
© Mikhalov Alexander

CuteReport

User Manual
version 1.0

Table of Contents

Introduction..3

Licensing.. 4

Designer...5

Report Editor module.. 6
Page Editor module..8
Script Editor module..11
Dataset Editor module..12
Preview module..13
Designer Options... 14

Creating Report template..15

Report objects.. 16
"Hello World" report example..17
Memo object... 18

Rotating... 18
HTML tags... 19
Expressions.. 19
Text flowing...20
Memo Helper...21

Bands... 23
Storages.. 24

File System storage (Standard::Filesystem)..24
GIT storage (Standard::GIT)...24
Resource storage (Standard::Resource)...24
SQL Storage (Standard::SQL)..24

Datasets.. 26
"Customer List" example...27
Image object... 30
Report with Images... 31
Multi-lined text display..33
Text wrap of objects..35

Complex wrapping..35
Label printing... 37
Multi-page report...39

Script Engine...40

Script Editor.. 41
Script Objects... 42
Script variables...43

Local script variables..43
Global report's variables...43
Renderer variables..43

Script Signals.. 45

Using in custom application..47

Project setting up...48
Embedded library... 48
Standalone framework..48

Simple example.. 49
Custom application example..50
Datasets.. 51

Model Dataset.. 52

Introduction

CuteReport is a report solution based on Qt4 framework and it can be easily used with
any Qt application. In general, CuteReport consists of two parts: core library and template
designer. Both are totally modular and theirs functionality can be easily extended by writing
additional modules. It's totally abstract of used data and can use as storage: file system,
database, version control systems, etc. The project's goal is to provide powerful, but yet simple
to use for inexperienced users and report designers, report solution.

Key features:

• A number of data sources: SQL database, Text, File System, external data model

(QAbstractItemModel);

• Various types of storages to keep report templates and report objects like picture,

database, template: File System, GIT, SQL database, embedded storage;

• Plain text or HTML support;

• Variety of drawing elements to construct great looking reports: Memo, Image, Barcode,

Arc, Chart, Chord, Ellipse, Line, Pie, Rectangle;

• Picture sources: static, dataset, storage

• Unlimited number of detail bands within one report;

• Report Title and Summary;

• Page Header and Footer;

• Element grouping;

• Aggregate functions: count, min, max, avg, sum;

• Plugin system to support extending of any functionality;

• Application side parameters;

• Entire application full featured scripting engine to manage any aspect of report

rendering;

• Measure units: Millimeters, Inches, Pixels;

• Standalone WYSIWYG template designer with ability to extend of any functionality by

using custom plugin;

• Some pre-installed Designer plugins: Report Property editor, Page editor, Script editor,

Dataset editor, Preview;

• Multi-platform;

Licensing

CuteReport is distributed in 2 version:

• Community version under GNU/GPLv3 license to help open source developers to add

reporting functionality to theirs open source projects. Core Library is provided under
LGPLv2 and can be dynamically linked to proprietary products. CuteReport Designer is
under GPLv3 thought and can not be compiled in to proprietary products. Read
GPL/LGPLv2 license description for more information;

• Professional version under commercial license to provide high level support and high

level bug fixing and feature implementing priority. Also commercial package provides
some CuteReport extensions that open source version doesn't have. In this
documentation such features marked as "Professional version only". To review
commercial licenses visit project's web site
http://cute-report.com/en/article/licenses;

http://cute-report.com/en/article/licenses

Designer

CuteReport solution comes with a standalone designer which helps to manage
CuteReport templates. CuteReport Designer itself has only few functions and provides API to
support modules. Modules are used to provide and extend any current or further designer's
functionality. Module can provide (GUI modules) or do not provide (non-GUI modules) user
interface elements. Some of the basic GUI modules are: Report Editor, Page Editor, Script
Editor, Dataset Editor, and Preview. Each module provides its own functionality and can be
dependent of the other module(s). Also any module can be replaced by another with extended
functionality.

Lets take a look at the some of these modules.

Report Editor module

Key to report editor features:

1. main menu
2. modules bar
3. open reports tab
4. report variables
5. embedded report modules

Report Editor is the first module on the designer tab bar. It is responsible for managing
report objects and providing such report operations as: load, save, create, delete, etc. These
operations are presented by controls on the Report Editor widget and also they are exported
to the application's main menu. This module can support a number of open reports at the same
time and switch between them. Also Report Editor manages embedded report modules like:
storage, renderer, and printer. If there is no any embedded object of storage, renderer or
printer then the global one will be used. If you need special options for storage, renderer, or
printer, you should add object of required type to the report object and set desired object's
options. Report Editor has a table with global report variables and their values. These values
are used in rendering report process and can be set manually using this table or direct by an
external application. We will review how to manage report by you program later. For now we
will focus on managing report using Designer.

There is all open report shown on the left bar (#3). Use it to switch between report
templates. Main module view contains some fields: URL, name, author, description. URL is set
automatically and shows path where report is stored. “Name” field contains report's name.
“Author” field contains report author. And description, as you can guess, contains report
description. You can use these fields depends of you needs, they are not used by report engine.
On the left side (#4), as we mentioned above, there is variable table. Variables name appears
there automatically if they are mentioned somewhere in report objects. To test this behavior
switch to “Script” tab and type there “${test}” without brackets. We will review Script module
later. For now we can switch back to the Report Editor module and see how new variable “test”
appears in the variable table. Now you can assign any value to the variable. You also able to
change this value direct from your application. Usually you need to assign any temporary value
to all variable to be able to test report template separately from your application.

Next is Options. This frame shows all embedded objects of storage, printer or renderer
type along with theirs parameters. You might want to use embedded objects in case your
report template is used on some computers with different access or settings or to avoid user
interaction. For example you are creating report template for special printer and do not want
to show printing dialog and provide ability to user to change printer settings. Use embedded
printer object with all predefined parameters. Or you might want to integrate company logo
direct to report template instead of loading it from disk every time report is rendered. You can
add Resource storage and save your logo in there. It can be helpful to distribute CuteReport
templates common with all theirs resources in one file. There are 5 buttons for each list type:
add object, remove object, set object as default, clear defaults, rename selected object. As you
can guess “add” and “remove” responsible for adding and removing object to/from report
template. Default object of any type means it is will be used if you do not specify object name.
For example, you can load object in your report using full URL
“file:/home/user/images/logo.png” or just “/home/user/images/logo.png” if you have set
default storage. Bear in mind that you will have an error if you do not specify object name and
do not have created default object.

Should be mentioned that object type specified by module name and has representation
as “SetName::ModuleName”. Standard module set is “Standard”. Commercial version has set
name “Extended”. You can have third party sets as well with theirs own names. For example,
standard SQL storage has name “Standard::SQL”. At the same time extended SQL storage will
have name “Extended::SQL”.

Page Editor module

Key to Page Editor features:

1. module bar with Page Editor activated
2. page bar
3. page tool bar
4. drop-down list of bands
5. drop-down list of items
6. zooming buttons
7. magnets enabling/disabling
8. rise/lower item
9. font editor
10.alignment editor
11.border editor
12.object inspector
13.property editor
14.property description
15.workspace

Page Editor module is responsible for making of report page templates. It provides tools
for managing page bands and items. To activate Page Editor press the "Pages" tab on the
modules bar (#1). Page bar (#2)shows all pages in a report. You can use it to switch between

pages (mouse left-click) or to rename the current selected page (mouse left double-click).
There are some buttons on the page's tool bar (#3)to provide some basic actions for a page:
create new page, delete current page, and clone current page. Next go 2 buttons with drop-
down lists. First one is for band selection and the second one for item selection. After that you
can see some buttons for zoom operations and the next 4 buttons for enabling/disabling page
magnets. If magnets are enabled, the mouse pointer will stick to the other item's borders with
the coordinates that are close to the cursor's coordinates. Sticking range factor can be changed
in the page's property "magnetRate". Page Editor has some other tools to change item's
properties, such as font editor, alignment editor, border editor.

On the right side of the page widget you can see Object Inspector. All items that page
contains are represented there as an item tree. You can switch between items using Object
Inspector or by clicking an item on a workspace area(#12). Property Editor is the next element
to review. There are all editable properties that a page has. By pressing a property name you
can see a short property description (#11). The Workspace (#12) shows the entire page
template. You can add a new band or item to your page using drag-n-drop functionality
dragging a selected item from a drop-down list(#4, #5) to the page on the workspace. Almost
all items can be placed only on a band, and bands can be placed only on a page directly. Press
"Delete" button to delete the band or the item with all their children items.

It is possible to select some items and do group operations. To select some items click
first item and then hold CTRL and click on other item. You can click direct on item on the page
or click item name in the Object Inspector. To perform further group operation use editors on
the tool bar. The changes you make will be applied to all selected items if item allow it.

On the application status bar you can see current mouse position and geometry of the
current selected object.

Some item can have helper. Sometimes it is easier way to change object's property. To
open object's helper double click on the object. For example if you click on Memo object you
will be able to use text editor to enter Memo's text or expression. Some other editors can be
available too if appropriate modules are installed. Commercial has some additional modules
that is not provided for community version.

Control Keys

Key Action Description

Ctrl+N Report New Report→ Create new report template

Ctrl+O Report Open Report→ Open report template

Ctrl+S Report Save Report→ Save current report template

Report Save Report As...→ Save current report template with another file name

Ctrl+W Report Close Report→ Close current report template

Del Delete current item

Mouse controls

Operation Description

Left button Select object; paste new object; move or resize selected object

Right button Select object, paste new object; move or resize selected object with assigning new
parent item at the mouse button leave position

Left double-click Open object's helper

Mouse wheel Scroll report page

Ctrl+left button Add/remove object from selection group

Script Editor module

You can switch to the Script Editor by pressing the "Script" button on the module bar.

Script editor is a pretty simple module and contains an editor with syntax highlighting and
"Validate" button. Validation checks only the syntax correctness of your script and does not
actually run the script. So even if your script passed validation, it still can contain runtime
errors. Usually you can see errors list by pressing the green button in the status bar on the
bottom of the Designer window. If there are errors exist in the script the button becomes red.
Script Editor uses javascript as a scripting language.

Dataset Editor module

Key to Dataset Editor features:

1. modules bar with Dataset Editor activated
2. datasets bar
3. create new dataset buttons
4. delete current dataset
5. test dataset
6. dataset helper

You can switch to Dataset Editor by pressing the "Dataset" button on the module bar
(#1). All created datasets of the current report are shown on the dataset bar (#2). Using this
bar you can switch between datasets (mouse click) or rename the current dataset (mouse
double-click). For creating a new dataset, press combobox #3 and choose a dataset type you
want. Basic distribution provides 4 datasets: CSV dataset, SQL dataset, File System Dataset and
Model dataset. These modules have names “Standard::CSV”, “Standard::SQL”,
“Standard::Filesystem”, “Standard::Model” accordingly. Read description for each dataset
below. To delete the current dataset, press button #3. When you have set all the options for
the created dataset, you can press the "Test it" button (#5) and check if everything correct. All
datasets have a common interface and provide data as a table. Each dataset has its own
configuration widget (#6).

Preview module

Key to Preview features:

1. module bar with Preview activated
2. rendering start/stop button
3. fit page to view button group
4. zooming button group
5. page navigation
6. export to file
7. print
8. rendered page

The job of the Preview module is to display rendered reports. There are some button
groups to help you. First is the button for rendering current report template (#2). Every time
you need to render or re-render your report template this button will be helpful. Or you can
use: Main Menu -> Service -> Render or just press F5. If your report needs some time for
rendering, process dialog will appear. To stop current rendering press this button again (or
press F5). When report is rendered you can change zoom by using buttons: fit to page, fit
width, zoom in, zoom out (#3, #4) or you can set any zoom you want in percent widget. To
switch current page use buttons: First page, Previous Page, Next Page, Last Page or set page
number direct in page number widget. Finally, you can print rendered report (#7) or export it
to a file(#6).

Designer Options

TODO

Creating Report template

In this chapter we will review some general aspects of report designing. We will look
close on some important items and theirs properties and will make some report examples.
Make sure you have CuteReport installed and try to make these examples by yourself using
pre-installed test databases. Since CuteReport is in active developing, some parts of this
documentation can differ from your CuteReport installation.

Report objects

CuteReport Designer's Page Editor module is designed to represent report as a set of
schematic pages. All objects are placed somewhere on a report page and they are used to
display any text or graphics information. Basic CuteReport objects are included to Community
CuteReport edition package. Some extended objects are included to Commercial package.

Let us review object set.

Bands:

• PageHeader: band located on the top of page
• PageFooter: band located on the bottom of page
• Detail: band that connected to dataset and processed with each dataset iteration
• DetailHeader: band that located on top of details group
• DetailFooter: band that located on bottom details group
• Title: band that located before detail band(s)
• Summary: band that located after detail band(s)
• Overlay: band with the free accommodation, can be places anywhere on page without

layouts

Items:

• Arc: item that draws arc
• Barcode: item represents barcode
• Chart: item that draws any kind of charts
• Chord: items that draws chord
• Ellipse: item that draws ellipse
• Image: item that draws dynamic or static image in PNG, JPG, BMP and other formats
• Line: item that draws horizontal, vertical or diagonal line
• Memo: item that represents any text information, plain text and HTML formats are

supported
• Pie: item that draws pie
• Rectangle: item that draws rectangle

The basic objects most commonly used are the “Detail” band and “Memo” item. You will
learn about their capabilities in detail later in this chapter.

"Hello World" report example

This simple report example contains just one piece of information: "Hello World!" text.
Open CuteReport Designer, create new report template using Report Create Report, go to →
the "Page editor" using left tab panel and create new page. Since any item can be placed only
on carrier band, we must place any band first. Click on the button "Bands" and select any
simple band, for example Page Header. Click somewhere on the page to place this band. Then
click on the button with the title "Items" or icon and select "Memo" . There is also
Extended Memo item exists in the professional version, that extends functionality of the basic
Memo. Use any of them if you have both. After selecting Memo item, click somewhere inside
Page Header to place selected Memo. The object will be placed at the mouse position.

Depending of your local settings Memo Helper dialog will appear immediately or you
can double-click on the Memo to show this dialog. Type "Hello World!" and then click "Ok"
button.

Now Report template is completed. To generate actual report select in main menu "Service →
Run" or press "F5" on your keyboard. Designer will be switched to the "Preview" tab and
rendered report page with "Hello World!" will appear. Rendered report can be printed or
exported to one of the supported export formats.

Memo object

The Memo object has many great features to draw text. It can draw text in a frame and
can be filled with some color. The text can be displayed using any font with any size and style.
All the properties can be set using Property Editor or visually with the help of the tool bar
editors.

Here you can see some samples:

We will make a simple example of Memo with two lines of text:

First text line with some very useful info.

Second line with some other useful info.

Enable Memo borders from Property Editor and resize item up to 90x30 mm using mouse or
Property Editor. As you can see now Memo can display not only a single line but several lines of
text as well. Try to reduce Memo width to 50 mm. Obviously, lines can not fit to the object's
border and will be wrapped. This is controlled by TextFlags::TextWordWrap object property. If
it is disabled any long line will be cut short. Lets play with other TextFlags and see what we can
obtain.

Rotating

Lets take a look at the other feature: rotation. Any object including Memo can be
rotated to any angle in degree range 0..360. Set required angle in the Property Editor by
changing property "rotation". Memo borders will be aligned accordingly, so you don't need to
care about the borders.

HTML tags

Memo object allow most of HTML tags. Tags can be placed within Memo text. Tags are
disabled by default. For HTML tags detection set property “allowHTML” to "true". There are
some examples below.

<i>Memo</i> example

E = mc<sup>2</sup\>

A₁ = B²

this is a usual text, and this is a red one

this is a usual text, and this is an orange one

Expressions

Expression is one of the most important feature of Memo object. It allows to display not
only static text but runtime expression result as well. Expressions can be mixed with a static
text. To learn how it works enter the text above to the Memo object:

Now is [QDateTime.currentDateTime()]

(or simplified variant with taking locale into account: "Now is [DATE]")

and render report by pressing "F5" on your keyboard. You'll see result of the rendering,
something like that:

Now is Fri Jul 18 2014 00:44:22 GMT-0700 (PDT)

(or for DATE variable: 18/07/2014 or 07/18/2014 depending of your locale)

Why is that so? CuteReport's renderer recognizes every expression instance, calculates it
and replaces expression with its result. Memo text can contain a number of expressions.
Expression can use complex arithmetic, constants, variables, objects and theirs properties. But
there are some possible issues may occur if our normal text contains square brackets that do
not mean to be an expression. For example, we want to draw:

array[0] = 'Banana'

Entry [0] will be recognized as an expression, calculated with result 0 and will placed to our
text. As result we will see:

array0 = 'Banana'

which is definitely not that we supposed to see. There are 2 solutions:

• set "allowExpressions" property to "false"
• change default square brackets to any symbols or symbol set you want in the

"expressionDelimiter" property

In the first case entire text will be recognized as a regular text without expressions. In the
second case expressions will be recognized using another "begin sign" and "end sign". You can
use "<" as begin and ">" as the end, but only if you don't use HTML text. If you do use HTML you
might use "<%" as begin and "%>" as the end. Expression detector works before text
rendering, so any of your expression delimiters will be cut off from your text. Do not use the
same symbol set as the "begin" and the "end" sign.

Text flowing

Text flow feature available in the professional CuteReport version. It allows you to wrap
text of objects. Let's make a simple example to demonstrate this feature. Here is our template
to show a list of animals along with its descriptions (memo_1):

When we render our example we will have such result:

There is noticeable empty space below the image. It would be good to fill this space with a
text. To do this we will add new Memo item under the current description Memo, disable
stretching for first Memo. Instead we set property “flowTo” for our second Memo object
(memo_2) to “memo_1”. It should look like there:

Our rendered result:

It is much more pretty. Isn't it?

Memo Helper

Using Property Editor to change Memo's text or expression is not the only way. You can
use Memo helper. It is useful to enter large text or compose expression or HTML formatting. To
show Memo helper double click on your Memo item. Depending of Memo's “allowHTML” dialog
will be having or not having HTML tool bar. There are 2 variants for these cases:

Use HTML controls like in any HTML editor. Also use can use direct HTML tags to compose
required HTML code in the tab “Source”. All changes made there will be immediately reflected
in the “Formatted” tab. You can mix HTML code with expressions without any limitation, except
limitation to use correct expression delimiters that do not interfere with HTML tags. If your
installation has installed additional modules that provide additional functionality, you will see
buttons on the top. In our example we have Expression Editor installed. If you press the button

 Expression Editor form will appear. It has some tabs and represent variables, functions,
methods that can be used to compose expression:

Other Memo properties:

• stretchMode: object stretchability to fit text
• showStretchability: do stretching not only on rendered page, but on Designer's Page

Editor as well
• expressionDelimiter: two strings separated by comma which means the begin and the

end of scripting block.
• stretchFont: set automatic font size to fit Memo text within Memo width

Bands

Bands are designed for dynamic or static positioning of items on a page. Each band has
its own position and functionality. CuteReport has some special bands designer to represent
data from a dataset. Dataset contains structured data organized into rows(lines) which have
one or more columns(fields). To print data from datasets CuteReport uses these special bands
named "Detail...". To make it work, add one or more such bands to the page, connect them to
the dataset and place Memo items on them. Once band is connected to the dataset, Memo will
have button on its right side with the drop-down list of dataset's field names (commercial
version only). At the rendering time these bands will be printed on the rendered page. "Detail"
band usually will be printed once per dataset row, DetailHeader and DetailFooter will be
printed accordingly to theirs "condition" property. If there is no free space to print new band
on the current page, new rendered page will be automatically created to continue. New page
will print all page headers and footers before continue to print Detail bands. This process is
called rendering.

There are some bands included into the standard package and theirs short description:

• PageHeader: displays all nested items on the top of the page
• PageFooter: displays all nested items on the bottom of the page
• Title: displays all nested items on the report begin
• Summary: displays all nested items on the report end
• Detail: must be joined to a dataset and it displays all nested items on every dataset

iteration
• DetailHeader: must be joined to a dataset and can be shown on every dataset iteration

or when "condition" property calculated as "true". It can be used to show header for
group of lines.

• DetailFooter: must be joined to a dataset and can be shown on every dataset iteration
or when "condition" property calculated as "true". It can be used by the same way as
detailHeader but at the bottom of the group.

• Overlay: can be located anywhere on a page without respecting any layouts. Can be
used as carrier band for foreground, background, watermarks.

Storages

Now we review another class of report elements. Storage is a structure that keeps all
data used in a report such as images, templates, databases, etc. CuteReport provides some
standard types of storage: File System, GIT, resource, Database. Certainly, you are familiar with
some or all of them. Further we will review each storage detailed, but for now lets review
common aspects of storage class. In the CuteReport you can create any number of instances of
each type. It is useful if you have some remote systems that stores reports or one system with
different settings. Like one GIT server with read only access and one GIT server with full access.
In this case you can create 2 storage objects of type “GIT” and set appropriate parameters to
each of them. All storages in the CuteReport have theirs own unique name, based on a storage
schema. So 2 created objects with type “GIT” will have names “git_1” and “git_2”. Any name can
be changed to any desired string, but it still should be unique. CuteReport core will not allow
you to assign already used name. To get access to the object on the storage you will use path in
URL style, like: “file_1:/file_path/image_file.jpg”, where “file_1” is the storage name and
“/file_path/image_file.jpg” path to the file located on the storage. It is possible to assign
default storage in the Designer Option dialog using "Tools → Options → Storage", so any file
name with unspecified storage name will pass to the default storage.

There are 2 kind of storage with different priorities: global storages and report's internal
storages. When CuteReport engine meets storage url by first it checks internal report storages,
then global storages and then default storage. So if you have well specified storage destination
and options for your report, add it to report internally in the module tab “Reports”. Your report
will always use this storage not regarding of the global storage settings.

File System storage (Standard::Filesystem)

FileSystem is the most commonly used storage. It has only few options: "root folder" and
"ask for rewrite". Root folder is the upper directory accessible to user. "Ask for rewrite" option
is used to detect if it is needed to show dialog for overwrite file.

GIT storage (Standard::GIT)

This type of storage can be used to keep all reports and theirs objects in local or remote
GIT version control system. It has such options:

• remote url: git repository url
• login, password: credentials to access git repository
• local path: local directory where git repository will be cloned to
• git binary: git console binary. CuteReport uses external git binary to operate git

repository, so it has to be defined
• "sync now" button: button for cloning or pulling data from a remote repository

Resource storage (Standard::Resource)

All objects stored in this storage will be included to report's template file.

SQL Storage (Standard::SQL)

This storage is designed to help you easy save and load report templates and report
objects from SQL databases without writing any code in your application. Just provide info

about the database and correct data table and field where the reports or object are stored.

Datasets

As it was mentioned before Dataset is an object that contains structured data organized
into rows(lines) with one or more columns(fields). Dataset can fetch data from any source and
it provides common interface to the data. There are some datasets provided in the basic
CuteReport edition: SQL Dataset, CSV Dataset, FileSystem Dataset, Model Dataset. All of them
fetch data from different sources.

Datasets:

• SQL Dataset (Standard::SQL): It provides an interface to fetch data from an SQL
database. It can work with any database supported by Qt itself, ie that has Qt database
driver. There are some settings to connect to a remote database (like mysql, postgresql)
or to use embedded database file (like sqlite)

• CSV Dataset (Standard::CSV): It provides an interface to a data stored in a file and
separated by comma or other predefined symbol. It can load data from an external file
every time when populated or load and cache the data internally

• Filesystem Dataset (Standard::Filesystem): It provides an interface to fetch
information from a file system and show disks, files and directories information as a row
structured data. There are some options: filtering, recursion level, max number of
exposed records. This dataset can be used to make goods list, photo catalogs, etc.

• ModelDataset (Standard::Model): It is used to export prepared data from a custom
application to a report object. If you have widget like QTableView or QTableWidget or
your custom filtered/sorted model you can easily print data stored in there using this
dataset.

Try to play with each of the dataset to understand how they work. You can fetch data
and see it in table by pressing "Test it" button. Data from all dataset is exposed to scripting
engine and can be used by any report object. To get data from dataset where it's allowed you
can use [datasetname."fieldname"] or [datasetname.getValue("fieldname")] expression.
First form is just shortening of the second one. Every short form replaced by full form
internally before script execution.

For detailed information about each dataset see chapter Datasets.

Further we will see how to connect dataset to a band and how to use dataset's data.

"Customer List" example

Now we will create our second report and will learn how to use datasets. For that we will
use test sqlite database named "business.db". By first, create new empty report by pressing
"main menu -> Report -> New Report". Then go to the "Datasets" tab, click on the dataset
names combobox and select SQL. Now you have one SQL dataset in your report. Lets set
correct parameters for the dataset. Click "File...". When "Open database file" dialog appears,
make sure you have correct storage name selected in the "Storage" combobox, locate database
file named "business.db" and choose it. Now you should have field "Database:" filled with
something like "file:dataset.db". Since we have no host, user and password for this database
we will skip these fields. Choose "SQLITE" driver in the "Available Drivers:" list and press "<<" to
copy driver name to the field "Driver". Now we can connect to out test database. Lets write a
simple SQL query to test it:

select * from customer

As a result you will have something like on the picture below:

Click "Test it" button and table with the fetched from the database data will appear. If there is
an error exists you will see it in the status bar bottom frame. Well done! Now you have dataset
completed.

Go to the tab "Page" and create new page if it not exists. There are some possible types
of page. For now we will use "Standard Page" or "Extended page"(for commercial version).
Click on the combobox, select appropriate page type and then click on the button "Add new

page" . Add "Title" band to the page, and set correct size by mouse dragging on a blue
handle or by setting a correct size in the Property Editor. Now place "Memo" item to the center
of the band and set a correct geometry as well. Now double click on the Memo and type
"Customer List" and then press "Ok". To make this text centered, click on the Memo's
"TextFlags" property in the Property Editor and enable "AlignHCenter" flag. Next step is adding
"Detail" band to the page and joining it to our customer dataset. To do that activate the Band
by clicking on it and type "data" in the band's property "dataset". Entered text "data" is the
name of our dataset. You can change the name of any dataset by double-clicking on the
dataset tab in the Dataset Editor. Now it's time to add some "Memo" items to the band:
number, first name, second name, address, city, zip code. To make item arrangement more
easy, you can enable magnets by pressing magnet buttons on the top of the Page Editor. If you
want to change name of the object and make it more understandable in the Object Inspector,
go to Property Editor and change "objectName" to something like: memoFirstName,
memoLastName, memoAddress and go on. We do not use these names in this example, but it
can be useful for you later. Next is adding instruction to our Memos what to display. Go to the
first one, double click on it and type "[LINE]" in the Helper's editor. As it was explained before,
"[]" means expression borders and the “LINE” text is an internal variable that keeps current
dataset row number. Press "F5" and you will see how it works.

Now return back to the Page Editor by clicking on "Pages" on module tab bar and fill the
memo with the customer's first name. Add text "[data."firstname"]" to this Memo. Users of the
CuteReport commercial version can simply click on the gray button that appears on the right
side of the Memo as you can see here:

This drop-down list contains all the fields in the dataset Memo related to. It works only
for Memos located on bands that have property “dataset” filled and the filled dataset exists
and properly initiated.

Do the same for all other items and set correct dataset field to draw. Press "F5" and you
should see something like this:

If you don't have such result, you can load report CustomerList.qtrp from the CuteReport
package and figure out what you did wrong.

Image object

Image object is designed to represent any images in the supported graphical formats.
Currently supported formats: BMP (Windows Bitmap), GIF (Graphic Interchange Format), JPG
(Joint Photographic Experts Group), JPEG (Joint Photographic Experts Group), PNG (Portable
Network Graphics), PBM (Portable Bitmap), PGM (Portable Graymap), PPM (Portable Pixmap),
XBM X11 (Bitmap), XPM (X11 Pixmap). Lets look closer at this object. Create a new report, add
a new page, add an Image item. There are some data sources for the Image available: Static,
Storage, Dataset. Type of source is defined in sourceType property.

Let's review each option:

• Static: allows you to load Image from a file and keep loaded data inside the object. File
must be loaded manually by pressing "image" property in the Property Editor.

• Storage: allows you to load file in runtime. Image property "source" must contain the
path to the required file. If path does not contain storage name default storage will be
used. Property "source" can contain expressions. For example, if source is defined as
"file:/[data."filename"]" then report engine it will try to take file name from the
database “data” and then will try to load this file from the storage with name “file”.

• Dataset: allows you to load file from a dataset blob. Image property "source" must be
defined in the same way as for "Storage".

A list of some other important properties:

• keepAspectRatio: If it is set to "true", image will always keep original aspect ratio while
scaling.

• Center: If it is set to true, image will always be centered in its frame.

Report with Images

In this chapter we will learn how to use an Image object and a File System storage.
Let's create a new report, add a new page, add Title and Detail band. Next is creating File
System dataset. Go to "Datasets" tab, choose Standard::FileSystem and click it. Choose any
directory that contains some pictures by pressing "Select dir..." button. Set "maxNumber" to 6.
This is maximum records that dataset will fetch. Disable flags: Directories, All Directories. Add
filter: ".jpg; .png" or any other graphic formats you want. Set "Path appearance" to
"AbsolutePath", so we will be able to load picture using its absolute path. Now press "Test it".
As a result you should see the list contains 6 files or less with the file format you have set in
your filter.

Now go to the Page Editor. Add Memo object to the Title band, type there "Customer's
pictures" and make text centered. For the better appearance change "backgroundBrush" for
the Title. Set "backgroundBrush::style" to "SolidPattern" and "backgroundBrush::color" to
#688482. Now change text color. Click on the Memo and change property "textColor" to white.
Well done!

Now we are starting to create image frame. Set height of the Detail to 30mm. Add Image
object to the right side of the Detail and change its size to fit to the detail. Set "sourceType" as
"Dataset" and "source"as "file://[data."name"]". As you remember everything inside the square
brackets will be identified as an expression and will be replaced by the expression result. So
our expression finally will be looking like "file://picture_path/picture.jpg". Well, there is
another very important thing: if report loads any data in runtime, it MUST have storage
assigned!. This is done for security. In some cases you may not allow user to use any storage
CuteReport has. So go to the "Reports" tab, and add "Standard::FileSystem" storage in the
"Storage" tab. We have images path as absolute path, so clean up "Root folder" for this
storage.

And the last step is creating Memo item that contains file's path. Add a new Memo to
the left side of the Detail band and type there: "[data."Name"]". Users of the Commercial
version can simply press the button that appears when you hover mouse over the Memo.

Finally you report template should look like this:

Now it's time to press "F5" and enjoy result:

Multi-lined text display

Let's proceed further and learn how to manage multi-line text. In the previous chapter
we have learned how to make new report, create dataset and connect dataset to a band. So
lets do it:

• create new empty report
• add a new SQL dataset and use test sqlite dataset "animals.db" which you can find along

with the CuteReport distribution or take it there:
https://github.com/AlFoX/CuteReport_examples/tree/master/datasets.

• add Detail band
• put 2 Memos on the band: first is the animal name, second one is the animal description
• put Image item to the right side of the band

Now lets look closer how to create Dataset. When you have added SQLdataset, point it
to your "animals.db" file, set Driver - "SQLITE" and add the sql query - "select * from animal".
Press "Test it" and check if all fine. Below you can see how it should finally look.

When this part is completed, go back to the Page Editor and set correct fields to display
for the Memo's. The first topmost Memo is an animal name. So double-click it and type:
[data."name"]. Users of the commercial version, can simply click on the appeared button on the
right side of the Memo and choose field from the drop-down list. If it doesn't appear check if
your band is connected to the correct dataset, i.e. dataset under the Memo has filled field
"dataset". Set Bold text for the animal name by clicking on the "font" property in the Property
Editor or by using font editor in the tool bar. Now go to the second Memo. It is animal
description. So type or select there: [data."description"]. Simple, huh? Lets look the result and
render our report (press "F5"):

https://github.com/AlFoX/CuteReport_examples/tree/master/datasets

Doesn't look good, right? Some of the descriptions were cut-off. Sure we can simply change the
description Memo's height to fit largest text, but there are some disadvantages:

• paper wasting, since we will not use entire Memo's room for small text
• you newer know how long text will be or it can be changed in future
• it just doesn't look pretty :)

Go ahead and fix it: set Memo property "stretchMode" to "ActualHeight", set Detail property
"stretchable" to "true" and generate report again.

As you can see "stretchMode" do the work. There are all options:

• DontStretch - do not stretch the object
• ActualHeight - stretch the height of the object to fit all assigned text
• MaxHeight - stretch the height of the object to reach bottom of the band

Text wrap of objects

(commercial version only)

Sometimes you might want to develop report design that requires text wrapping around
other objects. It can be Image or table. This is simple challenge with CuteReport. Simply add
one new Memos where text should flow to. For the second Memo set property "flowTo" with
the name of the first Memo where is text begin. For example if first Memo has name
"memo_1", set second Memo property "flowTo" to "memo_1". Property "StretchMode" for the
first Memo should be set to "DontStretch" and for the second one to "ActualHeight". That's it.

Now lets render this template and see how it looks:

For this example we have set textFlag property to AlignJusify. It is not necessary to set text
flags to all Memos, so set them only for the first one. Every subsequent Memo inherits this
setting.

Complex wrapping

Making complex wrapping is not really much complicated. Take a look at the next example:

As you may notice there are 3 Memo objects that used to fit text: first in the middle top
contains text "[data."description"]". Second one is laying under the Title memo and covers left
and central part. Third one is located on the bottom under all other objects. Its height is set to
minimal, since for some short texts it will not be used. So we do not need space wasting. Every
next Memo joined to the previous one by setting property "flowTo". The property
stretchMode of the last item is set to "ActualHeight". First two items do no need to stretch, so
theirs property is set to "DontStretch". Press "F5" to render and voilà:

You do not have to care about object insertion order, you can add Memo objects to
report page in arbitrary order. Once you set correct "flowTo" name all is done. CuteReport is
smart enough to understand what do you want and it hides all routine work from your sight.
Enjoy!

Label printing

(commercial version only)

In this chapter we will see how to create report with columns using CuteReport. That can
be useful to print labels or so. Let's create a simple report containing customer labels to print
out on customer case folders. Below you can see this example:

And after rendering we have the following:

As you can see there is a lot of wasted space on the right side, therefore a lot of wasted paper.
To optimize the space we will set a number of columns that will fit all our labels. It can be done
using "columns" page property. Set it to "3" in the Property Editor on the right side of the
screen. Then press "F5" to generate report.

There are 2 types of column filling: "Vertical" and "Horizontal" that can be set via
"fillDirection" Page property. On the picture above you can see "Vertical" type that means any
next label will be printer under the previous one and so on while there is empty space exist in
the column. When there is no space, report will create a new column and start from the top.
"Horizontal" type means every next label will be printed on the right of the previous one while
there is enough space on the right side of the page. If there is no space, report will print next
label on the next row as you can see below:

You can set any type depending of your needs. Not all bands respect column setting.
Some ignore it, like PageHeader, PageFooter. Some other have special property to adjust this
behavior, like DetailHeader or DetailFooter. Using this option you can design complex
columned reports. One of the samples of columned report with grouping you can see below:

Multi-page report

It is possible to create several design pages in CuteReport. This feature is useful if report
should contain different pages with different sizes, orientations, etc. In this case report engine
will fully render first page and then second and so on. Total number of template pages is not
limited. Let us look at the simple example with 2 pages where the first one is title page and the
second one is report itself. We will use our previous example "Customer List". To add new page
click on the button on the Page Editor's toolbar. If there are some types of page you will see
drop-down menu. Then choose page type you want by clicking it. New page will be added to

the report. Move it to the first place by clicking . Since item cannot be placed direct on page,
we will add Overlay band to the middle of the page. Now add Memo item to the band and
enter text "Customer Report" in there. Render report and now it should look like:

Script Engine

In this chapter we will learn how to work with CuteReport script engine. Scripting
feature brings an extremely high level of flexibility. Using script user can control almost every
rending step and design really complex reports. There is main script in a report that control
everything from report starting till it's rendered. Some items like Memo or Barcode are
supporting script in their text properties. Usually scripting expression have to be framed by [],
so the scripting engine will know that this is a script and not regular text. But to some fields
where only script expressions is allowed it can be written without []. Some items can
reimplement “[]” to use something else and provide additional field to define script expression
borders, like "expDelimiter" in a Memo object.

Script Editor

CuteReport Designer has a module named Script Editor to work with script. You can find
Script Editor by pressing "Script" tab in the module panel.

List of the shortcut keys which can be used in the Script Editor:

Key Description

Cursor arrows move cursor position

PageUp, PageDown go to previous/next page

Ctrl+PageUp go to beginning of the text

Ctrl+PageDown go to end of the text

Home go to beginning of the line

End go to end of the line

Enter go to next line

Delete delete symbol at cursor position; delete selected
text

Backspace delete symbol to the left of the cursor

Ctrl+A select whole text

CuteReport uses standard JavaScript syntax, so please read JavaScript documentation if you
are not familiar with this language.

Script Objects

All report objects is accessible from a script by theirs name. For example if you have Memo
object named memo_1 and want to set its color, you can do it by such way:

memo_1.backgroundBrush = new QBrush(new QColor("#665544"));

memo_1.color = new QColor(Qt.red);

All object properties that you can see in the Property Editor can be managed through a
script. Some objects support several types of property like "stretchMode" in Memo object.
There are 2 types: enum and string. Use whatever you like:

memo_1.stretchMode = "DownStretch";

memo_2.stretchMode = Memo.ActualHeight;

Script variables

Every object or value stored in a script as variable. You can create your own variables on
report start and change their values while report is rendering. Scripting engine can have some
internal variable that can be accessible for user.

Local script variables

Variables can be declared and used locally within a script. Once declared script variable
can have value assigned to it. Here you can see an example:

var myVar = "Hello, World!";

When you have variable created you can use it in any report object, for example in Memo
by writing "[myVar]" in the "text" property. For more detailed information about script
variables read documentation for JavaScript language.

Global report's variables

Any global variable that is defined in a report could be accessed from a script. The
variable name should be written in such way: ${my_variable} without spaces between rounding
signs and within variable name. There are 2 recommended way to go if you want to give your
variable some complex name like "my super duper variable". First way is to replace spaces with
"_" sign. And second way is to remove spaces and use capital letter on the begin of every word
within variable name. Internally script engine use special named object to represent global
variables. So using "_" in begin of your variable name is highly not recommended.

Once you declared you global variable in the script it will be automatically added to the

report variable list if it is not still exist there. Lets try it. Open new empty report, go to the
"Script" tab and enter {$test}. Now switch to the "Reports" tab. You will see your variable in the
variable list and could test your script by assigning any test value for the variable.

Renderer variables

Renderer engine has its own variables and the full list of variables depends of the
renderer itself.

There is a list of some variables:

• LINE - current dataset line starting from 1

• PAGE - current page number starting from 1
• PAGES - total pages (require report double pass)
• PASSES - report pass number
• TPAGE - current page of template: means number of page in designer
• TPAGES - total pages of template: means number of pages in designer (starting from 1)
• DATE - the date when report generating was started (commercial version only).

QDate.currentDate() can be used instead.
• TIME - the time when report generator was started (commercial version only).

QTime.currentTime() can be used instead.

Script Signals

When you write a script it means you write main function, which is processed on the
report generator's start. In this function user can create some variables, initialize them or do
some other preparations. You still might want more control over report processing. To make it
possible almost everyone report object has signals and you can assign your custom slot to
these signals. For example you can assign your custom filter to Detail band and hide some
bands while pass another. Lets review some signals and later will see how we can use them.

Common item signals:

Signal Name Description

printInit emitted when all items are preparing to be printed

printReset emitted when all items are cleaned up after printing

printBefore emitted before item printing. All property changes affects original template item

printDataBefore
emitted when initial data for printed item is prepared. All property changes affects
only current printed item and will be reset

printDataAfter emitted after all item's data is processed, but before actual priniting

printAfter emitted after item is printed on a page

Also any item can have its own signals. You can see full signal list along with signal description
in a Property Editor.

Renderer signals:

Signal Name Description

reportStart() emitted after report started

bandBefore(CuteReport::BandInterface * band) emitted before band rendering

bandAfter(CuteReport::BandInterface * band) emitted after band is rendered

bandGemetryAfter(CuteReport::BandInterface * band)
emitted when band's geometry is
managed

itemBefore(CuteReport::BaseItemInterface * item) emitted before item rendering

itemAfter(CuteReport::BaseItemInterface * item) emitted after item is rendered

itemGeometryAfter(CuteReport::BaseItemInterface *
item)

emitted after item's geometry
managed

datasetBefore(CuteReport::DatasetInterface * dataset) emitted before dataset processing

datasetAfter(CuteReport::DatasetInterface * dataset) emitted after dataset processed

datasetIteration(CuteReport::DatasetInterface *
dataset)

emitted on every dataset iteration

pageBefore(CuteReport::PageInterface * page)
emitted before template page
processing

pageAfter(CuteReport::PageInterface * page)
emitted after template page
[processing

formBefore(CuteReport::FormInterface * dataset) emitted before form is shown

Signal Name Description

formAfter(CuteReport::FormInterface * dataset) emitted after form is closed

reportDone() emitted after report rendering is done

Using in custom application

In this chapter you will learn how to use CuteReport in your custom application.

Project setting up

There are 2 possible ways to use CuteReport with your custom application: as a
standalone framework or as an embedded framework. Let's look close to the both ways.

Embedded library

There are some important steps to use CuteReport as embedded library in the custom
application:

• add all necessary data to your project file (.pro);
• add header files of CuteReport to your cpp file;
• create and init report core;

Add next lines to your .pro file:

INCLUDEPATH += path_to_CuteReport_headers

DEPENDPATH += $$INCLUDEPATH

LIBS += -Lpath_to_cutereport_shared_files -lCuteReport -lCuteReportWidgets

add CuteReport header files to your code:

#include "reportcore.h"

#include "reportinterface.h"

Standalone framework

To use CuteReport as standalone framework you can simply install CuteReport using installer
provided. There are some advantages using it in this way:

• if you have some application installed that use CuteReport you should not update it for

every application. Update CuteReport and all application will use new version.

• you can use official CuteReport repositories and keep CuteReport up to date

automatically for Linux distributions.

To connect CuteReport to you your application add to your pro file something like that:

!include(path_to_cutereport_include_directory/CuteReport.pri) {

 error(Cannot find the CuteReport.pri file!)

}

Path to CuteReport.pri is dependent of your distribution.

There is default path for most installation:

Linux: /usr/include/cutereport/CuteReport.pri

Windows: c:/Program Files/CuteReport/dev/include/CuteReport.pri

Second step is to include header file to your C++ file:

#include <CuteReport>

Simple example

Next is creating CuteReport::ReportCore instance and initing it:

CuteReport::ReportCore * reportCore = new CuteReport::ReportCore();

There are some parameters you can pass to the constructor:

• parent: sets parent object to the CuteReport instance. If it is set you should not care
about CuteReport instance deletion;

• settings: pointer to a QSettings object. You can use your project's settings to allow
CuteReport to save its settings and states to the file using [CuteReport] group. The
settings in this file can provide some initial info to configure CuteReport. Instead of
writing a lot of code to add instances like storage objects, renderer objects, printer
objects to the report, you can use custom settings. We will review these settings later. If
QSettings pointer is not specified CuteReport will create its own ini file.

• interactive: used to specify if report objects are static or can be changed. If you develop
some console application that process report templates without changing report objects
you can free some resources by using "false". It is true by default;

• initLogSystem: determines if you need or no to see CuteReport's logs. It is True by
default. It should be mentioned that log destinations and log levels can be configured
separately.

Additionally you can connect some signals to detect report exporting and rendering:

connect(reportCore, SIGNAL(exportDone(QString,bool)), this, SLOT(slotExportDone(QString,bool)));

connect(reportCore, SIGNAL(printingDone(QString,bool)), this, SLOT(slotPrintDone(QString,bool)));

Now when we have core created we can load a report template:

CuteReport::ReportInterface * report = reportCore->loadReport("file:/path/myreport.qtrp");

In most cases you might want to see report preview, so lets create preview widget:

CuteReport::ReportPreview * preview = new CuteReport::ReportPreview(reportCore);

preview->connectReport(report);

By passing report pointer to the preview widget you specify what report object preview
should be represented.

Now we can start report rendering. There are some ways to do this. First way is pressing
button "Run" in the preview widget. Second way is to invoke CuteReport Core method
render(report).

reportCore->render(report);

Third way is to invoke Preview method run(). You can choose any way.

preview->run();

Custom application example

Now let's do some coding. To add CuteReport library to your application you can do something
like this:

#include "reportcore.h"

/* create report core instance */

CuteReport::ReportCore * reportCore = new CuteReport::ReportCore(0 ,0, false);

/* create report preview widget */

CuteReport::ReportPreview * preview = new CuteReport::ReportPreview(parentWidget);

/* assign report core to our preview */

preview->setReportCore(reportCore);

/* loading report template from file and creating of report object */

CuteReport::ReportInterface * reportObject = reportCore->loadReport("git:report.qtrp");

/* connect created report object to the preview */

preview->connectReport(reportObject);

/* show preview widget */

preview->show();

/* start report rendering */

preview->run();

Usually you need only one ReportCore instance in your application. Any number of Preview
widget can be assigned to the core.

Datasets

Model Dataset

Model Dataset is designed to print model's data (inherited from QAbstractItemModel)
from an application. For printing data some steps are necessary:

• Create Model Dataset in your report;
• In the field "Model name" type in any name for your model. If there are some, they

should be different;
• For the report testing you can fill test model with the data using any number of columns

and rows;
All set. For printing your report you have to pass your model address (as longlong) to the
report using report parameters.

For example:

CuteReport::ReportCore * cuteReport = new CuteReport::ReportCore();

// load report

QString err;

CuteReport::ReportInterface * reportObject = cuteReport->loadReport("file:test.qtrp", &err);

// if error, exit with message

if (!reportObject) {

 QMessageBox::critical(this, "loadReport", err);

 return;

}

// making of the test model

QStringList list;

list << "11111" << "2222" << "333" << "44" << "5";

model = new QStringListModel();

model->setStringList(list);

// Warning!!! Link to model passed as longlong

// Set model name the same you have set in the ModelDataset before

reportObject->setVariableValue("model1",qlonglong(model));

// making report preview window

CuteReport::ReportPreview * preview = new CuteReport::ReportPreview(cuteReport);

if (reportObject) {

 // set core and set preloaded report

 preview->setReportCore(cuteReport);

 preview->connectReport(reportObject);

 // report processing

 preview->run();

 //Preview window show

 preview->show();

}

While rendering the data model will be cloned, since QAbstractItemModel is not thread safe.

	Introduction
	Licensing

	Designer
	Report Editor module
	Page Editor module
	Script Editor module
	Dataset Editor module
	Preview module
	Designer Options

	Creating Report template
	Report objects
	"Hello World" report example
	Memo object
	Rotating
	HTML tags
	Expressions
	Text flowing
	Memo Helper

	Bands
	Storages
	File System storage (Standard::Filesystem)
	GIT storage (Standard::GIT)
	Resource storage (Standard::Resource)
	SQL Storage (Standard::SQL)

	Datasets
	"Customer List" example
	Image object
	Report with Images
	Multi-lined text display
	Text wrap of objects
	Complex wrapping

	Label printing
	Multi-page report

	Script Engine
	Script Editor
	Script Objects
	Script variables
	Local script variables
	Global report's variables
	Renderer variables

	Script Signals

	Using in custom application
	Project setting up
	Embedded library
	Standalone framework

	Simple example
	Custom application example
	Datasets
	Model Dataset

