

User Manual

Oclarity
for Rational Rose™

Version 1.8

Oclarity for Rational Rose Page 2

Copyright Notice
© 2004-2007 EmPowerTec AG, Taubenweg 20, 85238 Petershausen,
Germany.

All rights reserved. This product and related documentation
are protected by copyright and are distributed under licenses
restricting their use, copying, distribution, and decompila-
tion. No part of this product or related documentation may be
reproduced in any form by any means without prior written au-
thorization of EmPowerTec AG, and its licensors, if any.

Third Party Website Reference
EmPowerTec AG is not responsible for the availability of
third-party Web sites mentioned in this document. EmPowerTec
AG does not endorse and is not responsible or liable for any
content, advertising, products, or other material on or avail-
able from such sites or resources. EmPowerTec AG will not be
responsible or liable for any damage or loss caused or alleged
to be caused by or in connection with use of or reliance on
any such content, goods, or services that are available on or
through any such sites or resources.

Trademarks
EmPowerTec is a trademark of EmPowerTec AG.
Rational Rose™ is a trademark of IBM Inc.
Other brands and their products are trademarks of their re-
spective holders and should be noted as such.

Oclarity for Rational Rose Page 3

1 Introduction ..4
2 Installation ..5
2.1 Requirements ..5
2.2 Installation ..5
2.3 Updates ...5
2.4 Installing the license key...........................5
2.5 Uninstalling ..5
2.6 Printing this manual.................................6

3 The light version7
4 Adding OCL expressions to a model........................8
4.1 Introduction ..8
4.2 Adding OCL expressions in notes......................8
4.3 Add OCL expressions to classes.......................9

5 Using the OCL editor11
5.1 Introduction11
5.2 Basic editor window.................................11
5.3 Menu ‘code’ ..12
5.4 Menu ‘edit’ ..12
5.5 Leaving the code editor.............................12
5.6 Editing code in notes...............................12

6 Checking OCL code14
6.1 Introduction14
6.2 Triggering checks14
6.3 Definition expressions..............................16
6.4 Viewing check results...............................17
6.4.1 Warnings….......................................18
6.4.2 Check again.....................................18
6.4.3 First error.....................................18
6.4.4 Next error......................................19
6.4.5 Previous error19
6.4.6 Editing code from the result window19

7 Exporting OCL expressions20
7.1 Triggering the export...............................20
7.2 Structure of the XML file...........................21

8 Integration with the Rose repository....................22
8.1 Overview ...22
8.2 The OCL-property editor for operations22
8.3 Package handling24
8.3.1 Package names with spaces24
8.3.2 Default package24

8.4 Mapping to Rose properties..........................24
8.5 Enumerations24
8.6 Attributes of stereotype <<reference>>25
8.7 States ...25
8.8 Instantiated types..................................25

Oclarity for Rational Rose Page 4

1 Introduction

OCL is a formal language intended to phrase expressions in ob-
ject models, in particular in UML models. The purpose of OCL
is to add precision to a model and complement the better known
UML diagrams and use cases. If used properly, adding OCL ex-
pressions to a UML model can significantly increase the preci-
sion and ultimately the value of a UML model. Furthermore, the
communication between the persons working on a software pro-
ject is improved because all business logic described with OCL
is available for all contributors to your project at any time.

OCL expressions can be used with varying intentions. Best
known is the use as ‘constraints’. Constraints state condi-
tions that must be true in certain points of time.
Other applications of OCL expressions are initialization ex-
pressions for attributes and associations, derivation rules
for additional auxiliary attributes and methods and the lan-
guage independent description of method implementations.

OCL is language independent and thus helps you to specify more
knowledge at the abstract level of the UML model than without
using OCL. Instead of burying the business logic in complex
programming language statements in software implementation
files, it is stored at the heart of your software system: in
your UML models.

It is beyond the scope of this document to provide an intro-
duction to OCL. On our website http://www.empowertec.de, you
can find links to OCL-resources.

Rational Rose™ does not support OCL by itself and thus adding
OCL expressions to Rational Rose models is not reasonably fea-
sible. Oclarity adds comprehensive support for adding OCL ex-
pressions to an OCL model:

• Context sensitive editor
• Full syntactic and semantic checking of OCL expressions

ensures consistency with the model.
• Capability, to check all OCL expression in a model at

once. This is particularly useful if properties of a
model are changed, e.g. class- or attribute names,
method signatures and so on.

• Smooth integration with the Rational Rose GUI.
• Flexible export capabilities.

http://www.empowertec.de

Oclarity for Rational Rose Page 5

2 Installation

2.1 Requirements
Oclarity requires an installation of Rational Rose 2000 or
newer. Oclarity can be used with all language specific ver-
sions of Rational Rose.

2.2 Installation
Load the current version of Oclarity from our website using
this link:

http://www.empowertec.de/downloads/OclaritySetup.exe

Execute the file.

There are no choices to make during the setup.

2.3 Updates
Regularly, we make new versions with the same major version
number of Oclarity available for download. These new versions
contain bug fixes and minor functional improvements.
Our license agreement authorizes you to install any available
update with the same major version number than the version you
have licensed. To install a new version simply download it
from our website, uninstall the old version and install the
new version as described in chapter 2.2.

2.4 Installing the license key
To use Oclarity after the 30 day trial period, a valid license
key must be installed. License keys can be purchased in our
online shop http://www.empowertec.de/buy/ or by sending an
email to mailto:sales@empowertec.de.

As long as you are using a trial key, Oclarity will offer you
the possibility to install a valid license key at every
startup of Rational Rose.
If Rational Rose is already started, you can use the menu en-
try Tools/OCL/About to display a dialog for installing a li-
cense key.

2.5 Uninstalling
To uninstall this software you may simply choose the according
menu entry in the start menu.
Alternatively, you can use the Windows control panel to remove
the software.

http://www.empowertec.de/downloads/OclaritySetup.exe
http://www.empowertec.de/buy/
mailto:sales@empowertec.de

Oclarity for Rational Rose Page 6

2.6 Printing this manual
If you print the manual with Adobe Acrobat Reader with default
print settings, the pages are smaller than intended because
Acrobat Reader scales the pages. To get a printout in original
size, please uncheck all the scaling options in the Copies and
Adjustments section of the Acrobat Reader print dialog box.

Oclarity for Rational Rose Page 7

3 The light version
EmPowerTec provides a free light version of Oclarity which
contains the same advanced OCL checker than the standard ver-
sion but misses the productivity features of the standard ver-
sion. The light version is intended for users that want to oc-
casionally check OCL expressions and do not use OCL in commer-
cial software projects where the time of the staff is the most
crucial factor for project success.

When using the light version, OCL expressions are stored in
external text files. These files contain just the raw OCL ex-
pressions as suggested in the OCL standard description.

The user interface consists of a simple window.

Figure 1: Oclarity Light user interface

To perform a check, the file with the expression that shall be
checked must be selected and the ‘Check’ button must be
pressed.

EmPowerTec is not obliged to give any support for the light
version. However, feel free to send us any questions and prob-
lem reports. If we have free resources, we will try to solve
your issues.

Oclarity for Rational Rose Page 8

4 Adding OCL expressions to a model

4.1 Introduction
OCL expressions can be added in two basic ways.

First, you can write OCL expressions in notes in diagrams.
This is particularly useful if the expression is relatively
small but important so that it should be immediately per-
ceived.

Second, you can use the OCL editor that is integrated in
Oclarity. Using the OCL editor, the OCL code is always associ-
ated with a specific class. This association is only a techni-
cal one, the semantic association is done by ‘context’ decla-
rations within the OCL code. However, we recommend adding only
those OCL expressions to a given class that are also semanti-
cally associated with this class.

4.2 Adding OCL expressions in notes
A note on a diagram can be used to hold all kind of text.
Therefore, a convention has to be followed so that a portion
of text is treated as OCL expression by our OCL parser. It is
important to follow these conventions; otherwise, the OCL code
would not be checked and could contain any kind of errors
without notice.
The convention is to embed OCL code in curly brackets.
Here is an example:

This note contains various constraints embedded in an OCL code block.
An OCL code block is embedded between curly braces. Only explicit
newlines increase the line count.

{
 context Customer
 inv minimumAge: age() >= 18

 context LoyaltyProgram::enroll(c : Customer)
 pre isNewCustomer: not customer->includes(c)
 post customerIncluded: customer = customer@pre->including(c)
 post: membership->select(customer = c)->forAll(
 loyaltyAccount->notEmpty() and
 loyaltyAccount.points = 0 and
 loyaltyAccount.transactions->isEmpty())
}

Figure 2: Editing OCL code in a note

Oclarity for Rational Rose Page 9

It is not necessary to use a separate line for the starting
and ending curly braces and the final curly brace may be omit-
ted. Multiple blocks of OCL code may be defined in a single
note although we recommend putting all OCL code in a single
OCL block in a given note.

A note object reformats its content if it is resized by break-
ing the lines but it does not insert newline characters into
the text. Therefore, you must explicitly insert newline char-
acters (by pressing the return key) wherever you want the OCL
code to start a new line. If an error is detected in such an
OCL expression, the errors line number refers to the position
of the offending line relative to the beginning of the note
(that is, it includes all non OCL text).

4.3 Add OCL expressions to classes
Whenever you select a single class in the Rational Rose GUI,
the selected item has an additional entry in its context menu
labeled ‘edit OCL’. This may be the case on a class diagram or
in Rational Roses browser:

 Figure 3: selected class in diagram

Oclarity for Rational Rose Page 10

 Figure 4: selected class in browser

In either case, after selecting the menu entry ‘edit OCL’, the
OCL code editor is displayed and the according OCL code may be
edited.

Oclarity for Rational Rose Page 11

5 Using the OCL editor

5.1 Introduction
The OCL code editor offers powerful features for editing OCL
code. This chapter introduces the various features.

5.2 Basic editor window
This screenshot illustrates the code editor:

 Figure 5: OCL editor window

The large area beneath the menu bar contains the actual OCL
code, which is displayed with syntax highlighting. Underneath
this area, a table is displayed that contains the errors that

Oclarity for Rational Rose Page 12

have been detected during a check of the OCL code. If any er-
rors are display, a double click on the line containing the
error positions the cursor on the respective code element.

5.3 Menu ‘code’
This menu contains a single entry that can be used to check
the code. As a shortcut, you can press alt+c to trigger the
check.
The result of the check is displayed in a panel in the status
bar of the editor window. This panel is reset to an empty
string, if the code is modified after the check.

5.4 Menu ‘edit’
This menu provides all basic editing functionality:

• Undo/Redo
• Copy/Paste
• Search/Replace

5.5 Leaving the code editor
You can leave the code editor either by clicking on the ‘OK’-
button or by clicking on the ‘cancel’-button (clicking in the
editor windows close-button in the upper right corner is
equivalent to clicking on the ‘OK’-button).

If ‘OK’ is clicked the code is implicitly checked and a warn-
ing is displayed if the code contains errors.

You may then correct the errors or save the code as it is.

If the code is saved, this means only storing the changed code
in Rational Roses internal repository – the changed code is
not saved to disk until the complete model is saved. Rational
Rose will warn you, if you want to leave Rational Rose without
saving the changes to disk.

If ‘cancel’ is clicked and the code is changed, you are asked
whether you really want to discard your changes.

5.6 Editing code in notes
Editing code in notes requires some special handling. Because
a note may contain a mixture of OCL code and arbitrary other
text, all non OCL code must be hidden from the parser.
Note that you cannot directly invoke the code editor for OCL
code in notes (due to restrictions of Rational Roses extensi-
bility model). Invoking the code editor for OCL code in notes
is only possible from the analysis result window (see chapter
6.4 for details).

Oclarity for Rational Rose Page 13

Oclarity temporarily prepends each line of non OCL code with
the string ‘-- ##’ (‘—‘ starts a comment in OCL) thus making
this text look like a comment to the parser. After closing the
code editor, these marks are removed again.

 Figure 6: Edit code from note

These marks must be preserved during editing to avoid syntax
errors.

Oclarity for Rational Rose Page 14

6 Checking OCL code

6.1 Introduction
Checking the validity of the OCL code is the most important
functionality of Oclarity. After all, only correct OCL code
adds value to your UML models. Without checks, the risk of
having wrong or outdated code is too high to improve the over-
all productivity of your development team.

6.2 Triggering checks
Checks can be triggered in the following ways:

• Using the context menu of one ore more selected classes
on a class diagram or in the browser.
In this case, the code associated with all selected
classes is checked.

• Using the context menu on the background area of a class
diagram.
In this case, the code associated with all classes con-
tained in the diagram and all OCL code contained in the
notes on the diagram is checked. The same effect can be
achieved by selecting the menu entry ‘Tools/OCL/Check
OCL expressions of current element’.

• Using the menu entry ‘Tools/OCL/Check all OCL expres-
sions’.
In this case, all OCL expressions contained in the whole
model are checked. Depending on the size of your model
and the amount of OCL code this may take a considerable
amount of time. A dialog containing a progress bar and a
cancel button is displayed during the check.

Oclarity for Rational Rose Page 15

 Figure 7: Trigger check on selected class

 Figure 8: Trigger check for whole class diagram

Oclarity for Rational Rose Page 16

 Figure 9: Trigger checks on all OCL expressions in a model

6.3 Definition expressions
OCL expressions of type def have a special characteristic:
they add attributes or queries to types defined in the model.

context Person
def: income : Integer = self.job.salary->sum()
def: hasTitle(t : String) : Boolean = self.job->exists(title = t)

In the example above, an attribute named income of type Integer
and a method named hasTitle(String) are added to class Person.
The problem with this kind of expression is that they are not
available until the OCL expressions that defines them have
been processed. This means, that if another OCL expression
references such a definition expression, the definition ex-
pression must be checked before. Since the order of evaluation
of the various model elements (classes and notes) is basically
arbitrary, the check is done in two passes. In pass 1, only
definition expression are checked and thus temporarily added
to the respective classes. In pass 2, all expressions are
checked. The passes are done automatically, no user interven-
tion is required. But even with the 2 pass approach, it is the
users responsibility to include the model element, which holds
the referenced definition expressions, in the check.

Oclarity for Rational Rose Page 17

6.4 Viewing check results
After one or more OCL expressions have been checked, the re-
sults of the checks are displayed in the result window. The
basic purpose of this window is to quickly find any errors
contained in the checked expressions. In addition, the window
allows the easy editing of OCL expressions and quick rechecks
of the expressions.
Here is a screenshot that we will use to explain the various
properties of this window:

Figure 10: Result window

The window provides a tree like view of the different contexts
that contain OCL expressions. For each context, the types of
OCL expressions are displayed. Within the expression type, the
single expressions are displayed, either with their name if
specified or with the canonical name ‘<unnamed>’. If an ex-
pression contains errors, a distinct entry is displayed for
each error. If a given context does not contain an expression

Oclarity for Rational Rose Page 18

of a certain type (e.g. no ‘derive’-expressions), this type is
not displayed.

At the top of the window, you can choose, whether you want to
see all OCL expressions or only expressions that contain er-
rors.

The various buttons have the following meanings:

6.4.1 Warnings…
Usually, errors are displayed within their context. But some
kind of errors, e.g. errors in a context specification or er-
rors during accessing the internal repository of Rational
Rose, cannot be attributed to a specific context. Such errors
are displayed as warnings in a separate window.
This button is only enabled, if actually errors of this kind
have occurred during the last check.

 Figure 11: Warnings

6.4.2 Check again
After code has been edited from the result window, this button
can be used to trigger a new check of all OCL expressions that
have been checked during the initial check.

6.4.3 First error
Pressing this button selects the first error.
If no errors have been found during analysis this button is
disabled.

Oclarity for Rational Rose Page 19

6.4.4 Next error
Pressing this button selects the next error. If the last error
is already selected or no errors have been found during analy-
sis, this button is disabled.

6.4.5 Previous error
Pressing this button selects the previous error. If the first
error is already selected or no errors have been found during
analysis, this button is disabled.

6.4.6 Editing code from the result window
By double clicking or pressing the right mouse button and
choosing menu entry ‘edit code’ on a node, the underlying OCL
code can be edited. This allows for fast correction of errors
encountered during analysis of the OCL expressions.
Not all kind of nodes support this behavior.

Please see chapter 5.6 for special treatment of OCL expres-
sions in notes.

Oclarity for Rational Rose Page 20

7 Exporting OCL expressions
Exporting the OCL expressions contained in your models may be
useful for various reasons:

• You might want to make the OCL expressions easily acces-
sible for your team, e.g. by publishing them on a web-
site.

• You might want to use the expressions in another tool.

Therefore, Oclarity supports the export of all OCL expressions
to an XML file.

7.1 Triggering the export
To trigger the export, choose menu entry Tools/OCL/Export… and
follow the instructions shown in the displayed dialog. The
settings made in this window are preserved across invocations
of Rational Rose.

 Figure 12: Triggering an export

You can specify the name and path of the destination XML docu-
ment. Optionally, an XSL-file can automatically be applied to
the newly exported XML file.

A sample XSL file that you can use as basis for your own XSL
files is shipped with Oclarity. It is stored in the subdirec-
tory OCL in the Rational Rose installation directory.

Oclarity for Rational Rose Page 21

7.2 Structure of the XML file
In the listing below, the structure of an exported XML file is
listed. Bold text indicates an XML element whereas normal text
indicates an attribute of the associated element.
An increased indentation indicates either a sub element of the
element in the line above or an attribute of the element
above.

ocl_expressions
 general
 model_name
 user_name
 computer_name
 export_time
 contexts
 context
 name
 category
 type
 expression
 name
 source
 code

Oclarity for Rational Rose Page 22

8 Integration with the Rose repository

8.1 Overview
The OCL language definition is free of any reference to con-
crete programming languages or tools. Therefore, when using
OCL in the context of a specific programming language or soft-
ware engineering tool there is a certain degree of freedom in
mapping the features of OCL to the programming language or
tool at hand. This chapter describes how various features of
OCL are to be used in the context of Oclarity for Rational
Rose.
OCL uses the following properties of model elements:

• isQuery-status of operations
• whether an operation is a class operation or an instance

operation
• the direction of operation parameters

A method that is a ‘query’ is an operation that does not alter
the systems state during its execution. Only queries can be
called in OCL expressions.

The direction of operation parameters is important, because if
an output (or input/output) parameter is used, the method re-
turns a TupleType in OCL and not the specified return type.

Since none of these properties can be edited efficiently and
uniform across all versions of Rational Rose, Oclarity comes
with its own dialog to edit these OCL-related method proper-
ties. We store the according information in the model in a way
that is compatible with Rational Roses C++ language AddIn.

8.2 The OCL-property editor for operations
To edit the OCL-related properties of an operation or opera-
tion parameter, the according operation has to be selected in
the browser. Clicking the right mouse button and choosing the
menu entry ‘OCL properties…’ opens the editor for these prop-
erties.

Oclarity for Rational Rose Page 23

 Figure 13: Opening the operation property editor

In the following window, all OCL relevant properties of an op-
eration and its parameters can be modified.

 Figure 14: Edit operation properties

Oclarity for Rational Rose Page 24

8.3 Package handling
8.3.1 Package names with spaces
In Rational Rose, package names may contain spaces but this is
not supported by the OCL grammar. As a workaround the spaces
have to be replaced by underscore characters (‘_’) in the OCL
code.
For example, if you want to reference a type named ‘Customer’
in the package ‘Logical View::Business Objects’, the OCL code
must use ‘Business_Objects::Customer (note that ‘Logical View’
is not specified – see chapter 8.3.2).
It is not possible to mix underscores and spaces in package
names. Our recommendation is not to use package names with
spaces in your Rational Rose models.

8.3.2 Default package
Per default, Oclarity searches types in the package ‘Logical
View’. The package ‘Logical View’ must never be specified ex-
plicitly.
However, it is also possible to refer to types in the ‘Use
Case View’. In this case, the package must be specified and
the spaces must be replaced by underscores:

Use_Case_View::Customer

8.4 Mapping to Rose properties
This chapter describes how Oclarity stores the information
that is modified in the operation editor.

Information Tool/property name Used values
isQuery MOF.rose2mof.isQuery true

false
isStatic MOF.rose2mof.scope instance_level

classifier_level
parameter
direction

MOF.rose2mof.direction in_dir
out_dir
inout_dir

8.5 Enumerations
As defined by the OCL standard, an enumeration type is defined
through a class with the stereotype <<enumeration>>.
The attributes, who must be of type Integer or specified with-
out type, define the members of the enumeration type.

Oclarity for Rational Rose Page 25

 Figure 15: Defining an enumeration type

8.6 Attributes of stereotype <<reference>>
Attributes of stereotype <<reference>> are ignored by Oclar-
ity, because we assume that there is also an association that
describes the relation to the other class. This is useful, if
Oclarity is used to check expressions in the Rose model of the
UML Metamodel published by the OMG.

8.7 States
All states defined in state diagrams can be used in method
oclInState() without additional provisions.

8.8 Instantiated types
An instantiated type is a type that is not used on its own but
only in combination with another type. This concept is called
‘templates’ in C++ or ‘generics’ in Java and C#. For example,
a container class ‘Set’ may not be used on its own but only as
container for specific contained elements, e.g. instances of
class ‘Service’.

In OCL, the syntax to express such an instantiation is

Type1(Type2)

e.g.

Set(Service)

Since this syntax deviates from the syntax of some widely used
programming languages, we decided to allow both notations in-
terchangeably.

This means, if you are modeling a PSM and thus using concrete
types from your target language, this syntax can be used:

Type1<Type2>

e.g.

Set<Service>.

Oclarity for Rational Rose Page 26

Figure 16: Specify instantiated type

Thus your class definitions remain compatible with these pro-
gramming languages.

If you are modeling a PIM (and thus remain independent from a
concrete programming language) we recommend using the standard
OCL syntax:

Type1(Type2)

e.g.

Set(Service)

The alternative spelling using ‘<’ and ‘>’ can be used any-
where in Rational Rose, in particular for operation return
types and operation parameter types.
In the OCL code however, the syntax must be used always as de-
fined by the OCL grammar:

Set(Service)

Oclarity for Rational Rose Page 27

8.9 Associations
In Rational Rose it is possible to create associations between
classes and other types of model elements, e.g. an actor from
a use case diagram. Such associations are not allowed in UML
and are ignored by Oclarity (a warning is emitted).

