Developing the Right Test
Documentation

Cem Kaner, J.D., Ph.D.
Department of Computer Sciences
Florida Institute of Technology

James Bach
Satisfice, Inc.

October, 2001
Pacific Northwest Software Quality Conference



Acknowledgments
T

» These notes outline the test planning chapters in prep for Testing Computer
Software, 3rd Ed., by Cem Kaner, James Bach, Hung Quoc Nguyen, Jack Falk,
Brian Lawrence & Bob Johnson. They incorporate and adapt materials by these
authors. The notes are also based on materials developed for Lessons Learned in
Software Testing, a book just completed by Cem Kaner, James Bach and Bret
Pettichord.

Many of the ideas in these notes were reviewed and refined at the Third Los Altos
Workshop on Software Testing (LAWST), February 7-8, 1998, and at the Eleventh
LAWST, October 28-29, 2000.

— The participants at LAWST 3 were: Chris Agruss, James Bach, Karla Fisher, David
Gelperin, Kenneth Groder, Elisabeth Hendrickson, Doug Hoffman, 111 (recorder), Bob
Johnson, Cem Kaner (host), Brian Lawrence (facilitator), Brian Marick, Thanga
Meenakshi, Noel Nyman, Jeffery E. Payne, Bret Pettichord, Johanna Rothman, Jane
Stepak, Melora Svoboda, Jeremy White, and Rodney Wilson.

— The participants at LAWST 11 were: Chris Agruss, James Bach, Hans Buwalda, Marge
Farrell. Sam Guckenheimer, Elisabeth Hendrickson, Doug Hoffman, 111 (recorder),
Bob Johnson, Karen Johnson, Cem Kaner (host), Brian Lawrence (facilitator), Alan
Myrvold, Hung Quoc Nguyen, Noel Nyman, Neal Reizer, Amit Singh, and Melora
Svoboda

Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved. 2




Abstract
B

This workshop has grown out of our dissatisfaction with paper-intensive approaches that attempt to

provide a seemingly reproducible, somewhat mechanical process for planning and managing testing
and test documentation. Over the past 17 years, we have criticized |IEEE standard 829 (on software
test documentation) and related approaches as being often inappropriate.

Colleagues have asked what we would put in IEEE 829’s place. To date, our responses have been
piecemeal. This seminar’s notes are a draft of our attempt to write a more comprehensive response.

— They start from the premise that the best approach to test documentation depends on the project context.
For example, creating detailed test documentation can be useful for some projects but can get in the way
of the development of a high-volume automated testing strategy. What are the relevant differences
between these projects? Before adopting an implementation guideline (like IEEE 829), we should analyze
our requirements. There is no point spending a fortune on creating a deliverable (here, the test
documentation set) that will not be used or that will interfere with the efficient running of the project.
Instead, we should build a documentation set that will actually satisfy the real needs of the project.

— The notes also reflect our view that testing is an exercise in critical thinking and careful questioning. A
test case is a question that you ask of the program (Are you broken in this way?). The point of atest case
IS to reduce uncertainty associated with the product. (A test is good if it will reduce uncertainty, whether
it findsabug or not.) A test plan is a structure for asking questions of the project and the product. These
notes suggest strategies for asking better questions, and they provide useful clusters of questions.

— The notes aso provide samples of some common test planning documents, such as tables and matrices.
These will probably be among the building blocks of any testing program that you set up.

Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved. 3



Overview

Problems with the (allegedly) standard approach
Defining your documentation requirements

A model for testing and test documentation

Test documentation elements

Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.



Problems with the (allegedly) standard approach

TS
« |[EEE Standard 829 for Software Test Documentation

— Test plan
— Test-design specification
— Test-case specification

» Test-case specification identifier We often see

+ Testitems one or more

* Input specifications pages per

o Output specifications

test case.

 Environmental needs
» Special procedural requirements
* Intercase dependencies

— Test-procedure specification

— Test-item transmittal report

— Test-log

Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved. 5



Problems with the (allegedly) standard approach
_ TT——

 What is the documentation cost per test case?

 What is the maintenance cost of the documentation, per
test case?

 |f software design changes create documentation
maintenance costs, how much inertia do we build into
our system? How much does extensive test
documentation add to the cost of late improvement of
the software? How much should we add?

 What inertia is created in favor of invariant regression
testing?

 [s this incompatible with exploratory testing? Do we
always want to discourage exploration?

Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.



Problems with the (allegedly) standard approach

 What is the impact on high \dume test automation?

 How often do project teams start to follow 829 but then
give it up mid poect? What does this do to the net
quality of the test documentation and test planning
effort?

« WHAT REQUIREMENTS DOES A STANDARD LIKE
THIS FULFILL?

« WHICH STAKEHOLDERS GAIN A NET BENEFIT
FROM IEEE STANDARD DOCUMENTATION?

« WHAT BENEFITS DO THEY GAIN, AND WHY ARE
THOSE BENEFITS IMPORTANT TO THEM?

Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.



Problems with the (allegedly) standard approach

It 1s essential to understand your
requirements for test documentation.

Unless following a “ standard” helps you
meet your requirements, it Is empty at best,
anti-productive at wor st.

Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.



Requirements

— There are many different notions of what a good set of
test documentation would include. Before spending a
substantial amount of time and resources, it’s worth
asking what documentation should be devel oped (and
why?)

— Test documentation is expensive and it takes a long time
to produce. If you figure out some of your main
requirements first, you might be able to do your work in a
way that achieves them.

Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.



Defining documentation reguirements
B

o Stakeholders, interests, actions, objects
— Who would use or be affected by test documentation?
— What interests of theirs does documentation serve or
disserve?
— What will they do with the documentation?
— What types of documents are of high or low value?
e Asking questions
« Context free questions
« Context free questions specific to test planning
e Evaluating a plan

Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

10



Discovering Requirements

Requirements

— Anything that drives or constrains design
Stakeholders

— Favored, disfavored, and neutral stakeholders
Stakeholders’ interests

— Favored, disfavored, and neutral interests
Actions

— Actions support or interfere with interests
Objects

Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.



Exercise

1. List the Stakeholders

— Favored
— Disfavored

— Neutral stakeholders
2. For each Stakeholder, list her Interests

— Favored
— Disfavored

— Neutral interests

3. For each Interest, list Actions

— Actions support an interest

— Actionsinterfere with an interest

Test Documentation

Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

12



Exercise

Objects: The Stuff You Create

— Such as features, data of the product
For each object, what is its relationship
— to astakeholder,

— astakeholder’ sinterest, or

— 1n the actions the stakeholder wants to take or will have
taken on her?

Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

13



Testers' Questions. Does Your Car Work?
B

HOW CAN YOU TELL THAT SOMETHING WORKS?
How do you know your car works?
Are there situations in which your car would stop working?

Who else uses your car? Do they use it differently than you, so that it
might work for you but fail for them?

What facts would cause you to believe that your car doesn’t work?
In what ways could your car not work, yet seem to you that it does?
In what ways could your car work, yet seem to you that it doesn’t?
Do you know enough about cars to answer these guestions?

Have you observed your car enough, today, to answer them?
Under what circumstances would these questions matter?

Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved. 14



Questioning

 Requirements analysis requires information gathering
— Read books on consulting

— Gause & Weinberg, Exploring Requirementsis an
essential source on context-free questioning

 There are many types of questions:
— Open vs. closed
— Hypothetical vs. behavioral
— Opinion vs. factual
— Historical vs. predictive
— Context-dependent and context-free

Test Documentation

Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

15



The classic context-free questions

* The traditional newspaper reporters’ questions are:
— Who

— What
— When
— Where
— How
— Why

« For example, Who will use this feature? What does this user want to do
with it? Who else will use it? Why? Who will choose not to use it? What
do they lose? What else does this user want to do in conjunction with
this feature? Who is not allowed to use this product or feature, why, and
what security is in place to prevent them?

 We use these in conjunction with questions that come out of the testing
model (see below). The model gives us a starting place. We expand it
by asking each of these questions as a follow-up to the initial question.

Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved. 16




Context-Free Questions. Defining the Problem

Based on: The CIA’s Phoenix Checklists (Thinkertoys, p. What problems are
140) and Bach’s Evaluation Strategies (Rapid Testing we trying to define?

Course notes)

— Why is it necessary to solve the problem? given extremely

— What benefits will you receive by solving the limited time,
problem? resour ces, and

— What is the unknown? 'I_rl‘g‘j\: r;"’(‘;b?gzve

— What isit that you don’t yet understan;i? document the testing

— What isthe source of this problem? (Specs? Field of the system?
experience? An individual stakeholder’s preference?) | — How havethe

— Who are the stakeholders? programmers

— How doesit relate to which stakeholders? addressed a difficult

e o technical issue (if

— What ISI’] t the pr0b|em 4 o o you can understand

— Isthe information sufficient? Or isit insufficient? Or their approach, you
redundant? Or contradictory? fg?eustnﬁ?f stand how

— Should you draw a diagram of the problem? A figure?

Test Documentation

— What test plan
should we create,

Copyright © 2001 Cem Kaner and James Bach. All rights reserved. 17



Context-Free Questions. Defining the Problem

— Where are the boundaries of the problem?

— What product elements does it apply to?

— How does this problem relate to the quality criteria?

— Can you separate the various parts of the problem? Can you write them
down? What are the relationships of the parts of the problem?

— What are the constants (things that can’t be changed) of the problem?

— What are your critical assumptions about this problem?

— Have you seen this problem before?

— Have you seen this problem in adlightly different form?

— Do you know arelated problem?

— Try to think of afamiliar problem having the same or a similar unknown.

— Suppose you find a problem related to yours that has already been solved.
Can you use it? Can you use its method?

— Can you restate your problem? How many different ways can you restate
It? More general ? More specific? Can the rules be changed?

— What are the best, worst, and most probable cases you can imagine?

Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved. 18



Context-Free Questions

TS
Context-free process questions
— Who isthe client? Asamp'e of
— What is a successful solution worth to this client? addltl_onal
: ) : : guestions
— What isthereal (underlying) reason for wanting to solvethis - coq on
problem? Gause &
— Who can help solve the problem? Weinberg’s
— How much time is available to solve the problem? Exploring
Context-free product questions Requirements
— What problems could this product create? p. 59-64

— What kind of precision isrequired / desired for this product?
Metaguestions (when interviewing someone for info)

— Am | asking too many questions?

— Do my questions seem relevant?

— Areyou the right person to answer these gquestions?

— Isthere anyone else who can provide additional information?
— Isthere anything else | should be asking?

— Isthere anything you want to ask me?

— May | return to you with more questions later?

Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved. 19



What iIs your group’s mission?

T
e Find important problems e Advise about QA
o Assess guality » Advise about testing
o Certify to standard « Advise about quality
« Fulfill process mandates  Maximize efficiency
« Satisfy stakeholders  Minimize time
e Assure accountability  Minimize cost

The quality of testing depends on which of these
possible missions matter and how they relate.

Many debates about the goodness of testing
are really debates over missions and givens.

Test Documentation

Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

20



Test Docs Requirements Questions

Is test documentation a product or tool?

Is software quality driven by legal issues or by market forces?

How quickly is the design changing?

How quickly does the specification change to reflect design
change?

Is testing approach oriented toward proving conformance to
specs or nonconformance with customer expectations?

Does your testing style rely more on already-defined tests or
on exploration?

Should test docs focus on what to test (objectives) or on how
to test for it (procedures)?

Should the docs ever control the testing project?

Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.



Test Docs Requirements Questions

If the docs control parts of the testing project, should that
control come early or late in the project?

Who are the primary readers of these test documents and how
Important are they?

How much traceability do you need? What docs are you tracing
back to and who controls them?

To what extent should test docs support tracking and reporting
of project status and testing progress?

How well should docs support delegation of work to new
testers?

What are your assumptions about the skills and knowledge of
new testers?

Is test doc set a process model, a product model, or a defect
finder?

Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.




Test Docs Requirements Questions
T

e A test suite should provide prevention, detection,
and prediction. Which is the most important for
this project?

« How maintainable are the test docs (and their test
cases)? And, how well do they ensure that test
changes will follow code changes?

 Will the test docs help us identify (and
revise/restructure in face of) a permanent shift in
the risk profile of the program?

 Are (should) docs (be) automatically created as a
byproduct of the test automation code?

Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

23



Ultimately, write a mission statement

* Try to describe your core documentation requirements
In one sentence that doesn’t have more than three
components.

 Examples:

— The test documentation set will primarily support our

efforts to find bugs in this version, to delegate work,
and to track status.

— The test documentation set will support ongoing
product and test maintenance over at least 10 years, will
provide training material for new group members, and
will create archives suitable for regulatory or litigation
Use.

Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

24



A Modd of Software Testing

B 00
Project Quality
Environment Criteria
Test Test
Techniques Docs
Product b .
|
Elements + Risks
Test

Results

Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.



Project Environment Factors.

Stakeholders
Processes
Staff
Schedules
Equipment These aspects of the
Tools & Test Materials environment constrain and
Information enable thetesting project
ltems Under Test
Logistics

Budget
Deliverables

Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved. 26



Project Factors

« Stakeholders:
— Anyone who is a client of the main project
— Anyone who is a client of the testing project
* Includes customers (purchasers), end users, tech support,
programmers, project mgr, doc group, etc.
* Processes:
— The tasks and events that comprise the main project
* How the overall project is run
— The tasks and events that comprise the test project
* How the testing project is run
o Staff:
— Everyone who helps devel op the product
» Sources of information and assistance
— Everyone who will perform or support testing
» Special talents or experiences of team members
 Size of the group
» Extent to which they are focused or are multi-tasking
» Organization: collaboration & coordination of the staff
* Is there an independent test lab?

Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

27



Project Factors

*Schedules: The sequence, duration and synchronization of events
—When will testing start and how long is it expected to take?
—When will specific product elements be available to test?
— When will devices or tools be available to support testing?
 Equipment: Hardware required for testing
—What devices do we need to test the product with? Do we have them?
*Tools & Test Materials: Software required or desired for testing.

— Automation: Are such tools available? Do we want to use them? Do we have
them? Do we understand them?

— Probes or diagnostics to help observe the product under test?
— Matrices, checklists, other testing documentation?

e Information: (As needed for testing) about the project or product.

— Specifications, requirements documents, other reference materials to help us
determine pass/fail or to credibly challenge odd behaviour.

* What is the availability of these documents?
* What is the volatility of these documents?

Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.



Project Factors

 ltems Under Test: Anything that will be tested
— For each product element:
e Is it available (or when will it be)?
e Is it volatile (and what is the change process)?
* Is it testable?

* Logistics: Facilities and support needed for organizing and
conducting the testing

— Do we have the supplies/ physical space, power, light / security systems (if
needed) / procedures for getting more?

Budget: Money and other resources for testing
— Can we afford the staff, space, training, tools, supplies, etc.?
* Deliverables: The observable products of the test project
— Such as bug reports, summary reports, test documentation, master disk.
 What are you supposed to create and can you do it?

— Will we archive the items under test and other products of testing?
Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved. 29



Product Elements. A product is...

An experience or solution provided to a customer.
Everything that comes in the box, plus the box!

Functions and data, executed on a platform,
that serve a purpose for a user.

1 A software product is much more than code.
2 It involves a purpose, platform, and user.
3 It consists of many interdependent elements.

Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved. 30



Product Elements:

o Structures: Everything that comprises the physical product

— Code: the code structures that comprise the product, from executables to
individual routines

— Interfaces: points of connection and communication between subsystems
— Hardware: hardware components integral to the product

— Non-executable files: any files other than programs, such as text files,
sample data, help files, etc.

— Alternate Media: anything beyond software and hardware, such as paper
documents, web links and content, packaging, license agreements, etc.

Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

31



Product Elements:

 Functions: Everything that the product does.

— User Interface:

functions that mediate the exchange of data with the user

— System Interface: functions that exchange data with something other than
the user, such as with other programs, hard disk, network, printer, etc.

— Application: functions that define or distinguish the product or fulfill core

requirements

— Error Handling: functions that detect and recover from errors, including

error messages

— Testahility: functions provided to help test the product, such as
diagnostics, log files, asserts, test menus, etc.

« Temporal relationships: How the program functions over time
— Sequential operation: state-to-state transitions
— Data changesin variables over time

— System interactions: such as synchronization or ordering of eventsin
distributed systems

Test Documentation

Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

32



Product Elements:

« Data: Everything that the product processes
— Input: datathat is processed by the product
— Output: datathat results from processing by the product

— Preset: data supplied as part of the product or otherwise built into it, such
as prefab databases, default values, etc.

— Persistent: data stored internally and expected to persist over multiple
operations. This includes modes or states of the product, such as options
settings, view modes, contents of documents, etc.

— Temporal: data based on time, such as date stamps or number of events
recorded in aunit of time

Test Documentation

Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

33



Product Elements:
B

 Platform: Everything on which the product depends

— External Hardware: components and configurations that are not part of the
shipping product, but are required (or optional) in order for the product to
work. Includes CPU’s, memory, keyboards, peripheral boards, etc.

— External Software: software components and configurations that are not a
part of the shipping product, but are required (or optional) in order for the
product to work. Includes operating systems, concurrently executing
applications, drivers, fonts, etc.

« Operations: How the product will be used

— Usage Profile: the pattern of usage, over time, including patterns of data
that the product will typically processin thefield. This varies by user and
type of user.

— Environment: the physical environment in which the product will be
operated, including such elements as light, noise, and distractions.

Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.



Product Elements: Coverane

Product coverageis the proportl on of the
product that has been tested.

..any KINds of coverage as there are ways to
model the product.

— Structural

_ Functional See Software Negligence
_ Tempord & Testing Coverage at

_ Data www.kaner.com for 101
_ Platform examples of coverage

— Operations “ measures.”

Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved. 35



Quality Criteria

T
Accessibility - Maintainability Quality is value
Capability - Performance to some person
Compatibility « Portability .- Jerry
Concurrency -« Recoverability Weinberg
Conformance -« Reliability

to Standards . Scalability

Efficiency . Security
Installability . supportability

and ..
uninstallability ~ | cSaRilty
- Usability

Localizability

Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.



Risk

Hazard:

A dangerous condition (something that could trigger an
accident)

Risk:
Possibility of suffering loss or harm.
Accident:
A hazard is encountered, resulting in loss or harm.

» Useful material available free at http://seir.sei.cmu.edu
* http://www.coyotevalley.com (Brian Lawrence)

 (Good paper by Stale Amland, Risk Based Testing and Metrics,
16th International Conference on Testing Computer Software,

Test Dgcgmgga{tion Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

37



Risk

* Project risk management involves

— ldentification of the different risks to the project (issues
that might cause the project to fail or to fall behind
schedule or to cost too much or to dissatisfy customers

or other stakeholders)
— Analysis of the potential costs associated with each risk

— Development of plans and actions to reduce the
likelihood of the risk or the magnitude of the harm

— Continuous assessment or monitoring of the risks (or
the actions taken to manage them)

Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved. 38



Risk-Based Testing

 Two key dimensions:

— Find errors (risk-based approach to technical tasks of
testing)

— Manage the process of finding errors (risk-based test
management)

» QOur focus today is on methods for finding errors efficiently.

Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved. 39



Risks: Whereto ook for errors

Qualities: Failure to conform to a quality criterion (risk of
unreliability, risk of unmaintainability, etc.)

New things: newer features may falil.
New technology: new concepts lead to new mistakes.

New markets: A different customer base will see and use
the product differently.

Learning Curve: mistakes due to ignorance.
Changed things: changes may break old code.

Late changes: rushed decisions, rushed or demoralized staff
lead to mistakes.

Rushed work: some tasks or projects are chronically
underfunded and all aspects of work quality suffer.

Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

40



Risks: Whereto ook for errors

Poor design or unmaintainable implementation. Some
Internal design decisions make the code so hard to maintain
that fixes consistently cause new problems.

Tired programmers: long overtime over several weeks or
months yields inefficiencies and errors

Other staff issues: alcoholic, mother died, two programmers
who won't talk to each other (neither will their code)...

Just slipping it in: pet feature not on plan may interact
badly with other code.

N.l.H.: external components can cause problems.

N.I.B.: (not in budget) Unbudgeted tasks may be done
shoddily.

Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

41



Risks: Whereto ook for errors

Ambiguity: ambiguous descriptions (in specs or other
docs) can lead to incorrect or conflicting
Implementations.

Conflicting requirements: ambiguity often hides
conflict, result is loss of value for some person.

Unknown requirements: requirements surface
throughout development. Failure to meet a legitimate
requirement is a failure of quality for that stakeholder.

Evolving requirements: people realize what they want
as the product develops. Adhering to a start d he
project requirements list may meet contract but fail
product. (check out http//www.agilealliance.org/)

Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

42



Risks: Whereto ook for errors

B
Complexity: complex code may be buggy.

Bugginess: features with many known bugs may also
have many unknown bugs.

Dependencies: failures may trigger other failures.
Untestability: risk of slow, inefficient testing.

Little unit testing: programmers find and fix most of their
own bugs. Shortcutting here is a risk.

Little system testing so far: untested software may fail.

Previous reliance on narrow testing strategies: (e.g.
regression, function tests), can yield a backlog of errors
surviving across versions.

Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

43



Risks: Whereto ook for errors

 Weak testing tools: if tools don’t exist to help identify /

Isolate a class of error (e.g. wild pointers), the error is more
likely to survive to testing and beyond.

Unfixability: risk of not being able to fix a bug.

Language-typical errors: such as wild pointers in C. See
— Bruce Webster, Pitfalls of Object-Oriented Devel opment
— Michael Daconta et al. Java Pitfalls

Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved. 44



Risks: Whereto ook for errors

T
Criticality: severity of failure of very important features.

Popularity: likelihood or consegquence if much used
features fall.

Market: severity of failure of key differentiating features.
Bad publicity: a bug may appear in PC Week.
Liability: being sued.

Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved. 45



Bug Patterns as a Source of Risk

Testing Computer Software lays out a set of 480 common defects. You can
use these or develop your own list.

— Find a defect in the list
— Ask whether the software under test could have this defect

— If it istheoretically possible that the program could have
the defect, ask how you could find the bug if it was there.

— Ask how plausible it is that this bug could be in the
program and how serious the failure would be if it was
there.

— |f appropriate, design a test or series of tests for bugs of
this type.

Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved. 46



Build Your Own Moddl of Bug Patterns

*Too many people start and end with the TCS bug list. It is
outdated. It was outdated the day it was published. And it
doesn’t cover the issues in your system. Building a bug list is
an ongoing process that constantly pays for itself. Here’s an
example from Hung Nguyen:

— This problem came up in a client/server system. The system sends the

client alist of names, to allow verification that a name the client enters
IS NOt new.

— Client 1 and 2 both want to enter a name and client 1 and 2 both use the
same new name. Both instances of the name are new relative to their
local compare list and therefore, they are accepted, and we now have
two instances of the same name.

— Aswe see these, we develop alibrary of issues. The discovery method is
exploratory, reguires sophistication with the underlying technology.

— Capture winning themes for testing in charts or in scripts-on-their-way
to being automated.

Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved. 47



Building Bug Patterns

*There are plenty of sources to check for common failures
In the common platforms

— www.bugnet.com

— WwWw.chet.com

— links from www.winfiles.com
— various mailing lists

Test Documentation

Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

43



Test Case Design

« If the purpose of testing is to gain information about the
product, then a test case’s function is to elicit information
quickly and efficiently.

* In information theory, we define “information” in terms of
reduction of uncertainty. If there is little uncertainty, there
IS little information to be gained.

* A test case that promises no information is poorly
designed. A good test case will provide information of
value whether the program passes the test or fails it.

Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

49



Thinking About Test Techniques

* Analyze the situation.
 Model the test space.

» Select what to cover.

* Determine test oracles.

o Configure the test system.
o Operate the test system.
 Observe the test system.
o Evaluate the test results.

A test technique
IS arecipe
for performing
these tasks that
will reveal something
worth reporting

Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved. 50



Thinking About Test Techniques

 What is the difference between
— User testing?
— Usability testing?
— User interface testing?

Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

ol



Thinking About Test Techniques
B

o Testing combines technigues that focus on:

— Testers. who doesthetesting.

— Coverage: what getstested.

— Potential problems: why you'retesting (what risk
you'retesting for).

— Activities. how you test.

- F\_/ﬁelgation: how to tell whether the test passed or
ailed.

« All testing involves all five dimensions.

* A technique focuses your attention on one or a few
dimensions, leaving the others open to your judgment. You
can combine a technique focused on one dimension with
techniques focused on the other dimensions to achieve the
result you want.

Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

52



Thinking About Test Techniques

T
Examples
— Testers:
o User testing; Beta testing; Subject-matter experts
— Coverage:

 Function testing; Domain testing; State-based testing; Path
testing; Statement coverage; Configuration coverage

— Potential problems:

* Input / output / computation / storage constraints; Risk-based
testing

— Activities:
» Exploratory testing; Scenario testing; Load testing;
Performance testing
— Evaluation:
» Oracle-based testing; Comparison with saved results

* These examples are not definitive—how you classify a testing approach
depends on what you think is most central to it. For example, is load
testing problem oriented (denial of service) or activity oriented?

* The important thing is to conscious manage the 5 dimensions.

Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.



General Test Techniques

B
* Function All of these have been used as the
« Regression dominant technique in some companies.
e Domain driven How can approaches so different yield

good overall results?

— Wethink that the answer is that
each of these fixes only one of the
dimensions for testing techniques.

— For example, function testing
speaks to coverage but not to

e Stress driven
o Specification driven
 Risk driven

e Scenario/ use case /
transaction flow

* User testing testers, risks, activities, or

* Exploratory evaluation. You can vary al four

e« Random / statistical of these and still be doing function
testing.

Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

54



General Test Techniques

 We provide an appendix that describes the 10 general
test techniques that we listed on the previous slide.

« We aren’t going to work through that appendix (or not in
much detail) in this workshop, but these notes may be

helpful for selt gudy, to fill in some of the details that
we’re skipping here.

Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved. 55



Test Srategy

« “How we plan to cover the product so as to develop an
adequate assessment of quality.”

e A good test strategy is:
— Diversified
— Joecific
— Practical
— Defensible

Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

56



Test Srategy

Makes use of test techniques.
May be expressed by test procedures and cases.

Not to be confused with test logistics, which involve the details
of bringing resources to bear on the test strategy at the right
time and place.

You don’t have to know the entire strategy in advance. The
strategy can change as you learn more about the product and
Its problems.

Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved. 57



Test Cases/Procedures

 Test cases and procedures should manifest the test
strategy.

 If your strategy is to “execute the test suite | got from Joe
Third FRaty”, how does that answer the prime strategic
guestions:

— How will you cover the product and assess
guality?
— How isthat practical and justified with

respect to the specifics of this project and
product?

 If you don’t know, then your real strategy is that you're
trusting things to work out.

Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved. 58



Diverse Half-Measures
B 0

* There is no single technique that finds all bugs.
 We can’t do any technique perfectly.
« We can’t do all conceivable *~

Use “ diver se half-measures’ -- lots of different
points of view, approaches, technigques, even
If no one strategy is performed completely.

<opyright © 2001 Cem Kaner and James Bach. All rights reserved. 59



Test Plan Components

* The following slides give examples of several charts,
tables, etc.

e You probably won't have enough time to create all the
documentation that would be useful. Treat these
materials as optional.

o Use the components that you find most useful to:
— Clarify your own thinking
— Communicate your thinking to others
— Track your work or the work of someone else

Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

60



Basic Test Documentation Components

Lists:
— Such aslists of fields, error messages, DLLS

Outlines: An outline organizes information into a
hierarchy of lists and sublists

— Such asthe testing objectives list later in the course notes

Tables: A table organizes information in two dimensions
showing relationships between variables.

— Such as boundary tables, decision tables, combination test tables
Matrices: A matrix is a special type of table used for data
collection.

— Such asthe numeric input field matrix, configuration matrices

— Refer to Testing Computer Software, pages 217-241. For more
examples, see page Testing Computer Software, page 218.

Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.



Traceability Matrix

TS
Varl |Var2 |Var3 |[Var4 |Var5

Testl | X X X

Test 2 X X

Test3 | X X X

Test4 X X

Test S X X

Test6 | X X

Test Documentation

Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

62



Traceability Matrix

The columns involve different test items. A test item
might be a function, a variable, an assertion in a
specification or requirements document, a device that
must be tested, any item that must be shown to have
been tested.

The rows are test cases.
The cells show which test case tests which items.

If a feature changes, you can quickly see which tests
must be reanalyzed, probably rewritten.

In general, you can trace back from a given item of
Interest to the tests that cover it.

This doesn’t specify the tests, it merely maps their
coverage.

Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.



Myers Boundary Table

Variable | Valid Case Invalid Case Boundaries | Notes
Equivalence | Equivalence | and Special
Classes Classes Cases
First -99 to 99 > 99 99, 100
number <-99 -99, -100
non-number /
expressions ;
0
null entry
Second | same as first same as first same
number
Sum -198 to 198 Are there other
sources of data for
this variable? Ways
to feed it bad data?

Test Documentation

Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

64



Revised Boundary Analysis Table

Variable JEquivalence | Alternate Boundaries Notes
Class Equivalence |and Special
Class Cases
First -99 to 99 > 99 99, 100
number < -99 -99, -100
digits non-digits /,0,9,:
leading spaces
or 0s

expressions [ null entry

Second same as first same as first | same

number
Sum -198 to 198 227 227 Are there other
-127 to 127 -198 to -128 | 127, 128, -127, | sources of data for
128 to 198 -128 this variable? Ways

to feed it bad data?

Note that we’ve dropped the issue of “valid” and “invalid.” This lets
us generalize to partitioning strategies that don’t have the concept
of “valid” -- for example, printer equivalence classes. 65

Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.



Equivalence Classes. A Broad Concept

The notion of equivalence class is much broader than numeric
ranges. Here are some examples:

— Membership in a common group

» such as employees vs. non-employees. (Note that not all
classes have shared boundaries.)

— Equivalent hardware

» such as compatible modems
— Equivalent event times

» such as before-timeout and after
— Equivalent output events

» perhaps any report will do to answer a simple the
guestion: Will the program print reports?

— Equivalent operating environments
* such as French & English versions of Windows 3.1

Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

66



Variables Well Suited to Equivalence Class Analysis
_ TT——

Many types of variables, including input, output, internal, hardware
and system software configurations, and equipment states can be
subject to equivalence class analysis. Here are some examples:

= ranges of numbers = size of a number that you enter
» character codes (number of dlgltS) or size of a
= how many times something is character string _
done = size of a concatenated string
= (e.g. sharewarelimit on number of  ® size of a path specification
uses of a product) = sjze of a file name
" (eg.howmanytimesyoucando = sjze (in characters) of a
it before you run out of memory) document
" how many names in a mailing = size of a file (note special values
list, records in a database, such as exactly 64K, exactly 512
variables in a spreadsheet, bytes, etc.)
bookmarks, abbreviations = size of the document on the page
= size of the sum of variables, or of (compared to page margins)
some other computed value (across different page margins,
(think binary and think digits) page sizes)

Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved. 67



Variables Well Suited to Equivalence Class Analysis

= size of a document on a page, interms ¢ length of time after a timeout (from
of the memory requirements for the JUST before to way after) -- what
page. This might just be in terms of events are important?
resolution X page size, but it may be « speed of data entry (time between
more COmpleX if we have compression. keystrokes’ menus, etc_)

" equivalent output events (such as « speed of input--handling of concurrent
printing documents) events

= amount of available memory (> 128 « number of devices connected / active

> .
meg, 64OK’_ etc.)- » system resources consumed / available
= visual resolution, size of screen, number  (3iso, handles, stack space, etc.)

of colors  date and time

] opgrqtlng systgm version ) .. * transitions between algorithms

= variations within a group of “compatible (optimizations) (different ways to
printers, sound cards, modems, etc. compute a function)

= equivalent event times (when something « most recent event, first event
happens)

= timing: how long between event A and
event B (and in which order--races)

* input or output intensity (voltage)

» speed / extent of voltage transition (e.g.
from very soft to very loud sound)

Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved. 68



Using Test Matrices for Routine Issues

« After testing a simple numeric input field a few times, you may
prefer a test matrix to present the same tests more concisely.

 Use a test matrix to show/track a series of test cases that are
fundamentally similar.

— For example, for most input fields, you'll do a series of the
same tests, checking how the field handles boundaries,
unexpected characters, function keys, etc.

— Asanother example, for most files, you’'ll run essentially the
same tests on file handling.

 The matrix is a concise way of showing the repeating tests.
— Put the objects that you' re testing on the rows.
— Show the tests on the columns.

— Check off the tests that you actually completed in the cells.

Test Documentation

Copyright © 2001 Cem Kaner and James Bach. All rights reserved. 69



Reusable Test Matrix

SHBIP-UON

sieyo
10 suBIp Jo JBquinu
an Jo|pIsino

(eneAjneep syl
1es|0) pey Adug

s.leyo Io
SHBIP Jo ,Bguinu gn

sleyo Io
SubIp Jo equinu g

SN\ =6 N

o)

T+aneAjogn

T-oneAlodT

aneA o gn

aneAjod

BuitpoN

Numeric Input Field

Copyright © 2001 Cem Kaner and James Bach. All rights reserved. 70

Test Documentation



Examples of integer-input tests

* Nothing .
 Valid value

 AtLB of value *
« At UB of value *

e AtLBofvalue-1

« AtUBofvalue +1

* Qutside of LB of value

» Qutside of UB of value

« 0

* Negative

« At LB number of digits or chars
« At UB number of digits or chars

 Empty field (clear the default
value)

Outside of UB number of digits or
chars

Non-digits

Wrong data type (e.g. decimal
into integer)

Expressions

Space

Non-printing char (e.g., Ctrl+char)
DOS filename reserved chars
(e.g.,,"\*.:"

Upper ASCII (128-254)

Upper case chars

Lower case chars

Modifiers (e.g., Ctrl, Alt, Shift-Ctrl,
etc.)

Function key (F2, F3, F4, etc.)

Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved. 71



Error Handling when Writing a File

Test Documentation

full local disk

almost full local disk

write protected local disk
damaged (I/O error) local disk
unformatted local disk

remove local disk from drive after
opening file

timeout waiting for local disk to
come back online

keyboard and mouse 1/O during
save to local disk

other interrupt during save to local
drive

power out during save to local
drive

full network disk

almost full network disk

write protected network disk
damaged (I/O error) network disk
remove network disk after
opening file

timeout waiting for network disk

keyboard / mouse I/O during save
to network disk

other interrupt during save to
network drive

local power out during save to
network

network power during save to
network

Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

12



Routine Case Matrices
B 0

— You can often re-use a matrix like this acr oss products and
proj ects.

— You can create matriceslikethisfor a wide range of problems.
Whenever you can specify multipleteststo be done on one
class of object, and you expect to test several such objects, you
can put the multiple tests on the matrix.

— Mark acell green if you ran thetest and the program passed it.
Mark thecell red if the program failed.

— Writethe bug number of the bug report for thisbug.

— Write (inthecdll) theautomation number or identifier or file
name if thetest case has been automated.

Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

/3



Routine Case Matrices

e Problems?

— What if your thinking gets out of date? (What if this
program poses new issues, not covered by the
standard tests?)

— Do you need to execute every test every time? (or
ever?)

— What if the automation ID number changes? -- We
still have a maintenance problem but it isnot as
obscure.

Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved. 74



Complex Data Relationships

Options

- E3

WiEm l Zeneral l Edik ] Frink ] Save ] Spelling 2. Grammar
Track Changes ] User InFormaktion Compatibility File Locations

Zompaktibility opkions For Documenkl

Fonkt Subskitukion. .. |

F.ecommended options Far:
iMicrosofk YWord 97 - |

plions:

Zombine table borders like Word 5.x For the Macinkosh
Do Full juskiFication like WordPerfFeck 6. For Windowes
Don't add automatic tab stop For hanging indent

Don't add exkra space For raisedfloveered charackters
Don't add leading {exktra space) bebween rows of texk
Don't add space For underlines

Don't balance columns For Continuous seckion skarks
Don't balance SBCS charackers and DBEBCZS charackers
Don't blank the area behind metafile pickures

Don't center "exack line height" lines

Con't convertk backslash charackers inko wen signs LI

SN EREEEEEEE

Defaulk. ..

|
l

(] o Zancel

Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

/5



Tabular Format for Data Relationships

T
Field Entry Display |Print |Related |Relationship
source variable

Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.



Tabular Format for Data Relationships

Once you identify two variables that are related, test
them together using boundary values of each or pairs
of values that will trigger some other boundary.

— Thisisnot the most power ful processfor looking at
relationships. An approach like Cause-Effect Graphingis
mor e power ful, if you have or can build a complete
specification.

— | started using thischart as an exploratory tool for
simplifying my look at relationshipsin overwhelmingly
complex programs. (Theredoesn’t haveto bealot of
complexity to be“ overwhelming.”)

Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.



Tabular Format for Data Relationships

THE TABLE'S FIELDS

Field: Createarow for each field (Consul t ant , End Dat e,and St art
Dat e are examples of fields.)

Entry Source: What dialog boxes can you use to enter data into this field? Can
you import data into this field? Can data be calculated into this field? List
every way to fill the field -- every screen, etc.

Display: List every dialog box, error message window, etc., that can display the
value of thisfield. When you re-enter a value into thisfield, will the new entry
show up in each screen that displays the field? (Not always -- sometimes the
program makes local copies of variables and fails to update them.)

Print: List all the reportsthat print the value of this field (and any other functions
that print the value).

Related to: List every variable that isrelated to this variable. (What if you enter
a legal value into this variable, then change the value of a constraining
variable to something that is incompatible with this variable’ s value?)

Relationship: Identify the relationship to the related variable.

Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.




Tabular Format for Data Relationships

Many relationships among data:
— Independence
« Varying one has no effect on the value or permissible values of
the other.
— Causal determination
By changing the value of one, we determine the value of the
other.
 For example, in MS Word, the extent of shading of an area
depends on the object selected. The shading differs depending on
Table vs. Paragraph.
— Constrained to arange
 For example, the width of a line has to be less than the width of
the page.
* In a date field, the permissible dates are determined by the month
(and the year, if February).
— Selection of rules
« Example, hyphenation rules depend on the language you choose.

Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.



Tabular Format for Data Relationships

Many relationships among data:
— Logical selection from alist
» processes the value you entered and then figures out what
value to use for the next variable. Example: timeouts in phone
dialing:
— 0 on complete call 555-1212 but 955512127
— 10 on ambiguous completion, 955-5121
— 30 secondsincomplete  555-121
— Logical selection of alist:
 For example, in printer setup, choose:
— Officelet, get Graphics Quality, Paper Type, and Color Options
— LaserJet 4, get Economode, Resolution, and Half-toning.

Look at Marick (Craft of Software Testing) for discussion of catalogs
of tests for data relationships.

Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.



Data Relationship Table

Looking at the Word options, you see the real value of
the data relationships table. Many of these options have
a lot of repercussions.

You might analyze all of the details of all of the
relationships later, but for now, it is challenging just to
find out what all the relationships ARE.

The table guides exploration and will surface a lot of
bugs.

PROBLEM

Works great for this release. Next release, what is your
support for more exploration?

Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

81



Configuration Planning Table

B |

Var 1 Var 2 Var 3 Var 4 Var 5
Configl |V1-1 V2-1 V3-1 V4-1 V5-1
Config2 |V1-2 V2-2 V3-2 V4-2 V5-2
Config3 |V1-3 V2-3 V3-3 V4-3 V5-3
Config4 |V1-4 V2-4 V3-4 V4-4 V5-4
Config5 |V1-5 V2-5 V3-5 V4-5 V5-5
Config6 |V1-6 V2-6 V3-6 V4-6 V5-6

Thistable defines 6 standard configurations for testing. In later tests, the lab will
set up a Config-1 system, a Config-2 system, etc., and will do its compatibility
testing on these systems. The variables might be software or hardware choices.
For example, Var 1 could be the operating system (V1-1isWin 2000, V1-2 is
Win ME, etc.) Var 2 could be how much RAM on the computer under test (V2-1
1S128 meg, V2-2is 32 meg., etc.). Var 3 could be the type of printer, Var 4 the
machine’ s language setting (French, German, etc.). Config planning tables are
often filled in using the All Pairs algorithm.

Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved. 82



Configuration Test Matrix

B
Configl | Config2 |Config3 | Config4 | Config5 | Config 6
Test 1 Pass Pass Pass Pass Pass
Test 2 Falil Pass Pass Pass
Test 3 Pass Pass Pass Pass Pass
Test 4 Pass Falil Falil Pass
Test5 Falil Pass Falil Pass Pass

This matrix records the results of a series of tests against the 6 standard

configurations that we defined in the Configuration Planning Table.

In thistable, Config 1 has passed 3 tests, failed 1, and hasn’t yet been tested
with Test 2. Config 6 is still untested.

Test Documentation

Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

33




Testing Variables in Combination

Interesting papers.

— Cohen, Dald, Parelius, Patton,” The Combinatorial Design Approach to Automatic
Test Generation”,| EEE Software, Sept. 96
http://computer.org:80/software/so1996/s5toc.htm

— Cohen, Ddal, Fredman, Patton, “The AETG System: An Approach to Testing
Based on Combinatorial Design”, IEEE Transon SW Eng. Vol 23#7, July 97
http://computer.org:80/tse/ts1997/e7toc.htm

— OnLine requires |EEE membership for free access. See
http://www.computer.org/epub/

— Several other paperson AETG are available at
https://aetgweb.tipandring.com/AboutAET Gweb.html

— Also interesting:
http://www.stsc.hill.af.mil/CrossTalk/1997/oct/planning.html
— Jorgenson, Software Testing: A Craftsman’s Approach

— Brian Marick, “Multi-Generating test ideas from expressions with booleans and
relational operators’ http://www.testing.com/tools/multi/README.html

Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.



The AETG System: An Approach to Testing Based on Combinatorial Design - Netscape
File Edit hea=r Do Communicator Help

w¥ ~ Bookmarks & NEisltEi|https',a’,."aetgwebtipandringl:clm,."papers,."AETGieeeEl?html v|

The AETG System: An Approach to Testing
Based on Combinatorial Design

Appeared in July 1997 issue of IEEE Transactions On Software Engineering (Vol. 23, No. 7)

By

In. II. Cohen — IDA—CCS [(WMork done while at Bellocors. )
5. R. Dalal — EBE=sllcore

M. L. Fredman — Rutgers Universitsy

. C. Patton — Bellcore

TABLE OF CONTENTS

Abstract

1. Iniroduction

2. The Basic Combinatorial Design Paradigm

3. Logarithmic Growth for n-Way Interaction Testing
4. A Heuristic Algorithim

5. AFTG Input Lansuace

5.1 Constraints
5.2 Hierarchv and hierarchical testing

6. Experiments
7. Overview of Applications

7.1 High-TL.evel Test Planning
7.2 Test Case Generation

8. Related Nethods

9. Summary
Acknowledgements

References

Abstract

This paper describes a new approach to testing that uses combinatorial designs to generate tests

that cover the pair-wise, triple or n-way combinations of a system's test parameters. These are the

parameters that determine the system's test scenarios. Examples are system configuration

parameters, user inputs and other esxternal eventz. We implemented this new method in the AETG -
= e ke A 2

Copyright (c) 1997-1999 Cem Kaner. All Rights Reserved. 85



Combinations Exercise/ lllustration

T
Find E
Find what: [lowercasel Eind Fext I
Clirection Cancel I
I kdatch case |7-|!"‘ Ll = Do

» Here is a simple Find dialog. It takes three inputs:
— Fi nd what : atext string
— Match case: yesorno
— Direction: upordown

o Simplify this by considering only three values for the text string,
“lowercase” and “Mixed Cases” and “CAPITALS".

* (Note: To do a better job, we'd also choose input documents that
would yield a “find” and a “don’t find” for each case. The input
document would be another variable or, really, the intended result
(Find / Don’t) would be the variable. We'll think about that again after

the exercise.)
Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved. 86



Combinations Exercise

1 How many combinations of these three variables are
possible?
2 List ALL the combinations of these three variables.

3 Now create combination tests that cover all possible
pairs of values, but don’t try to cover all possible
triplets. List one such set.

4 How many test cases are in this set?

Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

87



Combination Testing

« Imagine a program with 3 variables, V1 has 3 possible
values, V2 has 2 possible values and V3 has 2 possible

values.

 If V1 and V2 and V3 are independent, the number of
possible combinations is 12 (3 x 2 x 2)

e Building a simple combination table:

— Label the columns with the variable names, listing variablesin
descending order (of number of possible values)

— Each column (before the last) will have repetition. Suppose that
A, B, and C arein column K of N columns. To determine how
many times (rows in which) to repeat A before creating arow
for B, multiply the number of variable valuesin columns K+1,
K+2, ..., N.

Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

38



Combination Testing

Building an alt @ars combination table:

— Label the columns with the variable names, listing variables in
descending order (of number of possible values)

— If the variable in column 1 has V1 possible values and the variable
In column 2 has V2 possible values, then there will be at least V1
X V2 rows (draw the table this way but |leave a blank row or two
between repetition groups in column 1).

— Fill inthe table, one column at atime. The first column repeats
each of its elements V2 times, skips aline, and then starts the
repetition of the next element. For example, if variable1's
possiblevaluesare A, B, Cand V2 is 2, then column 1 would
contain A, A, blank row, B, B, blank row, C, C, blank row.

Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

89



Combination Testing

Building an alt @ars combination table:

— Inthe second column, list all the values of the variable, skip the
line, list the values, etc. For example, if variable 2's possible
values are X,Y, then the table looks like this so far

Test Documentation

A X
A Y
B X
B Y
C X
C Y

Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

90



Combination Testing

B
Building an alt @irs combination table: AX |1
— Each section of the third column (think of AA as ALY 1O
defining a section, BB as defining another, etc.) will
have to contain every value of variable 3. Order the B X0
values such that the variables also make all pairswith [ B | Y
variable 2.
— Suppose variable 2 can be 1,0 ¢ X
— Thethird section can befilled in either way, and you c Y

might highlight it so that you can reverse it later. The
decision (say 1,0) isarbitrary.

Now that we' ve solved the 3-column exercise, let’stry
adding more variables. Each of them will have two values.

Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.



Combination Testing

e The 4th column went in easily (note that AlX|1]|E|G

we started by making sure we hit all pairs Aly lo |E IH

of values of column 4 and column 2, then

all pairs of column 4 and column 3.

B | X F | H
o Watch this first attempt on column 5. We B |v G
achieve all pairs of GH with columns 1, 2,
and 3, but miss it for column 4. c Ix - I
« The most recent arbitrary choice was HG c v G

In the 2nd section. (Once that was
determined, we picked HG for the third in

order to pair H with a 1 in the third
column.)

« So we will erase the last choice and try
again:

Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.



Combination Testing

T

« We flipped the last arbitrary choice (column [A (X |1 |E |G

5, section 2, to GH from HG) and erased AlY |0 |F |H
section 3. We then fill in section 3 by

checking for missing pairs. GH, GH gives B|X|0|F|G

us two XG, XG pairs, so we flip to HP for B|Y |1 |E|H

the third section and have a column 2 X

withacolumn5Handacolumn2Ywitha |c|x |1 |F

T

column 5 G as needed to obtain all pairs. cClY |0 |E|G

Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.



Combination Testing

 But when we add the next column, we see that we just
can’'t achieve all pairs with 6 values. The first one works up
to column 4 but then fails to get pair EJ or Fl. The next fails

on GJ, HI

A | X E |G AlIX |1 |E|G]I
AlY F | H|J AIlY |O|F [H|J
B | X F |G |J B (X |0 |F |G]I
B |Y E |H B|Y |1 |E|H/|J
C | X F | H|J C|XI|1|F |H/|J
c|Y E |G clyl|lo |E|G|I

Test Documentation

Copyright © 2001 Cem Kaner and James Bach. All rights reserved. 94



Combination Testing

 When all else fails, add rows. We need |A |x

one for GJ and one for HI, so add two AlY |0 |F
rows. In general, we would need as

many rows as the last column has B|X |0 |F
values. B |Y

* The other values in the two rows are
arbitrary, leave them blank and fill them ([C |[X |1 |F
In as needed when you add new ClY
columns. At the very end, fill the
remaining blank ones with arbitrary
values

QIT(IT|IT|O|O|IT|O

I
J
J
I
J
I
J
I

Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.



Combination Testing

o|f a variable is continuous but maps to a number line,
partition and use boundaries as the distinct values under
test. If all variables are continuous, we end up with all pairs
of all boundary tests of all variables. We don’t achieve all
triples, all quadruples, etc.

[f some combinations are of independent interest, add them
to the list of n-tuples to test.

— With the six columns of the example, we reduced 96 tests to 8.
Give afew back (makeit 12 or 15 tests) and you still get
enormous reduction.

— Examples of “independent interest” are known (from tech
support) high risk cases, cases that jointly stress memory,
configuration combinations (Var 1 is operating systems, Var 2is
printers, etc.) that are prevalent in the market, etc.

Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

96



Charts. References

You can find plenty of example charts in Bill Perry’s books,
such as Effective Methods for Software Testing (2nd Ed.,
Wiley). Several of these will probably be useful, though
(like the charts in these notes) you'll have to adapt them to
your circumstances.

Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

97



Heuristics from James Bach's Test Plan Evaluation Model

Heuristic

Basis for the Heuristic

1. Testing should be optimized to find
important problems fast, rather than
attempting to find all problems with
equal urgency.

The later in the project that a
problem is found, the greater the risk
that it will not be safely fixed in time
to ship. The sooner a problem is
found after it is created, the lesser
the risk of a bad fix

2. Test strategy should focus most
effort on areas of potential technical
risk, while still putting some effort into
low risk areas just in case the risk

analysis is wrong.

Complete testing is impossible, and
we can never know if our perception
of technical risk is completely
accurate.

3. Test strategy should address test
platform configuration, how the
product will be operated, how the
product will be observed, and how

observations will be used to evaluate
the nroduct

Sloppiness or neglect within any of
these four basic testing activities will
increase the likelihood that important
problems will go undetected.

Test bocumentation

Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

98



Heuristics for Test Plan Evaluation

4. Test strategy should be diversified in
terms of test techniques and
perspectives. Methods of evaluating
test coverage should take into account
multiple dimensions of coverage,
Including structural, functional, data,
platform, operations, and requirements.

No single test technique can reveal all
important problems in a linear fashion.
We can never know for sure if we have
found all the problems that matter.
Diversification minimizes the risk that
the test strategy will be blind to certain
kinds of problems.

Use diverse half-measures to go
after low-hanging fruit.

5. The test strategy should specify how
test data will be designed and
generated.

It is common for the test strategy to be
organized around functionality or code,
leaving it to the testers to concoct test
data on the fly. Often that indicates that
the strategy is too focused on
validating capability and not focused

I ESt BU\JUI rnernaturl

L
1 a”d ﬂaIIIES Ba'C“ AII INMYrio 1cotiveu.

enough on reliability.

90




Heuristics for Test Plan Evaluation

e
6. Not all testing should be pre- A rigid test strategy may make it more
specified in detalil. The test strategy likely that a particular subset of problems

should incorporate reasonable variation | will be uncovered, but in a complex

and make use of the testers’ ability to system it reduces the likelihood that all
use situational reasoning to focuse on | important problems will be uncovered.
important, but unanticipated problems. | Reasonable variability in testing, such as
that which results from interactive,
exploratory testing, increases incidental
test coverage, without substantially
sacrificing essential coverage.

7. It is important to test against implied | Testing only against explicit written
requirements—the full extent of what requirements will not reveal all important
the requirements mean, not just what problems, since defined requirements
they say. are generally incomplete and natural
language is inherently ambiguous.

Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved. 100



Heuristics for Test Plan Evaluation

Heuristic

Basis for the Heuristic

8. The test project should promote
collaboration with all other functions
of the project, especially
developers, technical support, and
technical writing. Whenever
possible, testers should also
collaborate with actual customers
and users, in order to better
understand their requirements.

Other teams and stakeholders often
have information about product
problems or potential problems that
can be of use to the test team. Their
perspective may help the testers
make a better analysis of risk.
Testers may also have information
that is of use to them.

9. The test project should consult
with development to help them
build a more testable product.

The likelihood that a test strategy will
serve its purpose is profoundly
affected by the testability of the
product.

Test Documentation

Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

101



Heuristics for Test Plan Evaluation
B

Heuristic Basis for the Heuristic

10. A test plan should highlight the | Virtually every software project worth

non-routine, project-specific doing involves special technical
aspects of the test strategy and test | challenges that a good test effort
project. must take into account. A completely

generic test plan usually indicates a
weak test planning process. It could
also indicate that the test plan is
nothing but unchanged boilerplate.

Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved. 102



Heuristics for Test Plan Evaluation

Heuristic

Basis for the Heuristic

11. The test project should use
humans for what humans do well
and use automation for what
automation does well. Manual
testing should allow for
improvisation and on the spot
critical thinking, while automated
testing should be used for tests that
require high repeatability, high
speed, and no judgment.

Many test projects suffer under the
false belief that human testers are
effective when they use exactingly
specified test scripts, or that test
automation duplicates the value of
human cognition in the test execution
process. Manual and automated
testing are not two forms of the same
thing. They are two entirely different
classes of test technique.

Test Documentation

Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

103



Heuristics for Test Plan Evaluation

B}

Heuristic Basis for the Heuristic
12. The test schedule should be A monolithic test schedule in a test
represented and justified in such a plan often indicates the false belief
way as to highlight any that testing is an independent activity.
dependencies on the progress of The test schedule can stand alone
development, the testability of the only to the extent that the product the
product, time required to report highly testable, development is
problems, and the project team’s complete, and the test process is not
assessment of risk. interrupted by the frequent need to

report problems.

13. The test process should be kept | This is important in order to deflect
off of the critical path to the extent pressure to truncate the testing
possible. This can be done by testing | process.

in parallel with development work,
and finding problems worth fixing
faster than the developers fix them.

Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved. 104



Heuristics for Test Plan Evaluation
B

Heuristic Basis for the Heuristic
14. The feedback loop between This is important in order to maximize
testers and developers should be the efficiency and speed of quality
as tight as possible. Test cycles improvement. It also helps keep testing

should be designed to provide rapid | off of the critical path.
feedback to developers about
recent additions and changes they
have made before a full regression
test is commenced. Whenever
possible testers and developers
should work physically near each
other.

Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved. 105



Heuristics for Test Plan Evaluation

Heuristic

Basis for the Heuristic

15. The test project should employ
channels of information about quality
other than formal testing in order to help
evaluate and adjust the test project.
Examples of these channels are
iInspections, field testing, or informal
testing by people outside of the test
team.

By examining product quality
information gathered through various
means beyond the test team, blind
spots in the formal test strategy can be
uncovered.

16. All documentation related to the test
strategy, including test cases and
procedures, should be undergo review
by someone other than the person who
wrote them. The review process used
should be commensurate with the
criticality of the document.

Tunnel-vision is the great occupational
hazard of testing. Review not only
helps to reveal blind spots in test
design, but it can also help promote
dialog and peer education about test
practices.

Test Documentation

Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

106



Evaluating Your Plan: Context Free Questions

Based on: The CIA’s Phoenix Checklists (Thinkertoys, p. 140) and
Bach’s Evaluation Strategies (Rapid Testing Course notes)

— Can you solve the whole problem? Part of the problem?

— What would you like the resolution to be? Can you picture it?

— How much of the unknown can you determine?

— What reference data are you using (if any)?

— What product output will you evaluate?

— How will you do the evaluation?

— Can you derive something useful from the information you have?

— Have you used all the information?

— Have you taken into account all essential notions in the problem?

— Can you separate the steps in the problem-solving process? Can you
determine the correctness of each step?

— What creative thinking techniques can you use to generate ideas? How
many different techniques?

— Can you see the result? How many different kinds of results can you see?

— How many different ways have you tried to solve the problem?

Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved. 107



Evaluating Your Plan: Context Free Questions

— What have others done?

— Can you intuit the solution? Can you check the results?

— What should be done?

— How should it be done?

— Where should it be done?

— When should it be done?

— Who should do it?

— What do you need to do at thistime?

— Who will be responsible for what?

— Can you use this problem to solve some other problem?

— What isthe unique set of qualities that makes this problem what it is and
none other?

— What milestones can best mark your progress?

— How will you know when you are successful ?

— How conclusive and specific is your answer?

Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved. 108



Appendix on General Test Techniques

« The following slides review 10 general test techniques. In
previous talks, we’ve called these “paradigms” because many
companies have organized their entire testing effort and testing
thinking around one or two of them.

 We won't discuss many of these slides in the workshop, but we
hope that these will be helpful reference materials to add some
detail to comments that we make about these technigues in
class.

* There is nothing magical about these techniques. They overlap.
They don’t collectively cover everything that would be good to
do.

* Imagine that you are one of the people who has adopted one of
these technigues as your primary approach, your paradigm:

— What makes for an excellent test?
— What is your approach best for?
— What are some weaknesses in your approach?

Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved. 109



Function Testing

 Tag line
— “Black box unit testing.”
« Fundamental question or goal
— Test each function thoroughly, one at atime.
« Paradigmatic case(s)
— Spreadshest, test each item in isolation.
— Database, test each report in isolation
e Strengths
— Thorough analysis of each item tested
Blind spots

— Misses interactions, misses exploration of the benefits
offered by the program. 110

Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.



Some Function Testing Tasks

|dentify the program’s features / commands
— From specifications or the draft user manual
— From walking through the user interface
— From trying commands at the command line

— From searching the program or resource files for command
names

|dentify variables used by the functions and test their
boundaries.

|dentify environmental variables that may constrain the
function under test.

Use each function in a mainstream way (positive testing).
Push it in as many ways as possible, as hard as possible.

Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved. 111



Regression Testing

Tag line
— “Repeat testing after changes.”
Fundamental question or goal

— Managetherisksthat (a) abug fix didn’t fix the bug or (b)
the fix (or other change) had a side effect.

Paradigmatic case(s)
— Bug regression (Show that a bug was not fixed)
— Old fix regression (Show that an old bug fix was broken)

— General functional regression (Show that a change caused a
working areato break.)

— Automated GUI regression suites
Strengths
— Reassuring, confidence building, regulator-friendly

Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved. 112



Regression Testing

« Blind spots / weaknesses
— Anything not covered in the regression series.

— Repeating the same tests means not looking for the bugs that
can be found by other tests.

— Pesticide paradox
— Low yield from automated regression tests

— Maintenance of this standard list can be costly and
distracting from the search for defects.

Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved. 113



Automating Regression Testing

* This is the most commonly discussed automation
approach:

— Create atest case

— run it and inspect the output

— 1If the program fails, report abug and try again later

— If the program passes the test, save the resulting outputs

— In future tests, run the program and compare the output
to the saved results. Report an exception whenever the
current output and the saved output don’t match.

Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved. 114



Potential Regression Advantages

 Dominant paradigm for automated testing.
o Straightforward

« Same approach for all tests

« Relatively fast implementation

e Variations may be easy

 Repeatable tests

Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved. 115



GUI Regression: Interesting Papers

Chris Agruss, Automating Software Installation Testing
James Bach, Test Automation Snake Oll
Hans Buwalda, Testing Using Action Words

Hans Buwalda, Automated testing with Action Words:
Abandoning Record & Playback

Elisabeth Hendrickson, The Difference between Test
Automation Failure and Success

Cem Kaner, Avoiding Shelfware: A Manager’s View of
Automated GUI Testing

John Kent, Advanced Automated Testing Architectures
Bret Pettichord, Success with Test Automation

Bret Pettichord, Seven Steps to Test Automation Success
Keith Zambelich, Totally Data-Driven Automated Testing

Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

116



Domain Testing
B

« AKA partitioning, equivalence analysis, boundary analysis

 Fundamental guestion or goal:
— This confronts the problem that there are too many test cases for
anyoneto run. Thisis astratified sampling strategy that provides a
rationale for selecting afew test cases from a huge population.

« General approach:
— Divide the set of possible values of afield into subsets, pick valuesto
represent each subset. Typical values will be at boundaries. More
generaly, the goal isto find a*“best representative”’ for each subset,

and to run tests with these representatives.

— Advanced approach: combine tests of several “best representatives’.
Severa approaches to choosing optimal small set of combinations.

o Paradigmatic case(s)
— Equivalence analysis of asimple numeric field.
— Printer compatibility testing (multidimensional variable, doesn’t map
to a simple numeric field, but stratified sampli n(% IS essential.) 117

Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.




Domain Testing

T
* In classical domain testing

— Two values (single points or n-tuples) are equivalent if
the program would take the same path in response to

each.
* The classical domain strategies all assume

— that the predicate interpretations are simple, linear
Inequalities.
— the input space is continuous and

— coincidental correctness is disallowed.

It is possible to move away from these assumptions, but
the cost can be high, and the emphasis on paths is
troublesome because of the high number of possible

paths through the program.
» Clarke, Hassell, & Richardson, p. 388

Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

118



Equivalence and Risk

Our working definition of equivalence:

Two test cases are equivalent if you expect the same
result from each.

This is fundamentally subjective. It depends on what you expect. And
what you expect depends on what errors you can anticipate:

Two test cases can only be equivalent by reference to a
specifiable risk.

Two different testers will have different theories about how programs
can fail, and therefore they will come up with different classes.

A boundary case in this system is a “best representative.”
A best representative of an equivalence classis a test
that is at least as likely to expose a fault as every other
member of the class.

Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved. 119



Domain Testing

o Strengths

— Find highest probability errors with arelatively small
set of tests.

— Intuitively clear approach, generalizes well
* Blind spots

— Errorsthat are not at boundaries or in obvious special
Cases.

— Also, the actual domains are often unknowable.

Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved. 120



Domain Testing: Interesting Papers
B

« Thomas Ostrand & Mark Balcer, The Category-partition Method
For Specifying And Generating Functional Tests,
Communications of the ACM, Vol. 31, No. 6, 1988.

 Debra Richardson, et al., A Close Look at Domain Testing, IEEE
Transactions On Software Engineering, Vol. SE-8, NO. 4, July
1982

* Michael Deck and James Whittaker, Lessons learned from
fifteen years of cleanroom testing. STAR '97 Proceedings
(in this paper, the authors adopt boundary testing as an adjunct
to random sampling.)

 Richard Hamlet & Ross Taylor, Partition Testing Does Not
Inspire Confidence, Proceedings of the Second Workshop on
Software Testing, Verification, and Analysis, IEEE Computer
Society Press, 206-215, July 1988

Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved. 121



Sress Testing

« Tagline
— “Overwhelm the product.”
 Fundamental question or goal

— Learn about the capabilities and weaknesses of the product by driving
it through failure and beyond. What does failure at extremestell us
about changes needed in the program’ s handling of normal cases?

 Paradigmatic case(s)
— Buffer overflow bugs
— High volumes of data, device connections, long transaction chains
— Low memory conditions, device failures, viruses, other crises.
» Strengths
— EXxpose weaknesses that will arise in the field.
— EXxpose security risks.
Blind spots
— Weaknesses that are not made more visible by stress.

Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved. 122



Sress Testing: Interesting Papers
T

o Astroman66, Finding and Exploiting Bugs 2600
* Bruce Schneier, Crypto Gram, May 15, 2000

« James A. Whittaker and Alan Jorgensen, Why Software
Fails

« Whittaker & Jorgenson, How to Break Software.

Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved. 123



Spoecification-Driven Testing

 Tag line:
— “Verify every clam.”
« Fundamental question or goal

— Check the product’ s conformance with every statement
IN every spec, requirements document, etc.

o Paradigmatic case(s)
— Traceability matrix, tracks test cases associated with
each specification item.
— User documentation testing

Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved. 124



Spoecification-Driven Testing

o Strengths

— Critical defense against warranty claims, fraud charges, loss
of credibility with customers.

— Effective for managing scope / expectations of regulatory-
driven testing

— Reduces support costs/ customer complaints by ensuring

that no false or misleading representations are made to
customers.

* Blind spots

— Any issues not in the specs or treated badly in the specs
/documentation.

Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved. 125



Reviewing a Specification for Completeness
B

*Reading a spec linearly is not a particularly effective way to
read the document. It's too easy to overlook key missing
ISsues.

*\We may not have time to walk through this method in this
class, but the general approach that | use is based on James
Bach’s “Satisfice Heuristic Test Strategy Model” at
http://www.satisfice.com/tools/satisfice-tsm-4p.pdf.

— You can assume (not always correctly, but usually) that every
sentence in the spec is meant to convey information.

— Theinformation will probably be about
 the project and how it is structured, funded or timed, or
» about the product (what it is and how it works) or

» about the quality criteria that you should evaluate the

product against.
Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved. 126




Scenario Testing

Tag lines

— “Do something useful and interesting”
— “Do onething after another.”
Fundamental question or goal

— Challenging cases that reflect real use.
Paradigmatic case(s)

— Appraise product against business rules, customer data,
competitors output

— Lifehistory testing (Hans Buwalda' s “ soap operatesting.”)
— Use cases are asimpler form, often derived from product

capabilities and user mode! rather than from naturalistic
observation of systems of this kind.

Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved. 127



Scenario Testing

 The ideal scenario has several characteristics:
— Itisrealistic (e.g. it comes from actual customer or competitor
situations).
— Thereis no ambiguity about whether atest passed or failed.
— Thetest iscomplex, that is, it uses several features and
functions.
— Thereisastakeholder who will make afussif the program
doesn’t pass this scenario.
o Strengths

— Complex, redlistic events. Can handle (help with) situations
that are too complex to model.

— Exposes fallures that occur (develop) over time

* Blind spots
— Single function failures can make this test inefficient.

— Must think carefully to achieve good coverage.

Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved. 128



Scenario Testing: Interesting Papers

 Hans Buwalda on Soap Operas (in the conference
proceedings of STAR East 2000)

e Kaner, A pattern for scenario testing, at
www.testing.com

e Lots of literature on use cases

Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved. 129



Risk-Based Testing

 Tagline
— “Find big bugsfirst.”
* Fundamental question or goal

— Define and refine tests in terms of the kind of problem (or risk)
that you are trying to manage

— OR prioritize the testing effort in terms of the relative risk of
different areas or issues we could test for.

» Paradigmatic case(s)
— Failure Mode and Effects Analysis (FMEA)
— Equivalence class analysis, reformul ated.
— Test in order of frequency of use (Musa).

— Stresstests, error handling tests, security tests, tests looking for
predicted or feared errors, sample from predicted-bugs list.

Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved. 130



Risk-Based Testing

o Strengths
— Optimal prioritization (assuming we correctly identify and
prioritize the risks)
— High power tests
* Blind spots
— Risksthat were not identified or that are surprisingly more
likely.
— Some “risk-driven” testers seem to operate too subjectively.

How will | know what level of coverage that I’ ve reached?
How do | know that | haven’t missed something critical ?

Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved. 131



Evaluating Risk

o Several approaches that call themselves “risk-based
testing” ask which tests we should run and which we
should skip if we run out of time.

 We think this is only half of the risk story. The other half is
focuses on test design.

— It seemsto usthat akey purpose of testing isto find
defects. S0, a key strategy for testing should be defect-
based. Every test should be questioned:

« How will this test find a defect?
» What kind of defect do you have in mind?

* What power does this test have against that kind of
defect? Is there a more powerful test? A more powerful
suite of tests?

Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved. 132



Evaluating Risk

« Many of us who think about testing in terms of risk,
analogize testing of software to the testing of
theories:

— Karl Popper, in his famous essay Conjectures and
Refutations, lays out the proposition that a scientific
theory gains credibility by being subjected to (and
passing) harsh tests that are intended to refute the
theory.

— We can gain confidence in aprogram by testing it
harshly (if it passes the tests). Subjecting it to easy
tests doesn’t tell us much about what will happen to
the program in the field.

Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved. 133



Risk-Based Testing: Interesting Papers

o Stale Amland, Risk Based Testing

e James Bach, Reframing Requirements Analysis

e James Bach, Risk and Requirements Based Testing
« James Bach, James Bach on Risk Eased Testing

o Stale Amland & Hans Schaefer, Risk based testing, a
response

o Carl Popper, Conjectures & Refutations

Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved. 134



User Testing

 Tag line

— Strive for realism

— Let’stry thiswith real humans (for a change).
 Fundamental question or goal

— ldentify failures that will arise in the hands of a person,
I.e. breakdowns in the overall human/machine/software
system.

« Paradigmatic case(s)
— Betatesting

— In-house experiments using a stratified sample of target
market

— Usability testing

Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved. 135



User Testing

«Strengths
— Design issues are more credibly exposed.

— Can demonstrate that some aspects of product are incomprehensible or
lead to high error rates in use.

— In-house tests can be monitored with flight recorders (capture/replay,
video), debuggers, other tools.

— In-house tests can focus on areas / tasks that you think are (or should be)
controversial.
*Blind spots
— Coverageis not assured (serious misses from beta test, other user tests)
— Test cases can be poorly designed, trivial, unlikely to detect subtle
errors.

— Betatesting is not free, betatesters are not skilled, the technical results
are mixed. Distinguish marketing betas from technical betas.

Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved. 136



Exploratory Testing

Simultaneously:

Learn about the product

Learn about the market

Learn about the ways the product could falil
Learn about the weaknesses of the product
Learn about how to test the product

Test the product

Report the problems

Advocate for repairs

Develop new tests based on what you
have learned so far.

Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

137



Exploratory Testing

« Tag line
— “Simultaneous learning, planning, and testing.”
 Fundamental question or goal

— Software comes to tester under-documented and/or |ate.
Tester must simultaneously learn about the product and
about the test cases/ strategies that will reveal the product
and its defects.

o Paradigmatic case(s)
— Skilled exploratory testing of the full product
— Rapid testing
— Emergency testing (including thrown-over-the-wall test-it-
today testing.)
— Third party components.
— Troubleshooting / follow-up testing of defects.

Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved. 138



Exploratory Testing

o Strengths
— Customer-focused, risk-focused
— Takes advantage of each tester’s strengths
— Responsive to changing circumstances
— Weéll managed, it avoids duplicative analysis and testing
— High bug find rates
* Blind spots
— Theless we know, the more we risk missing.

— Limited by each tester’ s weaknesses (can mitigate thiswith
careful management)

— Thisisskilled work, juniors aren’t very good at it.

Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved. 139



Exploratory Testing: Interesting Papers

e Chris Agruss & Bob Johnson, Ad Hoc Software Testing
Exploring the Controversy of Unstructured Testing

« Whittaker & Jorgenson, How to Break Software

Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved. 140



Random/ Satistical Testing

 Tag line
— “High-volume testing with new cases all the time.”
 Fundamental question or goal
— Have the computer create, execute, and evaluate huge
numbers of tests.

* The individual tests are not all that powerful, nor all
that compelling.

» The power of the approach lies in the large number of
tests.

* These broaden the sample, and they may test the

program over a long period of time, giving us insight
Into longer term issues.

Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved. 141



Random/ Satistical Testing

« Paradigmatic case(s)

— Some of us are still wrapping our heads around the
richness of work in thisfield. Thisisatentative
classification

e NON-STOCHASTIC RANDOM TESTS

STATISTICAL RELIABILITY ESTIMATION

STOCHASTIC TESTS (NO MODEL)

STOCHASTIC TESTS USING ON A MODEL OF THE
SOFTWARE UNDER TEST

STOCHASTIC TESTS USING OTHER ATTRIBUTES
OF SOFTWARE UNDER TEST

Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved. 142



Random/ Satistical Testing: Non-Sochastic

 Fundamental question or goal

— The computer runs alarge set of essentially independent
tests. The focusis on the results of each test. Tests are often
designed to minimize sequential interaction among tests.

o Paradigmatic case(s)

— Function equivalence testing: Compare two functions (e.g.
math functions), using the second as an oracle for the first.
Attempt to demonstrate that they are not equivalent, i.e. that
the achieve different results from the same set of inputs.

— Other test using fully deterministic oracles (see discussion of
oracles, below)

— Other tests using heuristic oracles (see discussion of oracles,
below)

Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved. 143



Statistical Reliability Estimation

« Fundamental question or goal

— Use random testing (possibly stochastic, possibly
oracle-based) to estimate the stability or reliability of
the software. Testing is being used primarily to qualify
the software, rather than to find defects.

o Paradigmatic case(s)

— Clean-room based approaches

Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved. 144



The Need for Sochastic Testing: An Example

i

You
hung up

Test Documentation

T
Idle —
3 ]
Ringing — = hiigjel;p
Conicted /)
¥
On Hold

Copyright © 2001 Cem Kaner and James Bach. All rights reserved.

145




Sochastic Tests--No Mode!: “ Dumb Monkeys’

 Fundamental question or goal

— High volume testing, involving along sequence of
tests.

— A typical objectiveisto evaluate program performance
over time.

— The distinguishing characteristic of this approach is that
the testing software does not have a detailed model of
the software under test.

— The testing software might be able to detect failures
based on crash, performance lags, diagnostics, or
Improper interaction with other, better understood parts
of the system, but it cannot detect afailure ssmply
based on the question, “Is the program doing what it is
supposed to or not?”’

Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved. 146



Sochastic Tests-- No Mode!: “ Dumb Monkeys’ )
_ TT——

» Paradigmatic case(s)

— Executive monkeys. Know nothing about the system. Push
buttons randomly until the system crashes.

— Clever monkeys. More careful rules of conduct, more
knowledge about the system or the environment. See Freddy.

— O/S compatibility testing: No model of the software under test,
but diagnostics might be available based on the environment
(the NT example)

— Early qualification testing
— Lifetesting
— Load testing
 Notes
— Can be done at the APl or command line, just aswell asvia Ul

Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.



Sochastic, assert or diagnostics-based random tests

« Fundamental question or goal

— High volume random testing using random sequence of
fresh or pre-defined tests that may or may not self-
check for pass/fail. The primary method for detecting
pass/fail uses assertions (diagnostics built into the
program) or other (e.g. system) diagnostics.

« Paradigmatic case(s)
— Telephone example (asserts)

— Embedded software example (diagnostics)

Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved. 148



Random Testing: Stochastic, Regression-Based

« Fundamental question or goal

— High volume random testing using random sequence of
pre-defined tests that can self-check for pass/fail.

« Paradigmatic case(s)
— Lifetesting
— Search for specific types of long-sequence defects.

Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved. 149



Random Testing: Stochastic, Regression-Based

e Notes

— Create a series of regression tests. Design them so that they
don't reinitialize the system or force it to a standard starting
state that would erase history. The tests are designed so that
the automation can identify failures. Run the tests in random
order over along sequence.

— Thisisalow-mental-overhead alternative to model-based
testing. Y ou get pass/fail info for every test, but without
having to achieve the same depth of understanding of the
software. Of course, you probably have worse coverage, less
awareness of your actual coverage, and less opportunity to
stumble over bugs.

— Unlessthisisvery carefully managed, thereis a serious risk
of non-reproduceabil itge of failures. 150

Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved.



Random Testing: Sandboxing the Regression Tests

* In arandom sequence of standalone tests, we might want to
gualify each test, T1, T2, etc, as able to run on its own. Then,
when we test a sequence of these tests, we know that errors
are due to interactions among them rather than merely to
cumulative effects of repetition of a single test.

» Therefore, for each Ti, we run the test on its own many times
In one long series, randomly switching as many other
environmental or systematic variables during this random
sequence as our tools allow.

« We call this the “sandbox” series—Ti is forced to play in its
own sandbox until it “proves” that it can behave properly on
its own. (This is an 80/20 rule operation. We do want to avoid
creating a big random test series that crashes only because
one test doesn't like being run or that fails after a few runs
under low memory. We want to weed out these simple
causes of failure. But we don’t want to spend a fortune trying
to control this risk.)

Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved. 151



Random Testing: Sandboxing the Regression Tests

Suppose that you create a random seqguence of
standalone tests (that were not sandbox tested), and
these tests generate a hard t reproduce failure.

You can run a sandbox on each of the tests in the
series, to determine whether the failure is merely due to
repeated use of one of them.

Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved. 152



Random Testing: Model-based Sochastic Tests

 Fundamental Question or Goal

— Build astate model of the software. (The analysiswill reveal
several defectsinitself.) Generate random events/ inputs to
the program. The program responds by moving to a new
state. Test whether the program has reached the expected
state.

» Paradigmatic case(s)

— | haven't done this kind of work. Here’ swhat | understand:
« Works poorly for a complex product like Word

 Likely to work well for embedded software and simple
menus (think of the brakes of your car or walking a control
panel on a printer)

* In general, well suited to a limited-functionality client that will
not be powered down or rebooted very often.

* Maintenance is a critical issue because design changes add
or subtract nodes, forcing a regeneration of the model.

Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved. 153



Random Testing: Model-based Sochastic Tests

Alan Jorgensen, Software Design Based on Operational Modes, Ph.D.
thesis, Florida Institute of Technology:

The applicability of state machine modeling to mechanical computation dates
back to the work of Mealy [Mealy, 1955] and Moore [Moore, 1956] and
persists to modern software analysis techniques [Mills, et al., 1990, Rumbaugh,
et al., 1999]. Introducing state design into software development process began
In earnest in the late 1980’ s with the advent of the cleanroom software
engineering methodology [Mills, et a., 1987] and the introduction of the State
Transition Diagram by Y ourdon [Y ourdon, 1989].

A deterministic finite automata (DFA) is a state machine that may be used to
model many characteristics of a software program. Mathematically, aDFA is
the quintuple, M = (Q, S, d, 90, F) where M isthe machine, Q isafinite set of
states, Sisafinite set of inputs commonly called the “alphabet,” d isthe
transition function that maps Q X Sto Q,, g0 is one particular el ement of Q
Identified as the initial or stating state, and F 1 Q isthe set of final or
terminating states [ Sudkamp, 1988]. The DFA can be viewed as a directed
graph where the nodes are the states and the |abeled edges are the transitions
corresponding to inputs.

Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved. 154



Random Testing: Model-based Sochastic Tests

Alan Jorgensen, Software Design Based on Operational Modes, Ph.D.
thesis, Florida Institute of Technology:

When taking this state model view of software, a different definition of
software failure suggests itself: “The machine makes a transition to an
unspecified state.” From this definition of software failure a software defect
may be defined as. “ Code, that for some input, causes an unspecified state
transition or failsto reach arequired state.”

Recent developments in software system testing exercise state transitions and
detect invalid states. Thiswork, [Whittaker, 1997b], devel oped the concept of
an “operational mode” that functionally decomposes (abstracts) states.
Operational modes provide a mechanism to encapsulate and describe state
complexity. By expressing states as the cross product of operational modes
and eliminating impossible states, the number of distinct states can be reduced,
alleviating the state explosion problem.

Operational modes are not a new feature of software but rather a different way
to view the decomposition of states. All software has operational modes but
the implementation of these modes has historically been left to chance. When

used for testing, operational modes have been extracted by reverse engineering.
Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved. 155



Random Testing: Thoughts Toward an Architecture
_ T——

 We have a population of tests, which may have been
sandboxed and which may carry self deck info. A test
series involves a sample of these tests.

 We have a population of diagnostics, probably too many
to run every time we run a test. In a given test series,
we will run a subset of these.

 We have a population of possible configurations, some
of which can be set by the software. In a given test
series, we Initialize by setting the system to a known
configuration. We may reset the system to new
configurations during the series (e.g. every 5th test).

Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved. 156



Random Testing: Thoughts Toward an Architecture

 We have an execution tool that takes as input
— alist of tests (or an algorithm for creating alist),

— alist of diagnostics (initial diagnostics at start of
testing, diagnostics at start of each test, diagnostics on
detected error, and diagnostics at end of session),

— aninitial configuration and
— alist of configuration changes on specified events.

* The tool runs the tests in random order and outputs
results

— to astandard-format log file that defines its own
structure so that

— multiple different analysis tools can interpret the same
data.

Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved. 157



Random/ Satistical Testing

o Strengths
— Regression doesn’'t depend on same old test every time.
— Partial oracles can find errorsin young code quickly and
cheaply.
— Lesslikely to missinternal optimizations that are invisible
from outside.

— Can detect failures arising out of long, complex chains that
would be hard to create as planned tests.

» Blind spots

— Need to be able to distinguish pass from failure. Too many
people think “Not crash = not fail.”

— Executive expectations must be carefully managed.

— These methods will often cover many types of risks, but will
obscure the need for other tests |ess amenabl e to automation.

Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved. 158



Random/ Satistical Testing

* Blind spots

— Testers might spend much more time analyzing the
code and too little time analyzing the customer and her
uses of the software.

— Potential to create an inappropriate prestige hierarchy,
devaluating the skills of subject matter experts who
understand the product and its defects much better than
the automators.

Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved. 159



Random Testing: Interesting Papers

o Larry Apfelbaum, Model-Based Testing, Proceedings of
Software Quality Week 1997 (not included in the course
notes)

* Michael Deck and James Whittaker, Lessons learned from
fifteen years of cleanroom testing. STAR '97 Proceedings

* Doug Hoffman, Mutating Automated Tests
« Alan Jorgensen, An API Testing Method
* Noel Nyman, GUI Application Testing with Dumb Monkeys.

« Harry Robinson, Finite State Model-Based Testing on a
Shoestring.

 Harry Robinson, Graph Theory Techniques in Model-Based
Testing.

Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved. 160



