
Developing the Right Test
Documentation

Cem Kaner, J.D., Ph.D.
Department of Computer Sciences

Florida Institute of Technology

James Bach
Satisfice, Inc.

October, 2001
Pacific Northwest Software Quality Conference

2Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

Acknowledgments
• These notes outline the test planning chapters in prep for Testing Computer

Software, 3rd Ed., by Cem Kaner, James Bach, Hung Quoc Nguyen, Jack Falk,
Brian Lawrence & Bob Johnson. They incorporate and adapt materials by these
authors. The notes are also based on materials developed for Lessons Learned in
Software Testing, a book just completed by Cem Kaner, James Bach and Bret
Pettichord.

• Many of the ideas in these notes were reviewed and refined at the Third Los Altos
Workshop on Software Testing (LAWST), February 7-8, 1998, and at the Eleventh
LAWST, October 28-29, 2000.

– The participants at LAWST 3 were: Chris Agruss, James Bach, Karla Fisher, David
Gelperin, Kenneth Groder, Elisabeth Hendrickson, Doug Hoffman, III (recorder), Bob
Johnson, Cem Kaner (host), Brian Lawrence (facilitator), Brian Marick, Thanga
Meenakshi, Noel Nyman, Jeffery E. Payne, Bret Pettichord, Johanna Rothman, Jane
Stepak, Melora Svoboda, Jeremy White, and Rodney Wilson.

– The participants at LAWST 11 were: Chris Agruss, James Bach, Hans Buwalda, Marge
Farrell. Sam Guckenheimer, Elisabeth Hendrickson, Doug Hoffman, III (recorder),
Bob Johnson, Karen Johnson, Cem Kaner (host), Brian Lawrence (facilitator), Alan
Myrvold, Hung Quoc Nguyen, Noel Nyman, Neal Reizer, Amit Singh, and Melora
Svoboda.

3Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

Abstract
This workshop has grown out of our dissatisfaction with paper-intensive approaches that attempt to
provide a seemingly reproducible, somewhat mechanical process for planning and managing testing
and test documentation. Over the past 17 years, we have criticized IEEE standard 829 (on software
test documentation) and related approaches as being often inappropriate.

Colleagues have asked what we would put in IEEE 829’s place. To date, our responses have been
piecemeal. This seminar’s notes are a draft of our attempt to write a more comprehensive response.

– They start from the premise that the best approach to test documentation depends on the project context.
For example, creating detailed test documentation can be useful for some projects but can get in the way
of the development of a high-volume automated testing strategy. What are the relevant differences
between these projects? Before adopting an implementation guideline (like IEEE 829), we should analyze
our requirements. There is no point spending a fortune on creating a deliverable (here, the test
documentation set) that will not be used or that will interfere with the efficient running of the project.
Instead, we should build a documentation set that will actually satisfy the real needs of the project.

– The notes also reflect our view that testing is an exercise in critical thinking and careful questioning. A
test case is a question that you ask of the program (Are you broken in this way?). The point of a test case
is to reduce uncertainty associated with the product. (A test is good if it will reduce uncertainty, whether
it finds a bug or not.) A test plan is a structure for asking questions of the project and the product. These
notes suggest strategies for asking better questions, and they provide useful clusters of questions.

– The notes also provide samples of some common test planning documents, such as tables and matrices.
These will probably be among the building blocks of any testing program that you set up.

4Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

Overview

• Problems with the (allegedly) standard approach
• Defining your documentation requirements
• A model for testing and test documentation
• Test documentation elements

5Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

Problems with the (allegedly) standard approach

• IEEE Standard 829 for Software Test Documentation
– Test plan
– Test-design specification
– Test-case specification

• Test-case specification identifier
• Test items
• Input specifications
• Output specifications
• Environmental needs
• Special procedural requirements
• Intercase dependencies

– Test-procedure specification
– Test-item transmittal report
– Test-log

We often see
one or more
pages per
test case.

6Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

Problems with the (allegedly) standard approach

• What is the documentation cost per test case?
• What is the maintenance cost of the documentation, per

test case?
• If software design changes create documentation

maintenance costs, how much inertia do we build into
our system? How much does extensive test
documentation add to the cost of late improvement of
the software? How much should we add?

• What inertia is created in favor of invariant regression
testing?

• Is this incompatible with exploratory testing? Do we
always want to discourage exploration?

7Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

Problems with the (allegedly) standard approach

• What is the impact on high- volume test automation?
• How often do project teams start to follow 829 but then

give it up mid- project? What does this do to the net
quality of the test documentation and test planning
effort?

• WHAT REQUIREMENTS DOES A STANDARD LIKE
THIS FULFILL?

• WHICH STAKEHOLDERS GAIN A NET BENEFIT
FROM IEEE STANDARD DOCUMENTATION?

• WHAT BENEFITS DO THEY GAIN, AND WHY ARE
THOSE BENEFITS IMPORTANT TO THEM?

8Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

Problems with the (allegedly) standard approach

It is essential to understand your
requirements for test documentation.

Unless following a “standard” helps you
meet your requirements, it is empty at best,
anti-productive at worst.

9Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

Requirements

– There are many different notions of what a good set of
test documentation would include. Before spending a
substantial amount of time and resources, it’s worth
asking what documentation should be developed (and
why?)

– Test documentation is expensive and it takes a long time
to produce. If you figure out some of your main
requirements first, you might be able to do your work in a
way that achieves them.

10Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

Defining documentation requirements

• Stakeholders, interests, actions, objects
– Who would use or be affected by test documentation?
– What interests of theirs does documentation serve or

disserve?
– What will they do with the documentation?
– What types of documents are of high or low value?

• Asking questions
• Context- free questions
• Context- free questions specific to test planning
• Evaluating a plan

11Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

Discovering Requirements

• Requirements
– Anything that drives or constrains design

• Stakeholders
– Favored, disfavored, and neutral stakeholders

• Stakeholders’ interests
– Favored, disfavored, and neutral interests

• Actions
– Actions support or interfere with interests

• Objects

12Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

Exercise

1. List the Stakeholders
– Favored
– Disfavored
– Neutral stakeholders

2. For each Stakeholder, list her Interests
– Favored
– Disfavored
– Neutral interests

3. For each Interest, list Actions
– Actions support an interest
– Actions interfere with an interest

13Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

Exercise

Objects: The Stuff You Create
– Such as features, data of the product

For each object, what is its relationship
– to a stakeholder,
– a stakeholder’s interest, or
– in the actions the stakeholder wants to take or will have

taken on her?

14Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

Testers’ Questions: Does Your Car Work?

HOW CAN YOU TELL THAT SOMETHING WORKS?
• How do you know your car works?
• Are there situations in which your car would stop working?
• Who else uses your car? Do they use it differently than you, so that it

might work for you but fail for them?
• What facts would cause you to believe that your car doesn’t work?
• In what ways could your car not work, yet seem to you that it does?
• In what ways could your car work, yet seem to you that it doesn’t?
• Do you know enough about cars to answer these questions?
• Have you observed your car enough, today, to answer them?
• Under what circumstances would these questions matter?

15Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

Questioning

• Requirements analysis requires information gathering
– Read books on consulting
– Gause & Weinberg, Exploring Requirements is an

essential source on context-free questioning
• There are many types of questions:

– Open vs. closed
– Hypothetical vs. behavioral
– Opinion vs. factual
– Historical vs. predictive
– Context-dependent and context-free

16Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

The classic context-free questions

• The traditional newspaper reporters’ questions are:
– Who
– What
– When
– Where
– How
– Why

• For example, Who will use this feature? What does this user want to do
with it? Who else will use it? Why? Who will choose not to use it? What
do they lose? What else does this user want to do in conjunction with
this feature? Who is not allowed to use this product or feature, why, and
what security is in place to prevent them?

• We use these in conjunction with questions that come out of the testing
model (see below). The model gives us a starting place. We expand it
by asking each of these questions as a follow-up to the initial question.

17Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

Context-Free Questions: Defining the Problem

Based on: The CIA’s Phoenix Checklists (Thinkertoys, p.
140) and Bach’s Evaluation Strategies (Rapid Testing
Course notes)

– Why is it necessary to solve the problem?
– What benefits will you receive by solving the

problem?
– What is the unknown?
– What is it that you don’t yet understand?
– What is the information that you have?
– What is the source of this problem? (Specs? Field

experience? An individual stakeholder’s preference?)
– Who are the stakeholders?
– How does it relate to which stakeholders?
– What isn’t the problem?
– Is the information sufficient? Or is it insufficient? Or

redundant? Or contradictory?
– Should you draw a diagram of the problem? A figure?

What problems are
we trying to define?

– What test plan
should we create,
given extremely
limited time,
resources, and
information?

– How should we
document the testing
for a particular part
of the system?

– How have the
programmers
addressed a difficult
technical issue (if
you can understand
their approach, you
can understand how
to test it)

18Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

Context-Free Questions: Defining the Problem

– Where are the boundaries of the problem?
– What product elements does it apply to?
– How does this problem relate to the quality criteria?
– Can you separate the various parts of the problem? Can you write them

down? What are the relationships of the parts of the problem?
– What are the constants (things that can’t be changed) of the problem?
– What are your critical assumptions about this problem?
– Have you seen this problem before?
– Have you seen this problem in a slightly different form?
– Do you know a related problem?
– Try to think of a familiar problem having the same or a similar unknown.
– Suppose you find a problem related to yours that has already been solved.

Can you use it? Can you use its method?
– Can you restate your problem? How many different ways can you restate

it? More general? More specific? Can the rules be changed?
– What are the best, worst, and most probable cases you can imagine?

19Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

Context-Free Questions

Context-free process questions
– Who is the client?
– What is a successful solution worth to this client?
– What is the real (underlying) reason for wanting to solve this

problem?
– Who can help solve the problem?
– How much time is available to solve the problem?

Context-free product questions
– What problems could this product create?
– What kind of precision is required / desired for this product?

Metaquestions (when interviewing someone for info)
– Am I asking too many questions?
– Do my questions seem relevant?
– Are you the right person to answer these questions?
– Is there anyone else who can provide additional information?
– Is there anything else I should be asking?
– Is there anything you want to ask me?
– May I return to you with more questions later?

A sample of
additional
questions
based on
Gause &
Weinberg’s
Exploring
Requirements
p. 59-64

20Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

What is your group’s mission?

• Find important problems
• Assess quality
• Certify to standard
• Fulfill process mandates
• Satisfy stakeholders
• Assure accountability

• Advise about QA
• Advise about testing
• Advise about quality
• Maximize efficiency
• Minimize time
• Minimize cost

The quality of testing depends on which of these
possible missions matter and how they relate.

Many debates about the goodness of testing
are really debates over missions and givens.

21Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

Test Docs Requirements Questions

• Is test documentation a product or tool?

• Is software quality driven by legal issues or by market forces?

• How quickly is the design changing?

• How quickly does the specification change to reflect design
change?

• Is testing approach oriented toward proving conformance to
specs or nonconformance with customer expectations?

• Does your testing style rely more on already-defined tests or
on exploration?

• Should test docs focus on what to test (objectives) or on how
to test for it (procedures)?

• Should the docs ever control the testing project?

22Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

Test Docs Requirements Questions

• If the docs control parts of the testing project, should that
control come early or late in the project?

• Who are the primary readers of these test documents and how
important are they?

• How much traceability do you need? What docs are you tracing
back to and who controls them?

• To what extent should test docs support tracking and reporting
of project status and testing progress?

• How well should docs support delegation of work to new
testers?

• What are your assumptions about the skills and knowledge of
new testers?

• Is test doc set a process model, a product model, or a defect
finder?

23Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

Test Docs Requirements Questions

• A test suite should provide prevention, detection,
and prediction. Which is the most important for
this project?

• How maintainable are the test docs (and their test
cases)? And, how well do they ensure that test
changes will follow code changes?

• Will the test docs help us identify (and
revise/restructure in face of) a permanent shift in
the risk profile of the program?

• Are (should) docs (be) automatically created as a
byproduct of the test automation code?

24Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

Ultimately, write a mission statement

• Try to describe your core documentation requirements
in one sentence that doesn’t have more than three
components.

• Examples:
– The test documentation set will primarily support our

efforts to find bugs in this version, to delegate work,
and to track status.

– The test documentation set will support ongoing
product and test maintenance over at least 10 years, will
provide training material for new group members, and
will create archives suitable for regulatory or litigation
use.

25Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

A Model of Software Testing

Project
Environment

Risks
Product
Elements

Test
Docs

Test
Results

Quality
Criteria

Test
Techniques

26Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

Project Environment Factors:

• Stakeholders
• Processes
• Staff
• Schedules
• Equipment
• Tools & Test Materials
• Information
• Items Under Test
• Logistics
• Budget
• Deliverables

These aspects of the
environment constrain and
enable the testing project

27Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

Project Factors

• Stakeholders:
– Anyone who is a client of the main project
– Anyone who is a client of the testing project

• Includes customers (purchasers), end users, tech support,
programmers, project mgr, doc group, etc.

• Processes:
– The tasks and events that comprise the main project

• How the overall project is run
– The tasks and events that comprise the test project

• How the testing project is run
• Staff:

– Everyone who helps develop the product
• Sources of information and assistance

– Everyone who will perform or support testing
• Special talents or experiences of team members
• Size of the group
• Extent to which they are focused or are multi-tasking
• Organization: collaboration & coordination of the staff
• Is there an independent test lab?

28Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

Project Factors

• Schedules: The sequence, duration and synchronization of events
– When will testing start and how long is it expected to take?
– When will specific product elements be available to test?
– When will devices or tools be available to support testing?

• Equipment: Hardware required for testing
– What devices do we need to test the product with? Do we have them?

• Tools & Test Materials: Software required or desired for testing.
– Automation: Are such tools available? Do we want to use them? Do we have

them? Do we understand them?
– Probes or diagnostics to help observe the product under test?
– Matrices, checklists, other testing documentation?

• Information: (As needed for testing) about the project or product.
– Specifications, requirements documents, other reference materials to help us

determine pass/fail or to credibly challenge odd behaviour.
• What is the availability of these documents?
• What is the volatility of these documents?

29Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

Project Factors

• Items Under Test: Anything that will be tested
– For each product element:

• Is it available (or when will it be)?
• Is it volatile (and what is the change process)?
• Is it testable?

• Logistics: Facilities and support needed for organizing and
conducting the testing

– Do we have the supplies / physical space, power, light / security systems (if
needed) / procedures for getting more?

• Budget: Money and other resources for testing
– Can we afford the staff, space, training, tools, supplies, etc.?

• Deliverables: The observable products of the test project
– Such as bug reports, summary reports, test documentation, master disk.

• What are you supposed to create and can you do it?
– Will we archive the items under test and other products of testing?

30Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

An experience or solution provided to a customer.

Product Elements: A product is…

Everything that comes in the box, plus the box!

Functions and data, executed on a platform,
that serve a purpose for a user.

1 A software product is much more than code.
2 It involves a purpose, platform, and user.
3 It consists of many interdependent elements.

31Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

Product Elements:

• Structures: Everything that comprises the physical product
– Code: the code structures that comprise the product, from executables to

individual routines
– Interfaces: points of connection and communication between subsystems
– Hardware: hardware components integral to the product
– Non-executable files: any files other than programs, such as text files,

sample data, help files, etc.
– Alternate Media: anything beyond software and hardware, such as paper

documents, web links and content, packaging, license agreements, etc.

32Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

Product Elements:

• Functions: Everything that the product does.
– User Interface: functions that mediate the exchange of data with the user
– System Interface: functions that exchange data with something other than

the user, such as with other programs, hard disk, network, printer, etc.
– Application: functions that define or distinguish the product or fulfill core

requirements
– Error Handling: functions that detect and recover from errors, including

error messages
– Testability: functions provided to help test the product, such as

diagnostics, log files, asserts, test menus, etc.

• Temporal relationships: How the program functions over time
– Sequential operation: state-to-state transitions
– Data: changes in variables over time
– System interactions: such as synchronization or ordering of events in

distributed systems

33Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

Product Elements:

• Data: Everything that the product processes
– Input: data that is processed by the product
– Output: data that results from processing by the product
– Preset: data supplied as part of the product or otherwise built into it, such

as prefab databases, default values, etc.
– Persistent: data stored internally and expected to persist over multiple

operations. This includes modes or states of the product, such as options
settings, view modes, contents of documents, etc.

– Temporal: data based on time, such as date stamps or number of events
recorded in a unit of time

34Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

Product Elements:

• Platform: Everything on which the product depends
– External Hardware: components and configurations that are not part of the

shipping product, but are required (or optional) in order for the product to
work. Includes CPU’s, memory, keyboards, peripheral boards, etc.

– External Software: software components and configurations that are not a
part of the shipping product, but are required (or optional) in order for the
product to work. Includes operating systems, concurrently executing
applications, drivers, fonts, etc.

• Operations: How the product will be used
– Usage Profile: the pattern of usage, over time, including patterns of data

that the product will typically process in the field. This varies by user and
type of user.

– Environment: the physical environment in which the product will be
operated, including such elements as light, noise, and distractions.

35Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

Product Elements: Coverage

• There are as many kinds of coverage as there are ways to
model the product.
– Structural
– Functional
– Temporal
– Data
– Platform
– Operations

Product coverage is the proportion of the
product that has been tested.

See Software Negligence
& Testing Coverage at
www.kaner.com for 101
examples of coverage
“measures.”

36Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

Quality Criteria

• Accessibility
• Capability
• Compatibility
• Concurrency
• Conformance

to Standards
• Efficiency
• Installability

and
uninstallability

• Localizability

• Maintainability
• Performance
• Portability
• Recoverability
• Reliability
• Scalability
• Security
• Supportability
• Testability
• Usability

Quality is value
to some person
-- Jerry
Weinberg

37Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

Risk

Hazard:
A dangerous condition (something that could trigger an
accident)

Risk:
Possibility of suffering loss or harm.

Accident:
A hazard is encountered, resulting in loss or harm.

• Useful material available free at http://seir.sei.cmu.edu
• http://www.coyotevalley.com (Brian Lawrence)
• Good paper by Stale Amland, Risk Based Testing and Metrics,

16th International Conference on Testing Computer Software,
1999.

38Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

Risk

• Project risk management involves
– Identification of the different risks to the project (issues

that might cause the project to fail or to fall behind
schedule or to cost too much or to dissatisfy customers
or other stakeholders)

– Analysis of the potential costs associated with each risk
– Development of plans and actions to reduce the

likelihood of the risk or the magnitude of the harm
– Continuous assessment or monitoring of the risks (or

the actions taken to manage them)

39Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

Risk-Based Testing

• Two key dimensions:
– Find errors (risk-based approach to technical tasks of

testing)

– Manage the process of finding errors (risk-based test
management)

• Our focus today is on methods for finding errors efficiently.

40Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

Risks: Where to look for errors

• Qualities: Failure to conform to a quality criterion (risk of
unreliability, risk of unmaintainability, etc.)

• New things: newer features may fail.

• New technology: new concepts lead to new mistakes.

• New markets: A different customer base will see and use
the product differently.

• Learning Curve: mistakes due to ignorance.

• Changed things: changes may break old code.

• Late changes: rushed decisions, rushed or demoralized staff
lead to mistakes.

• Rushed work: some tasks or projects are chronically
underfunded and all aspects of work quality suffer.

41Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

Risks: Where to look for errors

• Poor design or unmaintainable implementation. Some
internal design decisions make the code so hard to maintain
that fixes consistently cause new problems.

• Tired programmers: long overtime over several weeks or
months yields inefficiencies and errors

• Other staff issues: alcoholic, mother died, two programmers
who won’t talk to each other (neither will their code)…

• Just slipping it in: pet feature not on plan may interact
badly with other code.

• N.I.H.: external components can cause problems.

• N.I.B.: (not in budget) Unbudgeted tasks may be done
shoddily.

42Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

Risks: Where to look for errors

• Ambiguity: ambiguous descriptions (in specs or other
docs) can lead to incorrect or conflicting
implementations.

• Conflicting requirements: ambiguity often hides
conflict, result is loss of value for some person.

• Unknown requirements: requirements surface
throughout development. Failure to meet a legitimate
requirement is a failure of quality for that stakeholder.

• Evolving requirements: people realize what they want
as the product develops. Adhering to a start- of- the-
project requirements list may meet contract but fail
product. (check out http//www.agilealliance.org/)

43Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

Risks: Where to look for errors

• Complexity: complex code may be buggy.

• Bugginess: features with many known bugs may also
have many unknown bugs.

• Dependencies: failures may trigger other failures.

• Untestability: risk of slow, inefficient testing.

• Little unit testing: programmers find and fix most of their
own bugs. Shortcutting here is a risk.

• Little system testing so far: untested software may fail.

• Previous reliance on narrow testing strategies: (e.g.
regression, function tests), can yield a backlog of errors
surviving across versions.

44Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

Risks: Where to look for errors

• Weak testing tools: if tools don’t exist to help identify /
isolate a class of error (e.g. wild pointers), the error is more
likely to survive to testing and beyond.

• Unfixability: risk of not being able to fix a bug.

• Language-typical errors: such as wild pointers in C. See

– Bruce Webster, Pitfalls of Object-Oriented Development

– Michael Daconta et al. Java Pitfalls

45Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

Risks: Where to look for errors

• Criticality: severity of failure of very important features.

• Popularity: likelihood or consequence if much used
features fail.

• Market: severity of failure of key differentiating features.

• Bad publicity: a bug may appear in PC Week.

• Liability: being sued.

46Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

Bug Patterns as a Source of Risk

• Testing Computer Software lays out a set of 480 common defects. You can
use these or develop your own list.

– Find a defect in the list
– Ask whether the software under test could have this defect
– If it is theoretically possible that the program could have

the defect, ask how you could find the bug if it was there.
– Ask how plausible it is that this bug could be in the

program and how serious the failure would be if it was
there.

– If appropriate, design a test or series of tests for bugs of
this type.

47Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

Build Your Own Model of Bug PatternsBuild Your Own Model of Bug Patterns

•Too many people start and end with the TCS bug list. It is
outdated. It was outdated the day it was published. And it
doesn’t cover the issues in your system. Building a bug list is
an ongoing process that constantly pays for itself. Here’s an
example from Hung Nguyen:
– This problem came up in a client/server system. The system sends the

client a list of names, to allow verification that a name the client enters
is not new.

– Client 1 and 2 both want to enter a name and client 1 and 2 both use the
same new name. Both instances of the name are new relative to their
local compare list and therefore, they are accepted, and we now have
two instances of the same name.

– As we see these, we develop a library of issues. The discovery method is
exploratory, requires sophistication with the underlying technology.

– Capture winning themes for testing in charts or in scripts-on-their-way
to being automated.

48Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

Building Bug Patterns

•There are plenty of sources to check for common failures
in the common platforms
– www.bugnet.com
– www.cnet.com
– links from www.winfiles.com
– various mailing lists

49Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

Test Case Design

• If the purpose of testing is to gain information about the
product, then a test case’s function is to elicit information
quickly and efficiently.

• In information theory, we define “information” in terms of
reduction of uncertainty. If there is little uncertainty, there
is little information to be gained.

• A test case that promises no information is poorly
designed. A good test case will provide information of
value whether the program passes the test or fails it.

50Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

Thinking About Test Techniques

A test technique
is a recipe

for performing
these tasks that

will reveal something
worth reporting

• Analyze the situation.
• Model the test space.
• Select what to cover.
• Determine test oracles.
• Configure the test system.
• Operate the test system.
• Observe the test system.
• Evaluate the test results.

51Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

Thinking About Test Techniques

• What is the difference between
– User testing?
– Usability testing?
– User interface testing?

52Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

Thinking About Test Techniques

• Testing combines techniques that focus on:
– Testers: who does the testing.
– Coverage: what gets tested.
– Potential problems: why you're testing (what risk

you're testing for).
– Activities: how you test.
– Evaluation: how to tell whether the test passed or

failed.
• All testing involves all five dimensions.
• A technique focuses your attention on one or a few

dimensions, leaving the others open to your judgment. You
can combine a technique focused on one dimension with
techniques focused on the other dimensions to achieve the
result you want.

53Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

Thinking About Test Techniques
•Examples

– Testers:
• User testing; Beta testing; Subject-matter experts

– Coverage:
• Function testing; Domain testing; State-based testing; Path

testing; Statement coverage; Configuration coverage
– Potential problems:

• Input / output / computation / storage constraints; Risk-based
testing

– Activities:
• Exploratory testing; Scenario testing; Load testing;

Performance testing
– Evaluation:

• Oracle-based testing; Comparison with saved results
•These examples are not definitive—how you classify a testing approach
depends on what you think is most central to it. For example, is load
testing problem oriented (denial of service) or activity oriented?

•The important thing is to conscious manage the 5 dimensions.

54Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

General Test Techniques

• Function
• Regression
• Domain driven
• Stress driven
• Specification driven
• Risk driven
• Scenario / use case /

transaction flow
• User testing
• Exploratory
• Random / statistical

All of these have been used as the
dominant technique in some companies.
How can approaches so different yield
good overall results?

– We think that the answer is that
each of these fixes only one of the
dimensions for testing techniques.

– For example, function testing
speaks to coverage but not to
testers, risks, activities, or
evaluation. You can vary all four
of these and still be doing function
testing.

55Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

General Test Techniques

• We provide an appendix that describes the 10 general
test techniques that we listed on the previous slide.

• We aren’t going to work through that appendix (or not in
much detail) in this workshop, but these notes may be
helpful for self- study, to fill in some of the details that
we’re skipping here.

56Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

Test Strategy

• “How we plan to cover the product so as to develop an
adequate assessment of quality.”

• A good test strategy is:

– Diversified
– Specific
– Practical
– Defensible

57Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

Test Strategy

• Makes use of test techniques.
• May be expressed by test procedures and cases.
• Not to be confused with test logistics, which involve the details

of bringing resources to bear on the test strategy at the right
time and place.

• You don’t have to know the entire strategy in advance. The
strategy can change as you learn more about the product and
its problems.

58Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

Test Cases/Procedures

• Test cases and procedures should manifest the test
strategy.

• If your strategy is to “execute the test suite I got from Joe
Third- Party”, how does that answer the prime strategic
questions:

– How will you cover the product and assess
quality?

– How is that practical and justified with
respect to the specifics of this project and
product?

• If you don’t know, then your real strategy is that you’re
trusting things to work out.

59Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

Diverse Half-Measures

• There is no single technique that finds all bugs.
• We can’t do any technique perfectly.
• We can’t do all conceivable techniques.

Use “diverse half-measures”-- lots of different
points of view, approaches, techniques, even
if no one strategy is performed completely.

60Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

Test Plan Components

• The following slides give examples of several charts,
tables, etc.

• You probably won’t have enough time to create all the
documentation that would be useful. Treat these
materials as optional.

• Use the components that you find most useful to:
– Clarify your own thinking
– Communicate your thinking to others
– Track your work or the work of someone else

61Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

Basic Test Documentation Components

Lists:
– Such as lists of fields, error messages, DLLs

Outlines: An outline organizes information into a
hierarchy of lists and sublists
– Such as the testing objectives list later in the course notes

Tables: A table organizes information in two dimensions
showing relationships between variables.
– Such as boundary tables, decision tables, combination test tables

Matrices: A matrix is a special type of table used for data
collection.
– Such as the numeric input field matrix, configuration matrices

– Refer to Testing Computer Software, pages 217-241. For more
examples, see page Testing Computer Software, page 218.

62Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

Traceability Matrix

XXTest 6

XXTest 5

XXTest 4

XXXTest 3

XXTest 2

XXXTest 1

Var 5Var 4Var 3Var 2Var 1

63Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

Traceability Matrix

• The columns involve different test items. A test item
might be a function, a variable, an assertion in a
specification or requirements document, a device that
must be tested, any item that must be shown to have
been tested.

• The rows are test cases.
• The cells show which test case tests which items.
• If a feature changes, you can quickly see which tests

must be reanalyzed, probably rewritten.
• In general, you can trace back from a given item of

interest to the tests that cover it.
• This doesn’t specify the tests, it merely maps their

coverage.

64Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

Myers’ Boundary Table

Variable Valid Case
Equivalence
Classes

Invalid Case
Equivalence
Classes

Boundaries
and Special
Cases

Notes

First
number

-99 to 99 > 99
< -99
non-number
expressions

99, 100
-99, -100
/
:
0
null entry

Second
number

same as first same as first same

Sum -198 to 198 Are there other
sources of data for
this variable? Ways
to feed it bad data?

65Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

Revised Boundary Analysis Table

Note that we’ve dropped the issue of “valid” and “invalid.” This lets
us generalize to partitioning strategies that don’t have the concept
of “valid” -- for example, printer equivalence classes.

V a r iab le E q u i v a l e n c e
C l a s s

A l t e r n a t e
E q u i v a l e n c e
C l a s s

B o u n d a r i e s
a n d S p e c ia l
C a s e s

N o t e s

F i rs t
n u m b e r

-9 9 t o 9 9

d ig i ts

> 9 9
< -9 9
n o n -d ig i ts

e x p r e s s i o n s

9 9 , 1 0 0
-9 9 , -1 0 0
/ , 0 , 9 , :
l e a d i n g s p a c e s
o r 0 s
n u l l en t ry

S e c o n d
n u m b e r

s a m e a s f irs t s a m e a s f i r s t s a m e

S u m -1 9 8 t o 1 9 8
-1 2 7 t o 1 2 7

? ? ?
-1 9 8 t o – 1 2 8
1 2 8 t o 1 9 8

? ? ?
1 2 7 , 128 , -1 2 7 ,
-1 2 8

A r e t h e r e o t h e r
s o u r c e s o f da ta f o r
t h i s v a r i a b l e ? W a y s
t o f e e d i t b a d d a t a ?

66Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

Equivalence Classes: A Broad Concept

The notion of equivalence class is much broader than numeric
ranges. Here are some examples:

– Membership in a common group
• such as employees vs. non-employees. (Note that not all

classes have shared boundaries.)
– Equivalent hardware

• such as compatible modems
– Equivalent event times

• such as before-timeout and after
– Equivalent output events

• perhaps any report will do to answer a simple the
question: Will the program print reports?

– Equivalent operating environments
• such as French & English versions of Windows 3.1

67Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

Variables Well Suited to Equivalence Class Analysis

§ ranges of numbers
§ character codes
§ how many times something is

done
§ (e.g. shareware limit on number of

uses of a product)
§ (e.g. how many times you can do

it before you run out of memory)
§ how many names in a mailing

list, records in a database,
variables in a spreadsheet,
bookmarks, abbreviations
§ size of the sum of variables, or of

some other computed value
(think binary and think digits)

§ size of a number that you enter
(number of digits) or size of a
character string
§ size of a concatenated string
§ size of a path specification
§ size of a file name
§ size (in characters) of a

document
§ size of a file (note special values

such as exactly 64K, exactly 512
bytes, etc.)
§ size of the document on the page

(compared to page margins)
(across different page margins,
page sizes)

Many types of variables, including input, output, internal, hardware
and system software configurations, and equipment states can be
subject to equivalence class analysis. Here are some examples:

68Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

Variables Well Suited to Equivalence Class Analysis

§ size of a document on a page, in terms
of the memory requirements for the
page. This might just be in terms of
resolution x page size, but it may be
more complex if we have compression.
§ equivalent output events (such as

printing documents)
§ amount of available memory (> 128

meg, > 640K, etc.)
§ visual resolution, size of screen, number

of colors
§ operating system version
§ variations within a group of “compatible”

printers, sound cards, modems, etc.
§ equivalent event times (when something

happens)
§ timing: how long between event A and

event B (and in which order--races)

• length of time after a timeout (from
JUST before to way after) -- what
events are important?

• speed of data entry (time between
keystrokes, menus, etc.)

• speed of input--handling of concurrent
events

• number of devices connected / active
• system resources consumed / available

(also, handles, stack space, etc.)
• date and time
• transitions between algorithms

(optimizations) (different ways to
compute a function)

• most recent event, first event
• input or output intensity (voltage)
• speed / extent of voltage transition (e.g.

from very soft to very loud sound)

69Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

Using Test Matrices for Routine Issues

• After testing a simple numeric input field a few times, you may
prefer a test matrix to present the same tests more concisely.

• Use a test matrix to show/track a series of test cases that are
fundamentally similar.

– For example, for most input fields, you’ll do a series of the
same tests, checking how the field handles boundaries,
unexpected characters, function keys, etc.

– As another example, for most files, you’ll run essentially the
same tests on file handling.

• The matrix is a concise way of showing the repeating tests.
– Put the objects that you’re testing on the rows.
– Show the tests on the columns.
– Check off the tests that you actually completed in the cells.

70Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

Reusable Test Matrix
Numeric Input Field

N
ot

h
in

g

LB
 o

f v
al

u
e

U
B
 o

f v
al

u
e

LB
 o

f v
al

u
e

- 1

U
B
 o

f v
al

u
e

+
 1

0 N
eg

at
iv

e

LB
 n

um
be

r
o
f d

ig
its

o
r c

h
ar

s

U
B

 n
um

be
r
o
f d

ig
its

o
r c

h
ar

s

E
m

pt
y

fie
ld

 (c
le

ar

th
e

d
ef

au
lt

va
lu

e)

O
ut

si
d
e

o
f U

B

nu
m

be
r
o
f d

ig
its

 o
r

ch
ar

s

N
on

-d
ig

its

71Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

Examples of integer-input tests

• Nothing
• Valid value
• At LB of value
• At UB of value
• At LB of value - 1
• At UB of value + 1
• Outside of LB of value
• Outside of UB of value
• 0
• Negative
• At LB number of digits or chars
• At UB number of digits or chars
• Empty field (clear the default

value)

• Outside of UB number of digits or
chars

• Non-digits
• Wrong data type (e.g. decimal

into integer)
• Expressions
• Space
• Non-printing char (e.g., Ctrl+char)
• DOS filename reserved chars

(e.g., "\ * . :")
• Upper ASCII (128-254)
• Upper case chars
• Lower case chars
• Modifiers (e.g., Ctrl, Alt, Shift-Ctrl,

etc.)
• Function key (F2, F3, F4, etc.)

72Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

Error Handling when Writing a File

• full local disk
• almost full local disk
• write protected local disk
• damaged (I/O error) local disk
• unformatted local disk
• remove local disk from drive after

opening file
• timeout waiting for local disk to

come back online
• keyboard and mouse I/O during

save to local disk
• other interrupt during save to local

drive
• power out during save to local

drive

• full network disk
• almost full network disk
• write protected network disk
• damaged (I/O error) network disk
• remove network disk after

opening file
• timeout waiting for network disk
• keyboard / mouse I/O during save

to network disk
• other interrupt during save to

network drive
• local power out during save to

network
• network power during save to

network

73Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

Routine Case Matrices

– You can often re-use a matrix like this across products and
projects.

– You can create matrices like this for a wide range of problems.
Whenever you can specify multiple tests to be done on one
class of object, and you expect to test several such objects, you
can put the multiple tests on the matrix.

– Mark a cell green if you ran the test and the program passed it.
Mark the cell red if the program failed.

– Write the bug number of the bug report for this bug.
– Write (in the cell) the automation number or identifier or file

name if the test case has been automated.

74Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

Routine Case Matrices

• Problems?
– What if your thinking gets out of date? (What if this

program poses new issues, not covered by the
standard tests?)

– Do you need to execute every test every time? (or
ever?)

– What if the automation ID number changes? -- We
still have a maintenance problem but it is not as
obscure.

75Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

Complex Data Relationships

76Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

Tabular Format for Data Relationships

RelationshipRelated
variable

PrintDisplayEntry
source

Field

77Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

Tabular Format for Data Relationships

Once you identify two variables that are related, test
them together using boundary values of each or pairs
of values that will trigger some other boundary.
--
– This is not the most powerful process for looking at

relationships. An approach like Cause-Effect Graphing is
more powerful, if you have or can build a complete
specification.

– I started using this chart as an exploratory tool for
simplifying my look at relationships in overwhelmingly
complex programs. (There doesn’t have to be a lot of
complexity to be “overwhelming.”)

78Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

Tabular Format for Data Relationships

•THE TABLE’S FIELDS
Field: Create a row for each field (Consultant, End Date, and Start

Date are examples of fields.)
Entry Source: What dialog boxes can you use to enter data into this field? Can

you import data into this field? Can data be calculated into this field? List
every way to fill the field -- every screen, etc.

Display: List every dialog box, error message window, etc., that can display the
value of this field. When you re-enter a value into this field, will the new entry
show up in each screen that displays the field? (Not always -- sometimes the
program makes local copies of variables and fails to update them.)

Print: List all the reports that print the value of this field (and any other functions
that print the value).

Related to: List every variable that is related to this variable. (What if you enter
a legal value into this variable, then change the value of a constraining
variable to something that is incompatible with this variable’s value?)

Relationship: Identify the relationship to the related variable.

79Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

Tabular Format for Data Relationships

Many relationships among data:
– Independence

• Varying one has no effect on the value or permissible values of
the other.

– Causal determination

• By changing the value of one, we determine the value of the
other.

• For example, in MS Word, the extent of shading of an area
depends on the object selected. The shading differs depending on
Table vs. Paragraph.

– Constrained to a range

• For example, the width of a line has to be less than the width of
the page.

• In a date field, the permissible dates are determined by the month
(and the year, if February).

– Selection of rules

• Example, hyphenation rules depend on the language you choose.

80Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

Tabular Format for Data Relationships

Many relationships among data:
– Logical selection from a list

• processes the value you entered and then figures out what
value to use for the next variable. Example: timeouts in phone
dialing:
– 0 on complete call 555-1212 but 95551212?
– 10 on ambiguous completion, 955-5121
– 30 seconds incomplete 555-121

– Logical selection of a list:
• For example, in printer setup, choose:

– OfficeJet, get Graphics Quality, Paper Type, and Color Options
– LaserJet 4, get Economode, Resolution, and Half-toning.

Look at Marick (Craft of Software Testing) for discussion of catalogs
of tests for data relationships.

81Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

Data Relationship Table

• Looking at the Word options, you see the real value of
the data relationships table. Many of these options have
a lot of repercussions.

• You might analyze all of the details of all of the
relationships later, but for now, it is challenging just to
find out what all the relationships ARE.

• The table guides exploration and will surface a lot of
bugs.

• -------------------------------------
• PROBLEM
• Works great for this release. Next release, what is your

support for more exploration?

82Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

Configuration Planning Table

V5-6V4-6V3-6V2-6V1-6Config 6

V5-5V4-5V3-5V2-5V1-5Config 5

V5-4V4-4V3-4V2-4V1-4Config 4

V5-3V4-3V3-3V2-3V1-3Config 3

V5-2V4-2V3-2V2-2V1-2Config 2

V5-1V4-1V3-1V2-1V1-1Config 1

Var 5Var 4Var 3Var 2Var 1

This table defines 6 standard configurations for testing. In later tests, the lab will
set up a Config-1 system, a Config-2 system, etc., and will do its compatibility
testing on these systems. The variables might be software or hardware choices.
For example, Var 1 could be the operating system (V1-1 is Win 2000, V1-2 is
Win ME, etc.) Var 2 could be how much RAM on the computer under test (V2-1
is 128 meg, V2-2 is 32 meg., etc.). Var 3 could be the type of printer, Var 4 the
machine’s language setting (French, German, etc.). Config planning tables are
often filled in using the All Pairs algorithm.

83Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

Configuration Test Matrix

Config 6

PassPassFailPassFailTest 5

PassFailFailPassTest 4
PassPassPassPassPassTest 3

PassPassPassFailTest 2

PassPassPassPassPassTest 1

Config 5Config 4Config 3Config 2Config 1

This matrix records the results of a series of tests against the 6 standard
configurations that we defined in the Configuration Planning Table.

In this table, Config 1 has passed 3 tests, failed 1, and hasn’t yet been tested
with Test 2. Config 6 is still untested.

84Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

Testing Variables in Combination

Interesting papers.
– Cohen, Dalal, Parelius, Patton,“The Combinatorial Design Approach to Automatic

Test Generation”,IEEE Software, Sept. 96
http://computer.org:80/software/so1996/s5toc.htm

– Cohen, Dalal, Fredman, Patton, “The AETG System: An Approach to Testing
Based on Combinatorial Design”, IEEE Trans on SW Eng. Vol 23#7, July 97
http://computer.org:80/tse/ts1997/e7toc.htm

– OnLine requires IEEE membership for free access. See
http://www.computer.org/epub/

– Several other papers on AETG are available at
https://aetgweb.tipandring.com/AboutAETGweb.html

– Also interesting:
http://www.stsc.hill.af.mil/CrossTalk/1997/oct/planning.html

– Jorgenson, Software Testing: A Craftsman’s Approach
– Brian Marick, “Multi-Generating test ideas from expressions with booleans and

relational operators” http://www.testing.com/tools/multi/README.html

Copyright (c) 1997-1999 Cem Kaner. All Rights Reserved. 85

86Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

Combinations Exercise / Illustration

• Here is a simple Find dialog. It takes three inputs:
– Find what: a text string
– Match case: yes or no
– Direction: up or down

• Simplify this by considering only three values for the text string,
“lowercase” and “Mixed Cases” and “CAPITALS”.

• (Note: To do a better job, we’d also choose input documents that
would yield a “find” and a “don’t find” for each case. The input
document would be another variable or, really, the intended result
(Find / Don’t) would be the variable. We’ll think about that again after
the exercise.)

87Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

Combinations Exercise

1 How many combinations of these three variables are
possible?

2 List ALL the combinations of these three variables.
3 Now create combination tests that cover all possible

pairs of values, but don’t try to cover all possible
triplets. List one such set.

4 How many test cases are in this set?

88Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

Combination Testing

• Imagine a program with 3 variables, V1 has 3 possible
values, V2 has 2 possible values and V3 has 2 possible
values.

• If V1 and V2 and V3 are independent, the number of
possible combinations is 12 (3 x 2 x 2)

• Building a simple combination table:
– Label the columns with the variable names, listing variables in

descending order (of number of possible values)
– Each column (before the last) will have repetition. Suppose that

A, B, and C are in column K of N columns. To determine how
many times (rows in which) to repeat A before creating a row
for B, multiply the number of variable values in columns K+1,
K+2, . . ., N.

89Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

Combination Testing

Building an all- pairs combination table:
– Label the columns with the variable names, listing variables in

descending order (of number of possible values)
– If the variable in column 1 has V1 possible values and the variable

in column 2 has V2 possible values, then there will be at least V1
x V2 rows (draw the table this way but leave a blank row or two
between repetition groups in column 1).

– Fill in the table, one column at a time. The first column repeats
each of its elements V2 times, skips a line, and then starts the
repetition of the next element. For example, if variable 1’s
possible values are A, B, C and V2 is 2, then column 1 would
contain A, A, blank row, B, B, blank row, C, C, blank row.

90Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

Combination Testing

Building an all- pairs combination table:
– In the second column, list all the values of the variable, skip the

line, list the values, etc. For example, if variable 2’s possible
values are X,Y, then the table looks like this so far

YC

XC

YB

XB

YA

XA

91Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

Combination Testing

Building an all- pairs combination table:
– Each section of the third column (think of AA as

defining a section, BB as defining another, etc.) will
have to contain every value of variable 3. Order the
values such that the variables also make all pairs with
variable 2.

– Suppose variable 2 can be 1,0
– The third section can be filled in either way, and you

might highlight it so that you can reverse it later. The
decision (say 1,0) is arbitrary.

Now that we’ve solved the 3-column exercise, let’s try
adding more variables. Each of them will have two values.

1

0

0

1

YC

XC

YB

XB

YA

XA

92Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

Combination Testing
• The 4th column went in easily (note that

we started by making sure we hit all pairs
of values of column 4 and column 2, then
all pairs of column 4 and column 3.

• Watch this first attempt on column 5. We
achieve all pairs of GH with columns 1, 2,
and 3, but miss it for column 4.

• The most recent arbitrary choice was HG
in the 2nd section. (Once that was
determined, we picked HG for the third in
order to pair H with a 1 in the third
column.)

• So we will erase the last choice and try
again:

G

H

G

H

H

G

E

F

E

F

F

E

0

1

1

0

0

1

YC

XC

YB

XB

YA

XA

93Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

Combination Testing

• We flipped the last arbitrary choice (column
5, section 2, to GH from HG) and erased
section 3. We then fill in section 3 by
checking for missing pairs. GH, GH gives
us two XG, XG pairs, so we flip to HP for
the third section and have a column 2 X
with a column 5 H and a column 2 Y with a
column 5 G as needed to obtain all pairs. G

H

H

G

H

G

E

F

E

F

F

E

0

1

1

0

0

1

YC

XC

YB

XB

YA

XA

94Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

Combination Testing

• But when we add the next column, we see that we just
can’t achieve all pairs with 6 values. The first one works up
to column 4 but then fails to get pair EJ or FI. The next fails
on GJ, HI

I

J

I

J

J

I

G

H

H

G

H

G

E

F

E

F

F

E

0

1

1

0

0

1

YC

XC

YB

XB

YA

XA

I

J

J

I

J

I

G

H

H

G

H

G

E

F

E

F

F

E

0

1

1

0

0

1

YC

XC

YB

XB

YA

XA

95Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

Combination Testing

• When all else fails, add rows. We need
one for GJ and one for HI, so add two
rows. In general, we would need as
many rows as the last column has
values.

• The other values in the two rows are
arbitrary, leave them blank and fill them
in as needed when you add new
columns. At the very end, fill the
remaining blank ones with arbitrary
values

I

J

I

J

I

J

J

I

G

H

H

H

G

G

H

G

E

F

E

F

F

E

0

1

1

0

0

1

YC

XC

YB

XB

YA

XA

96Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

Combination Testing

•If a variable is continuous but maps to a number line,
partition and use boundaries as the distinct values under
test. If all variables are continuous, we end up with all pairs
of all boundary tests of all variables. We don’t achieve all
triples, all quadruples, etc.

•If some combinations are of independent interest, add them
to the list of n-tuples to test.
– With the six columns of the example, we reduced 96 tests to 8.

Give a few back (make it 12 or 15 tests) and you still get
enormous reduction.

– Examples of “independent interest” are known (from tech
support) high risk cases, cases that jointly stress memory,
configuration combinations (Var 1 is operating systems, Var 2 is
printers, etc.) that are prevalent in the market, etc.

97Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

Charts: References

You can find plenty of example charts in Bill Perry’s books,
such as Effective Methods for Software Testing (2nd Ed.,
Wiley). Several of these will probably be useful, though
(Iike the charts in these notes) you’ll have to adapt them to
your circumstances.

98Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

Heuristics from James Bach’s Test Plan Evaluation Model

Sloppiness or neglect within any of
these four basic testing activities will
increase the likelihood that important
problems will go undetected.

3. Test strategy should address test
platform configuration, how the
product will be operated, how the
product will be observed, and how
observations will be used to evaluate
the product.

Complete testing is impossible, and
we can never know if our perception
of technical risk is completely
accurate.

2. Test strategy should focus most
effort on areas of potential technical
risk, while still putting some effort into
low risk areas just in case the risk
analysis is wrong.

The later in the project that a
problem is found, the greater the risk
that it will not be safely fixed in time
to ship. The sooner a problem is
found after it is created, the lesser
the risk of a bad fix.

1. Testing should be optimized to find
important problems fast, rather than
attempting to find all problems with
equal urgency.

Basis for the HeuristicHeuristic

99Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

Heuristics for Test Plan Evaluation

Basis for the HeuristicHeuristic

No single test technique can reveal all
important problems in a linear fashion.
We can never know for sure if we have
found all the problems that matter.
Diversification minimizes the risk that
the test strategy will be blind to certain
kinds of problems.
Use diverse half-measures to go
after low-hanging fruit.

4. Test strategy should be diversified in
terms of test techniques and
perspectives. Methods of evaluating
test coverage should take into account
multiple dimensions of coverage,
including structural, functional, data,
platform, operations, and requirements.

It is common for the test strategy to be
organized around functionality or code,
leaving it to the testers to concoct test
data on the fly. Often that indicates that
the strategy is too focused on
validating capability and not focused
enough on reliability.

5. The test strategy should specify how
test data will be designed and
generated.

100Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

Heuristics for Test Plan Evaluation

A rigid test strategy may make it more
likely that a particular subset of problems
will be uncovered, but in a complex
system it reduces the likelihood that all
important problems will be uncovered.
Reasonable variability in testing, such as
that which results from interactive,
exploratory testing, increases incidental
test coverage, without substantially
sacrificing essential coverage.

6. Not all testing should be pre-
specified in detail. The test strategy
should incorporate reasonable variation
and make use of the testers’ ability to
use situational reasoning to focuse on
important, but unanticipated problems.

Testing only against explicit written
requirements will not reveal all important
problems, since defined requirements
are generally incomplete and natural
language is inherently ambiguous.

7. It is important to test against implied
requirements—the full extent of what
the requirements mean, not just what
they say.

Basis for the HeuristicHeuristic

101Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

Heuristics for Test Plan Evaluation

Other teams and stakeholders often
have information about product
problems or potential problems that
can be of use to the test team. Their
perspective may help the testers
make a better analysis of risk.
Testers may also have information
that is of use to them.

8. The test project should promote
collaboration with all other functions
of the project, especially
developers, technical support, and
technical writing. Whenever
possible, testers should also
collaborate with actual customers
and users, in order to better
understand their requirements.

Basis for the HeuristicHeuristic

The likelihood that a test strategy will
serve its purpose is profoundly
affected by the testability of the
product.

9. The test project should consult
with development to help them
build a more testable product.

102Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

Heuristics for Test Plan Evaluation

Basis for the HeuristicHeuristic

Virtually every software project worth
doing involves special technical
challenges that a good test effort
must take into account. A completely
generic test plan usually indicates a
weak test planning process. It could
also indicate that the test plan is
nothing but unchanged boilerplate.

10. A test plan should highlight the
non-routine, project-specific
aspects of the test strategy and test
project.

103Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

Heuristics for Test Plan Evaluation

Basis for the HeuristicHeuristic

Many test projects suffer under the
false belief that human testers are
effective when they use exactingly
specified test scripts, or that test
automation duplicates the value of
human cognition in the test execution
process. Manual and automated
testing are not two forms of the same
thing. They are two entirely different
classes of test technique.

11. The test project should use
humans for what humans do well
and use automation for what
automation does well. Manual
testing should allow for
improvisation and on the spot
critical thinking, while automated
testing should be used for tests that
require high repeatability, high
speed, and no judgment.

104Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

Heuristics for Test Plan Evaluation

This is important in order to deflect
pressure to truncate the testing
process.

13. The test process should be kept
off of the critical path to the extent
possible. This can be done by testing
in parallel with development work,
and finding problems worth fixing
faster than the developers fix them.

Basis for the HeuristicHeuristic

A monolithic test schedule in a test
plan often indicates the false belief
that testing is an independent activity.
The test schedule can stand alone
only to the extent that the product the
highly testable, development is
complete, and the test process is not
interrupted by the frequent need to
report problems.

12. The test schedule should be
represented and justified in such a
way as to highlight any
dependencies on the progress of
development, the testability of the
product, time required to report
problems, and the project team’s
assessment of risk.

105Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

Heuristics for Test Plan Evaluation

Basis for the HeuristicHeuristic

This is important in order to maximize
the efficiency and speed of quality
improvement. It also helps keep testing
off of the critical path.

14. The feedback loop between
testers and developers should be
as tight as possible. Test cycles
should be designed to provide rapid
feedback to developers about
recent additions and changes they
have made before a full regression
test is commenced. Whenever
possible testers and developers
should work physically near each
other.

106Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

Heuristics for Test Plan Evaluation

Basis for the HeuristicHeuristic

Tunnel-vision is the great occupational
hazard of testing. Review not only
helps to reveal blind spots in test
design, but it can also help promote
dialog and peer education about test
practices.

16. All documentation related to the test
strategy, including test cases and
procedures, should be undergo review
by someone other than the person who
wrote them. The review process used
should be commensurate with the
criticality of the document.

By examining product quality
information gathered through various
means beyond the test team, blind
spots in the formal test strategy can be
uncovered.

15. The test project should employ
channels of information about quality
other than formal testing in order to help
evaluate and adjust the test project.
Examples of these channels are
inspections, field testing, or informal
testing by people outside of the test
team.

107Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

Evaluating Your Plan: Context Free Questions

Based on: The CIA’s Phoenix Checklists (Thinkertoys, p. 140) and
Bach’s Evaluation Strategies (Rapid Testing Course notes)
– Can you solve the whole problem? Part of the problem?
– What would you like the resolution to be? Can you picture it?
– How much of the unknown can you determine?
– What reference data are you using (if any)?
– What product output will you evaluate?
– How will you do the evaluation?
– Can you derive something useful from the information you have?
– Have you used all the information?
– Have you taken into account all essential notions in the problem?
– Can you separate the steps in the problem-solving process? Can you

determine the correctness of each step?
– What creative thinking techniques can you use to generate ideas? How

many different techniques?
– Can you see the result? How many different kinds of results can you see?
– How many different ways have you tried to solve the problem?

108Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

Evaluating Your Plan: Context Free Questions

– What have others done?
– Can you intuit the solution? Can you check the results?
– What should be done?
– How should it be done?
– Where should it be done?
– When should it be done?
– Who should do it?
– What do you need to do at this time?
– Who will be responsible for what?
– Can you use this problem to solve some other problem?
– What is the unique set of qualities that makes this problem what it is and

none other?
– What milestones can best mark your progress?
– How will you know when you are successful?
– How conclusive and specific is your answer?

109Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

Appendix on General Test Techniques

• The following slides review 10 general test techniques. In
previous talks, we’ve called these “paradigms” because many
companies have organized their entire testing effort and testing
thinking around one or two of them.

• We won’t discuss many of these slides in the workshop, but we
hope that these will be helpful reference materials to add some
detail to comments that we make about these techniques in
class.

• There is nothing magical about these techniques. They overlap.
They don’t collectively cover everything that would be good to
do.

• Imagine that you are one of the people who has adopted one of
these techniques as your primary approach, your paradigm:
– What makes for an excellent test?
– What is your approach best for?
– What are some weaknesses in your approach?

110Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

Function Testing

• Tag line
– “Black box unit testing.”

• Fundamental question or goal
– Test each function thoroughly, one at a time.

• Paradigmatic case(s)
– Spreadsheet, test each item in isolation.
– Database, test each report in isolation

• Strengths
– Thorough analysis of each item tested

• Blind spots
– Misses interactions, misses exploration of the benefits

offered by the program.

111Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

Some Function Testing Tasks
Identify the program’s features / commands
– From specifications or the draft user manual
– From walking through the user interface
– From trying commands at the command line
– From searching the program or resource files for command

names
Identify variables used by the functions and test their
boundaries.
Identify environmental variables that may constrain the
function under test.
Use each function in a mainstream way (positive testing).
Push it in as many ways as possible, as hard as possible.

112Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

Regression Testing
• Tag line

– “Repeat testing after changes.”
• Fundamental question or goal

– Manage the risks that (a) a bug fix didn’t fix the bug or (b)
the fix (or other change) had a side effect.

• Paradigmatic case(s)
– Bug regression (Show that a bug was not fixed)
– Old fix regression (Show that an old bug fix was broken)
– General functional regression (Show that a change caused a

working area to break.)
– Automated GUI regression suites

• Strengths
– Reassuring, confidence building, regulator-friendly

113Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

Regression Testing
• Blind spots / weaknesses

– Anything not covered in the regression series.
– Repeating the same tests means not looking for the bugs that

can be found by other tests.
– Pesticide paradox
– Low yield from automated regression tests
– Maintenance of this standard list can be costly and

distracting from the search for defects.

114Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

Automating Regression Testing

• This is the most commonly discussed automation
approach:
– create a test case
– run it and inspect the output
– if the program fails, report a bug and try again later
– if the program passes the test, save the resulting outputs
– in future tests, run the program and compare the output

to the saved results. Report an exception whenever the
current output and the saved output don’t match.

115Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

Potential Regression Advantages

• Dominant paradigm for automated testing.
• Straightforward
• Same approach for all tests
• Relatively fast implementation
• Variations may be easy
• Repeatable tests

116Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

GUI Regression: Interesting Papers

• Chris Agruss, Automating Software Installation Testing
• James Bach, Test Automation Snake Oil
• Hans Buwalda, Testing Using Action Words
• Hans Buwalda, Automated testing with Action Words:

Abandoning Record & Playback
• Elisabeth Hendrickson, The Difference between Test

Automation Failure and Success
• Cem Kaner, Avoiding Shelfware: A Manager’s View of

Automated GUI Testing
• John Kent, Advanced Automated Testing Architectures
• Bret Pettichord, Success with Test Automation
• Bret Pettichord, Seven Steps to Test Automation Success
• Keith Zambelich, Totally Data-Driven Automated Testing

117Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

Domain Testing
• AKA partitioning, equivalence analysis, boundary analysis
• Fundamental question or goal:

– This confronts the problem that there are too many test cases for
anyone to run. This is a stratified sampling strategy that provides a
rationale for selecting a few test cases from a huge population.

• General approach:
– Divide the set of possible values of a field into subsets, pick values to

represent each subset. Typical values will be at boundaries. More
generally, the goal is to find a “best representative” for each subset,
and to run tests with these representatives.

– Advanced approach: combine tests of several “best representatives”.
Several approaches to choosing optimal small set of combinations.

• Paradigmatic case(s)
– Equivalence analysis of a simple numeric field.
– Printer compatibility testing (multidimensional variable, doesn’t map

to a simple numeric field, but stratified sampling is essential.)

118Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

Domain Testing

• In classical domain testing
– Two values (single points or n-tuples) are equivalent if

the program would take the same path in response to
each.

• The classical domain strategies all assume
– that the predicate interpretations are simple, linear

inequalities.
– the input space is continuous and
– coincidental correctness is disallowed.

• It is possible to move away from these assumptions, but
the cost can be high, and the emphasis on paths is
troublesome because of the high number of possible
paths through the program.

• Clarke, Hassell, & Richardson, p. 388

119Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

Equivalence and Risk

Our working definition of equivalence:

Two test cases are equivalent if you expect the same
result from each.

This is fundamentally subjective. It depends on what you expect. And
what you expect depends on what errors you can anticipate:

Two test cases can only be equivalent by reference to a
specifiable risk.

Two different testers will have different theories about how programs
can fail, and therefore they will come up with different classes.
A boundary case in this system is a “best representative.”

A best representative of an equivalence class is a test
that is at least as likely to expose a fault as every other
member of the class.

120Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

Domain Testing

• Strengths
– Find highest probability errors with a relatively small

set of tests.
– Intuitively clear approach, generalizes well

• Blind spots
– Errors that are not at boundaries or in obvious special

cases.
– Also, the actual domains are often unknowable.

121Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

Domain Testing: Interesting Papers

• Thomas Ostrand & Mark Balcer, The Category-partition Method
For Specifying And Generating Functional Tests,
Communications of the ACM, Vol. 31, No. 6, 1988.

• Debra Richardson, et al., A Close Look at Domain Testing, IEEE
Transactions On Software Engineering, Vol. SE-8, NO. 4, July
1982

• Michael Deck and James Whittaker, Lessons learned from
fifteen years of cleanroom testing. STAR '97 Proceedings
(in this paper, the authors adopt boundary testing as an adjunct
to random sampling.)

• Richard Hamlet & Ross Taylor, Partition Testing Does Not
Inspire Confidence, Proceedings of the Second Workshop on
Software Testing, Verification, and Analysis, IEEE Computer
Society Press, 206-215, July 1988

122Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

Stress Testing

• Tag line
– “Overwhelm the product.”

• Fundamental question or goal
– Learn about the capabilities and weaknesses of the product by driving

it through failure and beyond. What does failure at extremes tell us
about changes needed in the program’s handling of normal cases?

• Paradigmatic case(s)
– Buffer overflow bugs
– High volumes of data, device connections, long transaction chains
– Low memory conditions, device failures, viruses, other crises.

• Strengths
– Expose weaknesses that will arise in the field.
– Expose security risks.

• Blind spots
– Weaknesses that are not made more visible by stress.

123Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

Stress Testing: Interesting Papers

• Astroman66, Finding and Exploiting Bugs 2600
• Bruce Schneier, Crypto- Gram, May 15, 2000
• James A. Whittaker and Alan Jorgensen, Why Software

Fails
• Whittaker & Jorgenson, How to Break Software.

124Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

Specification-Driven Testing

• Tag line:
– “Verify every claim.”

• Fundamental question or goal
– Check the product’s conformance with every statement

in every spec, requirements document, etc.
• Paradigmatic case(s)

– Traceability matrix, tracks test cases associated with
each specification item.

– User documentation testing

125Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

Specification-Driven Testing

• Strengths
– Critical defense against warranty claims, fraud charges, loss

of credibility with customers.
– Effective for managing scope / expectations of regulatory-

driven testing
– Reduces support costs / customer complaints by ensuring

that no false or misleading representations are made to
customers.

• Blind spots
– Any issues not in the specs or treated badly in the specs

/documentation.

126Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

Reviewing a Specification for Completeness

•Reading a spec linearly is not a particularly effective way to
read the document. It’s too easy to overlook key missing
issues.
•We may not have time to walk through this method in this
class, but the general approach that I use is based on James
Bach’s “Satisfice Heuristic Test Strategy Model” at
http://www.satisfice.com/tools/satisfice-tsm-4p.pdf.
– You can assume (not always correctly, but usually) that every

sentence in the spec is meant to convey information.
– The information will probably be about

• the project and how it is structured, funded or timed, or
• about the product (what it is and how it works) or
• about the quality criteria that you should evaluate the

product against.

127Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

Scenario Testing
Tag lines
– “Do something useful and interesting”
– “Do one thing after another.”

Fundamental question or goal
– Challenging cases that reflect real use.

Paradigmatic case(s)
– Appraise product against business rules, customer data,

competitors’ output
– Life history testing (Hans Buwalda’s “soap opera testing.”)
– Use cases are a simpler form, often derived from product

capabilities and user model rather than from naturalistic
observation of systems of this kind.

128Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

Scenario Testing
• The ideal scenario has several characteristics:

– It is realistic (e.g. it comes from actual customer or competitor
situations).

– There is no ambiguity about whether a test passed or failed.
– The test is complex, that is, it uses several features and

functions.
– There is a stakeholder who will make a fuss if the program

doesn’t pass this scenario.
• Strengths

– Complex, realistic events. Can handle (help with) situations
that are too complex to model.

– Exposes failures that occur (develop) over time
• Blind spots

– Single function failures can make this test inefficient.
– Must think carefully to achieve good coverage.

129Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

Scenario Testing: Interesting Papers

• Hans Buwalda on Soap Operas (in the conference
proceedings of STAR East 2000)

• Kaner, A pattern for scenario testing, at
www.testing.com

• Lots of literature on use cases

130Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

Risk-Based Testing

• Tag line
– “Find big bugs first.”

• Fundamental question or goal
– Define and refine tests in terms of the kind of problem (or risk)

that you are trying to manage
– OR prioritize the testing effort in terms of the relative risk of

different areas or issues we could test for.
• Paradigmatic case(s)

– Failure Mode and Effects Analysis (FMEA)
– Equivalence class analysis, reformulated.
– Test in order of frequency of use (Musa).
– Stress tests, error handling tests, security tests, tests looking for

predicted or feared errors, sample from predicted-bugs list.

131Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

Risk-Based Testing

• Strengths
– Optimal prioritization (assuming we correctly identify and

prioritize the risks)
– High power tests

• Blind spots
– Risks that were not identified or that are surprisingly more

likely.
– Some “risk-driven” testers seem to operate too subjectively.

How will I know what level of coverage that I’ve reached?
How do I know that I haven’t missed something critical?

132Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

Evaluating Risk

• Several approaches that call themselves “risk-based
testing” ask which tests we should run and which we
should skip if we run out of time.

• We think this is only half of the risk story. The other half is
focuses on test design.
– It seems to us that a key purpose of testing is to find

defects. So, a key strategy for testing should be defect-
based. Every test should be questioned:
• How will this test find a defect?
• What kind of defect do you have in mind?
• What power does this test have against that kind of

defect? Is there a more powerful test? A more powerful
suite of tests?

133Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

Evaluating Risk

• Many of us who think about testing in terms of risk,
analogize testing of software to the testing of
theories:
– Karl Popper, in his famous essay Conjectures and

Refutations, lays out the proposition that a scientific
theory gains credibility by being subjected to (and
passing) harsh tests that are intended to refute the
theory.

– We can gain confidence in a program by testing it
harshly (if it passes the tests). Subjecting it to easy
tests doesn’t tell us much about what will happen to
the program in the field.

134Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

Risk-Based Testing: Interesting Papers

• Stale Amland, Risk Based Testing
• James Bach, Reframing Requirements Analysis
• James Bach, Risk and Requirements- Based Testing
• James Bach, James Bach on Risk- Based Testing
• Stale Amland & Hans Schaefer, Risk based testing, a

response
• Carl Popper, Conjectures & Refutations

135Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

User Testing

• Tag line
– Strive for realism
– Let’s try this with real humans (for a change).

• Fundamental question or goal
– Identify failures that will arise in the hands of a person,

i.e. breakdowns in the overall human/machine/software
system.

• Paradigmatic case(s)
– Beta testing
– In-house experiments using a stratified sample of target

market
– Usability testing

136Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

User Testing

•Strengths
– Design issues are more credibly exposed.
– Can demonstrate that some aspects of product are incomprehensible or

lead to high error rates in use.
– In-house tests can be monitored with flight recorders (capture/replay,

video), debuggers, other tools.
– In-house tests can focus on areas / tasks that you think are (or should be)

controversial.
•Blind spots
– Coverage is not assured (serious misses from beta test, other user tests)
– Test cases can be poorly designed, trivial, unlikely to detect subtle

errors.
– Beta testing is not free, beta testers are not skilled, the technical results

are mixed. Distinguish marketing betas from technical betas.

137Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

Exploratory Testing

Simultaneously:
• Learn about the product
• Learn about the market
• Learn about the ways the product could fail
• Learn about the weaknesses of the product
• Learn about how to test the product
• Test the product
• Report the problems
• Advocate for repairs

• Develop new tests based on what you
have learned so far.

138Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

Exploratory Testing

• Tag line
– “Simultaneous learning, planning, and testing.”

• Fundamental question or goal
– Software comes to tester under-documented and/or late.

Tester must simultaneously learn about the product and
about the test cases / strategies that will reveal the product
and its defects.

• Paradigmatic case(s)
– Skilled exploratory testing of the full product
– Rapid testing
– Emergency testing (including thrown-over-the-wall test-it-

today testing.)
– Third party components.
– Troubleshooting / follow-up testing of defects.

139Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

Exploratory Testing

• Strengths
– Customer-focused, risk-focused
– Takes advantage of each tester’s strengths
– Responsive to changing circumstances
– Well managed, it avoids duplicative analysis and testing
– High bug find rates

• Blind spots
– The less we know, the more we risk missing.
– Limited by each tester’s weaknesses (can mitigate this with

careful management)
– This is skilled work, juniors aren’t very good at it.

140Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

Exploratory Testing: Interesting Papers

• Chris Agruss & Bob Johnson, Ad Hoc Software Testing
Exploring the Controversy of Unstructured Testing

• Whittaker & Jorgenson, How to Break Software

141Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

Random / Statistical Testing

• Tag line
– “High-volume testing with new cases all the time.”

• Fundamental question or goal
– Have the computer create, execute, and evaluate huge

numbers of tests.
• The individual tests are not all that powerful, nor all

that compelling.
• The power of the approach lies in the large number of

tests.
• These broaden the sample, and they may test the

program over a long period of time, giving us insight
into longer term issues.

142Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

Random / Statistical Testing

• Paradigmatic case(s)
– Some of us are still wrapping our heads around the

richness of work in this field. This is a tentative
classification

• NON-STOCHASTIC RANDOM TESTS
• STATISTICAL RELIABILITY ESTIMATION
• STOCHASTIC TESTS (NO MODEL)
• STOCHASTIC TESTS USING ON A MODEL OF THE

SOFTWARE UNDER TEST
• STOCHASTIC TESTS USING OTHER ATTRIBUTES

OF SOFTWARE UNDER TEST

143Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

Random / Statistical Testing: Non-Stochastic

• Fundamental question or goal
– The computer runs a large set of essentially independent

tests. The focus is on the results of each test. Tests are often
designed to minimize sequential interaction among tests.

• Paradigmatic case(s)
– Function equivalence testing: Compare two functions (e.g.

math functions), using the second as an oracle for the first.
Attempt to demonstrate that they are not equivalent, i.e. that
the achieve different results from the same set of inputs.

– Other test using fully deterministic oracles (see discussion of
oracles, below)

– Other tests using heuristic oracles (see discussion of oracles,
below)

144Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

Statistical Reliability Estimation

• Fundamental question or goal
– Use random testing (possibly stochastic, possibly

oracle-based) to estimate the stability or reliability of
the software. Testing is being used primarily to qualify
the software, rather than to find defects.

• Paradigmatic case(s)
– Clean-room based approaches

145Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

The Need for Stochastic Testing: An Example

Idle

Connected

On Hold

Ringing Caller
hung up

You
hung up

146Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

Stochastic Tests--No Model: “Dumb Monkeys”

• Fundamental question or goal
– High volume testing, involving a long sequence of

tests.
– A typical objective is to evaluate program performance

over time.
– The distinguishing characteristic of this approach is that

the testing software does not have a detailed model of
the software under test.

– The testing software might be able to detect failures
based on crash, performance lags, diagnostics, or
improper interaction with other, better understood parts
of the system, but it cannot detect a failure simply
based on the question, “Is the program doing what it is
supposed to or not?”

147Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

Stochastic Tests-- No Model: “Dumb Monkeys”)

• Paradigmatic case(s)
– Executive monkeys: Know nothing about the system. Push

buttons randomly until the system crashes.
– Clever monkeys: More careful rules of conduct, more

knowledge about the system or the environment. See Freddy.
– O/S compatibility testing: No model of the software under test,

but diagnostics might be available based on the environment
(the NT example)

– Early qualification testing
– Life testing
– Load testing

• Notes
– Can be done at the API or command line, just as well as via UI

148Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

Stochastic, assert or diagnostics-based random tests

• Fundamental question or goal
– High volume random testing using random sequence of

fresh or pre-defined tests that may or may not self-
check for pass/fail. The primary method for detecting
pass/fail uses assertions (diagnostics built into the
program) or other (e.g. system) diagnostics.

• Paradigmatic case(s)
– Telephone example (asserts)
– Embedded software example (diagnostics)

149Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

Random Testing: Stochastic, Regression-Based

• Fundamental question or goal
– High volume random testing using random sequence of

pre-defined tests that can self-check for pass/fail.
• Paradigmatic case(s)

– Life testing
– Search for specific types of long-sequence defects.

150Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

Random Testing: Stochastic, Regression-Based

• Notes
– Create a series of regression tests. Design them so that they

don’t reinitialize the system or force it to a standard starting
state that would erase history. The tests are designed so that
the automation can identify failures. Run the tests in random
order over a long sequence.

– This is a low-mental-overhead alternative to model-based
testing. You get pass/fail info for every test, but without
having to achieve the same depth of understanding of the
software. Of course, you probably have worse coverage, less
awareness of your actual coverage, and less opportunity to
stumble over bugs.

– Unless this is very carefully managed, there is a serious risk
of non-reproduceability of failures.

151Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

Random Testing: Sandboxing the Regression Tests

• In a random sequence of standalone tests, we might want to
qualify each test, T1, T2, etc, as able to run on its own. Then,
when we test a sequence of these tests, we know that errors
are due to interactions among them rather than merely to
cumulative effects of repetition of a single test.

• Therefore, for each Ti, we run the test on its own many times
in one long series, randomly switching as many other
environmental or systematic variables during this random
sequence as our tools allow.

• We call this the “sandbox” series—Ti is forced to play in its
own sandbox until it “proves” that it can behave properly on
its own. (This is an 80/20 rule operation. We do want to avoid
creating a big random test series that crashes only because
one test doesn’t like being run or that fails after a few runs
under low memory. We want to weed out these simple
causes of failure. But we don’t want to spend a fortune trying
to control this risk.)

152Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

Random Testing: Sandboxing the Regression Tests

Suppose that you create a random sequence of
standalone tests (that were not sandbox- tested), and
these tests generate a hard- to- reproduce failure.
You can run a sandbox on each of the tests in the
series, to determine whether the failure is merely due to
repeated use of one of them.

153Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

Random Testing: Model-based Stochastic Tests

• Fundamental Question or Goal
– Build a state model of the software. (The analysis will reveal

several defects in itself.) Generate random events / inputs to
the program. The program responds by moving to a new
state. Test whether the program has reached the expected
state.

• Paradigmatic case(s)
– I haven’t done this kind of work. Here’s what I understand:

• Works poorly for a complex product like Word
• Likely to work well for embedded software and simple

menus (think of the brakes of your car or walking a control
panel on a printer)

• In general, well suited to a limited-functionality client that will
not be powered down or rebooted very often.

• Maintenance is a critical issue because design changes add
or subtract nodes, forcing a regeneration of the model.

154Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

Random Testing: Model-based Stochastic Tests

Alan Jorgensen, Software Design Based on Operational Modes, Ph.D.
thesis, Florida Institute of Technology:

The applicability of state machine modeling to mechanical computation dates
back to the work of Mealy [Mealy, 1955] and Moore [Moore, 1956] and
persists to modern software analysis techniques [Mills, et al., 1990, Rumbaugh,
et al., 1999]. Introducing state design into software development process began
in earnest in the late 1980’s with the advent of the cleanroom software
engineering methodology [Mills, et al., 1987] and the introduction of the State
Transition Diagram by Yourdon [Yourdon, 1989].
A deterministic finite automata (DFA) is a state machine that may be used to
model many characteristics of a software program. Mathematically, a DFA is
the quintuple, M = (Q, S, d, q0, F) where M is the machine, Q is a finite set of
states, S is a finite set of inputs commonly called the “alphabet,” d is the
transition function that maps Q x S to Q,, q0 is one particular element of Q
identified as the initial or stating state, and F ⊆ Q is the set of final or
terminating states [Sudkamp, 1988]. The DFA can be viewed as a directed
graph where the nodes are the states and the labeled edges are the transitions
corresponding to inputs.

155Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

Random Testing: Model-based Stochastic Tests

Alan Jorgensen, Software Design Based on Operational Modes, Ph.D.
thesis, Florida Institute of Technology:

When taking this state model view of software, a different definition of
software failure suggests itself: “The machine makes a transition to an
unspecified state.” From this definition of software failure a software defect
may be defined as: “Code, that for some input, causes an unspecified state
transition or fails to reach a required state.”

. . .
Recent developments in software system testing exercise state transitions and
detect invalid states. This work, [Whittaker, 1997b], developed the concept of
an “operational mode” that functionally decomposes (abstracts) states.
Operational modes provide a mechanism to encapsulate and describe state
complexity. By expressing states as the cross product of operational modes
and eliminating impossible states, the number of distinct states can be reduced,
alleviating the state explosion problem.
Operational modes are not a new feature of software but rather a different way
to view the decomposition of states. All software has operational modes but
the implementation of these modes has historically been left to chance. When
used for testing, operational modes have been extracted by reverse engineering.

156Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

Random Testing: Thoughts Toward an Architecture

• We have a population of tests, which may have been
sandboxed and which may carry self- check info. A test
series involves a sample of these tests.

• We have a population of diagnostics, probably too many
to run every time we run a test. In a given test series,
we will run a subset of these.

• We have a population of possible configurations, some
of which can be set by the software. In a given test
series, we initialize by setting the system to a known
configuration. We may reset the system to new
configurations during the series (e.g. every 5th test).

157Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

Random Testing: Thoughts Toward an Architecture

• We have an execution tool that takes as input
– a list of tests (or an algorithm for creating a list),
– a list of diagnostics (initial diagnostics at start of

testing, diagnostics at start of each test, diagnostics on
detected error, and diagnostics at end of session),

– an initial configuration and
– a list of configuration changes on specified events.

• The tool runs the tests in random order and outputs
results
– to a standard-format log file that defines its own

structure so that
– multiple different analysis tools can interpret the same

data.

158Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

Random / Statistical Testing

• Strengths
– Regression doesn’t depend on same old test every time.
– Partial oracles can find errors in young code quickly and

cheaply.
– Less likely to miss internal optimizations that are invisible

from outside.
– Can detect failures arising out of long, complex chains that

would be hard to create as planned tests.
• Blind spots

– Need to be able to distinguish pass from failure. Too many
people think “Not crash = not fail.”

– Executive expectations must be carefully managed.
– These methods will often cover many types of risks, but will

obscure the need for other tests less amenable to automation.

159Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

Random / Statistical Testing

• Blind spots
– Testers might spend much more time analyzing the

code and too little time analyzing the customer and her
uses of the software.

– Potential to create an inappropriate prestige hierarchy,
devaluating the skills of subject matter experts who
understand the product and its defects much better than
the automators.

160Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

Random Testing: Interesting Papers

• Larry Apfelbaum, Model-Based Testing, Proceedings of
Software Quality Week 1997 (not included in the course
notes)

• Michael Deck and James Whittaker, Lessons learned from
fifteen years of cleanroom testing. STAR '97 Proceedings

• Doug Hoffman, Mutating Automated Tests
• Alan Jorgensen, An API Testing Method
• Noel Nyman, GUI Application Testing with Dumb Monkeys.
• Harry Robinson, Finite State Model-Based Testing on a

Shoestring.
• Harry Robinson, Graph Theory Techniques in Model-Based

Testing.

