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I.  Abstract 

The digital age is appearing at every corner. Moreover, it is searched by many and yarned by even more. 

Even if one has digital contents there are still different ways of transporting its bits, and producers want to 

employ whichever resources are more suitable to deliver their product with the best quality, in the most 

efficient and, above all, more economic way. This, of course, leads to a myriad of solutions, with different 

equipments and software products. 

This thesis will focus the discussion on the network aspects of these solutions, namely we will deal with 

the craving of TV studios for the digital means to turn their multi medium networks into a singular digital 

content driven one. 

TV studios have, as all other business, particular aspects. TV operators (broadcasters and producers) want 

to change their over-budget production studios into a more economic viable solution, but without 

relinquishing any of its quality standards. That means that they want to produce the same program material 

with the same output quality(ies) using less expensive hardware/software in a more integrated way. 

Putting it mildly, they need to do a total rewrite of their program production flow to fully enter the digital 

arena. Their network software/hardware will undoubtedly be one of the aspects to (r)evolve. 

This thesis will continue the work being done in the framework of some research projects to implement 

these functionalities. The effort so far has been to use IT technology in place of the high cost proprietary 

hardware/software normally used in TV studios.  

In this text, we will pursue this goal, but will restrain ourselves to network concerns. Namely, ATM 

technology will be our primary subject. We will introduce ATM to the TV studio network and try to see how 

good they blend together. 

Naturally, ATM will not be the sole network infrastructure to be used, which implies the development of a 

system to cope with different networks. In this aspect, the development made so far to integrate different 

network technologies will serve as a starting point to the discussion in this thesis. 
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 Resumo 

A era digital está em todas as esquinas. Todas as empresas a procuram atingir e todas a desejam 
implementar. E quando o conteúdo já é digital ainda existem diferentes alternativas para o transporte dos bits. 
Os produtores querem usar os recursos que lhes permitam a entrega do seu produto com a melhor qualidade, 
do modo mais eficiente e acima de tudo da maneira mais económica possível. Isto leva a que existam 
múltiplas soluções para o mesmo problema, envolvendo diferente equipamento e software. 

Esta tese irá focar-se nos pormenores relacionados com a rede informática destas soluções, nomeadamente 
vamos ‘atacar’ o desejo dos estúdios de televisão de utilizar o ambiente digital para transformar as suas redes 
com múltiplas tecnologias numa com um formato digital único. 

Estes estúdios têm, como todos os negócios, aspectos particulares. Os operadores de televisão (produtores 
e radiodifusores) querem mudar os seus dispendiosos estúdios de produção para uma solução 
economicamente mais viável, mas sem perder a elevada qualidade pretendida para os seus produtos. Isto 
significa que pretendem produzir o mesmo, com igual qualidade mas usando hardware/software menos 
dispendioso e de um modo mais integrado. 

Na prática necessitam de refazer a sua linha de produção de programas para conseguirem entrar 
completamente na arena digital. O software/hardware de rede será certamente um dos aspectos a tratar. 

Esta tese pretende continuar o trabalho desenvolvido em projectos de investigação que tentam solucionar 
estes problemas, substituindo o actual hardware/software proprietário associado a elevados custos por 
tecnologia IT. 

Neste texto iremos tentar alcançar estes objectivos, mas restringindo-nos aos aspectos relacionados com a 
rede. A tecnologia ATM será o principal tema a tratar. Iremos tentar ‘apresentar’ o ATM às redes dos 
estúdios de televisão e ver como eles se conjugam.  

O ATM não será naturalmente a única solução de rede a ser utilizada, o que implica o desenvolvimento de 
um sistema que possa suportar diferentes tipos de redes. O trabalho já desenvolvido, nos projectos referidos, 
para a integrar diferentes tecnologias de rede servirá de ponto de partida para a discussão nesta tese. 
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III.  Acronyms 

Acronyms are now widely employed in every context. The broad use given to them leads to some 

misunderstandings, especially when we have the same acronyms to refer to very different meanings (ex: 

ATM – Automatic Teller Machine). 

To ease the reader (and ourselves) from the burden of guessing/remembering every single acronym we 

have gathered the ones used throughout this thesis in the following table. 

Cross-references in the table are in italic (ex: AAL refers to ATM that also as an entry on the table). 

 

AAL ATM Adaptation Layer 

ABR Available Bit Rate 

ACE Adaptive Communication Environment 

ACTS Advanced Communications Technologies and Services 

ANSI American National Standards Institute 

API Application Program Interface 

ATLANTIC Advanced Television at Low bit rates And Networked Transmission over Integrated 
Communication systems 

ATM Asynchronous Transfer Mode 

ATMARP ATM Address Resolution Protocol 

BBC British Broadcasting Corporation 

BER Bit Error Rate 

B-ISDN Broadband-ISDN 

BSD Berkeley Software Distribution 

BT Burst Tolerance 
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CAC Connection Admission Control 

CBR Constant Bit Rate 

CDV Cell Delay Variation 

CDVT CDV Tolerance 

CLP Cell Loss Priority 

CLR Cell Loss Ratio 

CORBA Common Object Request Broker Architecture 

CRC Cyclic Redundancy Check 

CS Convergence Sub layer 

CSELT Centro Studi E Laboratori Telecommunicazzioni 

CTD Cell Transfer Delay 

CVS Concurrent Versions System 

DCC Data Country Code 

DETAIL DIMICC Essence Transfer Already Implemented Library 

DII Dynamic Invocation Interface 

DIMICC DIstributed MIddleware for Multimedia Command and Control 

DOC Distributed Object Group 

DSI Dynamic Skeleton Interface 

DSM-CC Digital Store Media – Command and Control 

DVB Digital Video Broadcasting 

DVB-C DVB Cable 

DVB-S DVB Satellite 

DVB-T DVB Terrestrial 

DVD Digital Versatile Disk 

EBU European Broadcast Union 

EDL Edit Decision List 

EFCI Explicit Forward Congestion Indication 

ENST Ecole Nationale Supérieure des Télécommunications 

EPFL Ecole Polytechnique Fédérale de Lausanne 

ESI End Station Identifier 

FhG Fraunhofer Gesellschaft 

FTP File Transfer Protocol 

HEC Header Error control Code 
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HTML Hyper Text Markup Language 

I/O Input/Output 

ICD International Code Designator 

IDL Interface Definition Language 

IIOP Internet Inter-ORB Protocol 

INESC INstituto de Engenharia de Sistemas e Computadores 

IOR Interoperable Object Reference 

IP Internet Protocol 

IPoA IP over ATM 

IR Interface Repository 

ISBN International Standard Book Number 

ISDN Integrated Services Digital Network 

ISO International Standard Organization 

IT Information Technology 

ITU-T International Telecommunication Union Telecommunication standardization 

KISS Keep It Simple Stupid 

LAN Local Area Network 

LANE LAN Emulation 

LIS Logical IP Sub-network 

LLC Logical Link Control 

MAC Media Access Control 

MBS Maximum Burst Size 

MCR Minimum Cell Rate 

MOG Media Objects Group 

MPEG Moving Picture Experts Group 

NFS Network File System 

NNI Network – Network Interface 

nrt-VBR non real time VBR 

NSAP Network Service Access Point 

OMG Object Management Group 

ORB Object Request Broker 

ORBIT Object Reconfigurable Broadcasting using IT 

OS Operating System 
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OSI Open System Interconnection 

PCR Peak Cell Rate 

PDF Portable Document Format 

PERL Practical Extraction and Report Language 

PES Packetized Elementary Stream 

PMD Physical Media Dependent 

PNNI Private NNI 

POA Portable Object Adapter 

PS PostScript 

QoS Quality of Service 

R&D Research & Development 

RFC Request For Comments 

RSVP Resource reSerVation Protocol 

RTF Rich Text Format 

rt-VBR real time VBR 

SAP Service Access Point 

SAR Segmentation And Reassembly 

SCR Sustainable Cell Rate 

SDI Serial Digital Interface 

SDK Software Development Kit 

SDU Service Data Unit 

SEL SELector 

SMPTE Society of Motion Pictures and Television Engineers 

SNAP Standard Network Access Protocol 

SPTS Single Program Transport Stream 

TAO The ACE ORB 

TC Transport Convergence 

TCP Transmission Control Protocol 

TLI Transport Layer Interface 

TM Trade Mark 

TS Transport Stream 

TV TeleVision 

TVI TeleVisão Independente 
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UBR Unspecified Bit Rate 

UMID Universal Material IDentifier 

UML Unified Modelling Language 

UNI User – Network Interface 

UPC Usage Parameter Control 

VBR Variable Bit Rate 

VC Virtual Channel/Connection 

VCI VC Identifier 

VIP Very Important Person 

VP Virtual Path 

VPI VP Identifier 

VTR Video Tape Recorder 

WAN Wide Area Network 

WIP Work In Progress 

WS WorkStation 

XP eXtreme Programming 
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1.  Introduction 

"When we walk to the edge of all the light we have,  
And take that step into the darkness of the unknown,  
We must believe that one of two things will happen ...  

There will be something solid for us to stand on. 
 Or, we will be taught to fly. " 

-- Zen Proverb 

In this first chapter, we will introduce the objectives of this thesis. We will 

state the reasons that led us to develop this work and the methodology 

used. The technologies involved will be referred to in the process. The 

reader will also be introduced to the notation used throughout the text. 

When the work illustrated in this thesis began, ATM (Asynchronous Transfer Mode) was already making 

a stand in the local network. There was some research to provide the industry with feasible solutions, based 

on ATM with ATM Forum leading the standardization process. The market was also responding well to 

ATM. There was the desire to pick up this technology used primarily in backbones and take its unique 

strengths to the end-user environment. 

Already with a strong position in the market was Fast Ethernet (although with lower throughput). Gigabit 

Ethernet caught up ATM when ATM was establishing itself in the LAN (Local Area Network) environment. 

Here started a competition for the LAN segment, with (at the time) ATM leading the way in QoS (Quality of 

Service) related applications, because the Ethernet technologies lacked the QoS capabilities and bandwidth 

reservation of ATM. ATM also had a higher throughput than Fast Ethernet and Gigabit was not yet available 

for LAN use. Therefore, Ethernet features seemed less appealing than those of ATM. Hence, research 
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departments started to develop and exploit software that could embrace this new technology (at least for the 

local network) and make full use of its advantages. 

TV (TeleVision) industry was one of the interested partners in this research. 

TV was starting to move to the digital world in the studio production area. They used different work tools 

from different manufacturers into the working place, and had to make ends meet in order to integrate the 

different materials. Their costs were quite high, because they had to use proprietary and extremely high 

quality hardware in the production and broadcast areas. They wanted/required to join the low cost 

information technology world without losing their high quality standards. 

 

This situation led to the birth of projects that aimed to reduce TV studio production costs. In the process, 

TV operators also wanted to increase production speed, to improve the workflow process, make possible 

production in different media types and to achieve greater flexibility in production. 

ATM was selected as an important component of these projects, as the underlying network infrastructure 

that connected all the resources, transporting data and commands to the work tools in a reliable and 

guaranteed way. 

1.1. Goals 
The scenario portrayed describes the motivation for the work in this thesis. TV studios were eager to enter 

the digital arena and to adopt IT (Information Technology) solutions that would lower costs and improve 

production quality and flexibility. Projects were developed to achieve this goal, but the stakes kept growing 

higher with the success of the projects. Distributed access and control of the material (content) was thought 

of, different network technologies needed to be addressed, new video formats had to be dealt with and new 

information related to the material (metadata) should be transported with it. 

 

These aspects traverse several technical areas. In this thesis, we will stick to the network aspects. Our 

main goals will be: 

• To provide the network infrastructure of the project with the means to use ATM as a transport 

technology. 

• To contribute to the integration of different network technologies in the infrastructure. 

• To prove the feasibility of using ATM in the TV studio network and therefore prove that ATM can 

reach the end-user. 

 

To this end, we will use programming technologies that (as we will describe) are best fitted to the 

challenge at hand. C++ and CORBA (Common Object Request Broker Architecture) will be the primary 

programming environment. We will use a framework developed with communication principles in mind 
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named ACE (Adaptive Communication Environment). The technology already developed for the projects 

will be adapted to support ATM. 

 

This development will imply the study of ATM characteristics and its implementation details in the 

operating systems to be used. CORBA and its services will also have to be dealt with. Language patterns will 

be widely used as an aid to better develop code. To test the software built, we will try to use the best test 

practices. Other tools will also be used to manage a project of this dimension. 

1.2. Text Organization  
Throughout this text, we will try to follow more or less the same path that we employed during our work. 

The effort will be (as in every thesis) to introduce the reader to the theory behind the practice before 

describing the actual development made. 

 

To start out, we will try to answer the “why do it?” question. Therefore, in chapter two we will try to 

explain the motivation behind this work. The TV studio hunger for digital means (that we mentioned earlier) 

will be described here. The use of ATM technology in this environment will be discussed in this chapter. The 

projects where this work started and in which we dwell ourselves are also addressed in this section. 

In chapter three, the going gets tougher and so we will get going to the more technical aspects, elaborating 

through the technologies used. We will portray the network infrastructure to be used, ATM and see an overall 

picture of CORBA. This section will serve to describe the theory behind our work. 

The number 4 will lead us to the description of the ACE communication framework (which we mentioned 

in the previous sub-section). The architectures developed in the projects described in chapter two will be 

more thoroughly analysed here, including the programming infrastructure where the work was done, and on 

which some improvements were made. 

The fifth chapter will show the ‘real deal’. The development that was the purpose of this thesis will be 

described, as well as the use and testing of the mechanisms implemented. 

The final chapter (number six) aims at drawing conclusions of the work undertaken. It also tries to 

discover new paths to follow. Not all statements proved to be true, and being able to conclude that the path to 

be taken will not be the one we draw is not an easy achievement. In this chapter, we will develop on this 

puzzling initial remark of a thesis and try to see ahead on our crystal ball. 

1.3. Notation used 
We will be using different font types to emphasize some aspects. 

The default font will be Times New Roman, which is employed in the normal text. 

Courier New will be applied to: 
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o Code fragments or references to classes 

o File paths 
o System variables 

Some sentences or expressions will be ‘quoted and in italic’. This will refer to: 

o ‘Foreign’ expressions 

o ‘Cute, humorous expressions’ (not many, and not that humorous) 

 

Acronyms will be widely used in the entire document. When a new one is introduced, its meaning will be 

revealed; however, in the following appearances the user is referred to section III if in doubt of its 

significance. 

 

Bibliographic references will appear with the formal style, which is between parentheses. This will only 

apply to the bibliography that was read or consulted during the course of this work. Some direct references 

will appear in the text when their content was of minor significance to the thesis, but may nonetheless interest 

the reader. 

UML (Unified Modelling Language) is largely used throughout the document, especially in the more 

technical chapters. A small appendix explaining some of concepts UML is in Appendix - D. The reader 

should consult/read it if uncertain of some notation used.  
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2.  Related Projects 

"By three methods we may learn wisdom:  
First, by reflection, which is noblest;  
second, by imitation, which is easiest;  

and third by experience, which is the bitterest." 
-- Confucius 

It is the need that drives the man further in the paths of knowledge.  In this 

chapter, we will describe the necessity that drove the projects from 

which this thesis was born. For that purpose, we will talk about 

video/audio digital formats and their use in a TV studio. We will then 

describe the projects and the current state of them.  We will see what are 

their goals in the pursue of filling the industry needs. The ORBIT project will 

be looked upon with more detail, as it is where the work described here 

dwells. The specific architecture of ORBIT will be the subject of a later 

chapter. 

2.1. TV – the box that is being changed by the world 
The motivation for this thesis came from the new challenges in television production studios. The world is 

asking more out of the ‘box’ and this led to the project where our work ‘lived’. 

The thesis will explore some aspects of digital television, but will stray to more specific work, which 

although related to the project, is more concerned with network specific issues. Nonetheless, we will try to 

introduce the concepts that drove the project in the next sub-chapters. 
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2.1.1. Are we digital yet? 
As one reads through the bibliography (namely [51] and [52]) to get a better knowledge about the studio 

production arena, a doubt starts to grow: is the TV production studio still in the pre-digital age as argued in 

[51] and [52]? The answer is not an easy one. 

 

The world all around is becoming digital. When we think of DVD (Digital Versatile Disk), pay-per-view, 

video on demand it is hard not to think in terms of bits. Digital TV broadcasting is also formed by bytes (if 

for no other reason, it must ensure the digital services to the consumers); we have DVB with an S for satellite, 

with a C for cable and with a T for terrestrial. All are Digital Video Broadcasting. This is not true for all the 

countries (including Portugal, which has only some field trials1), but there is a wider coverage than in the 

past. Consumers are also picking up the pace, because in the final run they are setting it.  

Photography is surely going digital (if it is not already). Digital cameras are of common usage in our days. 

Using compression and digital memory based systems, they are surely away from the analogue past. 

Although disk based video cameras are not widespread, there begins to be a market for the manufacturers to 

explore. 

The Internet is not even worth mentioning, because it is an implanted fact in everyone’s life. Interactivity 

and digital availability of contents are of course a must in the ‘net’. 

 

TV studios have embarked in all these developments, Internet being the most easily recognizable one 

(almost every TV studio is connected and broadcasts news online). However, we are running from the real 

question: how is the TV studio production? 

We are not referring to the spectacular special effects seen in the movies (the stand-on that does not look 

very good in the framing and is therefore digitally erased). There is no doubt that movie studio production has 

embraced digital content2. One could argue that if the movies have it, surely the TVs should also use it. 

However, one has only to be reminded of a daily production of a news program (handling last minute footage, 

resorting to archives to better cover a story), with its different profit values to think twice about digital. The 

program production equipment used is fairly closed and proprietary, leading to high prices. If those means 

were deployed in TV production studios, they would be less cost-effective than in movie studios. Of course, 

there are exceptions, but the overall picture seems to be a struggle to get to digital but without ‘selling their 

pants’ in the process. 

 

The conclusion seems to be that, TV operators are eager to have fully digital production studios, some 

already use mostly digital formats in their processes. There is not however a cost-effective solution to put all 

                                                           
1 Two noble Portuguese exceptions are one cable operator (TVCabo from Portugal Telecom) and a private generalist 
channel (TVI (TeleVisão Independente)), which both provide some interactive emissions. 
2 Although one could argue that, the costs of this embracement are similar to those of TV studios, they are nonetheless 
much more profitable. 
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production staff to watch only bits pass by. Here we touch another sensitive point: the people are only now 

getting acquainted with digital means, and have the normal resilience to change to new processes. 

Summing up, we have passed the pre-digital era, but are on the transition period, not in the final age. 

2.1.2. But why go digital? 
We never said why it was good to go digital. In these days, it seems a strange question to put, but we will 

try to point out the facts regarding the TV production studio. 

There is no doubt that digital transport can convey more and better information, adding also more 

flexibility. It can be compressed and it is less susceptible to errors due to the medium. This allows the 

transport of higher quality video/audio. Therefore, a known primary feature is the excellence of the data 

transported; it is a ‘better’ data. 

Therefore, this leads to a reduced bit rate in data related to image and sound, so there is bandwidth that can 

be used to transfer other information. We can add more video/audio to the data. We can transport different 

views for the video or different languages for the audio. Different angles of the same event give the user the 

freedom of choosing the detail he wants to see. 

There is however another more interesting use of this ‘surplus’ bandwidth; the end user can receive 

ancillary data. Data about the data or metadata as the EBU (European Broadcast Union) and the SMPTE 

(Society of Motion Pictures and Television Engineers) named it. This is new information available not only 

to the end user, but also to the people handling the programs. They now can query the system about attributes 

of the video/audio they are using. The end-user can know who made the documentary, when was it recorded, 

etc. The responsible for editing the program can identify the location of the footage for subtitling, the quantity 

of light during the filming, etc. Copyrights can be added. This has a wide range of use. 

The video and audio information had to be called something different from data1, so EBU/SMPTE named 

it essence2. The information transported is now the combination of essence and metadata, and is named 

content. Content is therefore the high coupling of essence and metadata. 

 

Other advantage of the digital medium is storage and access. [51] and [52] presented a workflow for the 

TV production studio (back in 2000) with several points of failure and introduced delays. The main issue was 

the need for organization to keep the material (videotapes or their copies) traceable, i.e., to know their current 

location and the transportation of the material. The different formats available for the stored material would 

also prove to be a loss of time to the editor wanting to use archived footage. 

                                                           
1 This has either a very broad meaning (related to any type of information) or a specific use (e.g., computer data). 
2 This also includes graphics information, subtitles, etc. 
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The characteristics of the digital medium can ease these problems. The material (essence) is not physically 

manipulated, so there is no fear of getting it lost. This way it is also always traceable and easier to copy as it 

shares a single format or is easily transformed from one to another. The metadata can ease the ‘hunt’ for those 

special scenes, since it is highly coupled with the essence. 

 

In conclusion, TV needs to get digital in the production arena and projects like the ones described next can 

help to reach these goals. 

2.2. The need for ATM 
In [46] we can read an interesting question “what could be the role of networking in this evolving scenario 

[introduction of MPEG-2 in TV studios], or even strongly, is there a single network technology suitable for 

the whole broadcasting environment?”. The authors then suggested ATM. 

TV studios already had a media transport SDI (Serial Digital Interface). This technology transported 

uncompressed digital video at a rate of up to 270 Mbps. However, this option had some drawbacks. The use 

of an uncompressed signal was the first one. Higher rates were being required and SDI would not accomplish 

that request, due to the transport of uncompressed signals. The second was cost, since these solutions were 

very expensive. It also required tight synchronization between systems, which led to some compromises and 

high costs to achieve it. 

The use of compressed MPEG-2 (Moving Picture Experts Group) allowed the use of other types of 

network technologies. ATM was the preferred one in the projects we will describe, as it was the available 

technology that could fulfil the requirements identified. ATM will deserve a deeper look in 3.1, but we will 

now resume some of its advantages in TV studios networks. 

ATM was proclaimed not to provide reliable delivery, which in real time systems (like video 

broadcasting) would undermine its QoS capabilities. Cells are dropped in ATM if errors arise1, and 

retransmission is not an option in real time systems. However, in long hauls BER (Bit Error Rate) as low as 

10-12 could be obtained. As we will see, the CLR (Cell Loss Ratio) is the factor in ATM that measures the 

losing of cells (due to either errors or congestion in the network). CLR of 2 x 10-11 were typical, and could be 

improved with forward error correction. Therefore, this fear was not well placed, as long as the correct traffic 

parameters were chosen. The CBR (Constant Bit Rate) and rt-VBR (real time VBR (Variable Bit Rate)) 

categories of service (see 3.1.2 for further details) were the most adequate to the job at hand. 

Other strong points are: 

• Wide support from the industry, which led to cost-effective solutions. 

• Scalability in speed (e.g., 2, 25.6, 100, 155, 622 Mbps) and distance. 

                                                           
1 And also if congestion or delays happen (but this is subject to the Service Category being used, see 3.1.2). 
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• Ability of providing bandwidth on demand (CBR for example guarantees a constant cell rate during 

the entire connection). 

• Capacity of setting QoS parameters per virtual circuit flow. 

The above reasons made ATM a serious competitor in the network area. It also impelled the work done in 

this thesis. 

2.3. ATLANTIC 
As we have seen, it was a growing necessity to lead the digital environment (and its compression 

techniques) to the edition/production area of a TV studio. In an effort to handle these issues the ATLANTIC 

(Advanced Television at Low bit rates And Networked Transmission over Integrated Communication 

systems) project [43][44][53] was started in the beginning of 1995. The project was funded by the European 

Community, under the ACTS (Advanced Communications Technologies and Services) program, and was 

integrated by BBC (British Broadcasting Corporation) R&D (Research & Development), CSELT (Centro 

Studi E Laboratori Telecommunicazzioni), ENST (Ecole Nationale Supérieure des Télécommunications), 

EPFL (Ecole Polytechnique Fédérale de Lausanne), FhG (Fraunhofer Gesellschaft), INESC (INstituto de 

Engenharia de Sistemas e Computadores) and Snell & Wilcox. The goal of the project was to convey MPEG-

2 format through the entire chain in a TV studio production environment. 

The aim was to reduce the loss of quality due to the successive decoding/coding operations done on the 

essence, trough the production chain, from the input of the studio to final programme distribution. A new 

technology was developed to improve the recoding process. The MOLETM system added to the decoded 

signal information about how the signal was previously coded. After the decoded signal had been processed, 

this knowledge was used in the following MOLE encoder to produce an optimal encoded signal. 

The studio network was based on ATM technology. The characteristics of ATM (that we will discuss 

later) like flexibility, scalability, support for QoS requirements, etc, led to its choice. However, there was the 

need to deliver reliably the MPEG-2 streams, so another protocol layer was required. TCP (Transmission 

Control Protocol) met the requirements, and so Classical IP (Internet Protocol) over ATM was used in spite 

of its limitations (see further in 3.1.4), which were overcome in the studio environment. 

ATLANTIC also had the goal of proving the possibility of using inexpensive IT technology to substitute 

the specialised equipment typically used in the studios. To demonstrate this assessment, a news studio was 

developed using low price computers, with the higher costs going to the ATM network1 and video cards 

needed. Nonetheless, it was a much lighter investment than the usual proprietary equipment of news studios, 

which normally used dedicated proprietary hardware to do the tasks that now were to be handled by IT 

technology. 

                                                           
1 Even so, ATM was a cheaper investment than the high quality digital interfaces, mentioned earlier. 
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The reference model used (taken from [43]) is illustrated in Fig. 2-1 (a brief discussion of each component 

follows). 

ATM
network

Edit WS

Server

finished programme
TS server

Format
Converter

Browse Track
generator

MPEG2
SPTS

(real-time bit stream
switch and multiplexer)

Edit Conformer

 

Fig. 2-1 - ATLANTIC studio Reference Model (from [43]) 

 

The Format Converter is the entry point of data to the ATLANTIC network. It receives MPEG-2 SPTS 

(Single Program Transport Streams) and converts them in PES (Packetized Elementary Streams), recovering 

in that way all elementary components. The PES are then stored in a Server. The Server also keeps index files 

related to PES, to ease the conversion of timestamps to byte offsets1. 

The Edit WorkStation will allow the creation of programmes (video sequences) in the form of EDL (Edit 

Decision Lists). An EDL consists of the description of the glued pieces of video/audio that will make a 

program. It is a description of the edits. The station consists of a GUI and MPEG-2 commercial decoder 

boards. In the Edit WorkStation there is also the possibility of previewing the programme in lower quality 

format (browse quality or MPEG-1 I-frame only). This introduces the next component that generates this 

browse quality streams, the Browse Track Generator. It transforms MPEG-2 streams into MPEG-1 I-frame 

and stores them in the Server. Indexes are also generated to relate the browse quality streams to the full-

quality ‘parents’. 

The Edit Conformer takes the EDL produced in the Edit WorkStation and generates the final programme 

in MPEG-2 format. It then stores it in the Finished Programme Transport Stream Server. 

2.3.1. Control 
The various pieces in the ATLANTIC environment needed to be controlled. There were different 

approaches to handle this issue. It started with operating system native tools (remote logins, NFS (Network 

File System), FTP (File Transfer Protocol)). Soon it proved difficult to manage the situation and they evolved 

to DSM – CC [49] (Digital Store Media – Command and Control), which was initially specified for video on 

                                                           
1 This enables random, time –based access to the streams. 
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demand services, which had some common requirements to those found on a production studio environment. 

This also revealed to be an inappropriate control mechanism. 

After this point, the ATLANTIC team started to develop their control framework. First a solution based on 

DSM-CC (Digital Store Media – Command and Control) was developed. Nonetheless, some of the former 

inadequacies surfed up. Therefore, the decision to start a new solution from scratch was taken, and this led to 

DIMICC (DIstributed Middleware for Multimedia Command and Control). The work of this dissertation is 

based on it, and so we will describe it in 4.3. 

 

This project lasted more than three years and achieved most of its objectives. 

2.4. ORBIT 
ATLANTIC showed a new road to take. The project demonstrated that it was possible to handle the 

production requirements of a TV studio using low cost IT solutions/systems. 

The BBC R&D decided to follow that road. Together with INESC Porto they decided to launch the 

ORBIT (Object Reconfigurable Broadcasting using IT) project [45][54]. 

In its starting phase, ORBIT intended to develop a pilot implementation of the concepts of ATLANTIC. 

This demonstrator would be a small-scale production area, with the following aspects in mind (from [45]): 

• Use of IT hardware to deal with essence (video/audio contents) and metadata, replacing expensive 

proprietary hardware. 

• Interconnection of media asset management and content handling tools. 

• Easy access from the desktop to the different contents. 

• Flexibility to handle diverse formats and any necessary conversion. 

• Easy reconfiguration to cope with various production processes and programme genres. 

 

ORBIT also aimed at providing input into the standards organizations (like the Pro-MPEG Forum), 

regarding the techniques developed during ATLANTIC. The project also ‘carried’ the middleware ‘flag’, 

proclaiming it as a flexible and scalable solution in TV studios. In this way, it meant to transfer to the 

industry the technology developed in ATLANTIC. 

 

A new item was added in ORBIT: data about the data, i.e., metadata. The need to know various attributes 

about the captured material was now of importance. To handle data about the type of camera used in the 

shooting, the name of the VIP (Very Important Person) talking in a specific scene or the owner of the rights 

of the film, there is a need of automatic and manual annotation of the essence. This information must be 

closely coupled with video/audio with which it is related. This was another challenge in ORBIT, move from 
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the ‘writings on the tape’ to the database that stored the data about the data and give easy access to it, in order 

to do searches on it or retrieve it easily for broadcasting along with the essence. 

At the time, there was already some database handling of metadata. However, at that point, the deployed 

systems created islands by separating metadata from the essence it was related to. The main reason was the 

different worlds where the companies that dealt with the essence and the ones that handled metadata lived in. 

They were far apart and led to implementations being also away from each other. The lack of standards that 

allowed a more close relation between these two also helped to worsen this problem. However, the standards 

bodies (EBU/SMPTE) were releasing the rules that would allow the treatment of content. 

At this point, it is worth reminding that content equals essence plus metadata. ‘The word on the street’ is 

now content and not only the video/audio essence. 

2.4.1. Reference model 
The initial ATLANTIC model grew, and new features were added to prove the concepts, as we can see in 

Fig. 2-2. 

 

Fig. 2-2 – ORBIT reference model (from [45]) 

Now we had different and slightly separated areas with a sort of gateways guarding the access to each 

other. We can see the different productions studios (for news, wildlife programs, etc), an archive area where 

all productions could/should resort in order to find related footage and a play out area. 

The gateway services were devised to provide: 

• An aggregated view of the other areas, giving a single point of access to other systems. 
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• The ability to copy content from one area to another, giving new unique identifications to the copied 

material. 

• Control of who is accessing what, i.e., security measures. 

 

As we can see, there is more to the gateway than meets the word. 

 

However, the focus on this primary stage was in creating one working production area. 

The various items were: 

• Intake hosts – they are the start of the digital chain; capable of capturing essence at full and browse 

quality (as referred to in ATLANTIC) from VTRs (Video Tape Recorder), cameras or live feed, 

these machines were controlled by the client workstations (including start, stop, pause, go to 

timestamp X (in the case of a VTR)). The output of these elements was directed to the content 

servers. 

• Content Servers – although referring to content, these servers only kept essence. The browse and 

full quality data extracted from the intake hosts was ‘dumped’ here. These servers also allowed 

access to the essence, be it the browse quality for edition or the full quality for final programme 

production. 

• Metadata Database – as mentioned this was an important component. The intake hosts 

automatically extracted some metadata; other was inserted in annotation stations (portrayed in Fig. 

2-2 as part of the client workstations). This metadata was, of course, searchable in order to access 

the needed essence. 

• Editor – in this workstation, simple edits could be made to create the EDL for a programme. As 

mentioned the editor uses browse quality format to compile these lists. 

• Quality Monitoring Host – these machines allowed the quality control of final programmes, as they 

streamed the essence from the content servers and displayed it in broadcast quality monitors and 

loudspeakers for approval. 

• Processing Servers – they process the EDL generating the final programmes and enabling them to 

the play out area.  

 

The task was not only to create these services, but also to command and control them in a distributed way 

over the local network area (and beyond). 

 

With this prototype, the group could receive comments and critics from the operational staff. This 

feedback is critical in any software development. 

 

This first phase was achieved successfully and new chapter arose. 
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2.4.2. Phase 2 – Getting the show on the Television Studios 
The first trial was a proof of concept of the ATLANTIC ideas with a added functionality. This 

confirmation made the interest in the project grow, and some specific departments of the BBC started to show 

commercial interest in the soon to be product. Therefore, the next step was to make it a real, fully tested and 

(why not say it) a commercially viable solution to television studios. 

 

This phase led to engaging in a development more out of the academic world and more into the industry 

habits. New quality assurances were asked for; better proofs of the functionalities were needed; 

documentation and maintenance were of higher importance. This obliged to the enforcement of industry 

standards on software development techniques. 

 

This is the WIP. 
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3.  Technologies Description 

“The world is formed from the void 
like utensils from a block of wood. 

The Master knows the utensils, 
yet it keeps to the block: 

thus she can use all things” 
-- Lao Tzu 

In this section, we will delve inside the technologies used during the 

development of this thesis. The network infrastructure and middleware will 

be addressed. We will start out describing the ATM concepts and the 

Quality of Service associated to it. Some words on its implementation in 

Windows and Linux will be written. CORBA will be addressed regarding 

the middleware section. Its services will be briefly referred. 

3.1. ATM and QoS 
ATM (Asynchronous Transfer Mode) is a joint effort of ITU-T (International Telecommunication 

Union Telecommunication standardization) and ANSI (American National Standards Institute) to develop a 

high-speed technology for data multiplexing and switching in public networks. Born from B-ISDN 

(Broadband-ISDN (Integrated Services Digital Network)), use of ATM has evolved from public 

networks into private ones (in the LAN). This led several companies to pick up the standard and 

form the ATM Forum [37] to guarantee interoperability between public and private networks. 
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ATM uses small sized cells to transport data (5 bytes of header + 48 bytes of payload). This allows fast 

switching operations, leading to high-speed transfer.  

Essentially ATM relies on VCs (Virtual Channel/Connection) to transport data. These VCs are then 

bundled in VPs (Virtual Paths) that traverse the media. This is illustrated on Fig. 3-1 taken from [26]. 

 

Fig. 3-1 – Data travel in ATM (from [26]) 

Identifiers for virtual connections are structured into VCI (VC Identifier) and VPI (VP Identifier). VCIs 

range from 0 to 65535. The range of VPIs depends on the interface being used; therefore, it is 0-255 in UNI 

and 0 to 4096 in NNI (we will describe both next). VCIs  from 0 to 31 are reserved for signalling and 

management operations. 

UNI signalling for example is done using VPI=0, VCI=5. UNI stands for User to Network Interface. This 

is a connection between a user and a private network or between a switch in a private network and a public 

network. The standard signalling used is defined in “ATM User-Network Interface (UNI) Signalling 

Specification Version 4.1” [28]. 

Besides this interface, there is also a NNI (Network-to-Network Interface), which connects two switch 

nodes in a network (or in different networks). If in the same private network, they use PNNI (Private NNI), 

but it can also connect two different public networks. 

 

There are two ways of establishing a connection, using PVCs (Permanent Virtual Circuit) or SVCs 

(Switched Virtual Circuits). As the name implies PVCs are defined on the network by means of management 

procedures and the connection remains established for a contractual period until manual teardown. This is the 

down size, the establishment and teardown of PVCs is done manually and all connections (traversing all 

switches) must be defined. Of course, once this is done, there is no overhead of connection establishment. 

Resources remain permanently associated with a PVC, according to the service negotiated. 

SVCs on the other hand are set-up on demand; using a network address (discussed further down) the 

switches establish the connection between the two peers. The signalling procedures and path selection is 

based on a routing protocol (for example PNNI)1. The down size is of course delay in connection 

establishment, but resources are only allocated for the connection period. 

                                                           
1 This should not be confused with IP routing protocols. The routing done in ATM is merely for connection 
establishment, after that all packets are sent following the same path. 
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3.1.1. ATM Adaptation Layers (AALs) 
ATM is not a mere physical layer standard, at least not as the physical layer is placed in the OSI (Open 

System Interconnection) stack. 

The ATM protocol reference model is shown in Fig. 3-2. 

  

ATM Adaptation Layer 

ATM Layer 

T.C. 

P.M.D. 
Physical 

Fig. 3-2 – ATM layers  

The layer we are more interested in is AAL. We will briefly explain the usage of the others (as can be seen 

in [26] and [27]): 

• Physical Layer – it is divided in two sub-layers (as represented in Fig. 3-2): 

Ø Transmission Convergence (TC) – maintains cell boundaries; checks and generates error control 

code in the cell header  (HEC (Header Error Control Code)); adapts the rate of valid ATM cells 

to the payload capacity of the transmission media, by inserting or suppressing idle cells; packs 

ATM cells into transmission frames for the physical layer; regenerates and recovers these 

frames’ structure. 

Ø Physical Medium Dependent (PMD) – this is the layer that really interacts with the underlying 

physical medium. It therefore depends on which medium is used. Its job is to send and receive a 

continuous flow of bits with timing information, and hence synchronize sender and receiver. 

• ATM Layer – is responsible for establishing and maintaining the virtual connections. Using the 

ATM cell header it multiplex/de-multiplexes the virtual connections, translates VPI/VCI 

information on switches and cross-connects, adds/removes the header when receiving/passing the 

cells from/to the AAL and implements traffic management functions. 

 

The AAL is responsible for the adaptations of the SDUs (Service Data Units) from the layers above it to 

the 48 bytes of ATM cells payload. It is its duty to translate the higher-level data units to and from an ATM 

cell size and format. For this purpose, it is organized in two sub-layers: 

• Convergence Sub-layer (CS) – the primary issues are: timing/clock recovery (when applicable), 

message identification and error correction (when required). 

• Segmentation And Reassembly (SAR) – the basic function of this layer is to receive the data units 

from the CS and segment them (with possible some additional header/trailer) to fit into 48 bytes 

ATM cells. The inverse operation (reassembly) is also the responsibility of this layer, on the receiver 

side. 



Technologies Description 3 

19 3.1 ATM and QoS 

 

ITU-T [30] defined four traffic service classes (A, B, C, D) based on time relation between source and 

destination, bit rate pattern and connection mode. The intention was to map them to ATM Adaptation Layers 

protocol types. Initially four AAL types were defined AAL1, AAL2, AAL3 and AAL4. Later AAL3 and 

AAL4 were merged (AAL3/4). As an alternative to AAL3/4 a simpler AAL was defined AAL5, which in fact 

gained wider application than initially expected. This led to the following assignment (that is nonetheless 

contested by some ITU-T members): 

• AAL1 is intended for class A (in fact, the better known application is circuit emulation). 

• AAL2 is intended for class B. 

• AAL3/4 is used for classes C and D. 

• AAL5 was initially sought for classes C and D, but it may be used for real-time services either with 

constant or variable bit rate (classes A and B). 

 

The characteristics of the classes are portrayed in the next table: 

 

Parameters A B C D 

Time relation Yes Yes No No 

Bit Rate Constant Variable Variable Variable 

Connection 
Mode1 

Connection-
Oriented 

Connection-
Oriented 

Connection-
Oriented Connectionless  

Table 3-1: AAL Parameters 

However, the Service Categories defined by the ATM Forum became more commonly used than the ITU-

T service classes (we will discuss these Categories next), because they had to do with the behaviour of the 

ATM network as the provision of different QoS guarantees. 

 

ALL5 is the most commonly used, because it uses lesser overhead and has better error protection. Not 

most cards have support for other AAL; therefore, in our thesis we use AAL5 that is supported in both Linux 

and Windows. 

3.1.2. Service Categories and QoS 
ATM is primarily used due to its QoS enforcement. To ensure the compliance with traffic contracts 

established, ATM uses several functionalities, which are addressed in Traffic Management Specification by 

the ATM Forum [29]. Some of the most important are:  

                                                           
1 This refers to the more suited connection that is on top of the AAL, for example, AAL3/4 is better suited for 
connectionless connections. 
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•  Connection Admission Control (CAC) – during set-up or connection re-negotiation, determines if a 

connection can be accepted; that is, if the network has resources to provide the requested QoS to the 

new connection while not affecting the contracts already established. 

• Usage Parameter Control (UPC) – monitors and controls the connections, ensuring that contracts 

are satisfied. This feature implies shaping and policing traffic. 

• Cell Loss Priority Control and Selective Cell Discard – the CLP (Cell Loss Priority ) field in the 

ATM cell allows (when necessary) to discard cells that are less significant. 

• Explicit Forward Congestion Indication (EFCI) – allows information about congestion to be 

propagated, signalling a sender to lower the bit rate if network congestion occurs. 

• Feedback Control – allows the network to regulate the traffic in the network by getting updates on 

the state of the connections. 

 

To do all these jobs, there are some parameters (related to traffic and to QoS) to evaluate if a connection 

can be established (according to a specific contract) and if the contract is being honoured. Again, they are 

defined in Traffic Management Specification by the ATM Forum [28] and we will describe the more 

common ones. 

Service Categories relate traffic and QoS parameters with network behaviour. 

Traffic parameters: 

• Peak Cell Rate (PCR) – is the maximum instantaneous nominal cell rate that a source can produce, 

that is, the inverse of the minimum interval between cells. This definition applies to the ATM layer; 

the cell pattern observed at the physical layer is affected by jitter and cell clumping may occur. 

Therefore the interval between cells must be associated with a CDVT (see below) for policing 

purposes. 

• Sustainable Cell Rate (SCR) – this is an upper limit on the average rate of an ATM connection. It is 

equal or less than PCR. It is evaluated using a larger time scale than for PCR. 

• Minimum Cell Rate (MCR) – this is the minimum guaranteed bit rate for a connection. 

• Maximum Burst Size (MBS) –It represents the maximum number of cells that can be sent at the 

PCR. 

• Burst Tolerance (BT) – it applies only to VBR connections (discussed later) and is used to shape 

and policy traffic in place of MBS. 

 

QoS Parameters: 

• Cell Loss Ratio (CLR) – is the ratio between lost cells and transmitted cells. In some service 

categories, the network guarantees this value during the existence of the connection. 
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• Cell Transfer Delay  (CTD) – this value expresses the time between inserting a cell on the network 

and its arrival at the other end. It includes transmission, queuing and processing time in every node in 

the path, as well as packetization and depacketization on the end-systems. 

• maxCTD –  this parameter is used to characterize CTD. maxCTD is defined as the α percentile of 

CTD, that is p(CTD>maxCTD) < α. This assumes that for real time services, cells that are delayed 

beyond maxCTD are of no use and are therefore dropped. 

• Peak to Peak Cell Delay Variation (CDV) – it is an estimate of the difference between the 

maximum and minimum value of CTD (maxCTD as defined above and minCTD is the fixed part of 

the CTD). 

• Cell Delay Variation Tolerance (CDVT) – it is the tolerance (in anticipation) that a cell may have to 

its theoretical arrival time (considering the nominal PCR). 

 

These parameters were used to define the service categories provided by ATM. The following table (from 

[29]) summarizes the parameters that are meaningful in each category: 

 

 ATM Layer Service Category 

Attributes CBR rt-VBR nrt-VBR UBR ABR 

Traffic Parameters    

PCR and CDVT Specified Specified a Specified 

SCR, MBS and CDVT n/a Specified n/a 

MCR n/a Specified 

QoS Parameters   

Peak-to-peak CDV Specified Unspecified 

MaxCTD Specified Unspecified 

CLR Specified Unspecified b 

Feedback Unspecified Specified 

Table 3-2: ATM Service Category attributes (from [29]) 

Notes: 

a) See UBR explanation. 

b) “CLR is low for sources that adjust cell flow in response to control information. Whether a 

quantitative value for CLR is specified is network specific.” from [29]. 

 

Hence the service categories are: 

• Constant Bit Rate (CBR) – makes continuously available a constant bandwidth. This value is 

characterized by the PCR. The bit rate cannot exceed this value, but a lower bit rate can be used. 
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This category is well suited for real time applications that require tightly constrained delay variation 

and few data losses (voice, video, circuit emulation). Unused bandwidth cannot be used by other 

services. 

• Real Time Variable Bit Rate (rt-VBR) – this category is designed for real time applications that can 

endure some data losses1 (which may depend on the particular application, which must negotiate an 

adequate value). As can be seen, PCR, SCR, MBS and CDVT are specified. Therefore, the source is 

to be considered “bursty”, not having a regular production of data. It needs however, very tight 

bounds on delay. This service is intended for applications like compressed video or compressed 

audio. As in CBR, cells that are delayed more than maxCTD are considered of little value to the 

application. Statistical multiplexing is possible, but it has to be traded off with QoS guarantees. 

• Non Real Time Variable Bit Rate (nrt-VBR) – this category is similar to the previous one. The only 

difference is that there are no delay guarantees. Applications that use this service expect however a 

small loss ratio. Examples are non-interactive audio or video, LAN interconnection, interworking 

with frame relay. Average throughput is guaranteed. Statistical multiplexing can be exploited. 

• Unspecified Bit Rate (UBR) – there are no guarantees in this category. It is a sort of best effort 

service. PCR may not be enforced by CAC and UPC procedures, being only informational. 

Nevertheless, PCR can be indicated and the network may optionally use this information. This 

service is useful for applications able to cope with delays and/or losses, such as file transfer 

program and mail programs. They can rely on error control mechanisms (such as TCP) when 

needed. 

• Available Bit Rate (ABR) – this category lets applications deal with bandwidth availability 

variations. At connection establishment, a MCR (that can be 0) and a PCR are negotiated. The 

application has the guarantee that it will have at least MCR of bandwidth, but it can have more. The 

network will send feedback information to the end systems. This will lead to a small CLR. This 

service is appropriate for TCP/IP traffic providing higher throughput than UBR, since it is expected 

that by adapting the source rate, discarding of packets will be highly reduced and therefore the TCP 

retransmission mechanism (slow-start, etc) will not be triggered. 

 

It can be easily seen that there is a rich set of functionalities in ATM categories. 

3.1.3. ATM addressing 
At the beginning of this chapter, we mentioned addresses, when talking about SVC establishment. In fact, 

there are three standard address structures proposed: E.164 from ITU-T, the DCC (Data Country Code) using 

ISO (International Standard Organization) 3166 and the ICD (International Code Designator) using British 

                                                           
1 For the application a cell loss is either due to cell dropping by the network or the late arrival of cells (those exceeding 
maxCTD). 
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Standards Institute as a registration authority. All this addresses have a size of 20 bytes. The ATM Forum 

recommends using ICD or DCC in private networks.   

The most important concept of a NSAP (Network Service Access Point) address is the following structure: 

 

Prefix of 13 bytes ESI of 6 bytes SEL 1 byte 

Fig. 3-3 – NSAP structure 

 

The Prefix identifies a switch in the network (the end-user card inherits this value to is own address). The 

ESI (End Station Identifier) identifies uniquely a device attached to a switch1. The final element, the SEL 

(Selector) is for identifying the process at the end station; it has no network significance, but it is of great 

importance for the programmer. 

The selector works like a port in TCP/UDP. We can choose to which service to connect to, as long as the 

service is listening in the selector. An important difference from ports in TCP/UDP sockets is that when we 

use the selector to connect to a service and a new connection is established (the server side accepted it), the 

selector does not change. We end up with a new connection, but with an undefined selector (usually 0). This 

is different from TCP/UDP ports where socket identifiers are well defined and unique for a given service. The 

VPI and VCI are the only parameters that uniquely identify the connection in a machine; however, they have 

nothing to do with addressing. 

One byte in the selector gives a maximum of 255 services to make available in a station (with only one 

ATM card). 

3.1.4. CLIP and LANE 
We have seen the layers in ATM and now know that applications can go on top of an AAL. Interesting is 

to consider putting protocols on top of AAL. ATM can cope with IP, a layer 3 protocol, due to the AALs. 

The “Multi-Protocol Over ATM Version 1.1” from ATM Forum defines the IP encapsulation over AAL5 

frames. The overlay of IP on ATM is called Classical IP over ATM (CLIP). The RFC (Request For 

Comments) 2225– “Classical IP and ARP over ATM” defines this ensemble. The RFC defines a one to one 

mapping, in a LIS (Logical IP Subnetwork), of IP addresses to ATM addresses. Address resolution is solved 

using ATMARP (ATM Address Resolution Protocol) servers that resolve IP to ATM address. It is like ARP 

(in the Ethernet world) and hence its name. This approach usually means that ATM is a simple sub-network 

(overlay model) and therefore offers the equivalent to a link layer connection. There are only point-to-point 

connections, so there is no native broadcast or multicast available in CLIP. Every end system must know 

about an ATMARP server or it will not get anywhere, so we need to define this in every node of the LIS. This 

leads to the necessity of having an ATMARP server in each LIS. 

                                                           
1 This is similar to the MAC address of LANs. 



3 Technologies Description 

Communications  Arch. for Distributed Multimedia Systems 24 

CLIP is probably the most used adaptation of ATM in private networks, because it is of easy 

implementation in spite of its many limitations. 

From this point forward when we refer to IP we mean IP over Ethernet. If CLIP is to be mentioned it will 

be so directly. 

 

Trying to provide an easier integration in the LAN, ATM Forum defined LANE (LAN Emulation) (“LAN 

Emulation Over ATM Version 2 - LUNI Specification"). Its purpose was to hide ATM behind a MAC (Media 

Access Control) interface, giving layer 3 protocols an interface that they already knew. LLC/SNAP (Logical 

Link Control/ Standard Network Access Protocol) plus MAC encapsulation supports the largest number of 

existing OSI Layer 3 protocols. The result is that all devices attached to an emulated LAN appear to be on 

one bridged segment. Therefore, IP, IPX, Appletalk, etc. can “ride” on it. Hence, there is the possibility of 

broadcast using classical applications. The reader is mentioned to “LAN Emulation Over ATM Version 2 - 

LUNI Specification" from ATM Forum for further details. 

3.1.5. Windows API 
Microsoft and Intel developed Windows Socket 2.0 API (Application Program Interface) [39] to enhance 

the former Windows socket API. In this new version support for multi-protocols was added, including ATM. 

Windows sockets already had QoS, which in this version took advantage of ATM features. The ATM 

Specific extensions document in [40] describe the added functionality in the API. 

However, there must be support from the drivers of the card for some of the features of ATM, and the card 

has to support the features as well. We used the ForeRunnerLE155 from former Fore Systems (now Marconi 

Corporation [36]). We will nonetheless refer to the card as Fore’s, because it is the way it is better known. 

The card only supported UBR and CBR1, but that was all that we were looking for anyhow. The driver SDK 

(Software Development Kit) allowed us to access all the required Windows socket functions [31]2. The only 

down size was that it only supported accessing VPI=0, but that was not a limitation since we were not using 

more than 65535 connections. 

VCIs below 32 were restricted (as the standard refers) and an error was generated if we tried to use them. 

The Fore driver implements the ICD ATM address. CLIP and LANE are also available through the Fore 

drivers. All and all, the API was fairly good for our needs.  

3.1.6. ATM on Linux 
Linux has started development of support for ATM in 1995 [35]. As in most software for Linux, the 

development reached a vast community3. In the beginning, it was a patch for the kernel. Nowadays it reached 

the state of development that allows it to be dispatched in the kernel source. 

                                                           
1 With a limit of 1000 rate shaped connections and a total of 16 different rates. 
2 It even supports VBR, which the card we used does not. 
3 Including INESC Porto, where the author of [41] developed the driver for the card we used. 
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The API for the socket interface is described in [32]. This document is from 1996, which implies that the 

source code and the newsgroup (reachable in [35]) are of a great importance. 

Linux now supports a large number of cards, including our ForeRunnerLE155. CBR and UBR are 

available in the API and are fully implemented. At present, there is no support for any other service category. 

There are no limitations on the VPI use as in Windows. The use of VCI below 32 is a user choice, since 

the API allows its use. 

Linux uses ICD format addressing for private networks and E.164 in public networks. Therefore, there is 

interoperability between Windows and Linux. 

Support for CLIP and LANE is also implemented. There is an ATMARP daemon in the utility packages 

that allows a Linux machine to act as ATMARP server. 

Other features can be seen in http://linux-atm.sourceforge.net/info.php. 

3.1.7. Conclusion 
There was a great hype on ATM in the beginning. This earlier enthusiasm has calmed down (especially 

after the appearance of Gigabit Ethernet in the private environment). Now ATM seems to be used only in the 

backbone of telecom operators, and has drifted from the user network. Probably the high costs associated 

with the equipment (compared to those of Ethernet) led to this desertion. The huge deployment of IP based 

software in user space helped this abandonment. Although IP can work on top of ATM (as we have seen), it 

is not as flexible and easily configured as an Ethernet network. The small base of ATM enabled applications 

helps to increase this problem. Unlike what ATM Forum states in its web page, ATM private networking 

(end user usage) is small. 

Nonetheless, its traffic control (policy and shaping) and QoS features are not quite met in Ethernet. These 

features make it extremely important in huge backbones of service and network providers, for guaranteeing 

negotiated traffic contracts. 

3.2. CORBA 
Although CORBA was not the prime technology in the development of this thesis, some of the classes 

elaborated were based on CORBA generated classes defined from IDL (Interface Definition Language). 

Therefore we will discuss some primary aspects of CORBA; it will be a lightly discussion with the only 

purpose of getting the reader familiar with some of the features of CORBA used in this thesis. 

 

The acronym explanation is always a good way to start; CORBA stands for Common Object Request 

Broker Architecture. It is defined by OMG (Object Management Group) [19] on “The Common Object 

Request Broker: Architecture and Specification” [3]. And as they put it, it is “OMG's open, vendor-

independent architecture and infrastructure that computer applications use to work together over networks” 

in a client-server approach. It is worth to point out that a server can also act as a client of other servers. This 

http://linux-atm.sourceforge.net/info.php
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is not portrayed during this discussion but should be present as we talk about servers and clients. Servers are 

objects where methods are invoked and return (or not) some answer. Clients are the objects that do the 

invocation. 

 

CORBA is therefore related to distributed computing on multi-platform and multi-language systems. This 

is its primary advantage: it is widely available on many platforms and OSes (Operating Systems) and it can 

be developed in many languages (C++, C, Java, COBOL, Smalltalk, Ada, Lisp, Python and IDLscript1). In 

the same framework, we can have different programs written in different languages communicating with one 

another using an interface defined previously. 

This is where IDL comes in. 

3.2.1. Brief comments on IDL 
Interface Definition Language (or IDL for short) allows us to write interfaces in a language similar to C++ 

that can be mapped to any of the mentioned languages where CORBA is supported. This is a job for the “IDL 

COMPILER”. It translates the defined IDL into proper code that is then integrated in the development 

environment. Basically, it generates language specific stubs that enable the communication between clients 

and servers. The defined IDL is the contract that the server agrees to abide, and clients must use to invoke 

methods on the server. The IDL compiled code is responsible for marshalling the arguments sent. On the 

server side, it un-marshals those arguments and gives them to the server. The server response (if there is one) 

“suffers” the inverse path, to get to the client. 

The IDL standard defines the types that can be used, when defining the interfaces. There is no possibility 

of creating new types. The programmer can only define new classes (that is, new interfaces, using the 

IDL keyword). These classes can have any attributes of the defined types and methods with arguments (input, 

output or in-output) and return values (all also from the official list). There is a special variable type (any) 

that can be assigned any type at runtime. 

IDL also supports exception handling, so that errors can be reported to clients or servers in a flexible way. 

The IDL mapping to a specific language has to define which native type in the destination language will 

be used for the IDL types. This mapping is defined by OMG in a precise manner. Even for languages that do 

not support exception handling, OMG defined a way to map the exceptions to a proper structure in the 

language. 

The IDL compiler will take as input the IDL file and generate code in the development language required. 

Different compilers can be used to get mappings for different languages and platforms based on the same 

IDL. This will not affect the desired behaviour of the client or the server. 

                                                           
1 There are also implementations mapping to other languages (although not standardised by OMG). 
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3.2.2. The ORB 
“So where’s the broker? What’s its role in all this?” 

The ORB (Object Request Broker) handles all the connections between clients and servers. It even 

connects to other ORBs in order to deliver requests out of its objects pool. To do this, it has to know all 

objects that export methods. Therefore, it handles an IR (Interface Repository), a database that stores 

information about all the interfaces (and the signatures of its methods) that the ORB knows about. 

The ORB is also responsible for de-activating inactive server objects and re-activating them when a 

request for them arrives. 

The ORB also has an IDL interface that allows access to its information. This can be an access to the IR or 

to transform references of objects to string or vice-versa1 (object references will be discussed later on).  

Fig. 3-4 (taken from [3]) shows the primary components of the ORB and their relation to clients and 

servers (with object implementation). 

 

Fig. 3-4 –The structure of the ORB Interface (from [3]) 

The stubs we have mentioned previously provide the connection from the client to the ORB.  The static 

IDL skeleton is the stub on the side of the server object. 

The ORB interface is the IDL that was mentioned earlier to access the functionality of the ORB.  

The DII (Dynamic Invocation Interface) and the DSI (Dynamic Skeleton Interface) are used to discover 

and access at runtime objects that are not known at compile time. It supplies a mean to query the ORB about 

objects whose existence was not known and to call methods on them. For this purpose, it is also necessary to 

use the CORBA services (described further down). 

                                                           
1 In versions above 2.4, it can also transform URL-format corbaloc and corbaname object references to session 
references (see 13.6.10 of [3]). 
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This only leaves out the object adapter or, as it is usually known, the POA (Portable Object Adapter). This 

is the successor of the Basic Object Adapter (BOA) that was deemed much too primitive to meet enterprise 

and Internet requirements. As can be seen from the diagram, POA only exists in the server side, that is, the 

client is not aware of any of its functionalities. POA is not known from the client’s point of view. 

The primary POA duty is to manage server side resources for scalability. POA is responsible for activating 

and de-activating objects’ servants. From the standard, we have: “A servant is a programming language 

object or entity that implements requests on one or more objects”. This means that in fact the servant is the 

one who executes the job requested by the client. The flexibility of this is that the servant can implement the 

jobs of more than one object, or even there can be many servants (in the course of time) to implement the jobs 

of a single object. For the client, as has been said, there “is not such thing as” a servant. Clients only 

“believe” in objects. 

The application can control many aspects of the POA, including the strategies for activation/de-activation 

of servants. 

 

A final note to Fig. 3-4 is the proprietary interfaces described. The ORB implementers define these ORB-

dependent interfaces. This makes the POA hardly coupled with the ORB core.  

3.2.3. Method invocation 

Now it is the time for a picture regarding the real object calling. 

 

Fig. 3-5 – Method Invocation in same ORB and crossing ORBs (from [19]) 

In Fig. 3-5 we can see the client using the server object and the request passing the ORB. The first 

example is of a client using a server object in the same ORB. The first interesting point, that we have not 

focused yet, is addressing. CORBA uses IOR (Interoperable Object References) to reference objects. These 

IORs can contain information about the ORB network address where the object resides, the protocols that can 

be used to reach that ORB and the key that identifies the server object uniquely within the ORB’s space. 

OMG states, “…this data structure need not be used internally to any given ORB, and is not intended to be 

visible to application-level ORB programmers”. Clients are therefore completely unaware of this information, 

which should only be used when crossing object reference domain boundaries. 
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Another point is accessing objects in another ORB. IORs tell what protocols can be used to reach the 

foreign ORB. In the most general and standard way, it is IIOP (Internet Inter-ORB Protocol)1. This definition 

broadened the scope of General Inter-ORB Protocol (GIOP), making the standard more suited to be used in 

the Internet. IIOP uses TCP/IP for communication and describes how to represent TCP/IP addresses on IORs. 

Nonetheless, ORBs can optimise invocations between objects residing in the same ORB, by means of direct 

calls instead of using network loop-back interface. 

3.2.4. CORBA Services 
OMG has defined a set of services that added functionality to the CORBA architecture. The range of 

services is very vast, ranging from security to transaction services. 

We will briefly describe those used in DIMICC and DETAIL (DIMICC Essence Transfer Already 

Implemented Library) and the reader can refer to [4] for further information on the other services. 

3.2.4.1. Naming Service 
This service provides the capability of binding a name to an object. Then, by querying the Naming Service 

with the name of the object, we can get the reference to it. Names must be unique within their context. The 

use of contexts leads to a graph like organization, where names are the leaves of the graph and contexts are 

the nodes. This obviously gives a better organized structure to the Naming Service.  

When a server object wants to be available in this repository, it publishes itself using a name (in the 

appropriate context). Then client objects that know its name (and its context) can query the Naming Service 

(using the defined IDL) to access the object reference, and therefore access the object itself. 

The Naming Service is therefore a server object that is running in the ORB. 

3.2.4.2. Trading service 
Naming Service works well if we know who we are looking for. However, imagine that we only know 

what capabilities we need, but are not acquainted to any specific object. The Trading Service addresses this 

issue. 

Server objects now advertise properties and client objects search for these capacities. The Trading Service 

provides the publication and inquiry facilities. There can even be a federation of traders where Trading 

Services from different partitions communicate with each other to allow publicizing in farther regions. 

OMG defines a constraint language to allow a more accurate response from the Trading Service to client 

requests2. 

As we can see this service also acts as a repository of references, but allows clients to search for services 

rather then specific objects. It is implemented as a server object (and a client when it contacts other Trading 

Services) running on the ORB. 

                                                           
1 ORBs may use other protocols besides IIOP, but for interoperability and CORBA compliance, they should use IIOP. 
2 The Trading Service returns to the client object all references that match the specified query. 
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3.2.4.3. Event and Notification Service 
These services decouple producers of events from their consumers. In practice, they allow an object that 

generates events (e.g., a stock action object), to be unaware of other objects (stockbrokers) that are interested 

in its events. Therefore, if a condition happens that triggers an event (the value of the action drops), the object 

only sends this information to an event channel. The consumers have registered themselves in the event 

channel to listen to it, so they are informed of this event. We can also add more object suppliers (more stock 

actions) to the same channel. Every time that any of them sends an event, the consumers will receive it. 

The Event Service defined this asynchronous and decoupled way of passing messages between objects. It 

defined two models: the push and the pull models. 

In the push model, the suppliers take the initiative of sending the event to the channel. Then the event 

channel notifies consumers of this event. 

In the pull model, consumers ask the channel if an event is present. The channel then reports any event 

that it has. If there is not an event in the channel, the client can wait for it to happen, or return immediately. In 

this model, clients poll the channel. 

 

The Notification Service is a superset of the Event Service. It added an important filter capability. 

Consumers can specify what type of events they want to receive (“I only want to know about Cisco, 

Microsoft and Oracle stocks”). Producers can also know what type of events the channel (representing all the 

consumers) is interested in, in order not to send events that nobody is listening to (“Compaq dropped its 

value, anyone interested? No…OK then”). The ability to query the channel for the events that it offers was 

also included in the Notification Service. 

 

These two services exist as separated standards, as can be seen in [4]. The channels are objects that reside 

in the ORB and act as servers and clients in the architecture. 

3.2.4.4. Property Service 
Properties of objects can be different from their attributes. A client should (would like to) be able to add a 

special property to an object that is already running. It should also be able to query objects about their 

properties. The Property Service intends so solve this. Objects that want to expose properties to client objects 

implement a defined IDL (PropertySet, see [4]) that allows other objects to browse the properties and 

even add some new ones. 

As can be seen, each server object implements the interface and there is no central service to be accessed. 

3.2.5. Final Notes 
To end the CORBA discussion we should mention the existence of other important standards by OMG 

related to CORBA. 
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Real-Time CORBA [6] is a standard to allow the use of ORBs in real time systems. It sacrifices in some 

way the general nature of CORBA to provide predictability and resource management, enabling support in 

time-critical systems. Real Time CORBA uses fixed priority and states that is general enough to cope with 

hard and soft real-time systems. 

Minimum CORBA is another important definition [3]. It declares a subset of CORBA features allowing 

resource-limited systems to have an ORB definition. This minimum CORBA interoperates with the full 

standard. 

 

This concludes our “walk” through CORBA and some of its features.  There are other distributed systems 

that have better attributes than CORBA, but also lack some of its features. New models are now emerging 

that, although criticized by CORBA fans, may deserve a look into. 
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4.  Programming Environment 

“Computers are useless, 
They can only give us answers” 

-- Pablo Picasso  

This chapter will describe the programming infrastructure used. All tools 

used for development will be described here. We will first approach the 

ACE framework and its patterns (at least the ones concerning the work at 

hand). Next TAO, the ACE’s ORB, will be portrayed. A discussion of the 

frameworks DIMICC and DETAIL for which the components were 

developed will follow. At the end of the chapter we will briefly describe 

other valuable tools used in the project. 

 

4.1. ACE 
All the development made during this thesis was based, or laid upon, the ACETM (Adaptive 

Communication Environment) framework. That seems a strong enough reason to “stray” a little through the 

concepts that make it one of the most used open-source object-oriented infrastructures for software 

development. 

 

As its acronym suggests ACE is aimed at communication, be it in the same machine (inter-process or 

inter-thread) or between machines (using different kinds of underlying networks). The DOC (Distributed 

Object Group) of the Washington University is developing this system. Since this is an open-source project, 
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user input and contribution from outside the group has been essential to the correction and improvement of 

the framework. 

From [16] and [7], we can state the major benefits of using ACE: 

• Increased Portability – this is one of the main advantages of ACE. The code was developed so that 

it would compile in various OS (Windows, Macintosh OS X, Linux, Solaris, IRIX, VxWorks, MVS, 

Open Edition, etc.). In addition, being open-source and having some good guidelines for porting the 

code enables the extension to other platforms. 

• C++ Wrapper facades for OS interfaces – these classes wrap the OS calls, making it possible to 

hide from the user program the specific call to the underlying system. This architecture is based on 

the Facade pattern [20]. This group of classes encompasses concurrency, synchronization, inter 

process communication and memory management (as can be seen in Fig. 4-1). 

• Wide usage of patterns – most of the implementation is based on known patterns [20][25], which 

eases the learning curve of the system. ACE itself generated a large number of new patterns that 

have become widely known. 

• High level framework – built on top of the wrapper facades there is a framework that exercises the 

patterns developed and provides an enhanced interface to end-users (we will be discussing some of 

the components of the framework in this subchapter) 

• Increased efficiency and predictability – ACE integrates support for QoS on communications and 

real time operations on OSes that support it. 

• ORB adapter components – these classes enable the usage of single or multithread ORBs with ACE 

seamlessly. 
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All these points can be seen in Fig. 4-1. 

 

Fig. 4-1 – ACE key components (from [16]) 

Following a recent trend in the art of programming (eXtreme Programming [55][56])), the DOC group 

also claims to follow some of its guidelines. They proclaim [47] that although they have three of the major 

contraindications for doing XP (eXtreme Programming) (large project, open-source and being a development 

framework), the usage of XP has been in the group all along and they have tried to overcome their 

contraindications. 

 

We will now detail the ACE components and patterns used in this thesis. Besides the papers describing the 

following patterns (and referenced in each section), there is also a good (although a little outdated) tutorial [8] 

that covers all the aspects that we will be discussing. 

For a reference of specific patterns, there is a good site in [25]. 

4.1.1. Reactor 
The Reactor pattern [23] is  an event de-multiplexing framework. General speaking, it acts as a central 

event service where we can register ourselves for a specific event (or set of events). The Reactor will call a 

specific method when the event registered happens. 
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We can register for common I/O (Input/Output) handles (sockets (BSD (Berkeley Software Distribution)) 

or System V TLI (Transport Layer Interface)), timer events (e.g., call us every 5 minutes or call us in 5 

minutes), signal handlers or synchronization events. 

Fig. 4-2, taken from [23] better illustrates the events. The reader should disregard the mentions to the 

Logging, because they relate to an example given in the mentioned document, to present a real life usage of 

the Reactor in a Logging Server (in this case only I/O handles are being used). There is also the reference to 

the Acceptor class that will be discussed in the next sub-section. 

 

Fig. 4-2 – Reactor Components (from [23]) 

The more attentive reader could already have guessed from the figure, that the Event_Handler class 

has the methods to be called when the event happens. The developer should inherit from this class and 

implement the methods it needs, the ones related to the event being listened to. In the I/O case, it is the 

handle_input method. 

From [23] we can state the following advantages/features of the Reactor pattern: 

• Uniform OO de-multiplexing and dispatching interface – as can be seen in Fig. 4-2 the OS calls are 

abstracted by the reactor framework, giving a uniform interface in the different OS APIs. 

• Improved portability – from the previous feature, we can also see that the portability to different OS 

is eased with this high-level common interface (as are all patterns in ACE). 

• High/Low calls are decoupled – there is a decoupling of the low calls to the system (select, 

WaitForMultipleObjects, wait, etc.) from the higher calls that deal with connection 

strategies, data encoding/decoding, etc. The Reactor handles the lower part. This approach gives 

several advantages: 
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Ø Increased reuse – the lower code is reused letting the developer only worry about higher call 

decisions. 

Ø Error prone code is shielded to the user – the OS lower calls are more error prone than the 

higher ones. Letting the reactor handle this part eases the programmer’s job. 

• Automate event handler dispatching with state information – the event handlers developed by the 

programmers are objects rather than functions, enabling state information to be maintained across 

multiple calls. The appropriate method of the object is called according to the event that has 

occurred. The same object can even register itself for different events. 

• Efficient de-multiplexing – the Reactor uses sophisticated algorithms to perform event de-

multiplexing and dispatching logic efficiently. 

• Thread safety – the Reactor was coded with threads safety in mind. So the programmer can have 

multiple threads using the same Reactor or run different reactors in different threads. From [23]: 

“The Reactor framework provides the necessary synchronization mechanisms to prevent race 

conditions and intra-class method deadlock”. 

 

The Reactor was widely used in the DIMICC (see 4.3) and DETAIL (see 4.4) development, because 

connection establishment is of high importance and the use of this pattern gives all the advantages mentioned 

above. 

4.1.2. Acceptor - Connector Pattern 
The main purpose of this pattern is to separate roles in communications. It identifies three separate roles: 

• Passive endpoint à Acceptor – it only waits for connections, and creates the handlers for those 

connections. 

• Active Endpoint à Connector – it initiates the communication by connecting to the passive 

endpoint. It creates the handlers after connection establishment. 

• Effective communication à Service_Handler – it handles the data transfer, the sending and 

receiving of bytes. 
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The first two classes form the connection establishment part; the latter is the actual communication. The 

diagram in Fig. 4-3 (adapted from [24]) shows the relations between the classes. 
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Fig. 4-3 – Acceptor-Connector relations (adapted from [24]) 

Here we can see a fourth class, the Reactor1. Its role is to allow asynchronous connection establishment. 

As discussed (see 4.1.1), by using the Reactor we can delegate the event waiting to the Reactor’s thread. 

This way the Acceptor can start its service and then register a handle on the Reactor and wait that a 

connection is initiated without being stopped by that wait. The Connector can use the same approach: it 

starts the connection, but instead of waiting for it to complete it delegates on the Reactor this “dead” time. 

The Reactor will call it when the connection is completed. As it is obvious, if synchronous connection 

establishment is to be used, the Reactor can/should be dropped. 

After the connection is established, the Acceptor and Connector create each a new 

Service_Handler to handle the connection (as the name suggests). The data is sent using this class and 

the Acceptor and Connector are left to go on establishing connections. 

A programmer only needs to inherit from these classes to develop the communication system. The 

Service_Handler is directly connected to the underlying network technology (sockets, TLI, ATM, etc.). 

The Acceptor and Connector are responsible for the strategies of getting the connection made. 

The use of templates allows this separation. 

 

From the discussion and [24], we can summarize the patterns features: 

• New types of services (or implementations) are easily added, due to the separation strategy of the 

pattern. Connection establishment does not need to be changed for a new service. 

• The inherently asynchronous connection establishment can be used to improve performance (make 

large number of connections through a high-latency WAN (Wide Area Network)) 

                                                           
1 Although we used a Reactor class in the diagram, other patterns can be employed, as long as they implement an event 
de-multiplexing pattern (for further details see [24]). 
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• Portability is made easier, as only the Service_Handlers need the large adaptations. 

• Programmers are protected against the incorrect use of handles that only accept connections (one 

might by mistake write or read to it). 

4.1.3. Stream Architecture 
In a simplistic way, the Stream Architecture [11][12] is like a protocol stack, in which we can build our 

own layers. In this analogy, the Stream class is the protocol stack and the Modules we put in the Stream are 

the protocol layers. 

Fig. 4-4 will help our discussion. 
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Fig. 4-4 – Stream Components (adapted from [11]) 

As we can see, an application builds a Stream object and then uses it to send and receive data. What the 

Stream does with this data depends on the Modules the application has put in it. In the diagram, we can 

see that there is a Stream Head and a Stream Tail, these two Module objects exist in every stream and do not 

need to be put in by the application. They can however be circumvented (as discussed later on). 

Besides the two already built-in Modules, the programmer can develop its own Modules and insert them 

in the Stream. To do this the developer has to write two classes that inherit from the Task class: a Writer 
Task and a Reader Task. As the name suggests, these classes do the write and read job, respectively, in 

the Module. In the figure, we can see these two Tasks in each Module. The programmer uses the 

developed Task classes to create a Module object that uses these classes. It then inserts the newly created 



Programming Environment 4 

39 4.1 ACE 

Module in the Stream. There can bee as many modules between the head and the tail of the Stream as 

the programmer wants/needs. 

The head and tail modules only act as a default. In fact, the tail module discards messages in its write task 

and does not have any way of getting messages in its read task. So the developer should develop a tail module 

class (or better two tasks for the last module before the tail) that implement the desired behaviour (in the case 

of this thesis, we developed two classes that write and read to an ATM network). This Module will then 

circumvent the Stream Tail, by writing/reading directly from the target object (be it a network or other I/O 

mechanism). The Stream Head cannot be easily circumvented since the application only has the Stream 

API; this interface calls the Stream Head directly. 

We have not mentioned another important class shown in Fig. 4-4, the Message class. Every Task has a 

message queue that contains all the messages to be sent (they can be sent synchronously or asynchronously, 

as will be discussed). A message can be a linked list of messages itself and that is why they were represented 

connected in the diagram. The message passing in the Stream is only pointer passing, as only the reference 

to the message object is passed, rather than a copy of the message. Obviously, this leads to a better 

performance. 

The message passing is done directly to the next Task, not to the module itself. A Task writes (passes 

the messages reference) to the next Task in the stream (be it up or downstream) after having done its 

“thing”. The Task’s next Task is defined when the Module is inserted in the Stream1. 
Regarding the inserting of Modules in the stream, there is also the possibility of removing a Module 

from the Stream. We can even insert a Module in a specific position. These two functionalities give a wide 

range of reconfiguration possibilities for a Stream. 

In [11] there is also a reference to a Multiplexor class. This class could handle the input of more than 

one Stream and multiplex/de-multiplex messages for each associated Stream. We have not seen in ACE 

any implementation of this, so we only refer it here and not in the previous figure. 

 

As mentioned earlier, each Task can handle the messages synchronously or asynchronously:  

• Synchronously - when the previous Task passes the message we treat the message as we were 

programmed to and send it to its destination (next Task, network, device, stream head, etc.) 

• Asynchronously – when the previous Task passes the message, we put it in the Message Queue 

and process it in a separate thread. This thread gets the messages from the queue, treats them as 

programmed and sends them to their destination. 

                                                           
1 This can be related to the Module insertion order, or using an API that enables the insertion of a Module in a specific 
position of the Stream.  
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Fig. 4-5 taken from [11] illustrates this. 
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Fig. 4-5 – Synchronous and Asynchronous behaviour in Streams (from [11]) 

In the synchronous behaviour there can be as many process/threads as the applications has. Each time the 

put() method is called the Task borrows the process/thread to treat the message and passes it to the next 

block. The first call only returns when the message is passed to its final destination. 

In the asynchronous behaviour, the message handling is not done in the put() method, but it is 

postponed to the svc() method. When called, put() only queues the message in the Message Queue. 

The svc() function then runs in its own thread (and not that of the caller of put()) and processes the 

messages in the queue. This thread is continuously checking the queue to treat more messages that may 

arrive. 

As one can imagine, each Module in the Stream can have different behaviours. Module 1 can work 

synchronously and Module 2 asynchronously. We can also have the writer and reader Tasks of the same 

Module acting differently. This leads to a very flexible architecture for message processing. 

 

The Stream architecture was used in DETAIL, as will be seen in 4.4 and 5.1.3. 

4.1.4. Service Configurator 
This pattern [9][10] is related to providing services in a machine, primarily network services. It is a super-

server as inetd (or more recently xinetd)1 in UNIX systems, but with more “salt” into it. 

The main intent of the Service Configurator is to “decouple the implementation of services from the time 

at which the services are configured into an application or a system” (from [10]). It also adds a centralized 

control of services provided by a system. 

                                                           
1 inetd and xinetd have no reference in the bibliography as they were not of particular relevance to this work. However, 
the more interested reader can learn more about these services in “UNIX Network Programming” by Richard Stevens and 
http://www.synack.net/xinetd/, respectively.  

http://www.synack.net/xinetd/
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With this pattern we can start, end, pause and resume services at run-time, i.e., dynamically. If a service 

changes its implementation but not its relation with other services and/or system, it should be possible to 

shutdown the service, replace the implementation and restart the service. This should be done without 

stopping other services or the system. The Service Configurator allows this. 

 

Fig. 4-6 shows the state diagram for a service with the Service Configurator. 
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Fig. 4-6 – State diagram of the service Life Cycle (from [10]) 

The idle state is when the service is shutdown. 

The Service Configurator must therefore be a process or thread. It registers the service that it is asked to 

load in a service repository. The repository also keeps information about the state of the service. 

The Service Configurator daemon manages the service reconfiguration. The user calls its API, or uses a 

file in the system that has the action(s) to be performed by this super-server. These orders will change the 

state of a service(s), getting it (them) into one of the states in Fig. 4-6. The commands can include 

concurrency strategies (that can be different for each service). 

When a service is loaded it generally registers itself for events (I/O, network, etc.). Using the Reactor 

pattern (see 4.1.1), we can then map handlers from the services and let the Reactor wait for the event in the 

place of the service. This way we have a single process listening1 to events that it dispatches to services that 

can handle them. 

 

The discussion so far may have implied that the Service Configurator is separated from the application, 

running in its own space. This is not what happens. In general, the super-server is a separate thread from the 

application that handles the loading/unloading of libraries for the application. This is the case for the tools 

developed in ORBIT (see 2.4). 

 

                                                           
1 This also leads to a single point of failure, but the architecture of a super-server has this inherent problem. 
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In summary, the benefits of the Service Configurator are (from [10]): 

• Increased modularity and reuse – the ability to add/remove services without disturbing other 

services and maintaining their relationships. 

• Increased dynamism – re-making an implementation and being able to remove the old one and add 

the new one gives this flexibility. 

• Centralized administration – one process/thread handles the services (using the repository), and an 

administrator can configure the services from this single point. 

 

The drawbacks are (also from [10]): 

• Lack of determinism – only when an application has all services running can we determine its run-

time behaviour. Real time systems may suffer from this. 

• Increased overhead –we could conclude, after this brief discussion, that overhead is clearly 

introduced by the associated call indirection. 

• Reduced reliability – the interaction between the services can mean that a faulty service could 

undermine the availability of the other services (especially the ones running in the same process). 

4.1.5. Existing ATM support 
ACE already had ATM support, before we picked up this project. It was available in Windows and Solaris 

systems, and directly connected to the FORE API.  

The code was based on the socket classes (for Windows) and the Transport Layer Interface (TLI) classes 

(for Solaris). The defined classes were aimed at giving an equal interface that the ACE connection classes 

already provided (for other network technologies). 

 

The ATM infrastructure in ACE lacked the following aspects (some essential to our project): 

• Support for Linux. 

• Functions that allowed the use of the classes with the Acceptor-Connector pattern. 

• A complete interface coherence with the other connections classes. 

 

Nonetheless, the required skeleton (the classes) was already defined. It only lacked some more flesh 

(functions and Linux implementation). 

4.2. The ACE ORB (TAOTM) 
Although ACE allows the usage of other ORBs (with the ORB adapter classes), the DOC group developed 

a real time CORBA ORB, called TAO (The ACE ORB) [17]. 
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Built on top of the ACE components, this ORB dwelled with some major points: 

• Open-source, freely available and CORBA compliant ORB. 

• “Empirically determine the features necessary to allow the real-time CORBA ORBs support 

mission-critical applications with deterministic and statistical QoS requirements” from [17]. 

• Use real time I/O subsystem architectures and optimisations with ORBs to provide predictability 

and QoS parameters, on and end-to-end system. 

 

This work led to a deep involvement with OMG to release the Real-Time CORBA standard [6]. 

The effort also gave birth to TAO based on ACE components. Further development is underway so as to 

make TAO fully compliant with the Real-Time CORBA 1.0 Specification [6]. 

The following diagram block (Fig. 4-7) shows the architecture developed. It is worth to notice the real 

time blocks and that the network can be ATM based (as mentioned in 4.1.5, ATM was already partially 

supported by ACE). 

 

Fig. 4-7 – TAO block diagram (from [17]) 

When the project where this thesis is embodied started, TAO was still too young to be adopted (as 

portrayed in [51]). However, its growth and progress led to the project’s embracement with this ORB. 

The advantages were obvious: 

• Several CORBA Services were already provided: Naming Service, Trading Service, Event Service, 

Notification Service, Property Service, Security Service and more. 
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• It is based on ACE, which was already used and agreed to be an excellent platform. 

• Same advantages of ACE: open-source, freely available and supported in multi-platforms. 

4.3. DIMICC version 1 
As can be seen in the Acronyms Section, DIMICC stands for Distributed Middleware for Multimedia 

Command and Control. This architecture was developed in the Atlantic project (described in 2.3) to provide 

(as the name suggests) a distributed control of multimedia software, more precisely, targeted at a television 

studio distributed service environment. The primary objective was to define a common API that allowed the 

control of acquisition, transfer, composition and broadcasting equipment in a distributed way (being the 

equipment purely software based or hardware controlled by software). 

 

DIMICC’s architecture is divided into four planes [42][51]: the system plane, the metadata plane, the 

control plane and the essence transfer plane. In each plane, CORBA is used to provide distribution in an 

object-oriented way. The reasons for choosing CORBA were from [42] “… the open, vendor independent, 

highly available technology…” and the need to build DIMICC on an “… existing de jure or industry 

standard”. CORBA fully fitted these requirements. 

 

The System Plane takes advantage of some CORBA services to give the user the possibility of 

management. Therefore, Naming and Trading services (see 3.2.4.1 and 3.2.4.2 respectively) are used to allow 

the client application to find the needed services from DIMICC (which are publicized by DIMICC in those 

services). The CORBA Notification Channel (see 3.2.4.3) is also used to allow the monitoring of the 

infrastructure in a more decoupled way (producers of events are unaware of the consumers). 

 

The Metadata Plane served only to ensure minimal mechanisms for relating Metadata and Essence. The 

core of the plane was its Essence Locator Service that mapped UMIDs (Universal Material Identifier) to 

CORBA references, that is, made possible the connection of the Metadata essence identifiers to the CORBA 

essence objects of DIMICC. 

 

The two following planes are more related to the work described in this thesis, as they concern the 

communication and its control. 

 

The Control Plane ensures control of resources and mechanisms to report events. A general base class 

derives from PropertySet from CORBA Property Service (see 3.2.4.4), which allows clients to enquire 

objects about their properties, namely the notification channel associated with them. 
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The control of resources (more to our interest) is better described with the use of Fig. 4-8. 
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Fig. 4-8 – Control Plane Simplified Architecture 

The Component class maps the resources being accessed. As more than one user can control a 

Component, the VirtualComponent was defined to address session management. This class is 

responsible for giving the user access to its Components. This VirtualComponent owns the 

communication points, and as the name suggests Sinks are used to receive essence and Sources are used to 

produce it. These two classes are the abstraction to the client of the underlying network. They derive from a 

more generic class, Endpoint that hides the technical aspects of the communication. 

The control is extended to legacy devices using proprietary protocols. For this purpose, management 

proxies were developed to export the DIMICC API to clients and map this interface to the specific protocol of 

the device. 

 

The ‘essence‘of our work was related to the forth plane: the Essence Transfer Plane. Not surprisingly, it is 

related to the transport of essence through the network. 

Fig. 4-9 taken from [42] shows the stack defined. 
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Fig. 4-9 – Essence Transfer Protocol Stack (from [42]) 
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CORBA is not used to transfer data, but only to control the Sinks and Sources that interact with the 

network. 

The client program initiates the connection establishment by asking, via CORBA, the Source to connect 

to a Sink (addSink). Still in the CORBA world, the Source asks the Sink for its SAPs. After a polite 

answer from the Sink, the Source chooses a SAP (Service Access Point) and a connection is set up now 

via the network associated with the chosen SAP. At the end, the Source informs the Sink of the 

connection descriptor that will be used between the two; this descriptor maps to the same network connection 

on both sides. It is the identification of the connection. 

The Acceptor-Connector pattern, discussed in 4.1.2, is used to establish the connection. 

The client can request special attributes for the connection, which constrain the SAP selection by the 

Source. A SAP that satisfies these needs must be chosen. 

QoS parameters can be included in the requirements. For this to work both the Sink and Source have to 

own SAPs associated with a protocol that supports QoS. This is where ATM comes to place. 

 

This connection establishment is abstracted by the use of an UNManager. This class holds references to 

classes that handle the specific connection, with the underlying network. This way the Sinks and Sources 

resort to UNManager to set-up the connection between the two. 

Fig. 4-10 describes the relationship between the classes. 
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Fig. 4-10 – Connection Managers in the Component 

A Component has these classes to provide connections with other Components. The 

ConcreteTransportManager classes that a Component has depend on the underlying network 

technology supported by the Component. 

 

There is a high-level multicast implementation, by making the same Source connect to more than one 

Sink. The functions from the previous figure illustrate that (addSink and removeSink). 
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An important final note is that all the system was developed based on ACE (see 4.1) (as an example 

ConcreteTransportManagers are loaded using the Service Configurator pattern (in 4.1.4)), which 

allowed code portability across OS in an easier way. Since the target OS were Linux and Windows, this was 

an essential point for better code development and a more reliable maintenance. 

4.4. DETAIL and DIMICC-2 
Even though it had strong points, the first version of DIMICC had some drawbacks: 

• The connections were not sufficiently modular. 

• The abstraction to the end user could be improved. 

• It was somehow limited regarding network management. 

 

The original group that developed DIMICC redesigned it (making the second version) and added DETAIL 

(DIMICC Essence Transfer Already Implemented Library). 

DIMICC maintained all the previous functionalities and a new modular infrastructure for the essence 

transfer was added. The goal was to make the connections able to integrate functionalities as push modules, 

i.e., we could insert functionalities by adding modules to the connection structure. This feature used the 

Stream Architecture of ACE described in 4.1.3. 
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The overall architecture was the same but the Stream Architecture was added. Fig. 4-11 better illustrates 

this point. 
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Fig. 4-11 – DIMICC-2/DETAIL transport architecture 

Here we can see the ACE classes and the DETAIL defined ones implementing the Stream architecture. 

Now Sinks and Sources have ConnectionStreams for the connection establishment. 

We should note that a Sink only handles one ConnectionStream, since it is the endpoint of the 

connection. The Source, on the other hand, can have more than one ConnectionStream, enabling 

multicast at a higher level (as for the first DIMICC version). 

When the client requests the connection between a Source and a Sink it may ask for special 

connection attributes (reliability, frame formatting, QoS, etc.) and the ConnectionModules needed for 

these functionalities are inserted in the ConnectionStream so that the stream has what it was asked for 

(as long as it is available at either end, as in DIMICC-1). For example, if the client requested reliability and 

frame format1, a TCPModule and a FramingModule should be inserted in the stream to be created at both 

ends. 

To be more precise, what is defined are the TCPConnectionTasks and the FramingConnectionTasks. 

These are then used to build the two generic ConnectinModules that are inserted in the 

ConnectionStreams at each side. 

What the client is really defining, when he requests a connection, is a protocol stack, although this is done 

implicitly, since the client only knows about informal requirements. 

                                                           
1 By frame format, it is understood a mechanism to format the output in fixed size frames. There is a check to see if 
frames are received completely and correctly (this module was created as a part of the DETAIL development). 
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The sequence diagram in Fig. 4-12 will help to better understand the steps in the creation of a connection. 

Here the User Program explicitly tells the Protocol Stack what he wants (this contradicts what was 

previously said; there are two reasons for this: first, the development of the abstraction layer has not been 

done and second the diagram is simplified by this removal). 

 

Fig. 4-12 – Sequence Diagram for SourceóSink Creation and Connection 

Here we can see that there is a ConnectionManager associated with the Sink and the Source. This 

ConnectionManager is the “side” of the Endpoints that is seen by the clients. These classes have the 

methods to interact with the Sink and Source. This way the Sink and Source are to the UserProgram 

only part of the VirtualComponent (maintained from version 1) and the managers are the correct way to 

control them. 

As has been said, the UserProgram could be a DETAIL inner class that maps the client options to a 

protocol stack. This class should check both Sink and Source for the requested protocols. 

 

Two new classes are introduced: Manager and NetManager. These classes provide an interface to the 

component, regarding connections. Manager is a high-level class concerned with Sink and Sources. 

NetManager deals with the specific connections and the other Protocol Managers. 
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Let us analyse two other sequence diagrams to better understand the job of the NetManager: Fig. 4-13 

and Fig. 4-14. 
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Fig. 4-13 – Creation of the Stream in the Source/Connecting Side 

Now we named the class initiating the sequence an InnerDetail class, to illustrate what we have stated 

previously. When asked to set-up a stream, the NetManager creates a new ConnectionStream. Then it 

evaluates the protocol stack and asks the required ProtocolManagers to create a ConnectionModule. 

Each ConnectionModule is then pushed into the stream. 

One of these modules will have to construct the network access. We have not mentioned it yet, but it must 

be clear that only one module will connect to the underlying network in each stream. There can be modules 

that deal with the data being sent/received (as the Framing module described earlier), but only the bottom one 

(see 4.1.3) will send whatever data it receives from the above modules to the physical network bellow it (be it 

FastEthernet, ATM, or other). 

Having said that, it must be stated that in the previous picture, this connection is missing. This means that 

the ProtocolManager for the underlying network in addition to creating the module also makes the 

network connection to the Sink, using the Acceptor-Connector pattern mentioned in 4.1.2. 
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With this in mind, we can now view the sequence diagram for the accepting side in Fig. 4-14. 
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Fig. 4-14 – Creation of the Stream in the Sink/Accepting Side 

In this diagram we have included the Acceptor that accepts (as per its name) incoming connections. We 

have therefore added the underlying network to our schematic. This Acceptor is especially crafted for the 

protocol in question, that is, there is an Acceptor defined for each network protocol. The incoming 

connection triggers the creation of a new module that handles it. The Acceptor(s) is (are) created when the 

ProtocolManager initiates (we will see in a while the reason for the plural). 

The rest of the diagram is similar to the one from the connecting side, except for the method names.  

There is also another fact to note: when the NetManager calls findConnection() on the network 

ProtocolManager, this one does not create a new module but returns the one previously created when it 

was notified of new connections. There is an identifier that is passed by findConnection() that allows 

the identification of the correct incoming connection. 

 

Only one ProtocolManager object of each type is created in each process. This way a 

ProtocolManager handles all VirtualComponents in the process. This is the reason for a network 

ProtocolManager initiating more than one Acceptor, because it has to create Sinks for each 

VirtualComponent that it owns. Each ProtocolManager is loaded as a separate library using the 

Service Configurator pattern described in 4.1.4. 

 

As final remarks, we should state some important aspects of DETAIL and DIMICC: 

• Data passing between modules is optimised using Messages Blocks from ACE, which allows 

passing pointers only, avoiding the cost of copying the data (as described in 4.1.3). 
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• It uses the Reactor (see 4.1.1) to allow event decoupling. 

• Code portability is ensured, because of the use of ACE classes. 

 

In this sub-chapter, we have not stated clearly the separation between DIMICC and DETAIL. The reason 

for this is the high coupling between the two. In rough, we can say that DIMICC defines the IDL interfaces 

for accessing Components, Sinks, SourceConnectionManagers, etc. This allows a different 

implementation of these classes as long as they comply with the interface. Programs that use this interface 

will not be affected by that change. 

DETAIL is the implementation of the interfaces, with all underlying aspects. 

4.5. Other used tools 
The project developed to a size where industry quality assurance was needed. This led to the use of a set 

of tools that created a more reliable environment for the intended development. 

4.5.1. Bugzilla 
Bugzilla [59] was introduced to better catalogue and address ‘bugs’ in the system. This tool gives support 

for error notification/resolution flow. It is a defect-tracking system, as their developers put it. 

From [59] we can state the following strengths of Bugzilla: 

• Web access to the defect-tracking system. 

• Immediate notification of ‘bugs’ reported. 

• Annotations to the ‘bug’ lifecycle. 

• ‘Bug’ searching capabilities. 

• Inter-’bug’ dependencies and dependency graphing. 

• Advanced reporting capabilities. 

• De-facto standard defect-tracking system. 

 

 Bugzilla provides a web interface that allows adding ‘bugs’ discovered and associate them with 

components of the system. A programmer manages the components and is warned of each ‘bug’ reported. 

There is also the possibility of assigning the ‘bug’ to a specific programmer besides the responsible of the 

component. Severity, dependencies, ‘bug’ duplicates can be noted to help to categorize the errors. A search 

engine is also available to search for ‘bugs’ reported. 

Not only the reporting of ‘bugs’ is available, but also all the discussion related to the resolution of the 

‘bug’ can be seen in the web interface. 
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It uses a database behind it to store all the information. As of the time of this writing, it only supports 

MySQL (see http://www.mysql.com/) but the development team plans to add Database Modularity, so to 

remove MySQL specifics and enable multi-vendor Database support. 

As the mentioned site says, it has become a widely used defect tracking system. 

4.5.2. CVS (Concurrent Versions System) 
CVS was another needed tool. As one might expect, the number of components in the system was growing 

quickly. The compatibility between different versions became hard to control, and the changes made to each 

file difficult to track. The obvious solution was to adapt version control. CVS [60] was the natural solution. 

Further, it is a free and widely used solution and it had support in both Linux and Windows, the systems 

where development was been made. The web interface supplied by an additional add-on CVSWeb [61], made 

it a very productive tool. 

As the name suggests, this product allows the concurrent development of the same source code (or any 

other document type) in each programmer’s space. This parallel work can be merged at any time when a user 

checks in the changes he made. Note that we mentioned differences between the current version (in the 

central repository) and the local copy of the programmer. Keeping track of changes rather than the whole new 

file minimizes space needed and eases comparison of versions. 

As mentioned, there is a central repository where all the versions reside. This depot stores all the directory 

tree of a project (or projects), including files removed/added during the course of the project. There is even 

the possibility of creating new branches (following different approaches or problems) in a development and 

then merging them back when desired. 

Although we have not pointed out, the development and central point can be in different locations in a 

network, and this network can be the Internet. 

Other major features are: 

•  Tagging the state of the development tree (e.g., version 0.0.3) and getting differences between 

tagged versions. 

• Changes are logged with developer comments. 

• There is the possibility of interacting with external ‘bug’ systems (although this was not pursued in 

the development). 

 

The mentioned web interface (CVSWeb) adds an easier way to view committed changes and track those 

changes. It allows us to see the evolution of a specific file and comparing any two versions, by just selecting 

them in a web browser. This is all based in the CVS installed in the system where the web server runs 

CVSWeb. 

 

All and all, CVS proved to be the solution it claimed. 

http://www.mysql.com/
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4.5.3. Doxygen 
Doxygen is a very helpful tool for documenting source code [62]. 

We needed to develop documentation for the code implementation in the easiest and quickest possible 

way. Doxygen takes its input from the source code, or better, from the comments in the source code. It has a 

set of rules for the comments that it can handle. Following these rules is straightforward and even improves 

the comment layout of the source code. C, C++, IDL and Java are the languages that can be parsed. As the 

development was in C++ this small limitation was not troublesome. 

Commenting the code is not even needed to generate code structure, it is extracted from the code itself, 

without user intervention. This is useful to get relationships in large code developments. 

Doxygen can generate several formats for the output, HTML (Hyper Text Markup Language) being the 

friendliest of all. Hyperlinked PDF (Portable Document Format), PS (PostScript), RTF (Rich Text Format), 

compressed HTML for Windows help files and UNIX man pages are the other format options. The developer 

can/should format the desired output in a file (similar to a makefile for a compiler) that Doxygen takes as the 

configuration for the generation of the documentation. 

 

Besides this, we can also list the following features: 

• It is available in various OS (Linux, Win32, UNIXes). 

• Automatic generation of references to documented classes, files, namespaces and members. 

• Graphically generated structure/relationship of the code (for this it uses the dot tool [63]). 

• Can use references generated for other projects. 

• Source code fragments are highlighted. 

• “Includes a fast, rank based search engine to search for strings or words in the class and member 

documentation” from [62]. 

 

Summing up: Doxygen is a very powerful tool. The ATM documentation generated during the 

development of this thesis can be seen in http://bluenose.inescn.pt/~pbrandao/develop/. Examples of the code 

comments can be seen in Appendix C-2 in the IDL file. 

http://bluenose.inescn.pt/~pbrandao/develop/
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5.  Development/Integration and Test 

“I’d love to change the world… 
But I can’t get the source code” 

-- Unknown 

This chapter is totally dedicated to describing the developments made 

during the course of this dissertation. First, we shall look at the ATM 

development and then discuss the ACE classes developed and some 

details concerning them. QoS and OS specific versions will be described. 

The integration of these classes in the DIMICC and DETAIL framework will 

be the next point of discussion (regarding ATM development). Then the 

chapter will end with some considerations concerning the test structure 

used to improve quality in the development. 

5.1. ATM Development 
As was mentioned earlier, the core of the development was aimed at providing ATM support to the project 

framework. The network code was based on ACE classes (see 4.1), so they were the obvious place to start 

meddling. 

During this section, we will be dwelling with the development of the ATM infrastructure, comparing it to 

the TCP/IP approach already in place. One of the development objectives was to provide ATM with a similar 

functionality to TCP. To identify more easily the TCP/IP approach we will refer to it as the SOCK interface 

throughout this section. 
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5.1.1. ATM classes for ACE 
Fig. 5-1 represents the inheritance tree for SOCK classes and Fig. 5-2 for the ATM classes. 

ACE_SOCK_Stream

ACE_SOCK_IO

ACE_SOCK

ACE_IPC_SAP

ACE_SOCK_ConnectorACE_SOCK_Acceptor ACE_INET_Addr

ACE_Addr

 

Fig. 5-1 – Inheritance tree of ACE SOCK classes 

 

ACE_ATM_Stream ACE_ATM_Acceptor ACE_ATM_Addr

ACE_Addr
(from SOCK_Classes)

ACE_ATM_Connector

 

Fig. 5-2 – Inheritance tree of ACE ATM classes 

As we can see, the four main classes at the bottom of Fig. 5-1 are replicated for the ATM version (Fig. 

5-2).  The reader can notice that there should be a class to take the place of ACE_SOCK. This class would 

have the common functions of ACE_ATM_Acceptor and ACE_ATM_Stream that they share when 

resembling the SOCK interface. The class was not introduced so not to disturb the ACE ATM classes already 

in place (there was no intermediate class) and because the common implemented functions were few. 
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The classes were developed to work over AAL5 (see 3.1.1), but there is the possibility of using other 

Adaptation Layers, with some code modifications. However, as described in 3.1.1, AAL5 is the best choice 

and the mostly used Adaptation Layer for data and real time services. 

 

The ACE version used was 5.1.8, but it is expected to work with superior versions, since the ACE team 

strives to maintain interfaces and functionality through versions updates. 

 

In 4.1.5, we saw that ACE had ATM support for Windows and Solaris. Both implementations are based 

on FORE’s API. Therefore, this implementation needs FORE’s libraries and the interface definitions (the 

header files). 

Solaris was not relevant for the project so the efforts were directed to the Windows (partially 

implemented) and Linux versions. As we will see, adjustments were made to the Windows code to allow the 

use of the classes developed with the Acceptor-Connector pattern (as described in 4.1.2). 

Appendix - A provides guidelines to develop code with these classes.  

5.1.1.1. Defined classes 
In the pattern described in 4.1.2, there are classes that need to be implemented to make the pattern work. 

The following were the classes already developed in the ACE framework for ATM: 

• ACE_ATM_Addr : ACE_Addr 
• ACE_ATM_Acceptor 
• ACE_ATM_Connector 
• ACE_ATM_Params 
• ACE_ATM_QoS 
• ACE_ATM_Stream 

 

Although they share similar names with the ones mentioned earlier, they only wrap the classes in the 

SOCK tree of ACE1. As said, the implementations referred to Solaris and Windows. Based on this, the 

development began. 

 

The first approach was to implement the functions that were already defined for Solaris and Windows, in 

the Linux environment. This led to the study of the ATM for Linux implementation (described in 3.1.6). The 

paper (in some sense outdated) by Werner Almsberger [32] described the structures and functions for Linux. 

 

                                                           
1 ACE_ATM_Addr is the exception, because there are casts made between the different addresses type. 
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After doing this development, we started to work with the Windows code to get it to perform as required. 

Further functions were developed, as will be described in the next sections. A comparison between the ACE 

SOCK framework functions and the developed functions for ATM can be seen in Appendix - B. 

 

In the next sub-sections, we will describe some special functionality added to enable a quasi-similar 

operation for the ATM classes when compared to the ACE_SOCK equivalents. For a thorough description of 

all implemented functions, please see Appendix - B.  

5.1.1.1.1. Connection ID 

As seen in 4.3, connections are identified in each of their endpoints. That means that we need a unique 

identifier for the connection usable by both sides. In the SOCK interface, we can get the remote and local port 

number. With this number and the source and destination IP addresses we have a unique identifier for 

connections (an IP address uniquely identifies a machine; a port number gives the specific connection on that 

machine, so both IDs from each side uniquely identify a connection). It is possible for a process to 

communicate (using CORBA) with a server process on a machine requesting it to configure the connection 

handler for his specific connection. The caller process constructs an ID with the requesting machine’s IP 

number, its port number and the IP number and port number of his handler. The server process can uniquely 

map this ID to the connection handler. 

 

In ATM, there are no ports to connect to. The NSAP (described in 3.1.3) refers to a machine, but does not 

identify the connections on the machine1. There is no way to map between an ID and a connection handler, as 

in the above example. 

A structure, named ATM_CONN_ID, was added to provide the described functionality. 

struct _atm_con_id 
{ 
    ACE_UINT16 itf; /**< The interface number*/ 
    ACE_UINT16 vpi; /**< The VPI number*/ 
    ACE_UINT16 vci; /**< The VCI number*/ 
} ATM_CONN_ID; 

The itf relates to the number of cards of the machine. This number identifies the card being used in the 

connection. The vpi and vci are the path and channel IDs, respectively (see 3.1.3). 

This data is unique within a machine for each connection to that machine, so adding the NSAP to this 

information will allow identifying a connection.  

Therefore, to map an ID to a specific connection between Machine 1 and Machine 2 the ID should 

contain: 

                                                           
1 This is not absolutely true, as the selector from the NSAP enables us to connect to a specific server/service. The 
downside is that the accepting side can not get the connector’s selector (see 3.1.3 for more details). 
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• NSAP for Machine 1  

• ATM_CONN_ID for the connection on Machine 1 

• NSAP for Machine 2 

• ATM_CONN_ID for the connection on Machine 2 

This information will uniquely identify the connection between two process/threads in Machine 1 and 

Machine 2. 

 

One could argue that we are using identifiers with only local meaning to one machine in the other end of a 

connection (namely VPI and VCI). There could (or should) be a middle layer between the AAL and the ATM 

layer to manage remote virtual ports for ATM. This layer should map these unique virtual ports to the 

identifier used in the remote machine, hiding in this way the VPI/VCI of the remote machine from the AAL. 

This method would require the existence of a daemon managing all connections being established between 

the machine and any other endpoint. The decision was to pass the VPI/VCI information directly to the AAL, 

instead of pursuing a more difficult approach, which would only masquerade the use of VPI/VCI information.  

 

There was one problem with this solution. In the SOCK world, it is easy to get the remote side port after 

establishing a connection, as long as the connection is open. However, in ATM there is no way of knowing 

the ATM_CONN_ID data of the remote side. 

This problem led to develop the following functions: 

int recvId(ACE_Time_Value recvLimit); 
int sendId(void); 

These functions receive and send the ATM_CONN_ID from the other side of the connection. This way 

after establishing a connection, these functions are called so that each endpoint can save the ID of the other. 

After exchanging IDs, both sides can now answer a request for the remote side ATM_CONN_ID. 

The recvLimit is used to prevent endless waits in the connections. If for some reason one side does not 

send the ID the receiving side will only block for recvLimit, after which it will keep an empty/invalid ID. 

5.1.1.1.2. The binding to the 0 port of the SOCK world 

When dealing with common TCP/UDP sockets there is the possibility of not explicitly defining the 

listening port. We let the system choose an available port and then ask the socket what port it got. 

This is not so in ATM. As one might expect, there is no standard way of saying “Hey system, choose a 

selector for me”1. Thus, a high-level implementation was developed for this functionality. 

Basically, we define a constant named DEFAULT_SELECTOR_ANY that will have the same use as the 0 

port on the SOCK world. 

                                                           
1 As we saw the selector is somewhat similar to the port of TCP/UDP over IP (see 3.1.3, if in doubt) 
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In IP1, giving a port number 0 will tell the system to choose an available port above 1024. With 

DEFAULT_SELECTOR_ANY, we get the same behaviour. When using the ACE_ATM_Acceptor class we 

define the local ATM address for binding with this special selector. The class will recognize it and try 

different selectors until it can bind to one. We can then get the local address and get the selector chosen. 

There is also an option in the ACE_ATM_Acceptor class API to restrict the number of selectors that will be 

tried before giving up. 

open (const ACE_Addr &local_sap, 
 ACE_ATM_Params params, 
 int backlog, 
 int tryNSelectors, 
 ACE_ATM_QoS qos_accept) 

The parameter tryNSelectors will give the number of different selectors that the class will try to bind 

to before giving up. If this parameter is -1, the class will try until it runs out of selectors. 

To enable this functionality the ACE_ATM_Addr class has a function to get a new selector, based on a 

previously given one (or, for the first time call, a default first selector). ACE_ATM_Acceptor::open will 

call this function. 

5.1.1.1.3. Getting the peer name 

Another, less important, but nonetheless useful function in the SOCK API is getting the peer address 

structure. This is somehow related to the previous subject. 

In SOCK, we can get the remote address and then do a lookup for the address to get an intelligible name 

for the remote machine. 

This two-step approach has been trimmed down to one, on the ATM API. 

The following function was developed  

char *ACE_ATM_Stream::get_peer_name (void) const; 

It gets the address from the other side of the connection and tries to resolve it to a host name. This is done 

looking in an NSAP to host name table2. If the NSAP is not found in the mentioned table, the function returns 

failure3. 

                                                           
1 Remember that we mean IP over Ethernet. 
2 In a file (% SystemDir% \atmhosts) in Windows and in a file (/etc/hosts.atm) and Naming Service in Linux, (this is not 
the CORBA Naming Service, but the network service for IP-Host Name resolution). 
3 If we are looking only for the NSAP address we can use int ACE_ATM_Stream::get_remote_addr 
(ACE_ATM_Addr &) const; 
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5.1.1.1.4. Functions not implement and why 

Some functions that are available in the ACE_SOCK classes were not developed in the ACE_ATM 

classes. We will briefly discuss some of them, by class. As stated before, see Appendix - B for analysis of all 

the functions. 

 

In the Stream Class 

The receive and send functions that used iovec parameters were not developed because they were 

regarded as hardly used and therefore not of primary importance. More precisely: 

ssize_t sendv_n (const iovec iov[],size_t n) const; 
ssize_t recvv_n (iovec iov[],size_t n) const;  

For the same reason the following functions were not implemented as well: 

ssize_t send (size_t n,...) const; 
ssize_t recv (size_t n,...) const; 

The following functions are only for the TCP layer, they refer to the urgent data in the TCP packet.  

ssize_t send_urg (void *ptr, int len = sizeof (char)); 
ssize_t recv_urg (void *ptr, int len = sizeof (char)); 

For this reason, they were not implemented. 

 

In the Address Class 

The following constructors are inherent to TCP connections and for that reason were not developed in the 

ATM classes: 

ACE_INET_Addr (u_short port_number, ACE_UINT32 ip_addr =  INADDR_ANY); 
ACE_INET_Addr (const ASYS_TCHAR port_name[], const ASYS_TCHAR 
 host_name[], const ASYS_TCHAR protocol[] = ASYS_TEXT ("tcp")); 
ACE_INET_Addr (const ASYS_TCHAR port_name[], ACE_UINT32 ip_addr,  const 
ASYS_TCHAR protocol[] = ASYS_TEXT ("tcp")); 

The set functions that have the same signature were for the same reason not implemented. 

Similar comments apply to the following: 

void set_port_number (u_short,int encode = 1); 
u_short get_port_number (void) const; 
ACE_UINT32 get_ip_address (void) const; 

There is in the ATM Address class a set_selector and get_selector functions that allow to 

set/get the selector on/from the Address object. 
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There are other functions not implemented that can be discerned in Appendix - B. Those were not 

developed for their lack of use. 

5.1.1.2. QoS enabling 
Until now, we have not said a word about QoS regarding the ATM classes. We have postponed it until this 

sub section. 

An ACE_ATM_QoS class was defined. This class deals with all aspects regarding the Quality of Service of 

a connection. To use it, we first define the QoS parameters in an instance of the class and then pass the object 

to the connection being created. 

 

The purpose of this class is to wrap the underlying QoS structures of the OS where the program is being 

compiled. In that way, it serves the same purpose as many of the ACE’s classes. Depending on the current 

OS, the class will use different structures to define the QoS parameters.  

 

Currently, there is only support for two ATM Categories of Service: UBR and CBR (see 3.1.2 for more 

details on the ATM Categories of Services). This limitation is due to several factors: 

• Not all ATM cards support the different categories (namely the ones we used only support UBR and 

CBR) 

• FORE drivers for Windows do not have support for ABR (as described in 3.1.5) 

• ATM on Linux does not have support for ABR and VBR (as described in 3.1.6) 

 

The default category of service defined by the ACE_ATM_QoS class is different in Windows and Linux. 

In Linux, there is the notion of ANY_CLASS, which means that one endpoint of a connection will use 

whatever is requested by the other side of a connection. This implies that the other endpoint will have to 

define some category of service, even if it is UBR. This means that we need to specify the category of service 

in at least one of the connection endpoints. 

In Windows, not specifying the category of service in either side of the connection leads to the use of 

UBR. 

 

In order to define a CBR connection we need to provide the desired maximum bit rate for the virtual 

channel. To do this we use the rate value in the class constructor or using the set_cbr_rate () method. 

There was already a method developed named set_rate(), but we added this one to allow future methods 

to set other rate types (ABR, VBR). 



5 Development/Integration and Test 

Communications  Arch. for Distributed Multimedia Systems 64 

In this class, we also have the possibility of setting the maximum SDU (Service Data Unit) for the 

connection. This was not fully tested, as the default value (8192 bytes)1 was mostly used. 

 

After setting all the desired values for the ACE_ATM_QoS object, we use it in establishing or accepting 

connections. Although these two possibilities exist, setting the QoS in the accepting side only works in Linux. 

Even so, the connecting side has the last word, i.e., in Linux, the accepting side can set a QoS for the 

connection, but if the other endpoint has also set QoS parameters and the maximum bit rate2 requested is 

greater than the one defined by the acceptor this is the one that gets defined in the connection. If the 

connector requests a bit rate lower than the one the acceptor has defined, the accepting side rejects the 

connection. 

As one could expect, the requested bit rates must be lower than the available bandwidth of the link; if they 

are not the connection is immediately rejected by the ATM switch. 

The rate can be defined separately for each direction of the flow (in each side we can set the forward rate 

and the backward rate), but currently the rate is set equally for both directions. 

5.1.1.3. Some words about the Windows implementation 
As was mentioned in 4.1.5, there were already some implementation of ATM classes in Solaris and 

Windows. Ruibiao Qiu was the responsible for the Windows version of ACE. 

From our part, we can say that the development mentioned in 5.1.1.1.1 and 5.1.1.1.2 was totally new to 

the ACE implementation. There were also some “tune ups”, ‘bug’ corrections and some improvements made 

to the Windows version. The work was directed towards our goal, that is, to make the ATM classes suitable 

to be transparently used in the network patterns of ACE. 

 

In the Windows implementation, it was not possible to set the QoS in the accepting side. The ioctl 

function needed only returned an error, which means that the functionality was probably not implemented by 

Fore. 

Another issue was the binding done in the connect phase (on the connecting side). The address to which 

the socket was bound was SAP_FIELD_ANY_AESA_REST, which meant the NSAP of the first card on the 

machine. This is only a problem when there is more than one card on the PC, because the address binding 

could not match the card used for the connection. 

                                                           
1 A better value should be somewhere between 1500 and 3036 as can be seen in “TCP/IP Over ATM - Performance 
Evaluation and Optimisation”, by José Ruela and Nelson Silva (where we can see that the size of socket buffers also 
influences the choice of this value). 
2 Remember that only in CBR this can be set (considering only CBR and UBR). 
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5.1.1.4. Other words about the Linux Implementation 
The Linux version, as one could expect, was a little more troublesome. Nevertheless, based on the work 

already done in the Solaris and Windows versions and on the ATM on Linux mailing list [35] the 

development evolved more or less smoothly. 

As in the Windows version, we pursued the transparency in the network patterns, i.e., making it work on 

Linux. 

 

The open source of the ATM on Linux implementation helped our effort, and we resorted some times to 

perusing the ATM implementation code to discover problems with our own implementation. The other way 

around also occurred, as we submitted minor ‘bugs’ discoveries to the ATM on Linux mailing list. 

 

The last version in which we tested our developments was in Linux on ATM version 0.63 in the kernel 

version 2.3.16, although it also works with lower versions. 

There is in the code a check to see if (according to the ATM version been used) some functionalities are 

available (namely getting the VCI and VPI for a connection). 

 

As described earlier, setting QoS in the accepting side only works as a minimum bit rate for the 

connection. If the connecting side asks for a higher bit rate it will get what it asked for. 

5.1.1.5. Integration in the ACE framework 
The work developed was partially integrated in the ACE framework. There was some difficulty in 

maintaining an up to date interaction with the responsible in ACE for the ATM development. Due to his work 

on other subjects, it was not possible to establish a more fruitful communication between our continued 

development and the integration in the ACE framework. Because of this, some revisions from our side, done 

after the integration, were not reflected in the ACE development tree. 

Nonetheless, after a revision from the people responsible in ACE, there was an update to the ACE ATM 

classes, where our work was included. 

 

From our point of view, more important than the integration in the development tree, was the integration 

in the Acceptor-Connector structure (see 4.1.2) and the Stream structure (see 4.1.3). This objective seemed 

fairly achieved. 

5.1.2. Integration of ATM classes in DIMICC’s 1st version 
As we have explained in 4.3, DIMICC encompasses more than just the control of network interfaces. 

However, our goal here was to add ATM support and its QoS to the DIMICC framework. Therefore, we will 

keep our discussion to the network part of DIMICC. 
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DIMICC had already an implementation of a network interface in TCP/IP. We based our development in 

that code, which led to some evolvements in those classes as will be seen. 

 

We defined the protocol identifier according to DIMICC’s rules, for the ATM endpoints. Here the need 

for the Connection Identifier came to place and what has been discussed in 5.1.1.1.1 was used to build the 

SAP structure. The defined IDL can be seen in Appendix C-1. 

 

Next, we had to define the DIMICC Transport Manager for ATM, the entity responsible for establishing 

the underlying connections between the sources and sinks. We encountered some problems here due to 

different behaviours of the Reactor in Linux and Windows (see 4.1.1 for more on the Reactor Pattern). The 

problem was solved by explicitly instantiating the correct type of reactor we wanted according to the OS 

where the compilation took place. 

All the aspects mentioned in 4.3, regarding the network aspects, were developed. Of course, the sinks and 

sources connection handlers also had to be implemented. At this point, the work done to allow using the 

ACE’s network patterns with ATM classes was of essence. It was necessary to use the Acceptor-Connector 

pattern (see 4.1.2) in the sink and source establishment, as described in 4.3. The work was done more or less 

painlessly. The inheritance tree developed can be seen in Fig. 5-3. 

ATMTransportManager

ACE_Task_Base
(from ACE)

TransportManager
(from DIMICC)

ATMSourceConnectionHandler

OutboundConnectionHandler
(from DIMICC)

ATMSinkConnectionHandler

InboundConnectionHandler
(from DIMICC)

ATMSinkConnectionHandler
ACE_ATM_ACCEPTOR

ACE_Acceptor
(from ACE)

ATMSourceConnectionHandler
ACE_ATM_CONECTOR

ACE_Connector
(from ACE)

ATMAcceptor ATMConnector

 

Fig. 5-3 – Inheritance tree for DIMICC ATM classes 
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This integration was carried out based on the TCP/IP development already done. The framework was 

merely adapted to allow the use of the ATM classes, in rather the same way as the TCP/IP classes were 

already being used. Therefore, the classes’ relationships are similar to the one discussed in 4.3, as illustrated 

in Fig. 5-4. 

TransportManager
(from DIMICC)

UNManager
(from DIMICC)

11

ATMAcceptor

ATMConnector

ATMTransportManager

11

11

 

Fig. 5-4 –DIMICC ATM classes relationship 

5.1.3. ATM integration in DETAIL  
DETAIL separated the essence transfer from DIMICC to a new library, as shown in 4.4. New adaptations 

had to be made to develop this new architecture. 

The shift to modules inserted in streams allowed a more modular approach1 to the network transport stack, 

but of course required to change/build new code. 

 

                                                           
1 As one might expect using modules turns things more modular. 
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To help a better understanding of the classes needed, we will recall the sequence diagrams of section 4.4, 

but now with the ATM Protocol specific classes. As only the ATM protocol is to be discussed, we will keep 

ourselves to the creations regarding ATM classes (thus the differences to the sequence diagrams in 4.4, that 

dwelled with different kinds of ProtocolManagers, including ones not directly related to the underlying 

network).  

ConnectingSide : 
NetManager

ConnectingSide : 
ATMManager

 : 
ATMConnector

 : 
ConnectionModule

 : 
ConnectionStream

setupConnection( ) connect( )

ConnectionModule( )

push(ConnectionModule)

 

Fig. 5-5 – ATM Stream Connection establishment in DETAIL 

We point out the ATMManager class that, as we will see, inherits from ProtocolManager. The 

NetManager receives a request to create a stream using an ATM module in the stack, hence it delegates 

this request to the ATM Manager. Here stands out the advantage of the stream approach, the ATM module 

can be the only one of a group of modules in the stream that deals with this source-sink connection. However, 

this fact is transparent to the involved module. 
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 : ATMAcceptor  : 
ConnectionModule

AcceptingSide : 
NetManager

AcceptingSide :  
ConnectionStream

AcceptingSide : 
ATMManager

notifyNewConnectionAccepted( )
ConnectionModule( )

findConnection( )

ConnectionStream( )

push(ConnectionModule)

 

Fig. 5-6 – ATM Stream Connection Acception in DETAIL 

Fig. 5-6 shows the accepting side receiving the connection request and creating the ATM Module (or 

better a Connection Module with ATM Tasks). The NetManager, which was requested to find a stream 

with an ATM Module in the stack, resorts to the ATMManager to find the ATM Module. 

 

The creation of a Connection Module based on ATM Connection Tasks is better described in Fig. 5-7. 

 : ATMManager Reader : 
ATMUpstreamTask

Writer : 
ATMDownStreamTask

 : 
ConnectionModule

ATMUpStreamTask( )

ATMDownStreamTask( )

ConnectioModule(ConnectionTask, Connect ionTask)

 

Fig. 5-7 – Creation of ConnectionModule from ATMConnectionTasks  

 

The classes and the interaction between them are the same as those referred to in section 4.4. Although no 

diagram was referenced in that chapter, the idea of creating tasks was mentioned. This scheme illustrates that. 
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Based on these pictures we will now describe each component that has been developed, keeping in mind 

what has been already said in 4.4. 

5.1.3.1. Defining the ATM module to be insert into the ACE Stream  
The stream pattern discussed in 4.1.3 needs modules to be inserted. In our case, and as previous defined in 

the DETAIL transport structure, a transport module is required, i.e., a module that interacts directly with the 

network, the ATM network. 

Therefore, the following classes were built: 

• ATMUpstreamTask – this class is the ‘up’ part of the stream module, which means that it is 

responsible for passing messages upstream in the module. This job is done by registering with the 

ATMConnectionHandler. 

• ATMDownstreamTask – this class is the module ‘down’ part. Its job is to send messages to the 

network, or more precisely to pass them to the ATMConnectionHandler. 

• ATMConnectionHandler – this class does the entire job. Although, correctly speaking, this 

class does not belong to the module structure, it needs to be mentioned here since it does all the job 

of interfacing the network: receiving and sending data. 

 

The first two classes have basically the same implementation as the corresponding TCP/IP ones (they are 

so similar, that we made an abstraction to an upper class). As expected, the third one differs a little more, due 

to the underlying network. Nevertheless, the differences are not significant, thanks to the ACE ATM class 

development. 
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5.1.3.2. Integration 
As has been said, the development of the ATM DETAIL module was based on the TCP version. This 

analysis led to re-factoring the common parts. Therefore, the abstraction classes in the Fig. 5-8 were built. 

AbstractManager
absreactor_ :  ACE_Reactor *
is_regis tered_with_net_manager_ : int
moduleDescriptor_ :  DIMICC::ProtocolModuleDescriptor
netManager_ :  DETAIL::NetManager *
net_manager_name_ : std: :st ring 
newConnectionCondition_ : ACE_Thread_Condition<ACE_Thread_Mutex> 
newConnectionMutex_ :  ACE_Thread_Mutex 
reactorRunner_ : DETAIL::ReactorRunner *
register_with_net_manager_ :  int

reset_state()
Abstrac tManager()

AbstractUpstreamTask

close()
handle_data()
notify_space_available()
register_upstream_space_available()
open()

ProtocolManager

setupConnection()
findConnection()
notifyNewConnectionAccepted()

(from DETAIL)
ACE_Service_Object

(from ACE)

ConnectionTask

ConnectionTask()

(from DETAIL)

 

Fig. 5-8 – Abstraction of some Stream classes 

They define the common properties of some classes of a Module group. They also have some generic 

functions, while other are pure virtual to commit the developer of a different protocol module to maintain the 

defined interface. 

This abstraction led to a small change in the TCP classes, specifically the TCPManager and 

TCPUpstreamTask that derive from the abstract classes. 
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Therefore, the inheritance tree of the ATM classes became what is described in Fig. 5-9. 

ATMUpstreamTask

AbstractUpstreamTask
(from AbstractProtocol)

AbstractManager
(from AbstractProtocol)

ATMManagerATMAcceptor ATMConnectorATMConnectionHandler ATMDownStreamTask

ATMConnectionHandler
ACE_ATM_ACCEPTOR

ACE_Acceptor
(from ACE)

ATMConnectionHandler
ACE_ATM_CONNECTOR

ACE_Connector
(from  ACE)

ACE_ATM_STREAM
ACE_NULL_SYNCH

 ACE_Svc_Handler
(from ACE)

ConnectionTask

ConnectionTask()

(from DETAIL)

 

Fig. 5-9 – ATM Stream Module inheritance 

In this diagram, it can also be seen the usage of the ACE ATM classes developed, in the Acceptor, 

Connector and Connection Handler classes. 

The developed ATM classes, also in the diagram, have the same functionality as the TCP equivalent ones. 

5.1.3.3. Integration in DIMICC’s 2st version 
As discussed in 4.4, the DETAIL implementation led to the development of DIMICC-2. This new version 

allowed the construction of sinks and sources based on the stream architecture. Of course, this implied IDL 

refinements/changes in DIMICC. 

ATM was no exception and new structures for the CORBA environment were defined (these can be seen 

in Appendix C-2).  

There are only minor changes, and the code was very similar to the first version. 

5.2. Testing the source code 
Throughout the development we tried to keep the code working properly, that is, test programs were built 

during the primary development. This test methodology evolved during the project timeline. 

 

Initially we used an approach similar to ACE’s. There were small programs that tested the functionalities 

being developed. They were also used as a source code example to developers. The developed test programs 

were tuned to stress the functions being developed. 

This technique served the project purposes and was used in the first version of DIMICC. Each module had 

a set of test programs that allowed the detection of some flaws and ‘bugs’ in the code. 

 

As the project grew, a more deterministic/automatic test infrastructure was needed.   
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5.2.1. Test of each functionality 
The small test programs evolved to more generic programs, which according to the way they were called1, 

tested a specific functionality. This way the same program tested all (or almost all) functionality of a given 

module. The output of these programs was standardised, in order to know when a test failed or succeeded. 

To help automate the testing tasks, some PERL (Practical Extraction and Report Language) scripts were 

developed. They would traverse every directory (and their subdirectories) searching for specific test 

description files; when the files were found the described tests were run. According to the standard output of 

each test, a summary of the tests ran by the PERL script would be generated. This way, we could more easily 

detect errors when the code was changed and pinpoint with some accuracy the failing functionality. 

 

However, that was not enough. 

5.2.2. Extreme Programming Testing 
An ever-growing programming methodology needs a new view for tests in the development cycle. 

Extreme Programming [55][56] states that the tests are the first thing to be developed. The underlying 

logic is: 

• After a needed functionality of a Program, Module, Class or even method has been stipulated for 

development, we start out by writing a test to assert that functionality. Of course, the test will not 

even compile, since no development was made to this point. Nevertheless, this serves as the starting 

point for the code to breed. 

• We will then try to make the test compile, by coding the skeleton of the functionality. The test will 

now fail, as only the skeleton of the functionality exists. 

• At this point, we will start to put the flesh in the bones of our skeleton, writing the needed 

functionality until the test passes. 

 

This methodology will allow some interesting features (advocated by the XP people): 

• We need to first define well what our functionality is, so that we can write our test accordingly. 

• Our focus will stay in developing the functionality to make our test pass, leaving code 

improvements to a later time. The main effort will be to code the function. 

• Each functionality will have a test, so any changes in the code (to develop new functions, or 

improve the existing ones) should not make the tests fail. Running the tests after each code change 

will ensure this. 

 

                                                           
1 More specifically, according to their command line arguments. 
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This last point is of extreme importance, since it will allow us to change the source code without loosing 

any functionality. 

To better help to prove their case, the XP programmers developed some tools to make testing more 

automatic [57][58]. The tools will lighten the burden of building the test functions, running the tests and 

verifying the ones that fail. 

 

The above arguments fitted our increasingly demanding quality control needs. Being able to improve code 

(modifying it) and keep functionalities under test control was a huge advantage. Therefore, we embraced this 

code development methodology in the second version of the DETAIL infrastructure. Tests were built to 

ensure that the code inherited from the first version was working properly1 and the new development was 

done following the workflow described. 

 

This second version of DETAIL is not described in this thesis, as it does not pertain to the subjects dealt 

with. However, we will refer to it here to illustrate the XP principles. 

 

In DETAIL-2, several modules developed (and described here) were to be ported from DETAIL-1. As an 

example, we have the NetManager described in 4.4. 

After porting the code, we built tests to: 

• Prove that the NetManager was being created: instantiate a NetManager object and test for its 

methods. 

• Prove that endpoints were being created: invoke the methods for creating the endpoints and test for 

their existence. 

• Prove that data sent on a Source was received on a Sink: create the endpoints and test if the data 

received by the Sink would equal the one sent by the Source. 

This meddled with the ProtocolManagers, which implied that this code had to be tested first, before 

testing NetManager. 

After ProtocolManager and NetManager had been tested for all requirements, we could build 

confirmations for demonstrating that the Manager also worked as required. 

  

The normal workflow of XP was used when developing new modules. The Essence Handling library is an 

example. This library would enable to treat essence data and separate its components. Tests were built before 

developing the code. Tests like: 

• Creating a AudioHandler object 

                                                           
1 In this case, the tests were built afterwards, to ‘prove’ the work done. 
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• Parsing known audio streams using the created AudioHandler: test if the parsed parameters are 

what expected (these streams could first be local files and then using the DETAIL infrastructure, read 

from a Sink). 

As said, test would simply fail as no code had been developed. This development was then made to meet 

the specified tests. 

5.2.3. Conclusion 
Getting back to ATM, we used the ACE test approach in the class development for ACE. The shift to the 

PERL test version was done in the DETAIL development. And at a later stage, we moved to the XP 

methodology. 

The overall conclusion was that XP development increased error detection speed and easiness. The other 

aspects of XP made the working team interact more and improve knowledge sharing. Therefore, the use of 

XP was an essential gain in the code development. 
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6.  Concluding Remarks 

"The important thing is not to stop questioning." 
-- Albert Einstein 

As in most research and development projects, this one is far from being 

finished. The technology is always evolving, requirements are always 

increasing and thus the industry (and research) needs to move rapidly. In 

the next points, we will focus on some conclusions/results reached so far.  

The results were satisfactory (especially the personal ones) but the 

industry did not find the ATM solution the most appealing one. In this 

chapter, we will discuss these points of views. At the end, we will state  

further developments that should be pursued. 

6.1. Work Conclusions 
We will divide this section in two parts. The first one will describe the conclusions we found while 

developing this thesis. The second part will discuss the industry point of view on this subject. 

6.1.1. Conclusions drawn 
The development made led us to face the fact that ATM is not a technology that will be widely used at the 

desktop. There is not much effort or motivation to enable a wider use of ATM in the LAN, except probably as 

a backbone technology. 

Nonetheless, our work served to boost a little of the few ‘outcasts’ that strive to give the benefits of this 

network to the end user. 
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The interaction with the DOC group, responsible for ACE is an example of the two previous statements: 

there is some development being done to integrate ATM in end user environment, but this work is not the 

most widely supported. Even so, the work done with the ACE community was of interest/gain to both parties 

and led to a functional group of classes to use ATM with the ACE patterns. 

 

The development made in the DIMICC and DETAIL infrastructure was of importance as it enabled the 

improvement of the network software structure. The ATM development had the side effect of leading to a 

more thorough testing of the network infrastructure and, as a consequence, ‘bug’ correction. 

These testing requirements together with a greater quality assurance necessity steered us to a more 

productive environment. The code was being developed with greater speed and fewer errors. 

 

The need to cope with several protocols in DIMICC and DETAIL made the code structure evolve and 

perfect itself. This led to a more modular approach in the communication layer, which resulted in greater 

flexibility, as was described in 4.4. This was the result of using the Stream pattern in DETAIL, with the 

developed network modules. 

6.1.2. Industry results 
The previous sub-section indicates that the contractors did not find the ATM environment the most 

suitable to the studio production TV. 

The industry, represented here by the BBC R&D, has drawn the conclusion that it was better and cheaper 

to base their network on Fast Ethernet (soon to be Gigabit Ethernet) than to invest in laborious work with 

ATM. 

The main reasons seem to be cost and difficult deployment of ATM. When compared to Fast Ethernet and 

even Gigabit Ethernet, ATM represents a higher cost network infrastructure (including management, training, 

application development, etc). The high bandwidth and QoS guarantees can be surpassed with the increased 

throughput of Gigabit as well as some additional mechanisms. 

Ethernet networks are undeniably more easily to deploy. Programming applications and/or components to 

them is also simpler, due to their wide use. These facts, undoubtedly, come from the fact that little 

development is made in ATM1, on the end user side. No applications needing it, or being capable of 

exploiting it2, implies less products sales, which leads to higher cost. 

 

                                                           
1 Nonetheless, some research is done in ATM, although with few practical implementations in the LAN. 
2 Since they were not developed with  ATM/QoS in mind. 
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At this point, a question arises, is QoS really needed in the LAN? If so, is not ATM required? We think 

that there are situations where it is required, such as in some points of a TV production studio. The bandwidth 

increase with Gigabit will not be sufficient to guarantee a timely and guaranteed delivery of the content. 

Therefore, the need will arise to use some kind of QoS or at least resource reservation. 

Applications tend to use all the available bandwidth. If the bandwidth increases, applications will want to 

transmit more data so to increase user satisfaction (be it in quality, speed, etc.). This way, there is no 

guarantee that when we are using our network to broadcast the president’s declaration to the country, there 

are not any applications using the bytes per second we need to transmit with full quality, i.e., there is no 

reservation. There are some solutions that try to deal with this problem, using IP as the underlying protocol 

(with QoS features now available) and can therefore be implemented in the Ethernet world on the LAN. 

Integrated Services is an approach that enables resource reservation from end to end (mostly using RSVP 

(Resource reSerVation Protocol)). It is capable of guaranteeing a requested bit rate with a specified delay. To 

fulfil this goal, all nodes of the network must support the Integrated Services model; but this is similar to 

ATM (in spite of some ‘philosophical’ differences). 

Differentiated Services can be another choice. Their objective is the same of the Integrated Services, but 

they relax the need that every node implements Differentiated Services. End to end QoS will not be 

guaranteed in this way, but operation is still possible. This helps to deal with scalability problems. 

Differentiated Services aggregate flows to deliver them with the same group quality/guarantees. Integrated 

Services, on the other hand, treat every flow separately.  

These differences imply that the signal mechanism will be different. Differentiated Services nodes only 

pass resource information to each other in the call admission phase. The resource reservation protocol for 

Integrated Services needs to update this information (about neighbour nodes) periodically. 

 

Integrated Services create a scalability problem, although it offers a finer granularity. Differentiated 

Services does not provide tight control of each individual flow, but scales better. Both these approaches have 

a strong advantage: they use IP. This means that application integration and development is eased by these 

solutions, since many applications run natively in IP. 

In fact, keeping in mind the work done in this thesis, LAN applications will tend to use solutions based on 

IP. This puts ATM out of the picture, as its integration with IP (be it in CLIP or LANE) was never fully 

achieved (CLIP and LANE are in fact based on overlay models). Even if we sustain that ATM was developed 

with QoS as its basis, the solutions that are appearing (and being followed) to implement QoS in the IP world 

(without having a QoS capable physical network below) lead to the conclusion that ATM will surely be out of 

the LAN. 
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6.2. Personal Gains 
Although the work developed was not deployed to a real world environment, and thus was not a complete 

fulfilment of the objectives, it allowed a lot of personal achievement. 

This dissertation was an opportunity to be in the midst of an increasingly demanding project, and 

participate in a project that evolved its way of working to match the project requirements. 

This work was a personal opportunity of enhancing some areas of knowledge and the ability to embark in 

new ones. The most rewarding ones were the patterns and XP programming areas. Although there was some 

previous experience in working with patterns, their use was never quite important and productive as in this 

development. Patterns are, for my account, ineludible in large projects. 

These last statements might seem contradictory to the embracement of XP, but, as was said in a XP’s 

speech, a programmer’s life cycle follows this road. It passes through the wide use of patterns and then goes 

to XP. We might disagree with this opinion in some points, but the paths that the project made us follow, 

confirm his statement. XP proved to be a powerful way of coding, primarily by its testing principles. 

Following the KISS theory (see III) is another of its major strengths. 

 

A new area approached was ATM technology. The approach to it was made with small steps and a little 

more reluctantly than with the previous technologies. However, this subject proved also of great interest. 

Although, probably failing to reach the end user, ATM is still a technology to be explored as some other 

projects (in development) might prove. 

TV and digital content were (as stated before) a little strayed from the primary development. Nonetheless, 

they were mentioned, in order to place the reader in the projects’ context. Although networks would transport 

content, to this work it did not matter too much if it was other data besides video, audio or metadata. The 

important issues (in this thesis, not in the project) were to be able to control sources and sinks and to make 

data delivery from the former to the latter. This led to a shallower involvement with this area. 

In the end, I can say that there are only gains to account for. 

6.3. Topics needing further development 
Even though the ATM solution is not part of the project plans, there were some issues left to address that 

deserve to be mentioned. 

 

The need for QoS was stated at an early stage, but seemed to wear out during the course of time. 

Nevertheless, the classes developed for DETAIL should be enhanced in order to make full use of the ACE 

classes for ATM QoS. 
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Regarding the ACE classes, there is the need (at least from a programmer’s point of view) to address PVC 

creation. The new Windows 2000/XP API for ATM should also be addressed, so that ATM ACE would be 

supported in these versions of Windows. 

 

There are also some topics, concerning only network technology (and not especially ATM) that need to be 

dealt with. These aspects are important for the project and will be tackled with in the near future. 

The first one is the development of classes in DETAIL for supporting UDP, so that a connectionless 

protocol can be added to the DETAIL protocol stack. Multicast already exists in DETAIL, but there is the 

need to improve its performance. Now it uses a DETAIL level approach to do this (the source sends to every 

sink in its list); it is necessary to implement a way of using the underlying network capabilities. 

Another import point is the auditing of the network. New requirements have stressed a need to know the 

state of the network, its load, where are the streams flowing, who is using which service, etc. There is even a 

requirement to implement reservation of resources for a specific time (as in: “Please, I want to use the 2 Mb/s 

of bandwidth from the intake server 1 to the edit workstation 4, tomorrow from 12:00 to 13:00”). This will 

probably lead to the adaptation of some of the DSM-CC concepts, like a session resource manager. 

As mentioned earlier, there will be the need to address QoS in IP/Ethernet. This will be where integrated 

or differentiated services will come into play.  

 

As one can easily see, there is much work to be done in the network infrastructure that will certainly 

provide new subjects for other dissertations. 
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8.  Index 

"It is a good thing for an uneducated man to read books of quotations." 
-- Winston Churchill 

 

A 

AAL · 18 
AAL5 · 58 
ABR · 22 
Acceptor · 36 
Acceptor-Connector · 66 
ACE · 32 
Adaptive Communication Environment · See ACE 
Annotation Stations · 14 
ANY_CLASS · 63 
Asynchronous Transfer Mode · See ATM 
ATM · 16 

ATM Layer · 18 
cells · 17, 18 
Physical Layer · 18 

ATM Address Resolution Protocol · See ATMARP 
ATM_CONN_ID · 60 
ATMARP · 23, 25 
ATMConnectionHandler · 70 
ATMDownstreamTask · 70 
ATMManager · 68, 69 
ATMUpstreamTask · 70 
Available Bit Rate · See ABR 

B 

Basic Object Adapter · See BOA 
BOA · 28 
browse quality · 11. See quality, browse 
Browse Track Generator · 11 
BT · 20 

Burst Tolerance · See BT 

C 

CAC · 20, 22 
CBR · 9, 21, 24, 25 
CDV · 21 
CDVT · 21 
Cell Delay Variation · See CDV 
Cell Delay Variation Tolerance · See CDTV 
Cell Error Ratio · See CLR 
Cell Loss Priority · See CLP 
Cell Loss Ratio · See CLR 
Cell Transfer Delay · See CTD 
Classical IP over ATM · See CLIP 
CLIP · 23, 24, 25 
CLP · 20 
CLR · 9, 20, 22 
Common Object Request Broker Architecture · See CORBA 
Component · 45, 46 
ConcreteTransportManager · 46 
ConnectinModule · 48 
connection handlers · 66 
Connection ID · 59 
ConnectionModule · 48, 50 
ConnectionStream · 48, 50 
Connector · 36 
Constant Bit Rate · See CBR 
content · 8, 13 
Content Server · 14 
Control Admission Control · See CAC 
Control Plane · 44 
Convergence Sublayer · See CS 
CORBA · 25 
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CS · 18 
CTD · 21 

D 

Data Country Code · See DCC 
DCC · 22 
DEFAULT_SELECTOR_ANY · 61 
DETAIL · 47 
Digital Store Media – Command and Control · See DSM–CC 
DII · 27 
DIMICC · 12, 44, 47, 65 
DIMICC Essence Transfer Already Implemented Library · 

See DETAIL 
DIMICC-2 · 72 
DIstributed MIddleware for Multimedia Command and 

Control · See DIMICC 
DSI · 27 
DSM-CC · 11, 12, 80 
DVB · 7 
Dynamic Invocation Interface · See DII 
Dynamic Skeleton Interface · See DSI 

E 

E.164 · 22, 25 
Edit Conformer · 11 
Edit Decision Lists · See EDL 
Edit WorkStation · 11 
Editor · 14 
EDL · 11, 14 
EFCI · 20 
End Station Identifier · See NSAP, ESI 
essence · 8 
Essence Transfer Plane · 45 
Ethernet 

fast · 2 
gigabit · 2, 25 

Explicit Forward Congestion Indication · See EFCI 
Extreme Programming · See XP 

F 

Fast Ethernet · See Ethernet, fast 
Feedback Control · 20 
Finished Programme Transport Stream Server · 11 
Format Converter · 11 
full quality · See quality, full 

G 

gateway · 13 
General Inter-ORB · See GIOP 
Gigabit Ethernet · See Ethernet, gigabit 
GIOP · 29 

H 

Header Error Control · See HEC 

HEC · 18 

I 

ICD · 22, 24, 25 
IDL · 26 
IIOP · 29 
Intake host · 14 
Interface Definition Language · See IDL 
Interface Repository · See IR 
International Code Designator · See ICD 
Internet Inter-ORB Protocol · See IIOP 
Interoperable Object References · See IOR 
IOR · 28 
IR · 27 

L 

LAN Emulation · See LANE 
LANE · 24, 25 
LIS · 23 
Logical IP Subnetwork · See LIS 

M 

Manager · 49 
maxCTD · 21, 22 
Maximum Burst Size · See MBS 
MBS · 20 
MCR · 20, 22 
metadata · 8, 12 
Metadata Database · 14 
Metadata Plane · 44 
Minimum Cell Rate · See MCR 
Module · 38 
multicast · 46, 48 

N 

NetManager · 49, 51, 68, 69 
Network-to-Network Interface · See NNI 
NNI · 17 
Non Real Time Variable Bit Rate · See nrt-VBR 
nrt-VBR · 22 
NSAP · 23 

ESI · 23 
Prefix · 23 

O 

Object Reconfigurable Broadcasting using IT · See ORBIT 
Object Request Broker · See ORB 
open · 61 
ORB · 27, 28 
ORBIT · 12 
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P 

Packetized Elementary Streams · See PES 
PCR · 20, 22 
Peak Cell Rate · See PCR 
Permanent Virtual Circuit · See PVC 
PES · 11 
Physical Medium Dependent · See PMD 
PMD · 18 
PNNI · 17 
POA · 28 
Portable Object Adapter · See POA 
pre-digital · 7, 8 
Private NNI · See PNNI 
Processing Servers · 14 
ProtocolManager · 50, 51, 68 
PVC · 17 

Q 

quality 
browse · 11, 14 
full · 11, 14 

Quality Monitoring Host · 14 

R 

Reactor · 34, 37, 41, 66 
Reactor pattern · See Reactor 
Real Time Variable Bit Rate · See rt-VBR 
Real-Time CORBA · 43 
recvId · 60 
rt-VBR · 9, 22 

S 

SAP · 66 
SAR · 18 
SCR · 20 
SDI · 9 
Segmentation and Reassembly · See SAR 
Selector · 23 
sendId · 60 
Serial Digital Interface · See SDI 
servant · 28 
Service Configurator · 40 
Service_Handler · 36 
Single Program Transport Streams · See SPTS 
Sink · 45, 46, 48, 49 
Source · 45, 46, 48, 49 

SPTS · 11 
Stream · 38 
Stream Head · 38, 39 
Stream Tail · 38, 39 
Sustainable Cell Rate · See SCR 
SVC · 17 
Switched Virtual Circuits · See SVC 
System Plane · 44 

T 

TAO · 42 
TC · 18 
The ACE ORB · See TAO 
traffic service classes from ITU-T · 19 
Transmission Convergence · See TC 
Transport Manager · 66 
tryNSelectors · 61 
TV studio 

digital production · 8 
network · 9 
production · 7, 10 

U 

UBR · 22, 24, 25 
UNI · 17 
UNManager · 46 
Unspecified Bit Rate · See UBR 
UPC · 20, 22 
Usage Parameter Control · See UPC 
User to Network Interface · See UNI 

V 

VC · 17 
VCI · 17, 18, 23 

range · 17 
reserved · 17 

Virtual Channel · See VC 
Virtual Path · See VP 
VirtualComponent · 45, 49, 51 
VP · 17 
VPI · 17, 18, 23 

range · 17 

X 

XP · 34, 73, 75 
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Appendix - A   Usage of the ACE ATM classes 

This section describes the steps needed to use the ACE ATM classes for the ACE framework. 

Keep in mind that there are different requirements for Windows and Linux. 

A-1. Windows 
The development was made on Windows NT 4.0 with Service Pack 6. 

1. It is necessary to install the drivers for the adapter card and the Service Providers (SPI). They must 

have the same version number (the version used was 5.0.2.45456) (see [36] for availability) 

2. The file containing the name resolution for ATM NSAP should be defined (it is located in 

%SystemRoot%\atmhosts) 

3. Define in the ACE project the following: 

ACE_HAS_ATM 
ACE_HAS_FORE_ATM_WS2 

4. Add the additional include directory (substitute %SystemRoot% for appropriate value): 

%SystemRoot%\forews2\include 

A-2. Linux 
Development was made on kernel version 2.2.12 and atm version 0.59 (modified for kernel 2.2.12). It was 

also tested in the 2.3 kernel versions 

1) Install atm for Linux (see [34] for availability) 

a) if you install a version lower than 0.62 (which is for 2.3 kernels) you will have limited 

functionality in ACE_ATM_Stream 
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b) if you install version 0.59 you can patch it (recompiling the atm library) so you get the 

get_vpi_vci functionality 

2) Define in config.h for ACE the following: 

ACE_HAS_ATM 
ACE_HAS_LINUX_ATM 

3) Add the linux_atm_config.h to the $ACE_ROOT/ace/ directory 

4) Include in config.h the linux_atm_config.h (should be protected with ifdefs). This 

include should be (for future release) put in config-linux-common.h with the protecting 

ifdefs. 

5) When developing applications that use ATM, link them with libatm, located in 

/usr/src/atm/lib  
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Appendix - B  Functions of the ACE ATM classes  

This appendix compares the ACE Stream classes (keeping in mind the inheritance tree) and the ATM Stream classes developed. 

Therefore, we mark the redefined functions, the functions added and the functions not implemented. Some special notes and/or limitations for the functions are also 

mentioned. 

The approach was to wrap the existing ACE Stream class in the ATM class. The exception is the ACE_ATM_Addr, which inherits from ACE_Addr so to enable 

overloading. 

This comparison was done against the 5.1.18 ACE version. 

The column inherited refers to the SOCK interface. 

B-1. Stream Class 
Inherited ACE Stream Class ATM_Stream Class Problems/Limitations/Notes 

~ACE_SOCK_Stream (); ---  

ACE_SOCK_Stream (); ACE_ATM_Stream (void);  

int close (void); Redefined  

void dump (void) const; Redefined  A
C

E_
SO

C
K

_S
tre

am
 

ACE_SOCK_Stream (ACE_HANDLE h); ---- If developed, type of socket should be checked 
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Inherited ACE Stream Class ATM_Stream Class Problems/Limitations/Notes 
ssize_t send_n (const void *buf, size_t len, const 
ACE_Time_Value *timeout = 0, size_t 
*bytes_transferred = 0) const; 

Redefined  

ssize_t recv_n (void *buf, size_t len, const 
ACE_Time_Value *timeout = 0, size_t 
*bytes_transferred = 0) const; 

Defined, but not implemented  

ssize_t send_n (const void *buf, int n, int flags, 
const ACE_Time_Value *timeout = 0, size_t 
*bytes_transferred = 0) const; 

Redefined  

ssize_t recv_n (void *buf, int n, int flags, const 
ACE_Time_Value *timeout = 0, size_t 
*bytes_transferred = 0) const; 

Defined, but not implemented  

ssize_t sendv_n (const iovec iov[],size_t n) const; ----  

ssize_t recvv_n (iovec iov[],size_t n) const; ----  

int close_reader (void); ----  

int close_writer (void); ----  

ssize_t send_urg (void *ptr, int len = sizeof 
(char)); 

---- Invalid as it refers to TCP layer 

 

ssize_t recv_urg (void *ptr, int len = sizeof 
(char)); 

---- Invalid as it refers to TCP layer 

ssize_t recv (void *buf, size_t n, const 
ACE_Time_Value *timeout = 0) const; 

ssize_t recv (void *buf, size_t 
n, int *flags = 0, const 
ACE_Time_Value *timeout = 0) 
const; 

Win uses recv of ACE_SOCK_STREAM.  

ssize_t recv (void *buf, size_t n, int *flags, 
const ACE_Time_Value *timeout = 0) const; 

ssize_t recv (void *buf, size_t 
n, int *flags = 0, const 
ACE_Time_Value *timeout = 0) 
const; 

Win uses recv of ACE_SOCK_STREAM.  

ssize_t send (const void *buf, size_t n, const 
ACE_Time_Value *timeout = 0) const; 

 Redefined Win uses send of ACE_SOCK_STREAM. 

ssize_t send (const void *buf, size_t n, int 
*flags, const ACE_Time_Value *timeout = 0) const; 

 Redefined Win uses send of ACE_SOCK_STREAM. 

ssize_t send (const void *buf, size_t n, 
ACE_OVERLAPPED *overlapped) const; 

 Redefined Uses send of ACE_SOCK_STREAM. 

A
C

E_
SO

C
K

_I
O
 

ssize_t send (size_t n,...) const; Defined, but not implemented  
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Inherited ACE Stream Class ATM_Stream Class Problems/Limitations/Notes 
 All other send and receive funcs ----  

int get_local_addr (ACE_Addr &) const; int get_local_addr (ACE_ATM_Addr 
&) const; 

Doesn't work on acceptor side. In Linux we get the 

address from the card and not the socket 

int get_remote_addr (ACE_Addr &) const; int get_remote_addr (ACE_ATM_Addr 
&) const; 

 

int open (int type,int protocol_family,int 
protocol,int reuse_addr); 

int open (ACE_ATM_Params params = 
ACE_ATM_Params()); 

 

int open (int type,int protocol_family,int 
protocol,ACE_Protocol_Info *protocolinfo, 
ACE_SOCK_GROUP g,u_long flags,int reuse_addr); 

int open (ACE_ATM_Params params = 
ACE_ATM_Params()); 

 

int set_option (int level,int option,void 
*optval,int optlen) const; 

 Redefined Uses set_option of ACE_SOCK_STREAM. 

A
C

E_
SO

C
K
 

int get_option (int level,int option,void 
*optval,int optlen) const; 

----  

int control (int cmd, void *) const; ----  

int enable (int value) const;  Redefined Uses enable of ACE_SOCK_STREAM. 

int disable (int value) const;  Redefined Uses disable of ACE_SOCK_STREAM. 

ACE_HANDLE get_handle (void) const; Redefined  

A
C

E_
IP

C
_S

A
P 

void set_handle (ACE_HANDLE handle); Redefined The type of socket isn't checked 

---- ATM_Stream& get_stream (void);  

---- int get_vpi_vci (ACE_UINT16 &vpi, 
ACE_UINT16 &vci, ACE_UINT16 *itf 
= 0) const; 

This function in Linux only works with atm version 

0.62 (there's also a patch for 0.59, that if detected is 

used) 

---- Char* get_peer_name (void) const;  

---- int recvId(ACE_Time_Value 
recvLimit); 

 

---- int sendId(void);  

--
- 

---- char* get_local_id(void);  
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Inherited ACE Stream Class ATM_Stream Class Problems/Limitations/Notes 

---- char* get_remote_id(void);  

 int get_local_idSt(ATM_CONN_ID 
&)const; 

 

---- int get_remote_idSt(ATM_CONN_ID 
&) const; 

 

 

---- void set_remote_id(ATM_CONN_ID 
&rid); 

 

B-2. Acceptor Class 
Inherited ACE Acceptor Class ATM_Acceptor Class Problems/Limitations/Notes 

~ACE_SOCK_ Acceptor (void); ~ACE_ATM_ Acceptor (void);  
ACE_SOCK_ Acceptor (void); ACE_ATM_ Acceptor (void);  
ACE_SOCK_Acceptor (const ACE_Addr &local_sap, int 
reuse_addr = 0,int protocol_family = PF_INET, int 
backlog = ACE_DEFAULT_BACKLOG, int protocol = 0); 

---- Can be defined using existing constructor 

ACE_SOCK_Acceptor (const ACE_Addr &local_sap, 
ACE_Protocol_Info *protocolinfo,ACE_SOCK_GROUP 
g,u_long flags, int reuse_addr, int 
protocol_family, int backlog = 
ACE_DEFAULT_BACKLOG,int protocol = 0) 

----  

int open (const ACE_Addr &local_sap,int reuse_addr 
= 0, int protocol_family = PF_INET, int backlog = 
ACE_DEFAULT_BACKLOG, int protocol = 0); 

Redefined  

int open (const ACE_Addr &local_sap, 
ACE_Protocol_Info *protocolinfo, ACE_SOCK_GROUP g, 
u_long flags, int reuse_addr, int 
protocol_family,int backlog = 
ACE_DEFAULT_BACKLOG,int protocol = 0); 

----  A
C

E_
SO

C
K

_A
cc

ep
to

r 

int accept (ACE_SOCK_Stream &new_stream, 
ACE_Accept_QoS_Params qos_params, ACE_Addr 
*remote_addr = 0, ACE_Time_Value *timeout = 0, int 
restart = 1,int reset_new_handle = 0) const; 

----  
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Inherited ACE Acceptor Class ATM_Acceptor Class Problems/Limitations/Notes 
int accept (ACE_SOCK_Stream &new_stream, ACE_Addr 
*remote_addr = 0, ACE_Time_Value *timeout = 0, int 
restart = 1, int reset_new_handle = 0) const; 

int accept (ACE_ATM_Stream 
&new_sap,ACE_Addr *remote_addr = 
0, ACE_Time_Value *timeout = 
0,int restart = 1,int 
reset_new_handle = 0, 
ACE_ATM_Params params = 
ACE_ATM_Params(), ACE_ATM_QoS qos 
= ACE_ATM_QoS()); 

The 2 last default values of ATM function make 

it similar to the ACE function. 

In Windows the QoS values are not used (there 

are problems setting it) 

void dump (void) const; Redefined  

 

All shared_ functions ----  

int open (int type, int protocol_family, int 
protocol, int reuse_addr); 

----  

int open (int type,int protocol_family,int 
protocol,ACE_Protocol_Info *protocolinfo, 
ACE_SOCK_GROUP g,u_long flags,int reuse_addr); 

----   

int close (void); Redefined  
int get_local_addr (ACE_Addr &) const; int get_local_addr( ACE_ATM_Addr 

&local_addr ); 
 

int get_remote_addr (ACE_Addr &) const; ---- ATM_SOCK_Acceptor makes this private 
int set_option (int level,int option,void 
*optval,int optlen) const; 

----  

A
C

E_
SO

C
K

 

int get_option (int level,int option,void 
*optval,int optlen) const; 

----  
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Inherited ACE Acceptor Class ATM_Acceptor Class Problems/Limitations/Notes 

int control (int cmd, void *) const; ----  
int enable (int value) const; Redefined  
int disable (int value) const; Redefined  
ACE_HANDLE get_handle (void) const; Redefined  

A
C

E_
IP

C
_S

A
P 

void set_handle (ACE_HANDLE handle); Redefined Type of socket should be checked 

--- ACE_ATM_Acceptor (const ACE_Addr 
&remote_sap, int backlog = 
ACE_DEFAULT_BACKLOG, 
ACE_ATM_Params params = 
ACE_ATM_Params()); 

It uses open with the parameters passed 

--
- --- ACE_HANDLE open (const ACE_Addr 

&local_sap, 
ACE_ATM_Params params = 
ACE_ATM_Params(), 
int backlog = ACE_DEFAULT_BACKLOG, 
int tryNSelectors = 0, 
ACE_ATM_QoS qos_accep = 
ACE_ATM_QoS())); 
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B-3. Connector Class 
 

Inherited ACE Connector Class ATM_Connector Class Problems/Limitations/Notes 
~ACE_SOCK_Connector (void); ---  
ACE_SOCK_Connector (void); Redefined  
ACE_SOCK_Connector (ACE_SOCK_Stream &new_stream, 
const ACE_Addr &remote_sap, const ACE_Time_Value 
*timeout = 0, const ACE_Addr &local_sap = 
ACE_Addr::sap_any, int reuse_addr = 0, int flags = 
0, int perms = 0, int protocol_family = PF_INET, 
int protocol = 0); 

---- Can be defined using existing constructor 

A
C

E_
SO

C
K

_C
on

ne
ct

or
 

ACE_SOCK_Connector (ACE_SOCK_Stream &new_stream, 
const ACE_Addr &remote_sap, ACE_QoS_Params 
qos_params, const ACE_Time_Value *timeout = 0, 
const ACE_Addr &local_sap = ACE_Addr::sap_any, 
ACE_Protocol_Info *protocolinfo = 0, ACE_SOCK_GROUP 
g = 0, u_long flags = 0, int reuse_addr = 0, int 
perms = 0, int protocol_family = PF_INET, int 
protocol = 0); 

----  
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Inherited ACE Connector Class ATM_Connector Class Problems/Limitations/Notes 
int connect (ACE_SOCK_Stream &new_stream, const 
ACE_Addr &remote_sap, const ACE_Time_Value *timeout 
= 0, const ACE_Addr &local_sap = ACE_Addr::sap_any, 
int reuse_addr = 0, int flags = 0, int perms = 0, 
int protocol_family = PF_INET, int protocol = 0); 

int connect (ACE_ATM_Stream 
&new_stream, const ACE_ATM_Addr 
&remote_sap, ACE_Time_Value *timeout 
= 0, const ACE_ATM_Addr &local_sap = 
ACE_ATM_Addr( "", 0 ), int 
reuse_addr = 0, 
#if defined (ACE_WIN32) 
       int flags = 0, 
#else 
       int flags = O_RDWR, 
#endif /* ACE_WIN32 */ 
int perms = 0, int 
protocol_family = AF_ATM, int 
protocol = 
ATM_PROTOCOL_DEFAULT); 

 

int connect (ACE_SOCK_Stream &new_stream, const 
ACE_Addr &remote_sap, ACE_QoS_Params qos_params, 
const ACE_Time_Value *timeout = 0, const ACE_Addr 
&local_sap = ACE_Addr::sap_any, ACE_Protocol_Info 
*protocolinfo = 0, ACE_SOCK_GROUP g = 0, u_long 
flags = 0, int reuse_addr = 0, int perms = 0, int 
protocol_family = PF_INET, int protocol = 0); 

----  

int complete (ACE_SOCK_Stream &new_stream, ACE_Addr 
*remote_sap = 0, ACE_Time_Value *timeout = 0); 

int complete (ACE_ATM_Stream 
&new_stream, ACE_ATM_Addr 
*remote_sap, ACE_Time_Value *tv); 

There aren't default values, but as it uses the 

wrapped class, the default values can be 

defined. 
int reset_new_handle (ACE_HANDLE handle); Redefined Only for Windows 
void dump (void) const; Redefined  

 

All shared_ functions ---- Only used privately 

--
- 

---- int add_leaf (ACE_ATM_Stream 
&current_stream, const ACE_Addr 
&remote_sap, ACE_INT32 leaf_id, 
ACE_ATM_QoS &qos, ACE_Time_Value 
*timeout = 0); 

Not implemented in Linux because it isn't 

supported 
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Inherited ACE Connector Class ATM_Connector Class Problems/Limitations/Notes 

 ACE_ATM_Connector (ACE_ATM_Stream 
&new_stream, const ACE_ATM_Addr &remote_sap, 
ACE_ATM_Params params = ACE_ATM_Params(), 
ACE_ATM_QoS *options = 0, ACE_Time_Value 
*timeout = 0, const ACE_ATM_Addr &local_sap = 
ACE_ATM_Addr( "", 0 ), int reuse_addr = 0, 
#if defined (ACE_HAS_FORE_ATM_WS2) 
       int flags = 0, 
#else 
       int flags = O_RDWR, 
#endif  
int perms = 0); 

  

 int connect (ACE_ATM_Stream 
&new_stream, const ACE_ATM_Addr 
&remote_sap, ACE_ATM_Params params = 
ACE_ATM_Params(), ACE_ATM_QoS 
*options = 0, ACE_Time_Value 
*timeout = 0, const ACE_ATM_Addr 
&local_sap = ACE_ATM_Addr( "", 0 ), 
int reuse_addr = 0, 
#if defined (ACE_WIN32) 
       int flags = 0, 
#else 
       int flags = O_RDWR, 
#endif  
int perms = 0); 

 

 



Appendix -B  Functions of the ACE ATM classes 

103 B-4 Address Class  

 

B-4. Address Class 
This class is the only ATM class that derives from the ACE class ACE_Addr , instead of wrapping it. 

 
Inherited ACE Address Class ATM_Addr Class Problems/Limitations/Notes 

~ACE_INET_Addr (void); ~ACE_ATM_Addr(void)  
ACE_INET_Addr (void); ACE_ATM_Addr (unsigned char 

selector = DEFAULT_SELECTOR); 
 

ACE_INET_Addr (u_short port_number, const 
ASYS_TCHAR host_name[]); 

--- We could define a constructor that took the 

port_number and used it for selector 
ACE_INET_Addr (const sockaddr_in *, int len); --- Could be defined if len==atm_addr size 
ACE_INET_Addr (u_short port_number,ACE_UINT32 
ip_addr = INADDR_ANY); 

--- Invalid function for ATM 

ACE_INET_Addr (const ASYS_TCHAR port_name[], const 
ASYS_TCHAR host_name[], const ASYS_TCHAR protocol[] 
= ASYS_TEXT ("tcp")); 

--- Invalid function for ATM 

ACE_INET_Addr (const ASYS_TCHAR port_name[], 
ACE_UINT32 ip_addr, const ASYS_TCHAR protocol[] = 
ASYS_TEXT ("tcp")); 

--- Invalid function for ATM 

ACE_INET_Addr (const ASYS_TCHAR address[]) ---  
ACE_INET_Addr (const ACE_INET_Addr &sa) ACE_ATM_Addr (const ACE_ATM_Addr 

&); 
 

All sets that are equal to the constructores Redefined for the existing constructors Same comments as for the constructors 
int addr_to_string (ASYS_TCHAR s[], size_t size, 
int ipaddr_format) const 

virtual int addr_to_string 
(ASYS_TCHAR addr[], size_t 
addrlen) const; 

Similar. 

virtual int string_to_addr (const ASYS_TCHAR 
address[]); 

Redefined  

A
C

E_
IN

ET
_A

dd
r 

virtual void *get_addr (void) const; Redefined  
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Inherited ACE Address Class ATM_Addr Class Problems/Limitations/Notes 
virtual void set_addr (void *, int len); Redefined  
u_short get_port_number (void) const; --- Invalid function for ATM see get_selector 
void set_port_number (u_short, int encode = 1); --- Invalid function for ATM see set_selector 
ACE_UINT32 get_ip_address (void) const; --- Invalid function for ATM 
const char *get_host_addr (void) const; const ASYS_TCHAR 

*addr_to_string(void) const; 
Maintained the function already defined. 

int get_host_name (ASYS_TCHAR hostname[], size_t 
hostnamelen) const; 

---  

const ASYS_TCHAR *get_host_name (void) const; ---  
int operator == (const ACE_INET_Addr &SAP) const; int operator == (const 

ACE_ATM_Addr &SAP) const; 
 

int operator != (const ACE_INET_Addr &SAP) const; int operator != (const 
ACE_ATM_Addr &SAP) const; 

 

int operator < (const ACE_INET_Addr &rhs) const; ---  
u_long hash (void) const; Redefined  

 

void dump (void) const; Redefined  

---- ACE_ATM_Addr (const ATM_Addr *);  

---- ACE_ATM_Addr (const ASYS_TCHAR 
sap[], unsigned char selector = 
DEFAULT_SELECTOR); 

 

---- int set (const ATM_Addr *);  

---- int set (const ACE_TCHAR sap[], 
unsigned char selector = 
DEFAULT_SELECTOR); 

 

---- void init (unsigned char 
selector = DEFAULT_SELECTOR); 

 

 unsigned char get_selector 
(void) const; 

 

--
- 

 void set_selector (unsigned 
char); 
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Inherited ACE Address Class ATM_Addr Class Problems/Limitations/Notes 

 static unsigned char 
get_new_selector (void); 

  

 int get_size (int total=0) 
const; 

Redefinition of function ACE_Addr::get_size.  

 

 

 



Appendix -C  IDL for the ATM usage in DIMICC 
 

Communications  Arch. for Distributed Multimedia Systems 106 

Appendix - C  IDL for the ATM usage in DIMICC 

C-1. DIMICC Version-1 
This appendix contains the specific IDL for the ATM identification in the first version of DIMICC. This 

code was based in TCP IDL from DIMCC, 

// $Id: ATMUN.idl,v 1.2 2000/12/13 14:24:46 pbrandao Exp $ 
#ifndef __ATMUN_IDL__ 
#define __ATMUN_IDL__ 

module DIMICC 
{ 
    module ATMUN 
    { 
       const unsigned long PROTOCOL_ID = 2; 
       ///  This struct serves both for the Acceptor and Connector side, 
       ///so it needs the itf.vpi.vci to uniquely identify the connection 
       struct Address 
       { 
  unsigned short vci; 
  unsigned short vpi; 
  unsigned short itf; 
  string nsap_address; 
  char sel; 
       }; 
 
    struct ConnectionDescriptor 
    { 
  Address active; 
  Address passive; 
    }; 
}; 
}; 
 
#endif // __ATMUN_IDL__ 
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C-2. DIMICC Version-2 
DIMICC’s second version led to the development of a new IDL. 

As before, this IDL was based on the TCP IDL already defined, and adapted to the ATM needs. 

Here we can see the usage of the doxygen comments for the documentation generation (for more on 

doxygen see 4.5.3). 

// $Id: ATM.idl,v 1.6 2001/07/09 15:59:55 pbrandao Exp $ 
 
/** \file ATM.idl 
  * This file defines the idl structures used in Detail for the ATM 
  *transport protocol 
*/ 
 
#ifndef __ATM_DEFINED 
#define __ATM_DEFINED 
 
module DIMICC 
{ 
 
/** \namespace DIMICC::Protocols 
  * \brief Contains the Protocol definitions to be used. 
  */ 
module Protocols 
{ 
 
/** \namespace DIMICC::Protocols::ATM  
  * \brief Contains the ATM Protocol definitions. 
  */ 
module ATM { 
 
 /** The protocol ID of the ATM transport. 
   * \todo Write document defining usables protocols IDs 
 */ 
 const unsigned long PROTOCOL_ID = 0x02; 
 
 /// Used to describe endpoints 
 struct SAP { 
  unsigned short vci; /**< the virtual container ID */ 
  unsigned short vpi; /**< the virtual path ID  */ 
  unsigned short itf; /**< the interface ID */ 
  string nsap_address; /**< the NSAP address if not a PVC minus 
      the selector*/ 
  char sel; /**< the selector used */ 
 }; 
 
 typedef sequence <SAP> SAPList; 
 
 /// Used in DIMICC::ProtocolModuleDescriptor to describe a ATM 
 ///module. 
 struct ModuleDescriptor 
 { 
  SAPList thePassiveEndpointsList; 
 
  /** The selector number can be 
    * ACE_ATM_Addr::DEFAULT_SELECTOR_ANY,  
    * meaning that the endpoint will  
    * choose the actual selector.  
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    */ 
  SAPList theActiveEndpointsList; 
 }; 
 
 /// Used in DIMICC::ProtocolModuleConfiguration 
 struct ModuleConfiguration 
 { 
  /** The active endpoint. 
    * The selector number can be 
    * ACE_ATM_Addr::DEFAULT_SELECTOR_ANY,  
    * meaning that the endpoint will  
    * choose the actual selector.  
   */ 
  SAP active; 
 
  /// The passive endpoint where to connect. 
  SAP passive; 
 }; 
 
 /// Used in ProtocolModuleConnection to describe a ATM connection 
 struct ModuleConnection 
 { 
  /// The active endpoint. 
  SAP active; 
 
  /// The passive endpoint. 
  SAP passive; 
 }; 
}; 
}; 
}; 
 
#endif 
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Appendix - D  UML Notation used 

This appendix will focus some concepts of the Unified Modelling Language. We will restrain ourselves to 

the diagrams and nomenclature used in this thesis. The reader is referred to [5] for extra details 

 

Fig. 8-1 illustrates the symbols for classes.  

AChildCLass

ATemplateClass

AClass
protectedAttr

a_method()
private_method()

AChildClass
publicAttr
privateAttr

method_of_child()
protectedMethod()

 

Fig. 8-1 – UML class examples 

AClass and AChildClass are normal classes in an object-oriented world. The methods of the classes are 

also portrayed in the figure. 

The AClass has: 

• a_method() which is public (note the symbol) 

• private_method() which is, as its name implies and its symbol, a private method 

The AChildClass has: 
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• a public method method_of_child() 

• protectedMethod() which is protected 

 

We can also see the attributes protectedAttr, publicAttr and privateAttr of these two 

classes. 

AChildClass inherits from AClass was the open arrow indicates. 

There is also an ATemplateClass. This class is instantiated with another class, that is, it has a generic 

implementation that can use different classes as parameter1. In this case, it has used an AChildClass. 

 

The picture Fig. 8-2 references relations between classes. 

SecondClass

ThirdClassPartsClass

FirstClass

n

1

n

1

These are three 
relations between the 
classes

1

n
n

1

 

Fig. 8-2 –UML Relation examples 

The arrow in the line between FirstClass and SecondClass indicate that FirstClass has a 

reference to SeconClass, but SecondClass does not have a way of accessing FirstClass. 

The lack of arrows in the relation between FirstClass and ThirdClass signifies that they have 

references for each other. 

The diamond in the relation between FirstClass and PartsClass means that FirstClass is 

composed (or aggregates) PartsClasses. PartsClasses are parts of FirstClass. 

The numbers near the classes indicate the multiplicity of the relation. For example FirstClass relates 

to many ThirdClasses, but each ThirdClass only relates to one FirstClass. 

The box with a bended corner is a note to the diagram, indicating some relevant (or maybe not in this 

case) information about the diagram. 

 

                                                           
1 Think of a Vector class. It should be able to handle int, floats or even AClass. If it is built as a template we 
can then instantiate it by saying what kind of class it will be dealing with, for example Vector<AClass>, meaning 
that it will have AClass as its vectors elements. 
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This last figure will portray the use of cases diagrams. 

 : OutterClass  : FirstClass  : SecondClass

some_method( )
other_method(argtype)

 

Fig. 8-3 – Use case example 

Here we can see how the class uses other classes, which methods they call to get a job done. The use case 

is sort of a procedure manual to deal with a situation. The order of invocation is top to bottom; the timeline 

evolves from top to bottom. 

The classes used are portrayed, as the methods that are invocated in them. The types of the arguments are 

also displayed.  

When a class or application is considered to be out of the system being described, the doll icon is used. 

This way, we can easily point out that OutterClass is something out of our system that uses the classes 

of our system. It is called an Actor. 

 

This example shows that OuterClass needs something from our system, so it called 

some_method() on FirstClass. This triggered the call to other_method() on SecondClass 

with an argument of type argtype. 

The return calls are not drawn because the methods are synchronous, that is, each class waits for the 

method it invocated to end before continuing. 
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