Yuma Quickstart Guide

YANG-Based Unified Modular Automation Tools

Client/Server Quickstart Guide

Version 2.2

Last Updated: January 26, 2012

Yuma Quickstart Guide

Table Of Contents

Yuma Quickstart Guide

R 1 Y o <P 3
1.1 Legal Statements. . .. 3
I Vo Lo [o] g ¥ | I RN =T 0 10 1 of =P 3

N AT Y | (= 3
1.2.2 MailiNg LiStS e ittt 4
1.3 Conventions Used in this DOCUMENT.... ..o 4

72 1) e Yo [0 oY o T 5
2.1 Intended AUAIENCE. ...t e 5
2.2 What is NETCONF and YANG ... e e e e e e ees 5
2.3 How Does an Operator Use NETCONF and YANG?.....coooiiiiiiiiiiiiieeee e 6
2.4 How Does a Developer Use NETCONF and YANG?......ooiiiiiiiiiiiiiiciniecece e 6

3 Getting Started with toaster.yang.......cooiiiiiii 7
o 8 VL o F= Y 3 1] o 0 = 1 = 7
3.2 Start the NEtCONTA SEIVET e 7

3.2.1 Configuration DefaUILS.ccu i 8
32,2 S S H SO VO it 8
T T NN T]\ 1 Y =T Y 7= oS 9
3.3 Start the yangCli CHENt. ... 9
3.3.1 Configuration Defaults.. ... 9
3.3.2 RUN YANGC ittt e e e 10
3.3.3 STAMTUD SCI@ON. ...t ettt et e et et e e e e 10
3.3.4 Command LiNe EditiNg......cuiiiiiiiii e 10
S G TS = ot=] o LI o] 0 41 0 4 1= o Lo [P 10
3.4 Getting Context Sensitive Help....ooov e 11
3.4.1 Tab Key for Command Completion.... ..o 11
3.4.2 The '?" and "?7' ESCAPE SEQUENCES.uieieetaeei et e et e e e eea e et e e e e et eaa e e e eneeneenaenaennes 11
3.4.3 The 'help' COMMANG.. ... et et e e e e e e e ens 12
3.5 Start @ NETCONF SESSION...cuitiiiitiiie it e e e et e e e e e et et e e e rneneneaes 13
3.5.1 The connNeCt ComMMANGd.......iuuiiiiiii e e e e e 13
3.5.2 Fixing Connection Problems. ... 14
3.6 Enable NOtifiCation DeliVery e 14
3.7 Load the Toaster ModUIE.........o i 14
3.8 ENAbBIE the TOaS el i e 15
3.8.1 LOCK the Databases. ... 16
3.8.2 Create the toaster CoONtaiNer.......oiu i 16
3.8.3 Save the Database Changes.. ...t 17
3.8.4 Unlock the Databases. ... 17
3.9 Get the Toaster State Information...........ooiii i 17
3.10 Start Making TOas 18
3.11 StOP MaKing TOaST. ..o 19
3.12 Close the NETCONF SESSION. ...t e eas 19

ViR ¥o AV g Tal=To I e o] =S PPP 20

4.1 Data RetriEVal...cu i e 20
4.1.1 Basic NETCONF Retrieval Operations...........oceuiiiiiiiiiiiieee e 20

Page 1 Version 2.2

Yuma Quickstart Guide

4.1.2 Default Value FIlteIrNGt e e e e eaes 21
4.1.3 Special Retrieval Operations. ..o 21

v 720 \ Lo) =Y [o] o =3P 22
4.2.1 NOUIfICAtioN CONEENTS. e e e e e e e e e e enes 22
4.2.2 NOHIFICAtION REPIAY . ettt e eas 24
4.2.3 The interleave Capability ..o e 25
4.3 Database EditiNg.. .o 25
4.3.1 The Target Database. ... e e e as 25
4.3.2 Database LOCKING .. .cuiiii e e ea 26
4.3.3 NON-VOIatile STOrage. .. cun ittt e e e e e e e anee 26
4.3.4 EAItiNG COMMANGS. . cetiiitiiiiii ettt e et e e e et e e e e et e et n e et e et e e e e e e enen 26
4.4 ACCESS CONLIOL. . u it e 27
.5 VAl Al e 28
L R Yol] o] KPP 29
oI o T =T V=Y T TP 30

Page 2 Version 2.2

Yuma Quickstart Guide

1 Preface

1.1 Legal Statements

Copyright 2009 - 2012, Andy Bierman, All Rights Reserved.

1.2 Additional Resources

This document assumes you have successfully set up the software as described in the printed
document:

Yuma Installation Guide

Other documentation includes:
Yuma User Manual
Yuma netconfd Manual
Yuma yangcli Manual
Yuma yangdiff Manual
Yuma yangdump Manual

Yuma Developer Manual

To obtain additional support you may join the yuma-users group on sourceforge.net and send email to
this e-mail address:

yuma-users@lists.sourceforge.net

The SourceForge.net Support Page for Yuma can be found at this WEB page:
http://sourceforge.net/projects/yuma/support

There are several sources of free information and tools for use with YANG and/or NETCONF.

The following section lists the resources available at this time.

1.2.1 WEB Sites

+ Netconf Central
o http://www.netconfcentral.org/
o Yuma Home Page

= Free information on NETCONF and YANG, tutorials, on-line YANG module validation and
documentation database

+ Yuma SourceFource OpenSource Project
o http://sourceforge.net/projects/yuma/

Page 3 Version 2.2

http://sourceforge.net/projects/yuma/
http://www.netconfcentral.org/
http://sourceforge.net/projects/yuma/support

Yuma Quickstart Guide

= Download Yuma source and binaries; project forums and help

+ Yang Central

o http://www.yang-central.org

o Free information and tutorials on YANG, free YANG tools for download
- NETCONF Working Group Wiki Page

o http://trac.tools.ietf.org/wg/netconf/trac/wiki

o Free information on NETCONF standardization activities and NETCONF implementations
- NETCONF WG Status Page

o http://tools.ietf.org/wg/netconf/

o |ETF Internet draft status for NETCONF documents
+ libsmi Home Page

o http://www.ibr.cs.tu-bs.de/projects/libsmi/

o Free tools such as smidump, to convert SMIv2 to YANG

1.2.2 Maiing Lists

+ NETCONF Working Group
o http://www.ietf.org/html.charters/netconf-charter.htmi

o Technical issues related to the NETCONF protocol are discussed on the NETCONF WG mailing
list. Refer to the instructions on the WEB page for joining the mailing list.

« NETMOD Working Group
o http://www.ietf.org/html.charters/netmod-charter.html

o Technical issues related to the YANG language and YANG data types are discussed on the
NETMOD WG mailing list. Refer to the instructions on the WEB page for joining the mailing
list.

1.3 Conventions Used in this Document

The following formatting conventions are used throughout this document:

Documentation Conventions

Convention Description

--foo CLI parameter foo

<foo> XML parameter foo

foo yangcli command or parameter

$FOO Environment variable FOO

$$foo yangcli global variable foo

some text Example command or PDU
some text Plain text

Page 4 Version 2.2

http://www.ietf.org/html.charters/netmod-charter.html
http://www.ibr.cs.tu-bs.de/projects/libsmi/
http://trac.tools.ietf.org/wg/netconf/trac/wiki
http://www.yang-central.org/

Yuma Quickstart Guide

2 Introduction

Yuma Tools

Data models
written in SMIv2 /

l yangcli Network netconfd
. P — .
smidump Client "l server
Translator t
Data models C code for agent development
written in YANG /'
\ yangdump
Cooked YANG for platform mgmt
Translator [

XSD for NMS development

| 1

ncor +————| HTML for user documentation NMS

WEB Tools NMS
“~_| SQL for object dictionary Applications

Refer to section 3 of the Yuma User Manual for a complete introduction to Yuma Tools.
This section focuses on the client and server tools within the Yuma Tools programs.

2.1 Intended Audience

This document is intended for users of the Yuma Tools NETCONF client and server programs. It covers
the basic usage of the yangcli client application and the netconfd server.

2.2 What is NETCONF and YANG?

The Yuma Tools suite provides automated support for development and usage of network management
information. Information is exchanged in XML encoding within a session between a client and a server.

The IETF "Network Configuration Protocol" (NETCONF) is used to provide the management sessions,
operations, and database framework available on the server. The operations, notifications, and the
database contents supported by a particular NETCONF server are extensible, and defined with a
modular and easy-to-learn language called YANG. The database is used to contain YANG data

Page 5 Version 2.2

Yuma Quickstart Guide

structures which represent the configuration of the device containing the NETCONF server. This
configuration can be saved in non-volatile storage so the configuration can be restored upon reboot.

The IETF "YANG Data Modeling Language" is used to define the syntax and semantics of the NETCONF
operations, notification events, and database content. Machine and human readable semantics and
constraints are used by YANG tools (including Yuma Tools) to automate behavior within the NETCONF
protocol for clients and servers.

For people familiar with SNMP and SMIv2, NETCONF is like an XML-based, high-level version of SNMP,
and a YANG module is like a MIB module, except MIB tables can be nested and much more complex
than in SMIv2. Instead of Enterprise IDs and OBJECT-IDENTIFIERs, YANG uses XML namespaces and
XPath path expressions to identify module ownership and contents within the protocol PDUs.

2.3 How Does an Operator Use NETCONF and YANG?

An operator uses a NETCONF session almost like it was a CLI session, except there are structured,
schema-defined requests and responses, encoded in XML. YANG modules are like MIB modules for CLI
content. Instead of ad-hoc unstructured documentation like CLI, NETCONF uses a data definition
language to define management modules. The actual modules that a server supports will vary, just
like MIB (SMIv2) modules.

The NETCONF protocol is available for many different transports. The most popular is the SSH2
protocol. The 'netconf' subsystem is used (on TCP port 830) to start a special SSH session with the
NETCONF server.

Using NETCONF over SSH is just like using CLI over SSH to manage a networking device, except the
messages are exchanged in XML, not plain-text. SSH user names and passwords are used for session
authentication and authorization.

NETCONF is designed to provide a programmatic interface, so it is usually used with a management
application, instead of a direct (raw) SSH terminal application. The yangcli program within Yuma Tools
is @ YANG-driven NETCONF client application that supports scripts, XPath, and many automated
features to simplify management of NETCONF servers.

Once a session is started, similar to a CLI session, the operator issues commands (NETCONF
operations) to the server, and the server performs each requested operation in order, and returns a
status message and/or some data to the client. Notifications can also be received, if the session has
requested them with the <create-subscription> operation.

When a NETCONF session starts, a <hello> message is sent by the server that has all the NETCONF
capabilities and YANG modules supported by the server. Capabilities are optional protocol
mechanisms, beyond those defined in the base protocol (RFC 4741). The client application knows
what operations, notification events, and database contents are supported on the server, based on the
information in the <hello> message.

NETCONF has a set of basic database (CRUD) operations for managing the configuration database. In
addition, any YANG module can define new protocol operations and notification events.

2.4 How Does a Developer Use NETCONF and YANG?

A NETCONF server developer decides what modules need to be supported by the NETCONF server, and
implements the device instrumentation code for those modules.

Much of the NETCONF protocol related code is handled by the NETCONF stack, based on the YANG
module contents. Therefore, the most important task for a developer is designing a good YANG
module.

After the YANG module is written, the yangdump program is used to generate the template C code for
the server instrumentation library for the YANG module. The device instrumentation code for the YANG

Page 6 Version 2.2

Yuma Quickstart Guide

module is then added by the developer. This 'callback code' is called from the NETCONF stack when
database operation requests for the object(s) in the YANG module are received by the server.

Once this library is completed, the YANG module and its binary server instrumentation library (SIL) can
be loaded into the NETCONF server at run-time. There is no need to recompile the netconfd server, or
even reboot it.

Once the YANG module and its instrumentation code is completed, it needs be published, so operators
and application developers can use the WEB documentation and other tools to access the information
in the NETCONF server.

3 Getting Started with toaster.yang

This section will demonstrate the basic operation of Yuma Tools to use a NETCONF session to manage a
remote device with a YANG data model. The Yuma Tools programs and libraries must already be
installed. Refer to the Yuma Tools Installation Guide if this has not yet been done.

The yangcli client program and netconfd server program do not need to be installed on the same
machine. Usually, they are not installed on the same machine. For simplicity, the server address
'localhost' is used in the examples below.

3.1 What is libtoaster?

There is a sample server instrumentation library (SIL) included, named libtoaster. This is the module-
specific server instrumentation code for the management data defined in toaster.yang. This is based
on the original TOASTER-MIB by Epilogue. This YANG module provides simple operations to make
toast, and some simple NETCONF database objects to enable and monitor the toaster.

The new YANG version of the TOASTER-MIB is different is some ways:

+ extensible YANG identities are use to identify the bread type, instead of a hard-wired
enumerated list.

« protocol operations (<make-toast> and <cancel-toast>) are instead of an 'up/down' switch
within the database. NETCONF databases are intended to contain persistent data structures,
and 'actions' such as starting or stopping the toaster are done with new protocol operations,
instead of editing the database with the standard operations.

- A simple configuration 'presence container' object is used to enable and disable the toaster
service, instead of hard-wiring the toaster service availability.

« A notification is generated when the toast is done or canceled. This notification can be used
instead of polling the toaster status object.

The complete text of toaster.yang and TOASTER-MIB can be found at the end of this document.

3.2 Start the netconfd server

If the netconfd server is already running, then skip this section.
Details for all the netconfd configuration parameters can be found in the Yang Tools User Manual.
There is also a sample configuration file (default location):

« /etc/yuma/sample-netconfd.conf

Page 7 Version 2.2

Yuma Quickstart Guide

This file contains all the default settings for the configuration parameters.

To change the default settings, copy and edit this file (example commands)

mydir> sudo cp /etc/yuma/sample-netconfd.conf
/etc/yuma/netconfd.conf
mydir> sudo emacs /etc/yuma/netconfd.conf

3.2.1 ConricuraTioNn DEFAULTS

To keep the example simple, the default settings will be used:

the server will accept sessions on TCP port 830

the target database is <candidate>

no <startup> database (mirrored NV-save)

the <validate> operation is supported

the access control mode is 'enforcing’

the super user account name is 'superuser’

the server will search startup-cfg.xml using the default search path
the default <with-defaults> behavior is 'explicit'

notification replay is enabled with a buffer size of 1000 events and a maximum message burst
per session of 10 notifications

the <hello> exchange timeout is 10 minutes

the session idle timeout is 1 hour

the default session indent amount is 2 spaces

the default session line-size is 72 characters

violation of strict YANG XML ordering will not cause errors
logging level 'info' is enabled and sent to STDOUT

3.2.2 SSH SeRrver

To start the NETCONF server, make sure that the sshd server is running, and the following
configuration is included in /etc/ssh/sshd_config.

Port 22
Port 830
Subsystem netconf /usr/sbin/netconf-subsystem

The 'Subsystem' command may be different if netconf-subsystem has been installed in a different
location than /usr/local/sbin. The 'Port 22' command is needed to make sure the SSH server will
accept SSH sessions in addition to NETCONF sessions.

Page 8

Version 2.2

Yuma Quickstart Guide

3.2.3 NETCONF Server

For this example, the superuser account needs to be enabled. This is done with a CLI parameter, and
the user name ‘joe' is used. Replace 'joe' with your username.

To start the netconfd server in the foreground:

mydir> /usr/sbin/netconfd --superuser=joe
Starting netconfd...
Copyright (c) 2009, Netconf Central, Inc., All Rights Reserved.

agt: Startup config loaded OK
Source: /home/joe/data/startup-cfg.xml

This example shows that the '$SHOME/data' directory in the data search path contained the startup
configuration file. If no startup configuration is available, then the server defaults will be used instead.
Any message about 'startup-cfg.xml' not found can be ignored. It just means the server booted with
the factory default configuration.

To start the netconfd server in the background:

mydir> /usr/sbin/netconfd --superuser=joe --log=~/mylog &
mydir>

This example shows that a logfile in the user's home directory called 'mylog' will be used for all server
log messages. The '&' at the end causes the command to be run in the background.

3.3 Start the yangcli client

Once the NETCONF server is running, it will accept client sessions If running netconfd interactively on
localhost, then start a new terminal window to continue.

3.3.1 ConricuraTioNn DEFAuULTS

To keep the example simple, the default settings will be used:
- the client will attempt to start sessions on TCP port 830
- the client will attempt to automatically complete partial commands
« the command line history will be automatically loaded upon startup, and saved upon exit

« the client will attempt to automatically load any YANG modules advertised in the server <hello>
message

+ the client will check before using invalid parameter values
« the plain display mode will be used, with 72 characters per line
- each nest level of displayed data will be indented 2 spaces

Page 9 Version 2.2

Yuma Quickstart Guide

- the XML order of messages sent to the server will be corrected, as needed

« thelogging level of 'info' is set, and log messages are sent to STDOUT

« the client will wait 30 seconds for responses

3.3.2 Run YANGCLI

The yangcli program should be in found in the PATH environment variable.

mydir> yangcli

If the yangcli program is not found, then try the full path:

mydir> /usr/bin/yangcli

3.3.3 STARTUP SCREEN

The startup screen shows the following information:

« program version and copyright

« tab key can be used for command and parameter completion

« basic help instructions
« basic statement instructions

3.3.4 Commanp Line EpiTING

The command lines are stored in a history buffer.

Any previous command line (except a password parameter line) can be recalled and used again.

Any command in the command buffer (current or recalled) can be edited. The default key settings are
aligned with the emacs editor. Refer to the Yuma Tools User Manual for more details.

3.3.5 Escape CoMmmANDS

Not all parameters need to be entered at one time. If yangcli needs more information, based on the
initial command line, then 1 or more missing parameters will be requested, in sequence.

It is possible to get help, skip a parameter, or even cancel the entire command during one of these
sub-command modes, by using an escape command. This is a 1 or 2 character command, followed by
the 'enter' key (as usual to end a command).

Escape Command Summary

command

description

?s

skip the current parameter

Page 10

Version 2.2

Yuma Quickstart Guide

command description
7C cancel the current command
? get help
77 get full help

Using the '?s' command to skip a parameter may cause the <rpc> request to be invalid.

Depending on the setting of the --bad-data configuration parameter, this may or may not be allowed.
The default setting is to warn and confirm. This configuration parameter also affects parameter values
that are invalid according to the YANG module definition.

3.4 Getting Context Sensitive Help

The yangcli program provides context-sensitive help based on the current NETCONF session status
and the set of YANG modules currently loaded.

When a NETCONF session is active, the set of modules advertised in the <hello> message by the
server will be used to generate help text, if available. The 'mgrload' command can be used to force
yangcli to use different or additional YANG modules.

If the yangcli program does not have the advertised revision of a particular module available in the
module search path, and the NETCONF server supports the standard <get-schema> operation, then
the module will be retrieved from the server, and used just for that session.

If any features or deviations are advertised for a YANG module, then they will be applied to the
modules used just for the current session. The help text and the error checking done for the module
will be based on this 'patched' module, not the 'plain’ module specified in the capability URI string.

3.4.1 Tas Key For Commanp CoMPLETION

The 'tab' key can be used at any time to see a list of the possible completions that the command
interpreter will accept. The list will be displayed for command names and some command parameters.

When a NETCONF session is active, all the NETCONF operations will be available. Additional commands
may also be available if the server advertised any YANG modules containing 'rpc' statements.

3.4.2 THe '?' AnD '??' EscAPE SEQUENCES

If a partial command is entered, or if a data structure is being filled, then the help escape sequences
are available to get help about that parameter or data node. Use one question mark for help, and two
question marks for maximum help.

Help Escape Sequences

sequence description

? Print some help text, but not description
statements and some other information.

?? Print maximum help text.

Page 11 Version 2.2

Yuma Quickstart Guide

The following example shows the help text for the 'user' parameter for the ‘connect' operation:

yangcli> connect

Enter string value for leaf <user>
yangcli:connect> ?

leaf user [NcxUserName]
length: 1..63
pattern: [a-z,A-Z][a-z,A-Z,0-9,\-, ,\.1{0,62}

Enter string value for leaf <user>
yangcli:connect>

The type of object, its name, data type, and any restrictions, will be printed.
After that, the previous prompt will be redisplayed.

3.4.3 THe 'HELP' CoMmMAND

The help command can be used to display all kinds of information about the yangcli program and the
YANG data module contents in use at the time.

Help Command Variants

command description
help <comand-name> Display help for the specified yangcli
help command command or YANG rpc statement.
<command-name>
help commands Display help text for all commands.
help object <object-name> Display help text for a YANG database
top-level object (only if its module is
available).
help notification Display help text for a YANG notification
<notification-name> event (only if its module is available).
help type <type-name> Display help text for an exported YANG

data type (only if its module is available).

Each of the help command variants also accepts a 'help-mode' parameter to control how much help
text is displayed:

Help Output Modes

mode description
--brief Display minimal help text.
--normal Display a lot, but not always all the help

text available (default mode).

--full Display all available help text, including
description statements.

Page 12 Version 2.2

Yuma Quickstart Guide

The following table shows some valid help commands:

command description

help help Get normal help for the help command.

help commands brief Get a 1 line description of each command.

help object system full Get all available help for the /system
container and all its descendant nodes.

help type Ncxldentifier Get summary and description of the data
type called 'Ncxldentifier'.

help notification Get a summary of the 'sysSessionStart'

sysSessionStart notification, and each of objects in its
payload.

3.5 Start a NETCONF session

Each yangcli program instance can run 1 NETCONF session at a time.

If no session is currently active, then the prompt will contain just the program name, indicating that the
‘connect' command is available:

yangcli>

3.5.1 THe connect CoMMAND

The 'connect' command is used to start a NETCONF session.
There are 3 mandatory parameters for this command:
+ user: the system (or SSH) user name to use
- server: the IP address or DNS name of the NETCONF server to use
« password: the password string to use
Make sure you have a user name and password already configured on the NETCONF server.

If a partial command is given, then yangcli will prompt for any missing mandatory parameters. In this
example, the complete command is given at once:

yangcli> connect server=localhost user=guest password=yangrocks

After this command is entered, yangcli will generate some informational log messages to the screen.

If the session is started successfully, a summary of the server session capabilities and available
modules should be displayed. Also, the command prompt will change to indicate that a NETCONF
session is currently active.

Page 13 Version 2.2

Yuma Quickstart Guide

yangcli guest@localhost>

At this point any command supported by the server can be entered, in addition to any yangcli
command (except 'connect').

3.5.2 Fixing ConnecTioNn PROBLEMS

If the session did not start correctly, check the error messages to fix the problem. Some common
problems:

- Make sure the netconfd program is running.
- Make sure the netconf-subsystem program is properly installed.
« Check if the SSH configuration contains the portion for NETCONF.

- If the SSH configuration looks correct, then try restarting the SSH server to make sure that
configuration file is the one being used.

« If the SSH server seems to be running correctly, then check if any firewall or other security
mechanism is blocking TCP port 830. If so, either enable TCP port 830, or enable port 22 on the
NETCONF server (by restarting the server), and include 'port=22' in the 'connect' command
parameters.

« If no firewall or other security measure is blocking TCP port 830, try to establish a normal SSH
session with the server.

« If a normal SSH session works correctly, then check the log messages on the NETCONF server
for more information.

3.6 Enable Notification Delivery

In order to receive the 'toastDone' notification event, a notification subscription has to be enabled.
A default NETCONF notification stream can be started with the 'create-subscription' command:

yangcli guest@localhost> create-subscription
RPC OK Reply 2 for session 1:

yangcli guest@localhost>

Depending on other activity within the NETCONF server, it is possible other notification events, such as
'sysSessionStart' or 'sysSessionEnd' will be generated. Notifications are displayed in their entirety, but
not during 'rpc reply output'. If a command is being entered, the notification will be displayed, and
then the command line restored.

3.7 Load the Toaster Module

The toaster module is not a core system module, and is not available automatically.
The module has to be explicitly loaded by the NETCONF client.

Page 14 Version 2.2

Yuma Quickstart Guide
To load the server-supported version of the toaster module, use the 'load' command:

yangcli guest@localhost> load toaster
RPC Data Reply 2 for session 1:

rpc-reply {
mod-revision 2009-11-20
}

Incoming notification:
notification {
eventTime 2009-12-28T00:44:45Z
sysCapabilityChange {
changed-by {
userName guest
sessionIld 1
remoteHost 127.0.0.1

}
added-capability
http://netconfcentral.com/ns/toaster?
module=toaster&revision=2009-11-20

}

sequence-id 3

}

yangcli guest@localhost>

If the module was successfully loaded, then a data response will be sent, containing the revision date
of the toaster module that was loaded. This response will be returned even if the module was already
loaded.

Note that the 'sysCapabilityChange' notification event will only be sent if the module has not already
been loaded into the server. In this case, it was not advertised in the <hello> message for this
session, and the toaster module needs to be loaded manually into yangcli with the 'mgrload' command:

yangcli guest@localhost> mgrload toaster
Load module 'toaster' OK

yangcli guest@localhost>

3.8 Enable the Toaster

Try to make some toast, using the 'make-toast' command:

yangcli guest@localhost> make-toast

RPC Error Reply 4 for session 1:

rpc-reply {
rpc-error {

Page 15 Version 2.2

Yuma Quickstart Guide

error-type protocol
error-tag resource-denied
error-severity error
error-app-tag no-access
error-message 'resource denied'
error-info {

error-number 269
}

}
}

yangcli guest@localhost>

What happened?

A 'resource-denied' error was returned instead of 'OK', because the toaster service is not enabled yet. A
node has to be created in the NETCONF database before the 'make-toast' command can be used.

3.8.1 Lock THe DATABASES

The first step is to lock the NETCONF databases for writing. Locks do not affect read operations.

The yangcli program has a high-level command to deal with locking, called 'get-locks'. It will handle
retries for any missing locks, until an overall timeout occurs or all the locks needed are acquired.

yangcli guest@localhost> get-locks
Sending <lock> operations for get-locks...

get-locks finished OK
yangcli guest@localhost>

3.8.2 CReATE THE TOASTER CONTAINER

The toaster module uses a simple YANG 'presence' container to configure the toaster service.

Once the /toaster container is created, the read-only nodes within that container will be maintained by
the server, and the toaster service will be enabled.

The first step is to create the /toaster node in the <candidate> configuration database:

yangcli guest@localhost> create /toaster

Filling container /toaster:
RPC OK Reply 5 for session 1:

yangcli guest@localhost>

Now the /toaster node is created in the <candidate> database.

Page 16 Version 2.2

Yuma Quickstart Guide

3.8.3 Save THE DaTtaBase CHANGES

In order to activate these changes, the 'save' command needs to be issued.

This is a high-level yangcli operation that issues the ‘commit' or 'copy-config' operation, depending on
the database target for the current session.

yangcli guest@localhost> save

Saving configuration to non-volative storage
RPC OK Reply 6 for session 1:

Incoming notification:
notification {
eventTime 2009-12-28T00:59:58Z
sysConfigChange {
userName guest
sessionIld 1
remoteHost 127.0.0.1
edit {
target /toast:toaster
operation create
}
}

sequence-id 4

}

The 'RPC OK' message indicate that the server successfully saved the configuration.

The 'sysConfigChange' notification indicates what was changed in the running configuration, and who
made the change(s).

The toaster server should now be enabled.

3.8.4 UnrLock THE DATABASES

The database locks need to be released as soon as possible after the edits are completed or discarded.

The high-level command 'release-locks' must be used if 'get-locks' was used to acquire the database
locks.

yangcli guest@localhost> release-locks
Sending <unlock> operations for release-locks...

yangcli guest@localhost>

3.9 Get the Toaster State Information

To discover the toaster model and its current status, the 'sget' or 'xget' commands can be used to
retrieve just the toaster portion of the conceptual state data available on the server.

The 'sget' command is high-level subtree filter handler for the <get> operation:

Page 17 Version 2.2

Yuma Quickstart Guide

yangcli guest@localhost> sget /toaster

The 'xget' command is high-level XPath filter handler for the <get> operation. It is only available if the
NETCONF server supports the :xpath capability (like netconfd).

yangcli guest@localhost> xget /toaster

Both commands should return the same data:

Filling container /toaster:
RPC Data Reply 7 for session 1:

rpc-reply {
data {
toaster {
toasterManufacturer 'Acme, Inc.'

toasterModelNumber 'Super Toastamatic 2000
toasterStatus up
}
}
}

This data shows that the 'Super Toastamatic 2000' is ready to make toast!

3.10 Start Making Toast

Now that the toaster is enabled, the 'make-toast' command should work.

Instead of using the default parameter values, let's make a frozen waffle a little less done than normal:

yangcli guest@localhost> make-toast toasterDoneness=4
toasterToastType=toast:frozen-waffle

RPC OK Reply 8 for session 1:

At this point the toaster timer is running, and the simulated waffle is cooking,
After about 40 seconds, the 'toastDone' notification should be received:

Incoming notification:
notification {

Page 18 Version 2.2

Yuma Quickstart Guide

eventTime 2009-12-29T01:20:05Z
toastDone {

toastStatus done
}

sequence-id 5

This 'toastDone' event shows that the toast was completed, and is ready to eat.

3.11 Stop Making Toast

What if you change your mind, and want wheat toast instead of a waffle?
Repeat the previous command (Control-P should recall the previous command):

yangcli guest@localhost> make-toast toasterDoneness=4
toasterToastType=toast:frozen-waffle

RPC OK Reply 9 for session 1:
Now enter the 'cancel-toast' command right away, before the waffle finishes:

yangcli guest@localhost> cancel-toast
RPC OK Reply 10 for session 1:
Incoming notification:
notification {
eventTime 2009-12-29T01:24:36Z
toastDone {
toastStatus cancelled
}

sequence-id 6

}

This 'toastDone' event shows that the toast was cancelled.

3.12 Close the NETCONF Session

To close the NETCONF session, use the 'close-session' command:

yangcli guest@localhost> close-session
RPC OK Reply 11 for session 1:

ses: session 1 shut by remote peer

Page 19 Version 2.2

Yuma Quickstart Guide

yangcli>

Note that the prompt returned to the default form, once the session was dropped by the NETCONF
server.

The terminate the yangcli program, use the 'quit' command:

yangcli> quit

mydir>

4 Advanced Topics

This section introduces some advanced features of the NETCONF protocol and YANG data modeling
language.

4.1 Data Retrieval

4.1.1 Basic NETCONF ReTrievaL OPERATIONS

The NETCONTF protocol has 2 different retrieval operations:
- <get>: get state data and the running configuration database.
- <get-config>: get just the specified configuration database.

Each of these operations accepts a <filter> parameter, which has 2 forms:

« subtree filter: retrieve just the subtrees in the database that match the XML subtrees in the
filter.

+ XPath filter: retrieve just the subtrees that match the result node set produced by evaluating

the specified XPath expression against the database. This mode cannot be used unless the
:xpath capability must be advertised by the server.

The yangcli program supports 3 different forms of each command:
« plain: plain NETCONF operation with user-supplied filter

+ subtree: XPath path expression or user variable is converted to XML for the <filter> parameter

subtree XML.

- xpath: XPath path expression or user variable is converted to XML for the <filter> parameter
'select' XML attribute

yangcli Retrieval Commands

command description example

get plain <get> operation get with-defaults=trim

Page 20 Version 2.2

Yuma Quickstart Guide

command description example
get-config plain <get-config> operation get-config
source=candidate
sget <get> with a subtree filter sget /system
sget-config <get-config> with a subtree sget-config source=running
filter /nacm/rules
xget <get> with an XPath filter xget "//interface/counters"
xget-config <get-config> with an XPath xget-config
filter source=candidate

"/linterface[name="eth0']"

The retrieval commands return an element named <data> containing the requested XML subtrees.

If any identifier nodes (YANG key leafs) are needed to distinguish the data in the reply, they will be
added as needed by the server. In the 'xget' example above, the <name> element for each interface
would be returned, even though it was not directly requested by the XPath expression.

4.1.2 DerauLt VaLue FILTERING

The data will also be filtered according to the defaults handling behavior of the server, unless the
<with-defaults> parameter is added to the command. This parameter is only supported if the server
advertised the 'with-defaults' capability, If not, the client does not get any indication from the server
what type of defaults filtering is being done (if any).

There are 3 types of defaults filtering provided:

« report-all: no filtering -- return all nodes even those the server might normally suppress
because they are considerer to be default values by the server.

- trim: return all nodes except skip any leaf nodes that match the schema defined default value

- explicit: return all nodes that were set by the client or the server to some value, even if the
value happens to be the schema defined default. This is normally the default behavior for the
netconfd server.

The defaults handling behavior can be changed just for a specific NETCONF session, using the <set-my-
session> operation. This is only available on the netconfd server.

yangcli guest@localhost> set-my-session with-defaults=report-all
RPC OK Reply 12 for session 1:

yangcli guest@localhost>

In this example, the 'basic' behavior is changed from 'explicit' to 'report-all', but just for session 1. This
setting is temporary, and will not be remembered when the session is terminated. If the <with-
defaults> parameter is present, it will be used instead of this value.

4.1.3 SeeciaL ReTrIEVAL OPERATIONS

Page 21 Version 2.2

Yuma Quickstart Guide

Any YANG module can add new operations with the 'rpc' statement.
New retrieval operations may also be added which are associated with a protocol capability.

Just like any other data model content, the operator (or application) needs to understand the YANG file
definitions, including the description statements, to understand how each custom retrieval operation
works.

There are 2 custom retrieval operations supported by netconfd:

Special Retrieval Operations

operation description

get-schema Retrieve the YANG or YIN source file for one
of the modules advertised by the server.
This is a standard operation defined in the
ietf-netconf-monitoring module.

get-my-session Retrieve the customizable settings for my
session. This is a proprietary operation
defined in the yuma-my-session module.

4.2 Notifications

Notifications are used in NETCONF to send server event information to the client application.
A session must request notifications with the 'create-subscription' command.

Notifications are grouped into 'streams', but only the 'NETCONF' stream is defined at this time.
A notification subscription request specifies the stream name (and perhaps more parameters).

A NETCONF session on the netconfd server will never expire due to inactivity, while a notification
subscription is active. This allows notification processing applications to maintain long-lived
connections without worrying about a NETCONF timeout. Note that the SSH server may also be
configured to drop idle SSH sessions, whether a notification subscription is active or not.

4.2.1 NorTiFrication CONTENTS

Page 22 Version 2.2

Yuma Quickstart Guide

Notification Structure

element is the top-leve
NETCONF message ——= notification {

P

The 'notification' element is sent from the server to the client, if an event occurs, and the client has
created a notification subscription.

The child nodes of this element comprise the notification content, and it is divided into 3 sections:

1. event generation time-stamp: This standard NETCONF leaf is always the first child element
within the notification element.

2. event payload: The module-specific event payload is represented as a container with the
name of the notification. Any data nodes defined within the YANG notification statement appear
(in order) as child nodes of the event type container.

3. proprietary extensions: Zero or more vendor-specific elements may appear after the event
payload element. For example, the monotonically increasing 'sequence-id' element is added to
each notification saved in the netconfd event log.

Page 23 Version 2.2

Yuma Quickstart Guide

4.2.2 NorTirication RepLAY

Notification Replay Buffer

System Event Log

default eventlog-size = 1000 »‘

Ty

E d

L

stops when session is closed)

I |

I Replay 2 (finite) |

Replay 1: startTime=2009-01-01, no siopTime
Replay 2: startTime=2009-12-01, stoplime=2009-12-31
Replay 3: staptTime=2009-10-01, siopTime=2011 }

The NETCONF server will maintain an ordered buffer of saved notification events, if the :notification-
replay capability is supported by the server. For the netconfd server, this is a configurable feature,
set by the --eventlog-size parameter.

The netconfd default is to save the most recent 1000 notification events.

Only system events are saved and are available for retrieval. The 'replayComplate' and
'subscriptionComplete' events are session-specific events, and are therefore not saved in the replay
buffer.

The 'create-subscription' command has 2 parameters to request that stored notifications be delivered
to the client session:

- startTime: the date (or date-and-time) to compare against the event generation time-stamp.
Only notification events that occurred after this time are delivered.

- stopTime: the date (or date-and-time) to compare against the event generation time-stamp.
Only notification events that occurred before this time are delivered. This parameter can
specify a time in the future. When that time has passed, the subscription will be terminated.
The stopTime does not cause the server to wait that period of time to generate an event. If the
stopTime is in the past, then the subscription will terminate after all the matching event
timestamps in the replay buffer have been delivered.

Page 24 Version 2.2

Yuma Quickstart Guide

Notifications are delivered in the order they are stored. Each new netconfd notification contains a
monotonically increasing sequence-id (unsigned integer). This can be used to help determine if any
configured notification filters are working as expected.

4.2.3 THE INTERLEAVE CAPABILITY

The netconfd server supports the :interleave capability, which means that all commands (except
create-subscription) will be accepted by the server. The client should expect <rpc-reply> and
<notification> messages. The server will always maintain proper message serialization. These
messages will always be sent in their entirety, which may impact applications (e.g., a really long <get>
response on the same session will delay notification delivery).

If the NETCONF server does not support the :interleave capability, then it may only allow the <close-
session> operation while the notification subscription is active. In this case, a new NETCONF session is
required to perform any management operations.

This special mode is only applicable while a notification subscription is active. It is possible for a replay
subscription to terminate, without terminating the session as well. In this case, the
'notificationComplete' event will be generated, and the session will return to accepting all possible
operations.

4.3 Database Editing

NETCONF supports multiple conceptual configuration databases. Only the 'running' database is
actually active. All other databases are scratch-pad databases, or some other special-purpose off-line
database.

Every NETCONF server must allow arbitrary partial (and concurrent) editing to its configuration with the
<edit-config> operation. Refer to the Yuma Tools User Manual for complete details on this NETCONF
operation. The yangcli program has simplified editing commands, which are explained below.

The <config> element within an <edit-config> PDU represents the 'root node' (/) in the path
expression for each node in the conceptual database. Each top-level YANG object that is supported
and configured will be represented as child nodes this root node. The conceptual database can be
processed as an XML instance document with multiple top nodes (similar to XSLT rules).

Database editing in NETCONF has several variants, but basically, it follows this simple procedure:
1. Lock the database(s) that will be affected.
2. Use <edit-config> or <copy-config> on the target database to make changes.
3. Activate and save the database edits.
4. Unlock the database(s) that were previously locked.

4.3.1 THe Tarcer DATABASE

Usually a NETCONF server supports the <edit-config> operation on only one database, which is either
the candidate or the running database. This is called the 'target' database, which corresponds to the
<target> parameter in the <edit-config> operation.

If the target database is the candidate configuration, then the <edit-config> operation does not always
cause all possible database validation checking to be done by the server. Since the candidate
database is just a scratch-pad for (possibly) incremental edits, the server is not required to completely
validate its contents. Instead, these 'final validation' tests are only required to be done when the
<commit> operation is invoked.

Page 25 Version 2.2

Yuma Quickstart Guide

The yangcli program will automatically handle the target database management, based on the server
capabilities reported each session, if the 'save' command is used. The manual procedure (<commit>
and/or maybe <copy-config> operations) is also supported, but do not mix them within the same
editing session.

4.3.2 Datasase Locking

NETCONF supports database locking so a session can have exclusive write access to the configuration.

These locks are intended to be short-lived, but there is no actual time limit on a lock. If the session
terminates for any reason with any locks, they will be released automatically by the server.

All the databases that are involved in the edit should be locked. This always includes the running
database, and the candidate and startup databases, if they are supported by the server.

The yangcli program has 2 special commands to handle all locking:
- get-locks: Wait until all database locks have been acquired or the timeout occurs
- release-locks: Rlease any locks that were obtained with get-locks

Refer to the Yuma Tools User Manual for more details on these commands.

4.3.3 NonN-VoOLATILE STORAGE

The startup configuration is the conceptual database used on the next reboot of the NETCONF server.
It is important to know whether the NETCONF server supports the :startup capability or not. If yes,
then the operator must explicitly save the running database to non-volatile storage (the startup
database), using the <copy-config> operation. If no, then the server will keep the running and startup
databases synchronized.

The yangcli program has a high-level 'save' command, used after the editing operations, that will
automatically issue the correct protocol operations to complete the edit, and save the changes in non-
volatile storage.

The startup database is configurable in the netconfd server. The --with-startup configuration
parameter controls whether the startup database will be used or not. The --startup parameter can be
used to control the initial load of the running configuration in 3 different ways:

1. no startup: skip this step and just use factory defaults
2. default startup: look for the default startup-cfg.xml file in the configured data path.

3. specific startup: use a specified file, either absolute file-spec, or a relative path in the
configured data path

Refer to the Yuma Tools User Manual for more details on controlling non-volatile storage.

4.3.4 Epiring CoMmMANDS

The <edit-config> operation should be used make configuration changes. The <copy-config>
operation can also be used, but this is a blunt hammer approach. Although the netconfd server will
always analyze the edit request and only affect the nodes that actually changed, this is not a
requirement in the standard.

The <edit-config> operation allows the operator to have precise control of the server. These database
edits are performed by the server using a combination of 3 factors:

1. The nodes that currently exist in the target database.

2. The nodes that exist in the 'source' of the edits (either the inline <config> element or indirectly
through the <url> element.

Page 26 Version 2.2

Yuma Quickstart Guide

3. The <default-operation> parameter and any XML attributes in the source XML elements

(nc:operation attribute and YANG insert operation attributes).

The yangcli program provides some high-level commands to automatically handle the complexity of
the <edit-config> operation. These commands use XPath expressions and a series of interactive
prompts (e.g., for the mandatory nodes and key leafs) to fill in the specified data structures, and
construct an optimized NETCONF message.

yangcli Editing Commands

command description
create Create a new sub-tree, only if it does not
already exist
delete Delete an existing sub-tree, only if it exists
merge Merge the source sub-tree into the target sub-

tree, keeping any existing nodes that are not
explicitly contained in the source.

replace Merge the source sub-tree into the target sub-
tree, deleting any existing nodes that are not
explicitly contained in the source. This is the
mode used for the <copy-config> operation.

insert Insert or move a YANG list or leaf-list entry

Refer to the Yuma Tools User Manual for details on these commands.

4.4 Access Control

The netconfd server can be configured to give precise access rights to each user (the SSH user name
associated with the NETCONF session). Some important points to remember about access control:

There are 3 types of access -- read, write, and execute.
If a user does not have read access to some data, then it is silently omitted from the reply.

The 'access-denied' error is not generated for read requests. It is only generated for write
requests to the database, or <rpc> operation execution requests.

An access request results in 1 of 2 outcomes: permit or deny

The server resolves the access request by searching the access control rules. Either an explicit
rule will apply, or the default access rights will be checked if no rule is found.

The default access rights are configurable, but usually set as follows:
o read access is permitted

o write access is denied

o exec access is permitted

The nacm:secure and nacm:very-secure extensions can be used by the YANG module author
to override the default access rights, and deny access instead. For example, the <reboot>
operation is not permitted by default.

There is a configurable 'superuser' user name. If desired, a specific user name will be
considered the 'super user' and all access control will be bypassed for this user. By default, this
is the name 'superuser’, not 'root', since root login to the SSH server is not recommended.

Page 27 Version 2.2

Yuma Quickstart Guide

4.5 Variables

The yangcli program supports variables for easier reuse and script-based operations.
There are 2 types of variables:

« file variables: the variable name is a file name, and the contents of the variable are stored in
this file.

- internal variables: the variable name is just an internal identifier, and the contents of the
variable are stored in memory

Variables are set with assignment statements. Here are some examples:

yangcli guest@localhost> $$backup = get-config source=running
yangcli guest@localhost> $$bad-data = "warn"
yangcli guest@localhost> $itf = "//interface[name='etho']"

Note that in order to assign a string value (e.g., $$bad-data = "warn" above), single or double quotes
must be used. An unquoted string will be interpreted as a command name, not a simple string value.

Variables are referenced in a similar manner, except the variable is on the right-hand side of the
equation. These commands are equivalent in this example:

yangcli guest@localhost> @myfile.xml
yangcli guest@localhost> @myfile.xml

xget select=$itf
xget //interface[name='eth0']

Complex variable substitution is also supported:

yangcli guest@localhost> copy-config source=$$backup
target=candidate

Note that yangcli will attempt to figure out the structure of the parameter (e.q., 'source' and 'target’
above), and adjust the NETCONF operation content. In the example above, since 'source' and 'target'
are choices, the real nodes within the cases are examined, and the most appropriate case is selected.
The 'source' parameter will contain an in-line <config> element with all the child nodes in the
$$backup variable, and the target parameter will contain an empty element named <candidate>.

There are several types of internal variables available in the yangcli program:
« read-only system variables ($$USER)
« read-write system variables ($$default-operation)
« global user variables, available at all 'runstack' levels ($$backup)

Page 28 Version 2.2

Yuma Quickstart Guide

- local user variables available in the current 'runstack’ level only ($itf)

The command 'show vars' can be used to see the current value of all program variables:

yangcli andy@localhost> show vars
No CLI variables
Read-only system variables

HOME /home/guest

HOSTNAME

LANG en US.UTF-8

PWD /home/guest

SHELL /bin/bash

USER guest

YUMA DATAPATH

YUMA HOME /home/guest/swdev/yuma/trunk/netconf
YUMA MODPATH

YUMA RUNPATH

Read-write system variables

autocomp true
autoload true
bad-data check
default-module
default-operation none
display-mode plain
error-option none
fixorder true
log-level info
optional false
server

test-option none
timeout 30

user guest
with-defaults none

No global variables
No local variables

yangcli guest@localhost>

4.6 Scripts

Scripts are simply a collection of yangcli commands and/or assignment statements that are stored in a
text file, instead of typed directly. Scripts can call other scripts (except loops are not allowed), and
numbered parameters are available (e.g., --P1='fred' passed as parameter, the $1 expands to 'fred'
inside the script).

The $YUMA_RUNPATH environment variable, or the --runpath configuration variable, can be used to
set the directory path to look for script files. There is also a default path for finding files, explained in
the Yuma Tools User Manual.

Page 29 Version 2.2

Yuma Quickstart Guide

The command 'list scripts' can be used to show the potential script file available in the run path.
The command 'run foo' is used to invoke a script named 'foo' (with no file extension).

If a command fails during a script, execution is halted right away and no more commands in the script
are executed. If 'get-locks' was used, then any locks obtained will be automatically released. All script
runstack levels will be canceled, not just the current script.

Script syntax will be expanded in a future release to provide loops and conditional statements.

5 toaster.yang

The toaster.yang module is included here for reference.

module toaster {
namespace "http://netconfcentral.com/ns/toaster";
prefix "toast";

organization
"Netconf Central, Inc.";

contact
"Andy Bierman <andy@netconfcentral.org>";

description
"YANG version of the TOASTER-MIB.";

revision 2009-11-20 {
description "Toaster module in progress.";

}
identity toast-type {
description
"Base for all bread types supported by the toaster.
New bread types not listed here nay be added in the
future.";
}
identity white-bread {
description
"White bread.";
base toast:toast-type;
}

identity wheat-bread {
description
"Wheat bread.";
base toast-type;

}
identity wonder-bread {
description
"Wonder bread.";
base toast-type;
}

Page 30 Version 2.2

Page 31

Yuma Quickstart Guide

identity frozen-waffle {
description
"Frozen waffle.";
base toast-type;
}

identity frozen-bagel {
description
"Frozen bagel.";
base toast-type;

}
identity hash-brown {
description
"Hash browned potatos.";
base toast-type;
}

typedef DisplayString {
description
"YANG version of the SMIv2 DisplayString TEXTUAL-
CONVENTION.";
reference "RFC 2579, section 2.";
type string {
length "0 .. 255";

}
}
container toaster {
presence
"Indicates the toaster service is available";
description

"Top-level container for all toaster database objects.";

leaf toasterManufacturer {
type DisplayString;
config false;
mandatory true;
description
"The name of the toaster's manufacturer. For instance,
Microsoft Toaster.";

}

leaf toasterModelNumber {
type DisplayString;
config false;
mandatory true;
description
"The name of the toaster's model. For instance,
Radiant Automatic.";

}

leaf toasterStatus {
type enumeration {
enum up {
value 1;
description
"The toaster knob position is up.
No toast is being made now.";
}
enum down {
value 2;

Version 2.2

Page 32

Yuma Quickstart Guide

description
"The toaster knob position is down.
Toast is being made now.";

}

config false;

mandatory true;

description
"This variable indicates the current state of
the toaster.";

}

rpc make-toast {
description
"Make some toast.
The toastDone notification will be sent when
the toast is finished.
An 'in-use' error will be returned if toast
is already being made.
A 'resource-denied' error will be returned
if the toaster service is disabled.";
input {
leaf toasterDoneness {
type uint32 {
range "1 .. 10";
}

default 5;
description
"This variable controls how well-done is the
ensuing toast. It should be on a scale of 1 to
10.
Toast made at 10 generally is considered unfit
for human consumption; toast made at 1 is warmed
lightly.";
}
leaf toasterToastType {
type identityref {
base toast:toast-type;

default toast:wheat-bread;

description
"This variable informs the toaster of the type of
material that is being toasted. The toaster
uses this information, combined with
toasterDoneness, to compute for how
long the material must be toasted to achieve
the required doneness.";

}
}
}
rpc cancel-toast {
description
"Stop making toast, if any is being made.
A 'resource-denied' error will be returned
if the toaster service is disabled.";
}
notification toastDone {

description
"Indicates that the toast in progress has completed.";

Version 2.2

Page 33

Yuma Quickstart Guide

leaf toastStatus {
description

"Indicates the final toast status";

type enumeration {
enum done {
description

"The toast is done.";

}
enum cancelled {
description

"The toast was cancelled.";

}
enum error {
description

"The toaster service was disabled or
the toaster is broken.";

/***

Original TOASTER-MIB
TOASTER-MIB DEFINITIONS ::= BEGIN

IMPORTS
enterprises
FROM RFC1155-SMI
OBJECT-TYPE
FROM RFC-1212
DisplayString
FROM RFC-1213;

epilogue OBJECT IDENTIFIER ::
toaster OBJECT IDENTIFIER ::

toasterManufacturer OBJECT-TYPE
SYNTAX DisplayString
ACCESS read-only
STATUS mandatory
DESCRIPTION

{enterprises 12}
{epilogue 2}

"The name of the toaster's manufacturer. For instance,

Microsoft Toaster."
i:= {toaster 1}

toasterModelNumber OBJECT-TYPE
SYNTAX DisplayString
ACCESS read-only
STATUS mandatory
DESCRIPTION

"The name of the toaster's model. For instance,

Radiant Automatic."
::= {toaster 2}

toasterControl OBJECT-TYPE
SYNTAX INTEGER {up (1), down (2)}
ACCESS read-write
STATUS mandatory

Version 2.2

Page 34

Yuma Quickstart Guide

DESCRIPTION

"This variable controls the current state of the toaster.
To begin toasting, set it to down (2). To abort toasting

(perhaps in the event of an emergency), set it to up (2)."
::= {toaster 3}

toasterDoneness OBJECT-TYPE

SYNTAX INTEGER (1..10)

ACCESS read-write

STATUS mandatory

DESCRIPTION
"This variable controls how well-done is the
ensuing toast. It should be on a scale of 1 to 10.
Toast made at 10 generally is considered unfit
for human consumption; toast made at 1 is warmed
lightly."

::= {toaster 4}

toasterToastType OBJECT-TYPE
SYNTAX INTEGER {
white-bread (1)
wheat-bread (2)
wonder-bread (3
frozen-waffle (
frozen-bagel (5
hash-brown (6),
other (7)
}
ACCESS read-write
STATUS mandatory
DESCRIPTION

"This variable informs the toaster of the type of
material that is being toasted. The toaster
uses this information, combined with
toasterToastDoneness, to compute for how
long the material must be toasted to achieve
the required doneness."

::= {toaster 5}

),
4),
),

END

***/

}

Version 2.2

	1 Preface
	1.1 Legal Statements
	1.2 Additional Resources
	1.2.1 WEB Sites
	1.2.2 Mailing Lists

	1.3 Conventions Used in this Document

	2 Introduction
	2.1 Intended Audience
	2.2 What is NETCONF and YANG?
	2.3 How Does an Operator Use NETCONF and YANG?
	2.4 How Does a Developer Use NETCONF and YANG?

	3 Getting Started with toaster.yang
	3.1 What is libtoaster?
	3.2 Start the netconfd server
	3.2.1 Configuration Defaults
	3.2.2 SSH Server
	3.2.3 NETCONF Server

	3.3 Start the yangcli client
	3.3.1 Configuration Defaults
	3.3.2 Run yangcli
	3.3.3 Startup Screen
	3.3.4 Command Line Editing
	3.3.5 Escape Commands

	3.4 Getting Context Sensitive Help
	3.4.1 Tab Key for Command Completion
	3.4.2 The '?' and '??' Escape Sequences
	3.4.3 The 'help' Command

	3.5 Start a NETCONF session
	3.5.1 The connect Command
	3.5.2 Fixing Connection Problems

	3.6 Enable Notification Delivery
	3.7 Load the Toaster Module
	3.8 Enable the Toaster
	3.8.1 Lock the Databases
	3.8.2 Create the toaster Container
	3.8.3 Save the Database Changes
	3.8.4 Unlock the Databases

	3.9 Get the Toaster State Information
	3.10 Start Making Toast
	3.11 Stop Making Toast
	3.12 Close the NETCONF Session

	4 Advanced Topics
	4.1 Data Retrieval
	4.1.1 Basic NETCONF Retrieval Operations
	4.1.2 Default Value Filtering
	4.1.3 Special Retrieval Operations

	4.2 Notifications
	4.2.1 Notification Contents
	4.2.2 Notification Replay
	4.2.3 The interleave capability

	4.3 Database Editing
	4.3.1 The Target Database
	4.3.2 Database Locking
	4.3.3 Non-Volatile Storage
	4.3.4 Editing Commands

	4.4 Access Control
	4.5 Variables
	4.6 Scripts

	5 toaster.yang

