on therlintestdatabase, that is available with thecnNbDodistribution. Unlike
the first application, the queries are not linked to a single scenario. Heaemn demonstrate STP
gueries that involve moving points, moving regions, and many kinds of liftetdations.

10.1 Finding Ali

We assume that the road network of Cairo is observed for one month arttiéh@omplete trajectories
of the cars are stored in the database. The queries assume the follohémgesc

e Car[PlatesNumberstring, Trip: mpoint] where Trip is the complete trajectory of the car for the
whole observation period.

21

Landmark[Namestring, Type: string, Location: point]

Heliopolis: A region object marking the boundary of the distrideliopoliswhere Ali lives.

AliHome: A point object marking Ali's home.

FamilyHome: Apoint object marking the house of the father’s family.

SportsClub: Aregion object marking the boundary of the sports club in which Ali is a member.

10.1.1 The Go-to-school Trips With the School Bus

The bus starts at the school at 6:00 am - 6:30 am, enters the district Heliop6l#saam - 7:00 am,
stops near Ali's home, picks Ali, exits Heliopolis at 7:45 am - 8:00 am, then gadsto school.

This query can be written without a spatiotemporal pattern predicate. Htietgmporal window of
every predicate is known. It can be expressed as a conjunction atibtgmporal range predicates (Bus
inside School at the time interval [6:00, 6:30] AND Bus inside Heliopolis at the itieeval [6:45, 7] ...).
We include this as an example of spatiotemporal pattern queries that capreesed without STPP.

10.1.2 The Evening Trips With Grandfather

Starting from Ali's home, the grandfather drives Ali to the sports club.y®tep at the sports club for at
least two hours. After the club they go by car to buy some bread, thenhosok.

SELECT c. Pl at esNunber
FROM Car c, Landmark |
VWHERE | . Type |ike("%Bakery%) and
patternex([distance(c. Trip, AiHone) < 20.0 as At Hone,
c.Trip inside SportsC ub as AtC ub,
di stance(c. Trip, |.Location) < 20.0 as AtBakery,
di stance(c. Trip, AiHome) < 20.0 as BackHone],
[At Home | ater Atd ub,
AtClub | ater AtBakery,
At Bakery | ater BackHone],
end("AtCl ub") - start("AtCl ub") >= 2.0 and
daypart (At Hone) = daypart (BackHone))

In this query, the extended STPP is used to state that they stayed at ledsiugon the sports
club and that the whole pattern occurred in one day. Another note is thgutrg uses the predicate
di stance(c. Trip, AliHonme) < 20.0 twice with two different aliases. The two aliases are
needed to write the constraints. It is the responsability of the query optimizégtéat this common
predicate (i.e. using common sub-expression optimization techniques) @odtevit only once.

10.1.3 The Weekend Trips With Mother

The mother starts from Ali's home, drives only in main roads, stops neao@psig mall for at most
4 hours then back home. The trip to the mall takes more than 1.5 times the estimateddimsebihe
mother uses only main roads. In Cairo it is easier to drive in main roads lyh#ve high traffic.

SELECT c. Pl at esNunber
FROM Car c¢, Landnmark |
WHERE | . Type like("%wall%) and
patternex([distance(c. Trip, AiHone) < 20.0 as At Hone,
di stance(c. Trip, |.Location) < 40.0 as AtMall,
di stance(c. Trip, AiHome) < 20.0 as BackHone],
[At Home | ater AtMall,

22

At Mal | | ater BackHone],
end("AtMalI") - start("AtMall") <= 4.0 and
(start("AtMall™) - end("AtHonme") >

1.5 » EstimatedDriveTine(l.location, AliHome)))

where we assume for simplicity thestimatedDriveTimés a function that computes the normal period
that a drive between two places takes. It may do so by finding the shpgtstand multiply by the
average driving speed.

10.2 The Berlintest Example

In this example, we use the databdmselintest more specifically, th@rains relation and three newly
added relations with the following schemas:

SnowStorms[Serialint, Storm: mregion]

TrainsMeet[Line:int, Uptrip: mpoint, Downtrip: mpoint, Stations:points]

TrainsDelay[ld:int, Line: int, Actual: mpoint, Schedulempoint]

The SnowStormselation contains 72 tuples, each of which contains a moving region, sspiineg a
snow storm that moves over Berlin. TheainsMeetrelation is generated from thigainsrelation. The
tuples contain all possible combinations of two trains that belong to the same dmaare in opposite
directions. TheStationsattribute represents the train stations of the associated lineTraiesDelayre-
lation is also generated from tAgainsrelation. Each tuple contains the origifalp attribute (renamed
into Schedulg and a delayed copy of it with delays of around 30 minutes. The scriptgdating the
three relation and for executing the example queries are available folabmvas will be explained in
Appendix D.

Table 3 lists the lifted operations used within the queries. We have designgddtfies so that they
illustrate the expressive power of our approach by using various lifsedations to compose complex
pattern queries. The table shows only the operator signatures thaedranuke queries. The complete
list of valid signatures is in [16].

10.2.1 Find the snow storms that passed over the train statiomehringdamm with speed greater
than 40 km/h.

SELECT =
FROM snowst or s
WHERE pattern([not(isenpty(stormat nehringdamr)) as predl,
speed(rough_center(storm) > 40.0 as pred2],
[stconstraint("predl", "pred2", together)])

wheretogetheris a vector temporal connector that yields true if the two predicates hafpetiane-
ously.

10.2.2 Find the snow storms that could increase their area over 1/4 sgre km during the first
traversed 5 km.

SELECT =+
FROM snowst or s
VWHERE pattern(
[di stancetraversed(rough_center(storn)) <= 5000.0 as predl,
area(storn) > 250000.0 as pred?2],
[stconstraint("predl", "pred2", neanwhile)])

23

10.2.3 Find the trains whose up and down trips meet inside one of thedin stations.

SELECT =«
FROM trai nsneet
VHERE pattern(
[not (i senpty(intersection(uptrip, downtrip))) as predl,
uptrip inside stations as pred2],
[stconstraint("predl", "pred2", together)])
ORDERBY |ine

10.2.4 Find the trains that encountered a delay of more than 30 mineis after passing through
the snow stormmsnow.

SELECT =
FROM trainsdel ay
WHERE pattern([not(del ay(actual, schedule) > 1800.0) as predl,

Table 3: Lifted Operations

Operation Signature Type Meaning
at mregion X point — mpoint topological opera{ computes a moving point that
tion exist whenever the point argu-

ment is inside the moving re
gion argument.

isempty mpoint— mbool set operation true whenever the argument js
defined.

not mbool— mbool boolean operation | logical negation.

roughcenter mregion — mpoint aggregation aggregates the moving regign

into a moving point that repre
sents its center of gravity.

speed mpoint — mreal metric property the metric speed of the moving
point.
distancetraversed mpoint — mreal metric property the distance that the moving

point traversed since the start
of its definition time.
area mregion — mreal metric property the area of the moving region|.
intersection mpoint X mpoint — mpoint set operation computes the common parts of
the two arguments.

mpoint X mregion — mbool spatial range predi; true whenever thenpoint is

inside :) ;
cate contained in thenregion,
mpoint X points — mbool or passes some of th@ints.
delay mpoint X mpoint — mreal metric operation | considers the first argument
actual and the secondched-
ule movementand computes
the delay of the actual move-
ment in seconds.
= mpoint X point — mbool spatial range predi; true whenever the moving
cate point passes the point.
xangle mpoint — mreal direction the angle (in degrees) between
x-axis and the tangent of the
moving point.
and mbool x mbool — mbool boolean operation | logical and.
< <= >, >= mreal X real — mbool left/right range| true in the time intervalg
predicate during which the comparison
holds.

24

actual inside msnow as pred2,

del ay(actual, schedule) > 1800.0 as pred3],
[stconstraint("predl", "pred2", vec("abab", "aba.b", "abba")),
stconstraint("pred2", "pred3",

vec("abab", "aba.b", "abba", "aa.bb", "aabb"))])

10.2.5 Find the trains that are always heading north-west after pasng mehringdamm.

SELECT =
FROM trains
VWHERE patternex([trip = mehringdanm as predl,
ndefuni t (((xangl e(trip) >= 90.0) and
(xangl e(trip) <=180.0)), int2bool (1)) as pred?],
[stconstraint("predl", "pred2",then)],
(((start("pred2")- end("predl")) < create_duration(0, 120000))
and
((inst(final (trip)) - end("pred2")) < create_duration(0, 15000))))

where we use thadefunitoperator in this query to replace the undefined periods withimihe! by

true units. This is because thengle! operator yields undefined during the train stops in the stations.
In other wordspred2is true whenever the train is not heading other than north-west. The psgricts

the results to the trains which started heading north at most 2 minutes aftergoashringdamnand
remained so till at least 15 seconds before the end of the trip. These timasnarg used to cut out
small noisy parts in the data, so that the query yields results.

11 System Use and Experimental Repeatability

The implementation of the described approach is made available as a Plugia frabNDO system.
It can be downloaded from the Plugin web site [1]. Thser Manual(also available on the Plugin we
site) describes how to install and run the Plugin. We have also made availalsieripts for running the
experiments and thBerlintestapplication example so that the results are repeatable.

Before running the scripts of the experiments, you need to install:

1. The SconDo system version 2.9.1 or latér A brief installation guide is given in thBlugin
User Manualon [1], and a detailed guide is given in the NDoUser Manual[3].

2. The Spatiotemporal Pattern Queries Plugin (STPatterns) as descr{ti¢d in

11.1 Repeating the First Experiment

During the installation of the STPattern Plugin, two files are copied to theoS Do bin directory
$SECONDOQBUILD _DIR/ bin. These two file€xprlScript.seand STPQExprlQuery.cddescribed
in Appendix A) automate the repeatability of the first experiment in this paper.ekperiment can then
be run as follows:

1. Run SecondoTTYNT (i.e. inashell, go to $SECONBOILD _DIR/bin and writeSecondoTTYNT).

2. Make sure that the berlintest database is restored (i.e. atgben®o prompt, writel i st
dat abases and make sure that berlintest database is in the list). Otherwise, restonsriting

The xangleoperator is a corrected copy of th&SNDo mdirectionoperator. It is presented only for the sake of this
example. In the BconDOVersions newer than 2.9.1, thadirectionoperator works fine.

2Since our optimizer extension wraps around the standard optimizer impiatiom, you may get different optimization
results in later 8conDoversions. The described results in this paper are obtained from v&:.8idn

25

restore database berlintest from berlintest
at the ScoNDoOprompt (presscreturm> twice).

3. Execute the script by writin@Expr 1Scri pt . sec at the ScoNpDoOprompt. The script creates
the required database objects and executes the experiment queriesnajhiake half an hour
depending on your machine.

Executing the script creates @ SoNDorelationSTPQEXxprl1Resulh theberlintestdatabase, which
stores the experimental results. Its schema is shown in Table 4.

Table 4: The schema of the STPQExprlResult relation

Attribute Meaning Example
no A serial number for the query. 0
queryText The query text. t housand f eed

filter [.stpattern]
a: passmbool (nMb10),
b: passnbool (nmb30) ;

stconstraint("a", "b",
vec("aa.b.b"))]] count
numPreds The number of the lifted predicates in the2
STPP.
numcConstraints The number of the constraints in the STRAL

ElapsedTimeReal The measured response time, in seconds, 171932
for this query.
ElapsedTimeCPU The measured CPU time, in seconds, fod.16
this query

The experimental results are also saved to a comma separat8@R@ExprlResult.cév the SEc-
ONDO bin directory. The file has a similar structure as the t&il® QExprlResult

11.2 Repeating the Second Experiment

Repeating the second experiments is also automated by script files thatpéed tmthe ECONDO
directories during the installation of the STPattern Plugin. For the secordiment, two script files are
used; theBSSECONDOQOBUILD _DIR/ bin/ Expr2Script.sefile creates the necessary database objects, and
the $SECONDOBUILD _DIR/ Optimizer/ expr2Queries.m@xecutes the queries. TlExpr2Script.sec

file is described in Appendix B, and tlexpr2Queries.pin Appendix C. The experiment is repeated as
follows:

1. Run SecondoTTYNT.
2. Make sure that the berlintest database is restored, otherwiseengstor

3. Execute th&xpr2Script.sedy writing @Expr 2Scri pt . sec at the $CONDO prompt. This
creates the necessary database objects.

4. Quit SecondoTTYNT (i.e. writgui t at the SCONDO prompt), go to the SCONDO optimizer
folder $SECONDQBUILD_DIR/ Optimizerand write SecondoPL. This starts the SCONDO
optimizer user interface in the single user mode.

5. Writeconsul t (expr2Queri es) . tolet Prolog interpret the script filexpr2Queries.pl

6. Open théberlintestdatabase (i.e. writepen dat abase berlintest.).

26

7. Writer unSTPQEXpr 2Di sabl eOpti mi zat i on. to run the queries without enabling the op-
timization of the STPP, arunSTPQEXxpr 2Enabl eOCpt i m zat i on. to run the queries with
the optimization of the STPP being enabled. This can take more than an hour.

The results are saved to the comma separatedEips2StatsDO.csand Expr2QueriesDO.csin
the SEconDoOoptimizer folder if the STPP optimization is disabled. Ifit is enabled, the resdtsaared
to the filesExpr2StatsEO.csandExpr2QuerieseO.csv

The filesExpr2StatsDO.csand Expr2StatsEO.csshow the run times. They include the columns
described in Table 5.

Table 5: The schemas of the Expr2StatsDO.csv and Expr2StatsEO.csv files

Attribute Meaning Example
NumberOfPredicates The number of the lifted predicates in the STPP. 2
NumberOfConstraints The number of the constraints in the STPP. 1
Serial A serial for the query in the range [0,9]. The serial is repdat 1

with every experimental setup
ExecTime The measured response time, in milliseconds, for this query| 443

The filesExpr2QueriesDO.csand Expr2QueriesEO.cskrave a similar structure. They exclude the
ExecTimenttribute and have two more attributes; 8@Lattribute which stores the SQL-like query, and
the ExecutablePlanvhich stores the execution plan generated by the Optimizer.

12 Conclusions

We propose a novel approach for spatiotemporal pattern queriemntines efficiency, expressiveness
and a clean concept. It builds on other moving objects database congégiefore, it is convenient
in the context of spatiotemporal DBMSs. Unlike the previous approachissintegrated with query
optimizers. We also propose an algorithm for evaluating the constraintagaitisf problems, that is
customized to fit the efficient evaluation of the spatiotemporal pattern ptedicdn the paper, we
demonstrate two application examples to emphasize the expressive poweragpsoach. Our work
is completely implemented in theeSBoNDO platform. The implementation and the scripts for experi-
mental repeatability are available on the Web. The experimental evaluatios gat the run times are
reasonable. As future work, we intend to support spatiotemporal pstiesan involve repetitions and
alternations.

References

[1] SEcOoNDOplugins.
http://dna.fernuni-hagen.de/secondo.html/starttentplugins.html.

[2] SEcCONDOprogrammer’s guide.
http://dna.fernuni-hagen.de/secondo.html/files/programmersguide.pdf.

[3] SECONDOuUSser manual.
http://dna.fernuni-hagen.de/secondo.html/files/secondomanual.pdf.

[4] SECONDOWEeD site.
http://dna.fernuni-hagen.de/secondo.html/.

[5] James F. Allen. Maintaining knowledge about temporal internd@snmun. ACV26(11):832—-843,
1983.

27

[6] Christian BessiereHandbook of Constraint Programminghapter 3. Elsevier, 2006.

[7] Jo Antonio Cotelo Lema, Luca Forlizzi, Ralf Hartmutiitihg, Enrico Nardelli, and Markus
Schneider. Algorithms for moving objects databasesmput. J.46(6):680—712, 2003.

[8] Somayeh Dodge, Robert Weibel, and Anna-Katharina Lauténsciiowards a taxonomy of move-
ment patternsinformation Visualization7(3):240-252, 2008.

[9] Martin Erwig. Spatio-Temporal Databases (ed. Caluwe, Ddjapter 2, pages 29-54. Springer-
Verlag New York, Inc., 2004.

[10] Martin Erwig and Markus Schneider. Developments in spatio-tempoiety languages. IBEXA
'99: Proceedings of the 10th International Workshop on Database BelExSystems Applications
page 441, Washington, DC, USA, 1999. IEEE Computer Society.

[11] Martin Erwig and Markus Schneider. Spatio-temporal predicéEsE Trans. on Knowl. and Data
Eng, 14(4):881-901, 2002.

[12] Luca Forlizzi, Ralf Hartmut @ting, Enrico Nardelli, and Markus Schneider. A data model and data
structures for moving objects databasesSIBMOD '00: Proceedings of the 2000 ACM SIGMOD
International Conference on Management of Dgtages 319-330, New York, NY, USA, 2000.
ACM.

[13] Joachim Gudmundsson, Marc van Kreveld, and Bettina Speckntficient detection of motion
patterns in spatio-temporal data setsGli$ '04: Proceedings of the 12th annual ACM International
Workshop on Geographic Information Systepegyes 250-257, New York, NY, USA, 2004. ACM.

[14] Ralf Hartmut GQuiting, Victor Almeida, Dirk Ansorge, Thomas Behr, Zhiming Ding, Thomdssé]
Frank Hoffmann, Markus Spiekermann, and Ulrich Tellec&NDo An extensible DBMS plat-
form for research prototyping and teaching. IGDE '05: Proceedings of the 21st International
Conference on Data Engineeringages 1115-1116, Washington, DC, USA, 2005. IEEE Computer
Society.

[15] Ralf Hartmut Giting, Thomas Behr, Victor Almeida, Zhiming Ding, Frank Hoffmann, and Mark
Spiekermann. ScoNDO. An extensible DBMS architecture and prototype. Technical Report
Informatik-Report 313, FernUniverait Hagen, March 2004.

[16] Ralf Hartmut Giting, Michael H. Bhlen, Martin Erwig, Christian S. Jensen, Nikos A. Lorentzos,
Markus Schneider, and Michalis Vazirgiannis. A foundation for regméeg and querying moving
objects.ACM Trans. Database Sys25(1):1-42, 2000.

[17] Marios Hadjieleftheriou, George Kollios, Petko Bakalov, and Vas§iliBsotras. Complex spatio-
temporal pattern queries. WLDB '05: Proceedings of the 31st International Conference on Very
Large Data Basegages 877-888. VLDB Endowment, 2005.

[18] Yannis E. loannidis. Query optimizatioACM Comput. Sury28(1):121-123, 1996.
[19] Cédric Mouza and Philippe Rigaux. Mobility patterr@eoinformatica9(4):297-319, 2005.

[20] Mirco Nanni, Bart Kuijpers, Christine &ner, Michael May, and Dino Pedresciilobility, Data
Mining and Privacy chapter 10. Springer-Verlag New York, Inc., Secaucus, NJ, | 2888.

[21] Dieter Pfoser, Christian S. Jensen, and Yannis TheodoridiselNgpproaches in query processing
for moving object trajectories. INLDB '00: Proceedings of the 26th International Conference
on Very Large Data Basepages 395-406, San Francisco, CA, USA, 2000. Morgan Kaufmann
Publishers Inc.

28

[22] Markus Schneider. Evaluation of spatio-temporal predicates ofingabjects. INCDE '05: Pro-
ceedings of the 21st International Conference on Data Enginegpiages 516-517, Washington,
DC, USA, 2005. IEEE Computer Society.

29

A The ExprlScript.sec File

This is a commented version of tExprlScript.sescript.

The script runs the first experiment with minimal user interaction. The @xpet, as described
in Section 9.1, is intended to evaluate the execution overhead of the STIBRcTipt first creates the
required database objects, then executes the queries and logs the run times

cl ose dat abase;
open dat abase berlintest;

| et nmbl = randombool (now());

I et mM30 = randonmbool (now());

The commands open the databaselintestand creates 30 randombool objects with the names
mbl.. mb3Q These objects are needed for the queries. rahdommboobperator works as described
in Section 9.1.1.

let later = vec("aabb", "a.abb", "aab.b", "a.ab.b");
let follows = vec("aa.bb", "a.a.bb", "aa.b.b", "a.a.b.b");
l et inmediately = vec("a.bab", "a.bba",

| et meanwhil e = vec(
l et then = vec(

The five vector temporal connectors are used in the queries as exaommplestor temporal connec-
tors. They are used together with the 26 simple temporal connectors tatetier queries.

| et STPQEXprlQuery=
[const rel (tuple([no:int, queryText: text,

nunPreds: int, numConstraints: int])) value ()]
csvinport[’' STPQExpr 1Query.csv', 0, "", "$"] consune;

The query imports the experiment queries from the comma separat&d RIQ@Exprl1Query.csaand
stores them in a &conDoOrelation calledSTPQExprlQuery The [const . value]. operator tells the
cvsimportoperator the schema of the relation, which is shown in Table 6.

Table 6: The schemas of the STPQExprlQuery.csv file and the STPQ&xry table

Attribute Meaning

no A serial for the query in the range [0, 4899].

queryText The query statement written ire8oONDO executable language.
numPreds The number of the lifted predicates in the STPP.
numConstraints The number of the constraints in the STPP.

The file contains 4900 queries that were randomly generated as desuriBection 9.1.2. The
gueries represent 49 experimental settings, each of which have @08xurhe following query executes
them and logs the results in the relat®mPQEXxpriResult

| et STPQExpr1Result =
STPQEXpr 1Query feed
| oopj oi n[fun(queryTupl e: TUPLE)
eval uate(attr(queryTupl e, queryText))
proj ect[El apsedTi neReal , El apsedTi neCPU]]
CONsune;

30

This query can take half an hour depending on your machine. You oany ¢jue results relation
in any of the $CONDO user interfaces [3] and create aggregations for the charts. Additipiadly
following query exports the relation to the comma separate&fileQExprlResult.céw the SECONDO
bin directory.

query STPQExpr1Result feed
proj ectextend[; Serial: .no,
Number O Pr edi cat es: . nunPr eds,
Number OF Constrai nts: . nunmConstraints,
ResponseTi ne: . El apsedTi neReal ,
CPUTI me: . El apsedTi meCPU|
csvexport[’ STPQExpr 1Resul t.csv’, FALSE, TRUE]
count

NOTE: We encourage the reader to get information about thediDo operators by using the built-in
operator descriptions. For example, to get help on the operator npor t , write the following query
at the ScoNDOprompt:

query SEC2O0OPERATORI NFO f eed
filter[.Nane contains "csvinport"]
consune

B The Expr2Script.sec File

This is a commented version for thpr2Script.sescript.
The script is used to generate the data required for running the sexpedneent in this paper without
executing the queries. The queries need to be executed 8ettendoPlenvironment afterwards.

cl ose dat abase;
open dat abase berlintest;

| et RestaurantsNunbered =
Rest aurants feed addcounter[no, 1] head[300] consune;
let pointl =
Rest aur ant sNumbered feed filter[. no

1] extract[geoData];

| et point300 =
Rest aur ant sNunbered feed filter[.no
del et e Restaur ant sNunber ed;

300] extract[geoData];

First, the commands open the datablbsdintest The geometries of the first 300 restaurants in the
Restaurantsable are then copied to point objects (pointl... point300) to be used in theguer

let later = vec("aabb", "a.abb", "aab.b", "a.ab.b");
let follows = vec("aa.bb", "a.a.bb", "aa.b.b", "a.a.b.b");
| et inmediately = vec("a.bab", "a.bba",

| et meanwhil e = vec(
I et then = vec(

The five vector temporal connectors, that are also creaté&kjpmlScript.secare included here so
that the two experiments can be run independently.

| et Trains20 = thousand feed head[20] Trains feed product consune;

This query creates th&rains20relation by replicating the tuples of tA@ainsrelation 20 times. In
the following query, we create an index on fhrains20relation to test the proposed STPP optimization.

31

The index is a spatial R-tree on the units of Tng attribute. Instead of indexing the complete movement,
the index is built on the units (i.e. a bounding box is computed for every unieitip). This is done
so that the bounding boxes better approximate the moving point.

I et Trains20_Tripsptuni =
Trai ns20 feed
projectextend[Trip; TID: tupleid(.)]
projectextendstrean] TID, MBR units(.Trip)
use[fun(U: upoint) bbox2d(U)]]
sort by[MBR asc]
bul kl oadrtree[MBR];

C The expr2Queries.pl File

This Prolog file is used to run the queries of the second experiment andelegdhution times. It defines
four prolog predicates:

1. runSTPQExpr2DisableOptimization/0: switches off STPP optimization by getii optimizer
options, and executes the queries.

2. runSTPQEXxpr2EnableOptimization/0: switches on STPP optimization, acdtes the queries.
3. executeSQL/4: helper predicate for executing queries.

4. runSTPQEXxpr2/4: the facts table that stores the queries. The fileitod@0 such facts, 10
gueries for each of the 49 experimental settings. The queries aremfngenerated as described
in Section 9.2.2. For every query, the fact also stores its serial, numtiéedfpredicates, and
number of constraints.

D Running the Berlintest Application Example

To execute the queries in the berlintest example, you need first to runripeBserlintestScript.sefrom
the SecondoTTYNT prompt. The script is installed within the STPattern Plugin.a¥o need to have
the berlintest database restored in your system. The script file createsjtlired database objects but it
doesn’t execute the queries. It first defines some temporal congector

cl ose dat abase;

open dat abase berlintest;

| et later= vec("aabb", "a.abb", "aab.b", "a.ab.b");
let follows= vec(...

I et inmediately= vec(...

| et nmeanwhil e= vec(. ..

| et then= vec(...

| et together= vec(...

Then it restores th&nowStormselation from theSnowStorméile in the SEconDabin directory,
which is installed with the Plugin.

restore SnowStorns from SnowSt or ns;

The following command creates the relatiminsMeetthat is used in the example in Section 10.2.3.
Every tuple in the relation is a different combination of an up train, down treiheosame line, and the
stations where the train line stops.

32

| et TrainsMeet =

Trains feedproject[Line, Trip, Up] {t2} filter[.Up_t2

Trains feedproject[Line, Trip, Up] {t1l} filter[.Up_t1

hashjoin[Line t2 , Line_ tl , 99997]

extend[Line: .Line_tl1, Uptrip: .Trip_tl, Downtrip: .Trip_t2,

Stations: ((breakpoints(.Trip_tl, create_duration(0,5000))

union val (initial (. Trip_t1)))
union val (final (. Trip_t1)))]

project[Line, Uptrip, Downtrip, Stations]

consune;

FALSE]
TRUE]

Next we create the relatiofrainsDelay used in the example in Section 10.2.4. Every tuple has a
scheduleand anactual moving point. Theschedulemovement is a copy from thérip attribute in the
Trainsrelation. The actual movement should have delays of about half an Weushift theTrip 1795
seconds forward, and apply a random positive or negative delay Wp seconds to the result. This
creates actual movements with random delays between 29:45 and 30:05 minutes

| et Trai nsDel ay=
Trains feed
ext end[Schedul e: . Trip,
Actual : randondel ay(

.Trip translate[create_duration(0, 1795000) , 0.0, 0.0],
create_duration(0,10000))]

project[ld, Line, Actual, Schedul e]

COoNsune;

After running theBerlintestScript.sescript, use thdavaguito execute the queries. Itis the graphical
user interface for SconDO. To launch it:

1. Start the &coNnDokernel in server mode, the optimizer server, and the GUI:
In a new shell, go to $SECONDBUILD _DIR/bin, and typeSecondolbni t or -s.
In a new shell, go to $SECONDBUILD _DIR/Optimizer, and typét ar t Opt Ser ver .
In a new shell, go to $SECONDG®UILD _DIR/Javagui, and typsgui . The Javagui will start
and connect to both the kernel and the optimization server.

2. Open the database. In the Javagui type:
open dat abase berlintest.

3. Set the optimizer options. TheeSONDO optimizer maintains a list of options that controls the
optimization. The examples in this paper require the optionmovedcostsdeterminePredSig
autoSamplegewriteInferencertreelndexRulesandautosave To set each of these options, type
in the Javagui:
optim zer setOption(option)

4. View the underlying network. Type:
sel ect * from ubahn to display the underground trains network.
sel ect * from trains todisplay the moving trains. Use the slider to view the results.
Select the last query in the top-right panel and press hide to hide the trains
sel ect * from snowst or ns to display the moving snow storms.
hide the snow storms.

5. Type the example queries as in Section 10.2, and make sure to type exgenytlower case.

33

Verzeichnisder zuletzt er schienenen Infor matik-Berichte

[339] Belerle, Chr., Kern-Isberner, G. (Eds.): Dynamics of Knowledge and Belief -
Workshop at the 30th Annual German Conference on Artificia Intelligence, Kl-
2007

[340] Dintgen, Chr., Behr, Th., Giting R. H.: BerlinMOD: A Benchmark for Moving Object
Databases

[341] Saatz, |.: Unterstitzung des didakti sch-methodischen Designs durch einen
Softwareassistenten im e-Learning

[342] Honig, C. U.:
Optimales Task-Graph-Scheduling fiir homogene und heterogene Zielsysteme

[343] Giting, R. H.:
Operator-Based Query Progress Estimation

[344] Behr, Th., Giting R. H.:
User Defined Topologica Predicates in Database Systems

[345] vor der Brick, T.; Helbig, H.; Leveling, J.:
The Readability Checker Delite Technical Report

[346] vor der Briick:
Application of Machine Learning Algorithms for Automatic Knowledge Acquisition
and Readability Analysis Technical Report

[347] Fechner, B.:
Dynamische Fehlererkennungs- und —behebungsmechanismen fur verlassliche
Mikroprozessoren

[348] Brattka, V., Dillhage, R., Grubba, T., Klutsch, Angela.:
CCA 2008 - Fifth International Conference on Computability and Complexity in
Analysis

[349] Osterloh, A.:
A Lower Bound for Oblivious Dimensional Routing

[350] Osterloh, A., Keller, J.:
Das GCA-Modell im Vergleich zum PRAM-Modell

[351] Fechner, B.:
GPUs for Dependability

[352] Giiting, R. H., Behr, T., Xu, J.:
Efficient k-Nearest Neighbor Search on Moving Object Trajectories

[353] Bauer, A., Dillhage, R., Hertling, P., Ko K.I., Rettinger, R.:
CCA 2009 Sixth International Conference on Computability and Complexity in
Anaysis

[354] Beierle, C., Kern-I1sberner G.
Relational Approachesto Knowledge Representation and Learning

