STMicroelectronics

0S21 for ST40

User manual

7358673 Rev O

November 2009



BLANK



KYI User manual

0S21 for ST40

Introduction

The API defined in the OS21 User manual (ADCS 7358306) encapsulates the generic
facilities offered by OS21 on all target platforms. However, each processor implements
certain features in different ways, and some processors offer facilities worthy of their own
specific API. ST40 specific features are documented in this manual.

All ST40 specific APIs can be accessed by a single #include:
#include <os21/st40.h>

This include file is automatically included from <os21.h>when __sh_ is defined. The
SH4 GCC compiler always defines sh _ ; therefore #include <os21.h> is normally
all that is necessary to include both the generic 0S21 API and the ST40 specific API.

ST40 specifics

Note:

Default system stack size on ST40

If no size is specified for the system stack when kernel initialize () is called, 0S21
assumes a default stack size of 32 Kbytes.

The debug kernel always checks for a minimum stack size of 16 Kbytes for OS21.

November 2009 7358673 Rev O 1/23

www.st.com


http://www.st.com

Contents 0S21, ST40

Contents
INtrOdUCHION . . . 1
STA0 SpecCifiCs. . . ... 1
Preface . . . 4
Document identification and control . . .. ........ ... ... ... .. ... 4
Conventionsused inthisguide. . . ... . 4
1 TIM S ot 5
11 TIMEIS OVEIVIEW . . . . e 5
1.2 Input clock frequeNnCY . . .. ... e 5
1.3 OS2l tick duration . .......... . ... 5
1.4 ST40 timer assignmeNtS . . . .. ..ot e 5
2 Floating point SUPPOrt . ... ... 7
2.1 Floating point OVerview . .. ... it e i 7
3 Register context . ........ .. 8
3.1 ReQISIErS OVEIVIEW . . . . . 8
4 RESElS . . 9
4.1 Resets OVerview . . ... 9
4.2 Reset APl summary . ... .. 9
4.3 Listof functions . ........... . . . . . . . . 10
5 Constructors and destructors ............ . i 11
5.1 Multiple constructors and destructors . .............. ... .. ... ..., 11
6 Board supportpackage ............. . 12
6.1 Board support package overview . . ... ... .. 12
6.2 BSP interrupt system description . ......... .. . ... 12
6.2.1 INterrUPt NAMES . . ... 12
6.2.2 INTEITUPL grOUPS . . o ot e e e 13

2/23 7358673 [71




0S21, ST40 Contents
6.2.3 Interrupttables .. ... .. . 13
6.2.4 INTC base address . ... e 18
6.2.5 INTC2 base address . ...ttt e 18
6.2.6 ILCbase address . . ... oot 18
6.2.7 Interrupt system initializationflags . . . ............ ... .. ... ... 18
7 Revision history . ... .. . 20
KYI 7358673 3/23




Preface 0S21, ST40

Preface

Document identification and control

Each book carries a unique identifier of the form:
ADCS nnnnnnnx
where nnnnnnn is the document number, and x is the revision.

Whenever making comments on a document, the complete identification ADCS nnnnnnnx
should be quoted.

Conventions used in this guide

General notation

The notation in this document uses the following conventions:
e sample code, keyboard input and file names,
e variables and code variables,

° code comments,

e screens, windows and dialog boxes,

e instructions.

Hardware notation

The following conventions are used for hardware notation:
e REGISTER NAMES and FIELD NAMES,
e PIN NAMES and SIGNAL NAMES.

Software notation

Syntax definitions are presented in a modified Backus-Naur Form (BNF). Briefly:

1. Terminal strings of the language, that is, strings not built up by rules of the language,
are printed in teletype font. For example, void.

2. Nonterminal strings of the language, that is, strings built up by rules of the language,
are printed in italic teletype font. For example, name.

3. Ifanonterminal string of the language starts with a nonitalicized part, it is equivalent to
the same nonterminal string without that nonitalicized part. For example,
vspace-name.

4. Each phrase definition is built up using a double colon and an equals sign to separate
the two sides (‘: : =").

5. Alternatives are separated by vertical bars (‘|’).
6. Optional sequences are enclosed in square brackets (‘[ and ‘17).
7. ltems which may be repeated appear in braces (‘{’ and ‘}").

J

4/23 7358673




0821, ST40

Timers

1

1.1

1.2

13

1.4

Note:

Timers

Timers overview

The ST40 has three independent timer units (TMUs). Each is capable of running as a free
running auto-reload 32-bit counter, with interrupt on underflow. Each can be programmed to
count either the RTC (16 kHz) or some fraction of the input clock. The greatest accuracy is
obtained by counting based on a large fraction of the input clock, and running that clock at a
high frequency.

Input clock frequency

The precise speed of the input clock is determined by the end user; it is a function of the
board design and boot software. OS21 is not responsible for setting the input speed,
therefore it has to be made aware of what it is.

This is done with the Board Support Package (BSP) using a function called
bsp timer input clock freqguency hz (). Full details of this function can be found
in the OS21 User manual (ADCS 7358306), chapter 16.

0S21 tick duration

0S21 establishes the period of one tick when it boots. Based on the input clock frequency it
selects an appropriate divisor to yield a tick which is approximately 10 microseconds.

ST40 timer assignments

0S21 uses all three ST40 TMU timers, as shown in Table 1.

Table 1. ST40 timer assignments
Timer name 0S21 usage
TMUO System timer
TMU1 Timeslice timer
TMU2 Timeout timer

The system timer is left free running and is used by time _now () to return the system time.
On ST40, the system time (osclock_t) is a 64-bit value. 0S21 maintains the top 32 bits of
the 64-bit time using an interrupt handler which is called each time the 32-bit timer reaches
zero. The lower 32 bits of the system time are the value in the system timer.

The timeslice timer is programmed to run for the timeslice period before generating an
interrupt and reloading. This is used to drive timeslice events into the task scheduler.

When profiling (the application is built with the -pg flag), this timer is used for PC sampling
as well as timeslicing. In this case, it is programmed to yield approximately 16384 interrupts
per second. OS21 ensures that the frequency of timeslice events into the scheduler remains
unchanged.

7358673 5/23




Timers 0S21, ST40

The timeout timer is programmed on demand to interrupt when the required number of ticks
has elapsed. When multiple timeouts are requested, OS21 orders which timeout should
occur next, and programs the timeout timer appropriately.

J

6/23 7358673




0821, ST40

Floating point support

2

2.1

Note:

Floating point support

Floating point overview

The ST40 processor has a highly efficient FPU, but it has a large register state which makes
a significant contribution to the context data which has to be saved and restored by OS21.
GCC normally uses the FPU to optimize operations like integer divide on the ST40. This
behavior can be disabled with the GCC option -m4 -nofpu.

By default OS21 preserves the full FPU state of the FPU on context switch. If you only use
the FPU via standard GCC C/C++ code, only bank-0 FPU registers are used. This means
that OS21 is unnecessarily preserving FPU bank-1 registers. Building the OS21 kernel with
the option -DCONF_FPU_ SINGLE BANK makes a kernel which only saves bank-0 FPU
registers. This results in correspondingly faster context switches, at the expense of not being
able to use FPU bank-1 registers. This should not be a problem unless you are using
custom written FPU code or libraries.

Building the OS21 kernel with the option -DCONF_NO _FPU makes a kernel which does not
perform any FPU saves or restore on context switch, and hence provides the fastest
possible context switches. When using the -DCONF_NO_FPU option both the kernel and all
application code must be compiled with the -m4 -nofpu option.

The version of OS21 which is linked in when the -mrunt ime=0s21 and -m4 -nofpu
options are given has precisely this behavior.

7358673 7/23




Register context 0S21, ST40

3 Register context

3.1 Registers overview

The following registers are saved as part of each task’s context:
e RO to R7 (bank O registers)

e R8toR15

e SR

e GBR

e MACL/MACH
e PR

e PC

e FPRO_BANKO to FPR15_BANKO
e FPRO_BANK1 to FPR15_BANK1

e FPSCR

e FPUL

The following registers are not saved, since they form part of the global context for the
system:

e VBR

e DBR

J

8/23 7358673




0S21, ST40 Resets
4 Resets
4.1 Resets overview

4.2

A reset can occur because of a power on, or because of a manual reset. Manual resets are
typically due to programming errors. Examples include the watchdog timer expiring, or a
program requested manual reset.

0S21 does not provide a mechanism for passing more specific data across resets. This is a
board design issue, for instance, data could be placed in NVRAM to signal the precise
reason for a requested reset.

0S21 provides an API for requesting the CPU to be reset, and also for determining the
cause of the last reset (power-on reset or manual reset).

Reset APl summary

Table 2 and Table 3 provide an overview of the reset API. The reset API is obtained by
including the header file <os21/st40.h>.

Table 2. Functions defined in 0s21/st40/reset.h

Function Description
reset_cpu() Performs a manual reset of the CPU
reset reason () Returns the reason for the last CPU reset

Table 3. Types defined in 0s21/st40/reset.h

Type Description

reset _reason t The cause of the last CPU reset

7358673 9/23




Resets 0821, ST40
4.3 List of functions
reset_cpu
Performs a manual reset of the CPU
Definition: #include <o0s21/st40.h>
void reset cpu(void) ;
Arguments: None
Returns: None
Errors: None
Context: Callable from task or system context.
Description: This function performs an immediate manual reset of the CPU.

Note:

On the ST40, CPU reset is not driven off-chip, so external devices are not reset by
this mechanism. However, all on-chip peripherals are reset.

reset _reason

Definition:

Arguments:
Returns:
Errors:
Context:

Description:

10/23

Queries the cause of the last reset seen by the CPU

#include <os21/st40.h>
reset reason t reset reason(void) ;

None

The cause of the last CPU reset.
None

Callable from task or system context.

Returns the reason for the last CPU reset. Possible values are give in Table 4.

Table 4. reset_reason_t values
reset_reason_t value Description
POWER_ON_RESET Last reset was a power on
MANUAL RESET Last reset was a manual reset
7358673 1S7]




0S21, ST40 Constructors and destructors

5 Constructors and destructors

0S21 supports a mechanism that allows pairs of user-defined kernel constructor and
destructor functions to be installed.

A constructor function is called automatically by kernel start () as its final operation. A
destructor function is called by the kernel by its atexit () handler.

If the constructor function returns 0S21 FAILURE, kernel start () Stops processing
and triggers a kernel panic.

Install a constructor function by using the following macro:
0S21 CONSTRUCTOR (func)

and a destructor function with the following macro:

0S21 DESTRUCTOR (func)

where func is the name of the constructor or destructor function to be installed. This
function must have the following prototype:

int func(void)
The return value of the function must be either 0S21 SUCCESS or 0S21 FAILURE.

The macros for the OS21 constructor and destructor are defined in 0s21/st40.h.

5.1 Multiple constructors and destructors

Multiple constructors and destructors can be installed. The constructor functions are called
in the same order in which they have been installed. The OS21 kernel calls the destructor
functions in the reverse order to the order in which they are installed, acting on the premise
that each destructor “undoes” the effects of the corresponding constructor.

KYI 7358673 11/23




Board support package 0S21, ST40

6

6.1

6.2

6.2.1

12/23

Board support package

Board support package overview

0S21 Board Support Packages (BSPs) are supplied for all supoorted platforms both as pre-
built libraries and accompanying sources. The generic features of BSPs can be found in the
0S21 User manual (ADCS 7358306), chapter 16.

This section describes the platform-specific features of the BSP. For the ST40, this consists
only of the interrupt system description.

BSP interrupt system description

The BSP is responsible for describing the interrupt system to OS21. This coupled with the
platform specific interrupt code implements OS21's generic interrupt API. On the ST40 this
comprises the following elements:

e interrupt names

e interrupt groups

e interrupt tables

e INTC base address

e INTC2 base address

e ILC base address

e interrupt system initialization flags

Interrupt names

A type is provided by OS21 called interrupt name_t. Each interrupt is assigned a
unique name (interrupt name_t) which allows it to be identified both in the BSP
interrupt tables that follow, and in the interrupt API. The BSP need only contain those
interrupts that are used by other OS21 or the application code.

If any interrupts are missing, a linker error occurs. If interrupts are declared in the BSP but
are subsequently not used, this does no harm other than use memory. For example:

/* Define a DMA interrupt in the BSP */
interrupt name_ t 0S21 INTERRUPT DMA 0 = 21;

Header files are provided with OS21 which complement the interrupt description in the BSP.
By including the appropriate header file, all the relevant external interrupt name t
declarations are obtained. These header files are included in the ST40 specific include area,
and are named after the specific chip. For example:

#include <o0s21/st40/stm8000.h>

or

#include <o0s21/st40/st40gx1l.h>

User code is also free to declare only those interrupt names that it requires. For example:

/* How to access the DMA interrupt in user code */
extern interrupt name t 0S21 INTERRUPT DMA 0;

J

7358673




0S21, ST40 Board support package

The interrupt_handle () function takes an interrupt name_t parameter and
returns a handle to the given interrupt.

6.2.2 Interrupt groups

On the ST40 there is a concept of interrupt groups. An interrupt group consists of one or
more interrupts whose priority level is shared. The priority of all interrupts within the group is
the same and is controlled by the appropriate interrupt controller.

A type is provided by OS21 called interrupt group_t. Each interrupt group is assigned
a unique name (interrupt group t) which allows it to be identified in the BSP interrupt
tables. The BSP need only contain those interrupt groups that are used by either OS21 or
the application code. If any interrupt groups are missing, a linker error occurs. If interrupt
groups are declared in the BSP but are subsequently not used, this does no harm other than
use memory. For example:

/* Interrupt group 23 on the INTC2 */
interrupt group_ t 0S21 GRP_INTC2 23 = 5322;

6.2.3 Interrupt tables

These tables are expected by the OS21 platform specific interrupt API implementation code,
and describe the interrupt system. For the ST40, three tables are required. One is for the
interrupt table, another is for the interrupt group table and the other is for an optional
interrupt level controller. The complete specification for the interrupt system BSP is
described below.

Interrupt group table
/*

* An entry in the interrupt group table.
*/
typedef struct interrupt group table entry s
interrupt group t * groupp;
unsigned int controller : 4;

unsigned int reg set : 4;
unsigned int bit set : 4;
unsigned int pri : 4;

} interrupt group table entry t;

This describes the interrupt groups to OS21. It indicates which interrupt controller is
responsible for each interrupt group, and information for programming the interrupt
group.

groupp is a pointer to the name of the interrupt group, controller specifies the interrupt
controller that the interrupt arrives on (0S21_CTRL_NONE, 0S21 CTRL_ INTC and

0S21 CTRL_INTC2 are supported on the ST40). reg set is the number of the resister set
that the interrupt group can be found on within the given interrupt controller. bit set is the
bit number within this register set. This table allows OS21 to locate an appropiate bit in the
interrupt group which maps to the named interrupt group. pri is the default priority for the
given interrupt group. For example:

KYI 7358673 13/23




Board support package 0S21, ST40

interrupt group t 0S21 MY GROUP 1 = 21;
interrupt group table entry t my interrupt group 1 = {
&0S21 MY GROUP_1, 0S21 CTRL NONE, 0, 0, 7

bi

This describes an interrupt group called 0S21 MY GROUP 1 which is not routed to any
interrupt controller and has a default priority of 7.

interrupt group t 0S21 MY GROUP 2 = 22;
interrupt group table entry t my interrupt group 2 = {
&0S21 MY GROUP_2, 0S21 CTRL INTC, 1, 3, 14

}i

This describes an interrupt group called 0s21 MY GROUP_ 2 which is routed to the interrupt
controller (INTC). It is controlled by bit set 3 on register set 1 and its default priority is 14.

interrupt group t 0S21 MY GROUP 3 = 23;
interrupt group table entry t my interrupt group 3 = {
&0S21 MY GROUP_3, 0Ss21 CTRL INTC2, 2, 7, 2

}i
This describes an interrupt group called 0S21_MY GROUP_3 which is routed to the second

interrupt controller (INTC?2). It is controlled by bit set 7 on register set 2 and its default
priority is 2.

interrupt group table entry t bsp interrupt group table [];

This describes the complete set of interrupt groups for a given system. It comprises a list of
interrupt group table entry t types. For example:

interrupt_group table entry t bsp interrupt group table [] =

{

&0S21 GRP NMI, 0S21 CTRL NONE, 0, 0, 0 },

§0S21 GRP IRL ENCODED 15, 0S21 CTRL NONE, 0, 0, 15 },
&0S21 GRP IRI, ENCODED 14, 0S21 CTRL NONE, 0, 0, 14 },
&0S21 GRP IRI, ENCODED 13, 0S21 CTRL NONE, 0, 0, 13 },
§0S21 GRP IRL ENCODED 12, 0S21 CTRL NONE, 0, 0, 12 },
&0S21 GRP IRI, ENCODED 11, 0S21 CTRL NONE, 0, 0, 11 },
&0S21 GRP IRI, ENCODED 10, 0S21 CTRL NONE, 0, 0, 10 }

&0S21 GRP IRL, ENCODED 9, 0S21 CTRL NONE, 0
§0S21 GRP_IRI, ENCODED 8, 0S21 CTRL NONE, 0
&0S21 GRP IRI, ENCODED 7, 0S21 CTRL NONE, 0
§0S21 GRP IRL, ENCODED 6, 0S21 CTRL NONE, 0
&0S21 GRP_IRL ENCODED 5, 0S21 CTRL_NONE, O,
0
0
0
0

&0S21 GRP IRL ENCODED 4, 0S21 CTRL NONE,
&0S21 GRP_IRL_ENCODED 3, 0S21_ CTRL_NONE,
&0S21 GRP_IRL_ENCODED 2, 0S21 CTRI, NONE,
&0S21 GRP IRL ENCODED 1, 0S21 CTRL NONE,

NN N S N VSN
[N D SN N S D N )

O O O O O O O o o
RN WD 1oy d o o

§&0S21 GRP_INTC 0, 0S21 CTRL_INTC, 0
&0S21 GRP_INTC 1, 0S21 CTRL INTC, 0
§&0S21 GRP_INTC 2, 0S21 CTRL INTC, 0
§&0S21_GRP_INTC_ 3, 0S21_CTRL_INTC, 0
&0S21 GRP_INTC 4, 0S21 CTRL_INTC, 1,
&0S21 GRP_INTC 5, 0S21 CTRL_INTC, 1,
1
1
2
2

IS

}

5
5
5

}

4
}

, /* RTC */

}, /* TMU 2 */

}, /% TMU 1 */

}, /* TMU 0 */

, /* NOT CONNECTED */
}, /* SCIF 1 */

, /* NOT CONNECTED */
1

1

}

1

1

'

[uny

]

[any

'

[y

’

[uny

§&0S21_GRP_INTC 6, 0S21_ CTRL_INTC,
&0S21 GRP_INTC 7, 0S21 CTRL_INTC,
&0S21 GRP_INTC 8, 0S21 CTRL_INTC,
§&0S21_GRP_INTC 9, 0S21_CTRL_INTC, 2,
&0S21 GRP_INTC 10, 0S21 CTRL_INTC, 2,
&0S21 GRP_INTC 11, 0S21 CTRL INTC, 2

'

= o
(62}

, WDT */
, HUDI */

/*
/*
, /* SCIF 2 */
/*
/*

[
ul

'

P O WwWwNRKFEFOWNLRO
o

w N~

1

IS

NOT CONNECTED */
NOT CONNECTED */

]

B e i e L L R e N e R

o o

' '

J

14/23 7358673




0821, ST40

Board support package

}i

{ &0S21_GRP_INTC2_0, 0S21_CTRL_INTC2, 0, 0, 10 }, /* PIO 0 */

{ &0S21 GRP INTC2 1, 0S21 CTRL_INTC2, 0, 1, 5 }, /* TTXT DMAC */

{ &0S21 GRP_INTC2 2, 0S21 CTRL INTC2, 0, 2, 5 }, /* DMAC */

{ &0S21_GRP_INTC2_ 3, 0S21_CTRL_INTC2, 0, 3, 10 }, /* PIO 1 */

{ &0S21 GRP INTC2 4, 0S21 CTRL_INTC2, 0, 4, 0 }, /* NOT CONNECTED */
{ &0S21 GRP_INTC2 5, 0S21 CTRL INTC2, 0, 5, 0 }, /* NOT CONNECTED */
{ &0S21_GRP_INTC2_6, 0S21_CTRL_INTC2, 0, 6, O }, /* NOT CONNECTED */
{ &0S21 GRP INTC2 7, 0S21 CTRL_INTC2, 0, 7, O }, /* NOT CONNECTED */
{ &0S21 GRP_INTC2 8, 0S21 CTRL INTC2, 1, 0, 13 }, /* ILC 0 */

{ &0S21_GRP_INTC2_9, 0S21_CTRL_INTC2, 1, 1, 7 }, /* ILC 1 */

{ &0S21 GRP INTC2 10, 0S21 CTRL_ INTC2, 1, 2, 13 }, /* ILC 2 */

{ &0S21 GRP_INTC2 11, 0S21 CTRL INTC2, 1, 3, 8 }, /* ILC 3 */

{ &0S21_GRP_INTC2_ 12, 0S21_CTRL_INTC2, 1, 4, 14 }, /* ILC 4 */

{ &0S21 GRP INTC2 13, 0S21 CTRL_INTC2, 1, 5, 9 }, /* ILC 5 */

{ &0S21 GRP_INTC2 14, 0S21 CTRL INTC2, 1, 6, 6 }, /* ILC 6 */

{ &0S21_GRP_INTC2_15, 0S21_CTRL_INTC2, 1, 7, 5 }, /* ILC 7 */

{ &0S21 GRP INTC2 16, 0S21 CTRL_INTC2, 2, 0, 9 }, /* ILC 8 */

{ &0S21 GRP_INTC2 17, 0S21 CTRL _INTC2, 2, 1, 9 }, /* ILC 9 */

{ &0S21_GRP_INTC2_18, 0S21_CTRL_INTC2, 2, 2, 4 }, /* ILC 10 */

{ &0S21 GRP INTC2 19, 0S21 CTRL_INTC2, 2, 3, 7 }, /* ILC 11 */

{ &0S21 GRP_INTC2 20, 0S21 CTRL_INTC2, 2, 4, 8 }, /* ILC 12 */

{ &0S21_GRP_INTC2_21, 0S21_CTRL_INTC2, 2, 5, 8 }, /* ILC 13 */

{ &0S21_GRP_INTC2 22, 0S21 CTRL_INTC2, 2, 6, 8 }, /* ILC 14 */

{ &0S21 GRP_INTC2 23, 0S21 CTRL_INTC2, 2, 7, 2 } /* ILC 15 */

unsigned int bsp_ interrupt group table entries;

This specifies the number of entries in bsp_group_interrupt table. Itis usually set as

follows:

unsigned int bsp_interrupt group table entries

/ sizeof

(interrupt group table entry t);

Interrupt table
/*

sizeof (bsp interrupt group table)

* An entry in the interrupt table.
*/
typedef struct interrupt table entry s
{
interrupt name t * namep;
interrupt group t * groupp;
unsigned short intevt;
unsigned short bitpos;
} interrupt table entry t;

This table describes all the interrupts in the system.

namep is a pointer to the name of the interrupt. groupp is a pointer to the name of the
interrupt group to which the interrupt belongs. intevt is the code that is placed in the
INTEVT register by the ST40 when the interrupt is asserted. bitpos is only used when the
interrupt belongs to the INTC2. In this case this gives the bit position of this interrupt within
the INTC2. For example:

interrupt name t 0S21 MY INTERRUPT
interrupt table entry t my interrupt
&0S21 MY GROUP_ 3, 0x1240, 2 };

This describes an interrupt called 0S21_ My INTERRUPT which belongs to the interrupt
group 0S21 MY GROUP_3. This generates an INTEVT code of 0x1240 when it is asserted.

21;
{ &0S21 MY INTERRUPT,

7358673 15/23




Board support package

0821, ST40

Since 0S21_ MY GROUP_3 belongs to the INTC2, this interrupt can be found in bit two of the

appropriate INTC2 registers.

interrupt table entry t bsp interrupt table [];

This describes the set of interrupts that arrive at the INTC. It comprises a list of

interrupt table entry t types. For example:

interrupt_table entry t bsp interrupt table [] =

{

B e e e e e e R N N e e e e R e e e L L e L N e i i T

P e e e R R e R e N e e L e L

16/23

§0S21_INTERRUPT_ILC O,
&0S21 INTERRUPT ILC 1,
&0S21_INTERRUPT ILC 2,
§0S21_INTERRUPT_ ILC 3,
&0S21 INTERRUPT ILC 4,
&0S21_INTERRUPT ILC 5,
§0S21_INTERRUPT_ ILC 6,
&0S21 INTERRUPT ILC 7,
&0S21_INTERRUPT ILC 8,
§0S21_INTERRUPT ILC 9,
&0S21 INTERRUPT ILC 10,
&0S21_ INTERRUPT ILC 11,
§0S21_INTERRUPT ILC 12,
&0S21 INTERRUPT ILC 13,
&0S21_ INTERRUPT ILC 14,
§0S21_INTERRUPT ILC_ 15,

&0S21 INTERRUPT HUDI UDI, &0S21 GRP_INTC 8,
&0S21 INTERRUPT TIMER 0, &0S21 GRP INTC 3,
&0S21 INTERRUPT TIMER 1, &0S21 GRP_INTC 2,
&0S21 INTERRUPT TIMER 2, &0S21 GRP INTC 1,
&0S21 INTERRUPT TMU 2 TICPI, &0S21 GRP_INTC
&0S21_ INTERRUPT RTC ATI, &0S21_GRP_INTC 0,
&0S21 INTERRUPT RTC PRI, &0S21 GRP INTC O,
&0S21 INTERRUPT RTC CUI, &0S21 GRP_INTC O,
&0S21_INTERRUPT SCIF 1 ERI,
&0S21 INTERRUPT SCIF 1 RXI,
&0S21 INTERRUPT SCIF 1 BRI,
&0S21_ INTERRUPT SCIF 1 TXI,
&0S21 INTERRUPT SCIF 2 ERI,
&0S21 INTERRUPT SCIF 2 RXI,
&0S21_INTERRUPT SCIF 2 BRI,
&0S21 INTERRUPT SCIF 2 TXI,
&0S21 INTERRUPT WDT ITI, &0S21 GRP_INTC 7, 0x0560, 0 },

&0S21_GRP_INTC2 8, 0x1000, 0
&0S21 GRP_INTC2 9, 0x1080, 4 }

&0S21 GRP_INTC2 10,
&0S21_GRP_INTC2 11,
&0S21 GRP_INTC2 12,
&0S21 GRP_INTC2 13,
&0S21_GRP_INTC2 14,
&0S21 GRP_INTC2 15,
&0S21 GRP_INTC2 16,
&0S21_GRP_INTC2 17,
&0S21 GRP_INTC2 18,
&0S21 GRP_INTC2 19,
&0S21_GRP_INTC2_20,
&0S21 GRP_INTC2 21,
&0S21 GRP_INTC2 22,
&0S21_GRP_INTC2_ 23,

7358673

&0S21_GRP_IRL_ENCODED 15,
&0S21 GRP_IRL ENCODED 14,
§&0S21 GRP_IRL ENCODED 13,
§&0S21_GRP_IRL_ENCODED 12,
&0S21 GRP_IRL ENCODED 11,
&0S21 GRP_IRL ENCODED 10,

0
0
0

1, 0x0460
0
0
0

&0S21 GRP_INTC
&0S21 GRP_INTC
&0S21 GRP_INTC
&0S21 GRP_INTC
&0S21 GRP_INTC
&0S21 GRP_INTC
&0S21 GRP_INTC
&0S21 GRP_INTC

&0S21 INTERRUPT NMI, &0S21 GRP NMI, 0x01C0, 0 },
&0S21 INTERRUPT IRL_ENC 15,
&0S21 INTERRUPT IRL ENC 14,
&0S21 INTERRUPT IRL ENC 13,
&0S21 INTERRUPT IRL_ENC 12,
&0S21 INTERRUPT IRL ENC 11,
&0S21 INTERRUPT IRL ENC 10,
&0S21 INTERRUPT IRL_ENC 9, &0S21 GRP_IRL EN
&0S21 INTERRUPT IRL ENC 8, &0S21 GRP_IRL EN
&0S21 INTERRUPT IRL ENC 7, &0S21 GRP_IRL EN
&0S21 INTERRUPT IRL ENC 6, &0S21 GRP_IRL EN
&0S21 INTERRUPT IRL ENC 5, &0S21 GRP_IRL EN
&0S21 INTERRUPT IRL ENC 4, &0S21 GRP_IRL EN
&0S21 INTERRUPT IRL_ENC 3, &0S21 GRP_IRL EN
&0S21 INTERRUPT IRL ENC 2, &0S21 GRP_IRL EN
&0S21 INTERRUPT IRL ENC 1, &0S21 GRP_IRL EN

0x0600, 0 }
0x0400,
0x0420,
0x0440,

0x0480,

0x04A0,

0x04CO,

9, 0x04EO0,
9, 0x0500,
9, 0x0520,
9, 0x0540,
5, 0x0700,
5, 0x0720,
5, 0x0740,
5, 0x0760,

'

}
)
)

O O O O o o o o -~

b

0x1100, 8 }

0x1180, 12 }
0x1200, 16 }
0x1280, 20 }
0x1300, 24 }
0x1380, 28 }

0x1400, 0 },
0x1480, 4 },
0x1500, 8 }

0x1580, 12
0x1600, 16
0x1680, 20
0x1700, 24
0x1780, 28

’

o},

e e e e e e

0x0200,
0x0220,
0x0240,
0x0260,
0x0280,
0x02A0,
CODED_9, 0x02Co0,
CODED_8, 0x02EO0,
CODED_7, 0x0300,
CODED_6, 0x0320,
CODED_5, 0x0340,
CODED_4, 0x0360,
CODED_3, 0x0380,
CODED_2, 0x03A0,
CODED_1, 0x03Co0,

0
0
0
0
0
0
0
0
0

J




0821, ST40

Board support package

Note:

unsigned int bsp_interrupt_ table entries;
This specifies the number of entries in bsp_interrupt table. Itis usually set as follows:

unsigned int bsp interrupt table entries = sizeof (bsp interrupt table) / sizeof
(interrupt table entry t);

ILC table

/* ILC modes. */

typedef enum

{
0S21_ILC_NO TRIGGER O,
0S21 ILC TRIGGER HIGH LEVEL,
0S21 ILC TRIGGER LOW LEVEL,
0S21 ILC TRIGGER RISING EDGE,
0S21 ILC TRIGGER FALLING EDGE,
0S21 ILC TRIGGER_ANY EDGE,
0S21 ILC_NO TRIGGER 1,
0S21 ILC_NO TRIGGER 2,
0S21 ILC_TRIGGER MAX

} ilc_mode t;

/* An entry in the ILC table. */
typedef struct ilc table entry s
{
interrupt name t * namep;
unsigned int input : 16;
unsigned int output : 16;
ilc_mode_t mode;
} ilc_table_entry t;

This describes interrupts that are routed through an interrupt level controller.

namep IS a pointer to the name of the interrupt. input is the number of the input into the
ILC that the interrupt arrives on. output is the number of the output to which the interrupt is
routed. mode describes how the interrupt is triggered. This table allows OS21 to locate the
appropriate state in the INTC2 which maps to the named interrupt.

Output 0 of the ILC must map to 0S21_INTERRUPT ILC 0 in the interrupt table and so on.
This enables 0S21 to locate the appropriate state in the interrupt table that the ILC interrupt
maps to.

For example:

interrupt name t 0S21 MY INTERRUPT = 21;
ilc table entry t my interrupt = { &0S21 MY INTERRUPT, 1, 15,
0821 ILC TRIGGER RISING EDGE };

This describes an interrupt called 0S21_ MY INTERRUPT which is routed into input 1 of the
ILC and out on output 15. Line 15 out of the ILC is asserted on the rising edge of input 1.

ilc _table entry t bsp ilc table [];

7358673 17/23




Board support package 0S21, ST40

Note:

6.2.4

6.2.5

6.2.6

6.2.7

18/23

This describes the set of interrupts that arrive at the ILC. It comprises a list of
ilc table entry t types. For example:

ilc table entry t bsp ilc table[] =
&0S21 INTERRUPT PIO 0, 0, 0, 0S21 ILC TRIGGER HIGH LEVEL },
&0S21 INTERRUPT SSC 0, 7, 1, 0S21 ILC TRIGGER HIGH LEVEL },
&0S21 INTERRUPT DMA 0, 24, 10, 0S21 ILC TRIGGER HIGH LEVEL }
&0S21 INTERRUPT DMA 1, 25, 10, 0S21 ILC TRIGGER HIGH LEVEL }
&0S21 INTERRUPT DMA 2, 26, 10, 0S21 ILC TRIGGER HIGH LEVEL },
&0S21 INTERRUPT DMA 3, 27, 10, 0S21 ILC TRIGGER HIGH LEVEL },
L

I

’

&0S21 INTERRUPT DMA 4, 28, 10, 0S21 ILC TRIGGER HIGH LEVEL
&0S21 INTERRUPT DMA ERR, 29, 10, 0S21 ILC TRIGGER HIGH LEVE

’

e Rt Rt W e N o)

}
}i

unsigned int bsp ilc table entries;
This variable specifies the number of entries in bsp_ilc_table. Itis usually set as follows:

unsigned int bsp ilc table entries = sizeof (bsp ilc table) / sizeof
(ilc_table entry t);

If an ILC is not present on a given target, bsp ilc table and
bsp ilc table entries must be removed.

INTC base address

This tells OS21 the base address of the first interrupt controller (INTC). For example:

void * bsp intc base address = (void *) (0xFFD000O0O) ;

INTC2 base address

This tells OS21 the base address of the second interrupt controller (INTC2). For example:
void * bsp intc2 base address = (void *) (0xFE080000) ;

If INTC2 does not exist, remove this line.

ILC base address

This tells 0S21 the base address of the ILC memory mapped registers. For example:
void * bsp ilc base address = (void *) (0x18300000) ;

If no ILC is present, remove this line.

Interrupt system initialization flags
interrupt_init flags_t bsp_interrupt_init_ flags;

This is a combination of flags which is used to control how OS21 initializes the interrupt
subsystem. Multiple flags can be combined by logically ORing the appropriate flags. The
following sections describe the valid flags for ST40.

Nonmaskable interrupt trigger mode

The interrupt controller (INTC) on the ST40 can be programmed so the nonmaskable
interrupt (NMI) generates an interrupt either on the rising edge or the falling edge of the NMI

7358673 ‘ﬁ




0S21, ST40 Board support package

signal. The following flags tell 0S21 how to configure INTC in this respect. If none of these
flags are specified, 0S21 defaults to triggering on the falling edge. If both are specified,
0S21 defaults to triggering on the rising edge.

0S21 INTC NMI RISING EDGE

This tells 0S21 to program the INTC so that an NMI is generated on the rising edge of
the NMI signal (when it transitions to the high state).

0S21 INTC NMI FALLING EDGE

This tells 0S21 to program the INTC so that an NMI is generated on the falling edge of
the NMI signal (when it transitions to the low state).

IRL configuration mode

The interrupt controller (INTC) on the ST40 can accomodate four external interrupt request
lines (IRL). These can be configured either as four separate interrupt lines (giving four
interrupt sources) or as a binary encoding of 15 different interrupts by using each of the four
interrupt lines as a binary bit. The following flags tell 0S21 how the INTC should be
configured in this respect. If neither of these flags are specified, 0S21 defaults to four
separate IRL lines. If both flags are specified, 0S21 defaults to the encoding mechanism.

0S21 INTC IRL LEVEL ENCODED
This tells 0S21 to program the INTC so that it treats the four IRL lines as a level
encoding of 15 different interrupts.

0S21 INTC IRL INDIVIDUAL

This tells 0S21 to program the INTC so that it treats the four IRL lines as four separate
interrupt request lines.

Interrupt level controller programming

On multiple CPU systems, more than one CPU shares access to the interrupt level
controller (ILC). However only one CPU should take responsibility for programming the ILC
at start up time - normally the “master” of the system. The following flags tell 0S21 whether
it should program the ILC as a master, or program the ILC as a slave. If none of these flags
are specified, 0S21 defaults to being an ILC master. If both of these flags are specified,
0S21 defaults to being an ILC slave.

0S21 ILC MASTER

This tells 0S21 that this CPU is responsible for the programming of the interrupt level
controller. When OS21 initializes the interrupt subsystem it programs the ILC as given
in the table.

0821 _ILC SLAVE

This tells 0S21 that this CPU is not responsible for the programming of the interrupt
level controller. When OS21 initializes the interrupt subsystem it does not program the
ILC as given in the table.

KYI 7358673 19/23




Revision history

0821, ST40

7 Revision history

Table 5. Document revision history

Date

Revision

Changes

1-Oct-2009

O

Changes made to Section 6.2: BSP interrupt system description on
page 12.

10-Nov-2008

N

Added Chapter 5: Constructors and destructors on page 11.

12-Nov-2007

Moved the generic elements of the board support package to the
0S21 User manual (ADCS 7358306).

15-May-2007

Moved cache API functions to OS21 User manual (ADCS 7358306)
as these are now generic.

22-Jan-2007

Moved to new template.

Chapter 1: Caches and memory areas on page 5: Updated for virtual
memory 32-bit support.

Chapter 6: Board support package on page 12: Timer input freq
updated.

Jun 06

Throughout: Updated function context information.

Caches and memory areas chapter: Updated I-cache and D-cache
descriptions and explained non-portable code for ST40 core
variants.

Exceptions chapter: Removed chapter.

Sep 03

Board support package chapter: Updated BSP interrupt system
description, Interrupt tables and Interrupt system initialization flags.

Jul 03

Floating point support chapter: Chapter has been rewritten.

Board support package chapter: Updated BSP data, Timer input
frequency.

May 03

Throughout: Changed _bsp_peripheral_bus_clock_frequency_hz to
bsp_timer_input_clock_frequency_hz, bsp_timeslice_frequency_hz
to bsp_timeslice_frequency_hz and peripheral bus clock to input
clock. Updated references to interrupts.

Introduction chapter: Added note to ST40 specifics.
Interrupts chapter: Removed chapter.

Caches and memory areas chapter: Updated cache_enable_data
function description. Added note to cache_invalidate_data_all.

Timers chapter: Chapter has been rewritten.
Resets chapter: Updated examples in Overview,
Board support package chapter: Chapter has been rewritten.

20/23

J

7358673




0821, ST40

Revision history

Table 5.

Document revision history (continued)

Date

Revision

Changes

Aug 02

Throughout: Added Context section to each of the functions.

Interrupts chapter: Changed description of interrupts_mask() in the
Masking interrupts section.

Caches and memory areas chapter: Added cache_status_flags_t to
Table 6. Corrected typing errors in Table 7. In the cache_enable_data
and cache_enable_instruction functions, changed the names of the
assigned bits to upper case. Updated cache_status function.

Board support package chapter: Added footnote for ST40GX1
Evaluation board. In the BSP code section, added bsp_terminate()
and changed the description of bsp_shutdown().

Aug 02

Interrupts chapter: Added a new function, interrupt_mask_all(), and
added cross-references to it. Updated the functions, interrupt_mask()
and interrupt_unmask(). Removed references to 7750.

Exceptions chapter: Changed description of default behavior in last
paragraph of overview.

Board support package chapter: Updated the location of the BSPs
for ST40 platforms.

May 02

Throughout: Added _bsp_ to the start of timeslice_frequency_hz and
peripheral_bus_clock_frequency_hz.

Board support package chapter: Changed board names to product
names.

May 02

Interrupts chapter: Changed description of ST40_GRP_7750_SCI_1
and ST40_GRP_7750_SCIF in the ST40 interrupt source names
table.

Caches and memory areas chapter: Added note to caches and
memaory overview.

Floating point support chapter: Amended text in overview.

Board support package chapter: Added two functions to BSP code
section.

Feb 02

Introduction chapter: Added the “ST40 specifics” section.

Interrupts chapter: Added the “task_context() interrupt information”
section. Amended description of the flags parameter in the
“Initializing the interrupt handling subsystem” section. Amended the
description of the interrupt_init_controller function.

Caches and memory areas chapter: Amended the table containing
the macros defined in st40_cache.h.

Board support package chapter: Amended the “BSP code” section.

Nov 01

Initial release

7358673 21/23




Index 0S21, ST40
Index
B FESElS . ottt 9
Backus-Naur Form . 4 RTC . 5
baseaddress ............ .. ... ... ... 18
BNF. See Backus-naur Form. S
BSP ST40
Interrupt system . ............oovvnnnn 12 SPECIfICS ...\ 1
interrupttables . ......... .. ... .. ... ... 12 SyStem Stack SIZe .. ..ot 1
timer assignments ........... ... .. ... .. 5
F system stack size ............ ... ... ... .. 1
floating PoiNt SUPPOIt « . oo oo 7 systemtimer ........... ... .. ... .. 5
FPU .. 7
T
G task contextregisters . ............. . ... .. 8
GCC vt 7 UMEOULUMEr ... 6
. timerassignments ................ .. .. ... 5
global contextregisters . .................. 8 .
timers . ... .. . 5
timeslicetimer .......... ... ... ... ... .. .. 5
I TMU . 5
ILCbaseaddress ....................... 18 TMUD . ..o >
ILCtable ... ..o 17 TMUL.....oooiviiii °
initializationflags ....................... 18 TMUZ >
inputclock .......... ... ... .. .. . . .. 5
determiningspeed .. .................... 5 W
interrupt groups .. . .. .. e 13 .
interrupt level controller ............... 13, 17 watehdog imer ... 9
interruptnames ............ ... ... 12
interruptsystem ........... ... . .. ... 12
interrupt system initialization flags .......... 18
interrupttables ......................... 13
L
linkererror . ......... ... . . . . . ... ... 12
M
manualreset .......... ... .. ..., 9
@)
0S21 kernel
building ............. ... ... ... ..., 7
OS2l tickduration ....................... 5
R
registercontext . . ......... .. ... 8
22/23 7358673 Rev O 1S7]




0821, ST40

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST") reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2009 STMicroelectronics - All rights reserved
STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

KYI 7358673 Rev O 23/23




	Introduction
	ST40 specifics

	Preface
	Document identification and control
	Conventions used in this guide

	1 Timers
	1.1 Timers overview
	1.2 Input clock frequency
	1.3 OS21 tick duration
	1.4 ST40 timer assignments
	Table 1. ST40 timer assignments


	2 Floating point support
	2.1 Floating point overview

	3 Register context
	3.1 Registers overview

	4 Resets
	4.1 Resets overview
	4.2 Reset API summary
	Table 2. Functions defined in os21/st40/reset.h
	Table 3. Types defined in os21/st40/reset.h

	4.3 List of functions
	reset_cpu
	reset_reason


	5 Constructors and destructors
	5.1 Multiple constructors and destructors

	6 Board support package
	6.1 Board support package overview
	6.2 BSP interrupt system description
	6.2.1 Interrupt names
	6.2.2 Interrupt groups
	6.2.3 Interrupt tables
	6.2.4 INTC base address
	6.2.5 INTC2 base address
	6.2.6 ILC base address
	6.2.7 Interrupt system initialization flags


	7 Revision history
	Table 5. Document revision history (continued)


