JamaicaVM 6.0 — User Manual

Java Technology for Critical Embedded Systems

aicas GmbH

JamaicaVM 6.0 — User Manual: Java Technology for Critical Embedded
Systems

Published July 8, 2010.
©1999-2010 aicas GmbH, Karlsruhe. All rights reserved.

No licenses, expressed or implied, are granted with respect to any of the technology described in
this publication. aicas GmbH retains all intellectual property rights associated with the
technology described in this publication. This publication is intended to assist application
developers to develop applications only for the Jamaica Virtual Machine.

Every effort has been made to ensure that the information in this publication is accurate. aicas
GmbH is not responsible for printing or clerical errors. Although the information herein is
provided with good faith, the supplier gives neither warranty nor guarantee that the information is
correct or that the results described are obtainable under end-user conditions.

aicas GmbH phone +49 721 663 968-0
Haid-und-Neu-StraBe 18 fax +49 721 663 968-99
76131 Karlsruhe email info@aicas.com
Germany web http://www.aicas.com
aicas incorporated phone +1 203 359 5705

6 Landmark Square, Suite 400

Stamford CT 06901 email 1info@aicas.com

USA web http://www.aicas.com
aicas SARL phone +33 1 4997 1762

9 Allee de 1'Arche fax +33 1 4997 1700
92671 Paris La Defense email info@aicas.com
France web http://www.aicas.com

Java and all Java-based trademarks are registered trademarks of Oracle America, Inc. All other
brands or product names are trademarks or registered trademarks of their respective holders.
ALL IMPLIED WARRANTIES ON THIS PUBLICATION, INCLUDING IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE,
ARE LIMITED IN DURATION TO NINETY (90) DAYS FROM THE DATE OF THE
ORIGINAL RETAIL PURCHASE OF THIS PRODUCT.

Although aicas GmbH has reviewed this publication, aicas GmbH MAKES NO WARRANTY
OR REPRESENTATION, EITHER EXPRESSED OR IMPLIED, WITH RESPECT TO THIS
PUBLICATION, ITS QUALITY, ACCURACY, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. AS A RESULT, THIS PUBLICATION IS PROVIDED AS IS, AND
YOU, THE PURCHASER, ARE ASSUMING THE ENTIRE RISK AS TO ITS QUALITY AND
ACCURACY.

IN NO EVENT WILL aicas GmbH BE LIABLE FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL DAMAGES RESULTING FROM ANY DEFECT OR
INACCURACY IN THIS PUBLICATION, even if advised of the possibility of such damages.

THE WARRANTIES SET FORTH ABOVE ARE EXCLUSIVE AND IN LIEU OF ALL
OTHERS, ORAL OR WRITTEN, EXPRESSED OR IMPLIED.

Contents

Il Introduction|
I Prefacel

(1.2 Contacting aicas|.
1 hat 1 mn JamaicaVM 6.0

2 Key Features of JamaicaVM|

[2.2 Real-Time Specification for Java support
2.3 Minimal footprint| L oL
24 ROMablecodel
2.5 Nativecodesupport| oL,
2.6 Dynamic Linkingl 0o o000
2.7 Supported Platforms|

[2.7.1 Development platforms|.

[2.7.2 Target platforms|

[3.2 Installation of License Keys|
[3.3 JamaicaVM Directory Structure|
(3.4 Building and Running an Example Java Program|
34.1 HostPlatform|.
[3.4.2 Target Platform|
[3.4.3 Improving Size and Performancef.
[3.4.4 Overview of Further Examples|.

3

11

13
13
14
14

17
17
18
18
19
19
19
19
19
20
21
22

4 CONTENTS

[3.5.1 Typographic Convertions|.
[3.5.2 Argument Syntax|.

4 Tool rvi
4.1 JamaicaJavaCompiler]

4.3 Jamaica Builder — Creating Target Executables|
4.4 Jamaica ThreadMonitor — Monitoring Realtime Behaviour]. . . .

[5 Support for the Eclipse IDE|
[5.1 Plug-ininstallation|

[5.2 Setting up JamaicaVM Distributions|o 0L
[5.3 Setting Virtual Machine Parameters|
[5.4 Building applications with Jamaica Buildery

[.4.1 Gettingstarted| L oL

I Tools Usage and Guidelines|

[6 Performance Optimization|
[6.1 Creatingaprofilel
[6.1.1 Creating a profiling application|
[6.1.2 Using the profiling VM|.
[6.1.3 Dumping a profile vianetwork|
[6.1.4 Creatingamicroprofilel
[6.2 Using a profile with the Builder|.
[6.2.1 Bulding withaprofilef
[6.2.2 Building with multiple profiles|
[6.3 Interpreting the profiling output/.
[6.3.1 Formatof the profile file|
[6.3.2 Example] 0 L

(7 Reducing Footprint and Memory Usage|
1 17 Runtime Performance|
[/.1.1 Using Smart Linking|
[/.1.2 Using Compilation|
(7.2 Optimizing RAM Memory Demand|
[/.2.1 ~Measuring RAM requirements|

35
35
35
36
37

39
39
39
40
40
40
41

45

47
47
47
48
49
49
50
50
51
51
52
56

CONTENTS 5

[7.2.2 Memory for an Application’s Data Structures| 69

[7.2.3 Memory for APl librartes|. 69

[7.2.4 Memory Required for Threads| 70

[7.2.5 Memory Required for Line Numbers| 73

8 Memory Management Configuration| 75
[8.1 Configuration for soft-realtime applications| 75
(8.1.1 Initial heapsizel 75

(8.1.2 Maximum heapsize| 76

[8.1.3 Finalizer thread priority| 76

[8.1.4 Reservedmemory| 77

[8.1.5 UsingaGCthread 78

[8.1.6 Stop-the-world Garbage Collection| 78

1 Recommendations| 79

[8.2 Configuration for hard-realtime applications| 80
[8.2.1 Usage of the Memory Analyzertool| 80

[8.2.2 Building using the Memory Analyzer] 80

[8.2.3 Measuring an application’s memory requirements| 81

[8.2.4 Fine tuning the final executable application| 82

[8.2.5 Constant Garbage Collection Workl 84

[8.2.6 Comparing dynamic mode and constant GC work mode| . 85

8.277 Determination of the worst case execution time of anal- |

[location| L 86
[8.2.8 Examples| oo 86

9 Debugging Support| 89
[9.1 Enabling the Debugger Agentl 89
[9.2 Configuring the IDE to Connect to Jamaica] 90
9.3 Reference Information| 90

(10 The Real-Time Specification for Javal 93
[10.1 Realtime programming with the RTSJ| 93
[10.2 Realtime Garbage Collection| 96

1 Relaxations in JamaicaVM| 96
(10.3.1 Use of Memory Areas| 96

10.3.2 Thread Priorities| 97

(10.3.3 Runtime checks for NoHeapRealtimeThread| 97

10.3.4 ic Inmtializers| oL 97

[10.3.5 Class PhysicalMemoryManager] 98

10.4 Strict RT Mantics|. 98

6 CONTENTS

(10.4.2 Thread priorities| 98
(10.4.3 Runtime checks for NoHeapRealtimeThread] 99
[10.4.4 Static Initializers| 99
[10.4.5 Class PhysicalMemoryManager] 99

(10.5 Limitations of RTSJ Implementation| 99
(11 Realtime Programming Guidelines| 101
ML Generallot 101
[(11.2° Computational Transparency| 101
I1.2.1 Efficient Java Statementsl 102
(11.2.2 Non-Obvious Slightly Inefficient Constructs|. 104
(11.2.3 Statements Causing Implicit Memory Allocation| 105
(11.2.4 Operations Causing Class Initialization| 107
[(11.2.5 Operations Causing Class Loading|. 108

[(11.3 Supported Standards| 109
(11.3.1 Real-Time Specification forJaval. 109
I1.3.2 Java Native Interface| 111
(11.3.3 Java?2 Micro Edition| 112

(1T.4 Memory Management|. 112
(11.4.1 Memory Managementof RTSJ|. 113
(11.42 Fmnalzers| 114
(11.4.3 Configuring a Realtime Garbage Collector]. 115
(11.4.4 Programming with the RTSJ and Realtime Garbage Col- [

[lectionl. 116
(11.4.5 Memory Management Guidelines| 117

(11.5 Scheduling and Synchronization| 118
(I11.5.1 Schedulable Entities| 118
(11.5.2 Synchronization| 120
(1.6 Libraries. 123
(IT.7 Summary| 123
(I1.7.1 Effictency|. 124
(11.7.2 Memory Allocation|. 124

11 EventHandlers| 124
1174 Monitorsl 125

127

(12 The Jamaica Java Compiler| 129
(12.1 Usage of jamaicac|. 129

(12.1.1 Classpathoptions|. 129

CONTENTS

(12.1.2 Compliance options|
(12.1.3 Warning options|
(12.1.4 Debugoptions|
(12.1.5 Otheroptions|

(13 The Jamaica Virtual Machine Commands|
(13.1 jamaicavm|.
(13.1.1 JamaicaVM Options|
(13.1.2 JamaicaVM Extended Options|
(13.1.3 Environment variables used by JamaicaVM|
(13.2 jamaicavm_slim|
(13.3 jamaicavmp|
[13.3.1 Additional extended options of jamaicavmp|
(13.4 jamaicavmdif.
[13.4.1 Additional options of jamaicavmdi|.
1 Environment Variables|

(14.2 Builder Usage|

(14.2.2 Classes, files and paths|
(14.2.3 Smart Iinking|
(14.2.4 Compilation|
(14.2.5 Memory and threads|
(14.2.6 GC configuration|
(14.2.7 RTSJsettings|
(14.2.8 Profiling

(14.3.2 Classes, files and paths|
(14.3.3 Compilation|
(1434 Profilingl
14 wvecodel Lo oL

130
130
131
131
131

133
133
134
134
136
136
137
138
138
138
138
141

8 CONTENTS

e Jamaica ThreadMonito 181

(15.1 Run-time system configuration| 181
(15.2 Control Windowl. L. 182
(15.2.1 Control Window Menu| 183

(153 DataWindow| oo 185
(15.3.1 Data Window Navigation|. 186

(15.3.2 Data Window Menu| 186

(15.3.3 Data Window Context Window| 188

(15.3.4 Data Window Tool Tips| 188

15.3.5 Worst-Case Execution Time Window| 188

(16 Jamaica and the Java Native Interface (JNI)| 191
(16.1 Usmg JNI| 191
(16.2 The Jamaicah Command 194
621 General 194

[16.2.2 Classes, files,and paths|. 196

(16.2.3 Environment Variables| 196

17 The Numblocks Command| 197
(17.1 Command Line Options|. 197
(711 Generall 197

(17.1.2 Classes, files,and paths|. 198

(17.1.3 Memory and threads settings| 199

(17.2 Environment Variables| 199

(18 Building with Apache Ant] 201
(18.1 Task Declarationl 201
(18.2 Task Usage| 201
IV__Additional Information 203
(A" FAQ — Frequently Asked Questions| 205
[A.1 _General Informationf. 0oL 205
A2 JamaicaVM|o 205
[A.3 Remote Method Invocation (RMI)[. 206
A4 Builded 208
A TN .« o oo 210

CONTENTS 9
(B Information for Specific Targets| 213
B.1 VxWorksl 213
[B.1.1 Configuration of VxWorks| 213

B.L2 TInstallationl 215

[B.1.3 Starting an application (DKM)(. 216

[B.1.4 Starting an application (RTP)(. 218

[B.1.5 Linking the application to the VxWorks kernel image| . . . 219

(B.1.6 TLimitations| 219

B.1.7 Additionalnotes| 220

B RTEMSI o 220
(B.2.1 Installation| 220

(B.2.2 RTEMS Configuration| 221

(B.2.3 Running an application| 221

B3 INTEGRITYl . . . o o oottt e 221
B.3.1 Installationl 222

B.3.2 lLinker DirectivesHilel 222

[B.3.3 Additional Target configuration| 223

B4 Windows| 223
B.4.1 Timitationsl 223

B3 WindowsCEl 224
B.5.1 lTimitations| 224

B.6 OS-9. 224
(B.6.1 Tamuitations| L. 224

B ONX|. . 225
(B.7Z1 Installation| 225

B.8 RedHawk Linuxl. 225
[B.8.1 Running an application| 225

(C Properties that Control the VM| 227
[C.1 Properties Setbythe User|. 227
[C.2 Predefined Properties|, 230

[D Heap Usage for Java Datatypes| 233
[Limitations| 235
E.1 VMDmtations| 235

2 Bulder Limitations|, 236
Internal Environment Variabl 239

10

CONTENTS

Part I

Introduction

11

Chapter 1

Preface

The Java programming language, with its clear syntax and semantics, is used
widely for the creation of complex and reliable systems. Development and main-
tenance of these systems benefit greatly from object-oriented programming con-
structs such as dynamic binding and automatic memory management. Anyone
who has experienced the benefits of these mechanisms on software development
productivity and improved quality of resulting applications will find them essen-
tial when developing software for embedded and time-critical applications.

This manual describes JamaicaVM, a Java implementation that brings tech-
nologies that are required for embedded and time critical applications and that are
not available in classic Java implementations. This enables this new application
domain to profit from the advantages that have provided an enormous boost to
most other software development areas.

1.1 Intended Audience of This Book

Most developers familiar with Java environments will quickly be able to use the
tools provided with JamaicaVM to produce immediate results. It is therefore
tempting to go ahead and develop your code without studying this manual fur-
ther.

Even though immediate success can be achieved easily, we recommend that
you have a closer look at this manual, since it provides a deeper understanding of
how the different tools work and how to achieve the best results when optimizing
for runtime performance, memory demand or development time.

The JamaicaVM tools provide a myriad of options and settings that have been
collected in this manual. Developing a basic knowledge of what possibilities are
available may help you to find the right option or setting when you need it. Our
experience is that significant amounts of development time can be avoided by a

13

14 CHAPTER 1. PREFACE

good understanding of the tools. Learning about the correct use of the JamaicaVM
tools is an investment that will quickly pay-off during daily use of these tools!

This manual has been written for the developer of software for embedded and
time-critical applications using the Java programming language. A good under-
standing of the Java language is expected from the reader, while a certain fa-
miliarity with the specific problems that arise in embedded and realtime system
development is also helpful.

This manual explains the use of the JamaicaVM tools and the specific fea-
tures of the Jamaica realtime virtual machine. It is not a programming guidebook
that explains the use of the standard libraries or extensions such as the Real-Time
Specification for Java. Please refer to the JavaDoc documentation of these li-
braries provided with JamaicaVM (see §[3.3).

1.2 Contacting aicas

Please contact aicas or one of aicas’s sales partners to obtain a copy of JamaicaVM
for your specific hardware and RTOS requirements, or to discuss licensing ques-
tions for the Jamaica binaries or source code. The full contact information for the
aicas main offices is reproduced in the front matter of this manual (page [2). The
current list of sales partners is available online at http://www.aicas.com/
sales.html.

An evaluation version of JamaicaVM may be downloaded from the aicas web
site at http://www.aicas.com/download.html.

Please help us improve this manual and future versions of JamaicaVM. E-mail
your bug reports and comments to bugs@aicas . com. Please include the exact
version of JamaicaVM you use, the host and target systems you are developing for
and all the information required to reproduce the problem you have encountered.

1.3 What is New in JamaicaVM 6.0

Version 6.0 of JamaicaVM provides numerous enhancements. The most important
additions are:

e Support for Java 6.0 features including Java 6.0 source and class file com-
patibility.

e The standard classes library is based on the OpenJDK code. This leads to a
more conformant implementation of the standard classes, in particular AWT
and Swing features.

http://www.aicas.com/sales.html
http://www.aicas.com/sales.html
http://www.aicas.com/download.html
mailto:bugs@aicas.com

1.3. WHAT IS NEW IN JAMAICAVM 6.0 15

Extended range of supported graphics systems. New are:

— DirectFB (Linux)
— Windows
- GF (QNX)

This adds to existing support for X11 (Linux), WindML (VxWorks), GDI
(WindowsCE) and Maui (OS9).

The Java 2D API, a set of classes for advanced 2D graphics and imaging, is
supported on all graphics systems.

Bindings for OpenGL, OpenGL-ES and OpenGL-SC are available.

Improved handling of system resources such as files and sockets. Even
though a Java application may fail to correctly close or release these re-
sources, the VM now tracks these and releases them on shutdown.

Full crypo support. By default, cryptographic strength is limited to 48 Bits;
this is due to export restrictions. Please contact aicas for details.

Dynamic loading of native libraries (on selected platforms only).

For user-relevant changes between minor releases of JamaicaVM, see the release
notes, which are provided in the Jamaica installation, folder doc, file RELEASE__
NOTES.

16

CHAPTER 1. PREFACE

Chapter 2

Key Features of JamaicaVM

The Jamaica Virtual Machine (JamaicaVM) is an implementation of the Java Vir-
tual Machine Specification. It is a runtime system for the execution of applications
written for the Java 6 Standard Edition. It has been designed for realtime and em-
bedded systems and offers unparalleled support for this target domain. Among
the extraordinary features of JamaicaVM are:

e Hard realtime execution guarantees

e Support for the Real-Time Specification for Java, Version 1.0.2
e Minimal footprint

e ROMable code

e Native code support

e Dynamic linking

e Supported platforms

e Fast execution

e Powerful tools for timing and performance analysis

2.1 Hard Realtime Execution Guarantees

JamaicaVM is the only implementation that provides hard realtime guarantees
for all features of the languages together with high performance runtime effi-
ciency. This includes dynamic memory management, which is performed by the
JamaicaVM garbage collector.

17

18 CHAPTER 2. KEY FEATURES OF JAMAICAVM

All threads executed by the JamaicaVM are realtime threads, so there is no
need to distinguish realtime from non-realtime threads. Any higher priority thread
is guaranteed to be able to preempt lower priority threads within a fixed worst-case
delay. There are no restrictions on the use of the Java language to program real-
time code: Since the JamaicaVM executes all Java code with hard realtime guar-
antees, even realtime tasks can use the full Java language, i.e., allocate objects,
call library functions, etc. No special care is needed. Short worst-case execution
delays can be given for any code.

2.2 Real-Time Specification for Java support

JamaicaVM provides an industrial-strength implementation of the Real-Time Spec-
ification for Java Specification (RTSJ) V1.0.2 (see [[1]) for a wide range of real-
time operating systems available on the market. It combines the additional APIs
provided by the RTSJ with the predictable execution obtained through realtime
garbage collection and a realtime implementation of the virtual machine.

2.3 Minimal footprint

JamaicaVM itself occupies less than 1 MB of memory (depending on the target
platform), such that small applications that make limited use of the standard li-
braries typically fit into a few MB of memory. The biggest part of the memory re-
quired to store a Java application is typically the space needed for the application’s
class files and related resources such as character encodings. Several measures are
taken by JamaicaVM to minimize the memory needed for Java classes:

e Compaction: Classes are represented in an efficient and compact format to
reduce the overall size of the application.

e Smart Linking: JamaicaVM analyzes the Java applications to detect and
remove any code and data that cannot be accessed at run-time.

e Fine-grained control over resources such as character encodings, time zones,
locales, supported protocols, etc.

Compaction typically reduces the size of class file data by over 50%, while smart
linking allows for much higher gains even for non-trivial applications.

This footprint reduction mechanism allows the usage of complex Java library
code, without worrying about the additional memory overhead: Only code that is
really needed by the application is included and is represented in a very compact
format.

2.4. ROMABLE CODE 19

2.4 ROMable code

The JamaicaVM allows class files to be linked with the virtual machine code into
a standalone executable. The resulting executable can be stored in ROM or flash-
memory since all files required by a Java application are packed into the stan-
dalone executable. There is no need for file-system support on the target platform,
as all data required for execution is contained in the executable application.

2.5 Native code support

The JamaicaVM implements the Java Native Interface V1.2 (JNI). This allows
for direct embedding of existing native code into Java applications, or to encode
hardware-accesses and performance-critical code sections in C or machine code
routines. The usage of the Java Native Interface provides execution security even
with the presence of native code, while binary compatibility with other Java im-
plementations is ensured. Unlike other Java implementations, JamaicaVM pro-
vides exact garbage collection even with the presence of native code. Realtime
guarantees for the Java code are not affected by the presence of native code.

2.6 Dynamic Linking

One of the most important features of Java is the ability to dynamically load code
in the form of class files during execution, e.g., from a local file system or from a
remote server. The JamaicaVM supports this dynamic class loading, enabling the
full power of dynamically loaded software components. This allows, for exam-
ple, on-the-fly reconfiguration, hot swapping of code, dynamic additions of new
features, or applet execution.

2.7 Supported Platforms

During development special care has been taken to reduce porting effort of the
JamaicaVM to a minimum. JamaicaVM is implemented in C using the GNU C
compiler. Threads are based on native threads of the operating system[]

2.7.1 Development platforms

Jamaica is available for the following development platforms (host systems):

'POSIX threads under many Unix systems.

20 CHAPTER 2. KEY FEATURES OF JAMAICAVM

e Linux
e SunOS/Solaris

e Windows

2.7.2 Target platforms

With JamaicaVM, application programs for a large number of platforms (target
systems) can be built. The operating systems listed in this section are supported
as target systems only. You may choose any other supported platform as a devel-
opment environment on which the Jamaica Builder runs to generate code for the
target system.

Realtime Operating Systems
o INTEGRITY
Linux/RT

OS-9 (on request)
PikeOS

e QNX

RTEMS (on request)

ThreadX (on request)
e WinCE
e VxWorks

Non-Realtime Operating Systems

Applications built with Jamaica on non-realtime operating systems may be inter-
rupted non-deterministically by other threads of the operating systems. However,
Jamaica applications are still deterministic and there are still no unexpected in-
terrupts within Jamaica application themselves, unlike with standard Java Virtual
Machines.

e Linux
e SunOS/Solaris

e Windows

2.8. FAST EXECUTION 21

Processor Architectures

JamaicaVM is highly processor architecture independent. New architectures can
be supported easily. Currently, Jamaica runs on the following processor architec-
tures:

e ARM (StrongARM, XScale, ...)
e ERC32 (on request)

e MIPS (on request)

e Nios

e PowerPC

e SH-4 (on request)

e Sparc

e x86

Ports to any required combination of target OS and target processor can be sup-
ported with little effort. Clear separation of platform-dependent from platform-
independent code reduces the required porting effort for new target OS and target
processors. If you are interested in using Jamaica on a specific target OS and
target processor combination or on any operating system or processor that is not
listed here, please contact aicas .

2.8 Fast Execution

The JamaicaVM interpreter performs several selected optimizations to ensure op-
timal performance of the executed Java code. Nevertheless, realtime and embed-
ded systems are often very performance-critical as well, so a purely interpreted
solution may be unacceptable. Current implementations of Java runtime-systems
use just-in-time compilation technologies that are not applicable in realtime sys-
tems: The initial compilation delay breaks all realtime constraints.

The Jamaica compilation technology attacks the performance issue in a new
way: methods and classes can selectively be compiled as a part of the build pro-
cess (static compilation). C-code is used as an intermediary target code, allowing
easy porting to different target platforms. The Jamaica compiler is tightly inte-
grated into the memory management system, allowing highest performance and
reliable realtime behavior. No conservative reference detection code is required,
enabling fully exact and predictable garbage collection.

22 CHAPTER 2. KEY FEATURES OF JAMAICAVM

2.9 Tools for Realtime and Embedded System De-
velopment

JamaicaVM comes with a set of tools that support the development of applications
for realtime and embedded systems

e Jamaica Builder: a tool for creating a single executable image out of the
Jamaica Virtual Machine and a set of Java classes. This image can be loaded
into flash-memory or ROM, avoiding the need for a file-system in the target
platform.

For most effective memory usage, the Jamaica Builder finds the amount of
memory that is actually used by an application. This allows both system
memory and heap size to be precisely chosen for optimal run-time perfor-
mance. In additon, the Builder enables the detection of performance critical
code to control the static compiler for optimal results.

e Thread Monitor: enables to analyse and fine-tune the behaviour of threaded
Java applications

e VeriFlux: a static analysis tool for the object-oriented domain that enables
to prove the absence of potential faults such as null pointer exceptions or
deadlocks in Java programs.?

2Thread Monitor and VeriFlux are not part of the standard Jamaica license.

Chapter 3

Getting Started

3.1 Installation of JamaicaVM

A release of the JamaicaVM tools consists of an info file with detailed information
about the host and target platform and optional features such as graphics support,
and a package for the Jamaica binaries, library and documentation files. The
Jamaica version, build number, host and target platform and other properties of a
release is encoded as release identification string in the names of info and package
file according to the following scheme:

Jamaica-version—build|—features|-host|-target] . info
Jamaica-version—build|—features|-host|-target] . suffix

Package files with the following package suffixes are released.

Host Platform | Suffix | Package Kind

Linux rpm Package for the rpm package manager
tar.gz | Compressed tape archive file
Windows exe Interactive installer
zip Windows zip file
Solaris tar.gz | Compressed tape archive file

In order to install the JamaicaVM tools, the following steps are required:

e Unpack and install the Jamaica binaries, library and documentation files,

e Configure the tools for host and target platform (C compiler and native li-
braries),

e Set environment variables.

e Install license keys.

23

24 CHAPTER 3. GETTING STARTED

The actual installation procedure varies from host platform to host platform; see
the sections below. For additional, target specific installation hints please check

§[Bl

3.1.1 Linux
Unpack and Install Files

The default is a system-wide installation of Jamaica. Super user privileges are re-
quired. If the rpm package manager is available, this is the recommended method:

> rpm —-i Jamaica-release-identification-string . rpm

Otherwise, unpack the compressed tape archive file and run the installation script
as follows:

> tar xfz Jamaica-release-identification-string .tar.gz
> ./Jamaica.install

This will install the Jamaica tools in the following directory, which is referred to
as jamaica-home:

/usr/local/jamaica-version—build

In addition, the symbolic link /usr/local/jamaica is created, which points
to jamaica-home, and symbolic links to the Jamaica executables are created in
/usr/bin, so it is not necessary to extend the PATH environment variable.

In order to deinstall the Jamaica tools, depending on the used installation
method, either use the erase option of rpm or the provided deinstallation script
Jamaica.remove.

If super user privileges are not available, the tools may alternatively be in-
stalled locally in a user’s home directory:

> tar xfz Jamaica-release-identification-string.tar.gz
> tar xf Jamaica.ss

This will install the Jamaica tools in usr/local/Jamaica-version—build rel-
ative to the current working directory. Symbolic links to the executables are cre-
ated in usr/bin, so they will not be on the default path for executables.

Configure Platform-Specific Tools

In order for the Jamaica Builder to work, platform-specific tools such as the C
compiler and linker and the locations of the libraries (SDK) need to be speci-
fied. This is done by editing the appropriate configuration file, named jamaica.
conf, for the target (and possibly also the host).

The precise location of the configuration file depends on the platform:

3.1. INSTALLATION OF JAMAICAVM 25

Jjamaica-home /target /platform/etc/jamaica.conf

For the full Jamaica directory structure, please refer to § Note that the config-
uration for the host platform is also located in a target directory.
The following properties need to be set appropriately in the configuration files:

| Property | Value |
Xcc . platform C compiler executable
X1d. platform Linker executable
Xstrip.platform Strip utility executable
Xinclude. platform Include path
XlibraryPaths.platform | Library path

Environment variables may be accessed in the configuration files through the no-
tation ${VARIABLE}. For executables that are on the standard search path (envi-
ronment variable PATH), it is sufficient to give the name of the executable.

Set Environment Variables

The environment variable JAMATCA must be set to jamaica-home. On bash:

> export JAMAICA=jamaica-home

On csh:

> setenv JAMAICA jamaica-home

3.1.2 Sun/Solaris

The release for Solaris is provided as compressed tape archive. Please follow the
installation instructions in §

3.1.3 Windows

On Windows the recommended means of installation is using the interactive in-
staller, which may be launched by double-clicking the file

Jamaica-release-identification-string . exe

in the Explorer, or by executing it in the CMD shell. You will be asked to pro-
vide a destination directory for the installation and the locations of tools and SDK
for host and target platforms. The destination directory is referred to as jamaica-
home. 1t defaults to the subdirectory jamaica in Window’s default program

26 CHAPTER 3. GETTING STARTED

directory — for example, C: \Programs\ jamaica, if an english language lo-
cale is used. Defaults for tools and SDKs are obtained from the registry. The
installer will set the environment variable JAMATCA to jamaica-home.

An alternative installation method is to unpack the Windows zip file into a
suitable installation destination directory. For configuration of platform-specific
tools, follow the instructions provided in § In order to set the JAMAICA
environment variable to jamaica-home, open the Control Panel, choose System,
select Advanced System Settings,[] choose the tab Advanced and press Envrion-
ment Variables. It is also recommended to add jamaica-home\bin to the PATH
environment variable in order to be able to run the Jamaica executables conve-
niently.

3.2 Installation of License Keys

In order to use the JamaicaVM tools valid licenses are requiredE] License keys
are provided in key ring files, which have the suffix .aicas_key. Prior to use,
keys need to be installed. This is done with the Jamaica Key Installer Utility,
which is available for the supported host platforms. It is necessary to place the
Key Installer Utility and the key ring whose keys are to be installed into the same
directory. Then execute the Utility as follows:

> ./JamaicaKeyInstaller_platform jamaica.aicas_key

This will extract the keys contained in jamaica.aicas_key and add the in-
dividual key files to user-home/ . jamaica. Keys that are already installed are
not overwritten. The Utility reports which keys get installed and which tools they
enable. Installed keys are for individual tools. Of the tools documented in this
manual, the Builder (see §[14)) and the Thread Monitor (see §[I5) require keys.

3.3 JamaicaVM Directory Structure

The Jamaica installation directory is called jamaica-home. The environment vari-
able JAMAICA should be set to this path (see the installation instructions above).
After successful installation, the following directory structure as shown in Tab. [3.1]
is created (in this example for a Linux x86 system).

The Jamaica API specification may be browsed with an ordinary web browser.
Its format is compatible with common IDEs such as Eclipse and Netbeans. If
the Jamaica Eclipse Plug-In is used (see § [5), Eclipse will automatically use the

'Some Windows versions only.
2Evaluation keys are provided with evaluation versions of JamaicaVM.

3.3. JAMAICAVM DIRECTORY STRUCTURE 27

Jjamaica-home

+- bin Host tool chain executables
+—- doc
+- build.info Comprehensive Jamaica distribution information

+- jamaicavm_manual .pdf

| Jamaica tool chain user manual (this manual)

+- Jjamaica_api Jamaica API specification (Javadoc)

+— README-x.txt Host platform specific documentation starting points
+— RELEASE_NOTES User-relevant changes in the present release

+— UNSUPPORTED Unsupported features list
+— .1 Tool documentation in Unix man page format
+- etc Host platform configuration files
+- 1ib Libraries for the development tools
+— license aicas evaluation license, third party licenses
+—- target
+- linux-x86 Target specific files for the target 1inux—-x86
+- bin Virtual machine executables (some platforms only)
+- etc Default target platform configuration files
+- examples Example applications
+- include System JNI header files
+- 1ib Development and runtime libraries, resources
+- prof Default profiles

Table 3.1: JamaicaVM Directory Structure

28 CHAPTER 3. GETTING STARTED

API specification of the selected Jamaica runtime environment. The Real-Time
Specification for Java is part of the standard Jamaica APIL.

The number of target systems supported by a distribution varies. The target
directory contains an entry for each supported target platform. Typically, a Ja-
maica distribution provides support for the target platform that hosts the tool
chain, as well as for an embedded or real-time operating system.

3.4 Building and Running an Example Java Program

A number of sample applications is provided. These are located in the directory
Jjamaica-home/target /platform/examples. In the following instructions it
is assumed that a Unix host system is used. For Windows, please note that the
Unix path separator character “/”” should be replaced by \”.

Before using the examples, it is recommended to copy them from the instal-
lation directory to a working location — that is, copy each of the directories
Jjamaica-home / platform/examples to user-home/examples/platform.

The HelloWorld example is an excellent starting point for getting acquainted
with the JamaicaVM tools. In this section, the main tools are used to build an
application executable for a simple HelloWorld both for the host and target plat-
forms.

Below, it is assumed that the example directories have been copied to user-
home/examples/host and user-home/examples/target for host and target
platforms respectively.

3.4.1 Host Platform

In order to build and run the He1l1loWor1d example on the host platform, go to
the corresponding examples directory:

> cd user-home/examples/host

Depending on your host platform, host will be 1inux-x86, windows—x86 or
solaris—-sparc.

First, the Java source code needs to be compiled to byte code. This is done
with jamaicac, Jamaica’s version of javac. The source code resides in the
src folder, and we wish to generate byte code in a classes folder, which must
be created if not already present:

> mkdir classes
> jamaicac -d classes src/HelloWorld. java

Before generating an executable, we test the byte code with the Jamaica virtual
machine:

3.4. BUILDING AND RUNNING AN EXAMPLE JAVA PROGRAM

> jamaicavm -cp classes HelloWorld

Hello World!
Hello World!
Hello World!
Hello World!

Hello World!
Hello World!
[...]

29

Having convinced ourselves that the program exhibits the desired behaviour, we
now generate an executable with the Jamaica Builder. In the context of the Ja-

maicaVM Tools, one speaks of building an application.

> jamaicabuilder -cp classes —interpret HelloWorld
Reading configuration from
’/usr/local/jamaica-6.0-1/etc/jamaica.conf’ ...
Reading configuration from

’/usr/local/jamaica—-6.0-1/target/linux-x86/etc/jamaica.conf’ ...

Jamaica Builder Tool 6.0 Release 1

(User: EVALUATION USER, Expires: 2010.06.10)

Generating code for target ’linux-x86’, optimisation ’speed’
+ HelloWorld _.c

+ HelloWorld _.h

Class file compaction gain: 58.893684% (21654255 ==> 8901266)
* C compiling ’‘HelloWorld _.c’

+ HelloWorld _nc.o
* linking
* stripping

Application memory demand will be as follows:

initial max
Thread C stacks: 1024KB (= 8+ 128KB) 63MB (= 511+ 128KB)
Thread Java stacks: 128KB (= 8+« 16KB) 8176KB (= 511+ 16KB)
Heap Size: 2048KB 256MB
GC data: 128KB 16MB
TOTAL: 3328KB 343MB

The builder has now generated the executable He1lloWorld.

> ./HelloWorld

Hello World!
Hello World!
Hello World!
Hello World!

Hello World!
Hello World!
[...]

30 CHAPTER 3. GETTING STARTED

3.4.2 Target Platform

With the JamaicaVM Tools, building an application for the target platform is as
simple as for the host platform. First go to the corresponding examples directory:

> cd user-home/examples/platform

Then compile and build the application specifiying the target platform.

> mkdir classes
> jamaicac -useTarget platform -d classes src/HelloWorld. java
> jamaicabuilder -target=platform -cp=classes —-interpret HelloWorld

The target specific binary HelloWorld is generated. For instructions how to
launch this on the target operating system, please consult the documentation of
the operating system. Additional target-specific hints are provided in § [B]

3.4.3 Improving Size and Performance

The application binaries in the previous two sections provide decent size opti-
misation but no performance optimisation at all. The JamaicaVM Tools offer a
wide range of controls to fine tune the size and performance of a built application.
These optimisations are mostly controlled through command line options of the
Jamaica Builder.

While performance is not an issue for such a simple example, in order to show
the possibilities, sets of optimisations for both speed and application size are pro-
vided with the HelloWorld example. These are provided in an ant buildfile. In
order to use the buildfile, type ant build-target where build-target is one of the
build targets of the example. For example,

> ant HelloWorld

will build the unoptimised HelloWorld example. In order to optimise for speed,
use the build target HelloWorld_profiled, in order to optimise for applica-
tion size, use HelloWorld_micro. The following is the list of all build targets
available for the HelloWorld example:

HelloWorld Build an application in interpreted mode. The generated binary is
HelloWorld.

HelloWorld profiled Build a statically compiled application based on a
profile run. The generated binary is HelloWorld_profiled.

HelloWorld micro Build an application with optimized memory demand.
The generated binary is HelloWorld_micro.

3.5. NOTATIONS AND CONVENTIONS 31

| Example | Demonstrates | Platforms |
HelloWorld Basic Java all
RTHelloWorld Real-time threads (RTSJ) all
SwingHelloWorld | Swing graphics with graphics
caffeine CaffeineMark (tm) benchmark all
test_JNI Java Native Interface all
net Network and internet with network
rmi Remote method invocation with network

Table 3.2: Example applications provided in the target directories

classes Convert Java source code to byte code.
all Build all three applications.
run Run all three applications — only useful on the host platform.

clean Remove all generated files.

3.4.4 Overview of Further Examples

For an overview of the available examples, see Tab. [3.2] Examples that require
graphics or network support are only provided for platforms that support graphics
or network, respectively. Each example comes with a README file that provides
further information and lists the available build targets.

3.5 Notations and Conventions

Notations and typographic conventions used in this manual and by the JamaicaVM
Tools in general are explained in the following sections.

3.5.1 Typographic Convertions

Throughout this manual, names of commands, options, classes, files etc. are set in
this monospaced font. Output in terminal sessions is reproduced in slanted
monospaced in order to distinguish it from user input. Entities in command lines
and other user inputs that have to be replaced by suitable user input are shown in
italics.

As little example, here is the description of the the Unix command-line tool
cat, which outptuts the content of a file on the terminal:

32 CHAPTER 3. GETTING STARTED

Use cat file to print the content of file on the terminal. For example,
the content of the file song. txt may be inspected thus:

> cat song.txt

Mary had a little lamb,
Little lamb, little lamb,
Mary had a little lamb,

Its fleece was white as snow.

In situations where suitable fonts are not available — say, in terminal output —
entities to be replaced by the user are displayed in angular brackets. For example,
cat <file> instead of cat file.

3.5.2 Argument Syntax

In the specification of command line arguments and options, the following nota-
tions are used.

‘6|”

Alternative: the pipe symbol denotes alternatives. For example,

-XobjectFormat=default |C|ELF

means that the XobjectFormat option must be set to exactly one of the
specified values default, C or ELF.

Option: optional arguments that may appear at most once are enclosed in brack-
ets. For example,

—heapSize=n[K|M]

means that the heapSize option must be set to a (numeric) value n, which
may be followed by either K or M.

Repetition: optional arguments that may be repeated are enclosed in braces. For

example,
~priMap=jp=sp{,jp=sp}

means that the pr iMap accepts one or several comma-separated arguments
of the form jp=sp. These are assignments of Java priorities to system prior-
ities.

Alternative option names are indicated in parentheses. For example,

—help(-——help, -h, -7?)

means that the option he 1p may be invoked by any one of ~help, ——help, -h
and —7.

3.5. NOTATIONS AND CONVENTIONS 33

3.5.3 Jamaica Home and User Home

The file system location where the JamaicaVM Tools are installed is referred to as
jamaica-home. In order for the tools to work correctly, the environment variable
JAMAICA must be set to jamaica-home (see §[3.1)).

The JamaicaVM Tools store user-related information such as license keys in
the folder . jamaica inside the user’s home directory. The user’s home directory
is referred to as user-home. On Unix systems this is usually /home /user, on
Windows systems, the user’s home directory usually resides inside the Documents
and Settings folder — for example, C: \Documents and Settings\user.

34

CHAPTER 3. GETTING STARTED

Chapter 4

Tools Overview

The JamaicaVM tool chain provides all the tools required to process Java source
code into an executable format on the target system. Fig.[d.1|provides an overview
over this tool chain.

4.1 Jamaica Java Compiler

JamaicaVM uses Java source code files (see the Java Language Specification [3])
as input to first create platform independent Java class files (see the Java Vir-
tual Machine Specification [6]) in the same way classical Java implementations
do. JamaicaVM provides its own Java bytecode compiler, jamaicac, to do this
translation. For a more detailed description of jamaicac see §

We recommend using jamaicac. However, it is also possible to use your
favorite Java source to bytecode compiler, including JDK’s javac command,
as long as you ensure that the bootclasspath is set properly to the Jamaica boot
classes. These are located in the following JAR file:

jamaica-home/target /platform/1ib/rt . jar

In addition, please note that JamaicaVM 6.0 uses Java 6 compatible class files and
requires a Java compiler capable of interpreting Java 6 compatible class files.

4.2 Jamaica Virtual Machine

The command jamaicavm provides a version of the Jamaica virtual machine.
It can be used directly to quickly execute a Java application. It is the equivalent
to the java command that is used to run Java applications with SUN’s JDK. A
more detailed description of the jamaicavm and similar commands that are part
of Jamaica will be given in §

35

36 CHAPTER 4. TOOLS OVERVIEW

*.java

(jamaicac) » *class >C jamaicavm)

Qamaicabuildeo P executable

Figure 4.1: The Jamaica Toolchain

The jamaicavm first loads all class files that are required to start the ap-
plication. It contains the Jamaica Java interpreter, which then executes the byte
code commands found in these class files. Any new class that is referenced by a
byte code instruction that is executed will be loaded on demand to execute the full
application.

Applications running using the jamaicavm command are not very well op-
timized. There is no compiler that speeds up execution and no specific measures
to reduce footprint are taken. We therefore recommend using the Jamaica builder
presented in the next section and discussed in detail in §[I4]to run Java applications
with JamaicaVM on an embedded system.

4.3 Jamaica Builder — Creating Target Executables

In contrast to the jamaicavm command, jamaicabuilder does not execute
the Java application directly. Instead, the builder loads all the classes that are part
of a Java application and packages them together with the Jamaica runtime sys-
tem (Java interpreter, class loader, realtime garbage collector, JNI native interface,
etc.) into a stand-alone executable. This stand-alone executable can then be exe-
cuted on the target system without needing to load the classes from a file system
as is done by the jamaicavm command, but can instead directly proceed execut-
ing the byte codes of the application’s classes that were built into the stand-alone
executable.

The builder has the opportunity to perform optimizations on the Java applica-
tion before it is built into a stand-alone executable. These optimizations reduce
the memory demand (smart linking, bytecode compaction, etc.) and increase its

4.4. JAMAICA THREADMONITOR — MONITORING REALTIME BEHAVIOUR37

runtime performance (bytecode optimizations, profile-guided compilation, etc.).
Also, the builder permits fine-grained control over the resources available to the
application such as number of threads, heap size, stack sizes and enables the user
to deactivate expensive functions such as dynamic heap enlargement or thread
creation at runtime. A more detailed description of the builder is given in §

4.4 Jamaica ThreadMonitor — Monitoring Realtime
Behaviour

The JamaicaVM ThreadMonitor enables to monitor the realtime behaviour of ap-
plications and helps developers to fine-tune the threaded Java applications running
on Jamaica run-time systems. These run-time systems can be either the Jamaica
VM or any application that was created using the Jamaica Builder.

38

CHAPTER 4. TOOLS OVERVIEW

Chapter 5
Support for the Eclipse IDE

Integrated development environments (IDEs) make a software engineer’s life eas-
ier by aggregating all important tools under one user interface. aicas provides a
plug-in to integrate the JamaicaVM Virtual Machine and the JamaicaVM Builder
into the Eclipse IDE, which is a popular IDE for Java.

5.1 Plug-in installation

The JamaicaVM plug-in can be installed and updated through the Eclipse plug-in
manager.

The plug-in requires Eclipse 3.2 or later and a Java 1.5 compatible virtual
machine. However, using the latest available Eclipse version and an up-to-date
virtual machine is recommended. The following instructions refer to Eclipse 3.5.
Earlier versions of Eclipse differ slightly in the menu item labels.

To install the plug-in, select the menu item

Help > Install New Software...,

add the aicas Update Site, whose locationishttp://aicas.com/download/
eclipse-plugin, and install JamaicaVM Tools. The plug-in is available
after a restart of Eclipse.

To perform an update, select Help > Check for updates.... You
will be notified of updates.

5.2 Setting up JamaicaVM Distributions

Jamaica distributions must be made known to the Jamaica plug-in before they can
be used within Eclipse. This is done in the global preferences dialog (usually

39

40 CHAPTER 5. SUPPORT FOR THE ECLIPSE IDE

Window > Preferences), Section Jamaica. Add the installation directo-
ries of all distributions you wish to use.

The plug-in creates Java Runtime Environments (JREs) for all added Jamaica
distributions. A JRE comprises the Java class libraries, Javadoc documentation
and the virtual machine. A Jamaica distribution additionally contains classes and
documentation for the RTSJ.

After setting up a Jamaica distribution as a JRE, it can be used like any other
JRE in Eclipse. For example, it is possible to choose Jamaica as a project specific
environment for a Java project, either in the Create Java Project wizard,
or by changing JRE System Library in the properties of an existing project.
It is also possible to choose a Jamaica as default JRE for the workspace.

If you added a new Jamaica distribution and its associated JRE installation is
not visible afterwards, please restart Eclipse.

5.3 Setting Virtual Machine Parameters

The JamaicaVM Virtual Machine is configured through runtime parameters, which
— for example — control the heap size or the size of memory areas such as scoped
memory. These settings are controlled via environment variables (refer to section
§[13.5]for a list of available variables). To do so, create or open a run configuration
of type Java Application inyour project. The environment variables can be
defined on the tab named Environment.

5.4 Building applications with Jamaica Builder

The plug-in extends Eclipse with support for the Jamaica Builder tool. In the
context of this tool, the term “build” is used to describe the process of translating
compiled Java class files into an executable file. Please note that in Eclipse’s
terminology, “build” means compiling Java source files into class files.

5.4.1 Getting started

In order to build your application with Jamaica Builder, you must create a Jamaica
Buildfile. A wizard is available and can be found in Eclipse’s "New” dialog (File
> New > Other...). Select a Jamaica distribution and target platform and
specify your application’s main class name.

After finishing the wizard, the newly created buildfile is opened in a graphical
editor containing an overview page, a configuration page and a source page. You
can review and modify the Jamaica Builder configuration on the second page, or

5.4. BUILDING APPLICATIONS WITH JAMAICA BUILDER 41

in order to start the build process, click Invoke Ant on this target on
the Overview page.

5.4.2 Jamaica Buildfiles

This section gives a more detailed introduction to Jamaica Buildfiles and the
graphical editor to edit them easily.

Concepts

Jamaica Buildfiles are build files understood by Apache Ant. (See http://
ant .apache.org.) These build files mainly consist of targets containing a
sequence of tasks which accomplish a functionality like compiling a set of Java
classes. Many tasks come included with Ant, but tasks may also be provided by
a third party. Third party tasks must be defined within the buildfile by a task
definition (taskdef). Ant tasks that invoke the Jamaica Builder and other tools
are part of the JamaicaVM tools. See § (18| for the available Ant tasks and further
details on the structure of the Jamaica Buildfiles.

The Jamaica-specific tasks can be parameterized similarly to the tools they
represent. We define the usage of such a task along with a set of options as a
configuration.

We use the term Jamaica Buildfile to describe an Ant buildfile that defines at
least one of the Jamaica-specific Ant tasks and contains one or many configura-
tions.

The benefit of this approach is that configurations can easily be used outside of
Eclipse, integrated in a build process and exchanged or stored in a version control
system.

Using the editor

The editor for Jamaica Buildfiles constists of three or more pages. The first page
is the Overview page. On this page, you can manage your configurations, task
definitions and Ant properties. More information on this can be found in the
following paragraphs. The pages after the Overview page represent a configu-
ration. The last page displays the XML sourecode of the buildfile. Normally, you
should not need to edit the source directly.

Configure Builder options

A configuration page consists of a header section and a body part. Using the con-
trols in the header, you can request the build of the current configuration, change

http://ant.apache.org
http://ant.apache.org

42 CHAPTER 5. SUPPORT FOR THE ECLIPSE IDE

the task definition used by the configuration or add options to the body part. Each
option in the configuration is displayed by an input mask, allowing you to perform
various actions:

e Modify options. The input masks reflect the characteristics of their asso-
ciated option, e.g. an option that expects a list will be displayed as a list
control. Input masks that consists only of a text field show an asterisk (*)
after the option name when modified. Please press [Enter] to accept the
new value.

e Remove options. Each input mask has a [x] control that will remove the
option from the configuration.

e Disable options. Options can also be disabled instead of removed, e.g. in
order to test the configuration without a specific option. Uncheck the check-
box in front of an input mask to disable that option.

e Show help texts and load default values. The arrow control in the upper right
corner brings up a context menu. You can show the option’s description or
load its default value (not available for all options).

The values of all options are immediately validated. If a value is not valid for
a specific option, the input mask will be annotated with the text invalid and
an error message is shown. Invalid options will be ignored when you try to build
your application.

Multiple configurations

It is possible to store more than one configuration in a buildfile. Click Add a
Jamaica Builder target to create a new minimal configuration. The new
configuration will be displayed in a new page in the editor. A configuration can be
removed on the Overview page by clicking remove after the configuration’s
name.

Multiple distributions

The plug-in uses task definitions (taskdefs in Ant’s terminology) to link the con-
figurations in a buildfile to a Jamaica distribution. Each Jamaica buildfile needs
at least one of these taskdefs, however you can setup more to be used within the
buildfile.

The section Configured Jamaica tasks shows the known task defini-
tions and lets you add new or remove existing ones.

5.4. BUILDING APPLICATIONS WITH JAMAICA BUILDER 43

Task definitions can be unbound, meaning that the definition references a Ja-
maica distribution that is currently not available or not yet known to the plug-in.
In such a case, you can create a new taskdef with the same name as the unbound
one.

Ant properties

Ant properties provide a text-replacement mechanism within Ant buildfiles. The
editor supports Ant propertie{-] in option values. This is especially useful in con-
junction with multiple configurations in one buildfile, when you create Ant prop-
erties for option values that are common to all configurations.

Launch built application

The editor provides a simple way to launch the built application when it has been
built for the host target platform. If the wizard did not already generate a tar-
get named with a ’run” prefix, click Create new launch application
target to add a target that executes the binary that resulted from the specific
Builder configuration.

Click Invoke Ant on this target to start the application. If the ap-
plication needs runtime parameters, those can be specified by clicking (configure)
at the end of the arguments line.

I'The property task’s env attribute is not supported.

44

CHAPTER 5. SUPPORT FOR THE ECLIPSE IDE

Part 11

Tools Usage and Guidelines

45

Chapter 6

Performance Optimization

The most fundamental measure employed by the Jamaica Builder to improve the
performance of an application is to statically compile those parts that contribute
most to the overall runtime. These parts are identified in a profile run of the
application. Identifying these parts is called profiling. The profiling information
is used by the Builder to decide which parts of an application need to be compiled
and whether further optimizations such as inlining the code are necessary.

6.1 Creating a profile

The builder’s —-profile option and the jamaicavmp command provide sim-
ple means to profile an application. Setting the —~profile option enables pro-
filing. The builder will then link the application with the profiling version of the
JamaicaVM libraries.

During profiling the Jamaica Virtual Machine counts, among other things, the
number of bytecode instructions executed within every method of the application.
The number of instructions can be used as a measure for the time spent in each
method.

At the end of execution, the total number of bytecode instructions executed
by each method is written to a file with the name of the main class of the Java
application and the suffix .prof, such that it can be used for further processing.
"Hot spots’ (the most likely sources for further performance enhancements by
optimization) in the application can easily be determined using this file.

6.1.1 Creating a profiling application

The compilation technology of Jamaica’s builder is able to use the data generated
during profile runs using the ~profile option to guide the compilation process,

47

48 CHAPTER 6. PERFORMANCE OPTIMIZATION

producing optimal performance with a minimum increase in code size.
Here is a demonstration of the profiler using the HelloWorld example pre-
sented in § First, it is built using the —profile option:

> jamaicabuilder -cp classes —-profile —-interpret HelloWorld
Reading configuration from
’/usr/local/jamaica—-6.0-1/etc/jamaica.conf’...
Reading configuration from
’/usr/local/jamaica-6.0-1/target/linux-x86/etc/jamaica.conf’ ...
Jamaica Builder Tool 6.0 Release 1
(User: EVALUATION USER, Expires: 2010.06.10)
Generating code for target ’linux-x86’, optimisation ’speed’
+ HelloWorld _.c
+ HelloWorld _.h
Class file compaction gain: 58.739178% (21654255 ==> 8934724)
* C compiling ’HelloWorld _.c’
+ HelloWorld _nc.o
* linking
* stripping
Application memory demand will be as follows:

initial max
Thread C stacks: 1024KB (= 8+ 128KB) 63MB (= 511+ 128KB)
Thread Java stacks: 128KB (= 8+« 16KB) 8176KB (= 511+ 16KB)
Heap Size: 2048KB 256MB
GC data: 128KB 16MB
TOTAL: 3328KB 343MB

The generated executable HelloWorld now prints the profiling information after
execution. The output may look like this:

> ./HelloWorld 10000

Hello World!
Hello World!
Hello World!
Hello World!

Hello World!
Hello World!
[...]

6.1.2 Using the profiling VM

Alternatively, in simple cases, the profile can also be created using the jamaicavmp
command on the host without first building a stand-alone executable:

'For better results, we run the application with the command line argument 10000 such that
startup code does not dominate

6.1. CREATING A PROFILE 49

> jamaicavmp HelloWorld 10000

Hello World!
Hello World!
Hello World!
Hello World!

Hello World!
Hello World!
[...]

The use of jamaicavmp is subject to the following restrictions:

e [t can generate a profile for the host only.

e Setting builder options for the application to be profiled is not possible.

6.1.3 Dumping a profile via network

If the application does not exit or writing a profile is very slow on the target,
you can request a profile dump with the jamaica_remoteprofile com-
mand. You need to set the jamaica.profile_request_port property
when building the application or using the profiling VM to an open TCP/IP port
and then request a dump remotely:

> jamaica_remoteprofile farget port
DUMPING. ..
DONE'.

In the above command, target denotes the IP address or host name of the target
system. By default, the profile is written on the target to a file with the name
of the main class and the suffix .prof. You can change the file name with the
—file option or you can send the profile over the network and write it to the file
system (with an absolute path or relative to the current directory) of the host with
the —net option:

> jamaica_remoteprofile —-net=filename target port

6.1.4 Creating a micro profile

To speed up the performance of critical sections in the application, you can use mi-
cro profiles that only contain profiling information of such a section (see §[6.2.2).
You need to reset the profile just before the critical part is executed and dump a
profile directly after. To reset a profile, you can use the command jamaica_
remoteprofile with the —reset option:

> jamaica_remoteprofile —-reset —-net=filename target port

50 CHAPTER 6. PERFORMANCE OPTIMIZATION

6.2 Using a profile with the Builder

Having collected the profiling data, the Jamaica Compiler can create a compiled
version of the application using the profile information. This compiled version
benefits from profiling information in several ways:

e Compilation is limited to the most time critical methods, keeping non-
critical methods in smaller interpreted byte-code format.

e Method inlining prefers inlining of calls that have shown to be executed
most frequently during the profiling run.

e Profiling information also collects information on the use of reflection, so
an application that cannot use smart linking due to reflection can profit from
smart linking even without manually listing all classes referenced via reflec-
tion.

6.2.1 Building with a profile

The builder option —useProfile is used to select the generated profiling data:

> jamaicabuilder -cp classes —-useProfile HelloWorld.prof HelloWorld
Reading configuration from
’/usr/local/jamaica-6.0-1/etc/jamaica.conf’...
Reading configuration from
’/usr/local/jamaica-6.0-1/target/linux-x86/etc/jamaica.conf’ ...
Jamaica Builder Tool 6.0 Release 1

(User: EVALUATION USER, Expires: 2010.06.10)
Generating code for target ’linux-x86’, optimisation ’speed’

+ PKG__V591866ffa60dffch__.c

[...]

+ HelloWorld _.c

+ HelloWorld _.h
Class file compaction gain: 58.833664% (21672755 ==> 8921879)

* C compiling ’“HelloWorld _.c’

[...]

+ HelloWorld _nc.o

* linking

* stripping
Application memory demand will be as follows:

initial max
Thread C stacks: 1024KB (= 8% 128KB) 63MB (= 511+ 128KB)
Thread Java stacks: 128KB (= 8+ 16KB) 8176KB (= 511% 16KB)
Heap Size: 2048KB 256MB
GC data: 128KB 16MB

TOTAL: 3328KB 343MB

6.3. INTERPRETING THE PROFILING OUTPUT 51

Due to the profile-guided optimizations performed by the compiler, the runtime
performance of the application built using a profile as shown usually exceeds the
performance of a fully compiled application. Furthermore, the memory footprint
is significantly smaller and the modify-compile-run cycle time is usually signif-
icantly shorter as well since only a small fraction of the application needs to be
compiled. It is not necessary to re-generate profile data after every modification.

6.2.2 Building with multiple profiles

You can use several profiles to improve the performance of your application.
There are two possibilities to specify profiles that behave in a different way.

First you can just concatenate two profile files or dump a profile several times
into the same file which will just behave as if the profiles were recorded sequen-
tially. You can add a profile for a new feature this way.

If you want to favor a profile instead, e.g. a micro profile for startup or a
performance critical section as described in § you can specify the profile
with another —~useProfile option. In this case, all profiles are normalized
before they are concatenated, so highly rated methods in a short-run micro profile
are more likely to be compiled.

6.3 Interpreting the profiling output

When running in profiling mode, the VM collects data to create an optimized ap-
plication but can also be interpreted manually to find find memory leaks or time
consuming methods. You can make Jamaica collect information about perfor-
mance, memory requirements etc.

To collect additional information, you have to set the property jamaica.
profile_groups to select one or more profiling groups. The default value
i1s builder to collect data used by the builder. You can set the property to the
values builder, memory, speed, all or a comma separated combination of
those. Example:

> jamaicavmp —-cp classes \
> -Djamaica.profile_groups=builder, speed \
HelloWorld

\

! The format of the profile file is likely to change in future versions of Jamaica
Builder.

52 CHAPTER 6. PERFORMANCE OPTIMIZATION

6.3.1 Format of the profile file

Every line in the profiling output starts with a keyword followed by space sepa-
rated values. The meaning of these values depends on the keyword.

For a better overview, the corresponding values in different lines are aligned as
far as possible and words and signs that improve human reading are added. Here
for every keyword the additional words and signs are omitted and the values are
listed in the same order as they appear in the text file.

Keyword: BEGIN_PROFILE_DUMP Groups: all
Values

1. unique dump ID

Keyword: END_PROFILE_DUMP Groups: all
Values

1. unique dump ID

Keyword: HEAP_REFS Groups: memory
Values
1. total number of references in object attributes
2. total number of words in object attributes

3. relative number of references in object attributes

Keyword: HEAP_USE Groups: memory
Values
1. total number of currently allocated objects of this class
2. number of blocks needed for one object of this class
3. block size in bytes
4. number of bytes needed for all objects of this class

5. relative heap usage of objects of this class

6.3. INTERPRETING THE PROFILING OUTPUT 53

6. total number of objects of this class organized in a tree structure
7. relative number of objects of this class organized in a tree structure

8. name of the class

Keyword: INSTANTIATION_COUNT Groups: memory
Values
1. total number of instantiated objects of this class
2. number of blocks needed for one object of this class
3. number of blocks needed for all objects of this class
4. number of bytes needed for all objects of this class
5. total number of objects of this class organized in a tree structure
6. relative number of objects of this class organized in a tree structure
7. class loader that loaded the class

8. name of the class

Keyword: PROFILE Groups: builder

Values
1. total number of bytecodes spent in this method
2. relative number of bytecodes spent in this method
3. signature of the method

4. class loader that loaded the class of the method

Keyword: PROFILE_CLASS_USED_VIA_REFLECTION Groups: builder
Values

1. name of the class used via reflection

54 CHAPTER 6. PERFORMANCE OPTIMIZATION

Keyword: PROFILE_CYCLES Groups: speed

Values

1. total number of processor cycles spent in this method (if available on the
target)

2. signature of the method

Keyword: PROFILE_INVOKE Groups: builder
Values
1. number of calls from caller method to called method
2. bytecode position of the call within the method
3. signature of the caller method

4. signature of the called method

Keyword: PROFILE_INVOKE_CYCLES Groups: speed
Values
1. number of processor cycles spent in the called method
2. bytecode position of the call within the method
3. signature of the caller method

4. signature of the called method

Keyword: PROFILE_NATIVE Groups: all

Values
1. total number of calls to the native method
2. relative number of calls to the native method

3. signature of the called native method

Keyword: PROFILE_NEWARRAY Groups: memory

Values

6.3. INTERPRETING THE PROFILING OUTPUT 55

1.
2.

3.

number of calls to array creation within a method
bytecode position of the call within the method

signature of the method

Keyword: PROFILE_THREAD Groups: memory, speed

Values

1.

2.

current Java priority of the thread

total amount of CPU cycles in this thread

. relative time in interpreted code

relative time in compiled code

. relative time in JNI code

. relative time in garbage collector code

required C stack size

. required Java stack size

Keyword: PROFILE_THREADS Groups: builder

Values

1.

maximum number of concurrently used threads

Keyword: PROFILE_THREADS_JNI Groups: builder

Values

1.

maximum number of threads attached via JNI

Keyword: PROFILE_VERSION Groups: all

Values

1.

version of Jamaica the profile was created with

56 CHAPTER 6. PERFORMANCE OPTIMIZATION

6.3.2 Example

We can sort the profiling output to find the application methods where most of the
execution time is spent. Under Unix, the 25 methods which use the most execu-
tion time (in number of bytecode instructions) can be found with the following
command:

> grep PROFILE: HelloWorld.prof | sort -rn -k2 | head —-n25
PROFILE: 7186606 (21%) sun/nio/cs/UTF_8SEncoder.encode...
PROFILE: 7186606 (21%) sun/nio/cs/UTF_8SEncoder.encode...
PROFILE: 7186606 (21%) sun/nio/cs/UTF_8SEncoder.encode...
PROFILE: 5705490 (17%) java/lang/String.getChars (II[CI...
PROFILE: 5705490 (17%) java/lang/String.getChars (II[CI...
PROFILE: 5705490 (17%) java/lang/String.getChars (II[CI...
PROFILE: 1323056 (3%) java/lang/StringBuilder.append(. . .
PROFILE: 1323056 (3%) java/lang/StringBuilder.append(. ..
PROFILE: 1323056 (3%) java/lang/StringBuilder.append(. ..
PROFILE: 1200060 (3%) java/io/BufferedWriter.write (Lj. ..
PROFILE: 1200060 (3%) java/io/BufferedWriter.write (Lj. ..
PROFILE: 1200060 (3%) java/io/BufferedWriter.write(Lj. ..

PROFILE: 960096 (2%) java/nio/Buffer.position(I)Lja...
PROFILE: 960096 (2%) java/nio/Buffer.position(I)Lja...
PROFILE: 960096 (2%) java/nio/Buffer.position(I)Lja...
PROFILE: 880044 (2%) sun/nio/cs/StreamEncoder.write. ..
PROFILE: 880044 (2%) sun/nio/cs/StreamEncoder.write. ..
PROFILE: 880044 (2%) sun/nio/cs/StreamEncoder.write. ..
PROFILE: 720036 (2%) sun/nio/cs/StreamEncoder.write. ..
PROFILE: 720036 (2%) sun/nio/cs/StreamEncoder.write. ..
PROFILE: 720036 (2%) sun/nio/cs/StreamEncoder.write. ..
PROFILE: 720036 (2%) java/nio/ByteBuffer.arrayOffse...
PROFILE: 720036 (2%) java/nio/ByteBuffer.arrayOffse. ..
PROFILE: 720036 (2%) java/nio/ByteBuffer.arrayOffse. ..
PROFILE: 652295 (1%) java/lang/String.length()I [bo...

In this small example program, it is not surprise that nearly all execution time is
spent in methods that are required for writing the output to the screen. The dom-
inant function is java/nio/ByteBufferImpl.put, which is used while
converting Java’s unicode characters to the platform’s ISO 8859-1 encoding. Also
important is the time spent in StringBuffer.append. Calls to the StringBuffer meth-
ods have been generated automatically by the jamaicac compiler for string con-
catenation expressions using the ’+’-operator.

On systems that support a CPU cycle counter, the profiling data also contains a
cumulative count of the number of cycles spent in each method. This information
is useful to obtain a more high-level view on where the runtime performance was
spent.

6.3. INTERPRETING THE PROFILING OUTPUT

The CPU cycle profiling information is contained in lines starting with the tag
PROFILE_CYCLES:. A similar command line can be used to find the methods

that cumulatively require most of the execution time:

> grep PROFILE_CYCLES:
PROFILE_CYCLES:
PROFILE_CYCLES:
PROFILE_CYCLES:

PROFILE_CYCLES: 1232845675 java/lang/System.<clinit>()V(i...
PROFILE_CYCLES: 411827088 java/io/PrintStream.<init> (Lja...
PROFILE _CYCLES: 411762656 java/io/PrintStream.<init>(Lja...
PROFILE_CYCLES: 407908263 java/lang/System$S4.<init>(Ljav...
PROFILE_CYCLES: 397958325 java/io/OutputStreamWriter.<in...
PROFILE CYCLES: 382076564 sun/nio/cs/StreamEncoder. forOu. ..
PROFILE_CYCLES: 366630363 java/lang/String.intern()Ljava...
PROFILE_CYCLES: 322935075 sun/misc/URLClassPath.pathToUR. ..
PROFILE_CYCLES: 277977307 java/nio/charset/Charset.<clin...
PROFILE_CYCLES: 268836921 java/lang/ClassLoader.loadClas...
PROFILE_CYCLES: 268802918 java/lang/ClassLoader.loadClas. ..
PROFILE_CYCLES: 268769712 java/lang/ClassLoader.loadClas. ..
PROFILE_CYCLES: 268300354 java/lang/ClassLoader$SystemCl. ..
PROFILE_CYCLES: 268236844 java/net/URLClassLoader.findCl. ..
PROFILE _CYCLES: 264332693 java/io/BufferedInputStream.<c...
PROFILE CYCLES: 259179348 java/util/concurrent/atomic/At. ..
PROFILE_CYCLES: 256416238 java/security/AccessController. ..
PROFILE _CYCLES: 256392827 java/net/URLClassLoaderSl.run (...
PROFILE_CYCLES: 256361948 java/net/URLClassLoaderSl.run(...
PROFILE_CYCLES: 255459907 com/aicas/jamaica/lang/SigIntH. ..
PROFILE _CYCLES: 235701127 sun/net/www/ParseUtil.fileToEn. ..
PROFILE_CYCLES: 233656888 java/lang/Class.getDeclaredFie. ..

1803030931
1774328122
1759095288

HelloWorld.prof | sort -rn -k2 | head —-n25
javax/realtime/AffinitySet.<cl...
java/util/BitSet.<clinit>()V(i...
java/lang/Class.desiredAsserti. ..

The cumulative cycle count shows more clearly that the main method is running
most of the time during the profiling run, the next dominating methods are print
and println of class java.io.Print Streamﬁ

The cumulative cycle counts can now be used as a basis for a top-down opti-
mization of the application execution time.

2Since main calls only print 1n, one would expect the cumulative time spent in print1n
to exceed the time spent in print. While this is actually the case for the calls from main, there
are however calls to print performed during startup of the virtual machine while executing the
static initializer of class java.lang.System, so that the total cumulative time in print is
higher than the time spent in println.

58

CHAPTER 6. PERFORMANCE OPTIMIZATION

Chapter 7

Reducing Footprint and Memory
Usage

In this section we give an example of how to achieve optimal runtime perfor-
mance for your Java application while reducing the code size and RAM memory
demand to a minimum. As example application we use Pendragon Software’s em-
bedded CaffeineMark (tm) 3.0. The class files for this benchmark are part of the
JamaicaVM Tools installation. See §[3.4]

7.1 Code Size vs. Runtime Performance

7.1.1 Using Smart Linking

When an application is built, smart linking is used to reduce the set of standard
classes that become part of the application. However, due to the large set of library
classes that are available, this still results in a fairly large application. In this
example compilation is turned off:

> jamaicabuilder -cp classes CaffeineMarkEmbeddedApp —-interpret \
> —destination=caffeine_interpret

Reading configuration from
’/usr/local/jamaica—-6.0-1/etc/jamaica.conf’ ...

Reading configuration from
’/usr/local/jamaica-6.0-1/target/linux-x86/etc/jamaica.conf’...
Jamaica Builder Tool 6.0 Release 1

(User: EVALUATION USER, Expires: 2010.06.10)

Generating code for target ’linux-x86’, optimisation ’speed’

+ caffeine_interpret__.c
+ caffeine interpret__ .h

Class file compaction gain: 58.882584% (21665933 ==> 8908472)
* C compiling ’caffeine_interpret__.c’

59

60 CHAPTER 7. REDUCING FOOTPRINT AND MEMORY USAGE

+ caffeine_interpret__nc.o
* linking
* stripping
Application memory demand will be as follows:

initial max
Thread C stacks: 1024KB (= 8+ 128KB) 63MB (= 511+ 128KB)
Thread Java stacks: 128KB (= 8+« 16KB) 8176KB (= 511+ 16KB)
Heap Size: 2048KB 256MB
GC data: 128KB 16MB
TOTAL: 3328KB 343MB

The size of the created binary may be inspected, for example, with a shell com-
mand to list directories. We use 1s, which is available on Unix systems. On
Windows, use dir instead.

> 1ls -s caffeine_interpret
12558788 caffeine_interpret

The runtime performance for the built application is slightly better compared to
an interpreted version using jamaicavm_slim, but a stronger performance in-
crease will be achieved by compilation as shown in the next section below.

> ./caffeine_interpret
Sieve score = 416 (98)
Loop score = 395 (2017)
Logic score = 419 (0)
String score = 2127 (708)
Float score = 331 (185)
Method score = 200 (166650)
Overall score = 461

> jamaicavm_slim CaffeineMarkEmbeddedApp
Sieve score = 346 (98)

Loop score = 277 (2017)

Logic score = 411 (0)

String score = 1699 (708)

Float score = 276 (185)

Method score = 212 (166650)

Overall score = 397

7.1.2 Using Compilation

Compilation can be used to increase the runtime performance of Java applications
significantly. Compiled code is typically about 20 to 30 times faster than inter-
preted code. However, due to the fact that Java bytecode is very compact com-
pared to machine code on CISC or RISC machines, fully compiled applications

7.1. CODE SIZE VS. RUNTIME PERFORMANCE 61

require significantly more memory. This is why we recommend using a profile as
decribed in § instead of fully compiling the application.

Using Default Compilation

If none of the options interpret, compile, oruseProfile is specified, the
default compilation will be used. The default means that a pre-generated profile
will be used for the system classes, and all application classes will be compiled
fully. This default usually results in good performance for small applications,
but it causes extreme code size increase for larger applications and it results in
slow execution of applications that use the system classes in a way different than
recorded in the system profile.

> Jjamaicabuilder -cp classes CaffeineMarkEmbeddedApp \
> —destination=caffeine

Reading configuration from
’/usr/local/jamaica-6.0-1/etc/jamaica.conf’ ...
Reading configuration from
’/usr/local/jamaica—-6.0-1/target/linux-x86/etc/jamaica.conf’ ...
Jamaica Builder Tool 6.0 Release 1

(User: EVALUATION USER, Expires: 2010.06.10)
Generating code for target ’linux-x86’, optimisation ’speed’

+ PKG__Vf8981d50b7d603bf__.c

[...]
+ caffeine _.c
+ caffeine __.h
Class file compaction gain: 58.973328% (21665933 ==> 8888811)
* C compiling ’‘caffeine__.c’
[...]

+ caffeine__nc.o
* linking
* Stripping
Application memory demand will be as follows:

initial max
Thread C stacks: 1024KB (= 8+ 128KB) 63MB (= 511+ 128KB)
Thread Java stacks: 128KB (= 8+ 16KB) 8176KB (= 511+ 16KB)
Heap Size: 2048KB 256MB
GC data: 128KB 16MB
TOTAL: 3328KB 343MB
> 1ls —-s caffeine
12726072 caffeine

The runtime performance is better than the interpreted version. But compared
to the executable in the next section the application size is bigger and the per-

62 CHAPTER 7. REDUCING FOOTPRINT AND MEMORY USAGE

formance is slightly worse. It is strongly recommended to create a profile as

described in §

> ./caffeine

Sieve score = 10576 (98)
Loop score = 41677 (2017)
Logic score = 50617 (0)
String score = 9861 (708)
Float score = 12807 (185)
Method score = 7357 (166650)
Overall score = 16574

Compilation via Profiling

Generation of a profile for compilation is a powerful tool for creating small ap-
plications with fast turn-around times. The profile collects information on the
runtime behavior of an application, guiding the compiler in its optimization pro-
cess and in the selection of which methods to compile and which methods to leave
in compact bytecode format.

To generate the profile, we first have to create a profiling version of the ap-
plications using the builder option profile (see § [6) or using the command
jamaicavmp:

> jamaicavmp CaffeineMarkEmbeddedApp
Sieve score = 250 (98)

Loop score = 214 (2017)

Logic score = 241 (0)

String score = 1367 (708)

Float score = 217 (185)

Method score = 181 (166650)

Overall score = 297

Start writing profile data into file ’CaffeineMarkEmbeddedApp.prof’
Write threads data...

Write invocation data...

Done writing profile data

This profiling run also illustrates the runtime overhead of the profiling data col-
lection: the profiling run is significantly slower than the interpreted version.

Now, an application can be compiled using the profiling data that was stored
in file CaffeineMarkEmbeddedApp.prof:

> jamaicabuilder -cp classes \

> —useProfile=CaffeineMarkEmbeddedApp.pro \

> CaffeineMarkEmbeddedApp -destination=caffeine_useProfilell
Reading configuration from

7.1. CODE SIZE VS. RUNTIME PERFORMANCE 63

’/usr/local/jamaica-6.0-1/etc/jamaica.conf’ ...
Reading configuration from
’/usr/local/jamaica-6.0-1/target/linux-x86/etc/jamaica.conf’...
Jamaica Builder Tool 6.0 Release 1
(User: EVALUATION USER, Expires: 2010.06.10)
Generating code for target ’linux-x86’, optimisation ’speed’
+ PKG__Vf71376adaaf8ead99 .c
[...]
+ caffeine_useProfilel0__.c
+ caffeine_useProfilelO__.h
Class file compaction gain: 58.83032% (21684433 ==> 8927412)
* C compiling ’‘caffeine useProfilel(O__.c’
[...]
+ caffeine useProfilelO__nc.o
* linking
* stripping
Application memory demand will be as follows:

initial max
Thread C stacks: 1024KB (= 8+ 128KB) 63MB (= 511+ 128KB)
Thread Java stacks: 128KB (= 8+ 16KB) 8176KB (= 511% 16KB)
Heap Size: 2048KB 256MB
GC data: 128KB 16MB
TOTAL: 3328KB 343MB

> 1ls —-s caffeine_useProfilel
12778336 caffeine_useProfilel0

The resulting application size is only slightly larger than the interpreted version,
but the runtime performance is nearly the same as that of the fully compiled ver-

sion as presented in §

> ./caffeine_useProfilel0
Sieve score = 10583 (98)
Loop score = 33002 (2017)
Logic score = 50558 (0)
String score = 10105 (708)
Float score = 12747 (185)
Method score = 7357 (166650)
Overall score = 15993

When a profile is used to guide the compiler, by default 10% of the methods
executed during the profile run are compiled. This results in a moderate code
size increase compared with fully interpreted code and typically results in a run-
time performance very close to fully compiled code. Using the builder option
percentageCompiled, this default setting can be adjusted to any value be-
tween 0% and 100%. Note that setting the value to 100% is not the same as

64 CHAPTER 7. REDUCING FOOTPRINT AND MEMORY USAGE

setting the option compile (see §[7.1.2), since the percentage value only refers
to those methods executed during the profiling run. Methods not executed during
the profiling run will not be compiled when useProfile is used.

Entries in the profile can be edited manually, for example to enforce compila-
tion of a method that is performance critical. For example, the profile generated
for this example contains the following entry for the method size () of class
java.util.Vector.

o

PROFILE: 64 (0%) java/util/Vector.size()I

To enforce compilation of this method even when percentageCompiled is
not set to 100%, the profiling data can be changed to a higher value, e.g.,

PROFILE: 1000000 (0%) Java/util/Vector.size () I

Selecting C compiler optimization level

Enabling C compiler optimizations for code size or execution speed can have an
important effect on the the size and speed of the application. These optimiza-
tions are enabled via setting the command line options —optimize=size or
-optimize=speed, respectively. Note that speed is normally the default[]
For comparision, we build the caffeine example optimising for size.

> jamaicabuilder -cp classes \

> —useProfile=CaffeineMarkEmbeddedApp.prof \
> -optimize=size CaffeineMarkEmbeddedApp \
> —destination=caffeine_useProfilel0_size

Reading configuration from
’/usr/local/jamaica—-6.0-1/etc/jamaica.conf’ ...
Reading configuration from
’/usr/local/jamaica—-6.0-1/target/linux-x86/etc/jamaica.conf’...
Jamaica Builder Tool 6.0 Release 1
(User: EVALUATION USER, Expires: 2010.06.10)
Generating code for target ’linux-x86’, optimisation ’size’
+ PKG__V744a379db03fd860__.c
[-..]
+ caffeine useProfilel(0 _size .c
+ caffeine useProfilel(O _size _.h
Class file compaction gain: 58.83032% (21684433 ==> 8927412)

* C compiling ’‘caffeine _useProfilel(_size _.c’
[--.]

+ caffeine useProfilel(0_size _nc.o

* linking

* stripping

I'To check the default, invoke jamaicabuilder -help or inspect the builder status mes-
sages.

7.1. CODE SIZE VS. RUNTIME PERFORMANCE 65

Application memory demand will be as follows:

initial max
Thread C stacks: 1024KB (= 8+ 128KB) 63MB (= 511+ 128KB)
Thread Java stacks: 128KB (= 8+ 16KB) 8176KB (= 511% 16KB)
Heap Size: 2048KB 256MB
GC data: 128KB 16MB
TOTAL: 3328KB 343MB

> 1ls —-s caffeine_useProfilel(_size
12675936 caffeine useProfilel(_size

The resulting performance depends strongly on the C compiler that is employed
and may even show anomalies such as better runtime performance for the version
optimized for smaller code size:

> ./caffeine_useProfilel0
Sieve score = 10583 (98)
Loop score = 33002 (2017)
Logic score = 50558 (0)
String score = 10105 (708)
Float score = 12747 (185)
Method score = 7357 (166650)
Overall score = 15993

> ./caffeine_useProfilel(0_size
Sieve score = 10138 (98)

Loop score = 33136 (2017)
Logic score = 58124 (0)

String score = 10140 (708)
Float score = 13134 (185)
Method score = 6984 (166650)
Overall score = 16212

Using Full Compilation
Full compilation can be used when no profiling information is available and code

size or built time is not an important issue.

! Fully compiling an application leads to very poor turn-around times and may
require significant amounts of memory during the C compilation phase. We
recommend compilation be used only through profiling as described above.

To compile the complete application, the option compi 1e must be set:

> jamaicabuilder -cp classes —compile CaffeineMarkEmbeddedApp \
> —destination=caffeine_compiled

66 CHAPTER 7. REDUCING FOOTPRINT AND MEMORY USAGE

Reading configuration from
’/usr/local/jamaica—-6.0-1/etc/jamaica.conf’...
Reading configuration from
’/usr/local/jamaica-6.0-1/target/linux-x86/etc/jamaica.conft’ ...
Jamaica Builder Tool 6.0 Release 1
(User: EVALUATION USER, Expires: 2010.06.10)
Generating code for target ’linux-x86’, optimisation ’speed’
+ PKG__V2562a85066f42947__.c
[...]
+ caffeine compiled _.c
+ caffeine compiled _.h
Class file compaction gain: 74.97414% (21665933 ==> 5422087)
* C compiling ’caffeine compiled _.c’
[...]
+ caffeine compiled _nc.o
* linking
* Stripping
Application memory demand will be as follows:

initial max
Thread C stacks: 1024KB (= 8+ 128KB) 63MB (= 511+ 128KB)
Thread Java stacks: 128KB (= 8+ 16KB) 8176KB (= 511% 16KB)
Heap Size: 2048KB 256MB
GC data: 128KB 16MB
TOTAL: 3328KB 34 3MB

> 1ls -s caffeine_compiled
45182172 caffeine compiled

The performance of the compiled version is significantly better than the inter-
preted version. However, there is only a small difference compared to the version
created using the profile as described in the §

> ./caffeine_compiled

Sieve score = 15508 (98)
Loop score = 64680 (2017)
Logic score = 77315 (0)
String score = 6420 (708)
Float score = 20781 (185)
Method score = 12887 (166650)
Overall score = 22602

For a better performance of a fully compiled application, compi le can of course
be combined with the appropriate C compiler optimization level as shown in

§[7.1.2]

7.2. OPTIMIZING RAM MEMORY DEMAND 67

7.2 Optimizing RAM Memory Demand

In many embedded applications, the amount of RAM memory required is even
more important than the application performance and its code size. Therefore, a
number of means to control the applications RAM requirements are available in
Jamaica .

RAM memory is required for three main purposes:

1. Memory for the application’s data structures, such as objects or arrays allo-
cated during runtime.

2. Memory required to store internal data of the VM, such as representation of
classes, methods, method tables, etc.

3. Memory required for each thread, such as Java and C stacks.

7.2.1 Measuring RAM requirements

The amount of RAM memory required by an application can be determined by
setting the option analyse. Apart from setting this option it is important that
exactly the same arguments are used than in the final version. Here analyse is
setto ‘1:

> jamaicabuilder -cp classes —interpret —-analyse=1 \
> CaffeineMarkEmbeddedApp -destination=caffeine_analyse
Reading configuration from
’/usr/local/jamaica—-6.0-1/etc/jamaica.conf’ ...
Reading configuration from
’/usr/local/jamaica-6.0-1/target/linux-x86/etc/jamaica.conf’...
Jamaica Builder Tool 6.0 Release 1

(User: EVALUATION USER, Expires: 2010.06.10)
Generating code for target ’linux-x86’, optimisation ’speed’

+ caffeine_analyse _.cC

+ caffeine analyse__ .h
Class file compaction gain: 58.882584% (21665933 ==> 8908472)
* C compiling ’caffeine_analyse _.c’

+ caffeine_analyse__nc.o
* linking
* stripping
Application memory demand will be as follows:

initial max
Thread C stacks: 1024KB (= 8+ 128KB) 63MB (= 511+ 128KB)
Thread Java stacks: 128KB (= 8+ 16KB) 8176KB (= 511% 16KB)
Heap Size: 204 8KB 256MB
GC data: 128KB 16MB

TOTAL: 3328KB 343MB

68 CHAPTER 7. REDUCING FOOTPRINT AND MEMORY USAGE

Running the resulting application will print the amount of RAM memory that was
required during the execution:

> ./caffeine_analyse

Sieve score = 556 (98)
Loop score = 604 (2017)
Logic score = 733 (0)
String score = 207 (708)
Float score = 482 (185)
Method score = 334 (166650)
Overall score = 449

Application used at most 2120672 bytes for reachable objects
on the Java heap

(accuracy 1%).

###

Worst case allocation overhead using 10% reserved memory:
#H# heapSize dynamic GC const GC work
7423K 6 3
6164K 7 4
5366K 8 4
4828K 9 4
#H## 4435K 10 4
3908K 12 5
3577K 14 5
#H## 3341K 16 6
3172K 18 6
3042K 20 7
2857K 24 8
2733K 28 9
#H## 2645K 32 10
2576K 36 11
2523K 40 12
#H# 2446K 48 14
2392K 56 15
#H## 2354K 64 17
2264K 96 24
2220K 128 30
2176K 192 42
2155K 256 52
2135K 384 67

Here, the application requires 2120672 bytes for the Java heap that is under the
control of the garbage collector. The minimum suggested heap size is 2135K,
while a larger heap size provides better worst-case allocation overhead. Nor-
mally, it is a good choice to set the heap to the size associated with a dynamic

7.2. OPTIMIZING RAM MEMORY DEMAND 69

GC overhead of 20 — in this example, 3042K. For further information on heap
size analysis and the Builder option —analyze, see §

7.2.2 Memory for an Application’s Data Structures

To optimize the memory required for point 1, the application’s data structures,
care is required by the application developer to allocate little memory and to make
efficient use of it.

One important prerequisite to keeping application RAM demand low is that
the Java implementation introduces only a small amount of memory overhead
into every object. This is particularly important since Java applications typically
allocate many small objects.

The per object memory overhead in Jamaica is relatively small: Typically
three machine words are required for internal data such as the garbage collection
state, the object’s type information, a monitor for synchronisation and memory
area information (see §[10|for details on memory areas).

7.2.3 Memory for API libraries

The amount of memory required for internal data structures using an application
built using Jamaica is very low since only essential data that needs to be modified
at runtime is stored in RAM. Most data that is constant will be read directly from
the application data that can be stored in ROM.

Nevertheless, the amount of memory required for internal data depends on the
size of the application including all library class files that may be required at run
time. Library classes such as character encodings or network protocols are not
needed by all applications so they do not necessarily need to be included. The
libraries that should be included can be set through the option setLibraries.

For our example application, it is sufficient to have the default encoding iso
8859_1 and no support for network protocols or text locales. Furthermore security
management and logging is not needed and a minimal charset is sufficient. Con-
sequently, we can set iso_encodings to 8859_1 while all of protocols
and locales can be set to the empty set. security and logger can be set
to of f and charsetprovider to minimal. The resulting call to build the
application looks as follows:

> jamaicabuilder -cp classes —-interpret \

> -setProtocols=none -setlLocales=none \

> -setGraphics=none -setFonts=none \

> CaffeineMarkEmbeddedApp -destination=caffeine_nolibs
Reading configuration from
’/usr/local/jamaica-6.0-1/etc/jamaica.conf’ ...

70 CHAPTER 7. REDUCING FOOTPRINT AND MEMORY USAGE

Reading configuration from
’/usr/local/jamaica—-6.0-1/target/linux-x86/etc/jamaica.conf’...
Jamaica Builder Tool 6.0 Release 1

(User: EVALUATION USER, Expires: 2010.06.10)
Generating code for target ’linux-x86’, optimisation ’speed’

+ caffeine nolibs___.c

+ caffeine nolibs___.h
Class file compaction gain: 80.13192% (8834956 ==> 1755336)
* C compiling ’‘caffeine _nolibs__.c’

+ caffeine _nolibs__nc.o
* linking
* Stripping
Application memory demand will be as follows:

initial max
Thread C stacks: 1024KB (= 8+ 128KB) 63MB (= 511+ 128KB)
Thread Java stacks: 128KB (= 8+ 16KB) 8176KB (= 511% 16KB)
Heap Size: 2048KB 256MB
GC data: 128KB 16MB
TOTAL: 3328KB 343MB

> 1ls —-s caffeine_nolibs
3569868 caffeine nolibs

About 75% of the class file data can be removed so that the resulting application
occupies only 783kB.

7.2.4 Memory Required for Threads

To reduce the Non-Java heap memory, one must reduce the stack sizes and the
number of threads that will be created for the application. This can be done in the
following ways.

1. Reducing Java stack size

The Java stack size can be reduced via setting option javaStackSize
to a lower value than the default (typically 20K). To reduce the size to 4
kilobytes, javaStackSize=4K can be used.

2. Reducing C stack size

The C stack size can be set accordingly via option nativeStackSize.

3. Disabling finalizer thread

A Java application typically uses one thread that is dedicated to running the
finalize () methods of objects that were found to be unreachable by the
garbage collector. An application that does not allocate any of such objects

7.2. OPTIMIZING RAM MEMORY DEMAND 71

may not need this finalizer thread. The priority of the finalizer thread can be
adjusted through the option finalizerPri. Setting the priority to zero
(-finalizerPri=0) deactivates the finalizer thread completely.

Note that deactivating the finalizer thread may cause a memory leak since
any objects that have a finalize () method can no longer be reclaimed.
Similarly, weak, soft and phantom references rely on the presence of a final-
izer. If the resources available on the target system do not permit the use of
a finalizer thread, the application may execute finalize () method ex-
plicitly by frequent calls to Runtime.runFinalization (). This will
also permit the use of weak, soft and phantom references even if no finalizer
thread is present.

4. Setting the number of threads

The number of threads available for the application can be set using option
numThreads. The default setting for this option is two, which is enough
for the finalizer thread and the main thread of the application.

If the finalizer thread is deactivated and no new threads are started by the
application, the number of threads can be reduced to one by using the setting
—numThreads=1.

Note that if profiling information was collected and is provided via the
useProfile option, the number of threads provided to the numThreads
option will be checked to ensure it is at least the the number of threads that
were required during the profiling run. If not, a warning message with the
minimum number of threads during the profiling run will be displayed. This
information can be used to adjust the number of threads to the minimum re-
quired by the application.

5. Disabling time slicing

On non-realtime systems that do not strictly respect thread priorities, Ja-
maica uses one additional thread to allow time slicing between threads. On
realtime systems, this thread can be used to enforce round-robin scheduling
of threads of equal priorities.

On systems with tight memory demand, the thread required for time-slicing
can be deactivated by setting the size of the time slice to zero using the
option ~timeSlice=0ns.

In an application that uses threads of equal priorities, explicit calls to the
method Thread.yield () are required to permit thread switches to an-
other thread of the same priority if the time slicing thread is disabled.

72

CHAPTER 7. REDUCING FOOTPRINT AND MEMORY USAGE

Note that the number of threads set by option —-numThreads does not in-
clude the time slicing thread. Unlike when disabling the finalizer thread,
which is a Java thread, when the time slicing thread is disabled, the argu-
ment to —-numThreads should not be changed.

. Disabling memory reservation thread

The memory reservation thread is a low priority thread that continously
tries to reserve memory up to a specified threshold. This reserved memory
is used by all other threads. As long as reserved memory is available no
GC work needs to be done. This is especially efficient for applications that
have long pause times with little or no activity that are preempted by sudden
activities that require a burst of memory allocation.

On systems with tight memory demand, the thread required for memory
reservation can be deactivated by setting ~reservedMemory=0.

. Disabling signal handlers

The default handlers for the POSIX signals can be turned off by setting
properties with the option XdefineProperty. The POSIX signals are
SIGINT, SIGQUIT and SIGTERM. The properties are described in §
To turn off the signal handlers, the properties jamaica.no_sig_int_
handler, jamaica.no_sig quit_handler and jamaica.no_
sig_term_handler have to be set to t rue.

Applying this to our example application, we can reduce the Java stack to 4K,

deactivate the finalizer thread, set the number of threads to 1, disable the time
slicing thread and the memory reservation thread and turn of the signal handlers:

>
>
>
>
>
>
>
>

jamaicabuilder -cp classes —-interpret -setLocales=none \

—setProtocols=none -setGraphics=none -setFonts=none \
-javaStackSize=4K -finalizerPri=0 -numThreads=1 \
-timeSlice=0ns -reservedMemory=0 \
—XdefineProperty="jamaica.no_sig_int_handler=true \
jamaica.no_sig_quit_handler=true \
jamaica.no_sig_term_handler=true" \

CaffeineMarkEmbeddedApp -destination=caffeine_nolibs_js_fP_tS

Reading configuration from
’/usr/local/jamaica-6.0-1/etc/jamaica.conf’...
Reading configuration from
’/usr/local/jamaica-6.0-1/target/linux-x86/etc/jamaica.conf’ ...
Jamaica Builder Tool 6.0 Release 1

(User: EVALUATION USER, Expires: 2010.06.10)
Generating code for target ’linux-x86’, optimisation ’speed’

+ caffeine_nolibs_js fP_ tS__.c

+ caffeine _nolibs_js fP_tS_.h

7.2. OPTIMIZING RAM MEMORY DEMAND 73

Class file compaction gain: 80.13536% (8835298 ==> 1755100)
* C compiling ’caffeine nolibs_js _fP_tS __.c’
+ caffeine_nolibs_js_fP_tS__nc.o
* linking
* stripping
Application memory demand will be as follows:

initial max
Thread C stacks: 128KB (= 1+ 128KB) 63MB (= 511+ 128KB)
Thread Java stacks: 4096B (= 1+4096B) 2044KB (= 511%4096B)
Heap Size: 2048KB 256MB
GC data: 128KB 16MB
TOTAL: 2308KB 337MB

> 1ls -s caffeine_nolibs_js_fP_tS
3569804 caffeine nolibs_js fP_tS

These additional options have little effect on the application size itself compared to
the earlier version. However, the RAM demand of the application can be reduced
to 2308K instead of 3328K for the version with larger Java stack, finalizer thread
and time slicing thread.

7.2.5 Memory Required for Line Numbers

An important advantage of programming in the Java language compared to other
languages are the accurate error messages one obtains. Run time exceptions con-
tain a complete stack trace with line number information on where the problem
occured. This information, however, needs to be stored in the application and be
available at runtime.

After the debugging of an application is finished, you may want to reduce the
applications memory demand by removing this information. The builder option
XignoreLineNumbers can be set to disable this information. Continuing the
example from the previous section, one can further reduce the application size and
RAM demand by setting this option as follows:

> jamaicabuilder -cp classes —-interpret \

> -setLocales=none -setProtocols=none -setGraphics=none \
> —-setFonts=none -javaStackSize=4K -finalizerPri=0 \
> —-numThreads=1 -timeSlice=0ns -reservedMemory=0 \

> -XdefineProperty="Jjamaica.no_sig_int_handler=true \
> jamaica.no_sig_quit_handler=true \

> jamaica.no_sig_term_handler=true" \

> CaffeineMarkEmbeddedApp —-XignoreLineNumbers=true \
> —destination=caffeine_nolibs_js_fP_tS_nL

Reading configuration from
’/usr/local/jamaica-6.0-1/etc/jamaica.conf’ ...

74 CHAPTER 7. REDUCING FOOTPRINT AND MEMORY USAGE

Reading configuration from
’/usr/local/jamaica—-6.0-1/target/linux-x86/etc/jamaica.conf’...
Jamaica Builder Tool 6.0 Release 1

(User: EVALUATION USER, Expires: 2010.06.10)
Generating code for target ’linux-x86’, optimisation ’speed’

+ caffeine_nolibs_js_fP_tS nL .c

+ caffeine_nolibs_js_fP_tS nL _.h
Class file compaction gain: 83.21974% (8835298 ==> 1482586)

* C compiling ’‘caffeine _nolibs_js_fP_tS nL _.c’

‘-mcpu=’ 1s deprecated. Use ‘-mtune=’ or ’-march=’ instead.
+ caffeine nolibs_js fP_tS nI,__nc.o
* linking

* stripping
Application memory demand will be as follows:

initial max
Thread C stacks: 128KB (= 1+ 128KB) 63MB (= 511+ 128KB)
Thread Java stacks: 40968 (= 1+x4096B) 2044KB (= 511%4096B)
Heap Size: 2048KB 256MB
GC data: 128KB 16MB
TOTAL: 2308KB 337MB

> 1ls —-s caffeine_nolibs_js_fP_tS_nL
3291812 caffeine nolibs_js fP_tS_nL

JamaicaVM copies the line number information to RAM on startup, such that also
the RAM demand without line number information is significantly lower. In this
case, the demand dropped from 471K with line number information to only 347K
without this information.

Chapter 8

Memory Management
Configuration

JamaicaVM provides the only efficient hard-realtime garbage collector available
for Java implementations on the marked today. This chapter will first explain
how this garbage collection technology can be used to obtain the best results for
applications that have soft-realtime requirements before explaining the more fine-
grained tuning required for realtime applications.

8.1 Configuration for soft-realtime applications

For most non-realtime applications, the default memory management settings of
JamaicaVM perform well: The heap size is set to a small starting size and is
extended up to a maximum size automatically whenever the heap is not sufficient
or the garbage collection work becomes too high. However, in some situations,
some specific settings may help to improve the performance of a soft-realtime
application.

8.1.1 [Initial heap size

The default initial heap size is a small value. The heap size is increased on demand
when the application exceeds the available memory or the garbage collection work
required to collect memory in this small heap becomes too high. This means that
an application that on startup requires significantly more memory than the initial
heap size will see its startup time increased by repeated incremental heap size
expansion.

The obvious solution here is to set the initial heap size to a value large enough
for the application to start. The Jamaica builder option heapSize (see § and

75

76 CHAPTER 8. MEMORY MANAGEMENT CONFIGURATION

the virtual machine option Xmssize can be employed to set a higher size.

Starting off with a larger initial heap not only prevents the overhead of in-
cremental heap expansion, but it also reduces the garbage collection work during
startup. This is because the garbage collector determines the amount of garbage
collection work from the amount of free memory, and with a larger initial heap,
the initial amount of free memory is larger.

8.1.2 Maximum heap size

The maximum heap size specified via builder option maxHeapSize (see §
and the virtual machine option Xmx should be set to the maximum amount of
memory on the target system that should be available to the Java application. Set-
ting this option has no direct impact on the performance of the application as
long as the application’s memory demand does not come close to this limit. If
the maximum heap size is not sufficient, the application will receive an OutOf -
MemoryError at runtime.

However, it may make sense to set the initial heap size to the same value as
the maximum heap size whenever the initial heap demand of the application is of
no importance for the remaining system. Setting initial heap size and maximum
heap size to the same value has two main consequences. First, as has been seen
in §[8.1.T]above, setting the initial heap size to a higher value avoids the overhead
of dynamically expanding the heap and reduces the amount of garbage collection
work during startup. Second, JamaicaVM’s memory management code contains
some optimizations that are only applicable to a non-increasing heap memory
space, so overall memory management overhead will be reduced if the same value
is chosen for the initial and the maximum heap size.

8.1.3 Finalizer thread priority

Before the memory used by an object that has a finalize method can be re-
claimed, this finalize method needs to be executed. A dedicated thread, the
FinalizerThread executes these finalize methods and otherwise sleeps
waiting for the garbage collector to find objects to be finalized.

In order to prevent the system from running out of memory, the Finalizer—
Thread must receive sufficient CPU time. Its default priority is therefore set to
10, the highest priority a Java thread may have. Consequently, any thread with a
lower priority will be preempted whenever an object is found to require finaliza-
tion.

Selecting a lower finalizer thread priority may cause the finalizer thread to
starve if a higher priority thread does not yield the CPU for a longer period of
time. However, if it can be guaranteed that the finalizer thread will not starve,

8.1. CONFIGURATION FOR SOFT-REALTIME APPLICATIONS 77

system performance may be improved by running the finalizer thread at a lower
priority. Then, a higher priority thread that performs memory allocation will not
be preempted by finalizer thread execution.

This priority can be set to a lower value using the option finalizerPri
of the builder or the environment variable JAMAICAVM FINALIZERPRI. In
an application that has sufficient idle CPU time in between urgent activities, a
finalizer priority lower than the priority of all other threads may be sufficient.

8.1.4 Reserved memory

JamaicaVM'’s default behavior is to perform garbage collection work at memory
allocation time. This ensures a fair accounting of the garbage collection work:
Those threads with the highest allocation rate will perform correspondingly more
garbage collection work.

However, this approach may slow down threads that run only occasionally and
perform some allocation bursts, e.g., changing the input mask or opening a new
window in a graphical user interface.

To avoid penalizing these time-critical tasks by allocation work, JamaicaVM
uses a low priority memory reservation thread that runs to pre-allocate a given
percentage of the heap memory. This reserved memory can then be allocated
by any allocation bursts without the need to perform garbage collection work.
Consequently, an application with bursts of allocation activity with sufficient idle
time between these bursts will see an improved performance.

The maximum amount of memory that will be reserved by the memory reser-
vation thread is given as a percentage of the total memory. The default value for
this percentage is 10%. It can be set via the builder options —~reservedMemory
and —~reservedMemoryFromEnv, or for the virtual machine via the environ-
ment variable JAMAICAVM_RESERVEDMEMORY.

An allocation burst that exceeds the amount of reserved memory will have to
fall back to perform garbage collection work as soon as the amount of reserved
memory is exceeded. This may occur if the maximum amount of reserved memory
is less than the memory allocated during the burst or if there is too little idle time
in between consecutive bursts such as when the reservation thread cannot catch
up and reserve the maximum amount of memory.

For an application that cannot guarantee sufficient idle time for the memory
reservation thread, the amount of reserved memory should not be set to a high per-
centage. Higher values will increase the worst case garbage collection work that
will have to be performed on an allocation, since after the reserved memory was
allocated, there is less memory remaining to perform sufficient garbage collection
work to reclaim memory before the free memory is exhausted.

78 CHAPTER 8. MEMORY MANAGEMENT CONFIGURATION

A realtime application without allocation bursts and sufficient idle time should
therefor run with the maximum amount of reserved memory set to 0%.

The priority default of the memory reservation thread is the Java priority 1
with the scheduler instructed to give preference to other Java threads that run
at priority 1 (i.e., with a priority micro adjustment of —1). The priority can
be changed by setting the Java property jamaica.reservation_thread_
priority to an integer value larger than or equal to 0. If set, the memory reser-
vation thread will run at the given Java priority. A value of 0 will result at a Java
priority 1 with micro adjustment —1, i.e., the scheduler will give preference to
other threads running at priority 1.

8.1.5 Using a GC thread

In JamaicaVM, the garbage collection work is by default performed in the ap-
plication threads, so there is no need for a dedicated garbage collection thread.
However, in an application that provides idle CPU time, one might wish to use
this idle time to take load from the main threads and perform garbage collection
work during idle time. JamaicaVM permits this by enabling the use of a garbage
collection thread (GC thread).

The GC thread is by default not activated. It can be activated by setting a Java
system property jamaica.gcthread_pri. The value of this property must
be the desired thread priority the GC thread should run at. Typically, the lowest
Java thread priority 1 is the best value to use an application’s idle time.

Since the application may run other Java threads at priority 1, the property
may be set to 0, which results in a GC thread Java priority 1 and the scheduler set
to give preference to other Java threads running at priority 1.

The GC thread uses this idle time to perform garbage collection work so that
the amount of free memory is larger and the application threads can on average
perform allocations faster. However, additional CPU time is taken from any other
applications on the system that may run at lower priorities.

Even when a GC thread is used, not all of the available CPU time is necessarily
used by the Java application. The GC thread will periodically stop its activity
when only a little memory was reclaimed during a GC cycle. Lower priority
threads may therefore still obtain some CPU time even if a GC thread is used.

8.1.6 Stop-the-world Garbage Collection

For applications that do not have any realtime constraints, but that require the
best average time performance, JamaicaVM’s builder provides options to disable
realtime garbage collection, and to use a stop-the-world garbage collector instead.

8.1. CONFIGURATION FOR SOFT-REALTIME APPLICATIONS 79

In stop-the-world mode, no garbage collection work will be performed un-
til the system runs out of free memory. Then, all threads that perform memory
allocation will be stopped to perform garbage collection work until a complete
garbage collection cycle is finished and memory was reclaimed. Any thread that
does not perform memory allocation may, however, continue execution even while
the stop-the-world garbage collector is running.

The builder option ~stopTheWor1dGC enables the stop-the-world garbage
collector. Alternatively, the builder option —~const GCwork=-1 may be used, or
—constGCworkFromEnv=var with the environment variable var set to —1.

JamaicaVM additionally provides an atomic garbage collector that requires
stopping of all threads of the Java application during a stop-the-world garbage
collection cycle. This has the disadvantage that even threads that do not allocate
heap memory will have to be stopped during the GC cycle. However, it avoids
the need to track heap modifications performed by threads running parallel to the
garbage collector (so called write-barrier code). The result is a slightly increased
performance of compiled code.

Specifying the builder option —atomicGC enables the atomic garbage col-
lector. Alternatively, the builder option —~constGCwork=-2 may be used, or
specify —const GCworkFromEnv=var with the environment variable var set to
-2.

Please note the use of the memory reservation thread or the GC thread should
be disabled when stop-the-world or atomic GC is used.

8.1.7 Recommendations

In summary, to obtain the best performance in your soft-realtime application, fol-
low the following recommendations.

e Set initial heap size as large as possible.
e Set initial heap size and maximum heap size to the same value if possible.

e Set the finalizer thread priority to a low value if your system has enough
idle time.

e If your application uses allocation bursts with sufficient CPU idle time in
between two allocation bursts, set the amount of reserved memory to fit
with the largest allocation burst.

e If your application does not have idle time with intermittent allocation bursts,
set the amount of reserved memory to 0%.

80 CHAPTER 8. MEMORY MANAGEMENT CONFIGURATION

e Enable the GC thread if your system has idle time that can be used for
garbage collection.

8.2 Configuration for hard-realtime applications

For predictable execution of memory allocation, more care is needed when select-
ing memory related options. No dynamic heap size increments should be used if
the break introduced by the heap size expansion can harm the realtime guarantees
required by the application. Also, the heap size must be set such that the implied
garbage collection work is tolerable.

The memory analyzer tool is used to determine the garbage collector settings
during a runtime measurement. Together with the numblocks command (see
§[I7), they permit an accurate prediction of the time required for each memory al-
location. The following sections explain the required configuration of the system.

8.2.1 Usage of the Memory Analyzer tool

The Memory Analyzer is a tool for fine tuning an application’s memory require-
ments and the realtime guarantees that can be given when allocating objects within
Java code running on the Jamaica Virtual Machine.

The Memory Analyzer is integrated into the Builder tool. It can be activated
by setting the command line option —analyze=accuracy.

Using the Memory Analyzer Tool is a three-step process: First, an application
is built using the Memory Analyzer. The resulting executable file can then be ex-
ecuted to determine its memory requirements. Finally, the result of the execution
can be used to fine tune the final version of the application.

8.2.2 Building using the Memory Analyzer

As an example, we will build the HelloWorld example application that was pre-
sented in § This can be done by providing the option —analyze to the
builder and giving the required accuracy of the analysis in percent. In this exam-
ple, we use an accuracy of 5%:

> jamaicabuilder -cp classes —analyze=5 HelloWorld

Reading configuration from
’/usr/local/jamaica-6.0-1/etc/jamaica.conf’ ...

Reading configuration from
’/usr/local/jamaica-6.0-1/target/linux-x86/etc/jamaica.conf’ ...
Jamaica Builder Tool 6.0 Release 1

(User: EVALUATION USER, Expires: 2010.06.10)

Generating code for target ’‘linux-x86’, optimisation ’speed’

8.2. CONFIGURATION FOR HARD-REALTIME APPLICATIONS 81

+ PKG__V66c2f3114d534efc__.c
[...]
+ HelloWorld _.c
+ HelloWorld _.h
Class file compaction gain: 58.96339% (21654255 ==> 8886172)
* C compiling ’‘HelloWorld _.c’
[...]
+ HelloWorld _nc.o
* linking
* stripping
Application memory demand will be as follows:

initial max
Thread C stacks: 1024KB (= 8+ 128KB) 63MB (= 511+ 128KB)
Thread Java stacks: 128KB (= 8+ 16KB) 8176KB (= 511% 16KB)
Heap Size: 2048KB 256MB
GC data: 128KB 16MB
TOTAL: 3328KB 343MB

8.2.3 Measuring an application’s memory requirements

The build process is performed exactly as it would be without the —analyze op-
tion, except that the garbage collector is told to measure the application’s memory
usage with the given accuracy. The result of this measurement is printed to the
console after execution of the application:

> ./HelloWorld

Hello World!
Hello World!
Hello World!
Hello World!

Hello World!
Hello World!
[...]

Application used at most 2104384 bytes for reachable objects
on the Java heap

(accuracy 5%).

###

Worst case allocation overhead using 10% reserved memory:
heapSize dynamic GC const GC work

7366K 6 3

#H## 6117K 7 4

5324K 8 4

4791K 9 4

4401K 10 4

#H## 3878K 12 5

82 CHAPTER 8. MEMORY MANAGEMENT CONFIGURATION

3550K 14 5
3315K 16 6
3148K 18 6
3018K 20 7
2835K 24 8
2712K 28 9
2625K 32 10
2557K 36 11
2504K 40 12
2427K 48 14
2374K 56 15
2336K 64 17
2246K 96 24
2203K 128 30
2159K 192 42
2139K 256 52
2119K 384 67

The output consists of the maximum heap memory demand plus a table of possible
heap sizes and their allocation overheads for both dynamic and constant garbage
collection work. We first consider dynamic garbage collection work, since this is
the default.

In this example, the application uses a maximum of 2104384 bytes of memory
for the Java heap. The specified accuracy of 5% means that the actual memory
usage of the application will be up to 5% less than the measured value, but not
higher. JamaicaVM uses the Java heap to store all dynamic data structures internal
to the virtual machine (as Java stacks, classes, etc.), which explains the relatively
high memory demand for this small application.

8.2.4 Fine tuning the final executable application

In addition to printing the measured memory requirements of the application, in
analyze mode Jamaica also prints a table of possible heap sizes and corresponding
worst case allocation overheads. The worst case allocation overhead is given in
units of garbage collection work that are needed to allocate one block of memory
(typically 32 bytes). The amount of time in which these units of garbage collection
work can be done is platform dependent. For example, on the PowerPC processor,
a unit corresponds to the execution of about 160 machine instructions.

From this table, we can choose the minimum heap size that corresponds to
the desired worst case execution time for the allocation of one block of memory.
A heap size of 3018K corresponds to a worst case of 20 units of garbage col-
lection work (3200 machine instructions on the PowerPC) per block allocation,
while a smaller heap size of, for example, 2504K can only guarantee a worst case

8.2. CONFIGURATION FOR HARD-REALTIME APPLICATIONS 83

execution time of 40 units of garbage collection work (that is, 6400 PowerPC-
instructions) per block allocation.

If we find that for our application 14 units of garbage collection work per
allocation is sufficient to satisfy all realtime requirements, we can build the final
application using a heap of 3550K:

> jamaicabuilder -cp classes -heapSize=3550K -maxHeapSize=3550K \
> HelloWorld
Reading configuration from
’/usr/local/jamaica-6.0-1/etc/jamaica.conf’ ...
Reading configuration from
’/usr/local/jamaica—-6.0-1/target/linux-x86/etc/jamaica.conf’ ...
Jamaica Builder Tool 6.0 Release 1
(User: EVALUATION USER, Expires: 2010.06.10)
Generating code for target ’linux-x86’, optimisation ’speed’
= PKG__V66c2f3114d534efc__ .o (reusing existing file for package)
[...]
+ HelloWorld _.c
+ HelloWorld _.h
Class file compaction gain: 58.96339% (21654255 ==> 8886172)
* C compiling ’HelloWorld _.c’
+ HelloWorld _nc.o
* linking
* stripping
Application memory demand will be as follows:

initial max
Thread C stacks: 1024KB (= 8+ 128KB) 63MB (= 511+ 128KB)
Thread Java stacks: 128KB (= 8+ 16KB) 8176KB (= 511% 16KB)
Heap Size: 3550KB 3550KB
GC data: 221KB 221KB
TOTAL: 4923KB 75MB

Note that both options, heapSize and maxHeapSize, are set to the same
value. This creates an application that has the same initial heap size and maxi-
mum heap size, i.e., the heap size is not increased dynamically. This is required
to ensure that the maximum of 14 units of garbage collection work per unit of
allocation is respected during the whole execution of the application. With a dy-
namically growing heap size, an allocation that happens to require increasing the
heap size will otherwise be blocked until the heap size is increased sufficiently.
The resulting application will now run with the minimum amount of memory
that guarantees the selected worst case execution time for memory allocation. The
actual amount of garbage collection work that is performed is determined dynam-
ically depending on the current state of the application (including, for example,
its memory usage) and will in most cases be significantly lower than the described
worst case behavior, so that on average an allocation is significantly cheaper than

84 CHAPTER 8. MEMORY MANAGEMENT CONFIGURATION

the worst case allocation cost.

8.2.5 Constant Garbage Collection Work

For applications that require best worst case execution times, where average case
execution time is less important, Jamaica also provides the option to statically
select the amount of garbage collection work. This forces the given amount of
garbage collection work to be performed at any allocation, without regard to the
current state of the application. The advantage of this static mode is that worst case
execution times are lower than using dynamic determination of garbage collection
work. The disadvantage is that any allocation requires this worst case amount of
garbage collection work.

The output generated using the option —analyze also shows possible values
for the constant garbage collection option. In the example above, the amount of
garbage collection work required varies from 3 to 24 units for heap sizes between
7366K and 2246K bytes. A unit of garbage collection work is the same as in the
dynamic case — about 160 machine instructions on the PowerPC processor.

Similarly, if we want to give the same guarantee of 14 units of work for
the worst case execution time of the allocation of a block of memory with con-
stant garbage collection work, a heap size of 2427K bytes is sufficient. To in-
form the builder that constant garbage collection work should be used, the op-
tion —constGCwork and the number of units of work should be specified when
building the application:

> jamaicabuilder -cp classes -heapSize=2427K -maxHeapSize=2427K \
> —constGCwork=14 HelloWorld
Reading configuration from
’/usr/local/jamaica—-6.0-1/etc/jamaica.conf’...
Reading configuration from
’/usr/local/jamaica-6.0-1/target/linux-x86/etc/jamaica.conf’ ...
Jamaica Builder Tool 6.0 Release 1

(User: EVALUATION USER, Expires: 2010.06.10)
Generating code for target ’linux-x86’, optimisation ’speed’

= PKG__V66c2f3114d534efc__ .o (reusing existing file for package)

[...]

+ HelloWorld _.c

+ HelloWorld .h
Class file compaction gain: 58.96339% (21654255 ==> 8886172)

* C compiling ’HelloWorld _.c’

+ HelloWorld _nc.o

* linking

* stripping
Application memory demand will be as follows:

initial max

Thread C stacks: 1024KB (= 8 128KB) 63MB (= 511+ 128KB)

8.2. CONFIGURATION FOR HARD-REALTIME APPLICATIONS 85

Thread Java stacks: 128KB (= 8+ 16KB) 8176KB (= 511+ 16KB)
Heap Size: 1429KB 1429KB
GC data: 89KB 89KB
TOTAL: 2670KB 73MB

8.2.6 Comparing dynamic mode and constant GC work mode

Which option you should choose (dynamic mode or constant garbage collection)
depends strongly on the kind of application. If worst case execution time and low
jitter are the most important criteria, constant garbage collection work will usu-
ally provide the better performance with smaller heap sizes. But if average case
execution time is also an issue, dynamic mode will typically give better overall
throughput, even though for equal heap sizes the guaranteed worst case execution
time is longer with dynamic mode than with constant garbage collection work.

Gradual degradation may also be important. Dynamic mode and constant
garbage collection work differ significantly when the application does not stay
within the memory bounds that were fixed when the application was built.

There are a number of reasons an application might be using more memory:

e The application input data might be bigger than originally anticipated.

e The application was built with an incorrect or outdated —heapSize argu-
ment.

e A bug in the application may be causing a memory leak and gradual use of
more memory than expected.

Whatever the reason, it may be important in some environments to understand
the behavior of memory management in the case the application exceeds the as-
sumed heap usage.

In dynamic mode, the worst-case execution time for an allocation can no
longer be guaranteed as soon as the application uses more memory. But as long
as the excess heap used stays small, the worst-case execution time will increase
only slightly. This means that the original worst-case execution time may not be
exceeded at all or only by a small amount. However, the garbage collector will
still work properly and recycle enough memory to keep the application running.

If the constant garbage collection work option is chosen, the amount of garbage-
collection work will not increase even if the application uses more memory than
originally anticipated. Allocations will still be made within the same worst-case
execution time. Instead, the collector cannot give a guarantee that it will recycle
memory fast enough. This means that the application may fail abruptly with an

86 CHAPTER 8. MEMORY MANAGEMENT CONFIGURATION

out-of-memory error. Static mode does not provide graceful degradation of per-
formance in this case, but may cause abrupt failure even if the application exceeds
the expected memory requirements only slightly.

8.2.7 Determination of the worst case execution time of an al-
location

As we have just seen, the worst case execution time of an allocation depends on the
amount of garbage collection work that has to be performed for the allocation. The
configuration of the heap as shown above gives a worst case number of garbage
collection work units that need to be performed for the allocation of one block of
memory. In order to determine the actual time an allocation might take in the worst
case, it is also necessary to know the number of blocks that will be allocated and
the platform dependent worst case execution time of one unit of garbage collection
work.

For an allocation statement .S we get the following equation to calculate the
worst case-execution time:

weet(,S) = numblocks(.S) - max-gc-units - weet-of-gc-unit
Where
e wecet(.5) is the worst case execution time of the allocation
e numblocks(S) gives the number of blocks that need to be allocated

e max-gc-units is the maximum number of garbage collection units that need
to be performed for the allocation of one block

e wcet-of-gc-unit is the platform dependent worst case execution time of a
single unit of garbage collection work.

8.2.8 Examples

Imagine that we want to determine the worst-case execution time (wcet) of an
allocation of a StringBuffer object, as was done in the HelloWorld.java exam-
ple shown above. If this example was built with the dynamic garbage collection
option and a heap size of 443K bytes, we get

max-gc-units = 14
as has been shown above. If our target platform gives a worst case execution time
for one unit of garbage collection work of 1.6.:s, we have

wcet-of-gc-unit = 1.6us

8.2. CONFIGURATION FOR HARD-REALTIME APPLICATIONS 87

We use the numblocks tool (see §[17|to find the number of blocks required for the
allocation of a java.lang.StringBuffer object:

> numblocks java.lang.StringBuffer
1

A StringBuffer object requires just a single block of memory, so that
numblocks(new StringBuffer()) =1
and the total worst case-execution time of the allocation becomes
weet(new StringBuffer())=1-14-1.6us = 22.4us

Had we used the constant garbage collection option with the same heap size, the
amount of garbage collection work on an allocation of one block could have been
fixed at 6 units. In that case the worst case execution time of the allocation be-
comes

Wcet.onstGCwork (N€w StringBuffer())=1-6-1.6us = 9.6us

After creation of the java.lang.StringBuffer object, a character array of 16 ele-
ments is allocated during the execution of StringBuffer’s initialization routine.
For this allocation, we can determine the worst-case-execution-time by first deter-
mining the number of blocks required:

> numblocks "char([1l6]"
2

and we get
weet(new char[16])=2-14-1.6us = 44.8us

and
WeeteonstGCwork (New char[16]) =2-6-1.6pus = 19.2us

Typical values for the number of blocks required for the allocation of different
objects or arrays are shown in Tab. [8.1]

The output of numblocks when using the —al1l option can be used to get a
quick overview on the number of blocks for all classes used by an application:

> numblocks —all HelloWorld
Class: Blocks:
HelloWorld 1
com/aicas/jamaica/AccessCheck
com/aicas/jamaica/Archive
com/aicas/jamaica/ArchiveSPathVisitor

N)

88 CHAPTER 8. MEMORY MANAGEMENT CONFIGURATION

| Class | numblocks |
new java.util.Vector () 1

new boolean[1024] 5

new byte[64] 3

new char[256] 19

new int[1024] 147

new ObJject [1000000] 142,860

Table 8.1: Typical numbers of blocks for objects

com/aicas/jamaica/ArchiveSVisitor
com/aicas/jamaica/ArchiveDirectory
com/aicas/jamaica/ArchiveEntry
com/aicas/jamaica/BuilderError
com/aicas/jamaica/DirectoryEntry
com/aicas/jamaica/NYIException
com/aicas/jamaica/lang/CpuTime
com/aicas/jamaica/lang/Debug
com/aicas/jamaica/lang/LowLevelRTSJ
com/aicas/jamaica/lang/Process
com/aicas/jamaica/lang/Profile
com/aicas/jamaica/lang/ProfilesS]1
com/aicas/jamaica/lang/Profile$2
com/aicas/jamaica/lang/Profile$3
com/aicas/jamaica/lang/ProfileSCount
com/aicas/jamaica/lang/Wait
com/aicas/jamaica/util/False
com/aicas/java/net/protocol/rom/Handler
com/aicas/java/net/protocol/rom/RomURLCnctn

[...]

o kN O Rk kNN R e

Chapter 9

Debugging Support

Jamaica supports the debugging facilities of integrated development environments
(IDEs) such as Eclipse and Netbeans. These are popular IDEs for the Java plat-
form. Debugging is possible on instances of the JamaicaVM running on the host
platform, as well as for applications built with Jamaica, which run on an embed-
ded device. The latter requires that the device provides network access.

In this chapter, it is shown how to set up the IDE debugging facilities with
Jamaica. A reference section towards the end briefly explains the underlying tech-
nology (JPDA) and the supported options.

9.1 Enabling the Debugger Agent

While debugging the IDE’s debugger needs to connect to the virtual machine or
the running application in order to inspect the VM’s state, set breakpoints, start
and stop execution and so forth. Jamaicacontains a communication agent, which
must be either enabled (for the VM) or built into the application. This is done
through the agent1ib option.

> jamaicavm —-agentlib:BuiltInAgent=transport=dt_socket, \
> address=localhost:4000, server=y, suspend=y HelloWorld

launches JamaicaVM with debug support enabled and Hel1loWorld as the main
class. The VM listens on port 4000 at 1localhost. The VM is suspended before
the main class is loaded. The user may send a command through the debugger
to resume the VM and start the user application after setting required breakpoints
etc.

In order to build debugging support into an application, the builder option
—agentlib=BuiltInAgent... should be used. If the application is to be de-
bugged on an (embedded) device, 1ocalhost must be replaced by the network
address of the device.

89

90 CHAPTER 9. DEBUGGING SUPPORT

9.2 Configuring the IDE to Connect to Jamaica

Before being able to debug a project, the code needs to compile and basically run.
Before starting a debugging session, the debugger must be configured to connect
to the VM by specifying the VM’s host address and port. Normally, this is done
by setting up a debug configuration.

In Eclipse 3.5, for example, select the menu item

Run > Debug Configurations....

In the list of available items presented on the left side of the dialog window (see
Fig.[9.1)), choose a new configuration for a remote Java application, then

e configure the debugger to connect to the VM by choosing connection type
socket attach and

e enter the VM’s network address and port as the connection properties host
and port.

Clicking on Debug attaches the debugger to the VM and starts the debugging ses-
sion. If the VM’s communication agent is set to suspending the VM before loading
the main class, the application will only run after instructed to do so through the
debugger via commands from the Run menu. In Eclipse, breakpoints may be set
conveniently by double-clicking in the left margin of the source code.

For instructions on debugging, the documentation of the used debugger should
be consulted — in Eclipse, for example, though the He 1p menu.

The Jamaica Eclipse Plug-In (see §[5) provides the required setup for debug-
ging with the JamaicaVM on the host system automatically. It is sufficient to
select Jamaica as the Java Runtime Environment of the project.

9.3 Reference Information

Jamaica supports the Java Platform Debugger Architecture (JPDA). Debugging is
possible with IDEs that support the JPDA. Tab. shows the debugging options
accepted by Jamaica’s communication agent. The Jamaica Debugging Interface
has the following limitations:

e Local variables of compiled methods cannot be examined
e Stepping through a compiled method is not supported
e Setting a breakpoint in a compiled method will silently be ignored

e Notification on field access/modification is not available

9.3. REFERENCE INFORMATION

91

Create, manage, and run configurations

Attach to a Java virtual machine accepting debug connections

SERICES

[type filter text o)

4 Eclipse Application
=) Java Applet
w [T Java Application
3] Main
[7] SpinninglLogo
Ju JUnit
ﬁjUnit Plug-in Test
& 05Gi Framework
TE Remote Java Application

'_j.: Mew_configuration

Filter matched 10 of 10 items

Mame: | Mew_configuration

Mj&'// S:nurce\l = Cummnn\l N

Project:

Connection Type:

[Standard {Socket Attach)

Connection Properties:

Host: | device.local

Port: | 4000

[Allow termination of remote WM

(__ Apply

) (

Revert }

®

(Close

) pebug)

A

Figure 9.1: Setting up a remote debugging connection in Eclipse 3.5

92 CHAPTER 9. DEBUGGING SUPPORT

| Syntax Description
transport=dt_socket | The only supported transport protocol is
dt_socket.
address=[host:] port Transport address for the connection.
server=y|n If v, listen for a debugger application to

attach; otherwise, attach to the debugger
application at the specified address.
suspend=y |n If v, suspend this VM before main class
loads.

Table 9.1: Arguments of Jamaica’s communication agent

e Information about java monitors cannot be retrieved

The Java Platform Debugger Architecture (JPDA) consists of three interfaces
designed for use by debuggers in development environments for desktop systems.
The Java Virtual Machine Tools Interface (JVMTI) defines the services a VM must
provide for debuggingﬂ The Java Debug Wire Protocol (JDWP) defines the format
of information and requests transferred between the process being debugged and
the debugger front end, which implements the Java Debug Interface (JDI). The
Java Debug Interface defines information and requests at the user code level.

A JPDA Transport is a method of communication between a debugger and
the virtual machine that is being debugged. The communication is connection
oriented — one side acts as a server, listening for a connection. The other side acts
as a client and connects to the server. JPDA allows either the debugger application
or the target VM to act as the server. The transport implementations of Jamaica
allows communications between processes running on different machines.

'The JVMTI is a replacement for the Java Virtual Machine Debug Interface (JVMDI) which
has been deprecated.

Chapter 10

The Real-Time Specification for
Java

JamaicaVM supports the Real-Time Specification for Java V1.0.2 (RTSJ), see [1]].
The specification is available at http: //www.rtsj.org. The API documen-
tation of the JamaicaVM implementation is available online at http://www.
aicas.com/Jjamaica/doc/rtsj_api/|and is included in the API docu-
mentation of the Jamaica class library:

jamaica-home/doc/ jamaica_api/index.html.

The RTSJ resides in package javax.realtime. It is generally recommended
that you refer to the RTSJ documentation provided by aicas since it contains a
detailed description of the behavior of the RTSJ functions and includes specific
comments on the behavior of JamaicaVM at places left open by the specification.

10.1 Realtime programming with the RTSJ

The aim of the Real-Time Specification for Java (RTSJ) is to extend the Java
language definition and the Java standard libraries to support realtime threads, i.e.,
threads whose execution conforms to certain timing constraints. Nevertheless,
the specification is compatible with different Java environments and backwards
compatible with existing non-realtime Java applications.

The most important improvements of the RTSJ affect the following seven ar-
eas:

e thread scheduling,

e memory management,

93

http://www.rtsj.org
http://www.aicas.com/jamaica/doc/rtsj_api/
http://www.aicas.com/jamaica/doc/rtsj_api/

94 CHAPTER 10. THE REAL-TIME SPECIFICATION FOR JAVA

synchronization,

L] asynchronousevent&

asynchronous flow of control,

thread termination, and

physical memory access.

With this, the RTSJ also covers areas that are not directly related to realtime ap-
plications. However, these areas are of great importance to many embedded real-
time applications such as direct access to physical memory (e.g., memory mapped
I/0) or asynchronous mechanisms. Thread Scheduling To enable the develop-
ment of realtime software in an environment with a garbage collector that stops
the execution of application threads in an unpredictable way, new thread classes
RealtimeThread and NoHeapRealtimeThread are defined. These thread
types are unaffected or at least less heavily affected by garbage collection activ-
ity. Also, at least 28 new priority levels, logically higher than the priority of the
garbage collector, are available for these threads.

Memory Management In order for realtime threads not to be affected by garbage
collector activity, they need to use memory areas that are not under the con-
trol of the garbage collector. New memory classes, ImmortalMemory and
ScopedMemory, provide these memory areas. One important consequence of
the use of special memory areas is, of course, that the advantages of dynamic
memory management are not fully available to realtime threads.

Synchronization In realtime systems with threads of different priority levels,
priority inversion situations must be avoided. Priority inversion occurs when a
thread of high priority is blocked by waiting for a monitor that is owned by a
thread of a lower priority. The RTSJ provides the alternatives priority inheritance

and the priority ceiling protocol to avoid priority inversion.

The RTSJ offers powerful features that enable the development of realtime
applications. The following program in shows an example how the RTSJ can be
used in practice.

/ x %
* Small demonstration of a periodic thread in Java:

*/

import javax.realtime.x;
public class HelloRT
{
public static void main(String [] args)

{

/+ priority for new thread: min+10 x/

10.1. REALTIME PROGRAMMING WITH THE RTSJ 95

int pri =
PriorityScheduler.instance () .getMinPriority () + 10;
PriorityParameters prip = new PriorityParameters (pri);

/* period: 20ms x/
RelativeTime period =
new RelativeTime (20 /x ms %/, 0 /x ns */);

/* release parameters for periodic thread: */
PeriodicParameters perp =
new PeriodicParameters(null, period, null, null, null, null);

/* create periodic thread: «/
RealtimeThread rt = new RealtimeThread (prip, perp)
{

public void run()

{
int n=1;
while (waitForNextPeriod() && (n<100))
{
System.out.println("Hello "+n);
n++;
}
}
}i

/* start periodic thread: */
rt.start ();

In this example, a periodic thread is created. This thread becomes active every
20ms and writes output onto the standard console. A RealtimeThread is used
to implement this task. The priority and the length of the period of this peri-
odic thread need to be provided. A call to waitForNextPeriod () causes the
thread to wait after the completion of one activation for the start of the next period.
An introduction to the RTSJ with numerous further examples is given in the book
by Peter Dibble [2].

The RTSJ provides a solution for realtime programming, but it also brings new
difficulties to the developer. The most important consequence is that applications
have to be split strictly into two parts: a realtime and a non-realtime part. The
communication between these parts is heavily restricted: realtime threads cannot
perform memory operations such as the allocation of objects on the normal heap
which is under the control of the garbage collector. Synchronization between
realtime and non-realtime threads is heavily restricted since it can cause realtime
threads to be blocked by the garbage collector.

96 CHAPTER 10. THE REAL-TIME SPECIFICATION FOR JAVA

10.2 Realtime Garbage Collection

In JamaicaVM, a system that supports realtime garbage collection, this strict sep-
aration into realtime and non-realtime threads is not necessary. The strict splitting
of an application is consequently not required. Threads are activated depending
only on their priorities.

The realtime garbage collector performs its work predictably within the appli-
cation threads. It is activated when memory is allocated. The work done on an
allocation must be preemptible, so that more urgent threads can become active.

The implementation of a realtime garbage collector must solve a number of
technical challenges. Garbage collector activity must be performed in very small
single increments of work. In JamaicaVM, one increment consists of garbage
collecting only 32 bytes of memory. On every allocation, the allocating thread
“pays” for the memory by performing a small number of these increments. The
number of increments can be analyzed, such that this is possible even in realtime
code.

The RTSJ provides a powerful extension to the Java specification. Its full
power, however, is achieved only by the combination with a realtime garbage
collector that helps to overcome its restrictions.

10.3 Relaxations in JamaicaVM

Because JamaicaVM uses a realtime garbage collector, the limitations that the
Real-Time Specification for Java imposes on realtime programming are not im-
posed on realtime applications developed for JamaicaVM. The limitations that are
relaxed in JamaicaVM affect the use of memory areas, thread priorities, runtime
checks and static initializers.

For the development of applications that do not make use of these relaxations,
the builder option strictRTSJ (see below) can be set to disable these relax-
ations.

10.3.1 Use of Memory Areas

Because JamaicaVM’s realtime garbage collector does not interrupt application
threads, it is unnecessary for objects of class RealtimeThread or even of
NoHeapRealtimeThread to run in their own memory area not under the con-
trol of the garbage collector. Instead, any thread can use and access the normal
garbage collected heap.

Nevertheless, any thread can make use of the new memory areas such as
LTMemory or ImmortalMemory if the application developer wishes to do so.

10.3. RELAXATIONS IN JAMAICAVM 97

Since these memory classes are not controlled by the garbage collector, alloca-
tions do not require garbage collector activity and may be faster or more pre-
dictable than allocations on the normal heap. However, great care is required in
these memory areas to avoid memory leaks, since temporary objects allocated in
scoped or immortal memory will not be reclaimed automatically.

10.3.2 Thread Priorities

In JamaicaVM, RealtimeThread, NoHeapRealtimeThread and normal
Thread objects all share the same priority range. The lowest possible thread
priority for all of these threads is MIN_PRIORITY which is defined in pack-
age java.lang, class Thread. The the highest possible priority may be ob-
tainded by querying instance () .getMaxPriority () inpackage javax.
realtime,class PriorityScheduler.

10.3.3 Runtime checks for NoHeapRealtimeThread

Even NoHeapRealtimeThread objects will be exempt from interruption by
garbage collector activities. JamaicaVM does not, therefore, prevent these threads
from accessing objects allocated on the normal heap. Runtime checks that typi-
cally ensure that these threads do not access objects allocated on the heap are not
performed by JamaicaVM.

10.3.4 Static Initializers

To permit the initialization of classes even if their first reference is performed
within ScopedMemory or ImmortalMemory within a RealtimeThread
or NoHeapRealtimeThread, and to permit the access of static fields such as
System.out from within these threads, static initializers are typically executed
within TmmortalMemory that is accessible by all threads. However, this pre-
vents these objects from being reclaimed when they are no longer used. Also,
it can cause a serious memory leak if dynamic class loading is used since mem-
ory allocated by the static intializers of dynamically loaded classes will never be
reclaimed.

Since JamaicaVM does not limit access to heap objects within any threads,
there is no need to execute static initializers within ImmortalMemory. However,
objects allocated in static initializers typically must be accessible by all threads, so
they cannot be allocated in a scoped memory area if this happens to be the current
thread’s allocation environment when the static initializer is executed.

JamaicaVM therefore executes all static initializers within heap memory. Ob-
jects allocated by static initializers may be accessed by all threads, and they may

98 CHAPTER 10. THE REAL-TIME SPECIFICATION FOR JAVA

be reclaimed by the garbage collector. There is no memory leak if classes are
loaded dynamically by a user class loader.

10.3.5 Class PhysicalMemoryManager

According to the RTSJ, names and instances of class PhysicalMemoryType—
Filterinpackage javax.realt ime thatare passed to method register—
Filter of class PhysicalMemoryManager in the same package must be
allocated in immortal memory. This requirement does not exist in JamaicaVM.

10.4 Strict RTSJ Semantics

When the builder option st rictRTSJ is chosen, the relaxations just described
are deactivated and strict RTSJ semantics are enforced. Applications that should
be portable to different RTSJ implementations should consequently be developed
with this options switched on when an application is built.

10.4.1 Use of Memory Areas

All NoHeapRealtimeThreads of applications built in st rictRTSJ mode must
run in scoped or immortal memory. In addition, the thread object itself, the thread
logic, scheduling, release, memory and group parameters must not be allocated
in heap memory. Otherwise, a MemoryAccessError is thrown on the creation of
such a thread.

RealtimeThreads are free to use heap memory even in st rictRTSJ mode,
and they still profit from the lack of garbage collection pauses in JamaicaVM.
Application code that needs to be portable to other Java implementations that are
not based on realtime garbage collection should not use heap memory for time
critical threads.

Normal threads are not allowed to enter non-heap memory areas in strict—
RTSJ mode.

10.4.2 Thread priorities

Thread priorities for normal Java threads must be in a range specified in pack-
age java.lang class Thread. The minimal priority is MIN_PRIORITY, the
maximal priority MAX_PRIORITY.

RealtimeThreads and NoHeapRealtimeThreads share the priority
range defined in javax.realtime,classPriorityScheduler, and which

10.5. LIMITATIONS OF RTSJ IMPLEMENTATION 99

may be obtained by querying method instance () .getMinPriority ()
and instance () .getMaxPriority ().

10.4.3 Runtime checks for NoHeapRealtimeThread

If strictRTSJ is set, runtime checks on all memory read operations (i.e., ac-
cesses to static and instance fields and accesses to reference array elements) are
checked to ensure that no object on the garbage collected heap is touched by a
NoHeapRealtimeThread.

These runtime checks are required by classical Java implementations with a
non-realtime garbage collector. They may impose an important runtime overhead
on the application.

10.4.4 Static Initializers

When strictRTSJ is set, static initializers are executed within immortal mem-
ory. This means that all objects allocated by static initializers are accessible by
all threads. Care is required since any allocations performed within static initial-
izers of classes that are loaded dynamically into a system will never be recycled.
Dynamic class loading consequently poses a severe risk of introducing a memory
leak into the system.

10.4.5 Class PhysicalMemoryManager

When strictRTSJ is set, names and instances of class PhysicalMemory—
TypeFilter in package javax.realtime that are passed to method
registerFilter of class PhysicalMemoryManager in the same pack-
age must be allocated in immortal memory as required by the RTS]J.

10.5 Limitations of RTSJ Implementation

The following methods or classes of the RTSJ are not fully supported in Ja-
maicaVM 6.0:

e Class VTPhysicalMemory
e Class LTPhysicalMemory
e Class ImmortalPhysicalMemory

e In class AsynchronouslyInterruptedException the deprecated
method propagate () is not supported.

100 CHAPTER 10. THE REAL-TIME SPECIFICATION FOR JAVA

Cost monitoring is supported and cost overrun handlers will be fired on a cost
overrun. However, cost enforcement is currently not supported. The reason is that
stopping a thread or handler that holds a lock is dangerous since it might cause
a deadlock. RTSJ cost enforcement is based on the CPU cycle counter. This is
available on x86 and PPC systems only, so cost enforcement will not work on
other systems.

Chapter 11

Guidelines for Realtime
Programming in Java

11.1 General

Since the timeliness of realtime systems is just as important as their functional
correctness, realtime Java programmers must take more care using Java than other
Java users. In fact, realtime Java implementations in general and the JamaicaVM
in particular offer a host of features not present in standard Java implementations.

The JamaicaVM offers a myriad of sometimes overlapping features for real-
time Java development. The realtime Java developer needs to understand these
features and when to apply them. Particularly, with realtime specific features per-
taining to memory management and task interaction, the programmer needs to
understand the tradeoffs involved. This chapter does not offer cut and dried so-
lutions to specific application problems, but instead offers guidelines for helping
the developer make the correct choice.

11.2 Computational Transparency

In contrast to normal software development, the development of realtime code re-
quires not only the correctness of the code, but also the timely execution of the
code. For the developer, this means that not only the result of each statement is im-
portant, but also the approximate time required to perform the statement must be
obvious. One need not know the exact execution time of each statement when this
statement is written, as the exact determination of the worst case execution time
can be performed by a later step; however, one should have a good understanding
of the order of magnitude in time a given code section needs for execution early on
in the coding process. For this, the computational complexity can be described in

101

102 CHAPTER 11. REALTIME PROGRAMMING GUIDELINES

categories such as a few machine cycles, a few hundred machine cycles, thousands
of machine cycles or millions of machine cycles. Side effects such as blocking for
I/O operations or memory allocation should be understood as well.

The term computational transparency refers to the degree to which the compu-
tational effort of a code sequence written in a programming language is obvious to
the developer. The closer a sequence of commands is to the underlying machine,
the more transparent that sequence is. Modern software development tries to raise
the abstraction level at which programmers ply their craft. This tends to reduce the
cost of software development and increase its robustness. Often however, it masks
the real work the underlying machine has to do, thus reducing the computational
transparency of code.

Languages like Assembler are typically completely computationally transpar-
ent. The computational effort for each instruction can be derived in a straightfor-
ward way (e.g., by consulting a table of instruction latency rules). The range of
possible execution times of different instructions is usually limited as well. Only
very few instructions in advanced processor architectures have an execution time
of more than O (1) .

Compiled languages vary widely in their computational complexity. Program-
ming languages such as C come very close to full computational transparency. All
basic statements are translated into short sequences of machine code instructions.
More abstract languages can be very different in this respect. Some simple con-
structs may operate on large data structures, e.g., sets, thus take an unbounded
amount of time.

Originally, Java was a language that was very close to C in its syntax with
comparable computational complexity of its statements. Only a few exceptions
where made. Java has evolved, particularly in the area of class libraries, to ease
the job of programming complex systems, at the cost of diminished computational
transparency. Therefore a short tour of the different Java statements and expres-
sions, noting where a non-obvious amount of computational effort is required to
perform these statements with the Java implementation JamaicaVM, is provided
here.

11.2.1 Efficient Java Statements

First the good news. Most Java statements and expressions can be implemented
in a very short sequence of machine instructions. Only statements or constructs
for which this is not so obvious are considered further.

11.2. COMPUTATIONAL TRANSPARENCY 103

Dynamic Binding for Virtual Method Calls

Since Java is an object-oriented language, dynamic binding is quite common.
In the JamaicaVM dynamic binding of Java methods is performed by a simple
lookup in the method table of the class of the target object. This lookup can
be performed with a small and constant number of memory accesses. The total
overhead of a dynamically bound method invocation is consequently only slightly
higher than that of a procedure call in a language like C.

Dynamic Binding for Interface Method Calls

Whereas single inheritance makes normal method calls easy to implement effi-
ciently, calling methods via an interface is more challenging. The multiple inher-
itance implicit in Java interfaces means that a simple dispatch table as used by
normal methods can not be used. In the JamaicaVM the time needed to find the
called method is linear with the number of interfaces implemented by the class.

Type Casts and Checks

The use of type casts and type checks is very frequent in Java. One example is the
following code sequence that uses an instanceof check and a type cast:

Object o = vector.elementAt (index);

if (o instanceof Integer)
sum = sum + ((Integer)o).intValue();

These type checks also occur implicitly whenever a reference is stored in an array
of references to make sure that the stored reference is compatible with the actual
type of the array. Type casts and type checks within the JamaicaVM are per-
formed in constant time with a small and constant number of memory accesses.
In particular, instanceof is more efficient than method invocation.

Generics (JDK 1.5)

The generic types (generics) introduced in JDK 1.5 avoid explicit type cases that
are required using abstract data types with older versions of Java. Using generics,
the type cast in this code sequence

ArrayList list = new ArrayList();
list.add (0, "some string");
String str = (String) list.get (0);

is no longer needed. The code can be written using a generic instance of Array—
List that can only hold strings as follows.

104 CHAPTER 11. REALTIME PROGRAMMING GUIDELINES

ArrayList<String> list = new ArrayList<String>();
list.add (0, "some string");
String str = list.get (0);

Generics still require type casts, but these casts are hidden from the developer.
This means that access to 1ist using 1ist.get (0) in this example in fact
performs the type cast to String implicitly causing additional runtime over-
head. However, since type casts are performed efficiently and in constant time in
JamaicaVM, the use of generics can be recommended even in time-critical code
wherever this appears reasonable for a good system design.

11.2.2 Non-Obvious Slightly Inefficient Constructs

A few constructs have some hidden inefficiencies, but can still be executed within
a short sequence of machine instructions.

final Local Variables

The use of £inal local variables is very tempting in conjunction with anonymous
inner classes since only variables that are declared £inal can be accessed from
code in an anonymous inner class. An example for such an access is shown in the
following code snippet:

final int data = getDatal();

new RealtimeThread(new PriorityParameters (pri))

{

public void run()

{
for (...)

{

x = data;

}

All uses of the local variable within the inner class are replaced by accesses to a
hidden field. In contrast to normal local variables, each access requires a memory
access.

Accessing private Fields from Inner Classes

As with the use of £inal local variables, any private fields that are accessed
from within an inner class require the call to a hidden access method since these
accesses would otherwise not be permitted by the virtual machine.

11.2. COMPUTATIONAL TRANSPARENCY 105

11.2.3 Statements Causing Implicit Memory Allocation

Thus far, only execution time has been considered, but memory allocation is also
a concern for safety-critical systems. In most cases, memory allocation in Java
is performed explicitly by the keyword new. However, some statements per-
form memory allocations implicitly. These memory allocations do not only re-
quire additional execution time, but they also require memory. This can be fa-
tal within execution contexts that have limited memory, e.g., code running in a
ScopedMemory or ImmortalMemory asitis required by the Real-Time Spec-
ification for Java for NoHeapRealtimeThreads. A realtime Java programmer
should be familiar with all statements and expressions which cause implicit mem-
ory allocation.

String Concatenation

Java permits the composition of strings using the plus operator. Unlike adding
scalars such as int or f1oat values, string concatenation requires the allocation

of temporary objects and is potentially very expensive.
As an example, the instruction

int X = ...;
Object thing = ...;

String msg = "x is " + x + " thing is " + thing;
will be translated into the following statement sequence:

int X = ...;
Object thing = ...;

StringBuffer tmp_sb = new StringBuffer();
tmp_sb.append("x is ");

tmp_sb.append (x) ;

tmp_sb.append (" thing is ");
tmp_sb.append (thing.toString());

String msg = tmp_sb.toString();

The code contains hidden allocations of a St ringBuf fer object, of an internal
character buffer that will be used within this St ringBuf fer, a temporary string
allocated for thing.toString (), and the final string returned by tmp_sb.
toString ().

Apart from these hidden allocations, the hidden callto thing.toString ()
can have an even higher impact on the execution time, since method toString
can be redefined by the actual class of the instance referred to by thing and can
cause arbitrarily complex computations.

106 CHAPTER 11. REALTIME PROGRAMMING GUIDELINES

Array Initialization

Java also provides a handy notation for array initialization. For example, an array
with the first 8 Fibonacci numbers can be declared as

int(] fib = { 1, 1, 2, 3, 5, 8, 13, 21 };

Unlike C, where such a declaration is converted into preinitialized data, the Java
code performs a dynamic allocation and is equivalent to the following code se-
quence:

Initializing arrays in this way should be avoided in time critical code. When pos-
sible, constant array data should be initialized within the static initializer of the
class that uses the data and assigned to a static variable that is marked final.
Due to the significant code overhead, large arrays should instead be loaded as a
resource, using the Java standard API (via method getResourceAsStream
from class java.lang.Class).

Autoboxing (JDK 1.5)

Unlike some Scheme implementations, primitive types in Java are not internally
distinguishable from pointers. This means that in order to use a primitive data type
where an object is needed, the primitive needs to be boxed in its corresponding
object. JDK 1.5 introduces autoboxing which automatically creates objects for
values of primitive types such as int, 1ong, or f1oat whenever these values are
assigned to a compatible reference. This feature is purely syntactic. An expression
such as

o = new Integer(i);

can be written as

o = 1ij;

Due to the hidden runtime overhead for the memory allocation, autoboxing should
be avoided in performance critical code. Within code sequences that have heavy
restrictions on memory demand, such as realtime tasks that run in Tmmortal-

Memory or ScopedMemory, autoboxing should be avoided completely since it
may result in hidden memory leaks.

11.2. COMPUTATIONAL TRANSPARENCY 107

For Loop Over Collections (JDK 1.5)

JDK 1.5 also introduces an extended for loop. The extension permits the itera-
tion of a Collection using a simple for loop. This feature is purely syntactic.
A loop such as

ArrayList list = new ArrayList();
for (Iterator i = list.iterator(); i.hasNext();)
{
Object value = i.next();

}
can be written as

ArrayList list = new ArrayList ();
for (Object value : list)
{

}

The allocation of a temporary Iterator thatis performed by the callto 1ist.
iterator () is hidden in this new syntax.

Variable Argument Lists (JDK 1.5)

There is still another feature of JDK 1.5 that requires implicit memory allocation.
The new variable argument lists for methods is implemented by an implicit ar-
ray allocation and initialization. Variable argument lists should consequently be
avoided.

11.2.4 Operations Causing Class Initialization

Another area of concern for computational transparency is class initialization.
Java uses static initializers for the initialization of classes on their first use.
The first use is defined as the first access to a static method or static field of the
class in question, its first instantiation, or the initialization of any of its subclasses.

The code executed during initialization can perform arbitrarily complex oper-
ations. Consequently, any operation that can cause the initialization of a class may
take arbitrarily long for its first execution. This is not acceptable for time critical
code.

Consequently, the execution of static initializers has to be avoided in time
critical code. There are two ways to achieve this: either time critical code must
not perform any statements or expressions that may cause the initialization of a
class, or the initialization has to be made explicit.

The statements and expressions that cause the initialization of a class are

108 CHAPTER 11. REALTIME PROGRAMMING GUIDELINES

e reading a static field of another class,
e writing a static field of another class,
e calling a static method of another class, and

e creating an instance of another class using new.

An explicit initialization of a class C is best performed in the static initializer of
the class D that refers to C. One way to do this is to add the following code to class
D:

/* initialize class C: */
static { C.class.initialize(); }

The notation C.class itself has its own disadvantages (see § [[1.2.5). So, if
possible, it may be better to access a static field of the class causing initialization
as a side effect instead.

/* initialize class C: */
static { int ignore = C.static_field; }

11.2.5 Operations Causing Class Loading

Class loading can also occur unexpectedly. A reference to the class object of a
given class C can be obtained using classname . class as in the following code:

Class class_C = C.class;

This seemingly harmless operation is, however, transformed into a code sequence
similar to the following code:

static Class class$(String name)
{
try { return Class.forName (name); }
catch (ClassNotFoundException e)
{
throw new NoClassDefFoundError (e.getMessage());
}
}

static Class classSC;

Class tmp;
if (class$C == null)
{
tmp = classs$("C");
classS$C = tmp;

11.3. SUPPORTED STANDARDS 109

}

else
{
tmp = classS$C;
}

Class class_C = tmp;

This code sequence causes loading of new classes from the current class loading
context. lL.e., it may involve memory allocation and loading of new class files.
If the new classes are provided by a user class loader, this might even involve
network activity, etc.

Starting with JDK 1.5, the classname . c1lass notation will be supported by
the JVM directly. The complex code above will be replaced by a simple bytecode
instruction that references the desired class directly. Consequently, the referenced
class can be loaded by the JamaicaVM at the same time the referencing class
is loaded and the statement will be replaced by a constant number of memory
accesses.

11.3 Supported Standards

Thus far, only standard Java constructs have been discussed. However libraries
and other APIs are also an issue. Timely Java development needs support for
timely execution and device access. There are also issues of certifiability to con-
sider. The JamaicaVM has at least some support for all of the following APIs.

11.3.1 Real-Time Specification for Java

The Real-Time Specification for Java (RTSJ) provides functionality needed for
time-critical Java applications. RTSJ introduces an additional API of Java classes,
mainly with the goal of providing a standardized mechanism for realtime ex-
tensions of Java Virtual Machines. RTSJ extensions also cover other areas of
great importance to many embedded realtime applications, such as direct access
to physical memory (e.g., memory mapped I/O) or asynchronous mechanisms.

Currently, RTSJ is available for the JamaicaVM and for TimeSys JTime. JVMs
from other vendors are likely to follow in the future.

Thread Scheduling in the RTS]J

Ensuring that Java programs can execute in a timely fashion was a main goal
of the RTSJ. To enable the development of realtime software in an environment
with a garbage collector that stops the execution of application threads in an un-
predictable way (see Fig. [[I.)), the new thread classes RealtimeThread and

110 CHAPTER 11. REALTIME PROGRAMMING GUIDELINES

Thread = time

 r—

2 L L

GC

Userl — s
User2

LU

Figure 11.1: Java Threads in a classic JVM are interrupted by the garbage collec-
tor thread

Thread time

rtl I—I—l—l—l—l7’ —+——
2 . HE Hil

| |
GC --{
User 1 B 1

User 2 | ((e

._
HEE—
._

Figure 11.2: RealtimeThreads can interrupt garbage collector activity

NoHeapRealtimeThread were defined. These thread types are unaffected,
or at least less severely affected, by garbage collection activity. Also, at least 28
new priority levels, logically higher than the priority of the garbage collector, are
available for these threads, as illustrated in Fig. [I1.2]

Memory Management

For realtime threads not to be affected by garbage collector activity, these threads
need to use memory areas that are not under the control of the garbage collector.
New memory classes, ImmortalMemory and ScopedMemory, provide these
memory areas. One important consequence of using special memory areas is, of
course, that the advantages of dynamic memory management is not fully available
to realtime threads.

Synchronization

In realtime systems with threads of different priority levels, priority inversion situ-
ations must be avoided. Priority inversion occurs when a thread of high priority is
blocked by waiting for a monitor that is owned by a thread of a lower priority that

11.3. SUPPORTED STANDARDS 111

is preempted by some thread with intermediate priority. The RTSJ provides two
alternatives, priority inheritance and the priority ceiling protocol, to avoid priority
inversion.

Limitations of the RTSJ and their solution

The RTSJ provides a solution for realtime programming, but it also brings new
difficulties to the developer. The most important consequence is that applications
have to be split strictly into two parts: a realtime and a non realtime part. Commu-
nication between these parts is heavily restricted: realtime threads cannot perform
memory operations such as the allocation of objects on the normal heap which is
under the control of the garbage collector. Synchronization between realtime and
non realtime threads is also severely restricted to prevent realtime threads from
being blocked by the garbage collector due to priority inversion.

The JamaicaVM removes these restrictions by using its realtime garbage col-
lection technology. Realtime garbage collection obviates the need to make a strict
separation of realtime and non realtime code. Combined with static memory deal-
location that automatically replaces some dynamic memory allocations, dynamic
allocations in realtime code may even be eliminated completely. Using RTSJ
with realtime garbage collection provides necessary realtime facilities without the
cumbersomeness of having to segregate a realtime application.

11.3.2 Java Native Interface

Both the need to use legacy code and the desire to access exotic hardware may
make it advantageous to call foreign code out of a JVM. The Java Native Inter-
face (JNI) provides this access. JNI can be used to embed code written in other
languages than Java, (usually C), into Java programs.

While calling foreign code through JNI is flexible, the resulting code has sev-
eral disadvantages. It is usually harder to port to other operating systems or hard-
ware architectures than Java code. Another drawback is that JNI is not very high-
performing on any Java Virtual Machine. The main reason for the inefficiency is
that the JNI specification is independent of the Java Virtual Machine. Significant
additional bookkeeping is required to insure that Java references that are handed
over to the native code will remain protected from being recycled by the garbage
collector while they are in use by the native code. The result is that calling JNI
methods is usually expensive.

An additional disadvantage of the use of native code is that the application of
any sort of formal program verification of this code becomes virtually intractable.

Nevertheless, because of its availability for many JVMs, JNI is the most popu-
lar Java interface for accessing hardware. It can be used whenever Java programs

112 CHAPTER 11. REALTIME PROGRAMMING GUIDELINES

need to embed C routines that are not called too often or are not overly time-
critical. If portability to other JVMs is a major issue, there is no current alternative
to JNI. When portability to other operating systems or hardware architectures is
more important, RTDA or RTSJ is a better choice for device access.

11.3.3 Java 2 Micro Edition

Usually when one refers to Java, one thinks of the Java 2 Standard Edition (J2SE),
but this is not the only Java configuration available. For enterprise applications,
Sun Microsystems has defined a more powerful version of Java, Java 2 Enterprise
Edition (J2EE), which supports Web servers and large applications. There is also
a stripped down version of Java for embedded applications, Java 2 Micro Edition
(J2ME). This is interesting for timely Java development on systems with limited
resources.

J2ME is in fact not a single Java implementation, but a family of implementa-
tions. At its base, J2ME has two configurations: Connected Device Configuration
(CDC) and Connected Limited Device Configuration (CLDC). Profiles for partic-
ular application domains are layered on top of these configurations, e.g. Mobile
Information Device Profile (MIDP) on CLDC, and Personal Profile on CDC.

The JamaicaVM supports both base configurations. Smaller Java configura-
tions are interesting not only on systems with hardware limitations, but also for
certification. The vast number of classes in J2SE would make any JVM certifica-
tion daunting. Again, the choice between J2SE and J2ME is a trade off between
flexibility on the one hand and leanness and robustness on the other. A safety-
critical version of JamaicaVM may well support a safety-critical profile for CDC
in the future.

11.4 Memory Management

In a system that supports realtime garbage collection, RTSJ’s strict separation
into realtime and non realtime threads is not necessary. The strict splitting of an
application is consequently not required. Threads are activated only depending on
their priorities, as depicted in Fig.[IT.3]

The realtime garbage collector performs its work predictably within the appli-
cation threads. It is activated when memory is allocated. The work done on an
allocation must be preemptible, so that more urgent threads can become active.

The implementation of a realtime garbage collector must solve a number of
technical challenges. Garbage collector activity must be performed in very small
single increments of work. In the JamaicaVM, one increment consists of process-
ing and possibly reclaiming only 32 bytes of memory. On every allocation, the

11.4. MEMORY MANAGEMENT 113

Thread = time

rtl R e e e e R e = I

2 1 Hi 01 Hi n—
rt3 I ET T T - e
rt4 e N =

Figure 11.3: JamaicaVM provides realtime behavior for all threads.

allocating thread “pays” for the memory by performing a small number of these
increments. The number of increments can be analyzed to determine worst-case
behavior for realtime code.

11.4.1 Memory Management of RTS]J

The RTSJ provides a powerful extension to the Java specification. Its full power,
however, is achieved only by the combination with a realtime garbage collector
that helps to overcome its restrictions. Since JamaicaVM uses a realtime garbage
collector, it does not need to impose the limitation that the Real-Time Specifica-
tion for Java puts onto realtime programming onto realtime applications developed
with the JamaicaVM. The limitations that are relaxed in JamaicaVM affect the use
of memory areas, thread priorities, runtime checks, and static initializers.

Use of Memory Areas

Since Jamaica’s realtime garbage collector does not interrupt application threads,
RealtimeThreads and even NoHeapRealtimeThreads are not required
to run in their own memory area outside the control of the garbage collector. In-
stead, any thread can use and access the normal garbage collected heap.

Thread priorities

In Jamaica, RealtimeThreads, NoHeapRealtimeThreads and normal
Java Thread objects all share the same priority range. The lowest possible
thread priority for all of these threads is defined in package java.lang, class
Thread by field MIN_PRIORITY. The highest possible priority is can be ob-
tained by querying instance () .getMaxPriority (), class Priority-—
Scheduler, package javax.realtime.

114 CHAPTER 11. REALTIME PROGRAMMING GUIDELINES

Runtime checks for NoHeapRealtimeThread

Since even NoHeapRealtimeThreads are immune to interruption by garbage
collector activities, JamaicaVM does not restrict these threads from accessing ob-
jects allocated on the normal heap. Runtime checks that typically ensure that
these threads do not access objects allocated on the heap can be disabled in the
JamaicaVM. The result is better overall system performance.

Static Initializers

In order to permit the initialization of classes even when their first reference is per-
formed within ScopedMemory or ImmortalMemory within a Realtime-
Threador NoHeapRealtimeThread, and to permit the access of static fields
such as System.out from within these threads, static initializers are typically
executed within TmmortalMemory that is accessible by all threads. However,
this prevents these objects from being reclaimed when they are no longer in use.
This can result in a serious memory leak when dynamic class loading is used
since memory allocated by the static initializers of dynamically loaded classes
will never be reclaimed.

Since the RTSJ implementation in the JamaicaVM does not limit access to
heap objects within any threads, there is no need to execute static initializers
within ITmmortalMemory. However, objects allocated in static initializers typ-
ically must be accessible by all threads. Therefore they cannot be allocated in
a scoped memory area when this happens to be the current thread’s allocation
environment when the static initializer is executed.

The JamaicaVM executes all static initializers within heap memory. Objects
allocated by static initializers may be accessed by all threads, and they may be
reclaimed by the garbage collector. There is no memory leak if classes are loaded
dynamically by a user class loader.

Class PhysicalMemoryManager

Names and instances of class javax.realtime.PhysicalMemoryType—
Filter that are passed to method registerFilter of the class javax.
realtime.PhysicalMemoryManager are, by the RTSJ, required to be al-
located in immortal memory. Realtime garbage collection obviates this require-
ment. The JamaicaVM does not enforce it either.

11.4.2 Finalizers

Care needs to be taken when using Java’s finalizers. A finalizer is a method that
can be redefined by any Java class to perform actions after the garbage collector

11.4. MEMORY MANAGEMENT 115

has determined that an object has become unreachable. Improper use of finalizers
can cause unpredictable results.

The Java specification does not give any guarantees that an object will ever
be recycled by the system and that a finalizer will ever be called. Furthermore, if
several unreachable objects have a finalizer, the execution order of these finalizers
is undefined. For these reasons, it is generally unwise to use finalizers in Java at
all. The developer cannot rely on the finalizer ever being executed. Moreover,
during the execution of a finalizer, the developer cannot rely on the availability of
any other resources since their finalizers may have been executed already.

In addition to these unpredictabilities, the use of finalizers has an important
impact on the memory demand of an application. The garbage collector cannot
reclaim the memory of any object that has been found to be unreachable before its
finalizer has been executed. Consequently, the memory occupied by such objects
remains allocated.

The finalizer methods are executed by the finalizer thread, which by default
runs at the lowest priority available to Java threads. If this finalizer thread does
not obtain sufficient execution time, or it is stopped by a finalizer that is blocked,
the system may run out of memory. In this case, explicit calls to Runt ime . run-
Finalization () may be required by some higher priority task to empty the
queue of finalizable objects.

The use of finalizers is more predictable for objects allocated in Scoped-
Memory or ImmortalMemory. For ScopedMemory, all finalizers will be
executed when the last thread exits a scope. This may cause a potentially high
overhead for exiting this scope. The finalizers of objects that are allocated in
ImmortalMemory will never be executed.

As an alternative to finalizers, the consequent use of finally clauses in Java
code to free unused resources at a predefined time is highly recommended. Using
finalizers may be helpful during debugging to find programming bugs like leakage
of resources or to visualize when an object’s memory is recycled. In a production
release, any finalizers (even empty ones) should be removed due to the impact they
have on the runtime and the potential for memory leaks caused by their presence.

11.4.3 Configuring a Realtime Garbage Collector

To be able to determine worst-case execution times for memory allocation opera-
tions in a realtime garbage collector, one needs to know the memory required by
the realtime application. With this information, a worst-case number of garbage
collector increments that are required on an allocation can be determined (see §[3)).
Automatic tools can help to determine this value. The heap size can then be se-
lected to give sufficient headroom for the garbage collector, while a larger heap
size ensures a shorter execution time for allocation. Tools like the analyzer in the

116 CHAPTER 11. REALTIME PROGRAMMING GUIDELINES

JamaicaVM help to configure a system and find suitable heap size and allocation
times.

11.4.4 Programming with the RTSJ and Realtime Garbage Col-
lection

Once the unpredictability of the garbage collector has been solved, realtime pro-
gramming is possible even without the need for special thread classes or the use
of specific memory areas for realtime code.

Realtime Tasks

In Jamaica, garbage collection activity is performed within application threads
and only when memory is allocated by a thread. A direct consequence of this
is that any realtime task that performs no dynamic memory allocation will be
entirely unaffected by garbage collection activity. These realtime tasks can access
objects on the normal heap just like all other tasks. As long as realtime tasks use a
priority that is higher than other threads, they will be guaranteed to run when they
are ready. Furthermore, even realtime tasks may allocate memory dynamically.
Just like any other task, garbage collection work needs to be performed to pay
for this allocation. Since a worst-case execution time can be determined for the
allocation, the worst-case execution time of the task that performs the allocation
can be determined as well.

Communication

The communication mechanisms that can be used between threads with differ-
ent priority levels and timing requirements are basically the same mechanisms as
those used for normal Java threads: shared memory and Java monitors.

Shared Memory Since all threads can access the normal, garbage-collected
heap without suffering from unpredictable pauses due to garbage collector ac-
tivity, this normal heap can be used for shared memory communication between
all threads. Any high priority task can access objects on the heap even while
a lower priority thread accesses the same objects or even while a lower priority
thread allocates memory and performs garbage collection work. In the latter case,
the small worst-case execution time of an increment of garbage collection work
ensures a bounded and small thread preemption time, typically in the order of a
few microseconds.

11.4. MEMORY MANAGEMENT 117

Synchronization The use of Java monitors in synchronized methods and
explicit synchronized statements enables atomic accesses to data structures.
These mechanisms can be used equally well to protect accesses that are performed
in high priority realtime tasks and normal non-realtime tasks. Unfortunately, the
standard Java semantics for monitors does not prevent priority inversion that may
result from a high priority task trying to enter a monitor that is held by another task
of lower priority. The stricter monitor semantics of the RTSJ avoid this priority
inversion. All monitors are required to use priority inheritance or the priority
ceiling protocol, such that no priority inversion can occur when a thread tries to
enter a monitor. As in any realtime system, the developer has to ensure that the
time that a monitor is held by any thread must be bounded when this monitor
needs to be entered by a realtime task that requires an upper bound for the time
required to obtain this monitor.

Standard Data Structures

The strict separation of an application into a realtime and non-realtime part that
is required when the Real-Time Specification for Java is used in conjunction with
a non-realtime garbage collector makes it very difficult to have global data struc-
tures that are shared between several tasks. The Real-Time Specification for Java
even provides special data structures such as WaitFreeWriteQueue that en-
able communication between tasks. These queues do not need to synchronize and
hence avoid running the risk of introducing priority inversion. In a system that
uses realtime garbage collection, such specific structures are not required. High
priority tasks can share standard data structures such as java.util.Vector
with low priority threads.

11.4.5 Memory Management Guidelines

The JamaicaVM provides four options for memory management: Immortal-
Memory, ScopedMemory, static memory deallocation, and realtime dynamic
garbage collection on the normal heap. They may all be used freely. The choice
of which to use is determined by what the best trade off between external require-
ments, compatibility, and efficiency for a given application.

ImmortalMemory is in fact quite dangerous. Memory leaks can result from
improper use. Its use should be avoided unless compatibility with other RTSJ
JVMs is paramount or heap memory is not allowed by the certification regime
required for the project.

ScopedMemory is safer, but it is generally inefficient due to the runtime
checks required by its use. When a memory check fails, the result is a runtime
exception, which is also undesirable in safety-critical code. In many cases, static

118 CHAPTER 11. REALTIME PROGRAMMING GUIDELINES

memory de-allocation can do the same job without the runtime checks. Escape
analysis ensures that the checks are not needed and that no memory related ex-
ception is ever thrown by the corresponding memory access. Therefore, static
memory deallocation is generally a better solution than ScopedMemory.

When static memory deallocation is not applicable, one can always fall back
on the realtime garbage collector. It is both safe and relatively efficient. Still
any heap allocation has an associated garbage collection time penalty. Realtime
garbage collection makes an allocating thread pay the penalty up front.

One important property of the JamaicaVM is that any realtime code that runs
at high priority and that does not perform memory allocation is guaranteed not to
be delayed by garbage collection work. This important feature holds for standard
RTSJ applications only under the heavy restrictions that apply to NoHeapReal—
timeThreads.

11.5 Scheduling and Synchronization

As the reader may have already noticed in the previous sections, scheduling and
synchronization are closely related. Scheduling threads that do not interact is
quite simple; however, interaction is necessary for sharing data among cooperat-
ing tasks. This interaction requires synchronization to ensure data integrity. There
are implications on scheduling of threads and synchronization beyond memory
access issues.

11.5.1 Schedulable Entities

The RTSJ introduces new scheduling entities to Java. RealtimeThread and
NoHeapRealtimeThread are thread types with clearer semantics than nor-
mal Java threads of class Thread and additional scheduling possibilities. Events
are the other new thread-like construct used for transient computations. To save
resources (mainly operating system threads, and thus memory and performance),
AsyncEvents can be used for short code sequences instead. They are easy to
use because they can easily be triggered programmatically, but they must not be
used for blocking. Also, there are BoundAsyncEvents which each require
their own thread and thus can be used for blocking. They are as easy to use
as normal AsyncEvents, but do not use fewer resources than normal threads.
AsyncEventHandlers are triggered by an asynchronous event. All three exe-
cution environments, RealtimeThreads, NoHeapRealtimeThreads and
AsyncEventHandlers, are schedulable entities, i.e., they all have release pa-
rameters and scheduling parameters that are considered by the scheduler.

11.5. SCHEDULING AND SYNCHRONIZATION 119

RealtimeThreads and NoHeapRealtimeThreads

The RTSJ includes new thread classes Realt imeThreads and NoHeapReal -
timeThreads to improve the semantics of threads for realtime systems. These
threads can use a priority range that is higher than that of all normal Java Threads
with at least 28 unique priority levels. The default scheduler uses these priori-
ties for fixed priority, preemptive scheduling. In addition to this, the new thread
classes can use the new memory areas ScopedMemory and ImmortalMemory
that are not under the control of the garbage collector.

As previously mentioned, threads of class NoHeapRealtimeThreads are
not permitted to access any object that was allocated on the garbage collected
heap. Consequently, these threads do not suffer from garbage collector activity as
long as they run at a priority that is higher than that of any other schedulable object
that accesses the garbage collected heap. In the JamaicaVM Java environment,
the memory access restrictions present in NoHeapRealtimeThreads are not
required to achieve realtime guarantees. Consequently, the use of NoHeapReal -
timeThreads is neither required nor recommended.

Apart from the extended priority range, RealtimeThreads provide fea-
tures that are required in many realtime applications. Scheduling parameters for
periodic tasks, deadlines, and resource constraints can be given for Realt ime—
Threads, and used to implement more complex scheduling algorithms. For
instance, periodic threads in the JamaicaVM use these parameters. In the Ja-
maicaVM Java environment, normal Java threads also profit from strict fixed pri-
ority, preemptive scheduling; but for realtime code, the use of Realt imeThread
is still recommended.

AsyncEventHandlers vs. BoundAsyncEventHandlers

An alternative execution environment is provided through classes AsyncEvent -
Handler and BoundAsyncEventHandler. Code in an event handler is ex-
ecuted to react to an event. Events are bound to some external happening (e.g, a
processor interrupt), which triggers the event.

AsyncEventHandler and BoundAsyncEventHandler are schedula-
ble entities that are equipped with release and scheduling parameters exactly as
RealtimeThread and NoHeapRealtimeThread. The priority scheduler
schedules both threads and event handlers, according to their priority. Also, ad-
mission checking may take the release parameters of threads and asynchronous
event handlers in account. The release parameters include values such as execu-
tion time, period, and minimum interarrival time.

One important difference from threads is that an AsyncEventHandler is
not bound to one single thread. This means, that several invocations of the same

120 CHAPTER 11. REALTIME PROGRAMMING GUIDELINES

handler may be performed in different thread environments. A pool of preallo-
cated RealtimeThreads is used for the execution of these handlers. Event
handlers that may execute for a long time or that may block during their execution
may block a thread from this pool for a long time. This may make the timely
execution of other event handlers impossible.

Any event handler that may block should therefore have one Realtime-
Thread thatis assigned to it alone for the execution of its event handler. Handlers
for class BoundAsyncEventHandler provide this feature. They do not share
their thread with any other event handler and they may consequently block without
disturbing the execution of other event handlers.

Due to the additional resources required fora BoundAsyncEventHandler,
their use should be restricted to blocking or long running events only. The sharing
of threads used for normal AsyncEventHandlers permits the use of a large
number of event handlers with minimal resource usage.

11.5.2 Synchronization

Synchronization is essential to data sharing, especially between cooperating real-
time tasks. Passing data between threads at different priorities without impairing
the realtime behavior of the system is the most important concern. It is essential
to ensure that a lower priority task cannot preempt a higher priority task.

The situation in Fig. [[T.4] depicts a case of priority inversion when using
monitors, the most common priority problem. The software problems during the
Pathfinder mission on Mars is the most popular example of a classic priority in-
version error (see Michael Jones” web page [4].

In this situation, a higher priority thread A has to wait for a lower priority
thread B because another thread C with even lower priority is holding a monitor
for which A is waiting. In this situation, B will prevent A and C from running,
because A is blocked and C has lower priority. In fact, this is a programming error.
If a thread might enter a monitor which a higher priority thread might require, then
no other thread should have a priority in between the two.

Since errors of this nature are very hard to locate, the programming environ-
ment should provide a means for avoiding priority inversion. The RTSJ defines
two possible mechanisms for avoiding priority inversion: Priority Inheritance and
Priority Ceiling Emulation. The JamaicaVM implements both mechanisms.

Priority Inheritance

Priority Inheritance is a protocol which is easy to understand and to use, but that
poses the risk of causing deadlocks. If priority inheritance is used, whenever a
higher priority thread waits for a monitor that is held by a lower priority thread,

11.5. SCHEDULING AND SYNCHRONIZATION 121

TElSk A L L] Ly L]

Task B i | } {

Task C k i

Figure 11.4: Priority Inversion

Task A ’

Inhgritance
-
|

Prigrity

Task B i |

-

Task C i i

Figure 11.5: Priority Inheritance

the lower priority thread’s priority is boosted to the priority of the blocking thread.
Fig.[IT.5]illustrates this.

Priority Ceiling Emulation

Priority Ceiling Emulation is widely used in safety-critical system. The priority of
any thread entering a monitor is raised to the highest priority of any thread which
could ever enter the monitor. Fig. illustrates the Priority Ceiling Emulation
protocol.

As long as no thread that holds a priority ceiling emulation monitor blocks,
any thread that tries to enter such a monitor can be sure not to block[l| Conse-
quently, the use of priority ceiling emulation automatically ensures that a system
is deadlock-free.

'If any other thread owns the monitor, its priority will have been boosted to the ceiling priority.
Consequently, the current thread cannot run and try to enter this monitor.

122 CHAPTER 11. REALTIME PROGRAMMING GUIDELINES

Task A ! i]

Task B ! i i]
Priority Ceiling

Task C ! i i

Figure 11.6: Priority Ceiling Emulation Protocol

Task A } i
Task B ’] }]

Figure 11.7: Deadlocks are possible with Priority Inheritance

Priority Inheritance vs. Priority Ceiling Emulation

Priority Inheritance should be used with care, because it can cause deadlocks when
two threads try to enter the same two monitors in different order. This is shown
in Fig. Thus it is safer to use Priority Ceiling Emulation, since when used
correctly, deadlocks cannot occur there. Priority Inheritance deadlocks can be
avoided, if all programmers make sure to always enter monitors in the same order.

Unlike classic priority ceiling emulation, the RTSJ permits blocking while
holding a priority ceiling emulation monitor. Other threads that may want to enter
the same monitor will be stopped exactly as they would be for a normal monitor.
This fall back to standard monitor behavior permits the use of priority ceiling
emulation even for monitors that are used by legacy code.

The advantage of a limited and short execution time for entering a priority ceil-
ing monitor, working on a shared resource, then leaving this monitor are, however,
lost when a thread that has entered this monitor may block. Therefore the system
designer should restrict the use of priority ceiling monitors to short code sequences
that only access a shared resource and that do not block. Entering and exiting the

11.6. LIBRARIES 123

monitor can then be performed in constant time, and the system ensures that no
thread may try to enter a priority ceiling monitor that is held by some other thread.

Since priority ceiling emulation requires adjusting a thread’s priority every
time a monitor is entered or exited, there is an additional runtime overhead for this
priority change when using this kind of monitors. This overhead can be significant
compared to the low runtime overhead that is incurred to enter or leave a normal,
priority inheritance monitor. In this case, there is a priority change penalty only
when a monitor has already been taken by another thread.

Future versions of the Jamaica Java implementation may optimize priority
ceiling and avoid unnecessary priority changes. The JamaicaVM uses atomic code
sequences and restricts thread switches to certain points in the code. A synchro-
nized code sequence that is protected by a priority ceiling monitor and that does
not contain a synchronization point may not require entering and leaving of the
monitor at all since the code sequence is guaranteed to be executed atomically due
to the fact that it does not contain a synchronization point.

11.6 Libraries

The use of a standard Java libraries within realtime code poses severe difficulties,
since standard libraries typically are not developed with the strict requirements
on execution time predictability that come with the use in realtime code. For
use within realtime applications, any libraries that are not specifically written and
documented for realtime system use cannot be used without inspection of the
library code.

The availability of source code for standard libraries is an important prerequi-
site for their use in realtime system development. Within the JamaicaVM, large
parts of the standard Java APIs are taken from OpenJDK, which is an open source
project. The source code is freely available, so that the applicability of certain
methods within realtime code can be checked easily.

11.7 Summary

As one might expect, programming realtime systems in Java is more complicated
than standard Java programming. A realtime Java developer must take care with
many Java constructs. With timely Java development using JamaicaVM, there are
instances where a developer has more than one possible implementation construct
to choose from. Here, the most important of these points are recapitulated.

124 CHAPTER 11. REALTIME PROGRAMMING GUIDELINES

11.7.1 Efficiency

All method calls and interface calls are performed in constant time. They are
almost as efficient as C function calls, so do not avoid them except in places
where one would avoid a C function call as well.

When accessing final 1ocal variables or private fields from within inner
classes in a loop, one should generally cache the result in a local variable for
performance reasons. The access is in constant time, but slower than normal local
variables.

Using the String operator + causes memory allocation with an execution time
that is linear with regard to the size of the resulting String. Using array initializa-
tion causes dynamic allocations as well.

For realtime critical applications, avoid static initializers or explicitly call the
static initializer at startup. When using a java compiler earlier than version 1.5, the
use of classname . class causes dynamic class loading. In realtime applications,
this should be avoided or called only during application startup. Subsequent usage
of the same class will then be cached by the JVM.

11.7.2 Memory Allocation

The RTSJ introduces new memory areas such as ImmortalMemoryArea and
ScopedMemory, which are inconvenient for the programmer, and at the same
time make it possible to write realtime applications that can be executed even on
virtual machines without realtime garbage collection.

In JamaicaVM, it is safe, reliable, and convenient to just ignore those restric-
tions and rely on the realtime garbage collection instead. Be aware that if exten-
sions of the RTSJ without sticking to restrictions imposed by the RTSJ, the code
will not run unmodified on other JVMs. To make sure code is portable, one should
use the —strictRTSJ switch. StrictRTSJ mode can safely be used by any Java
program without modifications.

11.7.3 EventHandlers

AsyncEventHandlers should be used for tasks that are triggered by some
external event. Many event handlers can be used simultaneously; however, they
should not block or run for a long time. Otherwise the execution of other event
handlers may be blocked.

For longer code sequences, or code that might block, event handlers of class
BoundAsyncEventHandler provide an alternative that does not prevent the
execution of other handlers at the cost of an additional thread.

11.7. SUMMARY 125

The scheduling and release parameters of event handlers should be set accord-
ing to the scheduling needs for the handler. Particularly, when rate monotonic
analysis [7] is used, an event handler with a certain minimal interarrival time
should be assigned a priority relative to any other events or (periodic) threads
using this minimal interarrival time as the period of this schedulable entity.

11.7.4 Monitors

Priority Inheritance is the default protocol in the RTS]J. It is safe and easy to use,
but one should take care to nest monitor requests properly and in the same order
in all threads. Otherwise, it can cause deadlocks. When used properly, Priority
Ceiling Emulation (PCE) can never cause deadlocks, but care has to be taken
that a monitor is never used in a thread of higher priority than the monitor. Both
protocols are efficiently implemented in the JamaicaVM.

126 CHAPTER 11. REALTIME PROGRAMMING GUIDELINES

Part 111

Tools Reference

127

Chapter 12

The Jamaica Java Compiler

The command jamaicac is a compiler for the Java programming language and
is based on OpenJDK’s Java Compiler. It uses the system classes of the Jamaica
distribution as default bootclasspath.

12.1 Usage of jamaicac

The command line syntax for the jamaicac is as follows:
jamaicac [options] [source files and directories]

If directories are specified their source contents are compiled. The command line
options of jamaicac are those of javac. As notable difference, the additional
useTarget option enables specifying a particular target platform.

12.1.1 Classpath options
Option —-useTarget platform

The useTarget option specifies the target platform to compile for. It is used to
compute the bootclasspath in case bootclasspath is omitted. By default, the
host platform is used.

Option —-cp (—-classpath) path

The classpath option specifies the location for application classes and sources.
The path is a list of directories, zip files or jar files separated by the platform
specific separator (usually colon, ‘:’). Each directory or file can specify access
rules for types between ‘[and ‘]’ (e.g. “[-X. java]” to deny access to type X).

129

130 CHAPTER 12. THE JAMAICA JAVA COMPILER

Option -bootclasspath path

This option is similar to the option classpath, but specifies locations for sys-
tem classes.

Option —sourcepath path

The sourcepath option specifies locations for application sources. The path is
a list of directories. For further details, see option classpath above.

Option —-extdirs dirs

The extdirs option specifies location for extension zip/jar files, where path is
a list of directories.

Option -d directory

The d option sets the destination directory to write the generated class files to. If
omitted, no directory is created.

12.1.2 Compliance options
Option —source version

Provide source compatibility for specified version, e.g. 1.6 (or 6 or 6.0).

Option —-target version

Generated class files for a specific VM version, e.g. 1.6 (or 6 or 6.0).

12.1.3 Warning options
Option —-deprecation

The deprecation option checks for deprecation outside deprecated code.

Option —-nowarn

The nowarn option disables all warnings.

12.2. ENVIRONMENT VARIABLES 131

12.1.4 Debug options
Option —-g

The g option without parameter activates all debug info.

Option —-g:none

The g option with none disables debug info.

Option —-g:{lines, vars, source}

The g option is used to customize debug info.

12.1.5 Other options

Option —encoding encoding

The encoding option specifies custom encoding for all sources. May be overrid-
den for each file or directory by suffixing with ‘[’encoding‘]’ (e.g. “X.java[utf8]”).
Option -Joption

This option is ignored.

Option -X

The X option prints non-standard options and exits.

12.2 Environment Variables

The following environment variables control jamaicac.

JAMAICAC_MIN_ HEAPSIZE Initial heap size of the jamaicac command it-
self in bytes. Setting this to a larger value will improve the jamaicac
performance.

JAMAICAC_HEAPSIZE Maximum heap size of the jamaicac command itself
in bytes. If the initial heap size is not sufficient, it will increase its heap
dynamically up to this value. To compile large applications, you may have
to set this maximum heap size to a larger value.

JAMAICAC_JAVA STACKSIZE Java stack size of the jamaicac command
itself in bytes.

132 CHAPTER 12. THE JAMAICA JAVA COMPILER

JAMAICAC_NATIVE_STACKSIZE Native stack size of the jamaicac com-
mand itself in bytes.

Chapter 13

The Jamaica Virtual Machine
Commands

The Jamaica virtual machine provides a set of commands that permit the execution
of Java applications by loading a set of class files and executing the code. The
command jamaicavm lauches the standard Jamaica virtual machine. Its variants
jamaicavm_slim, jamaicavmp and jamaicavdi provide special features
like debug support.

13.1 jamaicavm

The jamaicavm is the standard command to execute non-optimized Java appli-
cations in interpreted mode.

jamaicavm [options] [—-—]1 class [args...]
jamaicavm —-Jjar [options] [--] jarfile [args...]

The jamaicavm permits a number of options followed by a class name or a
Java archive file if option —jar is present. The class uses dots (°.”) as package
separators and does not include the .class extension, i.e., to execute the Java
application whose main class in in file com/mycompany/MyClass.class
(or com\mycompany\MyClass.class on Windows systems), the class ar-
gument must be com.mycompany .MyClass. An optional ‘-~ can be used to
explicitly separate the options from the class or jar file argument.

133

134 CHAPTER 13. THE JAMAICA VIRTUAL MACHINE COMMANDS

13.1.1 JamaicaVM Options
Option —-classpath (-cp) path

The classpath option sets search paths for class files. The argument must be
a list of directories or JAR/ZIP files separated by the platform dependent path
separator char (‘:> on Unix-Systems, ;> on Windows).

Option —-Dname=value

The D option sets a system property with a given name to a given value. The
value of this property will be available to the Java application via functions such
as System.getProperty ().

Option —-version

The version option prints version of JamaicaVM.

Option -help (-?)

The help option prints a short help summary on the usage of JamaicaVM and
lists the default values is uses. These default values are target specific. The default
values may be overridden by command line options or environment variable set-
tings. Where command line options and environment variables are possible, the
command line settings have precedence. To inspect the relevant command line
options, issue

> jamaicavm —-Xhelp

Option -xhelp (-X)

The xhelp option prints a short help summary on the extended options of Ja-
maicaVM.

13.1.2 JamaicaVM Extended Options

JamaicaVM supports a number of extended options. Some of them are supported
for compatibility with other virtual machines, while some provide functionality
that is only available in Jamaica . Please note that the extended options may
change without notice. Use them with care.

13.1. JAMAICAVM 135

Option -Xbootclasspath:path

The Xbootclasspath option sets bootstrap search paths for class files. The
argument must be a list of directories or JAR/ZIP files separated by the platform
dependent path separator char (*:” on Unix-Systems, ‘;” on Windows). Note that
the jamaicavm command has all boot and standard API classes built in. The
boot-classpath has the built-in classes as an implicit first entry in the path list,
so it is not possible to replace the built-in boot classes by other classes which
are not built-in. However, the boot class path may still be set to add additional
boot classes. For commands jamaicavm_slim, jamaicavmp, etc. that do
not have any built-in classes, setting the boot-classpath will force loading of the
system classes from the directories provided in this path. However, extreme care is
required: The virtual machine relies on some internal features in the boot-classes.
Thus it is in general not possible to replace the boot classes by those of a different
virtual machine or even by those of another version of the Jamaica virtual machine
or even by those of a different Java virtual machine.

Option -Xms (—ms) size

The Xms option sets initial Java heap size, the default setting is 2M. This option
takes precedence over a heap size set via an environment variable.

Option -Xmx (-mx) size

The Xmx option sets maximum Java heap size, the default setting is 256M. This
option takes precedence over a maximum heap size set via an environment vari-
able.

Option -Xmi (-mi) size

The Xmi option sets heap size increment, the default setting is 4M. This option
takes precedence over a heap size increment set via an environment variable.

Option -Xss (—ss) size

The Xss option sets stack size (native and interpreter). This option takes prece-
dence over a stack size set via an environment variable.

Option -Xjs (-]js)size

The X js option sets interpreter stack size, the default setting is 64K. This option
takes precedence over a java stack size set via an environment variable.

136 CHAPTER 13. THE JAMAICA VIRTUAL MACHINE COMMANDS

Option —-Xns (—-ns) size

The Xns option sets native stack size, set default setting is 64K. This option takes
precedence over a native stack size set via an environment variable.

Option -Xprof

Collect simple profiling information using periodic sampling. This profile is used
to provide an estimate of the methods which use the most CPU time during the
execution of an application. During each sample, the currently executing method
is determined and its sample count is incremented, independent of whether the
method is currently executing or is blocked waiting for some other event. The
total number of samples found for each method are printed when the application
terminates. Note that compiled methods may be sampled incorrectly since they
do not necessarily have a stack frame. We therefore recommend to use Xprof
only for interpreted applications.

13.1.3 Environment variables used by JamaicaVM

Next to the command line options, JamaicaVM also permits the specification of
options via environment variables. § lists the environment variables and their
meanings.

13.2 jamaicavm_slim

jamaicavm_slimis a variant of the jamaicavm command that does not have
the standard library built in. Instead, it has to load all standard library classes that
are required by the application from the target-specific rt . jar provided in the
JamaicaVM installation.

Compared to jamaicavm, jamaicavm_slim is significantly smaller in
size. jamaicavm_slim may start up more quickly for small applications, but
it will require more time for larger applications. Also, since jamaicavm con-
tains standard library classes that were pre-compiled and optimized by the Ja-
maica builder tool (see §[I4), jamaicavm_slim will perform standard library
code more slowly.

The options, arguments and environment variables accepted by jamaicavm_
s1im are the same as the options of the jamaicavm command. See § for
the detailed list.

13.3. JAMAICAVMP 137

13.3 jamaicavmp

jamaicavmp is a variant of jamaicavm_s1im that collects profiling informa-
tion. This profiling information can be used when creating an optimized version
of the application using option —useProfile file of the Jamaica builder com-
mand (see §[14).

The profiling information is written to a file whose name is the name of the
main class of the executed Java application with the suffix . prof. The following
run of the HelloWorld application available in the examples (see §[3.4) shows how
the profiling information is written after the execution of the application.

> jamaicavmp -cp classes HelloWorld

Hello World!
Hello World!
Hello World!
Hello World!

Hello World!
Hello Wworld!
[...]
Start writing profile data into file ’HelloWorld.prof’
Write threads data...
Write invocation data...
Done writing profile data

Profiling information is written after the termination of the application. This re-
quires an additional mechanism for applications which are not self-terminating.
There are two possible approaches: adding an explicit termination mechanism to
the application or requesting a profile dump remotely.

For an explicit termination, the application needs to be rewritten to terminate
at a certain point, e.g., after a timeout or on a certain user input. The easiest
means to terminate an application is via a call to System.exit (). Otherwise,
all threads that are not daemon threads need to be terminated.

To request a remote profile, the property jamaica.profile_request_
port has to be set to a port number. Then, a request to write the profile can be
sent via the command

jamaicavm com.aicas.jamaica.lang.Profile host port

See §[C|for more information on this mechanism.

Profiling information is always appended to the profiling file. This means
that profiling information from several profiling runs of the same application, e.g.
using different input data, will automatically be written into a single profiling
file. To fully overwrite the profiling information, e.g., after a major change in the
application, the profiling file must be deleted manually.

138 CHAPTER 13. THE JAMAICA VIRTUAL MACHINE COMMANDS

The collection of profiling information requires additional CPU time and mem-
ory to store this information. It may therefore be necessary to increase the memory
size. Also expect poorer runtime performance during a profiling run.

13.3.1 Additional extended options of jamaicavmp
Option —-XprofileFilename filename

This option selects the name of the file to which the profile data is to be written.
If this option is not provided, the default file name is used, consisting of the main
class name and the suffix .prof.

13.4 jamaicavmdi

The jamaicavmdi command is a variant of jamaicavm_s1im that includes
support for the JVMTI debugging interface. It includes a debugging agent that
can communicate with remote source-level debuggers such as Eclipse.

13.4.1 Additional options of jamaicavidi
Option —agentlib:libname [=options]

The agent1ib option loads and runs the dynamic JVMTI agent library libname
with the given options. Be aware that JVMTI is not yet fully implemented, so not
every agent will work. Jamaica comes with a statically built in debugging agent
that can be selected by setting Built InAgent as name. The transport layer
must be sockets. A typical example of using this option is

—agentlib:BuiltInAgent=transport=dt_socket, server=y,
suspend=y, address=8000

(To be typed in a single line.) This starts the application and waits for an incoming
connection of a debugger on port 8000. See § for further information on the
options that can be provided to the built-in agent for remote debugging.

13.5 Environment Variables

The following environment variables control jamaicavm and its variants.

CLASSPATH Path list to search for class files.

13.6. EXITCODES 139

JAMAICA_SCHEDULING Select native thread scheduling mode (for Linux and
Solaris only). Available values are: OTHER — default scheduling, RR —
round robin, and FIFO — first in first out.

JAMAICAVM HEAPSIZE Heap size in bytes, default 2M

JAMAICAVM_MAXHEAPSIZE Max heap size in bytes, default 256M

JAMAICAVM_ HEAPSIZEINCREMENT Heap size increment in bytes, default
4M

JAMAICAVM_JAVA_STACKSIZE Java stack size in bytes, default 64K

JAMAICAVM_NATIVE_STACKSIZE Native stack size in bytes, default 64K

JAMAICAVM NUMTHREADS Maximum number of Java threads, default: 10

JAMAICAVM_FINALIZERPRI The Java priority of the finalizer thread. This
thread executes the finalize method of objects before their memory is
reclaimed by the GC. default: 10

JAMAICAVM_PRIMAP Priority mapping of Java threads to native threads

JAMAICAVM_ANALYSE Enable memory analysis mode with a tolerance given
in percent (see Builder option analyse), default: O (disabled).

JAMAICAVM_ RESERVEDMEMORY Set the percentage of memory that shold be
reserved by a low priority thread for fast burst allocation (see Builder option
reservedMemory), default: 10.

JAMAICAVM_SCOPEDSIZE Size of scoped memory, default: O
JAMAICAVM_IMMORTALSIZE Size of immortal memory, default: 32768

JAMAICAVM_LAZY Use lazy class loading/linkage (1) or load/link all classes at
startup (0), default: 1.

JAMAICAVM STRICTRTSJ Use strictRTSJ rules (1) or relaxed Jamaica rules
(0), default: 0

JAMAICAVM_PROFILEFILENAME File name for profile, default: class.prof,
where class is the name of the main class.

140 CHAPTER 13. THE JAMAICA VIRTUAL MACHINE COMMANDS

Standard exit codes
0 | Normal termination
1 | Exception or error in Java program
2..63 | Application specific exit code from System.exit ()

Error codes
64 | JamaicaVM failure
65 | VM not initialized
66 | Insufficient memory
67 | Stack overflow
68 | Initialization error
69 | Setup failure
70 | Clean-up failure
71 | Invalid command line arguments
72 | No main class
73 | Exec () failure

Internal errors
100 | Serious error: HALT called
101 | Internal error
102 | Internal test error
103 | Function or feature not implemented
104 | Exit by signal
105 | Unreachable code executed
255 | Unexpected termination

Table 13.1: Exitcodes of the Jamaica VMs

13.6. EXITCODES 141

13.6 Exitcodes

Tab. [[3.1] lists the exit codes of the Jamaica VMs. Standard exit codes are exit
codes of the application program. Error exit codes indicate an error such as insuf-
ficient memory. If you get an exit code of an internal error please contact aicas
support with a full description of the runtime condition or, if available, an example
program for which the error occurred.

142 CHAPTER 13. THE JAMAICA VIRTUAL MACHINE COMMANDS

Chapter 14

The Jamaica Builder

Traditionally, Java applications are stored in a set of Java class files. To run an
application, these files are loaded by a virtual machine prior to their execution.
This method of execution emphasizes the dynamic nature of Java applications
and allows easy replacement or addition of classes to an existing system.

However, in the context of embedded systems, this approach has several dis-
advantages. An embedded system might not provide the necessary file system
device and file system services. Instead, it is preferable to have all files relevant
for an application in a single executable file, which may be stored in read only
memory (ROM) within an embedded system.

The Builder provides a way to create a single application out of a set of class
files and the Jamaica virtual machine.

14.1 How the Builder tool works

Fig. illustrates the process of building a Java application and the JamaicaVM
into a single executable file. The Builder takes a set of Java class files as input
and by default produces a portable C source file which is compiled with a native
C compiler to create an object file for the target architecture. The build object file
is then linked with the files of the JamaicaVM to create a single executable file
that contains all the methods and data necessary to execute the Java program.

14.2 Builder Usage

The builder is a command-line tool. It is named jamaicabuilder. A variety
of arguments control the work of the Builder tool. The arguments can be given
directly to the Builder via command line, or by using configuration files. Options

143

144 CHAPTER 14. THE JAMAICA BUILDER

*.class

Y
Gamaicabuilder P C source file >(C compiler)

A
y

profiling data > B
A object file

executable C linker)4

Figure 14.1: The Builder tool
given at the command line take priority. Options not specified at the command
line are read from configuration files in the following manner:

e The default target is read from jamaica-home /et c/jamaica.conf. This
file should not contain any other information.

e [f the builder option —configuration is used, the remaining options are
read from the file specified with this options.

e Otherwise, if the file user-home/ . jamaica/ jamaica.conf exists (and
is non-empty), the remaining options are read from there.

e Otherwise jamaica-home/target /platform/etc/jamaica.conf,the
target-specific configuration file, is used.

The full command line syntax for the Builder tool is as follows:

jamaicabuilder [-help (--help, -h, -?)] [-Xhelp (-—Xhelp)]
[-version] [-verbose=<n>] [-showSettings]
[-saveSettings=<file>] [-configuration=<file>]
[-classpath (-cp) [+]=<classpath>]
[-enableassertions (-ea)] [-main=<class>]
[-jar=<file>]
[-includeClasses[+]="<class>|<package>
<class>|<package>"]

14.2. BUILDER USAGE 145

[

—excludeClasses[+]="<class>|<package>

<class>|<package>"]

(-
(-
(-
(-
(-
(-
(-
(-
(-
(-
(-
(-
(-
(-
(-
(-
(-
(-
(-
[
(-
(-
(-
[
(-
(-
(-
(-
[
(-
(-
(-
(-
(=
(=
(-
(-
(-
(-
(-
(-
(-
(-
(-
(-
(-
(-

excludeFromCompile [+]="<method> <method>"]
includeJAR[+]=<file>:<file>]
excludeJAR[+]=<file>:<file>] [-lazy]
lazyFromEnv=<var>] [-destination (-0)=<name>]
tmpdir=<name>] [-resource[+]=<name>:<name>]
setFonts[+]=" "]
setGraphics=<system>]
setLocales[+]="<locale> <locale>"]
setTimeZones [+]="<timezone> <timezone>"]
setProtocols[+]="<protocol> <protocol>"]
cdc] [-cldc] [-incrementalCompilation]
smart] [-closed] [-showIncludedFeatures]
showExcludedFeatures] [-interpret (-Xint)]
compile] [-inline=<n>] [-optimise
optimize)=<type>] [-target=<platform>]
heapSize=<n>[K|M]] [-maxHeapSize=<n>[K|M]]
heapSizeIncrement=<n>[K|M]]
javaStackSize=<n>[K|M]]
nativeStackSize=<n>[K|M]] [-numThreads=<n>]
—-maxNumThreads=<n>]
-numJniAttachableThreads=<n>]
threadPreemption=<n>] [-timeSlice=<n>]
finalizerPri=<pri>] [~heapSizeFromEnv=<var>]
-maxHeapSizeFromEnv=<var>]
heapSizeIncrementFromEnv=<var>]
javaStackSizeFromEnv=<var>]
-nativeStackSizeFromEnv=<var>]
—numThreadsFromEnv=<var>]
-maxNumThreadsFromEnv=<var>]
numJniAttachableThreadsFromEnv=<var>]
finalizerPriFromEnv=<var>]
priMap[+]=<jp>=<sp>, <jp>=<sp>]
priMapFromEnv=<var>] [—-analyse
analyze)=<tolerance>] [—-analyseFromEnv
analyzeFromEnv)=<var>] [-constGCwork=<n>]
constGCworkFromEnv=<var>] [-stopTheWorldGC]
atomicGC] [-reservedMemory=<percentage>]
reservedMemoryFromEnv=<var>] [-strictRTSJ]
strictRTSJFromEnv=<var>]
immortalMemorySize=<n>[K|M]]
immortalMemorySizeFromEnv=<var>]
scopedMemorySize=<n>[K|M]]
scopedMemorySizeFromEnv=<var>]
physicalMemoryRanges [+]=<range>, <range>]
profile] [-XprofileFilenameFromEnv=<var>]
percentageCompiled=<n>]
useProfile[+]=<file>:<file>]

146 CHAPTER 14. THE JAMAICA BUILDER

[-object [+]=<file>:<file>] classl [...
classn]

The following special syntax is accepted:

e To add values to an existing option in the configuration, e.g., —include,
use the following syntax: —-include+=myIncludePath. The value
from the configuration is prepended with the value provided on the com-
mand line.

e To read values for an option that accepts a list of values, e.g., —include,
from a file instead from the command line or configuration file, use this syn-
tax: —include=@file or —include+=Q@file. This reads the values
from f£ile line by line. Empty lines and lines starting with the character
“#” (comment) are ignored.

Options that permit lists of arguments can be set by either providing a single list,
or by providing an instance of the option for each element of the list. For example,
the following are equivalent:

—classpath=system_classes:user_classes
—classpath=system_classes —classpath=user_classes

The separator for list elements depends on the agrument type and is documented
for the individual options. As a general rule, paths and file names are separated
by the system-specific separator character (colon on Unix systems, semicolon on
Windows), for identifiers such as class names and package names the separator is
space, and for maps the separator is comma.

Note that arguments (in particular, file names) and argument lists that contain
spaces must be enclosed in double quotes (“"”’). The following are well-formed
declarations:

—includeClasses="java.lang... Jjava.util.«"
—classpath+="system_classes:installation directory"

Options that permit a list of mappings as their arguments require one equals sign
to start the arguments list and another equals for each mapping in the list.

-priMap=1=5,2=7, 3=9

Default values for many options are target specific. The actual settings may be
obtained by invoking the Builder with —~he1p. In order to find out the the settings
for a target other than the host platform, include —t arget=platform.

14.2. BUILDER USAGE 147

14.2.1 General

The following are general options which provide information about the Builder
itself or enable the use of script files that specifying further options.

Option -help (--help, -h, -?)

The help option displays Builder usage and a short description of all possible
standard command line options.

Option -Xhelp (--Xhelp)

The Xhelp option displays Builder usage and a short description of all possible
extended command line options. Extended command line options are not needed
for normal control of the Builder command. They are used to configure tools and
options, and to provide tools required internally for Jamaica VM development.

Option -version

Print the version of the Builder and exit.

Option —-verbose=n

The verbose option sets the verbosity level for the Builder. If the verbosity
level is larger than 0, additional output on the state of the build process is printed
to standard out. The information provided in verbose mode includes: external
tools called, warnings, or the list of all class files that are loaded and the methods
that are compiled in case compilation is switched on.

Option -showSettings

Print the builder settings in property file format. To make these setting the de-
fault, replace the file jamaica-home/t arget /platform/etc/jamaica.conf
by the output.

Option -saveSettings=file

If the saveSettings option is used, Jamaica Builder options currently in effect
are written to the provided file in property file format. To make these setting
the default, replace the file jamaica-home /t arget /platform/etc/jamaica.
conf by the output.

148 CHAPTER 14. THE JAMAICA BUILDER

Option —-configuration=file

The configuration option specifies a file to read the set of options used to
build the application. The option format must be identical to the one in the default
configuration file (jamaica-home/target /platform/etc/jamaica.conf).
When set, the files jamaica-home/ . jamaica/jamaica.conf and jamaica-
home/target/platform/etc/jamaica.conf are ignored.

14.2.2 Classes, files and paths

These options allow to specify classes and paths to be used by the builder.

Option —-classpath (-cp) [+]=classpath

The classpath option specifies the paths that are used to search for class files.
A list of paths separated by the path separator char (‘> on Unix systems, ‘;> on
Windows) can be specified. This list will be traversed from left to right when the

Builder tries to load a class.

Option —-enableassertions (—ea)

The enableassertions option enables assertions for all classes. Assertions
are disabled by default.

Option -main=class

The main option specifies the main class of the application that is to be built.
This class must contain a static method void main (String[] args). This
method is the main entry point of the Java application.

If the main option is not specified, the first class of the classes list that is
provided to the Builder is used as the main class.

Option -jar=file

The jar option specifies a JAR file with an application that is to be built. This
JAR file must contain a MANIFEST with a Main-Class entry.

Option —-includeClasses [+]="class |package { class|package}"

The includeClasses option forces the inclusion of the listed classes and
packages into the created application. The listed classes with all their methods

14.2. BUILDER USAGE 149

and fields will be included. This is useful or even neccessary if you use reflection
with these classes.

Arguments for this option can be: a class name to include the class with all
methods and fields, a package name followed by an asterisk to include all classes
in the package or a package name followed by “. . .” to include all classes in the
package and in all sub-packages of this package.

Example:

—includeClasses="java.beans.XMLEncoder java.util.=x

java.lang..."

includes the class java.beans.XMLEncoder, all classes in java.util and
all classes in the package java.lang and in all sub-packages of java.lang
such as java.lang.ref.

! The includeClasses option affects only the listed classes themselves.
Subclasses of these classes remain subject to smart linking.

Option —-excludeClasses[+]="class |package { class|package}"

The excludeClasses option forces exclusion of the listed classes and pack-
ages from the created application. The listed classes with all their methods and
fields will be excluded, even if they were previously included using includeJAR
or includeClasses. This is useful if you want to load classes at runtime.

Arguments for this option can be: a class name to exclude the class with all
methods and fields, a package name followed by an asterisk to exclude all classes
in the package or a package name followed by “. . .” to exclude all classes in the
package and in all sub-packages of this package.

Example:

—excludeClasses="java.beans.XMLEncoder java.util.x*
java.lang..."

excludes the class java.beans.XMLEncoder, all classes in java.util and

all classes in the package java.lang and in all sub-packages of java.lang
such as java.lang.ref.

! The excludeClasses option affects only the listed classes themselves.
[J

150 CHAPTER 14. THE JAMAICA BUILDER

Option —-excludeFromCompile [+]="method{ method}"

The excludeFromCompi le option forces exclusion of the listed methods from
compilation.
Separate method names by spaces and enclose them in double quotes ()
Example:

—excludeFromCompile="java/lang/Math.cos (D)D
java/lang/Math.sin (D)D"

excludes the methods double cos (double) and double sin (double).

! The excludeFromCompile option affects only the listed methods them-
selves.

Option —-includeJAR[+]=file{ :file}

The includeJAR option forces the inclusion of all classes and all resources con-
tained in the specified files. Any archive listed here must be in the classpath or
in the bootclasspath. If a class needs to be included, the implementation in the
includedJAR file will not necessarily be used. Instead, the first implementation
of this class which is found in the classpath will be used.This is to ensure the appli-
cation behaves in the same way as it would if it were called with the jamaicavm
or java command.

Despite its name, the option accepts directories as well. Multiple archives (or

(13 2

directories) should be separated by the system specific path separator: colon “:

13 2
.

on Unix systems and semicolon ““; ” on Windows.

Option —excludeJAR[+]=file{ :file}

The excludeJAR option forces the exclusion of all classes and resources con-

tained in the specified files. Any class and resource found will be excluded from

the created application. Use this option to load an entire archive at runtime.
Despite its name, the option accepts directories as well. Multiple archives (or

(3 2

directories) should be separated by the system specific path separator: colon “:

13 2
.

on Unix systems and semicolon ““; ” on Windows.

Option -lazy

Jamaica VM by default uses static linking of all Java classes. This means that all
classes that are referenced from the main class will be loaded before execution
of the application starts. This early loading and linking of classes ensures that

14.2. BUILDER USAGE 151

during the execution of the Java application, no further class loading and linking
will be required, ensuring the predictable execution of statements that can cause
class loading in a traditional Java environment.

The statements that may cause loading and linking of classes are the same
statements that may cause the execution of static initalizers of a class: calls of
static methods, accesses to static fields and the creation of an instance of a class.

Setting this option causes Jamaica VM to load and link classes lazily. This
behaviour may be required to execute applications that reference classes that are
not available and that are never used during runtime. Also, it helps to reduce
startup time of an application that refers to large library code that is not actually
needed at runtime.

Option -lazyFromEnv=var

This option causes the creation of an application that reads its 1azy setting from
the specified environment variable. If this variable is not set, the value of boolean
option 1azy will be used. The value of the environment variable must be 0 (for
-lazy=false)or 1l (for —-lazy=true).

Option —-destination (—o)=name

The destination option specifies the name of the destination executable to be
generated by the Builder. If this option is not present, the name of the main class
is used as the name of the destination executable.

The destination name can be a path into a different directory. E.g.,

—destination myproject/bin/application

may be used to save the created executable applicationinmyproject/bin.

Option —tmpdir=name

The tmpdir option may be used to specify the name of the directory used for
temporary files generated by the Builder (such as C source and object files for
compiled methods).

Option -resource [+]=name{:name}

This option causes the inclusion of additional resources in the created application.
A resource is additional data (such as image files, sound files etc.) that can be
accessed by the Java application. Within the Java application, the resource data
can be accessed using the resource name specified as an argument to resource.

152 CHAPTER 14. THE JAMAICA BUILDER

To load the resource, a call to Class.getResourceAsStream (name) can
be used.

If a resource is supposed to be in a certain package, the resource name must
include the package name. Any ‘. must be replaced by ‘/’. E.g., the resource ABC
from package foo.bar can be added using ~resource foo/bar/ABC.

The Builder uses the class path provided through the option classpath
to search for resources. Any path containing resources that are provided using
resource must therefore be added to the path provided to classpath.

This option expects a list of resource files that are separated using the platform
dependent path separator character (e.g., ‘:’).

Option -setFonts[+]="font{ font}"

The setFonts option can be used to choose the set of TrueType fonts to be
included in the target application. The font families sans, serif, mono are
supported. If no fonts are required, it can be set to none. To use TrueType fonts,
a graphics system must be set.

Option —-setGraphics=system

The setGraphics option can be used to set the graphics system used by the
target application. If no graphics is required, it can be set to none.
To get a list of all possible values, invoke the Builder with ~help.

Option -setLocales[+]="locale{ locale}"

The set Locales option can be used to choose the set of locales to be included
in the target application. This involves date, currency and number formats. Lo-
cales are specified by a lower-case, two-letter code as defined by ISO-639.
Example: —setLocales="de en" will include German and English lan-
guage resources. All country information of those locales, e.g. Swiss currency,
will also be included.
To get a list of all possible values, invoke the Builder with —help.

Option -setTimeZones [+]="timezone{ timezone}"

The setTimeZones option can be used to choose the set of time zones to be
included in the target application. By default all time zones are built in.

Examples: —set TimeZones=Europe/Berlin will include the time zone
of Berlin only, —set TimeZones=Europe will include all European time zones,
—-setTimeZones="Europe/Berlin America/Detroit" includes time
zones for Berlin and Detroit.

14.2. BUILDER USAGE 153

See the folder jamaica-home/target /platform/1ib/z1 for the available
time zones.

Option —-setProtocols[+]="protocol{ protocol}"

The setProtocols option can be used to choose the set of protocols to be
included in the target application.

Example: —setProtocols="ftp http" will include handlers for FTP
and HTTP protocols.

To get a list of all possible values, invoke the Builder with —help.

Option -cdc

The cdc option forces the inclusion of all standard library code within the CDC
configuration. This “Connected Device Configuration” is intended for use in small
connected devices.

Providing this option forces the Builder to include all classes, fields, methods
and constructors that form part of the CDC configuration.

The resulting application will hence be able to access all code in the CDC
configuration through dynamically loaded classes or the reflection API even if
this code would otherwise not be included in the application.

Option -cldc

The cldc option forces the inclusion of all standard library code within the
CLDC configuration. This “Connected Limited Device Configuration™ is intended
for use in very small connected devices.

Providing this option forces the Builder to include all classes, fields, methods
and constructors that form part of the CLDC configuration.

The resulting application will hence be able to access all code in the CLDC
configuration through dynamically loaded classes or the reflection API even if this
code would otherwise not be included in the application.

Option -incrementalCompilation

If the incrementalCompilation option is set to true, C code is split into
several files for incremental compilation. The generated code is split into one file
per package. This is the default behavior. If this option is set to false, all C code
is put into one single, potentially large C source file.

154 CHAPTER 14. THE JAMAICA BUILDER

14.2.3 Smart linking

Smart linking and compaction are techniques to reduce the code size and heap
memory required by the generated application. These techniques are controlled
by the following options.

Option —-smart

If the smart option is set, smart linking is enabled for the created application.
Smart linking enables the builder to remove unused code, for example, unused
methods of a class, and to perform better optimisation. This results in smaller
binary files, smaller memory usage and faster execution. Smart linking is enabled
by default.

Smart linking may not be used for applications that use Java’s reflection API
(including reflection via the Java Native Interface JNI) to load classes that are un-
known at buildtime and therefore cannot be included into the application. This is,
for example, the case for classes, which are loaded from a web server at runtime.
In such situations, use —smart=false to disable smart linking.

Classes loaded via reflection that are known at buildtime should be included
via builder options includeClasses or includeJAR. These options selec-
tively disable smart linking for the included classes.

Option -closed

For an application that is c1losed, i.e., that does not load any classes dynamically
that are not built into the application by the Builder, additional optimization may
be performed by the Builder and the static compiler. These optimizations cause
incorrect execution semantics when additional classes will be added dynamically.
Setting option closed to true enables such optimizations, a significant enhance-
ment of the performance of compiled code is usually the result.

The additional optimization performed when closed is set include static
binding of virtual method calls for methods that are not redefined by any of the
classes built into the application. The overhead of dynamic binding is removed
and even inlining of a virtual method call becomes possible, which often results
in even further possibilities for optimizations.

Note that care is needed for an open application that uses dynamic loading
even when closed is not set. For an open application, it has to be ensured that all
classes that should be available for dynamically loaded code need to be included
fully using option includeClasses or includeJAR. Otherwise, the Builder
may omit these classes (if they are not referenced by the built-in application), or
it may omit parts of these classes (certain methods or fields) that happen not to be
used by the built-in application.

14.2. BUILDER USAGE 155

Option -showIncludedFeatures

The showIncludedFeatures option will cause the Builder to display a list
of all classes, methods and fields that will be part of the created application. Any
classes, methods or fields removed from the target application through mecha-
nisms such as smart linking will not be displayed. Used in conjunction with
includeClasses, excludeClasses, includeJAR and excludeJAR
this can help you to identify which methods are included in the application.

The output of this option consists of lines starting with the string INCLUDED
CLASS, INCLUDED METHOD or INCLUDED FIELD followed by the name of
a class or the name and signature of a method or field, respectively.

Option -showExcludedFeatures

The showExcludedFeatures option will cause the Builder to display a list
of all classes, methods and fields that where removed from the built applica-
tion. Any classes, methods or fields removed from the target application through
mechanisms such as smart linking will be displayed. Used in conjunction with
includeClasses, excludeClasses, includeJAR and excludeJAR
this can help you to identify which methods are excluded from the application.

The output of this option consists of lines starting with the string EXCLUDED
CLASS, EXCLUDED METHOD or EXCLUDED FIELD followed by the name of
a class or the name and signature of a method or field, respectively.

14.2.4 Compilation

Compilation and different optimisation techniques are used for optimal runtime
performance of Jamaica applications. These techniques are controlled using the
following options.

Option -interpret (—-Xint)

The interpret option disables compilation of the application. This results in a
smaller application and in faster build times, but it causes a significant slow down
of the runtime performance.

If none of the options interpret, compile, or useProfile is spec-
ified, then the default compilation will be used. The default means that a pre-
generated profile will be used for the system classes, and all application classes
will be compiled fully. This default usually results in good performance for small
applications, but it causes extreme code size increase for larger applications and
it results in slow execution of applications that use the system classes in a way
different than recorded in the system profile.

156 CHAPTER 14. THE JAMAICA BUILDER

Option —compile

The compile option enables static compilation for the created application. All
methods of the application are compiled into native code causing a significant
speedup at runtime compared to the interpreted code that is executed by the virtual
machine. Use compilation whenever execution time is important. However, it
is often sufficient to compile about 10 percent of the classes, which results in
much smaller executables of comparable speed. You can achieve this by using the
options profile and useProfile instead of compile.

Option —-inline=n

When methods are compiled (via one of the options compile, useProfile,
or interpret=false), this option can be used to set the level of inlining to be
used by the compiler. Inlining typically causes a significant speedup at runtime
since the overhead of performing method calls is avoided. Nevertheless, inlining
causes duplication of code and hence might increase the binary size of the appli-
cation. In systems with tight memory resources, inlining may therefore not be
acceptable

Eleven levels of inlining are supported by the Jamaica compiler ranging from
0 (no inlining) to 10 (aggressive inlining).

Option —-optimise (—optimize)=type

The optimise option enables to specify optimisations for the compilation of
intermediate C code to native code in a platform independent manner, where fype
is one of none, size, speed, and all. The optimisation flags are only given
to the C compiler if the application is compiled without the debug option.

Option —-target=platform

The target option specifies a target platform. For a list of all available platforms
of your Jamaica VM Distribution, use XavailableTargets.

14.2.5 Memory and threads

Configuring heap memory and threads has an important impact not only on the
amount of memory required by the application but on the runtime performance
and the realtime characteristics of the code as well. The Jamaica Builder therefore
provides a number of options to configure memory and application threads.

14.2. BUILDER USAGE 157

Option -heapSize=n[K|M]

The heapSize option sets the heap size to the specified size given in bytes.
The heap is allocated at startup of the application. It is used for static global
information (such as the internal state of the Jamaica Virtual Machine) and for the
garbage collected Java heap.

The heap size may be succeeded by the letter ‘K’ or ‘M’ to specify a size in
KBytes (1024 bytes) or MBytes (1048576 bytes). The minimum required heap
size for a given application can be determined using option analyze.

Option —maxHeapSize=n[K|M]

The maxHeapSize option sets the maximum heap size to the specified size
given in bytes. If themaximum heap size is larger than the heap size, the heap
size will be increased dynamically on demand.

The maximum heap size may be succeeded by the letter ‘K’ or ‘M’ to specify
a size in KBytes (1024 bytes) or MBytes (1048576 bytes). The minimum value is
0 (for no dynamic heap size increase).

Option -heapSizeIncrement=n[K|M]

The heapSizeIncrement option specifies the steps by which the heap size
can be increased when the maximum heap size is larger than the heap size.

The maximum heap size may be succeeded by the letter ‘K’ or ‘M’ to specify
a size in KBytes (1024 bytes) or MBytes (1048576 bytes). The minimum value is
64k.

Option -javaStackSize=n[K|M]

The javaStackSize option sets the stack size to be used for the Java runtime
stacks of all Java threads in the built application. Each Java thread has its own
stack which is allocated from the global Java heap. The stack size consequently
has an important impact on the heap memory required by an application. A small
stack size is recommended for systems with tight memory constraints. If the stack
size is too small for the application to run, a stack overflow will occur and a
corresponding error reported.

The stack size may be followed by the letter ‘K’ or ‘M’ to specify a size in
KBytes (1024 bytes) or MBytes (1048576 bytes). The minimum stack size is 1k.

158 CHAPTER 14. THE JAMAICA BUILDER

Option —-nativeStackSize=n[K|M]

The nativeStackSize option sets the stack size to be used for the native
runtime stacks of all Java threads in the built application. Each Java thread has
its own native stack. Depending on the target system, the stack is either allocated
and managed by the underlying operation system, as in many Unix systems, or
allocated from the global heap, as in some small embedded systems. When native
stacks are allocated from the global heap, stack size consequently has an important
impact on the heap memory required by an application. A small stack size is
recommended for systems with tight memory constraints. If the selected stack
size is too small, an error may not be reported because the stack-usage of native
code may cause a critical failure.

For some target systems, like many Unix systems, a stack size of 0 can be
selected, meaning “unlimited”. In that case the stack size is increased dynamically
as needed.

b

The stack size may be followed by the letter ‘K’ or ‘M’ to specify a size in
KBytes (1024 bytes) or MBytes (1048576 bytes). The minimum stack size is 1k
if not set to “‘unlimited’ (value of 0).

Option —numThreads=n

The numThreads option specifies the initial number of Java threads supported
by the destination application. These threads and their runtime stacks are gener-
ated at startup of the application. A large number of threads consequently may
require a significant amount of memory.

The minimum number of threads is two, one thread for the main Java thread
and one thread for the finalizer thread.

Option —maxNumThreads=n

The maxNumThreads options specifies the maximum number of Java threads
supported by the destination application. If the maximum number of threads is
larger than the values specified for numThreads, threads will be added dynam-
ically.

Adding new threads requires unfragmented heap memory. It is strongly rec-
ommended to use -maxNumThreads only in conjunction with maxHeapSize set
to a value larger than heapSize. This will permit the VM to increase the heap
when memory is fragmented.

The absolute maximum number of threads for the Jamaica VM is 511.

14.2. BUILDER USAGE 159

Option —numJniAttachableThreads=n

The numJdniAttachableThreads specifies the initial number of Java thread
structures that will be allocated and reserved for calls to the JNI Invocation API
functions. These are the functions JNI_AttachCurrentThread and JNI__
AttachCurrentThreadAsDaemon. These threads will be allocated on VM
startup, such that no additional allocation is required on a later call to JNI__
AttachCurrentThreador JNI_AttachCurrentThreadAsDaemon.

Even if this option is set to zero, it still will be possible to use these functions.
However, then these threads will be allocated dynamically when needed.

Since non-fragmented memory is required for the allocation of these threads,
a later allocation may require heap expansion or may fail due to fragmented mem-
ory. It is therefore recommended to pre-allocate these threads.

The number of JNI attachable threads that will be required is the number of
threads that will be attached simultaneously. Any thread structure that will be
detached via INI_DetachCurrentThread will become available again and
can be used by a different thread that calls INI_AttachCurrentThread or
JNI_AttachCurrentThreadAsDaemon.

Option -threadPreemption=n

Compiled code contains special instructions that permit thread preemption. These
instructions have to be executed often enough to allow a thread preemption time
that is sufficient for the destination application. As the instructions cause an over-
head in code size and runtime performance one would want to generate this code
as rarely as possible.

The threadPreemption option enables setting of the maximum number
of intermediate instructions that are permitted between the execution of thread
preemption code. This directly affects the maximum thread preemption time of
the application. One intermediate instruction typically corresponds to 1-2 machine
instructions. There are some intermediate instructions (calls, array accesses) that
can be more expensive (20-50 machine instructions).

The thread preemption must be at least 10 intermediate instructions.

Option -timeSlice=n

For threads of equal priority, round robin scheduling is used when several threads
are running simultaneously. Using the t imeS11ice option, the maximum size of
such a time slice can be given in nanoseconds. A special synchronization thread
is used that waits for the length of a time slice and permits thread switching after
every time slice.

160 CHAPTER 14. THE JAMAICA BUILDER

If no round robin scheduling is needed for threads of equal priority, the size
of the time slice can be set to zero. In this case, the synchronization thread is not
required, so fewer system resources are needed and the highest priority threads
will not be interrupted by the synchronization thread.

Option —-finalizerPri=pri

The finalizerPri option sets the Java priority of the finalizer thread to pri.
The finalizer thread is a daemon thread that runs in the background and executes
the method finalize () of objects that are about to be freed by the garbage
collector. The memory of objects that have such a method cannot be freed before
this method is executed.

If the finalizer thread priority is set to zero, no finalizer thread will be cre-
ated. In that case, the memory of objects that are found to be unreachable by the
garbage collector cannot be freed before their finalizers are executed explicitly by
calling java.lang.Runtime.runFinalization (). It can be useful on
very small systems not to use a finalizer thread. This reduces the use of system
resources. The priority must be one of the Java priorities 1 through 10 (corre-
sponding to the ten priority levels of java.lang.Thread).

Option -heapSizeFromEnv=var

The heapSizeFromEnv option enables the application to read its heap size
from the specified environment variable. If this variable is not set, the heap size
specified using ~heapSize n will be used.

Option —maxHeapSizeFromEnv=var

The maxHeapSizeFromEnv option enables the application to read its maxi-
mum heap size from the specified environment variable. If this variable is not set,
the maximum heap size specified using -maxHeapSize n will be used.

Option -heapSizeIncrementFromEnv=var

The heapSizeIncrementFromEnv option enables the application to read its
heap size increment from the specified environment variable within. If this vari-
able is not set, the heap size increment specified using ~-heapSizeIncrement
n will be used.

14.2. BUILDER USAGE 161

Option -javaStackSizeFromEnv=var

The javaStackSizeFromEnv option enables the application to read its Java
stack size from the specified environment variable. If this variable is not set, the
stack size specified using —javaStackSize n will be used.

Option —-nativeStackSizeFromEnv=var

The nativeStackSizeFromEnv option enables the application to read its
native stack size from the specified environment variable. If this variable is not
set, the stack size specified using —nativeStackSize n will be used.

Option —numThreadsFromEnv=var

The numThreadsFromEnv option enables the application to read the number
of threads from the specified environment variable. If this variable is not set, the
number specified using -numThreads n will be used.

Option —maxNumThreadsFromEnv=var

The maxNumThreadsFromEnv option enables the application to read the max-
imum number of threads from the environment variable specified within. If this
variable is not set, the number specified using —-maxNumThreads n will be
used.

Option —numJniAttachableThreadsFromEnv=var

The numJdniAttachableThreadsFromEnv option enables the application
to read its initial number of JNI attachable threads from the environment variable
specified within. If this variable is not set, the value specified using the option
-numdniAttachableThreads n will be used.

Option -finalizerPriFromEnv=var

The finalizerPriFromEnv option enables the application to read its final-
izer priority from the environment variable specified within. If this variable is not
set, the finalizer priority specified using finalizerPri n will be used.

Option -priMap [+]=jp=sp{,jp=sp}

Java threads are mapped directly to threads of the operating system used on the
target system. The Java priorities are mapped to system-level priorities for this

162 CHAPTER 14. THE JAMAICA BUILDER

purpose. The priMap option allows one to replace the default mapping used for
a target system with a specific priority mapping.

The Java thread priorities are integer values in the range 1 through 127, where
1 corresponds to the lowest priority and 127 to the highest priority. Since not all
Java priorities need (or can) be mapped to system-level priorities, the maximal
avialable Java priority may be less than 127. The Java priorities 1 through 10 cor-
respond to the ten priority levels of java.lang.Thread threads, while prior-
ities starting at 11 represent the priority levels of Realt imeThreads (package
javax.realtime). The maximal priority is not available for Java threads as
it is used for the synchronization thread that permits round robin scheduling of
threads of equal priorities.

Each single Java priority up to the maximal priority can and must be mapped
to a system priority. To simplify the description of a mapping a range of priorities
can be described using from . . to.

Example 1: -priMap=1..11=50,12..39=51..78,40=85 will cause
all java.lang.Thread threads to use system priority 50, while the realtime
threads will be mapped to priorities 51 through 78 and the synchronization thread
will use priority 85. There will be 28 priority levels available for threads from
javax.realtime.RealtimeThread.

Example 2: —-priMap=1..52=22..104 will cause the use of system pri-
orities 2, 4, 6, through 102 for the Java priorities 1 through 51. The synchroniza-
tion thread will use priority 104. There will be 40 priority levels available for
RealtimeThread threads.

Note: If no round robin scheduling is needed for threads of equal priority and
the timeslice is set to zero (-t imeS1ice=0), the synchronization thread is not
required and an additional priority is available for the real-time threds.

Option -priMapFromEnv=var

The priMapFromEnv option creates an application that reads the priority map-
ping of Java threads to native threads from the environment variable var. If this
variable is not set, the mapping specified using —priMap jp=sp{, jp=sp} will
be used.

14.2.6 GC configuration

The following options provide ways to analyze the application’s memory demand
and to use this information to configure the garbage collector for the desired real-
time behavior.

14.2. BUILDER USAGE 163

Option —-analyse (—analyze)=tolerance

The analyse option enables memory analyze mode with tolerance given in per-
cent. In memory analyze mode, the memory required by the application during
execution is determined. The result is an upper bound for the actual memory re-
quired during a test run of the application. This bound is at most the specified
tolerance larger than the actual amount of memory used during runtime.

The result of a test run of an application built using analyze can then be used
to estimate and configure the heap size of an application such that the garbage col-
lection work that is performed on an allocation never exceeds the amount allowed
to ensure timely execution of the application’s realtime code.

Using analyze can cause a significant slowdown of the application. The ap-
plication slows down as the tolerance is reduced, i.e., the lower the value specified
as an argument to analyze, the slower the application will run.

In order to configure the application heap, a version of the application must
be built using the option analyze and, in addition, the exact list of arguments
used for the final version. The heap size determined in a test run can then be
used to build a final version using the preferred heap size with desired garbage
collection overhead. To reiterate, the argument list provided to the Builder for this
final version must be the same as the argument list for the version used to analyze
the memory requirements. Only the heapSize option of the final version must
be set accordingly and the final version must be built without setting analyze.

Option —analyseFromEnv (—analyzeFromEnv)=var

The analyseFromEnv option enables the application to read the amount of
analyze accuracy of the garbage collector from the environment variable specified
within. If this variable is not set, the value specified using —analyze n will be
used. Setting the environment variable to ‘0’ will disable the analysis and cause
the garbage collector to use dynamic garbage collection mode.

Option —constGCwork=n

The constGCwork option runs the garbage collector in static mode. In static
mode, for every unit of allocation, a constant number of units of garbage collection
work is performed. This results in a lower worst case execution time for the
garbage collection work and allocation and more predictable behavior, compared
with dynamic mode, because the amount of garbage collection work is the same
for any allocation. However, static mode causes higher average garbage collection
overhead compared to dynamic mode.

The value specified is the number for units of garbage collection work to be

164 CHAPTER 14. THE JAMAICA BUILDER

performed for a unit of memory that is allocated. This value can be determined
using a test run built with -analyze set.

A value of ‘0’ for this option chooses the dynamic GC work determination
that is the default for Jamaica VM.

A value of ‘-1’ enables a stop-the-world GC, see option st opTheWor1dGC
for more information.

A value of *-2’ enables a atomic GC, see option at omicGC for more infor-
mation.

The default setting chooses dynamic GC: the amount of garbage collection
work on an allocation is then determined dynamically depending on the amount
of free memory.

Option —constGCworkFromEnv=var

The constGCworkFromEnv option enables the application to read the amount
of static garbage collection work on an allocation from the environment variable
specified within. If this variable is not set, the value specified with the option
—-constGCwork will be used.

Option —-stopTheWorldGC

The st opTheWor1sGC option enables blocking GC, i.e., no GC activity is per-
formed until the heap is fully filled. Only then, a complete GC cycle is performed
at once, causing a potentially long pause for the application. During this GC cy-
cle, any thread that performs heap memory allocation will be blocked, but threads
that do not perform heap allocation may continue to run.

If stop-the-world GC is enabled via this option, even RealtimeThreads
and NoHeapRealtimeThreads may be blocked by GC activity if they al-
locate heap memory. RealtimeThreads and NoHeapRealtimeThreads
that run in ScopedMemory or ImmortalMemory will not be stopped by the
GC

A stop-the-world GC enables a higher average throughput compared to incre-
mental GC, but at the cost of losing realtime behaviour for all threads that perform
heap allocation.

Option —atomicGC

The at omicGC option enables atomic GC, i.e., no GC activity is performed until
the heap is fully filled. Only then, a complete GC cycle is performed at once,
causing a potentially long pause for the application. During this GC cycle, all
Java threads will be blocked.

14.2. BUILDER USAGE 165

When this option is set, even NoHeapRealtimeThreads will be stopped
by GC work, so all realtime guranatees will be lost!

This mode permits more efficient code compared to st opTheWor1dGC since
it disables certain tracking code (write barriers) that is required for the incremental
GC.

Option -reservedMemory=percentage

Jamaica VM’s realtime garbage collector performs GC work at allocation time.
This may reduce the responsiveness of applications that have long pause times
with little or no activity and are preempted by sudden activities that require a
burst of memory allocation. The responsiveness of such burst allocations can be
improved significantly via reserved memory.

If the reservedMemory option is set to a value larger 0, then a low priority
thread will be created that continuously tries to reserve memory up to the percent-
age of the total heap size that is selected via this option. Any thread that performs
memory allocation will then use this reserved memory to satisfy its allocations
whenever there is reserved memory available. For these allocations of reserved
memory, no GC work needs to be performed since the low priority reservation
thread has done this work already. Only when the reserved memory is exhausted
will GC work to allow further allocations be performed.

The overall effect is that a burst of allocations up to the amount of reserved
memory followed by a pause in activity that was long enough during this alloca-
tion will require no GC work to perform the allocation. However, any thread that
performs more allocation than the amount of memory that is currently reserved
will fall back to the performing GC work at allocation time.

The disadvantage of using reserved memory is that the worst-case GC work
that is required per unit of allocation increases as the size of reserved memory is
increased. For a detailed output of the effect of using reserved memory, run the
application with option —analyse set together with the desired value of reserved
memory.

Option —-reservedMemoryFromEnv=var

The reservedMemoryF romEnv option enables the application to read the per-
centage of reserved memory from the environment variable specified within. If
this variable is not set, the value specified using ~-reservedMemory n will be
used.See option reservedMemory for more information on the effect of this
option.

166 CHAPTER 14. THE JAMAICA BUILDER

14.2.7 RTS] settings

The following options set values that are relevant for the Real-Time Specifica-
tion for Java extensions through classes javax.realtime.* that are provided by Ja-
maicaVM.

Option —-strictRTSJ

The Real-Time Specification for Java (RTSJ) defines a number of classes in the
package javax.realtime. These classes can be used to create realtime threads
with stricter semantics than normal Java threads. In particular, these threads
can run in their own memory areas (scoped memory) that are not part of the
Java heap, such that memory allocation is independent of garbage collector in-
tervention. It is even possible to create threads of class javax.realtime.
NoHeapRealtimeThread that may not access any objects stored on the Java
heap.

In Jamaica VM, normal Java Threads do not suffer from these restrictions. Pri-
orities of normal threads may be in the range permitted for RealtimeThreads
(see option priMap). Furthermore, any thread may access objects allocated on
the heap without having to fear being delayed by the garbage collector. Any
thread is safe from being interrupted or delayed by garbage collector activity. Only
higher priority threads can interrupt lower priority threads.

When using Jamaica VM, it is thus not necessary to use non-heap memory
areas for realtime tasks. It is possible for any thread to access objects on the
heap. Furthermore, scoped memory provided by the classes defined in the RTSJ
are available to normal threads as well.

The strict semantics of the RTSJ require a significant runtime overhead to
check that an access to an object is legal. Since these checks are not needed by
Jamaica VM, they are disabled by default. However, setting st rict RTSJ forces
Jamaica VM to perform these checks.

If the option st rictRTSJ is set, the following checks are performed and the
corresponding exceptions are thrown:

MemoryAccessError: a NoHeapRealtimeThread attempts to access
an object stored in normal Java heap, a MemoryAccessError is thrown.

IllegalStateException: anon-RealtimeThread attempts to enter
a javax.realtime.MemoryArea or tries to access the scope stack by call-
ing the methods getCurrentMemoryArea, getMemoryAreaStackDepth,
getOuterMemoryAreaorgetInitialMemoryArealndex, which are de-
fined in class javax.realtime.RealtimeThread.

Lazy linking is automatically disabled when st rictRTSJ is set. This avoids
runtime assignment errors due to lazily linked classes that may be allocated in a

14.2. BUILDER USAGE 167

memory area that is incompatible with a current scoped memory allocation con-
text when lazy linking is performed.

Option -strictRTSJFromEnv=var

The strictRTSJFromEnv option enables the application to read its setting of
strictRTSJ from the specified environment variable. If this variable is not
set, the value of the Boolean option strictRTSJ will be used. The value
of the environment variable must be 0 (for —strictRTSJ=false) or 1 (for
—-strictRTSJ=true).

Option —-immortalMemorySize=n[K|M]

The immortalMemorySize option sets the size of the immortal memory area,
in bytes. The immortal memory can be accessed through the class javax.
realtime.ImmortalMemory.

The immortal memory area is guaranteed never to be freed by the garbage
collector. Objects allocated in this area will survive the whole application run.

Option —immortalMemorySizeFromEnv=var

The immortalMemorySizeFromEnv option enables the application to read
its immortal memory size from the environment variable specified using this op-
tion. If this variable is not set, the immortal memory size specified using the
option—-immortalMemorySize will be used.

Option —-scopedMemorySize=n[K|M]

The scopedMemorySize option sets the size of the memory that should be
made available for scoped memory areas javax.realtime.LTMemory and
javax.realtime.VTMemory. This memory lies outside of the normal Java
heap, but it is nevertheless scanned by the garbage collector for references to the
heap.

Objects allocated in scoped memory will never be reclaimed by the garbage
collector. Instead, their memory will be freed when the last thread exits a the
scope.

Option -scopedMemorySizeFromEnv=var

The scopedMemorySizeFromEnv option enables the application to read its
scoped memory size from the environment variable specified within. If this vari-

168 CHAPTER 14. THE JAMAICA BUILDER

able is not set, the scoped memory size specified using —scopedMemorySize
n will be used.

Option -physicalMemoryRanges [+]=range{, range}

The RawMemory and PhysicalMemory classes in the javax.realtime
package provide access to physical memory for Java applications. The memory
ranges that may be accessed by the Java application can be specified using the
option physicalMemoryRanges. The default behavior is that no access to
physical memory is permitted by the application.

The physicalMemoryRanges option expects a list of address ranges. Each
address range is separated by . ., and gives the lower and upper address of the
range: lower. .upper. The lower address is inclusive and the upper address is
exclusive. l.e., the difference upper-lower gives the size of the accessible area.
There can be an arbitrary number of memory ranges.

Example 1: ~-physicalMemoryRanges=0x0c00..0x1000 will allow
access to the memory range from address 0x0c00 to 0x1000, i.e., to a range of
1024 bytes.

14.2.8 Profiling

Profiling can be used to guide the compilation process and to find a good trade-off
between fast compiled code and smaller interpreted byte code. This is particularly
important for systems with tight memory and CPU resources.

Option -profile

The profile option builds an application that collects information on the amount
of run time spent for the execution of different methods. This information is
printed to the standard output after a test run of the application has been per-
formed.

The information collected in a profiling run can then be used as an input for
the option useProfile to guide the compilation process.

Profiling information can only be collected when using the Jamaica VM in-
terpreter, as compiled code cannot be profiled. Consequently, profile does not
work in combination with compile

Option —-XprofileFilenameFromEnv=var

The XprofileFilenameFromEnv creates an application that reads the name
of a file for profiling data from the environment variable var. If this variable is not

14.2. BUILDER USAGE 169

set, the name specified using XprofileFilename will be used (default: not
used).

Option -percentageCompiled=n

Use profiling information collected using profile to restrict compilation to
those methods that were most frequently executed during the profiling run. The
percentage of methods that are to be compiled is given as an argument to the op-
tion percentageCompiled. It must be between 0 and 100. Selecting 100
causes compilation of all methods executed during the profiling run, i.e., methods
that were not called during profiling will not be compiled.

Option —-useProfile[+]=file{:file}

The useProfile option instructs the builder to use profiling information col-
lected using profile to restrict compilation to those methods that were most
frequently executed during the profiling run. The percentage of methods to be
compiled is 10 by default, unless percentageCompiled is set to a different
value.

It is possible to use this option in combination with the option profile.
This may be useful when the fully interpreted application is too slow to obtain a
meaningful profile. In such a case one may achieve sufficient speed up through an
initial profile, and use the profiled application to obtain a more precise profile for
the final build.

Multiple profiles should be separated by the system specific path separator:

(3 2 L

colon *“:” on Unix systems and semicolon ““; ” on Windows.

14.2.9 Native code

Native code is code written in a different programming language than Java (typ-
ically C or C++). This code can be called from within Java code using the Java
Native Interface (JNI). Jamaica internally uses a more efficient interface, the Ja-
maica Binary Interface (JBI), for native calls into the VM and for compiled code.

Option —-object [+]=file{:file}

The object option specifies object files that contain native code that has to be
linked to the destination executable. Unlike other Java implementations, Jamaica
does not access native code through shared libraries. Instead, the object files that
contain native code referenced from within Java code are linked into the destina-
tion application file.

170 CHAPTER 14. THE JAMAICA BUILDER

Multiple object files should be separated by the system specific path separator:
colon “:” on Unix systems and semicolon “;” on Windows.

14.3 Builder Extended Usage

A number of extended options provide additional means for finer control of the
Builder’s operation for the more experienced user. The following sections list
these extended options and describe their effect. Default values may be obtained
by jamaicabuilder -target=platform -xhelp.

jamaicabuilder [-XdefineProperty[+]=<name>=<value>]
[-XdefinePropertyFromEnv [+]=<name>]
[-XjamaicaHome=<path>] [-XJjavaHome=<path>]
[-Xbootclasspath[+]=<classpath>]
[-XextendedGlobalCPool] [-XlazyConstantStrings]
[-XlazyConstantStringsFromEnv=<var>] [-XnoMain]
[-XnoClasses] [—XenableZzZIP] [-XfullStackTrace]
[-XexcludelongerThan=<n>]
[-X1linkStatic=<libraries>] [—-Xcc=<cc>]
[-XCFLAGS [+]=<cflags>] [-Xld=<linker>]
[-XLDFLAGS [+]=<1ldflags>] [-dwarf2]
[-XstripOptions=<options>]
[-Xlibraries[+]="<library> <library>"]
[-XstaticLibraries[+]="<library> <library>"]
[-X1linkDynamicPrefix=<prefix>]
[-X1inkStaticPrefix=<prefix>]
[-X1linkDynamicFlags=<switch>]
[-X1linkStaticFlags=<switch>]
[-X1libraryPaths[+]=<path>:<path>]
[-Xstrip=<tool>] [-XnoRuntimeChecks]
[-XavailableTargets] [-XprofileFilename=<name>]
[-XenableDynamicJNILibraries]
[-X1loadJNIDynamic[+]=<class>|<method>
<class>|<method>] [—-Xinclude[+]=<dirs>]
[-XobjectFormat=default | none | C | ELF |
PECOFF] [-XobjectProcessorFamily=<type>]
[-XobjectSymbolPrefix=<prefix>]
[-XignoreLineNumbers]
[-agentlib=<lib>=<option>=<val>, <option>=<val>]
classl [... classn]

14.3.1 General

The following are general options which provide information about the Builder
itself or enable the use of script files that specifying further options.

14.3. BUILDER EXTENDED USAGE 171

Option -XdefineProperty [+]=name=value

The XdefineProperty option sets a system property for the resulting binary.
For security reasons, system properties used by the VM cannot by changed. The
Unicode character U+EEEE is reserved and may not be used within the argument
of the option.

Option -XdefinePropertyFromEnv [+]=name

At program start, the resulting binary will set a system property to the value of
an environment variable. This feature can only be used if the target OS supports
environment variables. For security reasons, system properties used by the VM
cannot be changed.

14.3.2 Classes, files and paths

These options allow to specify classes and paths to be used by the builder.

Option -XjamaicaHome=path

The XjamaicaHome option specifies the path to the Jamaica directory. The
Jamaica home path can also be set with the environment variable JAMATICA__
HOME.

Option —-XjavaHome=path

The XjamaicaHome option specifies the path to the Jamaica directory. The
Jamaica home path can also be set with the environment variable JAMAICA__
HOME.

Option -Xbootclasspath [+]=classpath

The Xbootclasspath specifies path used for loading system classes.

Option —-XextendedGlobalCPool

Jamaica VM If set to true, the global constant pool can take up to Ox7FFFFFF
(31bit) UTFS strings. The default is false (OxFFFF, 16bit). Please note that this
extension breaks runtime annotation and jvmti/debugging.

172 CHAPTER 14. THE JAMAICA BUILDER

Option -XlazyConstantStrings

Jamaica VM by default allocates all String constants at class loading time such
that later accesses to these strings is very fast and efficient. However, this approach
requires code to be executed for this initialization at system startup and it requires
Java heap memory to store all constant Java strings, even those that are never
touched by the application at run time
Setting option ~X1lazyConstantStrings causes the VM to allocate strings

constants lazily, i.e., not at class loading time but at time of first use of any constant
string. This saves Java heap memory and startup time since constant strings that
are never touched will not be created. However, this has the effect that accessing
a constant Java string may cause an OutOfMemoryError.

Option -XlazyConstantStringsFromEnv=var

Causes the creation of an application that reads its X1azyConstantStrings
setting from the specified environment variable. If this variable is not set, the
value of boolean option X1azyConstantStrings will be used. The value of
the environment variable must be 0 for —-XlazyConstantStrings=false
or 1 for -XlazyConstantStrings=true.

Option -XnoMain

The XnoMain option builds a standalone VM. Do not select a main class for the
built application. Instead, the first argument of the argument list passed to the
application will be interpreted as the main class.

Option -XnoClasses

The XnoClasses option does not include any classes in the built application.
Setting this option is only needed when building the jamaicavm command itself.

Option —-XenableZIP

The XenableZIP option enables ZIP and JAR support in the generated binary.
This makes binaries significantly larger. Set this this option only if you are build-
ing a virtual machine (see the XnoMain option) and the application application
executed on the target system might access ZIP and JAR files in the class path at
runtime.

Independently of this option, the Jamaica Builder can always process classes
in ZIP or JAR files.

14.3. BUILDER EXTENDED USAGE 173

14.3.3 Compilation

Compilation and different optimisation techniques are used for optimal runtime
performance of Jamaica applications. These techniques are controlled using the
following options.

Option -XfullStackTrace

Compiled code usually does not contain full Java stack trace information if the
stack trace is not required (as in a method with a try/catch clause or a synchro-
nized method). For better debugging of the application, the XfullStackTrace
option can be used to create a full stack trace for all compiled methods.

Option —-XexcludelLongerThan=n

Compilation of large Java methods can cause large C routines in the intermediate
code, especially when combined with aggressive inlining. Some C compilers have
difficulties with the compilation of large routines. To enable the use of Jamaica
with such C compilers, the compilation of large methods can be disabled using
the option XexcludeLongerThan.

The argument specified to XexcludeLongerThan gives the minimum num-
ber of bytecode instructions a method must have to be excluded from compilation.

Option -XlinkStatic=libraries

Libraries are system, jamaica, implicit, all, or none. The resulting
binary is linked statically against those libraries, even if they were specified by
Xlibraries rather than XstaticLibraries. jamaica refers to the Ja-
maica VM library, system to all other libraries (default: jamaica).

Option -Xcc=cc

The Xcc option specifies the C compiler to be used to compile intermediate C
code that is generated by the Jamaica Builder.

Option —-XCFLAGS [+] =cflags

The XCFLAGS option specifies the cflags for the invocation of the C compiler.
Note that for optimisations the compiler independent option —opt imise should
be used.

174 CHAPTER 14. THE JAMAICA BUILDER

Option -X1ld=linker

The X1d option specifies the linker to be used to create a binary file from the
object file generated by the C compiler.

Option -XLDFLAGS [+] =ldflags

The XLDFLAGS option specifies the ldflags for the invocation of the C linker.

Option —-dwarf2

The dwarf2 option generates a DWARF?2 version of the application. DWARF2
symbols are needed for tracing Java methods in compiled code. Use this option
with WCETA tools and binary debuggers.

Option —-XstripOptions=options

The XstripOptions option specifies the strip options for the invocation of the
stripper. See also option Xstrip.

Option -Xlibraries[+]="library{ library}"

The X1ibraries option specifies the libraries that must be linked to the desti-
nation binary. The libraries must include the option that is passed to the linker.
Multiple libraries should be separated using spaces and enclosed in quotation
marks. E.g., -X1ibraries "m pthread" causes linking against 11ibm and
libpthread.

Option -XstaticLibraries[+]="library{ library}"

The XstaticLibraries option specifies the libraries that must be statically
linked to the destination binary. The libraries must include the option that is
passed to the linker. Static linking creates larger executables, but may be nec-
essary if the target system doesn’t provide the library. Multiple libraries should be
separated using spaces and enclosed in quotation marks.

Example: setting -XstaticLibraries "m pthread" causes static link-
ing against 1ibmand 1ibpthread.

Option -XlinkDynamicPrefix=prefix

The X1inkDynamicPrefix option specifies a prefix to link a library dynamic
to the created executable, e.g., -W1, -Bdynamic.

14.3. BUILDER EXTENDED USAGE 175

Option -XlinkStaticPrefix=prefix

The X1inkStaticPrefix option specifies a prefix to link a library statically
to the created executable, e.g., -W1, -Bstatic.

Option -XlinkDynamicFlags=switch

The X1inkDynamicFlags option specifies flags for dynamic linkage of an
executable, e.g., —~dynamic.

Option -XlinkStaticFlags=swifch

The X1inkStaticFlags option specify flags for dynamic linkage of an exe-
cutable, e.g., —static.

Option -XlibraryPaths [+]=path{:path}

The X1ibraryPaths option adds the directories in the specified paths to the
library search path. Multiple directories should be separated by the system specific
path separator: colon “:” on Unix systems and semicolon “;” on Windows.
E.g., to use the directories /usr/local/lib and /usr/1lib as library
path, the option -X1ibraryPaths /usr/local/lib:/usr/1lib mustbe

specified.

Option -Xstrip=tool

The Xstrip option uses the specified tool to remove debug information from
the generated binary. This will reduce the size of the binary file by removing
information not needed at runtime.

Option -XnoRuntimeChecks

The XnoRuntimeChecks option disables runtime checks for compiled Java
code. This option deactivates runtime checks to obtain better runtime perfor-
mance. This may be used only for applications that do not cause any runtime
checks to fail. Failure to run these checks can result in crashes, memory cor-
ruption and similar disasters. When untrusted code is executed, disabling these
checks can cause vulnerability through attacks that exploit buffer overflows, type
inconsistencies, etc.

The runtime checks disabled by this option are: checks for use of null point-
ers, out of bounds array indices, out of bounds string indices, array stores that are

176 CHAPTER 14. THE JAMAICA BUILDER

not compatible with the array element type, reference assignments between in-
compatible memory areas, division by zero and array instantiation with negative
array size. These runtime checks usually result in throwing one of the following
exceptions:

NullPointerException ArrayIndexOutOfBoundsException
StringIndexOutOfBoundsException ArrayStoreException
IllegalAssignmentError ArithmeticException
NegativeArraySizeException

When deactivated, the system will be in an undefined state if any of these condi-
tions occurs.

Option -XavailableTargets

The XavailableTargets option lists all available target platforms of this Ja-
maica distribution.

14.3.4 Profiling

Profiling can be used to guide the compilation process and to find a good trade-off
between fast compiled code and smaller interpreted byte code. This is particularly
important for systems with tight memory and CPU resources.

Option —-XprofileFilename=name

The XprofileFilename option sets name of file for profiling data. If profiling
is enabled output is written to this file. If a profile filename is not specified then
the profile data is written a the file with the name of the destination (see option
destination) with the extension .prof added.

14.3.5 Native code

Native code is code written in a different programming language than Java (typ-
ically C or C++). This code can be called from within Java code using the Java
Native Interface (JNI). Jamaica internally uses a more efficient interface, the Ja-
maica Binary Interface (JBI), for native calls into the VM and for compiled code.

Option —-XenableDynamicJNILibraries

The XenableDynamicJINILibraries option activates support for loading
JNI libraries at runtime. This feature is currently implemented for the architec-

14.3. BUILDER EXTENDED USAGE 177

tures x86 and ARM (ABI calling convention without FPU-support).On other sys-
tems JNI libraries must be linked at build time.

Option -XloadJNIDynamic [+]=class|method { class|method}

The X1oadJNIDynamic option will cause the Builder to know which native de-
clared methods calls at runtime a dynamic library. Arguments have to be separated
by spaces and enclosed in double quotes (").

Here are examples of class arguments: com.user.MyClass, com.user2.
x and com. . .

An example of a method argrument is

com.user.MyClass.toString()Ljava/lang/String.

Option -Xinclude [+]=dirs

The Xinclude option adds the specified directories to the include path. This
path should contain the include files generated by jamaicah for the native code
referenced from Java code. The include files are used to determine whether the
Java Native Interface (JNI) or Jamaica Binary Interface (JBI) is used to access the
native code.

This option expects a list of paths that are separated using the platform depen-
dent path separator character (e.g., ‘:’).

Option -XobjectFormat=default | none | C | ELF | PECOFF
The XobjectFormat option sets the object format to one of default, C,
PECOFF and ELF.

Option —-XobjectProcessorFamily=type

The XobjectProcessorFamily option sets the processor type for code gen-
eration. Available types are none, 1386, 1486, 1586, 1686, ppc, sparc,
arm, mips, sh4 and cris. The processor type is only required if the ELF or
PECOFF object formats are used. Otherwise the type may be set to none.

Option -XobjectSymbolPrefix=prefix

(13 2

The XobjectSymbolPrefix sets the object symbol prefix, e.g.,

14.3.6 Miscellaneous

Miscellaneous options

178 CHAPTER 14. THE JAMAICA BUILDER

Option -XignoreLineNumbers

Specifying the XignoreLineNumbers option instructs the Builder to remove
the line number information from the classes that are built into the target applica-
tion. The resulting information will have a smaller memory footprint and RAM
demand. However, exception traces in the resulting application will not show line
number information.

Option —-agentlib=lib=option=val{, option=val}

The agent1ib option loads and runs the dynamic JVMTI agent library libname
with the given options. Be aware that JVMTTI is not yet fully implemented, so not
every agent will work.

Jamaica comes with a statically built in debugging agent that can be selected
by setting BuiltInAgent as name. The transport layer must be sockets. A
typical example would be: ~agent1lib=BuiltInAgent=transport=dt_
socket, server=y, suspend=y, address=8000. This starts the applica-
tion and waits for a incoming connection of a debugger on port 8000.

14.4 Environment Variables

The following environment variables control the Builder.

JAMAICA The Jamaica Home directory (jamaica-home). This variable sets the
path of Jamaica to be used. Under Unix systems this must be a Unix style
pathname, while under Windows this has to be a DOS style pathname.

JAMAICA BUILDER MIN_HEAPSIZE Initial heap size of the jamaica pro-
gram itself in bytes. Setting this to a larger value, e.g., “512M”, will im-
prove the builder performance.

JAMAICA_ BUILDER HEAPSIZE Maximum heap size of the jamaica program
itself in bytes. If the initial heap size of the builder is not sufficient, it will
increase its heap dynamically up to this value. To build large applications,
you may have to set this maximum heap size to a larger value, e.g., “640M”.

JAMAICA BUILDER JAVA_STACKSIZE Java stack size of the jamaica pro-
gram itself in bytes.

JAMAICA_ BUILDER NATIVE_STACKSIZE Native stack size of the jamaica
program itself in bytes.

14.5. EXITCODES

Normal termination

Error

| = O

Invalid argument

64

Insufficient memory

100

Internal error

Table 14.1: Jamaica Builder, jamaicah and numblocks exitcodes

14.5 Exitcodes

179

Tab. lists the exit codes of the JamaicaVM Builder. The jamaicah and num-
blocks tools use the same exitcodes. If you get an exit code of an internal error
please contact aicas support with a full description of the tool usage, command

line options and input.

180 CHAPTER 14. THE JAMAICA BUILDER

Chapter 15

The Jamaica ThreadMonitor

The JamaicaVM ThreadMonitor enables to monitor the realtime behaviour of ap-
plications and helps developers to fine-tune the threaded Java applications run-
ning on Jamaica run-time systems. These run-time systems can be either the Ja-
maicaVM or any application that was created using the Jamaica Builder.

The ThreadMonitor tool collects and presents data sent by the scheduler in the
Jamaica run-time system, and is invoked with the jamaica_threadmonitor
command. When ThreadMonitor is started, it presents the user a control window

(see Fig.[15.1)).

15.1 Run-time system configuration

The event collection for ThreadMonitor in the Jamaica run-time system is con-
trolled by two system properties:

e jamaica.scheduler_events_port
e jamaica.scheduler_events_port_blocking

To enable the event collection in the JamaicaVM, a user sets the value of one of
these properties to the port number to which the ThreadMonitor GUI will connect
later. If the user chooses the blocking property, the VM will stop after the
bootstrapping and before the main method is invoked. This enables a developer to
investigate the startup behavior of an application.

> jamaicavm -cp classes -Djamaica.scheduler_events_port=2712 \
> HelloWorld
*+%% accepting Scheduler Events Recording requests on port #2712
Hello World!
Hello World!
Hello World!

181

182 CHAPTER 15. THE JAMAICA THREADMONITOR

Hello World!
Hello World!
Hello Wworld!
[...]

When event collection is enabled, the requested events are written into a buffer
and sent to the ThreadMonitor tool by a high priority periodic thread. The amount
of buffering and the time periods can be controlled from the GUI.

15.2 Control Window

The ThreadMonitor control window is the main interface to control recording
scheduler data from applications running with Jamaica.

On the right hand side of the window, IP address and port of the VM to be
monitored may be entered.

The following list gives a short overview on which events data is collected:

e Thread state changes record how the state of a thread changes over time
including which threads cause state changes in other threads.

e Thread priority changes show how the priority changed due to explicit calls
to Thread.setPriority () as well as adjustments due to priority in-
heritance on Java monitors.

e Thread names show the Java name of a thread.

e Monitor enter/exit events show whenever a thread enters or exits a monitor
successfully as well as when it blocks due to contention on a monitor.

e GC activity records when the incremental garbage collector does garbage
collection work.

e Start execution shows when a thread actually starts executing code after it
was set to be running.

e Reschedule shows the point when a thread changes from running to ready
due to a reschedule request.

e All threads that have the state ready within the JamaicaVM are also ready
to run from the OS point of view. So it might happen that the OS chooses
a thread to run that does not correspond with the running thread within the
VM. In such cases, the thread chosen by the OS performs a yield to allow a
different thread to run.

15.2. CONTROL WINDOW 183

| Name | Value
Event classes Selection of event classes that the run-time system should
send.
IP Address The IP address of the run-time system.
Port The Port where the runtime system should be contacted
(see §[T5.1].
Buffer Size The amount of memory that is allocated within the run-

time system to store event data during a period.

Sample Period | The period length between sending data.

Start Recording | When pressed connects the ThreadMonitor to the run-
time systems and collects data until pressed again.

Table 15.1: Threadmonitor Controls

e User events contain user defined messages and can be triggered from Java
code.

e Allocated memory gives an indication of the amount of memory that is cur-
rently allocated by the application. The display is relatively coarse, changes
are only displayed if the amount of allocated memory changes by 64kB. A
vertical line gives indicates what thread performed the memory allocation
or GC work that caused a change in the amount of allocated memory.

When ThreadMonitor is started it presents the user a control window Fig.

15.2.1 Control Window Menu

The control window’s menu permits only three actions:

File/Open...

This menu item will open a file requester to load previously recorded sched-
uler data that was saved through the data window’s “File/Save as...” menu item,

see §[15.3.2]

File/Close

Select this menu item will close the control window, but it will leave all other
windows open.

184 CHAPTER 15. THE JAMAICA THREADMONITOR

File
Event classes: IP Address: [127.0.0.1
Porc
thread state change 2712
running resch ready blocked detached [advanced
A4-10 T5 thread priority change Buffer size:
B o o Sample Period:
raise priority set to base priority

show thread headers

ThreadName <nones= EE namEs show fixed time scale
start finish
&= D] [] monitor enteryexit
enter contended exit
[] GC activity
gc work

1 1 start execution, reschedule

start reschedule
Start recording
y [] ready yield
yield
ez e event
user event
= SHE
. L allocated memory

allocated memory

Figure 15.1: Control view of the ThreadMonitor

15.3. DATA WINDOW 185

File/Quit

Select this menu item will close all windows of the ThreadMonitor tool and quit
the application.

15.3 Data Window

The data window will display scheduler data that was recorded through “Start/Stop
recording” in the control window or that was loaded from a file.

To better understand the ThreadMonitor output, it is helpful to have some un-
derstanding of the JamaicaVM scheduler. The JamaicaVM scheduler provides
real-time priority enforcement within Java programs on operating systems that
do not offer strict priority based scheduling (e.g. Linux for user programs). The
scheduler reduces the overhead for JNI calls and helps the operating system to
better schedule CPU resources for threads associated with the VM. These im-
provements let the JamaicaVM integrate better with the target OS and increase
the throughput of threaded Java applications.

The VM scheduler controls which thread runs within the VM at any given
time. This means it effectively protects the VM internal data structures like the
heap from concurrent modifications. The VM scheduler does not replace, but
rather supports, the operating system scheduler. This allows, for example, for a
light implementation of Java monitors instead of using heavy system semaphores.

All threads created in the VM are per default attached to the VM (i.e. they are
controlled by the VM scheduler). Threads that execute system calls must detach
themselves from the VM. This allows the VM scheduler to select a different thread
to be the running thread within the VM while the first thread for example blocks
on an IO request. Since it is critical that no thread ever blocks in a system call
while it is attached, all JNI code in the JamaicaVM is executed in detached mode.

For the interpretation of the ThreadMonitor data, the distinction between at-
tached and detached mode is important. A thread that is detached could still be
using the CPU, meaning that the thread that is shown as running within the VM
might not actually be executing any code. Threads attached to the VM may be
in the states running, rescheduling, ready ,or blocked. Running means the thread
that currently executes within the context of the VM. Rescheduling is a sub state
of the running thread. The running thread state is changed to rescheduling when
another thread becomes more eligible to execute. This happens when a thread of
higher priority becomes ready either by unblocking or attaching to the VM. The
running thread will then run to the next synchronization point and yield the CPU
to the more eligible thread. Ready threads are attached threads which can execute
as soon as no other thread is more eligible to run. Attached threads may block

186 CHAPTER 15. THE JAMAICA THREADMONITOR

for a number of reasons, the most common of which are calls to Thread.sleep,
Object.wait, and entering of a contended monitor.

15.3.1 Data Window Navigation

The data window permits easy navigation through the displayed scheduler data.
Two main properties can be changed: The time resolution can be contracted or
expanded, and the total display can be enlarged or reduced (zoom in and zoom
out). Four buttons on the top of the window serve to change these properties.

Selection of displayed area

The displayed area can be selected using the scroll bars or via dragging the con-
tents of the window while holding the left mouse button.

Time resolution

The displayed time resolution can be changed via the buttons “expand time” and
“contract time” or via holding down the left mouse button for expansion or the
middle mouse button for contraction. Instead of the middle mouse button, the
control key plus the left mouse button can also be used.

Zoom factor

The size of the display can be changed via the buttons “zoom in” and “zoom out”
or via holding down shift in conjunction with the left mouse button for enlarge-
ment or in conjunction with the right mouse button for shrinking. Instead of shift
and the middle mouse button, the shift and the control key plus the left mouse
button can also be used.

15.3.2 Data Window Menu

The data window’s menu offers the following actions.

File/Open...

This menu item will open a file requester to load previously recorded sched-
uler data that was saved through the data window’s “File/Save as...” menu item,

see §|15.3.2

15.3. DATA WINDOW 187

File/Save as...

This menu item permits saving the displayed scheduler data, such that it can later
be loaded through the control window’s “File/Open...” menu item, see §

File/Close

Select this menu item will close the data window, but it will leave all other win-
dows open.

File/Quit

Select this menu item will close all windows of the ThreadMonitor tool and quit
the application.

Options/Grid

Selecting this option will display light grey vertical grid lines that facilitate relat-
ing a displayed event to the point on the time scale.

Options/Thread Headers

If this option is selected, the left part of the window will be used for a fixed list of
thread names that does not participate in horizontal scrolling.

Options/Thread Headers

If this option is selected, the top part of the window will be used for a fixed time
scale that does not participate in vertical scrolling. This is useful in case many
threads are displayed and the time scale should remain visible when scrolling
through these threads.

Navigate/Fit Width

This menu item will change the time contraction such that the whole data fits into
the current width of the window.

Navigate/Fit Height

This menu item will change the zoom factor such that the whole data fits into the
current height of the window.

188 CHAPTER 15. THE JAMAICA THREADMONITOR

Navigate/Fit Window

This menu item will change the time contraction and the zoom factor such that the
whole data fits into the current size of the data window.

Tools/Worst-Case Execution Times

This menu item will start the execution time analysis and show the Worst-Case
Execution Time window, see §[15.3.5

Tools/Reset Monitors

The display of monitor enter and exit events can be suppressed for selected mon-
itors via a context menu on an event of the monitor in questions. This menu item
re-enables the display of all monitors.

15.3.3 Data Window Context Window

The data window has a context menu that appears when pressing the right mouse
button over a monitor event. This context window permits to suppress the display
of events related to a monitor. This display can be re-enabled via the Tools/Reset
Monitors menu item.

15.3.4 Data Window Tool Tips

When pointing onto a thread in the data window, a tool tip appears that display in-
formation on the current state of this thread including its name, the state (running,
ready, etc.) and the thread’s current priority.

15.3.5 Worst-Case Execution Time Window

Through this window, the ThreadMonitor tool enables the determination of the
maximum execution time that was encountered for each thread within recorded
scheduler data. If the corresponding menu item was selected in the data window
(see §[15.3.2)), execution time analysis will be performed on the recorded data and
this window will be displayed.

The window shows a table with one row per thread and the following data
given in each column.

Thread # gives the Jamaica internal number of this thread. Threads are numbered
starting at 1. One Thread number can correspond to several Java threads in
case the lifetime of these threads does not overlap.

15.3. DATA WINDOW 189

Thread Name will present the Java thread name of this thread. In case several
threads used the same thread id, this will display all names of these threads
separated by vertical lines.

Worst-case execution time presents the maximum execution time that was en-
countered in the scheduler data for this thread. This column will display
“N/A” in case no releases where found for this thread. See below for a
definition of execution time.

Occurred at gives the point in time within the recording at which the release that
required the maximum execution time started. A mouse click on this cell
will cause this position to be displayed in the center of the data window
the worst-case execution time window was created from. This column will
display “N/A” in case no Worst-case execution time was displayed for this
thread.

Releases is the number of releases that of the given thread that where found
during the recording. See below for a definition of a release.

Average time is the average execution time for one release of this thread. See
below for a definition of execution time.

Comment will display important additional information that was found during
the analysis. E.g., in case the data the analysis is based on contains over-
flows, i.e. periods without recorded information, these times cannot be cov-
ered by this analysis and this will be displayed here.

Definitions

Release of a thread T is a point in time at which a waiting thread T becomes
ready to run that is followed by a point in time at which it will block again waiting
for the next release. I.e., a release contains the time a thread remains ready until
it becomes running to execute its job, and it includes all the time the thread is
preempted by other threads or by activities outside of the VM.

Execution Time of a release is the time that has passed between a release and
the point at which the thread blocked again to wait for the next release.

Limitations

The worst-case execution times displayed in the worst-case execution times win-
dow are based on the measured scheduling data. Consequently, they can only dis-
play the worst-case times that were encountered during the actual run, which may

190 CHAPTER 15. THE JAMAICA THREADMONITOR

be fully unrelated to the theoretical worst-case execution time of a given thread. In
addition to this fundamental limitation, please be aware of the following detailed
limitations:

Releases are the points in time when a waiting thread becomes ready. If a re-
lease is caused by another thread (e.g., via Java function Object .notify ()),
this state change is immediate. However, if a release is caused by a timeout of
acalltoObject.wait (), Thread.sleep(),RealtimeThread.wait-
ForNextPeriod () or similar functions, the state change to ready may be de-
layed if higher priority threads are running and the OS does not assign CPU time
to the waiting thread. A means to avoid this inaccuracy is to use a high-priority
timer (e.g., class javax.realtime.Timer) to wait for a release.

Blocking waits within a release will result in the worst-case execution time anal-
ysis to treat one release as two independent releases. Therefore, the analysis is
wrong for tasks that perform blocking waits during a release. Any blocking within
native code, e.g., blocking I/O operations, is not affected by this, so the analysis
can be used to determine the execution times of I/O operations.

Chapter 16

Jamaica and the Java Native
Interface (JNI)

The Java Native Interface (JNI) is a standard mechanism for interoperability be-
tween Java and native code, i.e., code written with other programming languages
like C. Jamaica implements version 1.4 of the Java Native Interface. Creating and
destroying the vm via the Invocation API is currently not supported.

16.1 Using JNI

Native code that is interfaced through the JNI interface is typically stored in shared
libraries that are dynamically loaded by the virtual machine when the application
uses native code. Jamaica supports this on many plattforms, but since dynamically
loaded libraries are usually not available on small embedded systems that do not
provide a file system, Jamaica also offers a different approach. Instead of loading
a library at runtime, you can statically include the native code into the application
itself, i.e., link the native object code directly with the application.

The Builder allows direct linking of native object code with the created appli-
cation through the option —object fileor -XstaticLibraries file. Multi-
ple files can be linked. Separate the file names with spaces and enclose the whole
option argument within “"” (double quotes). All object files containing native

code should be presented to the Builder using this option.

Building an application using native code on a target requiring manual linking
may require providing these object files to the linker. Here is a short example on
the use of the Java Native Interface with Jamaica. This example simply writes a
value to a hardware register using a native method. We use the file INITest.
java, which contains the following code:

public class JNITest ({
static native int write_HW_Register (int address,

191

192 CHAPTER 16. JAMAICA AND THE JAVA NATIVE INTERFACE (JNI)

int wvalue);

public static void main(String args([]) {
int value;

value = write_HW_Register (0xfc000008,0x10060);
System.out.println ("Result: "+value);

}

Jamaica provides a tool, jamaicah, for generating C header files that con-
tain the function prototypes for all native methods in a given class. Note that
jamaicah operates on Java class files, so the class files have to be created first
using jamaicac as described in § The header file for INITest . java is
created by the following sequence of commands:

> jamaicac JNITest. java

> jamaicah JNITest

Reading configuration from ’/usr/local/jamaica/etc/jamaicah.conf’...
+ JNITest.h (header)

This created the include file INITest . h:

/+ DO NOT EDIT THIS FILE - it is machine generated =/
#include <Jjni.h>
/* Header for class JNITest */

#ifndef _Included_JNITest
#define _Included_JNITest
#ifdef __cplusplus

extern "C" {

#endif
/% Class: JNITest
* Method: write_ HW_Register

* Signature: (II)I «/
#ifdef __ cplusplus
extern "C"
#endif
JNIEXPORT Jjint JNICALL Java_JNITest_write_ 1HW_1Register (JNIEnv xenv, jclass c,

#ifdef __ _cplusplus
}

#endif

fendif

The native code is implemented in JNITest . c.

#include "jni.h"

16.1. USING JNI 193

#include "JNITest.h"
#include <stdio.h>

JNIEXPORT jint JNICALL

Java_JNITest_write_ 1HW_1Register (JNIEnv =*env,
jclass c,
jint vO,
Jjint vl)

printf ("Now we could write the value %i into "
"memory address %x\n", vl, vO0);
return vl; /x return the "written" value =/

}

Note that the mangling of the Java name into a name for the C routine is defined
in the JNI specification. In order to avoid typing errors, just copy the function
declarations from the generated header file.

A C compiler is used to generate an object file. Here, gcc — the GNU C
compiler — is used, but other C compilers should also work. Note that the include
search directories provided with the option T may be different on your system.

For Unix users using gcc the command line is:

> gcc —I/usr/local/jamaica/target/linux—-gnu-i686/include \
> -c —m32 JNITest.c

For Windows user using the Visual Studio C compiler the command line is:

> c:\Programs\cl -Ic:\programs\jamaica\target\windows—-x86\include
-c —m32 JNITest.c

Finally, the Builder can be called to generate a binary file which contains all nec-
essary classes as well as the object file with the native code from JNITest.c.
The Builder is called by:

> jamaicabuilder -object=JNITest.o JNITest
Reading configuration from
’/usr/local/jamaica-6.0-1/etc/jamaica.conf’ ...
Reading configuration from
’/usr/local/jamaica—-6.0-1/target/linux-x86/etc/jamaica.conf’ ...
Jamaica Builder Tool 6.0 Release 1
(User: EVALUATION USER, Expires: 2010.06.10)
Generating code for target ’linux-x86’, optimisation ’speed’
+ PKG___Vfed7ce88el8ealld .c
[...]
+ JNITest___.c
+ JNITest___ .h
Class file compaction gain: 58.963017% (21653991 ==> 8886145)
* C compiling ’JNITest__.c’

194 CHAPTER 16. JAMAICA AND THE JAVA NATIVE INTERFACE (JNI)

‘“mcpu=’ 1is deprecated. Use ‘-mtune=’ or ’-march=’ instead.
+ JNITest___nc.o
* linking

* stripping

Application memory demand will be as follows:

initial max
Thread C stacks: 1024KB (= 8+ 128KB) 63MB (= 511+ 128KB)
Thread Java stacks: 128KB (= 8+ 16KB) 8176KB (= 511+ 16KB)
Heap Size: 2048KB 256MB
GC data: 128KB 16MB
TOTAL: 3328KB 343MB

The created application can be executed just like any other executable:

> ./JNITest
Result: 65632
Now we could write the value 65632 into memory address fc000008

16.2 The Jamaicah Command

To control the jamaicah tool, a variety of arguments can be provided. The argu-
ments can be provided directly to jamaicah, or using the property file jamaicah.
conft.

The syntax is as follows:
jamaicah [-help (--help, -h, -2?)] [-Xhelp] [-7jni]
[-d=<directory>] [-o=<file>] [-includeFilename=<file>]
[-version] [-showSettings] [-saveSettings=<file>]
[— conflguratlon <file>] [-classpath
(—cp) [t]=<classpath>] [-bootclasspath
(— Xbootclasspath)[]=<classpath>]
[-classname[+]="<class> <class>"] classl [...
classn]

16.2.1 General

These are general options providing information about jamaicah itself.

Option -help (--help, -h, -?)

Display the usage of the jamaicah tool and a short description of all possible stan-
dard command line options.

16.2. THE JAMAICAH COMMAND 195

Option -Xhelp

Display the usage of the jamaicah tool and a short description of all possible stan-
dard and extended command line options. Extended command line options are
not needed for normal control of the jamaicah command. They are used to con-
figure tools and options and to provide tools required internally for Jamaica VM
development.

Option -jni

Create Java Native Interface header files for the native declarations in the provided
Java class files. This option is the default and hence does not need to be specified
explicitly.

Option -d=directory

Specify output directory for created header files. The filenames are deduced from
the full qualified Java class names where “.” are replaced by and the extension

“.h” is appended.

6 2

Option -o=file

Specifty the name of the created header file. If not set the filename is deduced from
the full qualified Java class name where “.” are replaced by and the extension

“.h” is appended.

13 2

Option -includeFilename=file

Specifty the name of the include file to be included in stubs.

Option —-version

Prints the version of the jamaicah tool and exits.

Option —-showSettings

Options of jamaicah currently in use are written to standard output in property
file format. To make these the default settings, write the output into jamaica-
home/etc/jamaicah.conf.

196 CHAPTER 16. JAMAICA AND THE JAVA NATIVE INTERFACE (JNI)

Option -saveSettings=file

Options of jamaicah currently in use are written to the specified file in property
file format.

Option —-configuration=file

The set of options used to build the application are read from the provided file.
The format used to define options must be identical to the default configuration
file jamaica-home/etc/jamaicah.conf. With this option given, the other
default configuration files, i.e. user-home/.jamaica/jamaicah.conf and
Jjamaica-home/etc/jamaicah.conf, are ignored.

16.2.2 Classes, files, and paths
Option —-classpath (-cp) [+]=classpath

Specifies default path used for loading classes.

Option -bootclasspath (—-Xbootclasspath) [+]=classpath

Specifies default path used for loading system classes.

Option —classname [+]="class{ class}"

Generate header files for the listed classes. Multiple items must be separated by
spaces and enclosed in double quotes.

16.2.3 Environment Variables

The following environment variables control jamaicah.

JAMAICA JAMAICAH HEAPSIZE Heap size of the jamaicah program in bytes.

Chapter 17

The Numblocks Command

An important value required to calculate the worst case execution time of an allo-
cation is the number of blocks required to represent the allocated object. Jamaica
VM provides the NumBlocks tool to determine this number of blocks. In this
chapter the usage of this tool is described in detail.

17.1 Command Line Options

A variety of arguments can be provided to control the NumBlocks tool. The argu-
ments can be provided either directly to numblocks, or by using the property file
numblocks.conf. The syntax is as follows:

numblocks help (--help, -h, -?)] [-Xhelp] [-version]

[—
[-verbose] [-showSettings] [-saveSettings=<file>]
[— conflguratlon <file>] [-all] [-classpath
(—cp) [t]1=<classpath>] [-bootclasspath

(- Xbootclasspath)[]=<classpath>] [-numThreads=<n>]
classl" ["<len>"]" [... classn"["<len>"]"]

17.1.1 General

These are general options providing information about numblocks itself or en-
abling the use of script files that specify further options

Option -help (--help, -h, -?)

Display the usage of the NumBlocks tool and a short description of all possible
standard command line options

197

198 CHAPTER 17. THE NUMBLOCKS COMMAND

Option -Xhelp

Display the usage of the NumBlocks tool and a short description of all possible
standard and extended command line options. Extended command line options
are not needed for normal control of the numblocks command. They are used
to configure tools and options to provide tools required internally for Jamaica VM
development.

Option -version

Prints the version of the Jamaica Builder Tool and exits.

Option -verbose

Set verbose level. If verbose level is greater than 0, additional output on the state
of the build process is printed to standard out.

Option —-showSettings

The currently used options of Jamaica Numblocks are written to stdout in
property file format. To make these the default settings, copy these options into
jamaica-home/etc/numblocks.conf.

Option —-saveSettings=file

The currently used options of Jamaica VM Numblocks are written to stdout in
property file format. To make these the default settings, copy these options into
jamaica-home/etc/numblocks.conf

Option —-configuration=file

The set of options used to perform numblocks are read from the provided file.
The format used to define options must be identical to the default configuration
file jamaica-home /et c/numblocks.conf.

17.1.2 Classes, files, and paths

These options allow to specify classes and paths to be used by numblocks.

Option —-all

If this option is set, the number of blocks required for the allocation of objects of
all classes in this application will be displayed.

17.2. ENVIRONMENT VARIABLES 199

Option —-classpath (-cp) [+]=classpath

Specifies the paths that are to be used to search for class files. A list of paths

[T3% 2]

separated by the path separator char (*:” on Unix systems) can be specified. This
list will be traversed from left to right when the builder tries to load a class.
Option -bootclasspath (-Xbootclasspath) [+]=classpath

Specifies the default path used for loading system classes

17.1.3 Memory and threads settings
Option —numThreads=n

This Builder option has an influence on the number of blocks required for some
objects. Consequently, it must be provided to numblocks for all applications that
are built with a specified number of threads.

17.2 Environment Variables
The following environment variables control the numblocks command.

JAMAICA NUMBLOCKS_HEAPSIZE Heap size of the numblocks program in
bytes.

200 CHAPTER 17. THE NUMBLOCKS COMMAND

Chapter 18
Building with Apache Ant

Apache Ant is a popular build tool in the Java world. Ant tasks for the Jamaica
Builder and other tools are available. In this chapter, their use is explained.

Ant build files (normally named build.xml) are created and maintained by
the Jamaica Eclipse Plug-In (see § [5). They may also be created manually. To
obtain Apache Ant, and for an introduction, see the web page http://ant.
apache.org. Apache Ant is not provided with Jamaica. In the following sec-
tions, basic knowledge of Ant is presumed.

18.1 Task Declaration

Ant tasks for the Jamaica Builder and jamaicah are provided. In order to use
these tasks, taskdef directives are required. The following code should be
placed after the opening pro ject tag of the build file:

<taskdef name="jamaicabuilder"
classpath="jamaica-home/1ib/JamaicaTools. jar"
classname="com.aicas. jamaica.tools.ant.JamaicaTask" />

<taskdef name="jamaicah"
classpath="jamaica-home/1ib/JamaicaTools. jar"
classname="com.aicas.jamaica.tools.ant.JamaicahTask" />

The task names are used within the build file to reference these tasks. They may
be chosen arbitrarily for stand-alone build files. For compatibility with the Eclipse
Plug-In, the names jamaicabuilder and jamaicah should be used.

18.2 Task Usage

All Jamaica Ant tasks require the attribute jama i ca, which must be set to jamaica-
home, the root directory of the Jamaica installation.

201

http://ant.apache.org
http://ant.apache.org

202 CHAPTER 18. BUILDING WITH APACHE ANT

Tool options are specified as nested elements. For each tool option —option,
a corresponding option element is available in the Ant task of that tool. These
option elements accept the attributes shown in the following table. All attributes
are optional.

Attribute | Description | Required |

value Option argument For options that re-
quire an argument.
enabled | Whether the option is passed to the tool. | No (default t rue)
append | Value is appended to the value stored in | No (default false)
the tool’s configuration file (+= syntax).

Although Ant buildfiles are case-insensitive, the precise spelling of the option
name should be preserved for compatibility with the Eclipse Plug-In.
The following example shows an Ant target for executing the Jamaica Builder.

<target name="build_app">
<jamaicabuilder jamaica="/usr/local/jamaica">

<target value="1linux-x86"/>
<classpath value="classes"/>
<classpath value="extLib.jar"/>
<interpret value="true" enabled="false"/>
<heapSize value="32M"/>
<Xlibraries value="extLibs" append="true"/>
<XdefineProperty value="window.size=800x600">
<main value="Application"/>
</jamaicabuilder>
</target>

This is equivalent to the following command line:

/usr/local/jamaica/bin/jamaicabuilder
-target=1inux-x86
—classpath=classes:extLib. jar
—heapSize=32M
—Xlibrariest+=extLibs
—-XdefineProperty=window.size=800x600
Application

Note that some options take arguments that contain the equals sign. For example,
the argument to XdefineProperty is of the form property=value. As shown
in the example, the entire argument should be placed in the value attribute liter-
ally. Ant pattern sets and related container structures are currently not supported
by the Jamaica Ant tasks.

Part 1V

Additional Information

203

Appendix A
FAQ — Frequently Asked Questions

Check here first when problems occur using JamaicaVM and its tools.

A.1 General Information

Q: I use Eclipse to develop my Java applications. Is there a plug-in available
which will help me to use JamaicaVM and the Builder from within Eclipse?

A: Yes. There is a plugin available that will help you to configure the Builder
download and execute your application on your target. For more infor-
mation, see http://www.aicas.com/eclipse.html. For a quick
start, you can use the Eclipse Update Site Manager with the following
Update Site URL: http://www.aicas.com/download/eclipse.
This conveniently downloads and installs the plugin.

Q: Does JamaicaVM support the Real-Time Specification for Java (RTSJ)?

A: Yes. The RTSJ V1.0.2 is supported by JamaicaVM 6.0. The API documenta-
tion of the implementation can be found at http://www.aicas.com/
jamaica/doc/rtsj_api/index.htmll

Q: Is Linux a real-time operating system?

A: No. However, kernel patches exist which add the functionality for real-time
behavior to a regular Linux system.

A.2 JamaicaVM

Q: When I try to execute an application with the JamaicaVM I get the error mes-
sage OUT OF MEMORY. What can I do?

205

http://www.aicas.com/eclipse.html
http://www.aicas.com/download/eclipse
http://www.aicas.com/jamaica/doc/rtsj_api/index.html
http://www.aicas.com/jamaica/doc/rtsj_api/index.html

206 APPENDIX A. FAQ — FREQUENTLY ASKED QUESTIONS

A: The JamaicaVM has a predefined setting for the internal heap size. If it is
exhausted the error message OUT OF MEMORY is printed and JamaicaVM
exits with an error code. The predefined heap size of 256MB is usually
large enough, but for some applications it may not be sufficient. You can
set the heap size via the jamaicavm options Xmxsize, via the environment
variable JAMATICAVM_MAXHEAPSIZE, e.g., under bash with

export JAMAICAVM_MAXHEAPSIZE=268435456

or, when using the builder, via the builder option maxHeapSize.

Q: When the built application terminates I see some output like WARNING:
termination of thread 7 failed. Whatis wrong?

A: Attermination of the application the JamaicaVM tries to shutdown all running
threads by sending some signal. If a thread is stuck in a native function,
e.g., waiting in some OS kernel call, the signal is not received by the thread
and there is no response. In that case the JamaicaVM does a hard-kill of
the thread and outputs the warning. Generally, the warning can simply be
ignored, but be aware that a hard-kill may leave the OS in an unstable state,
or that some resources (e.g., memory allocated in a native function) can be
lost. Such hard-kills can be avoided by making sure no thread gets stuck in
a native-function call for a long time (e.g., more than 100ms).

Q: Does JamaicaVM include tools like rmic and rmiregistry to develop
RMI applications?

A: The rmiregistry toolis included in JamaicaVM and can be executed like
this:

jamaicavm sun.rmi.registry.RegistryImpl

JamaicaVM 3.0 added support for the dynamic generation of stub classes at
runtime, obviating the need to use the Java Remote Method Invocation (Java
RMI) stub compiler rmic to pregenerate stub classes for remote objects.

A.3 Remote Method Invocation (RMI)

Q: How can I use RMI?

A.3. REMOTE METHOD INVOCATION (RMI) 207

A: RMI applications often comprise two separate programs, a server and a client.
A typical server program creates some remote objects, makes references to
these objects accessible, and waits for clients to invoke methods on these
objects. A typical client program obtains a remote reference to one or more
remote objects on a server and then invokes methods on them. RMI provides
the mechanism by which the server and the client communicate and pass
information back and forth.

Like any other Java application, a distributed application built by using Java
RMI is made up of interfaces and classes. The interfaces declare methods.
The classes implement the methods declared in the interfaces and, perhaps,
declare additional methods as well. In a distributed application, some im-
plementations might reside in some Java virtual machines but not others.
Objects with methods that can be invoked across Java virtual machines are
called remote objects.

An object becomes remote by implementing a remote interface, which has
the following characteristics:

e A remote interface extends the interface java.rmi.Remote.

e In addition to any application-specific exceptions, each method sig-
nature of the interface declares java.rmi.RemoteException in
its throws clause,.

Using RMI to develop a distributed application involves these general steps:

1. Designing and implementing the components of your distributed ap-
plication.

2. Compiling sources.
3. Making classes network accessible.

4. Starting the application.

First, determine your application architecture, including which components
are local objects and which components are remotely accessible. This step
includes:

e Defining the remote interfaces. A remote interface specifies the meth-
ods that can be invoked remotely by a client. Clients program to re-
mote interfaces, not to the implementation classes of those interfaces.
The design of such interfaces includes the determination of the types
of objects that will be used as the parameters and return values for
these methods. If any of these interfaces or classes do not yet exist,
you need to define them as well.

208 APPENDIX A. FAQ — FREQUENTLY ASKED QUESTIONS

e Implementing the remote objects. Remote objects must implement
one or more remote interfaces. The remote object class may include
implementations of other interfaces and methods that are available
only locally. If any local classes are to be used for parameters or return
values of any of these methods, they must be implemented as well.

Implementing the clients. Clients that use remote objects can be im-
plemented at any time after the remote interfaces are defined, includ-
ing after the remote objects have been deployed.

Example source code demonstrating the use of Remote Method Invocation
is provided with the JamaicaVM distribution. See §

Q: Does Jamaica support RMI?

A: RMI is supported by Jamaica 6.0.

JamaicaVM 6.0 uses dynamically generated stub and skeleton classes. So
no previous call to rmic is needed to generate those.

If the Builder is used to create RMI server applications, the exported inter-
faces and implementation classes need to be included.

An example build file demonstrating the use of RMI with Jamaica is pro-
vided with the JamaicaVM distribution. See Tab.[3.4l

A.4 Builder

Q: When I try to start a Jamaica compiled executable in a Linux 2.4.x environ-
ment, [get an error message like the following:

__alloc_pages: O-order allocation failed (gfp=0x1d0/0)
from c0123886

A: This is a bug in the Linux 2.4.10 kernel. Please use a newer kernel version.
The problem seems to occur if the amount of allocated memory is close
to the amount of available memory, which is usually no problem if you
use Jamaica on a desktop PC, but occurs quite often on embedded systems
running Linux 2.4.10 and Jamaica (e.g., the DILNet/PC).

Q: When I try to compile an application with the Builder I get the error message
OUT OF MEMORY. What can I do?

A.4. BUILDER 209

A: The Builder has a predefined setting for the internal heap size. If the memory

Q:

space is exhausted, the error message OUT OF MEMORY is printed and
Builder exits with an error code. The predefined heap size (1024MB) is
usually large enough, but for some applications it may not be sufficient. You
can set the heap size via the environment variable JAMATCA_BUILDER_
HEAPSIZE, e.g., under bash with the following command:

> export JAMAICA_BUILDER_HEAPSIZE=1536MB

When 1 build an application which contains native code it seems that some

fields of the class files can be accessed with the function GetFieldID ()
from the native code, but some others not. What happened to those fields?

If an application is built, the Builder removes from classes all unreferenced

methods and fields. If a field in a class is only referenced from native code
the Builder can not detect this reference and protect the field from the smart-
linking-process. To avoid this use the includeClasses option with the
class containing the field. This will instruct the Builder to fully include the
specified class(es).

When I build an application with the Builder I get some warning like the

following:

WARNING: Unknown native interface type of class ’name’
(name.h) - assume JNI calling convention

Is there something wrong?

A: In general, this is not an error. The Builder outputs this warning when it is not

Q:

A:

able to detect whether a native function is implemented using JNI (the stan-
dard Java native interface; see chapter § or JBI (a Jamaica specific, more
efficient native interface used by the $Jamaica; boot classes). Usually this
means the appropriate header file generated with some prototype tool like
jamaicah is not found or not in the proper format. To avoid this warning,
recreate the header file with jamaicah and place it into a directory that is
passed via the builder argument Xinclude.

How can I set properties (using —Dname=value) for an application that was

built using the builder?

For commands like jamaicavm, parsing of arguments like —~Dname=value

stops at the name of the main class of the application. After the application
has been built, the main class is an implicit argument, so there is no direct

210 APPENDIX A. FAQ — FREQUENTLY ASKED QUESTIONS

way to provide additional options to the VM. However, there is a way out
of this problem: the Builder option —XnoMain removes the implicit argu-
ment for the main class, so jamaicavm’s normal argument parsing is used
to find the main class. When launching this application, the name of the
main class must then be specified as an argument, so it is possible to add
additional VM options such as —Dname=value before this argument.

Q: When I run the Builder an error “exec fail” is reported when the interme-
diate C code should be compiled. The exit code is 69. What happened?

A: An external C compiler is called to compile the intermediate C code. The
compiler command and arguments are defined in etc/jamaica.conf.
If the compiler command can not be executed the Builder terminates with
an error message and the exitcode 69 (see list of exit codes in the appendix).
Try to use the verbose output with the option —verbose and check if the
printed compiler command call can be executed in your command shell. If
not check the parameters for the compiler in etc/jamaica.conf and
the PATH environment variable.

Q: Can I build my own VM as an application which expects the name of the main
class on the command line like JamaicaVM does?

A: With the Builder a standalone VM can be built with the option —XnoMain.
If this option is specified, the Builder does not expect a main class while
compiling. Instead, the built application expects the main class later after
startup on the command line. Some classes or resources can be included in
the created VM, e.g., a VM can be built including all classes of the selected
API except the main program with main class.

A.5 Fonts

Q: How can I change the mapping from Java fonts to native fonts?

A: The mapping between Java font names and native fonts is defined in the
font .properties file. Each target system provides this file with useful
default values. An application developer can provide a specialized version
for this file. To do this the new mapping file must exist in the classpath
at build time. The file must be added as a resource to the final application
by adding ~resource+=path where path is a path relative to a classpath
root. Setting the system property “jamaica.fontproperties” with the option
-XdefineProperty=jamaica.fontproperties=path will pro-
vide the graphics environment with the location of the mapping file.

A.6. VXWORKS TARGET 211

Q: Why do fonts appear different on host and target?

A: Jamaica relies on the target graphics system to render true type fonts. Since
that renderer is generally a different one than on the host system it is possi-
ble that the same font is rendered differently.

A.6 VxWorks Target

Q: When I load a built application I get errors of the dynamic linker Undefined
symbol:.

A: This linker error occurs when the VxWorks system is configured without one
or more of the following function sets listed in “Configuration of VxWorks
”. Please check your VxWorks configuration (INCLUDE_* statements)
intarget/config/all/configAll.h inyour VxWorks installation
directory. Probably you have to recompile a new VxWorks kernel image.

Q: How can I pass parameters to an application under VxWorks?

A: Because of the C-like syntax of the VxWorks command shell, parameters to
an application have to be passed as a string. An application can simply
be started by jvm "..." (or classname " ..." where classname is the
value specified via the -destination option of the Jamaica Builder). ”...” is a
space separated list of arguments which should be passed to the application

(just like a command line).

212 APPENDIX A. FAQ — FREQUENTLY ASKED QUESTIONS

Appendix B

Information for Specific Targets

This appendix contains target specific documentation and descriptions.

B.1 VxWorks

VxWorks from Wind River Systems is a real-time operating system for embedded
computers. The JamaicaVM is available for VxWorks 5.4 to 6.7 and the following
target hardware:

e PowerPC
e SuperH4
o x86

B.1.1 Configuration of VxWorks

For general information on the configuration of VxWorks, please refer to the user
documentation provided by WindRiver. For Jamaica, VxWorks should be config-
ured to include the following functionality :E]

e INCLUDE_POSIX_SEM

e INCLUDE_LOADER

INCLUDE_SHELL

INCLUDE_SHOW_ROUTINES

INCLUDE_STANDALONE_SYM TBL

1Package names refer to VxWorks 6.6, names for other version vary.

213

214 APPENDIX B. INFORMATION FOR SPECIFIC TARGETS

e INCLUDE_STARTUP_SCRIPT

e INCLUDE_UNLOADER

e INCLUDE_NFS_CLIENT_ALL

e INCLUDE_PING

e INCLUDE_TELNET_CLIENT

e INCLUDE_NFS_MOUNT_ALL

e INCLUDE_TASK_UTIL

e INCLUDE_ROUTECMD

e INCLUDE_POSIX_SIGNALS

e INCLUDE_HISTORY_FILE_SHELL_CMD
e INCLUDE_SHELIL_EMACS_MODE

e INCLUDE_NETWORK

e INCLUDE_ATA

e INCLUDE_RTL8169_VXB_END

e INCLUDE_TC3C905_VXB_END

e INCLUDE_DISK_UTIL_SHELL_CMD
e INCLUDE_EDR_SHELL_CMD

e INCLUDE_TASK_SHELL_CMD

e INCLUDE_HISTORY_FILE_SHELL_CMD
e INCLUDE_DEBUG_SHELL_CMD

e INCLUDE_KERNEL_HARDENING

e INCLUDE_IPWRAP_GETIFADDRS

e INCLUDE_IPTELNETS

If VxWorks real time processes (aka RTP) are used, the following components are
also required:

B.1. VXWORKS 215

e INCLUDE_RTP
e INCLUDE_RTP_SHELIL_CMD
e INCLUDE_POSIX_PTHREAD_SCHEDULER
If WindML graphics is used, it must be included as well:
e INCLUDE_WINDML

In addition, the following parameters should be set:

Parameter Value

NUM_FILES 1024 | (DKM only)
RTP_FD_NUM_MAX 1024 | (RTP only)
TASK_USER_EXC_STACK_SIZE | 16384

! If some of this functionally is not included in the VxWorks kernel image,
linker errors may occur when loading an application built with Jamaica and
the application may not run correctly.

B.1.2 Installation

The VxWorks version of Jamaica is installed as described in the section Installa-
tion (§[3.1). In addition, the following steps are necessary.

Configuration for Tornado (VxWorks 5.x)

e Set the environment variable WIND_BASE to the base directory of the Tor-
nado installation.

e We recommend you set the environment variable WIND_BASE in your boot-
or login-script to the directory where Tornado is installed (top-level direc-
tory).

e Add the Tornado tools directory to the PATH environment variable, so that
tools like ccppc . exe resp. ccpentium. exe can be found.

! Do not use the DOS/Windows-Style path separator “\”” (backslash) in WIND__
® BASE, because some programs interpret the backslash as an escape sequence
for special characters. Use “/” (slash) in path names.

Configuration of platform-specific tools (see §|3.1.1]) is only required in special
situations. Normally, setting the environment variable WIND_BASE and extend-
ing PATH is sufficient.

216 APPENDIX B. INFORMATION FOR SPECIFIC TARGETS

Configuration for Workbench (VxWorks 6.x)

e Set the environment variable WIND__HOME to the base directory of the Wind-
River installation (e.g. /opt /WindRiver)

e Set the environment variable WIND_BASE to the VxWorks directory in
the WindRiver installation. The previously declared environment variable
WIND_HOME may be used (e.g., SWIND_HOME/vxworks—6. 6).

e Set the environment variable WIND_USR to the RTP header files directory
of the WindRiver installation (e.g., SWIND_BASE/target/usr).

We recommend using wrenv. sh, located in the WindRiver base directory to
set all necessary environment variables. The VxWorks subdirectory has to be
specified as the following example shows for VxWorks 6.6:

> /opt/WindRiver/wrenv.sh -p vxworks-6.6

! Donotadd wrenv. sh to your boot or login script. It starts a new shell which
tries to process its login-script and thus you create a recursion.

Configuration of platform-specific tools (see §|3.1.1]) is only required in special
situations. Normally, executing wrenv . sh is sufficient.

B.1.3 Starting an application (DKM)

The procedure for starting an application on VxWorks depends on whether down-
loadable kernel modules (DKM) or real-time processes (RTP) are used.

For DKM, if the target system is configured for disk, FTP or NFS access,
simply enter the following command on the target shell:

-> 1d < filename

Here, filename is the complete filename of the created application.

The main entry point for an application built with the Jamaica Builder is the
name specified by the Builder option destination with the prefix “jvm_".
The name “jvm” may also be used. If the option dest ination is not specified,
the name of the class file containing the main () method is used. For example,

in the VxWorks target shell the HelloWorld application may be started with:

-> sp jvm_HelloWorld, "args"

B.1. VXWORKS 217

The example shows how to pass arguments to the process even though the Hel-
loWorld application does not use the arguments.

Note: even if the Builder generates a file with the specified name, it may be
renamed later, because the name of the main entry point is read from the symbol
table included in the object file.

Optional parameters, like classpath or Xbootclasspath, may be passed
to the application as a single C argument string with text enclosed in “"” (double
quotes). Multiple arguments in the string are separated by spaces. The start code
of the created application parses this string and passes it as a standard Java string
array to the main method.

Setting environment variables

Environment variables may be set in the VxWorks shell via the putenv com-
mand:

-> putenv ("VARIABLE=value")

In order to start a user task that inherits these variables from the shell, the task must
be spawned with the VX_PRIVATE_ENV bit set. To do so, use the taskSpawn
command:

-> taskSpawn "jamaica",0,0x01000080,0x020000, jvm_HelloWorld, "args"

Running two Jamaica applications at the same time

In order to run two Jamaica applications at the same time, matching of common
symbols by the kernel must be switched off. This is achieved by setting the global
VxWorks variable 1dCommonMatchAll to false prior to loading the applica-
tions.

—> ldCommonMatchAl1l=0
-> 1d < RTHelloWorld
-> 1d < HelloWorld

-> sp jvm_RTHelloWorld
-> sp jvm_HelloWorld

In the example, if 1dCommonMatchAll were not set to 0, HelloWorld would
reuse symbols defined by RTHelloWorld.

Note that this functionality is not available on all versions of VxWorks. Please
check the VxWorks kernel API reference.

218 APPENDIX B. INFORMATION FOR SPECIFIC TARGETS

Restarting a Jamaica application

To restart a Jamaica application after it has terminated, it should be unloaded
with the unld command and then reloaded. This is illustrated in the following
example:

—-> 1d < HelloWorld
value = 783931720 = 0x2eb9d948 = ’"H’
-> sp jvm_HelloWorld

[...]
-> unld 783931720
value 0 = 0x0

—-> 1d < HelloWorld

value 784003288 = 0x2ebaf0d8
-> sp jvm_HelloWorld

[...]

/KI

Note that the application should not be unloaded while still running. The unld
command is optional, and the VxWorks image needs to be configured to include
it by adding INCLUDE_UNLOADER to the configuration as suggested in §

B.1.4 Starting an application (RTP)

If real-time processes (aka RTP) are used, the dynamic library 1ibc. so must be
renamed to 1ibc.so.1 and added to the folder of the executable. This library
is located in the WorkBench installation

SWIND_USR/1ib/architecture/architecture-variant/common[le] /libc.so

where architecture is, for example, pent ium and architecture-variant is, for ex-
ample, PENTIUM, in case of an x86 architecture.
To start the application, please use the following shell command:

-> rtpSp "Filename"

If you would like to specify command line parameters, add them as space seper-
ated list in the following fashion:

-> rtpSp "filename argl arg2 arg3"

The rt pSp command will pass environment variables from the shell to the spawned
process.

B.1. VXWORKS 219

B.1.5 Linking the application to the VxWorks kernel image

The built application may also be linked directly to the VxWorks kernel image, for
example for saving the kernel and the application in FLASH memory. In the Vx-
Works kernel a user application can be invoked enabling the VxWorks configura-
tion define INCLUDE_USER_APPL and defining the macro USER_APPL_INIT
when compiling the kernel (see VxWorks documentation and the file usrConfig.
c). The prototype to invoke the application created with the Builder is:

int jvm_main (const char *commandLine) ;

where main is the name of the main class or the name specified via the Builder
option destination. To link the application with the VxWorks kernel image
the macro USER_APPL_INIT should be set to something like this:

extern int Jjvm_main (const char x); Jjvm_main (args)

where args is the command line (as a C string) which should be passed to the
application.

B.1.6 Limitations

The current release of Jamaica for the VxWorks OS has the following limitations:
e java.lang.Runtime.exec () is not implemented

e The following realtime signals are not available:

SIGSTKFLT, SIGURG, SIGXCPU, SIGXFSZ, SIGVTALRM, SIGPROF,
SIGWINCH, SIGIO, SIGPWR, SIGSYS, SIGIOT , SIGUNUSED,
SIGPOLL, SIGCLD.

e Jamaica does not allow an application to set the resolution of the clock
in javax.realtime.RealtimeClock. The resolution of the clock
depends on the frequency of the system ticker (see sysClkRateGet ()
and sysClkRateSet ()). If a higher resolution for the realtime clock is
needed the frequency of the system ticker must be increased. Care must
be taken when doing this, because other programs running on the system
may change their behavior and even fail. In addition, under VxWorks 5.4
the realtime clock must be informed about changes of the system ticker rate
with the function clock_setres (). The easiest way to do this is to add
the following into a startup script for VxWorks

220 APPENDIX B. INFORMATION FOR SPECIFIC TARGETS

sysClkRateSet (1000)
timeSpec=malloc (8)

(* (timeSpec+0)) =0

(* (timeSpec+4))=1000000
clock_setres (0, timeSpec)
free (timeSpec)

This example sets the system ticker frequency to 1000 ticks per second and
the resolution of the realtime clock to 1ms.

B.1.7 Additional notes

e Object files: because applications for VxWorks (DKM only) are usually
only partially linked, missing external functions and missing object files
cannot be detected at build time. If native code is included in the application
with the option ob ject, Jamaica cannot check at build time if all needed
native code is linked to the application. This is only possible in the final
linker step when the application is loaded on the target system.

B.2 RTEMS

RTEMS (Real-Time Executive for Multiprocessor Systems) is a commercial-grade
real-time operating system designed for deeply embedded systems. It is a free
open source solution that supports multiprocessor systems. RTEMS is designed
to support applications with the most stringent real-time requirements while being
compatible with open standards. The JamaicaVM is available for RTEMS 4.6 and
the following target hardware:

o Intel x86

e ERC32/LEON

B.2.1 Installation

The RTEMS-Version of Jamaica is installed as described in section Installation
(see §[3.1)). In addition, the following steps are required:

Configuration with RTEMS and BSP installed

In the Jamaica configuration file jamaica-home/etc/jamaica.conf the path
of the Board Support Package (BSP) installation must be adjusted. The following
examples show the changes needed for an rtems-1386 release.

B.3. INTEGRITY 221

e Change the include path property include.rtems—« in the config file
jamaica-home/etc/jamaica.conf to the include path of the BSP. E.g.,
BSP_INSTALL_DIR/i386-rtems/pc686/1lib/include

e Change the —B option of the property XCELAGS . rtems— « to the path of
your BSP library directory. E.g., BSP_INSTALL_DIR/i386-rtems/
pc686/1ib

e Change the —B option of the property XLDFLAGS . rtems— * to the path of
your BSP library directory. E.g., BSP_INSTALL_DIR/i386-rtems/
pc686/1ib

B.2.2 RTEMS Configuration

A RTEMS application should be configured using macros like
#define CONFIGURE_APPLICATION_NEEDS_CONSOLE_DRIVER

These definitions may be made in the file jamaica-home/target /rtems—«/
include/jamaica_target_configuration.h.

B.2.3 Running an application

The Builder generates a bootable image of the application. How this image is
loaded and run depends on the BSP. An application built for the target i386-rtems
with the pc686-BSP can, for example, be loaded and run using the GRUB boot-
loader.

B.3 INTEGRITY

INTEGRITY from GreenHills Software is a secure, royalty-free Real-Time Op-
erating System intended for use in embedded systems that require maximum re-
liability. The JamaicaVM is available for INTEGRITY and the following target
hardware:

e ARM
e Blackfin

e PowerPC

222 APPENDIX B. INFORMATION FOR SPECIFIC TARGETS

B.3.1 Installation

The INTEGRITY version of Jamaica is installed as described in section Installa-
tion (see §[3.1)). In addition, the following steps are required:

Configuration with INTEGRITY and BSP installed

The path of the Board Support Package (BSP) installation in the Jamaica config-
uration file jamaica-home/etc/jamaica.conf must be adjusted.

e Check the include path property include.integrity—x in jamaica-
home/etc/jamaica.conf. It must be set to the INTEGRITY include
path, defaultis /usr/local/integrity/INTEGRITY-include.

e Check the property XCFLAGS . integrity—x for appropriate values. By
default, the compiler generates code to run on the INTEGRITY PPC simula-
tor (isimppc). The value of option —bspname may be changed accordingly
to your BSP.

e Check the property XLDFLAGS.integrity—-« for appropriate values.
By default, the linker generates an INTEGRITY kernel of your applica-
tion, i.e., it can be run directly using isimppc. This is defined through :
integrity_option=kernel. Changingthe optionto : integrity__
option=dynamic creates a dynamic downloadable module of the ap-
plication. To run such a module, start isimppc with a provided kernel:
isimppc /usr/local/integrity/sim800/kernel. Then down-
load the module using MULTI. See the MULTT and INTEGRITY documen-
tation on how to connect to your target and load modules.

B.3.2 Linker Directives File

The files INTEGRITY/BSP/default.ld and INTEGRITY/INTEGRITY.
1d are the default linker directives files used when building an INTEGRITY ap-
plication. Alternate linker directives files can be specified by the user by adding
the option —T file to the XLDFLAGS . integrity—-»* in the Jamaica configura-
tion file. For example, some INTEGRITY installations include the file flash.1ld,
an alternate to default.ld that is appropriate for a flash build. The default linker
directives files have comments which describe the various sections in the map.

Custom Linker Directives File

It may be necessary for the user to create a new linker directives file. For example,
the size of the run-time heap for the AddressSpace may need to be increased

B.4. WINDOWS 223

or decreased. Create a new linker directives file by first copying the default.ld
(for KernelSpace) or INTEGRITY.ld (for virtual AddressSpaces) to a new file;
e.g., myapplication.ld. Starting with the default file as a template ensures that
necessary sections will not be left out in the new file by mistake. For example, a
.heap section is needed in order for the KernelSpace to support C/C++ dynamic
memory allocation (e.g., malloc and new). If the default .heap is too small, it can
be made larger in myapplication.ld. The KernelSpace default heap size is 64K
bytes, as specified by the following default . 1d directive:

.heap align(16) pad(0x10000) NOCLEAR :
This can be increased in myapplication.ld to 8MB as follows:
.heap align(16) pad(0x800000) NOCLEAR :

If you need to control where in RAM the kernel is placed, you may specify the
.rambase and .ramlimit to identify the starting base of the kernel image and set the
limit of where free memory ends. This is only valid for the KernelSpace program’s
linker directives file (e.g., default.1d).

.ramlimit 0x800000

.ramlimit defines the size of available RAM (8MB by default for sim800
BSP).

The devguide manual provides detailed instructions on how to build applica-
tions for INTEGRITY.

B.3.3 Additional Target configuration

If any additional configuration of your target is required (e.g. of the network), it
may be defined in the file jamaica-home /target /integrity—+/include/
target_configuration.h. This file will be included when the application
is built.

B.4 Windows

B.4.1 Limitations

The current release of Jamaica for the desktop versions of Windows contains the
following limitations:

e No realtime signals are available.

e On multicore systems Jamaica will always run on the first CPU in the sys-
tem.

224

B.5

APPENDIX B. INFORMATION FOR SPECIFIC TARGETS

WindowsCE

B.5.1 Limitations

The current release of Jamaica for WindowsCE contains the following limitations:

WindowsCE Version 5 limits process memory to 32MB of RAM. Therefore
the application executable plus the amount of native stack for all threads
in the thread pool plus the amount of memory required to display graphics
must be less than 32MB.

It is not possible to redirect the standard 10 for processes created with
Runtime.exec ().

WindowsCE does not support the notion of a current working directory. In
Jamaica all relative paths are interpreted as relative to root (“\”).

WindowsCE does not support envrionment variables. If you have a registry
editor on your target, you can create string entries with the name of the
environment variable in

HKEY_CURRENT_USER\Softwarelaicas\jamaica\environment

to use the variable in Jamaica.

File locking through FileChannel. lock () is not supported for all file
systems on WindowsCE. If WindowsCE does not support file locking for a
given file system calls to FileChannel.lock() will fail silently. In particular,
the UNC networkfile systems does not support this mechanism.

B.6 O0OS-9

B.6.1 Limitations

The current release of Jamaica for OS-9 contains the following known limitations:

e java.net.Socket.connect ()

does not support a timeout. The value is ignored.

e java.net.Socket.bind()

does not throw an exception if called several times with the same address.

e java.nio.FileChannel .map ()

is not supported.

B.7. QNX 225

B.7 QNX

B.7.1 Installation

To use the QNX toolchain, ensure that the following environment variables are set
correctly (should be done during QNX installation):

e ONX_HOST (e.g.,C:/Programs/QNX632/host/win32/x86)
e ONX_TARGET (e.g.,C:/Programs/QNX632/target/gnx6)

For QNX 6.4 (and higher) the linker must be in the system path. On Linux, you
can set this with the PATH environment variable:

export PATH=SPATH:/opt/QNX640/host/linux/x86/usr/bin

B.8 RedHawk Linux

B.8.1 Running an application

To use the realtime capabilities of Jamaica under RedHawk Linux, the CPU and
the thread scheduling must be configured before running an application built with
Jamaica. Example configuration (system with 4 CPUs):

shield -p 2 -1 2 -1 2
cpu —-d 3

Enable FIFO scheduling in Jamaica:
export JAMAICA_SCHEDULING=FIFO
The application is then started with:

run -b 2 Application

226 APPENDIX B. INFORMATION FOR SPECIFIC TARGETS

Appendix C

Properties that Control the VM

This appendix lists the predefined properties in Jamaica. These properties con-
trol the Jamaica VM commands as well as applications created with the Jamaica
Builder.

C.1 Properties Set by the User

The standard libraries that are delivered with JamaicaVM can be configured by
setting specific Java properties. A property is a string value that has an assigned
value. The property is passed to the Java code via the JamaicaVM option

—Dname=value
or, when using the Builder, via option
-XdefineProperty+=name=value

jamaica.cost_monitoring_accuracy =nrum

This integer property specifies the resolution of the cost monitoring that is
used for RTSJ’s cost overrun handlers. The accuracy is given in nanosec-
onds, the default value is 5000000, i.e., an accuracy of Sms. The accuracy
specifies the maximum value the actual cost may exceed the given cost bud-
get before a cost overrun handler is fired. A high accuracy (a lower value)
causes a higher runtime overhead since more frequent cost budget checking
is required. See also §[10.5] Limitations of the RTSJ implementation.

jamaica.cpu_mhz = num
This integer option specifies the CPU speed of the system JamaicaVM ex-
ecutes on. This number is used on systems that have a CPU cycle counter
to measure execution time for the RTSJ’s cost monitoring functions. If the

227

228

APPENDIX C. PROPERTIES THAT CONTROL THE VM

CPU speed is not set and it could not be determined from the system (e.g.,
on Linux via reading file /proc/cpuinfo), the CPU speed will be mea-
sured on VM startup and a warning will be printed. An example setting for
a system running at 1.8GHz would be -Djamaica.cpu_mhz=1800.0.

jamaica.err_to_file

If a file name is given, all output sent to System.err will be redirected to this
file.

jamaica.err_to_null

If set to true, all output sent to System.err will be ignored. This is useful for
graphical applications if textual output is very slow. The default value for
this property is false.

jamaica. fontsproperties =resource

This property specifies the name of a resource that instructs JamaicaVM
which fonts to load. The default value is the resource com/aicas/jamaica/
awt/fonts.properties. The property may be set to a user defined re-
source file to change the set of supported fonts. The specified file itself is a
property file that maps font names to resource file names.

jamaica.gcthread_pri=n

If set to an integer value larger than or equal to 0, this property instructs the
virtual machine to launch a garbage collection thread at the given Java pri-
ority. A value of 0 will result in a Java priority 1 with micro adjustment -1,
i.e., the scheduler will give preference to other threads running at priority
1. By default, a GC thread is not used. See §[8.1.5for more details.

jamaica.loadLibrary ignore_error

This property specifies whether every unsuccessful attempt to load a native
library dynamically via System.loadLibrary() should be ignored by the VM
at runtime. If set to true and System.loadLibrary() fails, no UnsatifiedLink-
Error will be thrown at runtime. The default value for this property is false.

jamaica.no_sig_int_handler

If this boolean property is set, then no default handler for POSIX signal
SIGINT (Ctr1-C) will be created. The default handler that is used when
this property is not set prints “x+x break.” to System.err and calls
System.exit (130).

jamaica.no_sig_quit_handler

If this Boolean property is set, then no default handler for POSIX signal
SIGQUIT (Ctr1-\) will be created. The default handler that is used when
this property is not set prints the current thread states via a call to com.
aicas.jamaica.lang.Debug.dump.ThreadStates ().

C.1. PROPERTIES SET BY THE USER 229

jamaica.no_sig_term_handler
If this boolean property is set, then no default handler for POSIX signal
SIGTERM (default signal sent by ki11) will be created. The default han-
dler that is used when this property is not set prints “xx+ terminate.’”
to System.err and calls System.exit (130).

jamaica.out_to_file
If a file name is given, all output sent to System.out will be redirected to this
file.

jamaica.out_to_null
If set to true, all output sent to System.out will be ignored. This is useful
for graphical applications if textual output is very slow. The default value
for this property is false.

jamaica.profile_groups = groups
To analyze the application, additional information can be written to the pro-
file file. This can be done by specifing one or more (comma separated)
groups with that property. The follwing groups are currently supported:
builder (default), memory, speed, all. See §[6]for more details.

jamaica.profile_request_port =port
When using the profiling version of JamaicaVM (jamaicavmp or an ap-
plication built with “~profile=true”), then this property may be set
to an integer value larger than O to permit an external request to dump the
profile information at any point in time. See §[6] for more details.

jamaica.reservation_thread priority=n

If set to an integer value larger than or equal to 0, this property instructs
the virtual machine to run the memory reservation thread at the given Java
priority. A value of 0 will result at a Java priority 1 with micro adjustment
-1, i.e., the scheduler will give preference to other threads running at prior-
ity 1. By default, the priority of the reservation thread is set to O (i.e., Java
priority 1 with micro adjustment -1). The priority may be followed by a +
or — character to select priority micro-adjustment +1 or —1, respectively.
Setting this property, e.g., to 10+ will run the memory reservation thread
at a priority higher than all normal Java threads, but lower than all RTSJ
threads. See § for more details.

jamaica.scheduler_ events_port
This property defines the port where the ThreadMonitor can connect to re-
ceive scheduler event notifications.

230 APPENDIX C. PROPERTIES THAT CONTROL THE VM

jamaica.scheduler_events_port_blocking
This property defines the port where the ThreadMonitor can connect to re-
ceive scheduler event notifications. The Jamaica runtime system stops be-
fore entering the main method and waits for the ThreadMonitor to connect.

jamaica.softref.minfree
Minimum percentage of free memory for soft references to survive a GC
cycle. If the amount of free memory drops below this threshold, soft refer-
ences may be cleared. In JamaicaVM, the finalizer thread is responsible for
clearing soft references. The default value for this property is 10%.

jamaica.xprof =n
If set to an integer value larger than 0 and less or equal to 1000, this
property enables the jamaicavm’s option —Xprof. If set, the property’s
value specifies the number of profiling samples to be taken per second, e.g.,

-Djamaica.xprof=100 causes the profiling to make 100 samples per
second. See §[13.1.2|for more details.

C.2 Predefined Properties

The JamaicaVM defines a set of additional properties that contain information
specific to Jamaica:

jamaica.boot.class.path
The boot class path used by JamaicaVM. This is not set when a stand-alone
application has been built using the Builder (see §[14)).

jamaica.buildnumber
The build number of the JamaicaVM.

jamaica.byte_order
One of BIG_ENDIAN or LITTLE_ENDIAN depending on the endianness
of the target system.

jamaica.heapSizeFromEnv
If the initial heap size may be set via an environment variable, this is set to
the name of this environment variable.

jamaica.home
The JamaicaVM installation directory. This property is not set on systems
where the JamaicaVM installation is not needed, i.e., when a stand-alone
application has been built using the Builder (see §[I4).

jamaica.immortalMemorySize
The size of the memory available for immortal memory.

C.2. PREDEFINED PROPERTIES 231

jamaica.maxNumThreadsFromEnv
If the maximum number of threads may be set via an environment variable,
this is set to the name of this environment variable.

jamaica.numThreadsFromEnv
If the initial number of threads may be set via an environment variable, this
is set to the name of this environment variable.

jamaica.release
The release number of the JamaicaVM.

jamaica.scopedMemorySize
The size of the memory available for scoped memory.

jamaica.strictRTSJ
Boolean property. Value depends on the setting of the —strictRTSJ op-
tion that was used when building the application. See § for more de-
tails.

jamaica.version
The version number of the JamaicaVM.

232 APPENDIX C. PROPERTIES THAT CONTROL THE VM

Appendix D

Heap Usage for Java Datatypes

This chapter contains a list of in-memory sizes of datatypes used by JamaicaVM.
For datatypes that are smaller than one machine word, only the smallest mul-
tiple of eight Bits that fits the dataype will be occupied for the value. L.e., several
values of types boolean, byte, short and char may be packed into a single machine
word when stored in an instance field or an array.
Tab. shows the usage of heap memory for primitive types, Tab. D.2]shows
the usage of heap memory for objects, arrays and frames.

233

234 APPENDIX D. HEAP USAGE FOR JAVA DATATYPES

Datatype Memory Demand | Min Value Max Value
Bits | Bytes

boolean 8 1 - -

byte 8 1 —27 21 —1

short 16 2 —21 215 1

char 16 2 \u0000 \uffff

int 32 4 —231 231 1

long 64 8 —203 203 1

float 32 4 1.4E-45F 3.4028235E38F

double 64 8 49E-324 | 1.7976931348623157E308

Java reference | 32 4 - -

Table D.1: Memory Demand of Primitive Types

Data Structure

| Memory Demand |

Object header (containing garbage collection state, object

-) 12 Bytes
type, inlined monitor and memory area)
Array header (containing object header, array layout in-

) 16 Bytes
formation and array length)
Java object size on heap (minimum) 32 Bytes
Java array size on heap (minimum) 32 Bytes
Minimum size of single heap memory chunk 64 KBytes
Garbage Collector data overhead for heap memory. For
a usable heap of a given size, the garbage collector will 6.25%
allocate this proportion of additional memory for its data.
Stack slot 8 Bytes
Java stack frame of normal method 4 slots
Java stack frame of synchronized method 5 slots
Java stack frame of static initializer 7 slots
Java stack frame of asynchronously interruptible method 8 slots
Additional Java stack frame data in profile mode 2 slots
Table D.2: Memory Demand of Objects, Arrays and Frames

Appendix E

Limitations

This appendix lists limitations of the Jamaica virtual machine and tools.

E.1 VM Limitations

| Aspect Limit

Number of Java Threads 511

Maximum Monitor Nest Count (repeated monitor en-
ter of the same monitor in nested synchronized
statements or nested calls to synchronized meth-

ods). Exceeding this value will result in throwing 255
an java.lang.InternalError with detail message

"Max. monitor nest count reached (255)"

Minimum Java heap size 64KB
Maximum Java heap size 2GB
Minimum Java heap size increment 64KB
Maximum number of heap increments. The Java heap may

not consist of more than this number of chunks, i.e., when

dynamic heap expansion is used (max heap size is larger than

initial heap size), no more than this number of increments will 156

be performed, including the initial chunk. To avoid this limit,
the heap size increment will automatically be set to a larger
value when more than this number of increments would be
needed to reach the maximum heap size.

235

236 APPENDIX E. LIMITATIONS

| Aspect Limit |
Maximum number of memory areas (instances of
javax.realtime.MemoryArea). Note that two in- 256
stances are used for HeapMemory and ImmortalMemory.
Maximum size of Java stack 64MB
Maximum size of native stack 2GB

Maximum number of constant UTFS strings (names and sig-
natures of methods, fields, classes, interfaces and contents of
constant Java strings) in the global constant pool (exceeding
this value will result in a larger application)

Maximum number of constant Java strings in the global con-
stant pool (exceeding this value will result in a larger appli- 216
cation)

Maximum number of name and type entries (references to
different methods or fields) in the global constant pool (ex- 216
ceeding this value will result in a larger application)
Maximum Java array Iength. Independent of the heap size,
Java arrays may not have more than this number of elements.
However, the array length is not restricted by the heap size
increment, i.e., even a heap consisting of several increments 227 _ 1
each of which is smaller than the memory required for a Java
array permits the allocation of arrays up to this length pro-
vided that the total available memory is sufficient.

Maximum number of virtual methods per Java class (includ-

216

ing inherited virtual methods) 4095
Maximum number of interface methods per Java interface 4095
(including interface methods inherited from super-interface)

On posix systems where t ime_spec.tv_sec is a 32 Bit Tue Jan 19

value it is not possible to wait until a time and date that is

04:14:07 2038
later than

Table E.1: JamaicaVM limitations

E.2 Builder Limitations

The static compiler does not compile certain Java methods but leaves them in
interpreted bytecode format independent of the compiler options or their signifi-
cance in a profile.

e Static initializer methods (methods with name <clinit>) are not com-
piled.

E.2. BUILDER LIMITATIONS 237

A simple way to enable compilation is to change a static intializer into a
static method, which will be compiled. That is, replace a static initializer

class A

{

static

{

<initialisation code>

}

by the following code:
class A
{
static
{
init ();

}

private static void init ()

{

<initialisation code>

e Methods with bytecode that is longer than the value provided by builder
option XexcludeLongerThan are not compiled.

e When option lazy is set (which is the default), methods that reference a
class, field or method that is not present at build time are not compiled. The
referenced class will be loaded lazily by the interpreter.

238 APPENDIX E. LIMITATIONS

Appendix F

Internal Environment Variables

Additional debugging output can be activated through environment variables if an
application was built with the internal option —~debug=t rue. This option and its
environment variables are used for debugging Jamaica itself and are not normally
relevant for users of JamaicaVM.

JAMAICA DEBUGLEVEL Defines the debug level of an application that was
built with the option debug. A level of 0 means that only a small amount of
debug output is printed; a level of 10 means that very detailed debug output
is printed.

Note that at a debug level of 10 a simple HelloWorld application will pro-
duce thousands of lines of debug output. A good choice is a level of about 5.

JAMAICA DEBUGCALLNATIVE Defines a string that gives the name of a native
method. Any call to that method is printed in addition to other debug output.
Printing of these calls requires a minimum debug level of 5. If the variable
is not set or set to **’, any native call will be printed.

JAMAICA DEBUGCALLJAVA Defines a string that gives the name of a Java
class or method. Any call to the specified method or to a method defined in
the specified class will be printed in addition to the other debug output.

Printing of these calls requires a minimum debug level of 5. If the vari-
able is not set or set to ‘*’, any call is printed. E.g., setting JAMATCA__
DEBUGCALLJAVAto java/lang/String.length will print any call
to the method java.lang.String.length().

239

240 APPENDIX F. INTERNAL ENVIRONMENT VARIABLES

Bibliography

[1] Greg Bollella, James Gosling, Benjamin Brosgol, Peter Dibble, Steve Furr,
and Mark Turnbull. The Real-Time Specification for Java. Addison-Wesley,
2000.

[2] Peter C. Dibble. Real-Time Java Platform Programming. Prentice-Hall, 2002.

[3] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java Language
Specification. Addison-Wesley, Boston, Mass., third edition, 2005.

[4] Mike Jones. What really happened on Mars? URL: http://research.
microsoft.com/ mbj/Mars_Pathfinder/, 1997.

[5] Sheng Liang. Java Native Interface: Programmer’s Guide and Specification.
Addison-Wesley, 1999.

[6] Tim Lindholm and Frank Yellin. The Java Virtual Machine Specification.
Addison-Wesley, second edition, 1999.

[7] C. L. Liu and J. W. Wayland. Scheduling algorithms for multiprogramming
in hard real-time environment. Journal of the ACM, 20, 1973.

241

http://research.microsoft.com/~mbj/Mars_Pathfinder/
http://research.microsoft.com/~mbj/Mars_Pathfinder/

Index

-2, [134} [147] [194} [197]

-agentlib, [138] [T78]
-all,[19§|

-analyse, [163]
-analyseFromEnv, [163]
-analyze, [163]
-analyzeFromEnv, [163]
-atomicGC, [164]

-bootclasspath, 30} [T96] [T99)

-cdc, 153

-classname, [196]

-classpath, [T34] [T48], [196] [T99]
-cldc, [153]

~closed, [154]

-compile, [156]

-configuration, [T48] [196] 19§

-constGCwork, [163|
-constGCworkFromEnv, [164]

-cp, [129 [148} [196} 199

'D’ @

-d, [T30} [195]
-deprecation,
-destination, [T5T]
-dwarf2,

-ea, [148]

-enableassertions, [I4§]
-encoding, [131]
-excludeClasses, [149]
-excludeFromCompile, [I50]
-excludeJAR, [130]

-extdirs, [130]

-finalizerPri, [160]
-finalizerPriFromEnv, [T6]]

-g,[13]]

-h,[147,[194]

-heapSize, [157]
-heapSizeFromEnv, 60|
-heapSizelncrement, [I57]
-heapSizelncrementFromEnv, @
-help, [134} [147} [194} [197]

—-help, [147, [194} [T97]

-immortalMemorySize,
-immortalMemorySizeFromEnv, @
-includeClasses, [148]
-includeFilename, 193]

-includeJAR, [T50]

-incremental Compilation, [I53]
-inline, [156]

-interpret, [I55]

-], m

-jar, [148]

-javaStackSize, [157]
-javaStackSizeFromEnv, [16]]
-jni, [195]

_j S, m

-lazy, [150]

-lazyFromEnv, [I5T]

-main, [I48]
-maxHeapSize, [157]

242

INDEX

-maxHeapSizeFromEnv, @
-maxNumThreads, [15§|
-maxNumThreadsFromEnv, [T61]
-mi,

-ms, [133]

-mx,

-nativeStackSize, [158]
-nativeStackSizeFromEnv, [16]]

-nowarn, [130]

-ns, IE
-numJniAttachableThreads, [159]

-numJniAttachableThreadsFromEnv, [16]]

-numThreads, [158], [199]
-numThreadsFromEnv, [16]]

-o, [I51}[195]
-object, [169)
-optimise, [I56]
-optimize, [156|

-percentageCompiled, [169]
-physicalMemoryRanges, [L68]
-priMap, [161]
-priMapFromEnv, [162]

-profile, [168]

-reservedMemory, [165]
-reservedMemoryFromEnv, [165]

-resource, [151]
-saveSettings, [196] 198

-scopedMemorySize,
-scopedMemorySizeFromEnv, [167]
-setFonts, [152]

-setGraphics, [[52]
-setLocales, [152]

-setProtocols, [153]
-setTimeZones, [152]
-showExcludedFeatures, [153]
-showIncludedFeatures, [153]

-showSettings, @ @ @

243

-smart, [154]
-source, [130]
-sourcepath, [130]

-ss, [135]
-stopTheWorldGC, [164]

-strictRTSJ, [166]
-strictRTSJFromEnv,

target,[T30} 159

-threadPreemption, 159
-timeSlice, [159]

-tmpdir, [151]

-useProfile, [169]
-useTarget, 129

-verbose, [147}, [198]
-version, [134] [147] 195} [198]

'X’ Im IEI

-XavailableTargets, 76|
-Xbootclasspath, [133] [T71],[196], [199]
-Xcc,

_XCFLAGS,[[T3

-XdefineProperty,
-XdefinePropertyFromEnv,
-XenableDynamicJNILibraries, [I76]
-XenableZIP,
-XexcludeLongerThan,
-XextendedGlobalCPool, [T71]
-XfullStackTrace,

Xhelp, (147} [195} 193
--Xhelp, [147]
-xhelp, [134]

-XignoreLineNumbers,
-Xinclude, [177]

-Xint, [153]

-XjamaicaHome,

-XjavaHome, [T71]

-Xjs, [133]

-XlazyConstantStrings,
-XlazyConstantStringsFromEnv, [172]

244

-X1d,

_XLDFLAGS,
-Xlibraries,
-XlibraryPaths, [I75]
-XlinkDynamicFlags, 173
-XlinkDynamicPrefix,
-XlinkStatic,
-XlinkStaticFlags,
-XlinkStaticPrefix, [173]
-XloadJNIDynamic, [I77]
-Xmi, [135]

-Xms, [133]

-Xmx, [133]

-XnoClasses, [172]
-XnoMain, [172]
-XnoRuntimeChecks, [I73]
-Xns, [136]
-XobjectFormat,

-XobjectProcessorFamily,

-XobjectSymbolPrefix, [177]

-Xprof, 136

-XprofileFilename, [138]
-XprofileFilenameFromEnv, [168]

-Xss, [133]
-XstaticLibraries, [174]

-Xstrip, [T73]
-XstripOptions,

INDEX

	I Introduction
	Preface
	Intended Audience of This Book
	Contacting aicas
	What is New in JamaicaVM 6.0

	Key Features of JamaicaVM
	Hard Realtime Execution Guarantees
	Real-Time Specification for Java support
	Minimal footprint
	ROMable code
	Native code support
	Dynamic Linking
	Supported Platforms
	Development platforms
	Target platforms

	Fast Execution
	Tools for Realtime and Embedded System Development

	Getting Started
	Installation of JamaicaVM
	Linux
	Sun/Solaris
	Windows

	Installation of License Keys
	JamaicaVM Directory Structure
	Building and Running an Example Java Program
	Host Platform
	Target Platform
	Improving Size and Performance
	Overview of Further Examples

	Notations and Conventions
	Typographic Convertions
	Argument Syntax
	Jamaica Home and User Home

	Tools Overview
	Jamaica Java Compiler
	Jamaica Virtual Machine
	Jamaica Builder — Creating Target Executables
	Jamaica ThreadMonitor — Monitoring Realtime Behaviour

	Support for the Eclipse IDE
	Plug-in installation
	Setting up JamaicaVM Distributions
	Setting Virtual Machine Parameters
	Building applications with Jamaica Builder
	Getting started
	Jamaica Buildfiles

	II Tools Usage and Guidelines
	Performance Optimization
	Creating a profile
	Creating a profiling application
	Using the profiling VM
	Dumping a profile via network
	Creating a micro profile

	Using a profile with the Builder
	Building with a profile
	Building with multiple profiles

	Interpreting the profiling output
	Format of the profile file
	Example

	Reducing Footprint and Memory Usage
	Code Size vs. Runtime Performance
	Using Smart Linking
	Using Compilation

	Optimizing RAM Memory Demand
	Measuring RAM requirements
	Memory for an Application's Data Structures
	Memory for API libraries
	Memory Required for Threads
	Memory Required for Line Numbers

	Memory Management Configuration
	Configuration for soft-realtime applications
	Initial heap size
	Maximum heap size
	Finalizer thread priority
	Reserved memory
	Using a GC thread
	Stop-the-world Garbage Collection
	Recommendations

	Configuration for hard-realtime applications
	Usage of the Memory Analyzer tool
	Building using the Memory Analyzer
	Measuring an application's memory requirements
	Fine tuning the final executable application
	Constant Garbage Collection Work
	Comparing dynamic mode and constant GC work mode
	Determination of the worst case execution time of an allocation
	Examples

	Debugging Support
	Enabling the Debugger Agent
	Configuring the IDE to Connect to Jamaica
	Reference Information

	The Real-Time Specification for Java
	Realtime programming with the RTSJ
	Realtime Garbage Collection
	Relaxations in JamaicaVM
	Use of Memory Areas
	Thread Priorities
	Runtime checks for NoHeapRealtimeThread
	Static Initializers
	Class PhysicalMemoryManager

	Strict RTSJ Semantics
	Use of Memory Areas
	Thread priorities
	Runtime checks for NoHeapRealtimeThread
	Static Initializers
	Class PhysicalMemoryManager

	Limitations of RTSJ Implementation

	Realtime Programming Guidelines
	General
	Computational Transparency
	Efficient Java Statements
	Non-Obvious Slightly Inefficient Constructs
	Statements Causing Implicit Memory Allocation
	Operations Causing Class Initialization
	Operations Causing Class Loading

	Supported Standards
	Real-Time Specification for Java
	Java Native Interface
	Java 2 Micro Edition

	Memory Management
	Memory Management of RTSJ
	Finalizers
	Configuring a Realtime Garbage Collector
	Programming with the RTSJ and Realtime Garbage Collection
	Memory Management Guidelines

	Scheduling and Synchronization
	Schedulable Entities
	Synchronization

	Libraries
	Summary
	Efficiency
	Memory Allocation
	EventHandlers
	Monitors

	III Tools Reference
	The Jamaica Java Compiler
	Usage of jamaicac
	Classpath options
	Compliance options
	Warning options
	Debug options
	Other options

	Environment Variables

	The Jamaica Virtual Machine Commands
	jamaicavm
	JamaicaVM Options
	JamaicaVM Extended Options
	Environment variables used by JamaicaVM

	jamaicavm_slim
	jamaicavmp
	Additional extended options of jamaicavmp

	jamaicavmdi
	Additional options of jamaicavmdi

	Environment Variables
	Exitcodes

	The Jamaica Builder
	How the Builder tool works
	Builder Usage
	General
	Classes, files and paths
	Smart linking
	Compilation
	Memory and threads
	GC configuration
	RTSJ settings
	Profiling
	Native code

	Builder Extended Usage
	General
	Classes, files and paths
	Compilation
	Profiling
	Native code
	Miscellaneous

	Environment Variables
	Exitcodes

	The Jamaica ThreadMonitor
	Run-time system configuration
	Control Window
	Control Window Menu

	Data Window
	Data Window Navigation
	Data Window Menu
	Data Window Context Window
	Data Window Tool Tips
	Worst-Case Execution Time Window

	Jamaica and the Java Native Interface (JNI)
	Using JNI
	The Jamaicah Command
	General
	Classes, files, and paths
	Environment Variables

	The Numblocks Command
	Command Line Options
	General
	Classes, files, and paths
	Memory and threads settings

	Environment Variables

	Building with Apache Ant
	Task Declaration
	Task Usage

	IV Additional Information
	FAQ — Frequently Asked Questions
	General Information
	JamaicaVM
	Remote Method Invocation (RMI)
	Builder
	Fonts
	VxWorks Target

	Information for Specific Targets
	VxWorks
	Configuration of VxWorks
	Installation
	Starting an application (DKM)
	Starting an application (RTP)
	Linking the application to the VxWorks kernel image
	Limitations
	Additional notes

	RTEMS
	Installation
	RTEMS Configuration
	Running an application

	INTEGRITY
	Installation
	Linker Directives File
	Additional Target configuration

	Windows
	Limitations

	WindowsCE
	Limitations

	OS-9
	Limitations

	QNX
	Installation

	RedHawk Linux
	Running an application

	Properties that Control the VM
	Properties Set by the User
	Predefined Properties

	Heap Usage for Java Datatypes
	Limitations
	VM Limitations
	Builder Limitations

	Internal Environment Variables

