
Slides by: Ms. Shree Jani‐ Jaswal

Chapter 6
Slides by:Ms. Shree Jani-Jaswal 1

Usability, Testing & Quality
Topics to be covered:

Usability principles
User interface evaluating user interfaces
Testing & quality strategies
Defects
Test cases & test plan
Inspections
Quality assurance

Chapter 6
Slides by:Ms. Shree Jani-Jaswal 2

Chapter 6
Slides by:Ms. Shree Jani-Jaswal 3

User Centred Design

Software development should focus on the needs of users
Understand your users
Design software based on an understanding of the
users’ tasks
Ensure users are involved in decision making processes
Design the user interface following guidelines for good
usability
Have users work with and give their feedback about
prototypes, on‐line help and draft user manuals

Chapter 6
Slides by:Ms. Shree Jani-Jaswal 4

The importance of focusing on users
Reduced training and support costs
Reduced time to learn the system
Greater efficiency of use
Reduced costs by only developing features that are needed
Reduced costs associated with changing the system later
Better prioritizing of work for iterative development
Greater attractiveness of the system, so users will be more
willing to buy and use it

Chapter 6
Slides by:Ms. Shree Jani-Jaswal 5

Characteristics of Users
Software engineers must develop an understanding of

the users
Goals for using the system
Potential patterns of use
Demographics
Knowledge of the domain and of computers
Physical ability
Psychological traits and emotional feelings

Chapter 6
Slides by:Ms. Shree Jani-Jaswal 6

Basics of User Interface Design
User interface design should be done in conjunction with
other software engineering activities.
Do use case analysis to help define the tasks that the UI
must help the user perform.
Do iterative UI prototyping to address the use cases.
Results of prototyping will enable you to finalize the
requirements.

Chapter 6
Slides by:Ms. Shree Jani-Jaswal 7

Usability vs. Utility
Does the system provide the raw capabilities to allow

the user to achieve their goal?
This is utility.

Does the system allow the user to learn and to use the
raw capabilities easily?

This is usability.
Both utility and usability are essential
They must be measured in the context of particular types
of users.

Chapter 6
Slides by:Ms. Shree Jani-Jaswal 8

Aspects of usability
Usability can be divided into separate aspects:

Learnability
The speed with which a new user can become
proficient with the system.

Efficiency of use
How fast an expert user can do their work.

Error handling
The extent to which it prevents the user from making
errors, detects errors, and helps to correct errors.

Acceptability.
The extent to which users like the system.

Chapter 6
Slides by:Ms. Shree Jani-Jaswal 9

Different learning curves

Chapter 6
Slides by:Ms. Shree Jani-Jaswal 10

Some basic terminology of user
interface design

Dialog: A specific window with which a user can
interact, but which is not the main UI window.
Control or Widget: Specific components of a user
interface.
Affordance: The set of operations that the user can do
at any given point in time.
State: At any stage in the dialog, the system is
displaying certain information in certain widgets, and
has a certain affordance. Taken together these are
system’s user interface state
Mode: A situation in which the UI restricts what the
user can do.

Chapter 6
Slides by:Ms. Shree Jani-Jaswal 11

Some basic terminology of user interface
design

Modal dialog: A dialog in which the system is in a very
restrictive mode. The user cannot interact with any
other window until he or she has dismissed the modal
dialog.
Feedback: The response from the system whenever the
user does something, is called feedback.
Encoding techniques. Ways of encoding information
so as to communicate it to the user.

Chapter 6
Slides by:Ms. Shree Jani-Jaswal 12

Usability Principles
1. Do not rely only on usability guidelines – always
test with users.

Usability guidelines have exceptions; you can only be confident
that a UI is good if you test it successfully with users.

2: Base UI designs on users’ tasks.
Perform use case analysis to structure the UI.

3: Ensure that the sequences of actions to achieve a
task are as simple as possible.

Reduce the amount of reading and manipulation the user has to
do.
Ensure the user does not have to navigate anywhere to do
subsequent steps of a task.

Chapter 6
Slides by:Ms. Shree Jani-Jaswal 13

Usability Principles
4: Ensure that the user always knows what he or she
can and should do next.

Ensure that the user can see what commands are available
and are not available.
Make the most important commands stand out.

5: Provide good feedback including effective error
messages.

Inform users of the progress of operations and of their
location as they navigate.
When something goes wrong explain the situation in
adequate detail and help the user to resolve the problem.

Chapter 6
Slides by:Ms. Shree Jani-Jaswal 14

Usability Principles
6: Ensure that the user can always get out, go back
or undo an action.

Ensure that all operations can be undone.
Ensure it is easy to navigate back to where the user came
from.

7: Ensure that response time is adequate.
Users are very sensitive to slow response time

They compare your system to others.
Keep response time less than a second for most
operations.
Warn users of longer delays and inform them of progress.

Chapter 6
Slides by:Ms. Shree Jani-Jaswal 15

Usability Principles
8: Use understandable encoding techniques.

Choose encoding techniques with care.
Use labels to ensure all encoding techniques are fully
understood by users.

9: Ensure that the UI’s appearance is uncluttered.
Avoid displaying too much information.
Organize the information effectively.

Chapter 6
Slides by:Ms. Shree Jani-Jaswal 16

Usability Principles
10: Consider the needs of different groups of users.

Accommodate people from different locales and people
with disabilities.
Ensure that the system is usable by both beginners and
experts.

11: Provide all necessary help.
Organize help well.
Integrate help with the application.
Ensure that the help is accurate.

Chapter 6
Slides by:Ms. Shree Jani-Jaswal 17

Usability Principles
12. Be consistent.

Use similar layouts and graphic designs throughout your
application.
Follow look‐and‐feel standards.
Consider mimicking other applications.

Chapter 6
Slides by:Ms. Shree Jani-Jaswal 18

Some encoding techniques
Text and fonts
Icons
Photographs
Diagrams and abstract graphics
Colors
Grouping and bordering
Spoken words
Music
Other sounds
Animations and video
Flashing

Chapter 6
Slides by:Ms. Shree Jani-Jaswal 19

Example
(bad UI)

Chapter 6
Slides by:Ms. Shree Jani-Jaswal 20

Example
(better UI)

Chapter 6
Slides by:Ms. Shree Jani-Jaswal 21

Evaluating User Interfaces
I) Heuristic evaluation

1. Pick some use cases to evaluate.
2. For each window, page or dialog that appears

during the execution of the use case
Study it in detail to look for possible usability
defects.

3. When you discover a usability defect write down
the following information:

A short description of the defect.
Your ideas for how the defect might be fixed.

Chapter 6
Slides by:Ms. Shree Jani-Jaswal 22

Evaluating User Interfaces
II) Evaluation by observation of users

Select users corresponding to each of the
most important actors
Select the most important use cases
Write sufficient instructions about each of
the scenarios
Arrange evaluation sessions with users
Explain the purpose of the evaluation
Preferably videotape each session

Chapter 6
Slides by:Ms. Shree Jani-Jaswal 23

Evaluating User Interfaces
Converse with the users as they are
performing the tasks
When the users finish all the tasks, de‐
brief them
Take note of any difficulties experienced
by the users
Formulate recommended changes

Chapter 6
Slides by:Ms. Shree Jani-Jaswal 24

Implementing a Simple GUI in Java
The Abstract Window Toolkit (AWT)

Component: the basic building blocks of any graphical
interface.

Button, TextField, List, Label, ScrollBar.
Container: contain the components constituting the GUI

Frame, Dialog and Panel
LayoutManager: define the way components are laid out
in a container.

GridLayout, BorderLayout

Chapter 6
Slides by:Ms. Shree Jani-Jaswal 25

Example

Chapter 6
Slides by:Ms. Shree Jani-Jaswal 26

public class ClientGUI extends Frame implements ChatIF
{

private Button closeB = new Button("Close");
private Button openB = new Button("Open");
private Button sendB = new Button("Send");
private Button quitB = new Button("Quit");
private TextField portTxF = new TextField("12345");
private TextField hostTxF = new TextField("localhost");
private TextField message = new TextField();
private Label portLB = new Label("Port: ", Label.RIGHT);
private Label hostLB = new Label("Host: ", Label.RIGHT);
private Label messageLB = new Label("Message: ",

Label.RIGHT);
private List messageList = new List();

...
}

Example

Chapter 6
Slides by:Ms. Shree Jani-Jaswal 27

public ClientGUI(String host, int port)
{

super("Simple Chat");
setSize(300,400);
setVisible(true);
setLayout(new BorderLayout(5,5));
Panel bottom = new Panel();
add("Center", messageList);
add("South", bottom);
bottom.setLayout(new GridLayout(5,2,5,5))
bottom.add(hostLB);
bottom.add(hostTxF);
bottom.add(portLB);
bottom.add(portTxF);
bottom.add(messageLB);
bottom.add(message);
bottom.add(openB);
bottom.add(sendB);
bottom.add(closeB);
bottom.add(quitB);
...

}

Example

Chapter 6
Slides by:Ms. Shree Jani-Jaswal 28

sendB.addActionListener(new ActionListener()
{

public void actionPerformed(ActionEvent e)
{

send();
}

});
}

public void send()
{

try
{

client.sendToServer(message.getText());
}
catch (Exception ex)
{

messageList.add(ex.toString());
messageList.makeVisible(messageList.getItemCount()-1);
messageList.setBackground(Color.yellow);

}
}

Difficulties and Risks in UI Design
Users differ widely
Resolution:

Account for differences among users when you design the
system.
Design it for internationalization.
When you perform usability studies, try the system with
many different types of users.

User interface implementation technology changes
rapidly
Resolution:

Stick to simpler UI frameworks widely used by others.
Avoid fancy and unusual UI designs involving specialized
controls that will be hard to change.

Chapter 6
Slides by:Ms. Shree Jani-Jaswal 29

Difficulties and Risk in UI design
User interface design and implementation can often
take the majority of work in an application:
Resolution:

Make UI design an integral part of the software engineering
process.
Allocate time for many iterations of prototyping and evaluation.

Developers often underestimate the weaknesses of a
GUI
Resolution:

Ensure all software engineers have training in UI development.
Always test with users.
Study the UIs of other software.

Chapter 6
Slides by:Ms. Shree Jani-Jaswal 30

Chapter 6
Slides by:Ms. Shree Jani-Jaswal 31

Basic definitions
A failure is an unacceptable behaviour exhibited by a system

The frequency of failures measures the reliability
An important design objective is to achieve a very low
failure rate and hence high reliability.
A failure can result from a violation of an explicit or implicit
requirement

A defect is a flaw in any aspect of the system that contributes,
or may potentially contribute, to the occurrence of one or
more failures

It might take several defects to cause a particular failure
An error is a slip‐up or inappropriate decision by a software
developer that leads to the introduction of a defect

Chapter 6
Slides by:Ms. Shree Jani-Jaswal 32

Effective and Efficient Testing
To test effectively, you must use a strategy that uncovers

as many defects as possible.
To test efficiently, you must find the largest possible

number of defects using the fewest possible tests
Testing is like detective work:

The tester must try to understand how programmers
and designers think, so as to better find defects.
The tester must not leave anything uncovered, and
must be suspicious of everything.
It does not pay to take an excessive amount of time;
tester has to be efficient.

Chapter 6
Slides by:Ms. Shree Jani-Jaswal 33

Black-box testing
Testers provide the system with inputs and observe the

outputs
They can see none of:

The source code
The internal data
Any of the design documentation describing the system’s
internals

Chapter 6
Slides by:Ms. Shree Jani-Jaswal 34

Glass-box testing
Also called ‘white‐box’ or ‘structural’ testing
Testers have access to the system design

They can
Examine the design documents
View the code
Observe at run time the steps taken by algorithms and their
internal data

Individual programmers often informally employ glass‐
box testing to verify their own code

Chapter 6
Slides by:Ms. Shree Jani-Jaswal 35

Equivalence classes
It is a black‐box testing method
It is inappropriate to test by brute force, using every possible
input value

Takes a huge amount of time
Is impractical
Is pointless!

You should divide the possible inputs into groups which you
believe will be treated similarly by all algorithms.

Such groups are called equivalence classes.
A tester needs only to run one test per equivalence class
The tester has to

understand the required input,
appreciate how the software may have been designed

Chapter 6
Slides by:Ms. Shree Jani-Jaswal 36

Examples of equivalence classes
Example: to test a Java method validMonth that
takes an int argument which is supposed to
correspond to a valid month.

The method returns true if the input is in range
1 to 12 inclusive & false otherwise
So Equivalence classes are: [‐∞..0], [1..12], [13..
∞]
Valid input is a month number (1‐12)

Chapter 6
Slides by:Ms. Shree Jani-Jaswal 37

Combinations of equivalence
classes

Combinatorial explosion means that you cannot
realistically test every possible system‐wide equivalence
class.

If there are 4 inputs with 5 possible values there are 54 (i.e. 625)
possible system‐wide equivalence classes.

You should first make sure that at least one test is run with
every equivalence class of every individual input.
You should also test all combinations where an input is
likely to affect the interpretation of another.
You should test a few other random combinations of
equivalence classes.

Chapter 6
Slides by:Ms. Shree Jani-Jaswal 38

Example equivalence class combinations
Designing a system that is to contain info about all
kinds of land vehicles, including passenger vehicles &
racing vehicles

Such a system might require the user to enter
specifications of a new type of vehicle
Your job is to divide this system into equivalence classes
for testing

Chapter 6
Slides by:Ms. Shree Jani-Jaswal 39

Example equivalence class
combinations

One valid input is either ‘Metric’ or ‘US/Imperial’
Equivalence classes are:

Metric, US/Imperial, Other
Another valid input is maximum speed: 1 to 750 km/h or
1 to 500 mph

Validity depends on whether metric or US/imperial
Equivalence classes are:

[‐∞..0], [1..500], [501..750], [751.. ∞]
Some test combinations

Metric, [1..500] valid
US/Imperial, [501..750] invalid
Metric, [501..750] valid
Metric, [501..750] valid

Chapter 6
Slides by:Ms. Shree Jani-Jaswal 40

Testing at boundaries of
equivalence classes

More errors in software occur at the boundaries of
equivalence classes
The idea of equivalence class testing should be expanded
to specifically test values at the extremes of each
equivalence class

E.g. The number 0 often causes problems

E.g.: If the valid input is a month number (1‐12)
Test equivalence classes as before
Test 0, 1, 12 and 13 as well as very large positive and negative
values

Chapter 6
Slides by:Ms. Shree Jani-Jaswal 41

Detecting specific categories of
defects

A tester must try to uncover any defects the other
software engineers might have introduced.

This means designing tests that explicitly try to catch a
range of specific types of defects that commonly occur

Chapter 6
Slides by:Ms. Shree Jani-Jaswal 42

A: Defects in Ordinary
Algorithms
1. Incorrect logical conditions

Defect:
The logical conditions that govern looping and if‐then‐else
statements are wrongly formulated.

Testing strategy:
Use equivalence class and boundary testing.
Consider as an input each variable used in a rule or logical
condition.

Chapter 6
Slides by:Ms. Shree Jani-Jaswal 43

Example of incorrect logical
conditions defect

What is the hard‐to‐find defect in the following code?
An aircraft’s alarm is supposed to sound if the landing gear
is not deployed when the aircraft is close to the ground.
The specifications might state this as follows:

The landing gear must be deployed whenever the plane is within 2
minutes from landing or takeoff, or within 2000 feet from the
ground. If visibility is less than 1000 feet, then the landing gear
must be deployed whenever the plane is within 3 minutes from
landing or lower than 2500 feet

Chapter 6
Slides by:Ms. Shree Jani-Jaswal 44

Chapter 6
Slides by:Ms. Shree Jani-Jaswal

45

if(!landingGearDeployed &&
(min(now-

takeoffTime,estLandTime-
now))<

(visibility < 1000 ?
180 :120) ||

relativeAltitude <
(visibility < 1000 ?

2500 :2000)
)

{
throw

new
LandingGearException();
}

Ground
< 2 mins

2 - 3 mins after or prior
to takeoff

altitude
< 2000 ft

altitude 2000 - 2500 ft

visibility < 1000 ft

a

b

c

f

g

i

d

h

j

e

Defects in Ordinary Algorithms
2. Performing a calculation in the wrong part of a

control construct
Defect:

The program performs an action when it should not, or does not
perform an action when it should.
Typically caused by inappropriately excluding or including the
action from a loop or a if construct.

Testing strategies:
Design tests that execute each loop zero times, exactly once, and
more than once.
Anything that could happen while looping is made to occur on
the first, an intermediate, and the last iteration.
This kind of defect may be reliably caught by glass‐box testing

Chapter 6
Slides by:Ms. Shree Jani-Jaswal 46

Example of performing a
calculation in the wrong part of
a control construct

Chapter 6
Slides by:Ms. Shree Jani-Jaswal 47

while(j<maximum)
{

k=someOperation(j);
j++;

}
if(k==-1) signalAnError();

Defects in Ordinary Algorithms
3. Not terminating a loop or recursion

Defect:
A loop or a recursion does not always terminate, i.e. it
is ‘infinite’.

Testing strategies:
Analyse what causes a repetitive action to be stopped.
Run test cases that you anticipate might not be
handled correctly.

Eg: in a program for counting total no of atoms in a
complex organic molecule, it must be tested if the
program goes into infinite loop due to circular
molecular structures

Chapter 6
Slides by:Ms. Shree Jani-Jaswal 48

Defects in Ordinary Algorithms
4. Not setting up the correct preconditions for an

algorithm
Defect:

Preconditions: state what must be true before the
algorithm should be executed.
A defect would exist if a program proceeds to do its
work, even when the preconditions are not satisfied.

Testing strategy:
Run test cases in which each precondition is not
satisfied.
Preferably its i/p values are just beyond what the
algorithm can accept

Chapter 6
Slides by:Ms. Shree Jani-Jaswal 49

Defects in Ordinary Algorithms
5. Not handling null conditions

Defect:
A null condition is a situation where there normally are
one or more data items to process, but sometimes there
are none.
It is a defect when a program behaves abnormally when
a null condition is encountered.

Testing strategy:
Determine all possible null conditions & run test cases
that would highlight any inappropriate behaviour.

Eg: divide by zero error
Chapter 6
Slides by:Ms. Shree Jani-Jaswal 50

Defects in Ordinary Algorithms
6. Not handling singleton or non‐singleton conditions

Defect:
A singleton condition occurs when there is normally more
than one of something, but sometimes there is only one.
A non‐singleton condition is the inverse.
Defects occur when the unusual case is not properly
handled.

Testing strategy:
Brainstorm to determine unusual conditions and run
appropriate tests.

Eg: a prog is designed to randomly assign members of a sports club
into pairs who will play against each other. Does the prog do
something intelligent with the left‐over person when there are odd
no. of members.

Chapter 6
Slides by:Ms. Shree Jani-Jaswal 51

Defects in Ordinary Algorithms
7. Off‐by‐one errors

Defect:
A program inappropriately adds or subtracts one.
Or loops one too many times or one too few times.
This is a particularly common type of defect.

Testing strategy:
Develop boundary tests in which you verify that the program:

computes the correct numerical answer.
performs the correct number of iterations.

Chapter 6
Slides by:Ms. Shree Jani-Jaswal 52

Example of off-by-one defect

Chapter 6
Slides by:Ms. Shree Jani-Jaswal 53

Eg 1:
for (i=1; i<arrayname.length; i++)
{

/* do something */
}

Eg 2:
while (iterator.hasNext())
{

anOperation(++val);
}

Use Iterators to help eliminate these defects

Variable val is incremented too early so its initial value is not actually
passed to anOperation

Defects in Ordinary Algorithms
8. Operator precedence errors

Defect:
An operator precedence error occurs when a
programmer omits needed parentheses, or puts
parentheses in the wrong place.
Operator precedence errors are often extremely
obvious...

but can occasionally lie hidden until special
conditions arise.

E.g. If x*y+z should be x*(y+z) this would be hidden if
z was normally zero.

Testing:
In software that computes formulae, run tests that
anticipate such defects.

Chapter 6
Slides by:Ms. Shree Jani-Jaswal 54

Defects in Ordinary Algorithms
9. Use of inappropriate standard algorithms

Defect:
An inappropriate standard algorithm is one that is
unnecessarily inefficient or has some other property that is
widely recognized as being bad.

Testing strategies:
The tester has to know the properties of algorithms and
design tests that will determine whether any undesirable
algorithms have been implemented.

Chapter 6
Slides by:Ms. Shree Jani-Jaswal 55

Example of inappropriate
standard algorithms

An inefficient sort algorithm
The most classical ‘bad’ choice of algorithm is sorting using a
so‐called ‘bubble sort’

An inefficient search algorithm
Ensure that the search time does not increase unacceptably as
the list gets longer
Check that the position of the searched item does not have a
noticeable impact on search time.

A non‐stable sort
A search or sort that is case sensitive when it should not
be, or vice versa

Chapter 6
Slides by:Ms. Shree Jani-Jaswal 56

B: Defects in Numerical
Algorithms
1. Not using enough bits or digits

Defect:
A system does not use variables capable of
representing the largest values that could be stored.
When the capacity is exceeded, an unexpected
exception is thrown, or the data stored is incorrect.

Testing strategies:
Test using very large numbers to ensure the system
has a wide enough margin of error.

Chapter 6
Slides by:Ms. Shree Jani-Jaswal 57

Defects in Numerical
Algorithms
2. Not using enough places after the decimal point

or significant figures
Defects:

A floating point value might not have the capacity
to store enough significant figures.
A fixed point value might not store enough places
after the decimal point.
A typical manifestation is excessive rounding.

Testing strategies:
Perform calculations that involve many significant
figures, and large differences in magnitude.
Verify that the calculated results are correct.

Chapter 6
Slides by:Ms. Shree Jani-Jaswal 58

Defects in Numerical
Algorithms

3. Ordering operations poorly so errors build up
Defect:

A large number does not store enough significant figures to
be able to accurately represent the result.
This defect occurs when you do small operations on large
floating point numbers & excessive rounding or truncation
errors build up.

Testing strategies:
Make sure the program works with inputs that have large
positive and negative exponents.
Have the program work with numbers that vary a lot in
magnitude.
Make sure computations are still accurately performed.Chapter 6

Slides by:Ms. Shree Jani-Jaswal 59

Defects in Numerical
Algorithms

4. Assuming a floating point value will be exactly
equal to some other value
Defect:

If you perform an arithmetic calculation on a
floating point value, then the result will very rarely
be computed exactly.
To test equality, you should always test if it is within
a small range around that value.

Testing strategies:
Standard boundary testing should detect this type
of defect.

Chapter 6
Slides by:Ms. Shree Jani-Jaswal 60

Example of defect in testing
floating value equality

Chapter 6
Slides by:Ms. Shree Jani-Jaswal 61

for (double d = 0.0; d != 10.0; d+=2.0) {...}

for (double d = 0.0; d < 10.0; d+=2.0) {...}

Better:

Bad:

C: Defects in Timing and Co-
ordination
1. Deadlock and livelock

Defects:
A deadlock is a situation where two or more threads are
stopped, waiting for each other to do something.

The system is hung
Livelock is similar, but now the system can do some
computations, but can never get out of some states.

Chapter 6
Slides by:Ms. Shree Jani-Jaswal 62

Example of deadlock

Chapter 6
Slides by:Ms. Shree Jani-Jaswal 63

A:Thread O: P: B:Thread

lock

lock

waiting
to lock O:

waiting
to lock P:

Defects in Timing and Co-
ordination
Deadlock and livelock

Testing strategies:
Deadlocks and livelocks occur due to unusual combinations of
conditions that are hard to anticipate or reproduce.
It is often most effective to use inspection to detect such
defects, rather than testing alone.
However, when doing black‐box testing:

Vary the time consumption of different threads.
Run a large number of threads concurrently.
Deliberately deny resources to one or more threads.

If its cost is justifiable, glass‐box testing is one of the best ways
to uncover these defects

Chapter 6
Slides by:Ms. Shree Jani-Jaswal 64

Defects in Timing and Co-
ordination
2. Critical races

Defects:
One thread experiences a failure because another thread
interferes with the ‘normal’ sequence of events.

Testing strategies:
It is particularly hard to test for critical races using black box
testing alone.
One possible, although invasive, strategy is to deliberately
slow down one of the threads.
Use inspection.

Chapter 6
Slides by:Ms. Shree Jani-Jaswal 65

Example of critical race

Chapter 6
Slides by:Ms. Shree Jani-Jaswal 66

A:Thread Data: B:Thread

get

set

A:Thread Data: B:Thread

get

set

a) Normal b) Abnormal due to delay in thread A

Semaphore and
synchronization

Critical races can be prevented by locking data so that
they cannot be accessed by other threads when they are
not ready

One widely used locking mechanism is called a
semaphore.
In Java, the synchronized keyword can be used.

It ensures that no other thread can access an object until the
synchronized method terminates.

Chapter 6
Slides by:Ms. Shree Jani-Jaswal 67

Example of a synchronized
method

Chapter 6
Slides by:Ms. Shree Jani-Jaswal 68

A:Thread Data: B:Thread

get

get

a) Abnormal: The value put by
 thread A is immediately
 overwritten by the value put
 by thread B.

put
calc

put
calc

A:Thread Data: B:Thread

get

get

put
calc

put
calc

waiting for A:
to complete its
synchronized
operation

b) The problem has been solved
 by accessing the data using
 synchronized methods

D: Defects in Handling Stress
and Unusual Situations
1. Insufficient throughput or response time on

minimal configurations
Defect:

On a minimal configuration, the system’s
throughput or response time fail to meet
requirements.

Testing strategy:
Perform testing using minimally configured
platforms.

Chapter 6
Slides by:Ms. Shree Jani-Jaswal 69

Defects in Handling Stress and Unusual
Situations

2. Incompatibility with specific configurations of
hardware or software
Defect:

The system works properly with particular
configurations of hardware, operating systems and
external libraries but fails if it is run using other
configurations

Testing strategy:
Extensively execute the system with all possible
configurations that might be encountered by users.

Eg: a system might fail if a different graphics card is
installed. Chapter 6

Slides by:Ms. Shree Jani-Jaswal 70

Defects in Handling Stress and Unusual
Situations
3. Defects in handling peak loads or missing resources

Defects:
The system does not gracefully handle resource
shortage.
Resources that might be in short supply include:

memory, disk space or network bandwidth,
permission.

The program being tested should report the problem in
a way the user will understand.

Testing strategies:
Devise a method of denying the resources.
Run a very large number of copies of the program being
tested, all at the same time.

Chapter 6
Slides by:Ms. Shree Jani-Jaswal 71

Defects in Handling Stress and Unusual
Situations
4. Inappropriate management of resources

Defect:
A program uses certain resources but does not make
them available when it no longer needs them.
A memory leak is a special case of inappropriate
management of resources

Testing strategy:
Run the program intensively in such a way that it uses
many resources, relinquishes them and then uses them
again repeatedly.

Eg: a program might open many files, but not close them so as to
enable other programs to open them.

Chapter 6
Slides by:Ms. Shree Jani-Jaswal 72

Defects in Handling Stress and
Unusual Situations
5. Defects in the process of recovering from a crash

Defects:
Any system will undergo a sudden failure if its
hardware fails, or if its power is turned off.
It is a defect if the system is left in an unstable state
and hence is unable to fully recover.
It is also a defect if a system does not correctly deal
with the crashes of related systems.

Testing strategies:
Kill a program at various times during execution.
Try turning the power off, however operating systems
themselves are often intolerant of doing that.

Chapter 6
Slides by:Ms. Shree Jani-Jaswal 73

E: Documentation defects
Defect:

The software has a defect if the user manual, reference manual
or on‐line help:

gives incorrect information
fails to give information relevant to a problem.

Testing strategy:
Examine all the end‐user documentation, making sure it is
correct.
Work through the use cases, making sure that each of them is
adequately explained to the user.

Chapter 6
Slides by:Ms. Shree Jani-Jaswal 74

Writing Formal Test Cases and
Test Plans

A test case is an explicit set of instructions designed to
detect a particular class of defect in a software system.

A test case can give rise to many tests.
Each test is a particular running of the test case on a
particular version of the system.

Chapter 6
Slides by:Ms. Shree Jani-Jaswal 75

Test plans
A test plan is a document that contains a complete set of test

cases for a system
Along with other information about the testing process.

The test plan is one of the standard forms of documentation.
If a project does not have a test plan:

Testing will inevitably be done in an ad‐hoc manner.
Leading to poor quality software.

The test plan should be written long before the testing starts.
You can start to develop the test plan once you have
developed the requirements.

Chapter 6
Slides by:Ms. Shree Jani-Jaswal 76

Information to include in a
formal test case
A. Identification and classification:

Each test case should have a number, and may also be
given a descriptive title.
The system, subsystem or module being tested should
also be clearly indicated.
The importance of the test case should be indicated.

B. Instructions:
Tell the tester exactly what to do.
The tester should not normally have to refer to any
documentation in order to execute the instructions.

Chapter 6
Slides by:Ms. Shree Jani-Jaswal 77

Information to include in a formal test
case

C. Expected result:
Tells the tester what the system should do in response
to the instructions.
The tester reports a failure if the expected result is not
encountered.

D. Cleanup (when needed):
Tells the tester how to make the system go ‘back to
normal’ or shut down after the test.

Chapter 6
Slides by:Ms. Shree Jani-Jaswal 78

Levels of importance of test
cases

Level 1:
First pass critical test cases.
Designed to verify the system runs and is safe.
No further testing is possible.

Level 2:
General test cases.
Verify that day‐to‐day functions correctly.
Still permit testing of other aspects of the system.

Level 3:
Detailed test cases.
Test requirements that are of lesser importance.
The system functions most of the time but has not yet met
quality objectives.

Chapter 6
Slides by:Ms. Shree Jani-Jaswal 79

Determining test cases by
enumerating attributes

It is important that the test cases test every aspect of
the requirements.

Each detail in the requirements is called an attribute.
An attribute can be thought of as something that is
testable.
A good first step when creating a set of test cases is to
enumerate the attributes.
A way to enumerate attributes is to circle all the
important points in the requirements document.

However there are often many attributes that are implicit.

Chapter 6
Slides by:Ms. Shree Jani-Jaswal 80

Strategies for Testing Large
Systems
Big bang testing versus integration testing

In big bang testing, you take the entire system and test it
as a unit
A better strategy in most cases is incremental testing:

You test each individual subsystem in isolation
Continue testing as you add more and more
subsystems to the final product
Incremental testing can be performed horizontally
or vertically, depending on the architecture

Chapter 6
Slides by:Ms. Shree Jani-Jaswal 81

Strategies for Testing Large
Systems

Horizontal testing can be used when the system is
divided into separate sub‐applications
There are several strategies for vertical incremental
testing:

Top‐down
Bottom‐up
sandwich

Chapter 6
Slides by:Ms. Shree Jani-Jaswal 82

Top down testing
Start by testing just the user interface.
The underlying functionality are simulated by stubs.

Pieces of code that have the same interface as the
lower level functionality.
Do not perform any real computations or
manipulate any real data.

Then you work downwards, integrating lower and lower
layers.
The big drawback to top down testing is the cost of
writing the stubs.

Chapter 6
Slides by:Ms. Shree Jani-Jaswal 83

Bottom-up testing
Start by testing the very lowest levels of the software.
You needs drivers to test the lower layers of software.

Drivers are simple programs designed specifically
for testing that make calls to the lower layers.

Drivers in bottom‐up testing have a similar role to stubs in
top‐down testing, and are time‐consuming to write.

Chapter 6
Slides by:Ms. Shree Jani-Jaswal 84

Sandwich testing
Sandwich testing is a hybrid between bottom‐up and top
down testing.
Test the user interface in isolation, using stubs.
Test the very lowest level functions, using drivers.
When the complete system is integrated, only the middle
layer remains on which to perform the final set of tests.

Chapter 6
Slides by:Ms. Shree Jani-Jaswal 85

Vertical strategies for incremental integration
testing

Chapter 6
Slides by:Ms. Shree Jani-Jaswal 86

stub stub stub

UI Layer

stub stub stub

UI Layer

Functional layer

UI Layer

Functional layer

Database
layer

Network
layer

Functional layer

Database
layer

Network
layer

driver driverdriver

Database
layer

Network
layer

driver driverdriver

stub stub stub

UI Layer

Top-down testing Bottom-up testing Sandwich testing

Database
layer

Network
layer

driver driverdriver

Fully
integrated

system

The test-fix-test cycle
When a failure occurs during testing:

Each failure report is entered into a failure tracking
system.
It is then screened and assigned a priority.
Low‐priority failures might be put on a known bugs list
that is included with the software’s release notes.
Some failure reports might be merged if they appear to
result from the same defects.
Somebody is assigned to investigate a failure.
That person tracks down the defect and fixes it.
Finally a new version of the system is created, ready to
be tested again.

Chapter 6
Slides by:Ms. Shree Jani-Jaswal 87

The ripple effect
There is a high probability that the efforts to remove

the defects may have actually added new defects
The maintainer tries to fix problems without fully
understanding the ramifications of the changes
The maintainer makes ordinary human errors
The system regresses into a more and more failure‐prone
state

Chapter 6
Slides by:Ms. Shree Jani-Jaswal 88

Regression testing
It tends to be far too expensive to re‐run every single test
case every time a change is made to software.
Hence only a subset of the previously‐successful test cases is
actually re‐run.
This process is called regression testing.

The tests that are re‐run are called regression tests.
Regression test cases are carefully selected to cover as much
of the system as possible.

The “law of conservation of bugs”:
The number of bugs remaining in a large system is
proportional to the number of bugs already fixed

Chapter 6
Slides by:Ms. Shree Jani-Jaswal 89

Deciding when to stop testing
All of the level 1 test cases must have been successfully
executed.
Certain pre‐defined percentages of level 2 and level 3 test
cases must have been executed successfully.
The targets must have been achieved and are maintained
for at least two cycles of ‘builds’.

A build involves compiling and integrating all the components.
Failure rates can fluctuate from build to build as:

Different sets of regression tests are run.
New defects are introduced.

Chapter 6
Slides by:Ms. Shree Jani-Jaswal 90

The roles of people involved in
testing

The first pass of unit and integration testing is called
developer testing.

Preliminary testing performed by the software developers who
do the design.

Independent testing is performed by a separate group.
They do not have a vested interest in seeing as many test cases
pass as possible.
They develop specific expertise in how to do good testing, and
how to use testing tools.

Chapter 6
Slides by:Ms. Shree Jani-Jaswal 91

Testing performed by users and
clients

Alpha testing
Performed by the user or client, but under the supervision of
the software development team.

Beta testing
Performed by the user or client in a normal work environment.
Recruited from the potential user population.
An open beta release is the release of low‐quality software to
the general population.

Acceptance testing
Performed by users and customers.
However, the customers do it on their own initiative.

Chapter 6
Slides by:Ms. Shree Jani-Jaswal 92

Inspections
An inspection is an activity in which one or more

people systematically
Examine source code or documentation, looking for
defects.
Normally, inspection involves a meeting...

Although participants can also inspect alone at their desks.

Chapter 6
Slides by:Ms. Shree Jani-Jaswal 93

Roles on inspection teams
The author
The moderator.

Calls and runs the meeting.
Makes sure that the general principles of inspection are
adhered to.

The secretary.
Responsible for recording the defects when they are
found.
Must have a thorough knowledge of software engineering.

Paraphrasers.
Step through the document explaining it in their own
words.

Chapter 6
Slides by:Ms. Shree Jani-Jaswal 94

Principles of inspecting
Inspect the most important documents of all types

code, design documents, test plans and requirements

Choose an effective and efficient inspection team
between two and five people
Including experienced software engineers

Require that participants prepare for inspections
They should study the documents prior to the meeting and
come prepared with a list of defects

Only inspect documents that are ready
Attempting to inspect a very poor document will result in
defects being missed

Chapter 6
Slides by:Ms. Shree Jani-Jaswal 95

Principles of inspecting
Avoid discussing how to fix defects

Fixing defects can be left to the author

Avoid discussing style issues
Issues like are important, but should be discussed separately

Do not rush the inspection process
A good speed to inspect is

200 lines of code per hour (including comments)
or ten pages of text per hour

Chapter 6
Slides by:Ms. Shree Jani-Jaswal 96

Principles of inspecting
Avoid making participants tired

It is best not to inspect for more than two hours at a time, or for
more than four hours a day

Keep and use logs of inspections
You can also use the logs to track the quality of the design
process

Re‐inspect when changes are made
You should re‐inspect any document or code that is changed
more than 20%

Chapter 6
Slides by:Ms. Shree Jani-Jaswal 97

A peer-review process
Managers are normally not involved

This allows the participants to express their criticisms
more openly, not fearing repercussions
The members of an inspection team should feel they are
all working together to create a better document
Nobody should be blamed

Chapter 6
Slides by:Ms. Shree Jani-Jaswal 98

Conducting an inspection
meeting

1. The moderator calls the meeting and distributes the
documents.

2. The participants prepare for the meeting in advance.
3. At the start of the meeting, the moderator explains the

procedures and verifies that everybody has prepared.
4. Paraphrasers take turns explaining the contents of the

document or code, without reading it verbatim.
Requiring that the paraphraser not be the author ensures
that the paraphraser say what he or she sees, not what the
author intended to say.

5. Everybody speaks up when they notice a defect.

Chapter 6
Slides by:Ms. Shree Jani-Jaswal 99

Inspecting compared to testing
Both testing and inspection rely on different aspects of
human intelligence.
Testing can find defects whose consequences are
obvious but which are buried in complex code.
Inspecting can find defects that relate to maintainability
or efficiency.
The chances of mistakes are reduced if both activities
are performed.

Chapter 6
Slides by:Ms. Shree Jani-Jaswal 100

Testing or inspecting, which
comes first?

It is important to inspect software before extensively
testing it.
The reason for this is that inspecting allows you to quickly
get rid of many defects.
If you test first, and inspectors recommend that redesign
is needed, the testing work has been wasted.

There is a growing consensus that it is most efficient to inspect
software before any testing is done.

Even before developer testing

Chapter 6
Slides by:Ms. Shree Jani-Jaswal 101

Chapter 6
Slides by:Ms. Shree Jani-Jaswal 102

Quality Assurance in General
Root cause analysis

Determine whether problems are caused by such factors as
Lack of training
Schedules that are too tight
Building on poor designs or reusable technology

Chapter 6
Slides by:Ms. Shree Jani-Jaswal 103

Measure quality and strive for continual
improvement
Things you can measure regarding the quality of a software

product, and indirectly of the quality of the process
The number of failures encountered by users.
The number of failures found when testing a product.
The number of defects found when inspecting a product.
The percentage of code that is reused.

More is better, but don’t count clones.

The number of questions posed by users to the help desk.
As a measure of usability and the quality of documentation.

Chapter 6
Slides by:Ms. Shree Jani-Jaswal 104

Post-mortem analysis
Looking back at a project after it is complete, or after a

release,
You look at the design and the development process
Identify those aspects which, with benefit of hindsight,
you could have done better
You make plans to do better next time

Chapter 6
Slides by:Ms. Shree Jani-Jaswal 105

Process standards
The personal software process (PSP):

Defines a disciplined approach that a developer
can use to improve the quality and efficiency of
his or her personal work.
Two of the key tenets is personally inspecting your
own work & measuring the progress you make
towards improving quality of your work.

The team software process (TSP):
Describes how teams of software engineers can
work together effectively.

Chapter 6
Slides by:Ms. Shree Jani-Jaswal 106

Process standards
The software capability maturity model
(CMM):

Contains five levels, Organizations start in level
1, and as their processes become better they can
move up towards level 5.

ISO 9000‐3:
An international standard that lists a large
number of things an organization should do to
improve their overall software process.

Chapter 6
Slides by:Ms. Shree Jani-Jaswal 107

Difficulties and Risks in Quality
Assurance

It is very easy to forget to test some aspects of a software
system:

‘running the code a few times’ is not enough.
Forgetting certain types of tests diminishes the system’s quality.

There is a conflict between achieving adequate quality
levels, and ‘getting the product out of the door’

Create a separate department to oversee QA.
Publish statistics about quality.
Build adequate time for all activities.

Chapter 6
Slides by:Ms. Shree Jani-Jaswal 108

Difficulties and Risks in Quality
Assurance

People have different abilities and knowledge when it
comes to quality

Give people tasks that fit their natural personalities.
Train people in testing and inspecting techniques.
Give people feedback about their performance in terms of

producing quality software.
Have developers and maintainers work for several months on a
testing team.

Chapter 6
Slides by:Ms. Shree Jani-Jaswal 109

Chapter 6
Slides by:Ms. Shree Jani-Jaswal 110

