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WELCOME TO S+SPATIALSTATS 1.5

Congratulations on acquiring Version 1.5 of the S+SPATIALSTATS
module of S-PLUS. This new version features a Graphical User
Interface to the functions already introduced in S+SPATIALSTATS 1.0,
plus exciting new functionality. 

New features in version 1.5 include:

• Block Kriging

• Variogram Fitting

• Summary and plot methods for spatial neighbor objects

• Simulation of Nonhomogenous Poisson Point Patterns

• New data set: Glasgow.SMR

• Numerous Bug fixes: find.neighbor, quad.tree, sids
dataset names

The Graphical User Interface, that is, the menus and dialogs in
S+SPATIALSTATS 1.5, has been designed with your convenience in
mind. It also delivers the accuracy and high-quality you expect from
our product. 

Use this supplemental guide to:

• Get started using the dialogs in the Graphical User Interface
of S+SPATIALSTATS 1.5 to facilitate your spatial data analyses.

• Learn to use other menus, dialogs, and graphical interface
features in the general S-PLUS environment to perform
analysis of spatial data.
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This guide describes how to use the S+SPATIALSTATS 1.5 Graphical
User Interface (GUI). It is a companion to the S+SPATIALSTATS
User’s Manual. That manual provides extensive detail regarding the
various techniques available for spatial data analysis, as well as
information on how to perform such analyses using S-PLUS
commands. 

In this guide you will also find descriptions of the features in
S+SPATIALSTATS that are new to version 1.5, specifically how to fit
variograms, perform block kriging, simulate non-homogeneous
Poisson processes, and how to create summaries and plots of spatial
neighbor objects. You will also learn to use the new GUI to access the
analytical tools available in previous versions and receive guidance
on conducting an analysis of spatial data using the full functionality of
the S-PLUS for Windows interface.

This supplemental guide has been organized according to the new
menus and dialogs in the GUI of version 1.5, which are in turn
organized according to the types of spatial data that can be analyzed
using S+SPATIALSTATS: Geostatistical, Lattice, and Point Pattern
Data.

This chapter provides an introduction to these three types of spatial
data. The S+SPATIALSTATS User’s Manual contains detailed
discussions of each type including mathematical descriptions and
assumptions of the diverse methodologies used for their analysis and
consequent statistical inference. 

INTRODUCTION 1
1



Chapter 1  Introduction
SPATIAL DATA

Spatial data consist of measurements or observations taken at specific
locations or within specific regions. In addition to values for various
attributes of interest, spatial data sets also include the locations or
relative positions of the data values. Locations may be point or areal
referenced. For example, point referenced data are observations
recorded at specific fixed locations and might be referenced by
latitude and longitude. Areal referenced data are observations specific
to a region; for example, the number of burglaries occurring in census
tracts, where each census tract is a region. In both cases, spatial
locations may be regular or irregular: point locations may fall on a
regularly spaced grid, or may be irregular with varying distances
between points; areal locations can comprise equally sized contiguous
blocks that might occur in an agriculture field study, or may be of
variable size and shape such as the city limits within a county. Spatial
data may be continuous, such as the measurements of ore content
from a core sample, or discrete, such as the number of measles cases
reported by county. Further, the locations may come from a spatial
continuum such as the point locations within a mining field, or a
discrete set, such as the counties within a state.

S+SPATIALSTATS provides tools for analyzing three specific classes of
spatial data: geostatistical data, lattice data, and spatial point patterns.

Geostatistical 
Data

Geostatistical data, also termed random field data, are measurements
taken at fixed locations. The locations are generally spatially
continuous. Examples of continuous geostatistical data include
mineral concentrations measured at test sites within a mine, rainfall
recorded at weather stations, concentrations of pollutants at
monitoring stations, and soil permeabilities at sampling locations
within a watershed. An example of discrete geostatistical data is count
data, such as the number of scallops at a series of fixed sampling sites
along the coast.

Lattice Data Lattice data are observations associated with spatial regions, where the
regions can be regularly or irregularly spaced. The spatial regions can
be any spatial collection, and are not limited to a grid. Generally,
neighborhood information for the spatial regions is available. An
example of regular lattice data is information obtained by remote
2



Spatial Data
sensing from satellites. The earth's surface is divided into a series of
small rectangles (pixels) and the data are received as a regular lattice
in R2. An example of irregular lattice data is cancer rates
corresponding to each county in a state. 

Mathematically, a lattice is defined by a set of vertices and edges. The
sites form the vertices, which are then connected to neighboring sites
by edges. Since lattice data are defined for spatial regions, a method
of referencing sites must be determined; sites are often referenced by
the centroids of the regions. A lattice is composed of an index set of
sites with an associated set of neighbors. 

Spatial Point 
Patterns

Point pattern data arise when locations themselves are the variable of
interest. Spatial point patterns consist of a finite number of locations
observed in a spatial region. Identification of spatial randomness,
clustering, or regularity is often the first analysis performed when
looking at point patterns. Examples of point pattern data include
locations of a species of tree in a forested region and locations of
earthquake epicenters. 

A marked spatial point pattern includes values of additional related
variables at each location. The additional variables are often called
mark variables and may be used to further refine the analysis of point
patterns. The Lansing Woods data set, introduced in the
S+SPATIALSTATS User’s manual, contains a marked spatial point
pattern; in addition to the locations, the tree species were also
recorded.
3
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This chapter describes how to get started with the S+SPATIALSTATS
graphical user interface:

1. Load the module.

2. Examine the Spatial menu.

3. Find help on S+SPATIALSTATS.

GETTING STARTED 2
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Chapter 2  Getting Started
LOADING THE MODULE

The first step in using S+SPATIALSTATS 1.5 is to load the module.
Loading the module will make the spatial analysis functions available,
create the Spatial menu, and load the S+SPATIALSTATS 1.5 dialogs.

To load the module:

Choose File cccc Load Module from the main menu. The dialog
below appears:

To load the S+SPATIALSTATS 1.5 module, select spatial as the
Module and press OK.

A new menu selection, Spatial, will appear on the main S-PLUS menu
bar. Select this menu item to access the dialogs to analyze your spatial
data.
6



The Spatial Menu
THE SPATIAL MENU

The Spatial menu provides access to the S+SPATIALSTATS 1.5
dialogs. To launch a dialog, simply select the desired menu item.

The menu is separated in three sections according to the type of
spatial data that the corresponding methodology applies to. The first
six items correspond to the analysis of geostatistical data, the next
three to data observed on a lattice, and the final two apply primarily
to spatial point pattern data.
7



Chapter 2  Getting Started
GETTING HELP

Help is available in a variety of ways:

• Use the Help cccc S+SPATIALSTATS Help menu item to open
the S+SPATIALSTATS help file.

• The Help button on a dialog will display help for that dialog. 

• The command line function help will provide help on a
specified function. 

• This supplement is also available online in a PDF file
viewable using Adobe Acrobat. Use the Help cccc Online
Manuals menu item to access it. 
8



Geostatistical data, also termed random field data, consist of
measurements taken at fixed locations. Variogram estimation and
kriging are commonly used with geostatistical data. These methods
were originally introduced as geostatistical methods for use in mining
applications. In recent years, these methods have been applied to
many disciplines including meteorology, forestry, agriculture,
cartography, climatology, and fisheries.

This section describes the following dialogs:

• Variogram Cloud

• Geometric Anisotropy

• Empirical Variogram

• Model Variogram

• Ordinary Kriging

• Universal Kriging

GEOSTATISTICAL DATA 3
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Chapter 3  Geostatistical Data
EXPLORATORY DATA ANALYSIS

In this section, we will give specific examples of EDA for geostatistical
data—data collected on a continuous spatial surface (see chapter 1 of
the S+SPATIALSTATS User’s Manual for a more precise definition).
The coal.ash data frame is used in an example of EDA for data
collected on an equally spaced grid of locations. 

The coal.ash data will then be used to illustrate the use of the
S+SPATIALSTATS 1.5 dialogs to analyze geostatistical spatial data.

Example: The 
Coal Ash Data

The coal.ash data come from the Pittsburgh coal seam on the
Robena Mine Property in Greene County, Pennsylvania (Cressie,
1993)1.

The data frame contains 208 coal ash core samples collected on a grid
given by x and y planar coordinates.

To plot the grid locations: 

1. Open a view of the data on a Data Window. You can do this
by selecting Data cccc Select Data from the main menu and
then entering coal.ash as the Name of the existing data set
desired. The resulting dialog follows:

You could also use the command line directive:

> guiOpenView(Name=coal.ash, classname="data.frame")

2. Proceed by selecting the first 2 columns of the data frame in
the window. 

1. Cressie, Noel A. C. (1993).  Statistics for Spatial Data, Revised Edition.
John Wiley and Sons, New York.
10



Exploratory Data Analysis
3. From the Plots2D palette, choose a scatter plot by pressing
the first button on the top left-hand side corner. 

4. A plot of the sampling locations appears. Notice the gridded
pattern that these observations follow.

To superpose information about the percent coal ash at each sampling
location we can overlay a contour map of coal ash, or make the
symbols at each sampling point vary in some way according to that
variable, coal.

For illustration purposes, we will demonstrate both in this section.
The S+SPATIALSTATS User’s Manual contains detailed plots that
show the distribution of coal ash percentages over the sampled area,
potential outliers, and trend analysis. We will refer to those results
whenever necessary.

To vary symbols according to a third variable:

1. Select the Graph Sheet with the points, and click on the points
themselves until a green knob appears at the bottom of the
bulk of the data. 

2. Right-click and select Data to Plot from the middle of the
context menu that appears. 

3. Select coal as the z Column from the drop-down list
available and 

4. Click the Vary Symbols tab. 

5. Select z Column on the Vary Size By field, and change the
Minimum and Maximum Heights to 0.05 and 0.20,
respectively so as not to overwhelm the plot with symbols that
are too large. You may also want to change the Symbol Style
(on the Symbol tab) to a solid circle for better visualization of
the significance of their size.

To explore how the different values of coal percentage vary over the
sampling region, you may use the Label Point tool from the Graph
Tools palette and move through the points clicking on them. Point 50
seems to be an outlier as exposed in the User’s Manual. 

To superimpose contours of coal ash percentage in the samples:

1. Select the 3 columns on the open data window: x, y, and coal
in that order. 
11



Chapter 3  Geostatistical Data

r-
2. Then select the graph region in the plot above and Shift-click
the Contours button on the Plots2D palette. Contour lines
varying with percentage of coal will be added to the plot of
the sampling locations. These contours are calculated
internally in S-PLUS using Akima’s fitting method (Akima,
1978)1. See the help file for the S-PLUS interp for more
detail.

A few cosmetic changes can be made to the resulting plot. For
example, use the Gridding/Hist tab of the Contour Plot properties
dialog to clear the Extrapolation option and the Labels tab to add
labels to the contours (set Label Frequency to 1) and perhaps change
the font to make them more prominent. In the figure below, the
number of contours was also increased and a title inserted. 

The outlier, 17.6, is quite apparent and it is driving the shape of the
resulting contours. 

1. Akima, H. (1978). A Method of Bivariate Interpolation and Smooth Su
face Fitting for Irregularly Distributed Data Points. ACM Transactions on 
Mathematical Software, 4, 148-164.
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Variogram Cloud
VARIOGRAM CLOUD

The variogram cloud is a diagnostic tool that can be used to look for
potential outliers or trends, and to assess variability with increasing
distance. Anomalies and non-homogeneous areas can be detected by
looking at short distances that yield high dissimilarities.

To plot a variogram cloud:

Choose Spatial cccc Variogram Cloud from the main menu. The
dialog below appears:

Example:

Use the coal.ash data in the S+SPATIALSTATS data sets. From the
analysis in the User’s Manual, we know that these data exhibit a
strong East-West trend. The variogram values in the East-West
direction are likely influenced by the trend (the stationarity
13



Chapter 3  Geostatistical Data
assumption is violated in the presence of trend). We will restrict the
variogram cloud computations to points in a North-South direction by
manipulating the azimuth and its tolerance, as follows. 

1. Launch the Variogram Cloud dialog.

2. Enter coal.ash as the Data Set to be analyzed.

3. Select coal as the Variable to be analyzed and select x, and
y, as Location 1 and Location2, respectively.

4. Change the Azimuth Tolerance from the omnidirectional
value of 90 degrees to a narrow .01.

5. Save the resulting object as coal.vgcloud.

6. Press OK.

A two-page Graph sheet appears containing a box plot and a scatter
plot of the variogram cloud. The variogram cloud shows a scatter of
high value points for the full range of distance values.

There is a method in S+SPATIALSTATS that can be used to identify
points in a variogram cloud; to invoke this method enter the
following command in the Commands Window while the Variogram
Cloud is the current active plot (this is required):

> identify(coal.vgcloud)

Identifying the high values in the variogram cloud shows that they all
are paired with observation 50, which was determined to be an
outlier indeed. We will remove observation 50 from further
variogram modeling.

The variogram cloud provides a diagnostic tool to look for potential
outliers or trends and to assess variability with increasing distance. It
provides the distribution of the variance between all pairs of points at
all possible distances and, as a consequence, it may yield extremely
dense point clouds that may be difficult to interpret. To reach a point
when we can model the variability in the data, a smoother version of
the variogram is available through the Empirical Variogram dialog.
14



Geometric Anisotropy
GEOMETRIC ANISOTROPY

Anisotropy is present when the spatial autocorrelation of a process
changes with direction. Unlike a variogram from an isotropic process,
the variogram from an anisotropic process is not purely a function of
distance, but is a function of both distance and direction.   The
anisotropy plot is useful for exploring whether the process the data
comes from is isotropic or whether the shape of the variogram
changes with direction.

To create an anisotropy plot:

Choose Spatial cccc Geometric Anisotropy from the main menu.
The dialog below appears:

Example:

Use the coal data once again:

1. Enter coal.ash as the Data Set of interest.

2. Select coal in the Variable field, and x and y, respectively
as Location 1 and Location 2.

3. Enter -50 in the Subset Rows with field to remove
observation 50.

4. Enter c(0,90) as the Angles of anisotropy to explore, that is,
the East-West and North-South directions.
15



Chapter 3  Geostatistical Data
5. Press OK.

A multipanel plot appears in a Graph sheet, with several directional
variograms for all combinations of four ratio values for each of the 2
directions entered. The plot follows

There are no apparent changes for differing ratio values (between
rows) but the variograms on the left do look different from those on
the right. 

The Geometric Anisotropy dialog also provides an Options tab
where the user can specify parameters to control the estimation of the
variogram values for each combination of angle and ratio values. See
the dialog’s help file for detailed information or section 4.1.4 of the
S+SPATIALSTATS User’s Manual.
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Empirical Variogram
EMPIRICAL VARIOGRAM

The empirical variogram provides a description of how the data are
related (correlated) with distance. The distances are binned and the
corresponding variogram values averaged for each bin thereby
producing a smoother version of the variogram which leads to easier
modeling. You can control the degree of smoothing by adjusting the
size of the “bins” or “lags”, the number of points in each bin, and the
distance of reliability (half the maximum distance over the field of data
by default) for the variogram. Several directional variograms can be
returned and as usual, a correction for Geometric Anisotropy can be
made to the data before processing.

To plot an empirical variogram:

Choose Spatial cccc Empirical Variogram from the main menu. The
dialog below appears:

Example:

Continue analyzing the coal.ash data in S+SPATIALSTATS. 

1. Launch the Empirical Variogram dialog.
17



Chapter 3  Geostatistical Data
2. Select coal in the Variable field, and x and y, respectively
as Location 1 and Location 2.

3. Enter -50 in the Subset Rows with field to remove
observation 50.

4. Change the Azimuth Tolerance to .01. 

5. Save the result as coal.vg.ns.

6. Press OK.

A plot of the empirical variogram appears in a Graph sheet.

Note that restricting our computation to only points in a North-South
direction is not the same as Correcting for Geometric Anisotropy.
When using the variogram values for those pairs that are related in a
North-South direction only, we are assessing one way the variance-
covariance of the process changes without making any corrections to
it. We are trying to understand variability only in the N-S direction.
This makes some sense in applications that relate to physical data
where gradients are quite possible. Later on, we apply our knowledge
about this directional variation to the fitting of a kriging surface to the
data using Universal Kriging techniques. 
18



Model Variogram
MODEL VARIOGRAM

In order to perform kriging, it is necessary to specify a theoretical
variogram function for the process. The Model Variogram dialog is
useful for examining the goodness-of-fit of various theoretical
variograms to the observed empirical variogram. Typically this dialog
will be used repeatedly to determine an appropriate variogram
function and parameter values.

To fit a theoretical variogram:

Choose Spatial cccc Model Variogram from the main menu. The
dialog below appears:

Example:

Use the coal.ash data in S+SPATIALSTATS. Note that for the
purposes of this example we will fit a theoretical variogram to the
North-South empirical variogram we estimated above. In practice, we
want to first remove trend and explore the data further as is done in
the User’s Manual.

1. Launch the Model Variogram dialog.

2. Select the name of a fitted empirical variogram object from
the drop-down list in the Variogram Object field. Enter the
object saved after using the Empirical Variogram dialog,
coal.vg.ns.
19



Chapter 3  Geostatistical Data
3. Select a function to fit to the variogram, say a Spherical.

4. At this point you may check Fit Parameters and have the
variogram parameters fitted automatically using the
S+SPATIALSTATS function variogram.fit, or enter your
own. Check the Fit Parameters check box.

5. The parameters values are filled in automatically. Enter a
name in the Save As field to save the resulting variogram
model. Enter coal.vgmdl.

6. Press Apply.

You could also fit the variogram by trying different values of the
parameters and looking at the Objective Function. When doing this,
make sure that the Fit Parameters box is not checked.

1. The empirical variogram plot suggests that a Nugget of
around 0.7 and a Sill of around 1.1 are appropriate. Enter
these parameter values.

2. Now try various values of Range by entering them one at a
time and pressing Apply after each input. Look at the
resulting plot each time along with the objective value printed
on the plot to assess how well the specified theoretical
variogram matches the empirical variogram.

3. A Range of 6 gives a local minima in the objective value.
After we have selected this Range, we may wish to try other
values of Sill and Nugget to further reduce the objective
value.

4. Trying various values suggests that an empirical variance
function with range of 6.5, sill of 1.9, and nugget of 1.1
matches the empirical variogram pretty well. Enter these
values and press Apply.

5. Press OK or Cancel to dismiss the dialog.

Try fitting the variogram without removing observation 50 and see
how much influence this value has on the final variogram model. You
will need to fit an empirical variogram first and then proceed to the
Model Variogram dialog.

The results, saved in the object named as stated in the Save As field,
can be given to one of the kriging dialogs to fit a kriging surface to the
spatial process of interest.
20



Ordinary and Universal Kriging
ORDINARY AND UNIVERSAL KRIGING

Kriging is a linear interpolation method that allows predictions of
unknown values of a random field from observations at known
locations. Kriging incorporates a model of the covariance of the
random function when calculating predictions of the unknown values.

S+SPATIALSTATS provides two Kriging dialogs to support both
ordinary and universal kriging.

Ordinary kriging uses a random function model of spatial correlation to
calculate a weighted linear combination of available samples, for
prediction of a nearby unsampled location. Weights are chosen to
ensure that the average error for the model is zero and that the
modeled error variance is minimized. 

Universal kriging is an adaptation of ordinary kriging that
accommodates trend. The trend is modeled as a polynomial function
of spatial location. Universal kriging can be used to both produce
local estimates in the presence of trend, and to estimate the
underlying trend itself. Universal kriging with a constant mean is
equivalent to ordinary kriging.

The Ordinary and Universal Kriging dialogs provide several
options for prediction. Block Kriging predictions (the average over a
rectangular area) are possible using the dialogs as well as Point
predictions either on a grid or at new sampling points.

Several different plots can be requested to help visualize both the
predictions and their standard errors.
21



Chapter 3  Geostatistical Data
To perform ordinary kriging:

Choose Spatial cccc Ordinary Kriging from the main menu. The
dialog below appears:

Example:

Let us krige the coal data.

1. Launch the Ordinary Kriging dialog.

2. Enter coal.ash as the Data Set of interest.

3. Select coal in the Variable field, and x and y, respectively
as Location 1 and Location 2.

4. Enter -50 in the Subset Rows with field to remove
observation 50.

5. Check the Use Values from a Variogram Fit box.
22



Ordinary and Universal Kriging
6. Select coal.vgmdl from the drop-down list in the
Variogram Fit field. This is the variogram.fit object that
we obtained using the Model Variogram dialog. The fields
for the Variogram parameters automatically fill.

7. Save to an object named coal.ordKrige.

8. Move to the Plot tab. Specify Surface Plots for both the
predictions and their standard errors.

9. Press OK.

You see a summary of the fitted object, coal.ordKrige, in a Report
window, and the plot on different pages of a Graph sheet.

The exploratory plots of the data presented in the S+SPATIALSTATS
User’s Manual indicated the presence of a strong gradient in these
data. This gradient might be apparent if we plot the observations
against location.

To plot the coal observations against location:

1. Create a new data set by removing observation 50 from the
coal.ash data frame by entering these commands in the
Commands Window:

> coal.no50 <- coal.ash[-50,]    # Remove 50th row

2. Choose Data cccc Select Data from the main menu and open
the coal.no50 data frame.

3. Select columns x and coal.

4. From the Plots2D palette, choose a scatter plot with a loess
fit through it by pressing the corresponding button (a scatter
plot with an L on it). 

5. Click on the graphsheet and choose Insert cccc Annotation cccc
Reference Line cccc Horizontal and add a horizontal dashed
line at the mean of the observations, that is set Position at
9.740725, to the plot of the observations against x.

6. Go back to the Data Window and select y and coal this time.

7. Click on the graphsheet with the observations vs. x plot and
SHIFT-click on the scatter plot with a loess fit on the Plots2D
palette. The plot of coal against y will be superimposed on
the other plot.
23



Chapter 3  Geostatistical Data
8. Separate the plots by clicking on the plot region (not on a data
point) and selecting Multipanel from the resulting menu.

9. Select By Plot as the Panel Type and set the Layout to be a 1
column by 2 rows plot arrangement.

After inserting a title, you see the figure below:

The trend is apparent from the bottom plot. We will try to model this
trend as a second order polynomial in x as part of a Universal Kriging
fit in the following section.
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Ordinary and Universal Kriging
To perform universal kriging:

Choose Spatial cccc Universal Kriging from the main menu. The
dialog below appears:

As an example, krige the coal data.

1. Launch the Universal Kriging dialog.

2. Enter coal.ash as the Data Set of interest.

3. Select coal in the Variable field, and x and y, respectively
as Location 1 and Location 2.

4. Enter -50 in the Subset Rows with field to remove
observation 50.

5. Select x and x^2 as trend terms.

6. Select a Spherical Variogram Function with Range of 6.570,
Sill of 0.109, and Nugget of 0.917, the values fitted using the
Empirical Variogram dialog.
25



Chapter 3  Geostatistical Data
7. Save to an object named coal.krige.

8. Move to the Predict tab and check the boxes specifying that
the Predictions and Standard Errors should be saved. Enter
coal.kgpred in the Save In field.

9. Leave the Locations Type set to its default value of Grid.
The predicted values will be on a grid.

10. Move to the Plot tab. Specify Surface Plots for both the
predictions and their standard errors.

11. Press OK.

You see a summary of the fitted object, coal.krige, in a Report
window, and the plot on different pages of a Graph sheet, and a Data
window with the predictions.

A plot of both the predictions and their standard errors follows:

Compare this with Figure 4.25 of the S+SPATIALSTATS User’s
Manual. Other plots can be generated by having the prediction object
coal.kgpred open. Select 3 columns x, y, and fit, and try different
displays but pushing buttons on the Plots2D and Plots3D palettes.
You may want to rotate different graphs to look at the predictions
from several different angles.

Kriging Predictions Kriging Std. Errors
26



Ordinary and Universal Kriging
Plotting the residuals from this fit produces a tighter fit about the 0
reference lines though there are still a few high values.

Block Kriging Block kriging is the general term used for the prediction of the average
value of a random field over a segment, surface, or volume. The term
Point kriging refers to prediction of the field at a point.

In S+SPATIALSTATS, block kriging is computed by the predict
method for objects of call "krige", predict.krige, and is
implemented on the Predict tab of both Kriging dialogs. 

Block kriging is restricted to prediction of the average value over a
rectangular area. The integral over the block rectangular is
approximated by the average of the point predictions within the
block. You may control the number of points to be considered in the
average as well as the block size.
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Chapter 3  Geostatistical Data
To perform block kriging on the coal data:

1. Choose Spatial cccc Universal Kriging from the main menu.

2. Use the rollback button at the bottom of the dialog to recover
the settings used in performing Universal Kriging on the coal
data. 

3. Move to the Predict tab. The dialog below appears:

4. Enter coal.BKpred as the name of the object to save the
predictions in.

5. Check both Predictions and Standard Errors to be saved.

6. Choose Block as the Prediction Type.

7. Specify a 1 x 1 block by entering 1 as the Block Length(X)
and the same as the Block Width (Y) (or leaving the default
values in).
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Ordinary and Universal Kriging
8. Specify 5 as the number of points in the X direction to be
averaged for each block.

9. Specify also 5 points in the Y direction.

10. Click OK.

The predictions are calculated with the supplied prediction locations
in the center of the block. The block prediction will be the average of
point predictions at 25 locations within each block.

The predicted values are very similar to those obtain with the default
Point kriging when performing Universal Kriging. That is to be
expected.

The standard errors are much smaller for the block kriging since the
predictions are averages.

Kriging Std. Errors
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Lattice data are observations from a random process observed over a
countable collection of spatial regions, and supplemented by a
neighborhood structure.   The observation locations can be regular
(equally spaced grid) or irregular, and data at a particular location
typically represent the entire region. The data observed at each site
may be continuous or discrete.

Before modeling the spatial component of lattice data in
S+SPATIALSTATS, we assume stationarity and multivariate normality
of the small-scale variation in the data, that is, of the error term. This
means that trend must be removed, and transformations may be
required to stabilize the variance and/or to approximate normality.

The primary tools available for examining lattice data are Spatial
Correlations and Spatial Regression. These dialogs require a data
set containing the observations at each location, and a spatial
neighbor object describing the spatial relationship between the
observations. The Spatial Neighbors dialog creates a spatial
neighbor object.

This section describes the following dialogs:

• Spatial Neighbors

• Spatial Correlations

• Spatial Regression

LATTICE DATA 4
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Chapter 4  Lattice Data
EXPLORATORY ANALYSIS

The sample data frame sids contains spatial data collected on a
lattice. The collection points are counties in the state of North
Carolina, and the data are the rates of death from Sudden Infant
Death Syndrome (SIDS) for the years 1974-1978 (Cressie, 1993)1. The
components of the SIDS data frame are:

> names(sids)
[1] "id"          "easting"     "northing"    "sid"
[5] "births"      "nwbirths"    "group"      
[8] "sid.ft"      "nwbirths.ft"
>

Data for the years 1979-1984 are also available in sids2. See the sids
help file for explanations of the individual variables.

To form a spatial lattice, you must have data locations and
neighborhood information. The locations for the SIDS data are stored
in easting and northing. Neighborhood information is typically
stored in a neighbor matrix, where two regions i and j are neighbors if
the ij-th element of the neighbor matrix is non-zero. In
S+SPATIALSTATS, neighbor information is stored in an object of class
“spatial.neighbor”, a sparse matrix representation of the neighbor
matrix. The S-PLUS object sids.neighbor already contains the
neighbor information for the SIDS data.

To summarize a spatial neighbor:

We can summarize the neighborhood information calling the
summary method for a spatial neighbor as follows:

> summary(sids.neighbor)
Matrix was NOT defined as symmetric
Number of Regions: 100 
Average Number of Connections: 4.020408 
Average Weight: 0.1306507 
Least Number of Connections: 1 for Regions with Indices:
[1] 10 16 67
Maximum Number of Connections: 8 for Regions with Indices:

1. Cressie, Noel A. C. (1993).  Statistics for Spatial Data, Revised Edition.
John Wiley and Sons, New York.
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Exploratory Analysis
[1] 21
Missing Row Indices:
[1] 28 48
Missing Column Indices:
[1] 28 48
Indices of Regions with No Connections (islands):
[1] 28 48
> 

The resulting summary describes the neighborhood as being defined
for 100 regions with varying neighbor weights. Each county has about
4 neighbors on the average with one county having 8 neighbors and 2
having none. The latter are known as “islands” in S+SPATIALSTATS.
We can use the row names of the data frame to determine which
neighbors are special.

> row.names(sids)[21]
[1] "Chowan"
> row.names(sids)[c(28,48)]
[1] "Dare" "Hyde"
> 

Chowan has the most neighbors while Dare and Hyde counties are
isolated.

To plot a spatial neighbor object:

A neighbor object can be plotted from the Command line in version
1.5 of S+SPATIALSTATS by issuing a command such as 

> plot(sids.neighbor, xc=sids$easting, yc=sids$northing, 
+ scaled=T)
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Chapter 4  Lattice Data
The following figure is produced:

We see, roughly, the shape of the state of North Carolina, as the
county seats are joined by line segments to indicate their neighbor
relationship.
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Spatial Neighbors
SPATIAL NEIGHBORS

Lattice modeling is the spatial analogue to time series modeling. A
time series is modeled by predicting the outcome for each time based
on its dependence on the preceding observation or set of
observations. A spatial process is modeled by predicting the outcome
for each region based partially on its dependence on nearby or
neighboring regions. Choosing a neighborhood structure is the first
step in the analysis of lattice data. The result determines the
covariance structure used for the spatial component of a more general
linear regression model.

Neighbors may be defined as regions which border each other, or as
regions within a certain distance of each other. The neighbor
relationship is not necessarily symmetric. For example, the
underlying process may flow in only one direction, or a region that is
very large might exhibit influence on, but not be influenced by, a
smaller region. Since the neighborhood structure is the basic structure
for the covariance model for lattice data, the careful definition of
spatial neighbors is a crucial analysis step.

The Spatial Neighbors dialog provides a variety of ways to create a
spatial neighbor object.
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Chapter 4  Lattice Data
To create a spatial neighbor object:

Choose Spatial cccc Spatial Neighbors from the main menu. The
dialog below appears:

Example:

Model the spatial neighborhood structure for the sids dataset in
S+SPATIALSTATS.

1. Launch Spatial Neighbors dialog.

2. Select Nearest Nhbrs as the source of neighborhood
information. This implies that the neighbors will be defined
by distances between point locations and so the location
variables will need to be provided.

3. Enter sids as the Data Set of interest.

4. Select easting and northing as Variables 1 and 2
respectively.

5. Specify Max Dist of 30, keeping Euclidean as the metric and
1 as the number of neighbors to consider.

6. Enter sids.nhbr30 in the Save In field.
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Spatial Neighbors
7. Press OK.

A Data Window opens containing the spatial neighbor object. We can
use this object to compute spatial correlations and perform spatial
regression.

Several sources are considered when using the Spatial Neighbors
dialog depending on how the neighborhood information is stored in
S-PLUS or on an ascii file to be read in. These are:

• Nearest Nhbrs, to be used when you have point locations.

• Row and Col ID, to enter data that is already paired up by
neighbors with row and column identifiers for each neighbor
pair.

• Weight Matrix, if the square matrix containing the neighbor
weights is available for input.

• Create Grid, to generate regular lattices.

• Read File, to browse an ASCII file of varying record length
and a set of neighbors per row.

Click the Help button on the dialog for more specifics on each of
these options and the corresponding S+SPATIALSTATS function.

After using this dialog for your data, make sure that the results are
saved and then explore their structure with both the summary and
plot methods illustrated above for objects of class
“spatial.neighbor”.
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Chapter 4  Lattice Data
SPATIAL CORRELATIONS

If a process is spatially autocorrelated, there may be a need for spatial
modeling. A test for spatial autocorrelation can be performed as an
exploratory technique to decide whether spatial modeling should be
used. The null hypothesis is of no correlation, and the alternative
hypothesis is specifically defined by a weighted neighbor matrix. The
result is therefore sensitive to the choice of neighbors and weights, so
it may be desirable to run the autocorrelation under several different
scenarios. The calculation of spatial autocorrelation assumes constant
mean and variance. If the process contains trend or non-constant
variance, the results should be used with caution.

The Spatial Correlations dialog computes spatial autocorrelation
and related estimates of variation.

To compute spatial correlations:

Choose Spatial cccc Spatial Correlations from the main menu. The
dialog below appears:

Example:

Calculate Spatial Correlations for the sids data. If you haven’t
already used the data to create the spatial neighbor object
sids.nhbr30, follow the steps in the previous section before
proceeding.
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Spatial Correlations
The occurrence of SIDS is not likely to have constant variance, since
counties with low birth rates will have more variance. The sid.ft
column contains rates standardized using the Freeman-Tukey square
root transformation. We will look at the spatial correlation of the
transformed variable. 

1. Launch the Spatial Correlations dialog.

2. Select sids as the Data Set.

3. Select sids.ft from the Variables list. Notice that multiple
selections are allowed.

4. Select sids.nhbr30 as the Neighbor Object.

5. Specify Statistic of moran, Sampling Type of free, and
Num Permute of 100. 

6. Press OK.

A summary of the spatial correlation is displayed in a Report window.
The small Normal p-value and permutation p-value suggest that
spatial autocorrelation is present for this variable.

*** Spatial Correlations * *

Spatial Correlation Estima t

Statistic = "moran" Sampling = "fre e

Correlation =  0.259
Variance    =  0.00478
Std. Error  =  0.0691

Normal statistic =  3.8 9
Normal p-value (2-sided) =  9.927e -

Null Hypothesis:  No spatial autocorrelati

Summary of the permutation-correlations 
    Min.  1st Qu.   Median     Mean 3rd Qu.   M a
 -0.1432 -0.08002 -0.01972 -0.01936 0.03252 0.1 5

permutation p-value = 
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Chapter 4  Lattice Data
SPATIAL REGRESSION

To model spatial lattices, we look at two levels of variation—large-scale
change in the mean due to spatial location or other explanatory
variables, and small-scale variation due to interactions with
neighbors. The change in mean is modeled as a linear model, taking
into account an autoregressive or moving average covariance model
reflecting the interactions with neighbors.

The Spatial Regression dialog fits a linear model with spatial
dependence using generalized least squares regression.

To fit a spatial regression model:

Choose Spatial cccc Spatial Regression from the main menu. The
dialog below appears:
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Spatial Regression
Example:

Fit a Spatial Regression model to the sids data frame. See the
S+SPATIALSTATS User’s Manual for a detailed explanation on the
choice of regression variables and Covariance Model. This example is
equivalent to the example run on page 131 of the Manual.

1. Launch the Spatial Regression dialog.

2. Enter sids as the Data Set to be modeled.

3. Select the sid.ft and nwbirths.ft columns as Dependent
and Independent variables, respectively.

4. Enter -4 in the Subset Rows with field to remove
observation 4 as it was identified as an outlier in section 3.3 of
the User’s Manual.

5. Set the Cov Type to CAR.

6. Enter sids.neighbor as the Neighbor Object.

7. To enter spatial weights, consult the help file for the
S+SPATIALSTATS function slm and enter the argument
weights=1/sids$births in the Parameters text box.

8. Enter sids.slm1 in the Save As field.

9. Press OK.

A summary of the spatial regression is displayed in a Report window.
It includes the actual call to the S+SPATIALSTATS function slm, the
coefficients of the regression, their variance-covariance matrix, and
other parameters of the spatial relationships and covariance matrix
structure. In particular, the coefficients for this model indicate a
highly significant effect of non-white births on rates of SIDS in North
Carolina.

Coefficients
             Value Std. Error t value Pr(>| t
(Intercept) 1.6456 0.2385     6.8990  0.00
nwbirths.ft 0.0345 0.0066     5.2068  0.00
41



Chapter 4  Lattice Data
Diagnostic plots on the residuals should follow this analysis to assess
the adequacy of the model fitted. You can save the residuals by
indicating so in the Results tab of the Spatial Regression dialog.
Alternatively, you may extract them from the fitted model using the
residuals method as follows:

> sids.slm1.resid <- residuals(sids.slm1)
> summary(sids.slm1.resid)
 Min. 1st Qu. Median Mean 3rd Qu. Max. 
 -106  -18.79   7.01 3.61   26.27 77.8
> qqnorm(sids.slm1.resid)

For example, the sequence of commands above would yield a
quantile-quantile normal plot of the residuals to assess the normality
assumption. 
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A mapped spatial point pattern is a collection of points located within
a bounded region of space. The points can denote locations of
naturally occurring phenomena such as earthquakes or plants, or
social events such as the locations of small towns or the occurrences
of a particular disease.

The data locations or points might be randomly located, tending to
cluster in groups, or follow a regular and predictable pattern. A
typical data analysis of a point pattern focuses on the question of
whether the point locations are completely spatially random (CSR) or
whether we should make an attempt to model an apparent lack of
spatial randomness. 

Formal checks for CSR and modeling techniques for spatial point
patterns are described in chapter 6 of the S+SPATIALSTATS User’s
Manual. In this section, we describe ways to use the GUI of S-PLUS
and S+SPATIALSTATS to visualize spatial point patterns and to assess
the hypothesis of CSR.

A data set containing the mapped locations of maple and hickory
trees in a 19.6 acre square plot in Lansing Woods, Clinton County,
Michigan, will be used for the examples in this section (Diggle,
1983)1. The data have been scaled so that they reside on the unit
square, although this is not necessary for their analysis. See the User’s
Manual for a more complete description of the data set.

This section describes the following dialogs:

• Spatial Randomness

• Intensity

SPATIAL POINT PATTERNS 5

1. Diggle, Peter J. (1983). Statistical Analysis of Spatial Point Patterns. Aca-
demic Press Inc., New York.
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Chapter 5  Spatial Point Patterns
EXPLORATORY ANALYSIS

The exploratory analysis of a spatial point pattern begins with a map
of the observations.

To view a spatial point pattern:

1. First open a view of the data on a Data Window. You can do
this by selecting Data cccc Select Data from the main menu
and then entering lansing as the Name of the existing data
set desired. The resulting dialog follows:

You could also use the command line directive:

> guiOpenView(Name=lansing, classname="data.frame")

2. Proceed by selecting all 3 columns of the data frame in the
window, starting with the first column, column x. 

3. From the Plots2D palette, choose a scatter plot by pressing
the first button on the top left-hand side corner. A scatter plot
of the tree locations appears. In this scatter plot the points will
be plotted with a different symbol for each species. 

You may change the symbol color and shape independently for each
species to suit your taste and help you differentiate the 2 species
better.

4. Position the cursor on a data point and right-click.

5. Select Symbol from the middle of the resulting context menu. 

6. Change the symbol’s Style and Color as preferred, pressing
Apply to assess each change.

7. Press OK, when satisfied.

8. Repeat steps 4-7 for the other symbol.
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Exploratory Analysis
9. Chose Insert cccc Legend from the main menu and insert a
legend. Move the legend by dragging it and position as
desired on or outside the plot.

10. Chose Insert cccc Titles cccc Main from the main menu and
insert a title on top of the plot.

When plotting spatial data such as these, it is preferable to have both
axis scaled the same way for geometric accuracy, that is, a scale that
conforms to the actual observation locations. 

To scale the axis:

1. Right-click on the plot region of the scatter plot (not on a data
point).

2. Select Position/Size from the middle of the resulting context
menu. 

3. Change the Aspect Ratio from Auto to 1 (or set to
Proportional Units). 

4. Click OK. 
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Chapter 5  Spatial Point Patterns
Insert a title and a legend by choosing Insert from the main menu.
The resulting plot would look as the one below, perhaps with
different symbols depending on your choice:

No spatial pattern is immediately obvious as the Lansing Woods data
is very dense when the 2 species are taken together. The data is an
example of a bivariate point pattern. We can plot the species
separately and see if any patterns come to light.

To separate the plot into 2 panels by species:

1. Right-click on the scatter plot region again.

2. This time, select Multipanel from the middle of the resulting
context menu.

3. From the Panel Type drop-down, select By Plot. Set # of
Columns to 2 in the Layout group on the same page.
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Exploratory Analysis
4. Click OK. 

The figure below appears. Reposition the legend to uncover the axes..

These plots show that there may be interaction between the two tree
species. It may be that the presence of one species inhibits the
presence of the other.
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Chapter 5  Spatial Point Patterns
SPATIAL RANDOMNESS

Typical assumptions of interest for point pattern data are:

1. The intensity of the point pattern does not vary over the
boundary region.

2. There are no interactions among the points—points neither
inhibit nor encourage each other.

A spatial point pattern with these properties is said to be Completely
Spatially Random. See Chapter 6 of the S+SPATIALSTATS user’s
Manual for a more rigorous definition and further examples.

The Fhat and Ghat statistics are useful for assessing the first
assumption (constant intensity). The Khat and Lhat statistics are
useful for assessing the second assumption (second-order intensity
which does not depend on absolute location).

The Spatial Randomness dialog provides plots and saved values for
Fhat, Ghat, Khat, and Lhat.
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Spatial Randomness
To calculate measures of spatial randomness:

Choose Spatial cccc Spatial Randomness from the main menu. The
dialog below appears:

Example:

Explore the Spatial Randomness of the lansing data frame in
S+SPATIALSTATS:

1. Launch Spatial Randomness dialog.

2. Enter lansing as the Data Set of interest.

3. Select x and y as the Location 1 and 2 variables, respectively.

4. Type species==”maple” in the Subset Rows with field.
This will subset those rows of the data frame that correspond
to the maples only. (Note that another approach would be to
choose Data cccc Subset from the main menu, to create a data
set of just the maples.)

5. Check Fhat and Ghat plots.

6. Press OK.
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Chapter 5  Spatial Point Patterns
A Graph sheet opens displaying the Fhat and Ghat plots for the
maples. These are plots of the Empirical Distribution Function (EDF)
of the origin-to-point (Fhat) and the point-to-point (Ghat) nearest
neighbor distances for the maples in the Lansing Woods. 

Values of Ghat are computed for every neighbor distance in the point
process by default. The grid of origins in the Fhat calculation is
determined by the square root of the total number of points in the
given point process. For more specifics on the calculations, consult
the individual S+SPATIALSTATS help files for Fhat and Ghat.

Visual judgement of Ghat is based on the fact that if there is clustering
in the data, we would expect to see an excess of short distance
neighbors, while if there is regularity in the data, then there would be
an excess of long distance neighbors.

The interpretation of the Fhat plot is opposite that of the Ghat plot.
An excess of high distance values is interpreted as clustering. As
before, we could compare this statistic to simulations from a CSR
process for a visual interpretation. 

When edge effects need to be considered, we can assess the
hypothesis of CSR using Monte Carlo techniques. For example, we
can simulate the EDF of nearest neighbor distances from several
realizations of a CSR process on A, the region containing the original
point pattern. The average of the simulations provides a reference
line, and the maximum and minimum provide a simulation envelope.

The Spatial Randomness dialog provides the ability to draw
simulation envelopes for both the Khat and Lhat statistics.

To compute a simulation envelope for an estimate of Lhat:

1. Launch Spatial Randomness dialog.

2. Enter lansing as the Data Set of interest (or press the Roll
Back button and skip to step 5).

3. Select x and y as the Location 1 and 2 variables, respectively.

4. Type species=="maple" in the Subset Rows with field.
This will subset those rows of the data frame that correspond
to the maples only.

5. Check Lhat plot. The Khat/Lhat Options group is enabled.
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Spatial Randomness
6. Check Construct Simulation Envelope and specify 50
simulations to estimate the envelope. 

7. Select "poisson" as the process to simulate.

8. Set the lambda parameter of the Poisson to 10 by entering
lambda=10 in the Sim. Parameters field.

9. Press OK.

Warning: 

The number of simulations does not need to be large, and in
fact if a large number of simulations is requested, S-PLUS may
take a long time to complete the simulations.

The picture below appears:

The second-order properties of spatial point processes describe how
the interaction or spatial dependence between points varies through
space. These properties are usually described by the second-order
intensity of the spatial point pattern. An alternative description of the
second order properties is defined by the K-function defined in section
6.3.2 of the S+SPATIALSTATS User’s Manual.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Distance

0.0

0.2

0.4

0.6

Lh
at
51



Chapter 5  Spatial Point Patterns
INTENSITY

The intensity of a point pattern is the mean number of points per unit
area. Intensity plots display a smooth estimate of intensity for a spatial
point pattern. The intensity estimate may be saved and displayed in a
Data window for further exploration using the point-and-click
graphics.

To calculate intensity:

Choose Spatial cccc Intensity from the main menu. The dialog below
appears:

Example:

Calculate and plot the intensity for the lansing data in
S+SPATIALSTATS

1. Launch Intensity dialog.

2. Enter lansing as the Data Set of interest.

3. Select x and y as the Location 1 and 2 variables, respectively.
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Intensity
4. Type species=="maple" in the Subset Rows with field.
This will subset those rows of the data frame that correspond
to the maples only.

5. Select "binning" as the Method.

6. Specify 0.25 as the Smoothing Parameter.

7. Check the Contour Plot, and Filled Contour Plot boxes.

8. Check Include Points.

9. Type maple.int into the Save In field.

10. Click OK. 

A graph sheet appears with the intensity plots, and a Data window
with the intensity estimates.

Having the estimates of intensity of the maple process on a Data
Window helps you to continue with other visualization of the data.
For example:

11. Select all three columns in the maple.int Data window.

12. Open the Plots3D palette. Press the 32 Color Surface button
to create a filled surface plot of intensity.

You may also rotate the resulting plot and get different views of its
peaks and valleys in doing so.

Three methods are available to estimate the intensity of a spatial point
pattern using the Intensity dialog in S+SPATIALSTATS: binning, kernel,
and gauss2d. These three methods estimate the intensity locally over
the total region A, and return a data frame containing smoothed
intensity estimates which may vary over A, as well as interpolated x
and y values to facilitate plotting. Several S-PLUS 3D plot types can
then be used to visualize this variation and to assess the hypothesis of
a constant intensity throughout the sampling area.
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Chapter 5  Spatial Point Patterns
The binning method uses a two-dimensional histogram to form
rectangular bins. The counts in these bins are smoothed using a loess
smoothing algorithm. Using the binning method for the maple data as
explained in the sequence above yielded the following plot:

All of the intensity estimation and other visualization techniques used
in this section show that the intensity of the maple trees in the Lansing
Woods appears to vary more than would be expected by random
fluctuations. This might be due to the deficit of maple trees in the
north corners of the plot, which might be explained by interaction
with hickory trees.
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Appendix: Data and Function Reference
The functions and data sets described in this appendix are included
with S+SPATIALSTATS. The information in this appendix is also found
in the online help. For more information on accessing the online help,
see Chapter 2, Getting Started. 

APPENDIX A: DATA AND 
FUNCTION REFERENCE A
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l

anisotropy.plot anisotropy.plotExplore Corrections For Geometric Anisotropy

DESCRIPTION
Computes corrections for geometric anisotropy for two dimensional spatial data and plots variograms
based on the corrections.

USAGE
anisotropy.plot(formula=formula(data), data=sys.parent(),

subset, na.action, lag= <<see below>>,
nlag=20, tol.lag=lag/2, maxdist= <<see below>>,
angle=c(0, 45, 90, 135),
ratio=seq(1.25, 2, length = 4),
minpairs=6, method="classical",
smooth=T, plot.it=T, panel=panel.xyplot, ...)

REQUIRED ARGUMENTS
formula formula defining the response and the predictors. In general, its form is:

z ˜ x + y

Thez variable is a numeric response. Variablesx andy are the locations. All variables in the formula
must be vectors of equal length with no missing values (NAs). The formula may also contain expres-
sions for the variables, for example,sqrt(count) , log(age+1) or I(2*x) . (The I() is required
since the* operator has a special meaning on the right side of a formula.)

OPTIONAL ARGUMENTS
data an optional data frame in which to find the objects mentioned informula .

subset expression saying which subset of the rows of the data should be used in the fit. This can be a logica
vector (which is replicated to have length equal to the number of observations), or a numeric vector in-
dicating which observation numbers are to be included, or a character vector of the row names to be in-
cluded.

na.action a function to filter missing data. This is applied to themodel.frame after anysubset argument has
been used. The default (withna.fail ) is to create an error if any missing values are found. A possi-
ble alternative isna.omit , which deletes observations that contain one or more missing values.

lag a numeric value, the width of the lags. If missing,lag is set tomaxdist / nlag .
nlag an integer, the maximum number of lags to calculate.

tol.lag a numeric value, the distance tolerance.
maxdist the maximum distance to include in the returned output. The default is half the maximum distance in

the transformed data.
angle a vector of direction angles (in degrees, clockwise from North) to consider as directions of anisotropy.
ratio a vector of ratios of anisotropy. These should all be greater than 1.

minpairs the minimum number of pairs of points (minimum value fornp) that must be used in calculating a vari-
ogram value. Ifnp is less thanminpairs , that value is dropped from the variogram.

method a character string to select the method for estimating the variogram. The possible values are"clas-

sical" for Matheron’s (1963) estimate and"robust" for Cressie and Hawkins (1980) robust estima-
tor. Only the first character of the string needs to be given.

smooth a logical flag, ifTRUE, a loess smooth line is drawn for each variogram panel. Ifpanel is supplied
then this value is ignored.

panel a panel function to be used in plotting the variograms. Ifplot.it=FALSE , this value is ignored.
plot.it a logical flag, ifTRUE, a plot of all the variogram is drawn.

... additional arguments to be passed down to the panel function for plotting.
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VALUE
a data frame with columns:

distance the average distance for pairs in the lag.
gamma the variogram estimate.

np the number of pairs in each lag.
angle a factor denoting the angle for the geometric anisotropy.
ratio a factor with levels denoting the ratio for the geometric anisotropy.

SIDE EFFECTS
If plot.it=TRUE (the default) the variogram for each combination ofangle and ratio is plotted.
The plot is drawn usingxyplot .

DETAILS
For each combination ofangle andratio the locations are corrected for geometric anisotropy. The
correction consists of multipling each location pair (x[i] ,y[i] ) by the symmetric 2 x 2 matrixA
whereA[1,1] =cos(angle)ˆ2+ratio*sin(angle)ˆ2 , A[1,2] =(1- ratio) * sin(angle) *

cos(angle) and A[2,2] =sin(angle)ˆ2+ratio*cos(angle)ˆ2 . See Journel and Huijbregts
(1978, pp 179-181). The variogram is then estimated using these corrected locations.

REFERENCES
Cressie, N. and Hawkins, D. M. (1980). Robust estimation of the variogram.Mathematical Geology
12, 115-125.

Journel, A. G. and Huijbregts, Ch. J. (1978).Mining Geostatistics.Academic Press, New York.

Matheron, G. (1963). Principles of geostatistics.Economic Geology58, 1246-1266.

SEE ALSO
loc , variogram , xyplot .

EXAMPLES
anisotropy.plot(log(tcatch+1) ˜ long + lat, data=scallops, lag=.075)

check.islands check.islandsDetect Isolated Spatial Regions

DESCRIPTION
Given an object of class"spatial.neighbor" detects spatial units that have no neighbors (islands).

USAGE
check.islands(x, remap=F)

REQUIRED ARGUMENTS
x an object of class"spatial.neighbor" .

OPTIONAL ARGUMENTS
remap logical flag: if there is an island, should we recode the indexing of the spatial contiguity matrix to elim-

inate the rows and columns with all zeroes? That is, should we renumber componentsrow.id and
col.id of the spatial neighbor object?

VALUE
if remap=FALSE the list of existing islands is returned. Otherwise, an object of class"spa-

tial.neighbor" with remappedrow.id andcol.id .
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SIDE EFFECTS
the attribute"nregion" of the output may differ from that ofx whenremap=T .

SEE ALSO
spatial.neighbor , spatial.subset , spatial.weights

EXAMPLES
sids.nhbr2 <- check.islands(sids.neighbor,remap=T)

find.neighbor find.neighborFind the Nearest Neighbors of a Point

DESCRIPTION
Find the k nearest neighbors of a vectorx in a matrix of data contained in an object of class
"quad.tree" .

USAGE
find.neighbor(x, quadtree=quad.tree(x), k=1, metric="euclidean",

max.dist=NULL, drop.self=F)

REQUIRED ARGUMENTS
x a vector (or matrix) containing the multidimensional point(s) at which the nearest neighbors are de-

sired. The vector must have the same number of elements as the number of columns in the numeric
matrix used to constructquadtree . If a matrix is used, the matrix must have the same number of
columns as the numeric matrix used to constructquadtree , and nearest neighbors are found for each
row in the matrix.

OPTIONAL ARGUMENTS
quadtree an object of class"quad.tree" containing the sorted matrix of data for which a nearest neighbor

search is desired. Defaults toquad.tree(x) if x is a matrix but it is required whenx is a vector.
k the number of nearest neighbors to be found. If the datax is the same data that was used to construct

the "quad.tree " object, thenk = 1 results in each element having itself as its own nearest neighbor.
metric a character string giving the metric to be used when finding "nearest" neighbors. Partial matching is al-

lowed. Possible values are:"euclidean" , "city block" , and"maximum absolute value" for
the l2, l1, andl∞ norm, respectively. For two vectorsx andy, these are defined as:

l1 =
i
Σ |xi − yi |,

l2 = √ i
Σ(xi − yi )2),

l∞ =
i

max |xi − yi |

max.dist if max.dist is given, argumentk is ignored, and all of the neighbors within distancemax.dist of
each row inx are found.

drop.self a logical value, ifTRUEthen rows withdistances equal to0 andindex1 == index2 (self neighbors)
are dropped from the returned object. This definition retains coincident points as neighbors although
their distance apart is zero. Ifquadtree is not supplied,k=1 , anddrop.self=T , a warning is printed
(since this results in nothing being returned) and the value ofk is set to2.

VALUE
a matrix with three named columns:
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r

index1 if x is a matrix, the row inx for this nearest neighbor. Ifx is not a matrix, the value 1.
index2 the row in the matrix from which the quad tree was formed for this nearest neighbor. If the quad tree

was formed from a matrixy , then x[index1[i],] and y[index2[i],] are neighbors.
distances the corresponding nearest neighbor distances.

DETAILS
An efficient recursive algorithm is used to find all nearest neighbors. First the quad tree is traversed to
find the leaf with medians nearest the point for which neighbors are desired. Then all observations in
the leaf are searched to find nearest neighbors. Finally, if necessary, adjoining leaves are searched fo
nearest neighbors.

REFERENCES
Friedman, J., Bentley, J. L., and Finkel, R. A. (1977). An algorithm for finding best matches in loga-
rithmic expected time.ACM Transactions on Mathematical Software3, 209-226.

SEE ALSO
quad.tree .

EXAMPLES
x <- cbind(sids$easting, sids$northing)

sids.nhbr <- find.neighbor(x, max.dist = 30)

# Find the nearest neighbors for the Lansing hickories

hickory <- lansing[lansing[,3] == "hickory", 1:2]

hickory.nhbr1 <- find.neighbor(hickory, k=2, drop.self=T)

# Now find the closest maple for each hickory

maple <- lansing[lansing[,3] == "maple", 1:2]

hmn <- find.neighbor(hickory, quad.tree(maple))

# and plot the tree locations with lines joing the neighbors

par(pty=’s’)

plot(maple[,1], maple[,2], pch=16)

points(hickory[,1], hickory[,2], pch=1, col=2)

segments(hickory[hmn[,1],1], hickory[hmn[,1],2],

maple[hmn[,2],1], maple[hmn[,2],2])

Glasgow.neighbor Glasgow.neighborNeighbors for Glasgow Mortality Rate Data

SUMMARY
An object of class"spatial.neighbor" containing the neighbor specification among the 87 com-
munity medicine areas in Glasgow, Scotland. The standardized mortality rate (SMR) values for this
data are contained inGlasgow.SMR .

DATA DESCRIPTION
Four hundred and fifty neighbor relationships are specified. The neighbor relationships are not sym-
metric. Seespatial.neighbor.object for a description of the data within an object of class
"spatial.neighbor" .

SOURCE
The data are presented and analyzed in Haining (1990).
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-

.

use
by
REFERENCES
Haining, R. (1990).Spatial Data Analysis in the Social and Environmental Sciences.Cambridge Uni-
versity Press. Cambridge.

SEE ALSO
Glasgow.SMR .

Glasgow.SMR Glasgow.SMRStandardized Mortality Rates for Glasgow

SUMMARY
TheGlasgow.SMR data frame contains standardized mortality rates for 87 community medicine areas
in Glasgow, Scotland for 1980-1982.

DATA DESCRIPTION
This data frame contains the following columns:

AllDeaths the standardized mortality rate (SMR) for all deaths.
Accidents the SMR for death by accidents.

Cancer the SMR for deaths due to cancer.
Respiratory the SMR for deaths due to respiratory disease accidents.

Heart the SMR for deaths due to ischaemic heart disease.
Cerebrovascular the SMR for deaths due to cerebrovascular disease.

Population the population (in 1000’s).
Easting the x coordinate of the community medicine area (CMA) relative to an arbitrary origin, where the x-ax

is is parallel to the latitude.
Northing the y coordinate of the CMA relative to an arbitrary origin, where the y-axis is parallel to the longitude

DETAILS
The standardized mortality rate for a community medicine area is the observed deaths due to that ca
divided by the expected number of deaths given the age and sex combination in that area multiplied 
100.

SOURCE
The data are presented and analyzed in Haining (1990).

REFERENCES
Haining, R. (1990).Spatial Data Analysis in the Social and Environmental Sciences.Cambridge Uni-
versity Press. Cambridge.

SEE ALSO
Glasgow.neighbor .
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Kenv KenvCompute Simulations ofKhat

DESCRIPTION
ComputesKhat (Lhat ) for simulations of point processes. Returns upper and lower bounds, as well
as the average of all simulated values.

USAGE
Kenv(object, nsims=100, maxdist= <<see below>>, ndist=100,

process="binomial", boundary=bbox(object), add=T, ...)
Lenv(object, nsims=100, maxdist= <<see below>>, ndist=100,

process="binomial", boundary=bbox(object), add=T, ...)

REQUIRED ARGUMENTS
object an object of class"spp" representing a spatial point pattern, or a data frame or matrix with first two

columns containing locations of a point pattern.

OPTIONAL ARGUMENTS
nsims integer. Number of desired simulations.

maxdist numeric value indicating the maximum distance at whichKhat (or Lhat ) should be estimated. De-
faults to half the length of a diagonal of the sample’s bounding box.

ndist desired number of default distances at which to computeKhat (or Lhat ). Default is100 .
process a character string with one of five possible processes for the spatial arrangement of the resulting pat-

tern. This must be one of"binomial" , "poisson" , "cluster" , "Strauss" , or "SSI" . See the
help file formake.pattern for information on parameters for each process.

add logical flag: should the envelope be added to an already existing plot ofKhat (or Lhat for Lenv )? De-
faults toTRUE.

... other parameters as needed by the requested process.

VALUE
invisibly returns a list with 4 numeric vectors each representing:

dist the distances at which all values were computed.
lower the minimum of all resultingKhat (or Lhat for Lenv ) for the simulations.
upper the maximum of all resultingKhat (or Lhat for Lenv ) for the simulations.

average the average of all resultingKhat (or Lhat for Lenv ) for the simulations.

SIDE EFFECTS
if add=TRUEan envelope is added to an existing plot ofKhat .

SEE ALSO
Khat , Lhat , make.pattern .

EXAMPLES
Khat(bramble)

Kenv(bramble,nsims=50)

Lhat(lansing)

Lenv(lansing,nsims=50)
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Khat KhatRipley’s K Function for a Spatial Point Pattern Object

DESCRIPTION
CalculatesK(t) , Ripley’s K function for a spatial point pattern.

USAGE
Khat(object, maxdist= <<see below>>, ndist=100, boundary=bbox(object),

plot.it=T)

REQUIRED ARGUMENTS
object an object of class"spp" representing a spatial point pattern, or a data frame or matrix with first two

columns containing locations of a point pattern.

OPTIONAL ARGUMENTS
maxdist numeric value indicating the maximum distance at whichKhat should be estimated. Defaults to half

the length of a diagonal of the sample’s bounding box.
ndist desired number of default distances at which to computeKhat . Default is100 . The distances for

which Khat will be estimated are calculated asseq(0,maxdist,ndist) , bothmaxdist andndist

will change if not reasonable for the givenobject .
boundary points defining the boundary polygon for the spatial point pattern. This version accepts only rectan-

gles, for whichboundary should be given as a list with named components"x" and"y" denoting the
corners of the rectangular region. For example, for the unit square the boundary could be given as
bbox(x=c(0,1),y=c(0,1)) , the bounding box of two diagonally opposed points. Defaults to a
rectangle covering the range of points.

plot.it logical flag: should the resultingK-estimates be plotted? Default isTRUE.

VALUE
a list containing components :

values a two column matrix. The first column, nameddist , contains the distances at whichKhat was com-
puted, and the second column, namedKhat , contains the values ofK(dist) .

ndist number of distances returned. This could be smaller than its input value if the extent of the distances is
too large.

mindist minimum distance between any pair of points.
maxdev maximum deviation fromK(t)=t . See DETAILS.

SIDE EFFECTS
if plot.it=TRUE , a plot of the value ofK(t) against distance will be produced on the current graph-
ics device.

DETAILS
Khat computes Ripley’s (1976) estimate of K(t) for a spatial point pattern:

K (t) = λ−1E[number of events≤ distance t of an arbitrary event].

whereλ is the intensity of the spatial point pattern.

The theoretical K-function for a Poisson (completely spatially random) process isK (t) = π t2, so
L(t) = √ K (t)/π is equal tot , the distances. The default plotsK(t) versust . See functionLhat for
estimation ofL(t) .

REFERENCES
Ripley, Brian D. (1976). The second-order analysis of stationary point processes.Journal of Applied
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Probability,13,255-266.

SEE ALSO
Kenv , Lhat .

EXAMPLES
lansing.spp <- as.spp(lansing)

lansing.khat <- Khat(lansing.spp)

Khat(wheat)

abline(0,1)

krige krigeOrdinary and Universal Kriging

DESCRIPTION
Performs ordinary or universal kriging for two dimensional spatial data. The functionpre-

dict.krige can then be called to compute interpolation surfaces and prediction errors.

USAGE
krige(formula, data=sys.parent(), subset, na.action=na.fail,

covfun, nc=10000, ...)

REQUIRED ARGUMENTS
formula a formula describing the kriging variable and the spatial location variables and optionally a polynomial

trend surface. Its simplest form is:

z ˜ loc(x,y)

wherez is the kriging variable andx andy are the spatial locations, that is,z[i] is observed at the lo-
cation (x[i],y[i] ). The right hand side must contain a call to the functionloc . A polynomial trend
surface is of the form:

z ˜ loc(x,y) + x + y + xˆ2 + yˆ2

The polynomial must be in the same variables as the first two arguments used in theloc function. A
constant term is always fit. All terms on the right hand side must be entered with a+ sign. Theloc

call can include argumentsangle andratio to correct for geometric anisotropy; see theloc help file.
Note that an evaluatedloc object cannot be used informula .

covfun a function that returns the distanced based covariance between two points. The first argument to the
function must be the distance. Additional parameters will be passed through the... .

OPTIONAL ARGUMENTS
data an optional data frame in which to find the objects mentioned informula .

subset expression saying which subset of the rows of the data should be used in the fit. This can be a logical
vector (which is replicated to have length equal to the number of observations), or a numeric vector in-
dicating which observation numbers are to be included, or a character vector of the row names to be in-
cluded.

na.action a function to filter missing data. This is applied to the data informula after anysubset argument
has been used. The default (withna.fail ) is to create an error if any missing values are found. A
possible alternative isna.omit , which deletes observations that contain one or more missing values.

nc the number of points to use internally by the algorithm in approximating the distance-based covariance
function. Note: this argument has nothing to do with the number of observed points used in computing
the kriging. All observed points are used in computing kriging predictions.
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al

s

... additional named arguments can be passed tocovfun .

VALUE
an object of class"krige" with components:

x the first spatial location vector i.e. the first argument inloc function call informula .
y the second spatial location vector i.e. the second argument inloc function call informula .

coefficients the vector of coefficients for the trend surface. These are for the polynomial based on the scaled spati
location vectors (see the DETAILS section).

residuals the vector of residuals from the trend surface.
call an image of the call that produced the object.

Other components are included that are used bypredict.krige for computing interpolations.

DETAILS
The kriging system is solved using generalized least squares (see Ripley, 1981). The polynomial term
are scaled to (-1, 1) internally to avoid numeric problems; thecoefficients component returned is
for these scaled terms.

This implementation of kriging does not handle multiple observations at a point.

Methods for objects of class"krige" includepredict andprint .

REFERENCES
Cressie, Noel A. C. (1993).Statistics for Spatial Data,Revised Edition. Wiley, New York.

Ripley, Brian D. (1981).Spatial Statistics.Wiley, New York

SEE ALSO
exp.cov , loc , predict.krige .

EXAMPLES
# krige the Coal Ash data with a quadratic trend in the x direction

# using a spherical covariance function:

kcoal <- krige(coal ˜ loc(x, y) + x + xˆ2, data = coal.ash,

covfun = spher.cov, range = 4.31, sill = 0.14, nugget = 0.89)

# predictions over default 30 x 30 grid

pcoal <- predict(kcoal)

# plot prediction surface

wireframe(fit ˜ x * y, data = pcoal,

screen = list(z = 300, x = -60, y = 0), drape = T)

Lhat LhatRipley’s K Function for a Spatial Point Pattern Object

DESCRIPTION
CalculatesL(t)=sqrt(K(t)/pi) , whereK(t) is Ripley’s K function for a spatial point pattern and
L(t) is linear for a completely random point process.

USAGE
Lhat(object, maxdist= <<see below>>, ndist=100, boundary=bbox(object),

plot.it=T)

REQUIRED ARGUMENTS
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object an object of class"spp" representing a spatial point pattern, or a data frame or matrix with first two
columns containing locations of a point pattern.

OPTIONAL ARGUMENTS
maxdist numeric value indicating the maximum distance at whichLhat should be estimated. Defaults to half

the length of a diagonal of the sample’s bounding box.
ndist desired number of default distances at which to computeLhat . Default is100 . The distances for

which Lhat will be estimated are calculated asseq(0,maxdist,ndist) , bothmaxdist andndist

will change if not reasonable for the givenobject .
boundary points defining the boundary polygon for the spatial point pattern. This version accepts only rectan-

gles, for whichboundary should be given as a list with named components"x" and"y" denoting the
corners of the rectangular region. For example, for the unit square the boundary could be given as
bbox(x=c(0,1),y=c(0,1)) , the bounding box of two diagonally opposed points. Defaults to a
rectangle covering the range of points.

plot.it logical flag: should the resultingK-estimates be plotted? Default isTRUE.

VALUE
a list containing components :

values a two column matrix. The first column, calleddist , contains the distances at whichLhat was com-
puted, and the second column, calledLhat , contains the values ofL(dist) .

ndist number of distances returned. This could be smaller than its input value if the extent of the distances is
too large.

mindist minimum distance between any pair of points.
maxdev maximum deviation fromL(t)=t . See DETAILS.

SIDE EFFECTS
if plot.it=TRUE , a plot of the value ofL(t) against distance will be produced on the current graph-
ics device.

DETAILS
Khat computes Ripley’s (1976) estimate of K(t) for a spatial point pattern:

K (t) = λ−1E[number of events≤ distance t of an arbitrary event].

whereλ is the intensity of the spatial point pattern.

The theoretical K-function for a Poisson (completely spatially random) process isK (t) = π t2, so
L(t) = √ K (t)/π is equal tot , the distances. The default plotsL(t) versust which should approximate
a straight line for a homogeneous process with no spatial dependence. See functionKhat for estima-
tion of K(t) .

REFERENCES
Ripley, Brian D. (1976). The second-order analysis of stationary point processes.Journal of Applied
Probability13,255-266.

SEE ALSO
Lenv , Khat .

EXAMPLES
lansing.spp <- as.spp(lansing)

lansing.khat <- Lhat(lansing.spp)

Lhat(wheat)

abline(0,1)
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make.pattern make.patternGenerate a Spatial Point Process

DESCRIPTION
Generates points in two-dimensional space given their desired spatial distribution.

USAGE
make.pattern(n, process="binomial", object, boundary=bbox(x=c(0,1),

y=c(0,1)), lambda, maxlambda, radius, cpar)

REQUIRED ARGUMENTS
n integer denoting the desired number of points in the resulting object.

OPTIONAL ARGUMENTS
process a character string with one of five possible processes for the spatial arrangement of the resulting pat-

tern. This must be one of"binomial" , "poisson" , "cluster" , "Strauss" , or "SSI" . See the
DETAILS section for each definition. Defaults to"binomial" for a completely spatially random pro-
cess conditioned ton points withinboundary . Partial matching is allowed.

object a spatial point pattern object. An object of class"spp" . When this is given, the resulting pattern has
the samen and itsboundary is that same as the bounding box ofobject .

boundary points defining the boundary polygon for the spatial point pattern. This version accepts only rectan-
gles, for whichboundary should be given as a list with named components"x" and"y" denoting the
corners of the rectangular region. For example, for the unit square the boundary could be given as
bbox(x=c(0,1),y=c(0,1)) , the bounding box of two diagonally opposed points. Defaults to
bbox(object) if object is given or to the unit square otherwise.

lambda the intensity whenprocess="poisson" . If lambda is a numerical value thenmake.pattern simu-
lates a two dimensional homogeneous Poisson process with that constant intensity.lambda can also
be a function with two arguments that defines the intensity over the region.n, if giv en, will be ignored
if this argument is provided.

maxlambda if lambda is a function then this should be the maximum value of the function over the region. If this
is not supplied, a nonlinear optimization will be run (usingnlminb ) to find the maximum. Supplying
this value will speed up the simulation and avoid any possible problems with the nonlinear optimiza-
tion. maxlambda is used only iflambda is a function.

radius the inhibition distance. This is needed for process"Strauss" , "SSI" and "cluster" . Options
"Strauss" and"SSI" will NOT generate points closer thanradius . For this reason, this parameter
needs to be reasonably small. The exception is whenprocess="cluster" in which case it should
contain the desired size of the clusters. See DETAILS section for more information.

cpar the inhibition parameter needed whenprocess="Strauss" . This parameter is also required ifpro-

cess="cluster" . In that case, it represents the intensity of the "parent" Poisson process which will
determine the random placement of clusters and their number. See the DETAILS section for more in-
formation.

VALUE
an object of class"spp" whosen points are distributed according toprocess . If process="pois-

son" results on a process with zero points, the returned value will be a classless matrix with zero rows
and a warning will be issued.

DETAILS
The "binomial" process option generates a spatially random pattern ofn points within the given
boundary . This is in essence a homogeneous Poisson process conditional on the given number of
pointsn.
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The "poisson" process option generates a Poisson process with intensitylambda . This argument is
required for this option. Iflambda is a function the Poisson process is generated by a rejection sam-
pling algorithm (Diggle, 1983): a homogeneous Poisson process with intensitymaxlambda is generat-
ed over the region and then points are retained with probabilitylambda(x, y)/maxlambda .

The "SSI" process generates a random pattern where no two points are within the inhibition distance
determined by its parameterradius . This process is equivalent to sequentially laying down discs of
radiusradius which will not overlap.

The "Strauss" process accepts each randomly generated point with probabilitycparˆs wheres is
the number of existing points within radiusradius of the potential new point. The parametercpar

must be in [0,1] for this process, wherecpar=0 corresponds to complete inhibition at distances up to
radius .

The user should exercise caution when determining the value ofradius , for if it is too big in relation
to the area defined byboundary , the algorithm will run out of possible area to place the subsequent
disc and the generation of the desired process may be impossible or very slow.

The option"cluster" generates a Poisson cluster process. This is defined by generating a "parent"
Poisson process with intensitycpar and a "daughter" process of clusters with radii determined by the
value ofradius .

WARNING
If radius is too large, it may be impossible or nearly impossible to generate the number of requested
points. The call may "hang" in some extreme cases.

REFERENCES
Diggle, Peter J. (1983).Statistical Analysis of Spatial Point Patterns.Academic Press, London.

Ripley, Brian D. (1981).Spatial Statistics.John Wiley & Sons, New York.

Ripley, Brian D. (1976). The second-order analysis of stationary point processes.Journal of Applied
Probability13,255-266.

SEE ALSO
runif , rnorm , rpois , rbinom .

EXAMPLES
# A completely random process in the unit square

rand <- make.pattern(100)

plot(make.pattern(100, process="Strauss", rad=0.1, c=0.5))

plot(make.pattern(500, proc="cluster", rad=20, c=10,

boundary=list(x=c(0,200), y=c(0,200))))

# A nonhomogeneous Poisson pattern with a linear trend in x

# over a 10 x 10 square

lxy <- function(x, y) 1.5*x

xy <- make.pattern(proc="poisson", boundary=bbox(x=c(0,10),

y=c(0,10)), lambda=lxy)

plot(xy)
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model.variogram model.variogramDisplay a Variogram Object and Theoretical Model

DESCRIPTION
Plots an empirical variogram object and displays the fit of a theoretical variogram model on that plot
Optionally allows interactive parameter updates to the theoretical model and displays the new fit.

USAGE
model.variogram(object, fun, ..., ask=T, objective.fun= <<see below>>,

plot.it=T)

REQUIRED ARGUMENTS
object an object that inherits from class"variogram" (this includes classes"covariogram" and"correl-

ogram" ). Theazimuth column should have only one level.
fun a theoretical variogram function (or covariogram or correlogram function, depending on the class o

"object" ). Its first argument should be distance. Its remaining arguments are considered paramete
that can be changed to update the fit offun to object .

OPTIONAL ARGUMENTS
... additional arguments tofun that do not have default values must be specified here by full name.
ask a logical value, ifTRUE, a command line menu is displayed allowing the user to change the values of

the parameters tofun . After changing a value the plot is updated. IfFALSE, the data inobject is
plotted, the value offun evaluated atobject$distance is added to the graph, and the function re-
turns.

objective.fun a function with three arguments,y , yf , andn that gives a measure of the fit ofyf to y with weightsn.
It is used as a measure of fit offun to the data inobject . The default is the sum of squared residuals,
sum((y-yf)ˆ2) .

plot.it a logical value, ifTRUE, a plot of the variogram and its fitted model is displayed.

VALUE
invisibly returns a named list of the final parameters used. This list has the last value of the objectiv
function as an attribute.

DETAILS
This function can be used to fit a variogram or covariogram model "by eye". The value ofobjec-

tive.fun is displayed on the plot.

A weighted least squares objective function for variograms (Cressie, 1993, p. 97) is:

objective.fun <- function(y,yh,n) sum(n*(y/yh-1)ˆ2)

REFERENCES
Cressie, Noel. (1993).Statistics For Spatial Data,Revised Edition. Wiley, New York.

SEE ALSO
correlogram , plot.variogram , variogram .

EXAMPLES
vg.iron <- variogram(residuals ˜ loc(easting, northing), data=iron.ore)

model.variogram(vg.iron, spher.vgram, range=8.7, sill=3.5, nugget=4.8)
69



Appendix: Data and Function Reference
plot.spatial.neighbor plot.spatial.neighborPlot aspatial.neighbor Object

DESCRIPTION
Plot an object of class"spatial.neighbor" with lines connecting points that are neighbors.

USAGE
plot.spatial.neighbor(x, xcoord, ycoord, line.col=1, line.type=1,

line.width=1, matrix.id=1, add=F, arrows=F,
size.arrow=0.1, scaled=T, ...)

REQUIRED ARGUMENTS
x an object of class"spatial.neighbor" .

xcoord a numeric vector containing the x-coordinates of the data whose neighbor relations are defined inx .
ycoord a numeric vector containing the y-coordinates of the data whose neighbor relations are defined inx .

Must be the same length asxcoord .

OPTIONAL ARGUMENTS
line.col a numeric value indicating the color to draw the lines connecting the points that are neighbors. See the

col parameter in thepar help file.
line.type a numeric value indicating the line type to use for the lines connecting the points that are neighbors.

See thelty parameter in thepar help file.
line.width a numeric value indicating the line width to use for the lines connecting the points that are neighbors.

See thelwd parameter in thepar help file.
matrix.id a positive integer indicating which spatial neighbor matrix is to be plotted. Only one spatial neighbor

matrix can be plotted per call to the function but objects of class"spatial.neightbor" can contain
more than one matrix.

add a logical value, ifTRUEno initial plot is drawn, only the lines joining the neighbors are added to the
current plot.

arrows a logical value, ifTRUE, arrows are drawn from each point to its neighbor, ifFALSE, segments are
drawn from each point to its neighbor. Plotting with arrows can be useful when there are one way
neighbor relations inx i.e. point B is a neighbor of point A but point A is not a neighbor of point B. If
x is a symmetric spatial neighbor object, (attr(x,symmetric) is TRUE) then all neighbor relations
are bi-directional and settingarrows=TRUE just results in a messy graph.

size.arrows the size of the arrowhead width in inches. See thearrows help file for details.
scaled a logical value, ifTRUEthenscaled.plot is used to set up the plot coordinates instead ofplot . This

produces an equally scaled plot which is often useful whenxcoord andycoord are geographic loca-
tions.

Graphical parameters may also be supplied as arguments to this function (seepar ).

SIDE EFFECTS
a plot is produced on the current graphics device or lines are added to the current plot (ifadd=T ).

DETAILS
The coordinate system for the plot is drawn based on the values inxcoord , ycoord . The graphical
parameters specified in... are used to draw this initial graph. Ifscaled=TRUE the scale.ratio

parameter toscaled.plot can also be passed in the... arguments. The lines are added through a
call tosegments or arrows . The graphical parametersline.col , line.type andline.width are
used in the call tosegments or arrows .

This function is a method for the generic functionplot for classspatial.neighbor . It can be in-
voked by callingplot for an object of the appropriate class, or directly by callingplot.spa-
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tial.neighbor regardless of the class of the object.

BUGS
With S-PLUS 5.1, if you are calling this function as a plot method (i.e.plot ) you must specify the
xcoord andycoord arguments by name (not by position) otherwise the wrong method will be called.

SEE ALSO
spatial.neighbor , spatial.neighbor.object , plot , scaled.plot , par , segments .

EXAMPLES
# Plot the sids.neighbor object using the easting and northing

# values from sids as the coordinates

plot(sids.neighbor, xc=sids$easting, yc=sids$northing, scaled=T)

# Create a second order spatial neighbor object on a 10 x 10 grid

ng10 <- neighbor.grid(10, 10, neighbor.type="second.order")

sn10 <- spatial.neighbor(ng10)

# Generate a 10 x 10 set of coordinates

xy <- expand.grid(x=1:10, y=1:10)

# Plot the spatial neighbor object

plot(sn10, xc=xy$x, yc=xy$y)

# Create and plot spatial neighbor object for the bramble canes

# nearest neighbors

nb <- find.neighbor(bramble, k=2, drop.self=T)

sn <- spatial.neighbor(nb)

plot(sn, xc=bramble$x, yc=bramble$y)

plot.vgram.fit plot.vgram.fitPlot Results fromvariogram.fit

DESCRIPTION
Plot avgram.fit object, ustually the result from a call tovariogram.fit .

USAGE
plot.vgram.fit(x, line.col=1, line.type=1, line.width=1, add=T,

npoints=100, ...)

REQUIRED ARGUMENTS
x an object of class"vgram.fit" .

OPTIONAL ARGUMENTS
line.col a numeric value indicating the color for the variogram fit line. See thecol parameter in thepar help

file.
line.type a numeric value indicating the line type for the variogram fit line. See thelty parameter in thepar

help file.
line.width a numeric value indicating the line width for the variogram fit line. See thelwd parameter in thepar

help file.
add a logical value, ifTRUEno initial plot is drawn, only the variogram fitted line is added to the current

plot.
npoints a numeric value, the number of to evalute the variogram function at.
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Graphical parameters may also be supplied as arguments to this function (seepar ).

SIDE EFFECTS
a plot is produced on the current graphics device or lines are added to the current plot (ifadd=T ).

DETAILS
The function specified byx$funName must exist. It is evaluated atnpoints between0 andx$dis-

tRange[2] .

This function is a method for the generic functionplot for classvgram.fit . It can be invoked by
calling plot for an object of the appropriate class, or directly by callingplot.vgram.fit regardless
of the class of the object.

SEE ALSO
variogram.fit , variogram .

EXAMPLES
vg.iron <- variogram(residuals ˜ loc(easting, northing), data=iron.ore)

vfit.iron <- variogram.fit(vg.iron, param=c(range=8.7, sill=3.5,

nugget=4.8), fun=spher.vgram)

plot(vg.iron)

plot(vfit.iron, add=T)

points.in.poly points.in.polyFind Points Inside a Given Polygon

DESCRIPTION
Determine whether points are inside a polygon.

USAGE
points.in.poly(x, y, polygon)

REQUIRED ARGUMENTS
x the X-coordinates of the points
y the Y-coordinates of the points. Must be the same length asx .

polygon a list with named components "x" and "y".

VALUE
a logical vector the same length asx . If TRUEthen the corresponding point is inside the given polygon
and so on.

BUG
if a ray from a point to an edge intersects a horizontal edge, i.e. is collinear with it, the C program will
returnTRUEev en if such point is not in the polygon.

SEE ALSO
poly.grid , poly.area .

EXAMPLES
# 100 points on a unit square

x <- runif(100); y <- runif(100)

# A square polygon in the center:

pcenter <- list(x=c(.25,.25,.75,.75), y=c(.25,.75,.75,.25))
72



Appendix: Data and Function Reference
pin <- points.in.poly(x, y, pcenter)

# Plot the unit square and the center square:

plot(x, y, type=’n’); polygon(pcenter, density=0, col=2)

# Plot only the points in the center square:

points(x[pin], y[pin], col=3)

poly.grid poly.gridGenerate a Grid Inside a Given Polygonal Boundary

DESCRIPTION
Generates a grid of points and then clips them to lie within a given boundary.

USAGE
poly.grid(boundary, nx, ny, size)

REQUIRED ARGUMENTS
boundary a list with components named"x" and"y" or a matrix with 2 columns representing the vertices of a

convex polygon. Endpoint need not be repeated.
nx integer representing the number of cells in the horizontal direction.
ny integer representing the number of cells in the vertical direction.

OPTIONAL ARGUMENTS
size numeric vector containing the size of each cell. If it has length one then the cells will be squared with

the same side sizes. If it has length two then the cells will have widthsize[1] and heightsize[2] .

VALUE
a two-column matrix containing the coordinates of the resulting grid.

DETAILS
A rectangularnx by ny grid is overlaid on the polygon defined byboundary and then those points that
fall outside are dropped. Ifsize is given then the valuesnx andny are redundant and if given will be
ignored.

SEE ALSO
points.in.poly

EXAMPLES
plot(as.spp(bramble))

bramble.chull <- bramble[chull(bramble),]

polygon(bramble.chull, den=0)

points(poly.grid(bramble.chull, size=c(.1,.1)), col=2)
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predict.krige predict.krigePoint and Block Kriging Prediction

DESCRIPTION
Computes point or block kriging predictions and standard errors at locations innewdata using an ob-
ject returned bykrige .

USAGE
predict.krige(object, newdata, se.fit=T, grid= <<see below>>,

blocksize=c(1, 1), nxy=c(1, 1))

REQUIRED ARGUMENTS
object an object of class"krige" as returned by the functionkrige .

OPTIONAL ARGUMENTS
newdata a data frame or list containing the spatial locations for the predictions. The names must match the

names of the locations used in the call tokrige (seeattr(object,"call") ).
se.fit a logical value, ifTRUE, the standard errors of the predictions are returned. Currently the standard er-

rors are always computed internally. Thisse.fit only determines if the returned data frame includes
these column.

grid a list containing two vectors, the names of the vectors must match the names of the locations used in
the call tokrige . The vectors are each of length 3 and specify the minimum, maximum and number
of locations in that spatial coordinate, respectively. A grid is then computing usingexpand.grid .
The default value is to use the range of the original location data for the minimum and maximum, and
30 points. This argument is ignored ifnewdata is supplied.

blocksize for block kriging, a numeric vector of length 2 specifying the size of the block in x (first value) and y
(second value) direction. The locations specified bynewdata or grid are at the center of the blocks.

nxy for block kriging, a numeric vector of length 2 specifying the number of discretization points inside the
block. If both values are set to1 (the default) then point kriging predictions are computed.

VALUE
a data frame where the first two columns are the locations of the prediction along with:

fit the predicted values.
se.fit the standard error of the prediction. Only included ifse.fit = TRUE .

DETAILS

This function is a method for the generic functionpredict for classkrige . It can be invoked by
calling predict for an object of the appropriate class, or directly by callingpredict.krige regard-
less of the class of the object.

REFERENCES
Ripley, Brian D. (1981).Spatial Statistics.Wiley, New York.

SEE ALSO
krige , loc .

EXAMPLES
# krige the Coal Ash data

kcoal <- krige(coal ˜ loc(x, y) + x + xˆ2, data = coal.ash,

covfun = spher.cov, range = 4.31, sill = 0.14, nugget = 0.89)

# predictions over default 30 x 30 grid

pcoal <- predict(kcoal)
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# plot prediction surface

wireframe(fit ˜ x * y, data = pcoal,

screen = list(z = 300, x = -60, y = 0), drape = T)

# block kriging predictions with block of size 2 x 2 at 4 locations

predict(kcoal, data.frame(x=c(4,5,9,11), y=c(7,13,9,18)),

blocksize=c(2,2), nxy=c(5,5))

spatial.neighbor spatial.neighborCreate a"spatial.neighbor" Object

DESCRIPTION
Function used to create an object of class"spatial.neighbor" given its component parts.

USAGE
spatial.neighbor(row.id, col.id, weights=rep(1, length(row.id)),

neighbor.matrix, nregion=max(c(row.id,col.id)),
symmetric=F, matrix.id= <<see below>>)

REQUIRED ARGUMENTS
row.id an integer vector containing the row indices of the non-zero elements of the neighbor weight matri

The i -th element ofrow.id and thei -th element ofcol.id specify two regions which are spatial
neighbors. Two regions are spatial neighbors if observations from the two regions have a non-zero s
tial weight and vice-versa.row.id can also be a two column matrix containing the row indices (the
first column) and the column indices (the second column). This argument is ignored ifneigh-

bor.matrix is given.
col.id integer vector (of the same length asrow.id ) with the column indices of the non-zero elements of the

neighbor weight matrix. This is ignored ifneighbor.matrix is given or ifrow.id is a matrix.

It is important to note that even if a pair of regionsc(row.id[i],col.id[i]) are spatial neighbors,
the permuted pairc(col.id[i],row.id[i]) does not have to define spatial neighbors (correspond-
ing contiguity matrix element can be zero). For example, consider two regions on a river, and suppo
that a region corresponding torow.id[i] is downstream from the region incol.id[i] and neigh-
bors. By this definition, "downstream of" the transpose pairing need not satisfy a neighbor relation
ship. See argumentsymmetric below.

neighbor.matrix a matrix of neighbor weights (where all weights are often1) from which the object of class"spa-

tial.neighbor" is to be constructed. This must be a square matrix such that if element[i,j] is
non-zero, then spatial regionsi and j are considered neighbors, and its value is used as a weight in
measures of correlation or in further model-fitting. This is also known as the contiguity matrix.

OPTIONAL ARGUMENTS
weights numeric vector of the same length asrow.id andcol.id . weights[i] gives a weight for the corre-

sponding neighbor pair relationship, given inc(row.id[i],col.id[i]) . If weights is not speci-
fied (and argumentneighbor.matrix is not used), then the spatial weights are all set equal to1.
Each spatial weight defines the strength of the association between two neighbors. This argumen
ignored ifneighbor.matrix is given as each of the matrix elements are then considered to be neigh
bor weights.

nregion integer stating the total number of regions or spatial units. If not given, this value is computed from th
number of unique elements inrow.id andcol.id as the maximum of all the regions given therein
max(c(row.id,col.id)) .

symmetric logical flag: should the neighbor matrix be considered symmetric?. IfTRUE, the spatial weights matrix
is computed by assuming that if the i-th neighbor pairc(row.id[i],col.id[i]) has neighbor
weight given byw=weights[i] then so does the matrix elementc(col.id[i],row.id[i]) . Only
half of the weights need be specified in this case. IfTRUE, routinespatial.condense is called to re-
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move redundant values. Whenneighbor.matrix is given, its symmetry is determined within the
function, otherwise, it defaults toFALSE.

matrix.id integer vector of length equal to the total number of spatial neighbors. This can be used to differentiate
various types of neighbors. For example, spatial regression models may differentiate between north-
south neighbors as compared to east-west neighbors. The values of vectormatrix.id should then in-
dicate the neighbor types. If missing, a single neighbor type is assumed (with one neighbor matrix).

VALUE
an object of class"spatial.neighbor" . This object inherits from class"data.frame" and de-
scribes the relationship among spatial regions using a sparse representation of the Weight or Contiguity
matrix (or matrices). It has columnsrow.id , col.id , weights and matrix (determined byma-

trix.id ).

DETAILS
Objects of class"spatial.neighbor" are required by the spatial regression, spatial correlation, and
other functions in S+SPATIALSTATS. Two methods for constructing a spatial neighbor object are
available. A matrix of weights (where all weights are often1) can be given as input, and the"spa-

tial.neighbor" object is constructed from its non-negative elements. In this case argumentneigh-

bor.matrix must be a square matrix such that if elementc(i,j) of the matrix is non-zero, then spa-
tial regionsi andj are neighbors, with weight given by the value of the element (usually a1).

Another method for constructing an object of class"spatial.neighbor" is by directly specifying
the row and column numbers (and the weight value) of the non-zero elements of the contiguity matrix
which is usually a sparse matrix. A sparse representation is usually preferred in practice. In this case,
row.id[i] gives the row of thei -th non-negative element of the neighbor matrix, and the correspond-
ing elementcol.id[i] gives its column index. Thus, each pairc(row.id[i],col.id[i]) repre-
sents a pair of neighboring spatial units. The strength of their association can then be given by
weights[i] .

Notice thatrow.id andcol.id contain INDICES of the contiguity matrix and NOT the region identi-
fiers which could be character strings or some such. These are used to expand the full contiguity ma-
trix, so we should have representation for all indices1 throughnregion , though it is possible to have
islands in between. Use the functioncheck.islands to check for these islands, and remap their in-
dexing if that is desirable.

It is possible to specify two or more types of neighbor relationships. For example, the user may want
to model a spatial relationship depending upon the angle of the line connecting neighbor centers i.e.
considering directional relationships. For this example, let Type-1 neighbors be north-south neighbors,
and let Type-2 neighbors be east-west neighbors; neighbors along a diagonal could be modeled with
weights proportional to.707 (the sine of 45 degrees), for instance.

Consider the elements ofrow.id , col.id , andweights corresponding to a distinct value,k , of the
vector matrix.id . The spatial neighbor matrix can be expressed as a matrixA[k] such that
A[k][row.id,col.id]=weights , and all other elements are zero. Consider a parameter vectorrho

of lengthg, many spatial covariance matrices used in spatial regression models can be expressed as a
weighted linear combination of the contiguity matricesA[k] , rho[k]*A[k] , for values ofk varying
in 1:g .

SEE ALSO
check.islands , plot.spatial.neighbor , summary.spatial.neighbor .

EXAMPLES
row.index <- c(1,1,2,2,3)

col.index <- c(2,3,1,3,4)
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# Assume we have no information about the strength of the spatial

# association. All weights are 1.

nghb <- spatial.neighbor(row.id=row.index, col.id=col.index)

summary(nghb)

# Another way to create the same spatial.neighbor object:

nmat <- matrix(c(0, 1, 1, 0,

1, 0, 1, 0,

0, 0, 0, 1,

0, 0, 0, 0), ncol=4, byrow=T)

nghb2 <- spatial.neighbor(neighbor.matrix=nmat)

spatial.neighbor.object spatial.neighbor.objectClass"spatial.neighbor"

DESCRIPTION
Class of objects used to define neighbor relationships for spatial data on a regular or irregular lattice.

GENERATION
This class of objects is constructed using the functionspatial.neighbor . Alternatively, the func-
tions read.neighbor , or neighbor.grid may be used. In general, the user must construct these ob-
jects whenever estimates of spatial correlation and spatial regression are desired.

An object of class"spatial.neighbor" contains all the information required to determine which
spatial units on a region of interest are neighbors, as well as the strength of their relationship.

METHODS
The class"spatial.neighbor" has associated methods,print.spatial.neighbor , plot.spa-

tial.neighbor , andsummary.spatial.neighbor .

INHERITANCE
Class"spatial.neighbor" inherits from class"data.frame" .

STRUCTURE
The "spatial.neighbor" object is in essence a data frame with additional attributes. Each row of
the data frame denotes a pair of neighboring spatial units. The data frame contains the following
columns:

row.id the row index in the neighbor matrix that corresponds to a region or spatial unit. This implies a num-
bering of regions from1 to the total number of regions.

col.id the column index in the neighbor matrix that corresponds to the neighbor of the region defined by the
corresponding element ofrow.id .

weights a numeric value giving the relative strength of the neighbor relationship. The larger the value, the
stronger the relationship.

matrix if multiple types of neighbor matrices are possible, this column contains the type of the neighbor this
weight represents - it gives a numeric identifier for each spatial neighbor [contiguity] matrix.

SPECIAL ATTRIBUTES
nregion the number of total regions in the study. The row and column identifiers given inrow.id andcol.id

might not include ALL the spatial units in the area of interest. This happens when units are isolated,
i.e. have no neighboring regions. In this case,nregion must be used to determine the total number of
rows and columns in the contiguity matrix.
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symmetric logical flag. It provides an indication of whether the contiguity matrix is symmetric (TRUE) or not
(FALSE). If TRUE, only the weights for the upper (or lower) triangle of the contiguity matrix need to be
specified in the object. Use the functionspatial.weights to expand the full symmetric weights ma-
trix.

DETAILS
An object of class"spatial.neighbor" is a sparse matrix representation of a square matrix (or a
number of square matrices).

The functionplot.spatial.neighbor will show a graphical view of the spatial.neighbor object and
summary.spatial.neighbor will compute summary statistics on the object.

The functionsspatial.multiply , and spatial.cg.solve can be used to form products of the
form rho[i]*N[i]*x and (rho[i]*N[i])ˆ(-1)*x , for neighbor weight matricesN[i] , vector of
constants or parameters,rho[i] , and arbitrary vectorsx , should that be needed to form a neighbor or
contiguity matrix as a weighted linear combination of others.

SEE ALSO
spatial.neighbor plot.spatial.neighbor , summary.spatial.neighbor , read.neigh-

bor , neighbor.grid , spatial.multiply , spatial.cg.solve , spatial.weights .

spatial.solve spatial.solveSolveSb=x

DESCRIPTION
SolvesSb=x for b, whereS is a sparse matrix obtained from an object of class"spatial.neigh-

bor" .

USAGE
spatial.solve(neighbor, x, transpose=F, rho=0, product=F,

weights=NULL, region.id=NULL, absThreshold=0,
relThreshold=0, diagPivoting=0, shareMemory=F)

REQUIRED ARGUMENTS
neighbor an object of class"spatial.neighbor" containing the sparse matrix representation of the spatial

neighbor matrix (or matrices, see functionspatial.neighbor ).
x the right hand side for which a solution is desired. Alternatively,x can be a matrix. In this case, a so-

lution is obtained for each column inx .

OPTIONAL ARGUMENTS
transpose with the default arguments,S is taken asI minus the sum over i ofrho[i] * A[i] . Here I is an

identity matrix,rho[i] is a scalar, andA[i] is thei -th weight matrix inneighbor . If transpose is
TRUE, then the transpose of this matrix is used forA.

rho a scalar (or vector) of constants used in defining the matrixS (see argumenttranspose ).
product let B=I minus the sum ofrho[i]*A[i] as described in argumenttranspose . Whenproduct is

FALSE, S=B. Whenproduct is TRUE, S is t(B)%*%B .
weights if provided, the inverse weights are included along the diagonal matrixWand incorporated into the

model forS as follows: LetR be I minus the sum ofrho[i]*A[i] . Then
product | transpose | S
----------------------------------

F |  F | R %*% W

F |  T | t(R) %*% W

T |  F | t(R) %*% W %*% R
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re-
T |  T | R %*% W %*% t(R)

region.id a vector with length equal to the number of regions in the spatial lattice. If variablesrow.id and
col.id of argumentneighbor are not integer valued variables with sequential values from 1 to the
number or regions in the lattice, then argumentregion.id must be specified and is used to obtain a
sequential coding of the lattice regions.

absThreshold the pivot threshold (between zero and 1). Values near 1 result in complete pivoting, while values near
zero result in a strict Markowitz solution. In general, you should choose a value as close to zero as
roundoff error will permit. A value of 0.001 has been recommended by Kundert (1988) in some cases.

relThreshold the absolute magnitude an element must have to be considered as a pivot candidate, except as a last 
sort. This should be set to a small fraction of the smallest (absolute) diagonal element.

diagPivoting if TRUE, piv ot selection should be confined to the diagonal if possible.
shareMemory if TRUE, the in-memory representation of the sparse matrix will be shared by other routines. If memo-

ry is shared, it needs to be released later. One way to release the memory is to call.C("de-

stroy_sparse_matrix") after the in-memory representation of the matrix is no long needed. Most
users should use the default value,FALSE.

VALUE
a matrix (or vector),b, solving the linear systemSb=x .

DETAILS
This routine uses the sparse matrix code of Kenneth Kundert and Alberto Sangiovanni-Vincentelli
(1988). The University of California, Berkeley, holds the copyright for these routines.

REFERENCES
Kundert, Kenneth S. and Sangiovanni-Vincentelli, Alberto (1988). A Sparse Linear Equation Solver.
Department of EE and CS, University of California, Berkeley.

SEE ALSO
spatial.cg.solve , spatial.multiply , spatial.neighbor , spatial.neighbor.object .

EXAMPLES
x <- 1:4

row.id <- c(1,1,2,2,3)

col.id <- c(1,3,1,3,4)

alpha <- 0.3

neighbor <- spatial.neighbor(row.id=row.id, col.id=col.id, symmetric=T)

a <- solve(diag(attr(neighbor, "nregion"))-alpha*

spatial.weights(neighbor), x)

b <- spatial.solve(neighbor, x, rho=alpha)$result

print(max(abs(a-b)) < 1e-14)

summary.spatial.neighbor summary.spatial.neighborSummary Method

DESCRIPTION
Returns a summary list for objects of class"spatial.neighbor" .

USAGE
summary.spatial.neighbor(object)

REQUIRED ARGUMENTS
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st

st
object an object that inherits from class"spatial.neighbor" .

VALUE
an object of class"summary.spatial.neighbor" which is a list of lists, one list for each unique
value ofmatrix in object . The sublists each contain the components that summarize the particular
spatial neighbor matrix:

nregion an integer indicating the number of regionsobject covers. This is the same asattr(object,"nre-

gion")

symmetric a logical value, ifTRUE the object is assumed to be symmetric. This is the same asattr(ob-

ject,"symmetric")

minConnected a named vector of the least connected regions. The names are the row indices that have the smalle
number of connections for the i-th matrix inobject . The values (all the same) are the minimum num-
ber of neighbors.

maxConnected a named vector of the most connected regions. The names are the row indices that have the large
number of connections for the i-th matrix inobject . The values (all the same) are the maximum
number of neighbors.

aveNumLinks a single value giving the mean number of neighbors each region has.
aveWeight a single value giving the mean weight value for this matrix.

rowMissing a vector of indices that are not present inobject$row.id for the i-th matrix. This will be printed as
"none" by the print method if there are no missing row indices and it is not printed at all ifobject is
a symmetric spatial neighbor matrix since all missing row indices will be islands (see below).

colMissing a vector of indices that are not present inobject$col.id for the i-th matrix. This will be printed as
"none" by the print method if there are no missing column indices and it is not printed at all ifob-

ject is a symmetric spatial neighbor matrix since all missing column indices will be islands (see be-
low).

islands the indices for regions that have no neighbors. These indices do not appear in either theob-

ject$col.id or object$row.id for the i-th matrix. This will be printed as"none" by the print
method if there are no islands.

DETAILS

This function is a method for the generic functionsummary for classspatial.neighbor . It can be
invoked by callingsummary for an object of the appropriate class, or directly by callingsumma-

ry.spatial.neighbor regardless of the class of the object.

SEE ALSO
spatial.neighbor , check.islands .

EXAMPLES
summary(sids.neighbor)

# Create two symmetric spatial neighbor matrices with one island

# in the second matrix:

ri <- c(1,1,2,3,4,5,1,1,2,5,5)

ci <- c(2,3,3,4,5,6,2,3,3,3,6)

mat <- c(1,1,1,1,1,1,2,2,2,2,2)

sn <- spatial.neighbor(ri, ci, symm=T, matrix=mat)

summary(sn)
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triangulate triangulateDelaunay’s Triangulation

DESCRIPTION
Calculate Delaunay’s triangulation for points with given coordinatesx andy .

USAGE
triangulate(x, y, plot.it=T, shrink=0.1)

REQUIRED ARGUMENTS
x a list with components"x" and"y" , a 2-column matrix, or a vector containing the horizontal coordi-

nates of the vertices that form the polygon of interest.

OPTIONAL ARGUMENTS
y if x is a vector of X-coordinates theny must contain the corresponding vertical or Y-coordinates.

plot.it logical flag: should the resulting triangulation be plotted? Default isTRUE.
shrink fraction by which the triangles will be shrunken for better discrimination of the individual triangles in

the plot, no edges overlap ifshrink > 0 .

VALUE
invisibly returns a list with 2 components:

ipt a matrix with 3 rows, for each column the 3 row-values can be used to indexx andy and extract corre-
sponding triangle vertices. This provides an ordering of the triangles as well.

ipl another integer matrix with 3 rows. These are the point numbers of the end points of the border line
segments and their corresponding triangle number.

SIDE EFFECTS
if plot.it = TRUE a colorful representation of the triangulation is produced.

DETAILS
A Delaunay triangulation of a point set is a triangulation whose vertices are the point set, with the
property that no point in the point set falls in the interior of the circumcircle (circle that passes through
all three vertices) of any triangle in the triangulation.

EXAMPLES
triangulate(scallops[,c("lat","long")])

variogram.cloud variogram.cloudCalculate Variogram Cloud

DESCRIPTION
Calculates all pairwise differences in a random field data set.

USAGE
variogram.cloud(formula, data= <<see below>>, subset= <<see below>>,

na.action= <<see below>>, azimuth=0, tol.azimuth=90,
maxdist= <<see below>>, bandwidth=1e+307,
FUN=function(zi, zj) (zi - zj)ˆ2/2))

REQUIRED ARGUMENTS
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formula formula defining the response and the predictors. In general, its form is:

z ˜ x + y

Thez variable is a numeric response. Variablesx andy are the locations. All variables in the formula
must be vectors of equal length with no missing values (NAs). The formula may also contain expres-
sions for the variables, e.g.sqrt(count) or log(age+1) . The right hand side may also be a call to
the loc function e.g.loc(x,y) . The loc function can be used to correct for geometric anisotropy,
see theloc help file.

OPTIONAL ARGUMENTS
data an optional data frame in which to find the objects mentioned informula .

subset expression saying which subset of the rows of the data should be used in the fit. This can be a logical
vector (which is replicated to have length equal to the number of observations), or a numeric vector in-
dicating which observation numbers are to be included, or a character vector of the row names to be in-
cluded.

na.action a function to filter missing data. This is applied to themodel.frame after anysubset argument has
been used. The default (withna.fail ) is to create an error if any missing values are found. A possi-
ble alternative isna.omit , which deletes observations that contain one or more missing values.

azimuth the clockwise direction angle in degrees from North-South. Only pairs of points in this direction plus
or minustol.azimuth will be included in the output.

tol.azimuth the tolerance angle, in degrees.tol.azimuth greater than or equal to 90 implies the of use all direc-
tions.

maxdist the maximum distance to consider. The default is half the maximum observed distance.
bandwidth the maximum perpendicular distance to consider.

FUN a function of two variables that is to be computed. The default function is the contribution to the clas-
sical empirical variogram for the pairz[i] , z[j] .

VALUE
an object of class"vgram.cloud" that inherits from"data.frame" . The columns are:

distance the distance between the two points.
gamma the value ofFUNfor thez[iindex] , z[jindex] .

iindex the index into the original data for the first value of the pair.
jindex the index into the original data for the second value of the pair.

The return object has an attributecall with an image of the call that produced the object.

DETAILS
Methods for class"vgram.cloud" includeboxplot , plot andidentify .

If all directions and distances are included the return object will have n*(n-1)/2 rows where n is the
number of observations. This can get very large, even for relatively small n. The argumentmaxdist

can be used to limit the size. Typically values beyond half the maximum distance in the data are not
used in estimating the variogram function.

REFERENCES
Cressie, Noel. (1993).Statistics For Spatial Data,Revised Edition. Wiley, New York.

SEE ALSO
boxplot.vgram.cloud , identify.vgram.cloud , plot.vgram.cloud , variogram .

EXAMPLES
v1 <- variogram.cloud(coal ˜ x + y, data=coal.ash)

plot(v1)
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boxplot(v1)

variogram.fit variogram.fitFit a Variogram Model

DESCRIPTION
Fits a theoretical variogram model to an empirical variogram object using a local minimizer for smooth
non-linear functions subject to bounded parameters.

USAGE
variogram.fit(vobj, param, fun=spher.vgram, lower=rep(0, n.param),

upper=Inf)

REQUIRED ARGUMENTS
vobj an object that inherits from class"variogram" representing an empirical variogram. Usually, the re-

sult of thevariogram function.

OPTIONAL ARGUMENTS
param a named vector with initial values for the parameters to fit. Usually, these are the"nugget" , "sill" ,

and"range" or a subset of these. If missing, the function will try to determine the parameter names
and initial values based on the arguments to the function specified infun .

fun a theoretical variogram function The first argument should be distance. The remaining arguments are
considered parameters that can be changed to update the fit of fun to object.

lower either a single numeric value or a vector of length equal to the number of parameters giving lower
bounds for the parameter values. If it is a single value then all parameters have that as their lower
bound. See the help page fornlminb for more information.

upper either a single numeric value or a vector of length equal to the number of parameters giving upper
bounds for the parameter values. If it is a single value then all parameters have that as their upper
bound. See the help page fornlminb for more information.

VALUE
an object of class"vgram.fit " with components:

parameters a named vector with the fitted values for the parameters.
objective the final value of the objective function.

funName the fun argument as a character string.
distRange a numeric vector containing the minimum and maximum distance values fromvobj .

DETAILS
If fun is one ofexp.vgram , gauss.vgram , linear.vgram , power.vgram or spher.vgram and
param is not supplied the function sets special initial starting values forparam . Otherwise, ifparam

is not supplied it is set to a vector of ones.

The weighted least squares objective function used in the fitting process (Cressie, 1993, p. 97) is:

objective.fun <- function(y,yh,n) sum(n*(y/yh-1)ˆ2)

Thenlminb function is used for the optimization.

REFERENCES
Cressie, Noel. (1993).Statistics For Spatial Data,Revised Edition. Wiley, New York.

SEE ALSO
variogram , plot.vgram.fit , model.variogram , nlminb .
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EXAMPLES
vg.iron <- variogram(residuals ˜ loc(easting, northing), data=iron.ore)

vfit.iron <- variogram.fit(vg.iron, param=c(range=8.7, sill=3.5,

nugget=4.8), fun=spher.vgram)

plot(vg.iron)

plot(vfit.iron, add=T)
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