
 CS504-Software Engineering – I VU

© Copyright Virtual University of Pakistan

Software Engineering – 1

(CS504)

Lecture Notes

Delivered by
Dr. Fakhar Lodhi

ShafiQ KhaN
Textbox
Kindly note that your Midterm exams of Software Engineering-I (CS504) will be from Lecture No. 1 To Lecture No. 21.

 CS504-Software Engineering – I VU

© Copyright Virtual University of Pakistan

TABLE OF CONTENTS

Lecture 01: Introduction to Software Engineering…………………………...…….. 1

Lecture 02: Introduction to Software Development ……………………………… 11

Lecture 03: Requirement Engineering-1 …………………………………………… 16

Lecture 04: Requirement Engineering-2 …………………………………………… 20

Lecture 05: Relation of Several components of Software Requirements ……….. 28

Lecture 06: Use Case Diagram for a Library System ……………………………... 33

Lecture 07: Source and Sink Analysis ……………………………………………… 40

Lecture 08: State Transition Diagrams ……………………………………………... 44

Lecture 09: Typical Processes ………………………………………………………. 53

Lecture 10: Prototyping and GUI Design …………………………………………. 62

Lecture 11: Software Design ………………………………………………………… 69

Lecture 12: Coupling and Cohesion ……………………………………………….. 72

Lecture 13: Object Oriented Analysis and Design ………………………………... 83

Lecture 14: Object Oriented Analysis and Design-2 ……………………………… 89

Lecture 15: UML Object Model Notations ………………………………………… 92

Lecture 16: Derivation of Object Model-Coad Methodology ……………………. 93

Lecture 17: Derivation of Object Model-Coad Methodology -2 …………………. 95

Lecture 18: CASE STUDY: Connie’s Convenience Store …………………………. 97

Lecture 19: Identify Structure ……………………………………………………… 100

Lecture 20: Interaction Diagrams ………………………………………………….. 106

Lecture 21: Sequence Diagrams (Message Types) ……………………………….. 108

Lecture 22: Software and System Architecture ………………………………….. 115

 CS504-Software Engineering – I VU

© Copyright Virtual University of Pakistan

Lecture 23: Architectural Views …………………………………………………… 122

Lecture 24: Architectural Models-I ………………………………………………... 126

Lecture 25: Architectural Models-II ……………………………………………….. 130

Lecture 26: Introduction to Design Patterns ……………………………………… 137

Lecture 27: Observer Pattern ………………………………………………………. 140

Lecture 28: Good Programming Practices and Guidelines……………………… 146

Lecture 29: File Handling Tips for C++ and Java ………………………………... 155

Lecture 30: Layouts and Comments in Java and C++…………………………… 162

Lecture 31: Coding Style Guidelines Continued... ……………………………….. 167

Lecture 32: Clarity Trough Modularity …………………………………………... 170

Lecture 33: Common Coding Mistakes ………………………………………….. 176

Lecture 34: Portability ……………………………………………………………… 179

Lecture 35: Exception Handling …………………………………………………… 184

Lecture 36: Software Verification and Validation ……………………………….. 192

Lecture 37: Testing vs. Development ……………………………………………... 195

Lecture 38: Equivalence Classes or Equivalence Partitioning ………………….. 199

Lecture 39: White Box Testing …………………………………………………….. 202

Lecture 40: Unit Testing ……………………………………………………………. 207

Lecture 41: Inspections vs. Testing ……………………………………………….. 210

Lecture 42: Debugging ……………………………………………………………... 213

Lecture 43: Bug Classes …………………………………………………………….. 216

Lecture 44: The Holistic Approach ………………………………………………... 224

Lecture 45: Summary ………………………………………………………………. 227

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

1

Lecture No. 1

 Introduction to Software Engineering

An Introduction to Software Construction Techniques for Industrial Strength
Software

1.1 Introduction
Software engineering is an interesting subject. In order to understand this subject we will
need to look at a number of examples and case studies. And we will need to see how we
can develop good software and how it could be improved in different scenarios? Before
we move on to software engineering we need to understand what software actually is.

 What is Software?

When we write a program for computer we named it as software. But software is not just
a program; many things other than the program are also included in software.

Some of the constituted items of software are described below.

 Program: The program or code itself is definitely included in the software.
 Data: The data on which the program operates is also considered as part of the

software.
 Documentation: Another very important thing that most of us forget is

documentation. All the documents related to the software are also considered as part
of the software.

So the software is not just the code written in Cobol, Java, Fortran or C++. It also
includes the data and all the documentation related to the program.

 Why is it important?

Undoubtedly software is playing a vital role in all the field of life these days. We can see
many software applications being operated around us in our daily routine.

Some of the major areas in which software has played an important role are identified as
under.

 Business decision-making: Software systems have played a major role in businesses
where you have to analyze your data and on the basis of that analysis you have to
make business decisions. This process of data analysis and decision-making has
become very accurate and easy by the use of software.

 Modern scientific investigation and engineering problem solving: Scientific
investigations and engineering problem solving require an intensive amount of

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

2

calculations and data analysis. The accuracy of these analyses is also very important
in scientific applications. This process has become very easy and accurate by the use
of software. For example software systems are becoming more involved in
bioinformatics and the process of DNA decoding is only possible by the use of
software systems. Similarly many astronomical observations are being recorded and
analyzed by the software systems these days.

 Games: We see many computer games these days that interests people of all ages. All
these games are drive through software systems.

 Embedded systems: We see many kinds of gadgets being employed in our daily used
things, like small microcontrollers used in our cars, televisions, microwave ovens etc.
All these systems are controlled through the software.

Similarly in many other fields like education, office automation, Internet applications etc,
software is being used. Due to its central importance and massive use in many fields it is
contributing a lot in terms of economic activity started by the software products. Billions
and trillions of dollars are being invested in this field throughout the world every year.

 Engineering

Before moving on to software engineering lets first discuss something about engineering
itself. If you survey some of the dictionaries then you will find the following definition of
engineering.

“The process of productive use of scientific knowledge is called engineering.”

1.2 Difference between Computer Science and Software Engineering
The science concerned with putting scientific knowledge to practical use.
Webster’s Dictionary

There are many engineering fields like electrical, mechanical and civil engineering. All
these branches of engineering are based on physics. Physics itself is not engineering but
the use of physics in making buildings, electronic devices and machines is engineering.
When we use physics in constructing buildings then it is called civil engineering. When
we use physics in making machines like engines or cars then it is called mechanical
engineering. And when we apply the knowledge of physics in developing electronic
devices then the process is called electrical engineering. The relation of computer science
with software engineering is similar as the relation of physics with the electrical,
mechanical or civil engineering or for that matter the relation of any basic science with
any engineering field. So in this context we can define software engineering as:
”This is the process of utilizing our knowledge of computer science in effective
production of software systems.”

 Difference between Software and Other Systems
Now lets talk something about how a software system is different from any other
systems. For example, how software is different from a car, a TV or the similar systems
or what is the difference between software engineering and other engineering like

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

3

mechanical or electrical engineering. Lets look at some of the non-software systems like
TV, Car or an Electric Bulb. The car may be malfunctioned due to some problem in
engine while driving. Similarly an electric bulb may be fused while glowing and a TV
could be dysfunctional while working.

So the major thing that distinguishes a software system from other systems is that;

“Software does not wear out!”

What does that mean?
As we have seen in above example that our non-software systems could be malfunctioned
or crash while working. That mean they are affected by the phenomenon of wear and
tear. They have a particular life and after that they could have some problem and may not
behave and perform as expected. But this is not the case with software. Software systems
does not affect by the phenomenon of wear and tear. If a software has any defect then that
defect will be there from the very first day and that defect normally called bug. That
means if a software is not working then it should not work from the very first day. But
this could not be the case that at a particular point in time a software is functioning well
and after some time the same software is not performing the same task as required. So
software does not have the element of wear and tear. Lets elaborate this point further. We
have just talked about software defects which we call bugs. If a part of a car became wear
out you just need to get a new one from market and replace the damages one with the
new one. And the car will start working properly as it was working previously. Similarly
if an electric bulb got fused then you just need to get a new one and put into the socket in
place of the fused one and your room will again be illuminated. But the case of software
is somewhat different. If a software has a bug then the same process of replacing faulty
part with the new one may not work. You cannot remove the bug by just replacing the
faulty part of software with the new one. Or it will not be as simple that, you go to the
concerned company, get a new CD of that software and it will start working properly. If
the software has a bug and that bug was present in the older CD then that will remain in
the new one. This is a fundamental difference between software and other systems.

Source of Inherent Complexity of Software

Here the subject is again the same that how software systems are different from other
systems. Have you ever noticed that how many different models of a car do a car
manufacturing company release in a year? And how many major changes are made in
new models and what is the frequency of these changes. If you think a little bit on it then
you will realize that once the system is finalized then the changes in new models are of
very minor nature. A drastic change is very unlikely in these kinds of systems. So the
frequency of changes in these systems is very low and of minor nature. Like body shape
could be changed a little, a new gadget could be added and the like but it is very unlikely
that a fundamental change in engine is made. On the other hand if you observe the
activities of a software manufacturing company, you will realize that these companies
make changes of fundamental nature in their software systems. They constantly change
their systems whether in the form of enhancements, in the form of interface change or

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

4

they are making a new system altogether. In other words they are making changes in their
systems in many different dimensions. But in non-software systems these kind of changes
are not that much frequent. One of the major reasons of increased bugs in software
systems is this high frequency of change. You can well imagine that if a car
manufacturing company manufacture cars in the similar way then how long these cars
will remain useful, how much effort they have to put to design these cars, how much time
they will require to mature the design, and how much time they would be needing to start
production of such cars. If they try to cut-short that time, meaning that if they try to
release cars after every six-months or a year without proper testing and that release has a
fundamental change then that kind of cars will also have lots of bugs and will not be
road-worthy.

Therefore one of the major reasons of complexity in software is due to its basic nature
that the software passes through a constant process of evolution. The name of the game is
change and evolution all the times in all the dimensions. This change has the direct
impact on software in the form of defects. Therefore software engineers also have to
deals with the challenge of managing this process of change and evolution.

1.3 Software Crisis
What is Software Crisis?
Computer systems were very new and primitive in early fifties and the use of software
was also very limited at that time. It was limited to some scientific applications or used to
process the data of census. In 1960s a great amount of rapid improvement was made in
hardware. New hardware and new computer systems were made available. These
computer systems were far more powerful than the computers of early fifties. It is all
relative, the computers of 1960s are primitive as compare to the computers we have these
days but were far more powerful than the computers of early fifties. More powerful
hardware resulted into the development of more powerful and complex software. Those
very complex software was very difficult to write. So the tools and techniques that were
used for less complex software became inapplicable for the more complex software. Lets
try to understand this with the help of an example.

Let’s imagine a person who use to live in a village and who have constructed a hut for
him to live. Definitely he should have face some problems in the beginning but was
managed to build a hurt for him. Now if you ask him to construct another hut, he may be
able to construct one more easily and in a better way. This new hut may be better than the
first one and he may construct it in a relatively less time. But if you ask him to construct
concrete and iron houses then he may not be able to handle it. Since he made a hut and he
know how to make a place to live so you may expect from him to build concrete and iron
buildings. If this is the case then you should all agree that the building constructed by that
person will not have a stable structure or he may not even be able to build one.

In early 60s software had suffered from the similar kind of problem to which we call
Software Crisis. Techniques that were used to develop small software were not applicable
for large software systems. This thing resulted in the following consequences.

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

5

 In most of the cases that software which was tried to be build using those old tools
and techniques were not complete.

 Most of the times it was delivered too late.
 Most of the projects were over-budgeted.
 And in most of the case systems build using these techniques were not reliable –

meaning that they were not be able to do what they were expected to do.

As a result of these problems a conference were held in 1960 in which the term software
crisis was introduced. And the major issue discussed was that the development of
software is in crisis and we have not been able to handle its complexities. And the term of
Software Engineering was also coined in the same conference. People have said that, we
should use engineering principles in developing software in the same way as we use these
principles in developing cars, buildings, electronic devices etc. Software engineering is
the result of software crisis when people realized that it is not possible to construct
complex software using the techniques applicable in 1960s. An important result of this
thing was that people had realized that just coding is not enough.

More Complex Software Applications
This conception is also very common these days. People think that if one knows how to
code then that’s sufficient. But just writing code is not the whole story. People have
realized this fact way back in 1960s that only coding is not sufficient to develop software
systems, we also need to apply engineering principles.

1.5 Software Engineering as defined by IEEE:
Let’s look at some of the definitions of software engineering.

Software Engineering as defined by IEEE (International institute of Electric and
Electronic Engineering). IEEE is an authentic institution regarding the computer related
issues.

“The application of a systematic, disciplined, quantifiable approach to the development,
operation, and maintenance of software; that is, the application of engineering to
software.”

Before explaining this definition lets first look at another definition of Software
Engineering given by Ian Somerville.

“All aspects of software production’ Software engineering is not just concerned with the
technical processes of software development but also with activities such as software
project management and with the development of tools, methods and theories to support
software production”.

These definitions make it clear that Software Engineering is not just about writing code.

1.5 Software Engineering

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

6

Software Engineering is the set of processes and tools to develop software. Software
Engineering is the combination of all the tools, techniques, and processes that used in
software production. Therefore Software Engineering encompasses all those things that
are used in software production like:

 Programming Language
 Programming Language Design
 Software Design Techniques
 Tools
 Testing
 Maintenance
 Development etc.

So all those thing that are related to software are also related to software engineering.

Some of you might have thought that how programming language design could be related
to software engineering. If you look more closely at the software engineering definitions
described above then you will definitely see that software engineering is related to all
those things that are helpful in software development. So is the case with programming
language design. Programming language design is one of the major successes in last fifty
years. The design of Ada language was considered as the considerable effort in software
engineering.

These days object-oriented programming is widely being used. If programming
languages will not support object-orientation then it will be very difficult to implement
object-oriented design using object-oriented principles. All these efforts made the basis of
software engineering.

Well-Engineered Software
Let’s talk something about what is well-engineered software. Well-engineered software is
one that has the following characteristics.

 It is reliable
 It has good user-interface
 It has acceptable performance
 It is of good quality
 It is cost-effective

Every company can build software with unlimited resources but well-engineered software
is one that conforms to all characteristics listed above.

Software has very close relationship with economics. Whenever we talk about
engineering systems we always first analyze whether this is economically feasible or not.
Therefore you have to engineer all the activities of software development while keeping
its economical feasibility intact.

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

7

The major challenges for a software engineer is that he has to build software within
limited time and budget in a cost-effective way and with good quality

Therefore well-engineered software has the following characteristics.

 Provides the required functionality
 Maintainable
 Reliable
 Efficient
 User-friendly
 Cost-effective

But most of the times software engineers ends up in conflict among all these goals. It is
also a big challenge for a software engineer to resolve all these conflicts.

The Balancing Act!
Software Engineering is actually the balancing act. You have to balance many things like
cost, user friendliness, Efficiency, Reliability etc. You have to analyze which one is the
more important feature for your software is it reliability, efficiency, user friendliness or
something else. There is always a trade-off among all these requirements of software. It
may be the case that if you try to make it more user-friendly then the efficiency may
suffer. And if you try to make it more cost-effective then reliability may suffer. Therefore
there is always a trade-off between these characteristics of software.

These requirements may be conflicting. For example, there may be tension among the
following:

 Cost vs. Efficiency
 Cost vs. Reliability
 Efficiency vs. User-interface

A Software engineer is required to analyze these conflicting entities and tries to strike a
balance.

Challenge is to balance these requirements.
Software Engineers always confront with the challenge to make a good balance of all
these tings depending on the requirements of the particular software system at hand. He
should analyze how much weight should all these things get such that it will have
acceptable quality, acceptable performance and will have acceptable user-interface.

In some software the efficiency is more important and desirable. For example if we talk
about a cruise missile or a nuclear reactor controller that are droved by the software
systems then performance and reliability is far more important than the cost-effectiveness
and user-friendliness. In these cases if your software does not react within a certain
amount of time then it may result in the disaster like Chernobyl accident.

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

8

Therefore software development is a process of balancing among different characteristics
of software described in the previous section. And it is an art to come up with such a
good balance and that art can be learned from experience.

Law of diminishing returns
In order to understand this concept lets take a look at an example. Most of you have
noticed that if you dissolve sugar in a glass of water then the sweetness of water will
increase gradually. But at a certain level of saturation no more sugar will dissolved into
water. Therefore at that point of saturation the sweetness of water will not increase even
if you add more sugar into it.

The law of diminishing act describes the same phenomenon. Similar is the case with
software engineering. Whenever you perform any task like improving the efficiency of
the system, try to improve its quality or user friendliness then all these things involve an
element of cost. If the quality of your system is not acceptable then with the investment
of little money it could be improved to a higher degree. But after reaching at a certain
level of quality the return on investment on the system’s quality will become reduced.
Meaning that the return on investment on quality of software will be less than the effort
or money we invest. Therefore, in most of the cases, after reaching at a reasonable level
of quality we do not try to improve the quality of software any further. This phenomenon
is shown in the figure below.

benefit

co
st

benefit

co
st

Software Background
Caper Jones a renounced practitioner and researcher in the filed of Software Engineering,
had made immense research in software team productivity, software quality, software
cost factors and other fields relate to software engineering. He made a company named
Software Productivity Research in which they analyzed many projects and published the
results in the form of books. Let’s look at the summary of these results.

He divided software related activities into about twenty-five different categories listed in
the table below. They have analyzed around 10000 software projects to come up with

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

9

such a categorization. But here to cut down the discussion we will only describe nine of
them that are listed below.

 Project Management
 Requirement Engineering
 Design
 Coding
 Testing
 Software Quality Assurance
 Software Configuration Management
 Software Integration and
 Rest of the activities

One thing to note here is that you cannot say that anyone of these activities is dominant
among others in terms of effort putted into it. Here the point that we want to emphasize is
that, though coding is very important but it is not more than 13-14% of the whole effort
of software development.

Fred Brook is a renowned software engineer; he wrote a great book related to software
engineering named “A Mythical Man Month”. He combined all his articles in this book.
Here we will discuss one of his articles named “No Silver Bullet” which he included in
the book.

An excerpt from “No Silver Bullet” – Fred Brooks
Of all the monsters that fill the nightmares of our folklore, none terrify more than
werewolves, because they transform unexpectedly from the familiar into horrors.
For these we seek bullets of silver that can magically lay them to rest. The
familiar software project has something of this character (at least as seen by the
non-technical manager), usually innocent and straight forward, but capable of
becoming a monster of missed schedules, blown budgets, and flawed projects. So
we hear desperate cries for a silver bullet, something to make software costs drop
as rapidly as computer hardware costs do. Skepticism is not pessimism, however.
Although we see no startling breakthroughs, and indeed, such to be inconsistent
with the nature of the software, many encouraging innovations are under way. A
disciplined, consistent effort to develop, propagate and exploit them should
indeed yield an order of magnitude improvement. There is no royal road, but
there is a road. The first step towards the management of disease was
replacement of demon theories and humors theories by the germ theory. The very
first step, the beginning of hope, in itself dashed all hopes of magical solutions. It
told workers that progress would be made stepwise, at great effort, and that a
persistent, unremitting care would have to be paid to a discipline of cleanliness.
So it is with software engineering today.

So, according to Fred Brook, in the eye of an unsophisticated manager software is like a
giant. Sometimes it reveals as an unscheduled delay and sometimes it shows up in the
form of cost overrun. To kill this giant the managers look for magical solutions. But

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

10

unfortunately magic is not a reality. We do not have any magic to defeat this giant. There
is only one solution and that is to follow a disciplined approach to build software. We can
defeat the giant named software by using disciplined and engineered approach towards
software development.

Therefore, Software Engineering is nothing but a disciplined and systematic approach to
software development.

1.6 Summary
Today we have discussed the following things related to software engineering.
 What is software engineering?
 Why is it important?
 What is software crisis?
 How software engineering derived from software crisis.
 What is the importance of engineering principles in developing software?
 What is balancing act and how apply in software engineering?
 What is law of diminishing returns?
 And what are the major activities involved in the development of software.

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

11

Lecture No. 02

Introduction to Software Development

2.1 Software Development

We have seen in our previous discussion that software engineering is nothing but a
disciplined approach to develop software. Now we will look at some of the activities
involved in the course of software development. The activities involved in software
development can broadly be divided into two major categories first is construction and
second is management. The construction activities are those that are directly related to the
construction or development of the software. While the management activities are those
that complement the process of construction in order to perform construction activities
smoothly and effectively. A greater detail of the activities involved in the construction
and management categories is presented below.

Construction
The construction activities are those that directly related to the development of software,
e.g. gathering the requirements of the software, develop design, implement and test the
software etc. Some of the major construction activities are listed below.

 Requirement Gathering
 Design Development
 Coding
 Testing

Management
Management activities are kind of umbrella activities that are used to smoothly and
successfully perform the construction activities e.g. project planning, software quality
assurance etc. Some of the major management activities are listed below.

 Project Planning and Management
 Configuration Management
 Software Quality Assurance
 Installation and Training

As we have said earlier that management activities are kind of umbrella activities that
surround the construction activities so that the construction process may proceed
smoothly. This fact is empathized in the figure 1. The figure shows that construction is
surrounded by management activities. That is, all construction activities are governed by
certain processes and rules. These processes and rules are related to the management of
the construction activities and not the construction itself.

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

12

2.2 A Software Engineering Framework
Any Engineering approach must be founded on organizational commitment to quality.
That means the software development organization must have special focus on quality
while performing the software engineering activities. Based on this commitment to
quality by the organization, a software engineering framework is proposed that is shown
in figure 2. The major components of this framework are described below.

Quality Focus: As we have said earlier, the given framework is based on the
organizational commitment to quality. The quality focus demands that processes be
defined for rational and timely development of software. And quality should be
emphasized while executing these processes.

Processes: The processes are set of key process areas (KPAs) for effectively manage and
deliver quality software in a cost effective manner. The processes define the tasks to be
performed and the order in which they are to be performed. Every task has some
deliverables and every deliverable should be delivered at a particular milestone.

Methods: Methods provide the technical “how-to’s” to carryout these tasks. There could
be more than one technique to perform a task and different techniques could be used in
different situations.

Tools: Tools provide automated or semi-automated support for software processes,
methods, and quality control.

Management

Construction

• Project planning and
management

• Configuration
management

• Quality assurance
• Installation and

training
etc.

• Requirements
• Design
• Coding
• Testing
• Maintenance
etc.

Figure1: Development activities

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

13

Quality Focus

Process

T
O
O
L
S

Task SetTask Set

MethodMethod

Figure 2: A Software Engineering Framework

Software Development Loop
Lets now look at software engineering activities from a different perspective. Software
development activities could be performed in a cyclic and that cycle is called software
development loop which is shown in figure 3. The major stages of software development
loop are described below.

Problem Definition: In this stage we determine what is the problem against which we are
going to develop software. Here we try to completely comprehend the issues and
requirements of the software system to build.

Technical Development: In this stage we try to find the solution of the problem on
technical grounds and base our actual implementation on it. This is the stage where a new
system is actually developed that solves the problem defined in the first stage.

Solution Integration: If there are already developed system(s) available with which our
new system has to interact then those systems should also be the part of our new system.
All those existing system(s) integrate with our new system at this stage.

Status Quo: After going through the previous three stages successfully, when we actually
deployed the new system at the user site then that situation is called status quo. But once
we get new requirements then we need to change the status quo.

After getting new requirements we perform all the steps in the software development
loop again. The software developed through this process has the property that this could
be evolved and integrated easily with the existing systems.

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

14

Problem
Definition

Solution
Integration

Technical
DevelopmentStatus Quo

Figure 3: Software Development Loop

Software Construction
Here once again look at the construction activities of the software from a different
perspective. This section provides with a sequence of questions that have to answer in
different stages of software development.

1. What is the problem to be solved?
2. What are the characteristics of the entity that is used to solve the problem?
3. How will the entity be realized?
4. How will the entity be constructed?
5. What approach will be used to uncover errors that were made in the design and

construction of the entity?
6. How will the entity be supported over the long term, when users of the entity request

corrections, adaptations, and enhancements?

2.4 Software Engineering Phases
There are four basic phases of software development that are shown in Figure 4.

Vision: Here we determine why are we doing this thing and what are our business
objectives that we want to achieve.

Definition: Here we actually realize or automate the vision developed in first phase. Here
we determine what are the activities and things involved.

Development: Here we determine, what should be the design of the system, how will it
be implemented and how to test it.

Maintenance: This is very important phase of software development. Here we control
the change in system, whether that change is in the form of enhancements or defect
removel.

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

15

Vision Definition Development MaintenanceVision Definition Development Maintenance

Figure 4: Software Engineering Phases

Maintenance
Correction, adaptation, enhancement
For most large, long lifetime software systems, maintenance cost normally exceeds
development cost by factors ranging from 2 to 3.

Boehm (1975) quotes a pathological case where the development cost of an avionics
system was $30 per line of code but the maintenance cost was $4000 per instruction

2.5 Summary
 Software development is a multi-activity process. It is not simply coding.
 Software construction and management
 Software Engineering Framework
 Software development loop
 Software engineering phases
 Importance of Maintenance

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

16

Requirement Engineering

3.1 Requirement Engineering

We recall from our previous discussion that software development is not simply coding –
it is a multi-activity process. The process of software construction encompasses and
includes answers to the following questions:

 What is the problem to be solved?
 What are the characteristics of the entity that is used to solve the problem?
 How will the entity be realized?
 How will the entity be constructed?
 What approach will be used to uncover errors that were made in the design and

construction of the entity?
 How will the entity be supported over the long term when users of the entity

request corrections, adaptations, and enhancements?

These questions force us to look at the software development process from different
angles and require different tools and techniques to be adopted at different stages and
phases of the software development life cycle. Hence we can divide the whole process in
4 distinct phases namely vision, definition, development, and maintenance. Each one of
these stages has a different focus of activity. During the vision phases, the focus is on
why do we want to have this system; during definition phase the focus shifts from why to
what needs to be built to fulfill the previously outlined vision; during development the
definition is realized into design and implementation of the system; and finally during
maintenance all the changes and enhancements to keep the system up and running and
adapt to the new environment and needs are carried out.

Requirement engineering mainly deals with the definition phase of the system.
Requirement engineering is the name of the process when the system services and
constraints are established. It is the starting point of the development process with the
focus of activity on what and not how.

Software Requirements Definitions

Before talking about the requirement process in general and discussing different tools and
techniques used for developing a good set of requirements, let us first look at a few
definitions of software requirements.

Jones defines software requirements as a statement of needs by a user that triggers the
development of a program or system.

Lecture No. 3

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

17

Alan Davis defines software requirements as a user need or necessary feature, function,
or attribute of a system that can be sensed from a position external to that system.

According to Ian Summerville, requirements are a specification of what should be
implemented. They are descriptions of how the system should behave, or of a system
property or attribute. They may be a constraint on the development process of the system.

IEEE defines software requirements as:

1. A condition or capability needed by user to solve a problem or achieve an
objective.

2. A condition or capability that must be met or possessed by a system or system
component to satisfy a contract, standard, specification, or other formally imposed
document.

3. A documented representation of a condition or capability as in 1 or 2.

As can be seen, these definitions slightly differ from one another but essentially say the
same thing: a software requirement is a document that describes all the services provided
by the system along with the constraints under which it must operate.

3.2 Importance of Requirements

Many of the problems encountered in SW development are attributed to shortcoming in
requirement gathering and documentation process. We cannot imagine start building a
house without being fully satisfied after reviewing all the requirements and developing all
kinds of maps and layouts but when it comes to software we really do not worry too
much about paying attentions to this important phase. This problem has been studied in
great detail and has been noted that 40-60% of all defects found in software projects can
be traced back to poor requirements.

Fred Brooks in his classical book on software engineering and project management “The
Mythical Man Month” emphasizes the importance of requirement engineering and writes:

“The hardest single part of building a software system is deciding precisely what to
build. No other part of the conceptual work is as difficult as establishing the
detailed technical requirements, including all the interfaces to people, to
machines, and to other software systems. No other part of the work so cripples the
system if done wrong. No other part is more difficult to rectify later.”

Let us try to understand this with the help of an analogy of a house. If we are at an
advanced stage of building a house, adding a new room or changing the dimensions of
some of the rooms is going to be very difficult and costly. On the other hand if this need
is identified when the maps are being drawn, one can fix it at the cost of redrawing the
map only. In the case of a software development, we experience the exact same
phenomenon - if a problem is identified and fixed at a later stage in the software
development process, it will cost much more than if it was fixed at and earlier stage.

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

18

This following graph shows the relative cost of fixing problem at the various stages of
software development.

Boehm (1981) has reported that correcting an error after development costs 68 times
more. Other studies suggest that it can be as high as 200 times. Since cost is directly
related with the success or failure of projects, it is clear from all this discussion that
having sound requirements is the most critical success factor for any project.

3.3 Role of Requirements

Software requirements document plays the central role in the entire software
development process. To start with, it is needed in the project planning and feasibility
phase. In this phase, a good understanding of the requirements is needed to determine the
time and resources required to build the software. As a result of this analysis, the scope of
the system may be reduced before embarking upon the software development.

Once these requirements have been finalized, the construction process starts. During this
phase the software engineer starts designing and coding the software. Once again, the
requirement document serves as the base reference document for these activities. It can
be clearly seen that other activities such as user documentation and testing of the system
would also need this document for their own deliverables.

On the other hand, the project manager would need this document to monitor and track
the progress of the project and if needed, change the project scope by modifying this
document through the change control process.

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

19

The following diagram depicts this central role of the software requirement document in
the entire development process.

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

20

3.4 Some Risks from Inadequate Requirement Process

From the above discussion, it should be clear that the requirements play the most
significant role in the software development process and the success and failure of a
system depends to a large extent upon the quality of the requirement documents.
Following is a list of some of the risks of adopting an inadequate requirement process:

1. Insufficient user involvement leads to unacceptable products.
If input from different types of user is not taken, the output is bound to lack in key

functional areas, resulting in an unacceptable product. Overlooking the needs of

certain user classes (stake holders) leads to dissatisfaction of customers.

2. Creeping user requirements contribute to overruns and degrade product quality.
Requirement creep is one of the most significant factors in budget and time overruns.

It basically means identifying and adding new requirements to the list at some

advanced stages of the software development process. The following figure shows the

relative cost of adding requirements at different stages.

Requirement Engineering-2

Lecture No. 4

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

21

Let us consider the following requirement statement:

The operator identity consists of the operator name and password; the password
consists of six digits. It should be displayed on the security VDU and deposited in the
login file when an operator logs into the system.

This is an example of ambiguous requirement as it is not clear what is meant by “it”
in the second sentence and what should be displayed on the VDU. Does it refer to the

operator identity as a whole, his name, or his password?

3. Ambiguous requirements lead to ill-spent time and rework.

Ambiguity means that two different readers of the same document interpret the

requirement differently. Ambiguity arises from the use of natural language. Because

of the imprecise nature of the language, different readers interpret the statements

differently. As an example, consider the following Urdu Phrase: “Rooko mut jane

doo”. Now, depending upon where a reader places the comma in this statement, two

different readers may interpret it in totally different manner. If a comma is palced

after “Rooko”, the sentence will become “Rooko, mut jane doo”, meaning “don’t let

him go”. On the other hand if the comma id placed after “mut”, the sentence will

become “Rooko mut, jane doo”, meaning “let him go”. Ambiguous requirements

therefore result in misunderstandings and mismatched expectations, resulting in a

wasted time and effort and an undesirable product.

4. Gold-plating by developers and users adds unnecessary features.

Gold-plating refers to features are not present in the original requirement document
and in fact are not important for the end-user but the developer adds them anyway

thinking that they would add value to the product. Since these features are outside the
initial scope of the product, adding them will result in schedule and budget overruns.

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

22

This is another case of minimal requirements – it does not state how the system

should respond if we try to calculate the average water level beyond the past six

months.

6. Incompletely defined requirements make accurate project planning and tracking
impossible.

Levels of Software Requirements

Software requirements are defined at various levels of detail and granularity.
Requirements at different level of detail also mean to serve different purposes. We first
look at these different levels and then will try to elaborate the difference between these
with the help of different examples.

5. Minimal specifications lead to missing key requirements and hence result in an
unacceptable product.

As an example, let us look at the following requirement. The requirement was stated
as: “We need a flow control and source control engineering tool.” Based upon this
requirement, system was built. It worked perfectly and had all the functionality
needed for source control engineering tool and one could draw all kinds of maps and
drawings. The system however could not be used because there was there was no
print functionality.

Let us now look at the following set of requirement statements for another system:

 The system should maintain the hourly level of reservoir from depth sensor
situated in the reservoir. The values should be stored for the past six months.

 AVERAGE: Average command displays the average water level for a particular
sensor between two times.

1. Business Requirements:
These are used to state the high-level business objective of the organization or
customer requesting the system or product. They are used to document main system
features and functionalities without going into their nitty-gritty details. They are
captured in a document describing the project vision and scope.

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

23

kinds of requirements are called Non-Functional Requirements. These are used to
describe external system interfaces, design and implementation constraints, quality
and performance attributes. These also include regulations, standards, and contracts to
which the product must conform.

Non-functional requirement play a significant role in the development of the system. If
not captured properly, the system may not fulfill some of the basic business needs. If
proper care is not taken, the system may collapse. They dictate how the system
architecture and framework. As an example of non-functional requirements, we can
require software to run on Sun Solaris Platform. Now it is clear that if this requirement
was not captured initially and the entire set of functionality was built to run on Windows,
the system would be useless for the client. It can also be easily seen that this requirement
would have an impact on the basic system architecture while the functionality does not
change.

While writing these requirements, it must always be kept in mind that all functional
requirements must derive from user requirements, which must themselves be aligned with
business requirements. It must also be remembered that during the requirement
engineering process we are in the definition phase of the software development where the
focus is on what and not how. Therefore, requirements must not include design or
implementation details and the focus should always remain on what to build and not how
to build.

3. Functional Requirements:
The next level of detail comes in the form of what is called functional requirements.
They bring-in the system’s view and define from the system’s perspective the
software functionality the developers must build into the product to enable users to
accomplish their tasks stated in the user requirements - thereby satisfying the business
requirements.

4. Non-Functional Requirements
In the last section we defined a software requirement as a document that describes all
the services provided by the system along with the constraints under which it must
operate. That is, the requirement document should not only describe the functionality
needed and provided by the system, but it must also specify the constraints under
which it must operate. Constraints are restrictions that are placed on the choices
available to the developer for design and construction of the software product. These

2. User Requirements:
User requirements add further detail to the business requirements. They are called
user requirements because they are written from a user’s perspective and the focus of
user requirement describe tasks the user must be able to accomplish in order to fulfill
the above stated business requirements. They are captured in the requirement
definition document.

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

24

Finally, a non-functional requirement of the system could require that it must be integrated into the
existing word-processor that runs on windows platform.

Stakeholders

As mentioned earlier, in order to develop a good requirement document, it is imperative
to involve all kinds of user in the requirement engineering process. The first step in
fulfillment of this need is the identification of all the stakeholders in the system.
Stakeholders are different people who would be interested in the software. It is important
to recognize that management carries a lot of weight, but they usually are not the actual
users of the system. We need to understand that it is the actual user who will eventually
use the system and hence accept or reject the product. Therefore, ignoring the needs of
any user class may result in the system failure.

A requirement engineer should be cognizant of the fact that stakeholders have a tendency
to state requirements in very general and vague terms. Some times they trivialize things.
Different stakeholders have different requirements – sometimes even conflicting. On top
of that internal politics may influence requirements.

The role of stakeholders cannot be overemphasized. A study of over 8300 projects
revealed that the top two reasons for any project failure are lack of user input and
incomplete requirements.

The following diagram shows the role of different stakeholders in the setting the system
requirements.

Let us now look at an example to understand the difference between these different types
of requirements.

Let us assume that we have a word-processing system that does not have a spell checker.
In order to be able to sell the product, it is determined that it must have a spell checker.
Hence the business requirement could be stated as: user will be able to correct spelling
errors in a document efficiently. Hence, the Spell checker will be included as a feature in the
product.

In the next step we need to describe what tasks must be included to accomplish the
above-mentioned business requirement. The resulting user requirement could be as
follows: finding spelling errors in the document and decide whether to replace each
misspelled word with the one chosen from a list of suggested words. It is important to
note that this requirement is written from a user’s perspective.

After documenting the user’s perspective in the form of user requirements, the system’s
perspective: what is the functionality provided by the system and how will it help the user
to accomplish these tasks. Viewed from this angle, the functional requirement for the
same user requirement could be written as follows: the spell checker will find and highlight
misspelled words. It will then display a dialog box with suggested replacements. The user will be allowed
to select from the list of suggested replacements. Upon selection it will replace the misspelled word with
the selected word. It will also allow the user to make global replacements.

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

25

Requirement Statement and Requirement Specification
Documents

Different levels of software requirements are documented in different documents. The
two main documents produced during this phase are Requirement Statement and
Requirement Specification. They are also called Requirement Definition and Functional
Specification and are used to document user requirements and functional requirements
respectively.

Requirement Statement Characteristics

A good Requirements statement document must possess the following characteristics.

 Complete - Each requirement must fully describe the functionality to be delivered.

 Correct - Each requirement must accurately describe the functionality to be built.
 Feasible - It must be possible to implement each requirement within the known

capabilities and limitations of the system and its environment.

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

26

 Necessary -Each requirement should document something that the customer really
need or something that is required for conformance to an external system requirement
or standard.

 Prioritized - An implementation priority must be assigned to each requirement,
feature or use case to indicate how essential it is to a particular product release.

 Unambiguous - All readers of a requirement statement should arrive at a single,
consistent interpretation of it.

 Verifiable – User should be able to devise a small number of tests or use other
verification approaches, such as inspection or demonstration, to determine whether
the requirement was properly implemented.

Requirement Specification Characteristics

A good Requirements specification document should possess the following
characteristics.

 Complete - No requirement or necessary information should be missing.

 Consistent – No requirement should conflict with other software or higher-level
system or business requirements.

Let us try to understand this with the help of some examples. The following set of

(non-functional) requirements was stated for a particular embedded system.

 All programs must be written in Ada
 The program must fit in the memory of the embedded micro-controller

These requirements conflicted with one another because the code generated by the

Ada compiler was of a large footprint that could not fit into the micro-controller

memory.

Following is another set of (functional) requirements that conflicted with one another:

 System must monitor all temperatures in a chemical reactor.

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

27

 System should only monitor and log temperatures below -200 C and above 4000 C.

In this case the two requirements clearly conflict with each other in stating what

information needs to be monitored and stored.

 Modifiable - One must be able to revise the Software Requirement Specification
when necessary and maintain a history of changes made to each requirement.

 Traceable - One should be able to link each requirement to its origin and to the
design elements, source code, and test cases that implement and verify the correct
implementation of the requirement.

Mixed level of Abstraction

It is important to recognize that all requirements in a requirement document are stated at
a uniform level of abstraction. This difference in detail falsely implies the relative
importance of these requirements and hence misguides all involved in the development
process. The following set of requirements clearly demonstrates violation of this
principle:

 The purpose of the system is to track the stock in a warehouse.
 When a loading clerk types in the withdraw command he or she will communicate

the order number, the identity of the item to be removed, and the quantity
removed. The system will respond with a confirmation that the removal is
allowable.

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

28

 Lecture No. 5

Relationship of Several components of Software
Requirements

The following figure depicts the relationship between different documents produced
during the requirement engineering phase.

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

29

and cost factors can lead to conflicting business requirements, which must be resolved
before the kiosk’s software requirements are detailed.

You can also use the business requirements to set implementation priorities for use cases
and their associated functional requirements. For example, a business requirement to
generate maximum revenue from the kiosk would imply the early implementation of
features directly associated with selling more products or services to the customer, rather
than glitzy features that appeal to only a subset of customers.

Business Requirements

Business requirements collected from multiple sources might conflict. For example,
consider a kiosk product with embedded software that will be sold to retail stores and
used by the store’s customers. The kiosk developer’s business objectives include the
following:

 leasing or selling the kiosk to the retailers
 selling consumables through the kiosk to the customer
 attracting customer to the brand
 modifying the nature of the historical developer-customer relationship

The retailer’s business interest could include:

 making money from customer use of kiosk
 attracting more customers to the store
 saving money if the kiosk replaces manual operations

The developer might want to establish a high-tech and exciting new direction for
customers, while the retailer wants a simple solution and the customer wants convenience
and features. The tension among these three parties with their different goals, constraints,

The Vision Statement

The vision statement should reflect a balanced view that will satisfy the need of diverse
customers. It can be somewhat idealistic but should be grounded in the realities of
existing or anticipated customer markets, enterprise architectures, organizational strategic
directions, and resource limitations.

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

30

Chemical Tracking System

The chemical tracking system will allow scientists to request containers of chemicals to
be supplied by chemical stockroom or by vendors. The location of every chemical
container within the company, the quantity of the material remaining in it, and the
complete history of each container’s location and usage will be known by the system at
all times. The company will save 25% on chemical costs by fully exploiting chemicals
already available within the company, by disposing of fewer partially used or expired
containers, and by using a standard chemical purchasing process. The chemical tracking
system will also generate all reports required to comply with federal and state
government regulations that require the reporting of chemical usage, storage, and
disposal.

Assumptions and Dependencies

All assumptions that were made when conceiving the project have to be recorded. For
example, the management sponsor for the chemical tracking system assumed that it
would replace the existing chemical stockroom inventory system and that it would
interface to the appropriate purchasing department applications

Scope

Project scope defines the concept and range of the proposed solution, and limitations
identify certain capabilities that the product will not include. Clarifying the scope and
limitations helps to establish realistic stakeholder’s expectations. Sometimes customers
request features that are too expansive or do not lie within the intended project scope.
Propose requirements that are out of scope must be rejected, unless they are so beneficial
that the scope should be enlarged to accommodate them (with accompanying changes in
budget, schedule, and staff). Keep a record of these requirements and why they were
rejected, as they have a way of reappearing.

Scope and Initial Release

The major features that will be included in the initial release of the project should be
summarized. Describe the quality characteristics that will enable the product to provide
the intended benefits to its various customer communities.
Requirements need to be prioritized and a release schedule should be made.

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

31

The Context Diagram

The scope description establishes the boundary between the system we are developing
and everything else in the universe. The context diagram graphically illustrates this
boundary by showing the connections between the system being developed or the
problem being addressed, and the outside world. The context diagram identifies the
entities outside the system that interface to it in some way (called terminators or external
entities), as well as the flow of data and material between each external entity and the
system. The context diagram is used as the top level abstraction in a dataflow diagram
developed according to principles of structured analysis. The context diagram can be
included in the vision and scope document, in the SRS, or as part of a dataflow model of
the system.

Following is a context diagram of the chemical tracking system.

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

32

It is important to recognize that a software engineer is typically not hired to solve a
computer science problem – most often than not, the problem lies in a different domain
than computer science and the software engineer must understand it before it can be
solved. In order to improve the communication level between the vendor and the client,
the software engineer should learn the domain related terminology and use that
terminology in documenting the requirements. Document should be structured and
written in a way that the customer finds it easy to read and understand so that there are no
ambiguities and false assumption.

One tool used to organize and structure the requirements is such a fashion is called use
case modeling.

It is modeling technique developed by Ivar Jacobson to describe what a new system
should do or what an existing system already does. It is now part of a standard software
modeling language known as the Unified Modeling Language (UML). It captures a
discussion process between the system developer and the customer. It is widely used
because it is comparatively easy to understand intuitively – even without knowing the
notation. Because of its intuitive nature, it can be easily discussed with the customer who
may not be familiar with UML, resulting in a requirement specification on which all
agree.

3.8 Use Case Model Components

A use case model has two components, use cases and actors.

In a use case model, boundaries of the system are defined by functionality that is handled
by the system. Each use case specifies a complete functionality from its initiation by an
actor until it has performed the requested functionality. An actor is an entity that has an
interest in interacting with the system. An actor can be a human or some other device or
system.

A use case model represents a use case view of the system – how the system is going to
be used. In this case system is treated as a black box and it only depicts the external
interface of the system. From an end-user’s perspective it and describes the functional
requirements of the system. To a developer, it gives a clear and consistent description of
what the system should do. This model is used and elaborated throughout the
development process. As an aid to the tester, it provides a basis for performing system
tests to verify the system. It also provides the ability to trace functional requirements into
actual classes and operations in the system and hence helps in identifying any gaps.

Use Cases and Customer-Developer Relationship

It has been mentioned earlier on, excellent software products are the result of a well-
executed design based on excellent requirements and high quality requirements result
from effective communication and coordination between developers and customers. That
is, good customer-developer relationship and effective communication between these two
entities is a must for a successful software project. In order to build this relationship and
capture the requirements properly, it is essential for the requirement engineer to learn
about the business that is to be automated.

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

33

Lecture No. 6

Use Diagram for a Library System

As an example, consider the following use case diagram for a library management
system. In this diagram, there are four actors namely Book Borrower, Librarian, Browser,
and Journal Borrower. In addition to these actors, there are 8 use cases. These use cases
are represented by ovals and are enclosed within the system boundary, which is
represented by a rectangle. It is important to note that every use case must always deliver
some value to the actor.

With the help of this diagram, it can be clearly seen that a Book Borrower can reserve a
book, borrow a book, return a book, or extend loan of a book. Similarly, functions
performed by other users can also be examined easily.

Creating a Use Case Model

Creating a use case model is an iterative activity. The iteration starts with the
identification of actors. In the next step, use cases for each actor are determined which
define the system. After that, relationships among use cases are defined. It must be
understood that these are not strictly sequential steps and it is not necessary that all actors
must be identified before defining their use cases. These activities are sort of parallel and

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

34

concurrent and a use case model will evolve slowly from these activities. This activity
stops when no new use cases or actors are discovered. At the end, the model is validated.

3.9 Relationship among Use Cases

The UML allows us to extend and reuse already defined use cases by defining the
relationship among them. Use cases can be reused and extended in two different fashions:
extends and uses. In the cases of “uses” relationship, we define that one use case invokes
the steps defined in another use case during the course of its own execution. Hence this
defines a relationship that is similar to a relationship between two functions where one
makes a call to the other function. The “extends” relationship is kind of a generalization-
specialization relationship. In this case a special instance of an already existing use case
is created. The new use case inherits all the properties of the existing use case, including
its actors.

Let is try to understand these two concepts with the help of the following diagrams. In the
case of the first diagram, the Delete Information use case is using two already existing
use cases namely Record Transaction and Cancel Transaction. The direction of the arrow
determines which one is the user and which use case is being used.

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

35

The second diagram demonstrates the concept of reuse by extending already existing use
cases. In this case Place Conference Call use case is a specialization of Place Phone Call
use case. Similarly, Receive Additional Call is defined by extending Receive Phone Call.
It may be noted here that, in this case, the arrow goes from the new use case that is being
created (derived use case) towards the use case that is being extended (the base use case).

This diagram also demonstrates that many different actors can use one use case.
Additionally, the actors defined for the base use case are also defined by default for the
derived use case.

The concept of reusability can also be used in the case of actors. In this case, new classes
of actors may be created by inheriting from the old classes of actors.

In this case two new classes, Individual Customer and Corporate Customer, are being
created by extending Customer. In this case, all the use cases available to Customer
would also be available to these two new actors.

CustomerCustomer

Individual
Customer
Individual
Customer

Corporate
Customer
Corporate
Customer

Perform Card
Transaction

Credit Card
Validation System

Retail
Institution

Retail
Institution

Sponsoring
Financial
Institution

Process
Customer Bill

Reconcile
Transactions

Manage
Customer Acct

Extended User

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

36

3.10 Elaborated Use Cases

After the derivation of the use case model, each use is elaborated by adding detail of
interaction between the user and the software system. An elaborated use case has the
following components:

 Use Case Name
 Implementation Priority: the relative implementation priority of the use case.
 Actors: names of the actors that use this use case.
 Summary: a brief description of the use case.
 Precondition: the condition that must be met before the use case can be invoked.
 Post-Condition: the state of the system after completion of the use case.
 Extend: the use case it extends, if any.
 Uses: the use case it uses, if any.
 Normal Course of Events: sequence of actions in the case of normal use.
 Alternative Path: deviations from the normal course.
 Exception: course of action in the case of some exceptional condition.
 Assumption: all the assumptions that have been taken for this use case.

As an example, the Delete Information use case is elaborated as follows:

Use Case Name: Delete Information

Priority: 3

Actors: User

Summary: Deleting information allows the user to permanently remove information from
the system. Deleting information is only possible when the information has not been used
in the system.

Preconditions: Information was previously saved to the system and a user needs to
permanently delete the information.

Delete
Information

UserUser

Record
Transaction

Cancel
Transaction

<< uses >>

<< uses >>

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

37

Post-Conditions: The information is no longer available anywhere in the system.

Uses: Record Transactions, Cancel Action

Extends: None

Normal Course of Events:
1. The use case starts when the user wants to delete an entire set of information

such as a user, commission plan, or group.
2. The user selects the set of information that he/she would like to delete and

directs the system to delete the information. - Exception 1, 2
3. The system responds by asking the user to confirm deleting the information.
4. The user confirms deletion.
5. Alternative Path: Cancel Action
6. A system responds by deleting the information and notifying the user that the

information was deleted from the system.
7. Uses: Record Transaction
8. This use case ends.

Alternative Path - The user does not confirm Deletion
1. If the user does not confirm deletion, the information does not delete.
2. Uses: Cancel Action

Exceptions:
1. The system will not allow a user to delete information that is being used in the

system.
2. The system will not allow a user to delete another user that has subordinates.

Assumptions:
1. Deleting information covers a permanent deletion of an entire set of data such as a

commission plan, user, group etc. Deleting a portion of an entire set constitutes
modifying the set of data.

2. Deleted information is not retained in the system.

3. A user can only delete information that has not been used in the system.

3.11 Alternative Ways of Documenting the Use Case

Many people and organizations prefer to document the steps of interaction between the
use and the system in two separate columns as shown below.

User Action System Reaction
1. The use case starts when the user

wants to delete an entire set of
information such as a user,
commission plan, or group.

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

38

2. The user selects the set of
information that he/she would like to
delete and directs the system to
delete the information. - Exception 1,
2

3. The system responds by asking the user
to confirm deleting the information.

4. The user confirms deletion. 5. A system responds by deleting the
information and notifying the user
that the information was deleted
from the system.

It is a matter of personal and organizational preference. The important thing is to write
the use case in proper detail.

3.12 Activity Diagrams

Activity diagrams give a pictorial description of the use case. It is similar to a flow chart
and shows a flow from activity to activity. It expresses the dynamic aspect of the system.
Following is the activity diagram for the Delete Information use case.

Choose Object to Delete

Initiate Deletion

Object MaintainedRecord Action

Delete Information

See Activity Diagram
for Canceling Actions

Object Deleted

See Activity Diagram
for Recording
Transactions

[Delete Not Allowed]

[Delete Allowed]
[Cancel Delete]

[Confirm Delete]

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

39

3.13 Limitations of Use Cases

Use cases alone are not sufficient. There are kinds of requirements (mostly non-
functional) that need to be understood. Since use cases provide a user’s perspective, they
describe the system as a black box and hide the internal details from the users. Hence, in
a use case, domain (business) rules as well as legal issues are not documented.

The non-functional requirements are also not documented in the use cases. As examples
of those, consider the following requirements.

 Usability
o Color blind people should not have any difficulty in using the system – color

coding should take care of common forms of color blindness.
 Reliability

o The system needs to support 7 x 24 operation
 Performance

o Authorization should be completed within 1 minute 90% of the time.
o Average authorization confirmation time should not exceed 30 seconds.

 Portability
o The system should run on Windows 98 and above as well as Sun Solaris 7.0

and above.
 Access

o System should be accessible over the internet – hidden requirement – security

Because of this shortcoming, use cases must be augmented by additional information.

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

40

Sink is the consumer of certain information. It is that entity which provides a logical end
to a business process. Thus, ‘sinks of requirements’ is a concept that helps in identifying
persons, organizations or external systems that gets certain functionality from the system.
These are logical ends of requirements, or where all the requirements are consumed. For
example, we may consider a user of a software application that retrieves a report from the
system. In this case, user when reviews the report, becomes the sink of that report. Thus
when analyzing the sink of the requirement of implementing a report, the analyst would
naturally point towards the user who would get that report.

In source and sink analysis the analyst determines all the sources of requirements and
where do these requirements consume (sinks). Now evaluate a report which displays
certain information, the source of this report is the data (and who enters it) that is input to
be retrieved later in the form of the report. Similarly, whoever needs this report become
the sink of the report.
In a similar manner, at times we gather data in our application that is not used anywhere.
So the question really is what to do with that kind of unused data or the missing
requirement. Is it really redundant or is something really missing from these
requirements? How to figure it out?

For example, we are having certain inputs (sources) to a process against which we do not
know about the corresponding outputs (sinks). Such inputs are redundant if there is found
no corresponding outputs. Thus these inputs can be removed as redundant. If we probe
out corresponding outputs, which could not be recorded initially, that mean these inputs
were not redundant rather a few (output related) requirements were missing that we
discovered during the sink analysis.

Lecture No. 7

3.14 Source and sink analysis

Once requirements are documented using any of these analysis models, an independent
verification is needed to verify completeness and consistency of requirements captured
through these models. The process of verifying requirements involves careful analysis of
sources as well as the sinks of information.

Source
A stakeholder describes requirements (needs, constraints) to be included as system
functionality. These can be processes that generate certain information that the system
may have to process or maintain. Sources of requirements are the origins from where the
corresponding business process is initiated. By this concept, one has to trace from a
requirement back to its origins to see who is involved in its initiation. Be it a person, an
organization or an external entity that initiate some action and system responds back by
completing that action.

Sink

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

41

Process Models
Domain Models
During requirements analysis phase, different models are developed to express
requirements of the system. Though it is difficult to draw a line between these models as
they complement each other, they differ in the manner information is expressed in these
models. Most of these models are pictorial and contain explanation to the diagrams.
Some of these models are discussed in the following subsections.

Understanding the business domain
It must always be kept in mind that the first step in delivering a system is establishing
what needs to be driven. That is, clear understanding of the problem domain is imperative
in successful delivery of a software solution. A software developer has to develop an
understanding of the business problem he is trying to solve. Unless he develops this
understanding, it is really difficult, if not impossible, to develop the right solution. But at
least if he collects both ends (sources, sinks) involved in different processes of the
business system, the corresponding requirements will be complete and yield a better
understanding of the problem domain. A software engineer works on domains that may
not correspond to his field of specialization (computer science, software engineering). He
may be involved in the development of an embedded application that automates the
control pad of a microwave machine or a decision support application for a stock
exchange broker. As the underlying systems for which these software applications are
being developed are not software systems, the software engineer cannot be expected to
know about these domains. So, how should he get all the required knowledge about these
systems? As without acquiring this knowledge, he may not be able to write down
complete and unambiguous requirements which are acceptable to users as well.
An important difference between software and another engineering discipline is that the
software engineer has to work on problems that do not directly relate to software
engineering. Whereas, an electrical engineer will work on electrical domain problems, a
civil engineer will work on civil engineering problems and so on. So, software engineer
has to learn user vocabulary and terms which they use in their routine operations. To
overcome this problem, a number of domain gathering techniques are used. These
techniques help in extracting requirements from systems which are not known to a
software engineer. Using these techniques the requirements gathering and validation
process becomes convenient and manageable for a software engineer.

The following subsections discuss some of these techniques.

4.2 Logical System Models

A requirement statement that describe the report but do not list down its sources, will be
an incomplete statement and the software engineer who is involved in validating such
requirements, should identify all the sources against sinks or vice versa to determine
complete end-to-end requirements.

A stakeholder may have required the development team to develop certain report for his
use. It means we are sure of its use (sink) but not about its sources, from where the
required information will be provided? Who will input that information and using what
mechanism?

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

42

System models are techniques used to understand user needs and software engineer use
these techniques in order to understand business domain. Software engineers develop
diagrams to model different business processes. System models include the following

 User business processes
 User activities for conducting the business processes
 Processes that need to be automated
 Processes which are not to be automated

Business process model
The first model that we will look at is called the process model. This model provides a

high-level pictorial view of the business process. This model can be used as a
starting point in giving the basic orientation to the reader of the document.
Following is an example of a hospital registration system which deals with two types
of patients.

n
o
i
t
a
r
t
s
i
g
e
R

tisiv
DPOtaerC

tisiv
DPItaerC

sutats
tneitaPegnahC

secivreS
tneitaPegnahC

)tneitaPynapmoC(
liateDstnemucoD

ynapmoc
droceR&tcelloC

)tneitaPynapmoC(
liateDstnemucoD

ynapmoC
droceR&nruteR

secivreS
deriuqeR

&DPOngissA

sralucitraP
noissimdAdroceR&
deB/mooRetacollA dohteM

tnemyaPdroceR
&tneitaPdnufeR

ROnoitcelloC
ecnavdA/hsaC

pilSDPOeussI

tipeceRtnemyaP
hsaCesussI

rehcuoV
tiderCeussI

eciffOhsaC

mroF
noissimdAeussI

eliF
noissimdAeussI

As opposed to flow charts, there are parallel activities in this diagram which are further
elaborated by specifying their major activities. The process described in this diagram is as
follows

 A patient may come to visit In Patient Department (IPD) or output patient
department (OPD)

 System determines if he is a company patient or a private patient.
 For a company patient, system verifies him.
 For an OPD patient, system will issue a chit to the patient and inform him about

his number and the consultant to whom he has to consult and he will have to wait
for his turn.

 After verifying an IPD patient, system will create a visit and allocate him a room
or a bed etc. If system cannot allocate this, then it will inform the patient.
Otherwise the patient is checked in and his information is maintained in the
system.

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

43

 System displays information about the expenses of the required service to the
patient so that he is informed of his expected expenditure.

 Some advance payment is also received against the required service and this
amount is adjusted in the final settlement.

 All this information is supplied to cash office that eventually deals with payments,
etc.

 Upon receiving the cash, for OPD patient, a chit will be issued. For IPD patient,
an admission form will be filled and this information will be maintained in the
system. A receipt will be issued to the patient.

 For credit transaction, corresponding voucher will be prepared.
 So the model depicts process before the start of the treatment.
 A patient may ask to change his service on event of an unsatisfied response from

the hospital staff or any other reason. System may cancel his record and pay his
amount back.

 Similarly, a doctor may ask a patient to change his status from OPD to IPD.

In a business process diagram, following points are important and should be noted
 It does not describe the automated system
 It only reflects the existing process of the user to help software engineer/analyst in

understanding business domain.
 It may contain information on processes that need not be automated.

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

44

 Lecture No.8

State Transition Diagrams

State transition diagrams (STDs) are another technique to document domain knowledge.
In many cases, information flows from one place to the other and at each place certain
action is taken on that piece of information before it moves to the next place. A file in an
office is a typical office is example of such system. In this case, different people make
comments and add information to that file and it moves from one table to the other this
movement is controlled by a pre-defined set of rules which define under what condition
the file moves from place A to place B and so on. We can easily document these set of
rules with the help of state transition diagrams.

Following is an example of a use of STD to document the life cycle of a trouble ticket
(this example has been taken from ITU-X.790 document).

A Trouble report and its life cycle – and introduction
From time to time all systems, including communications networks, develop problems or
malfunctions referred to in this Recommendation as “troubles”. A “trouble” in a
communications network is a problem that has an adverse effect on the quality of service
perceived by network users. When a trouble is detected, possibly as a result of an alarm
report, a trouble report may be entered by a user or the system may raise a report
automatically. Management of that trouble report is necessary to ensure that it receives
attention and that the trouble is cleared to restore the service to its previous level of
capability.

At the time of a trouble, a network may have been inter-working with another network to
provide a service, and the problem or malfunction may be due to the other network.
Therefore it may be necessary to exchange trouble management information between
management systems across interfaces which may be client to service provider or service
provider to service provider interfaces and may represent inter-jurisdictional as well as
intra-jurisdictional boundaries. In addition to exchanging information on trouble that has
already been detected, advance information on service inaccessibility may also need to be
exchanged. Thus, a service provider may need to inform a customer of future service
inaccessibility (because of planned maintenance, for example).

Trouble report states and status
Referring to the State transition diagram in Figure 2, a trouble report may go through any
of six states during its life cycle. In addition, a T
rouble Status attribute is defined which qualifies the state (finer granularity) e.g. cleared
awaiting customer verification. The time at which the status attribute change is also
captured in the trouble report
.
Following is a description of states of a trouble report.

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

45

Queued
A trouble report is in a queued state when it has been instantiated but the trouble
resolution process has not yet been initiated. A trouble report which is in the queued state
may be cancelled by the manager. The agent on receiving such a request will attempt to
close the trouble report.

Open/active
The trouble report becomes “open/active” when appropriate actions to resolve the trouble
are initiated.
An “open/active” trouble report may be “referred” to another Hand-off Person, or
“transferred” to another Responsible Person for further processing. The state however
remains unchanged as “open/active”. A trouble report in the open/active state may be
cancelled by the manager. The agent on receiving such a request will attempt to close the
trouble report.

Deferred
This state indicates that corrective action to resolve the trouble has been postponed. This
can occur when the faulty resource is inaccessible for a period and repair activity cannot
proceed. A deferred Telecommunications Trouble Report may become “open/active”
again, or move directly to the “closed” state if it is cancelled for some reason. A trouble
report in the deferred state may be cancelled by the manager. The agent on receiving such
a request will attempt to close the trouble report.

Cleared
A trouble report is moved by the agent to the “cleared” state when it determines that the
trouble has been resolved. If the manager needs to verify that the trouble has been
resolved, verification may optionally be awaited by the agent prior to closure of the
trouble report.

Closed
This state indicates that the trouble resolution process is complete. Upon closure, the
trouble report attributes are captured in a historical event generated at trouble report
closure which may then be stored in a log of trouble history records, for future reference.
The trouble report may then be eliminated at the agent’s convenience. However, the
agent may be required to maintain such records for a period of time as per business
agreements.

Disabled
A “disabled” value is exhibited when a trouble report’s information cannot be updated
due to local conditions. In the “disabled” condition only read operations can be
performed.

The following figure shows the STD for a trouble ticket. This diagram depicts the
movement of a trouble ticket from one state to the other, thus making it easy to
understand.

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

46

Queued

Deferred

Open/Active

Closed

Cleared

* DisabledCreate

Reject

Cancel

Cancel

Approve + Open

Refer, Transfer

Clear

Re-open

Cancel

Defer

Release

Close

Delete
(Explicit or Scheduled)

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

47

Arranging information in tabular form
Sometimes it is better and more convenient to arrange information in a tabular form. This
makes it easier for the reader to understand and comprehend the information and hence
designing, coding, and testing become less challenging. As an example, let us look at the
following definitions used for identifying different data functions in the function point
analysis taken from International Function Point User’s Group (IFPUG) Counting
Practices Manual (CPM 4.1).

External Inputs
An external input (EI) is an elementary process that processes data or control information
that comes from outside the application boundary. The primary intent of an EI is to
maintain one or more ILFs and/or to alter the behavior of the system.

External Outputs
An external output (EO) is an elementary process that sends data or control information
outside the application boundary. The primary intent of an external output is to present
information to a user through processing logic other than, or in addition to, the retrieval
of data or control information. The processing logic must contain at least one
mathematical formula or calculation, or create derived data. An external output may also
maintain one or more ILFs and/or alter the behavior of the system.

External Inquiry
An external inquiry (EQ) is an elementary process that sends data or control information
outside the application boundary. The primary intent of an external inquiry is to present
information to a user through the retrieval of data or control information from an ILF or
EIF. The processing logic contains no mathematical formulas or calculations, and creates
no derived data. No ILF is maintained during the processing, nor is the behavior of the
system altered.

It is difficult to understand these definitions and one has to read them a number of times
to understand what is the difference between EI, EO, and EQ and in which case a
function would be classified as EI, EO, or EQ.

Now the same information is presented in the tabular form as follows:

Transactional Function Types
Function

EI EO EQ
Alter the behaviour of the
system

PI M N/A

Maintain one or more ILFs PI M N/A
Present information to the user M PI PI

PI – Primary intent; M – may be; N/A – not allowed.

This table simply says that a function can alter the behaviour of the system, it can
maintain one or more ILFs, and/or it can present information to the user. The next step is
to determine whether it is EI, EO, or EQ. For that we have to determine what is the
primary intent (PI) of the function and in addition to this primary intent, what else does it

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

48

do. Identification of EQ is simple - in this case the only thing a function does is present
information to the user, which is also it’s primary intent. If it alters the behaviour of the
system or maintains and ILF then it can either be an EI or and EO but not an EQ. On the
other hand if the primary intent of the function is to present information to the user but at
the same time it also performs any of the first two operations, it is an EO. Finally, if the
primary intent of the function is either to alter the behaviour of the system of maintain
one or more ILFs, then it is an EI.

Hence by putting and organizing the information in the form of a table, we have not only
made it simple to understand the definition but also given an holistic picture which was
not easily visible otherwise.

Let us look at another example. This time the information is taken from the Income Tax
Ordinance of Pakistan 2001. Consider the following statement that describes the income
tax rates applicable to people with different brackets:

If the taxable income is less than Rs. 60,000, there will be no income tax. If the income
exceeds Rs. 60,000 but is less than Rs. 150,000 then income tax will be charged at the
rate of 7.5% for income exceeding Rs. 60,000. If the income exceeds Rs. 150,000 but
does not exceed Rs. 300,000 then the income tax will be computed at 12.5% of the
amount exceeding Rs. 150,000 plus Rs. 6,750. If the income exceeds Rs. 300,000 but
does not exceed Rs. 400,000 then the income tax will be computed at 20% of the amount
exceeding Rs. 300,000 plus Rs. 25,500. If the income exceeds Rs. 400,000 by does not
exceed Rs. 700,000 then the income tax will be computed at 25% of the amount
exceeding Rs. 400,000 plus Rs. 45,500. If the income exceeds Rs. 700,000 then the
income tax will be computed at 35% of the amount exceeding Rs. 700,000 plus Rs.
120,500.

The same information can be organized in the form of a table, making it more readable
and easier to use.

Income Tax
Less than Rs. 60,000 0%
Between Rs. 60,000 and Rs.
150,000

7.5% of (Income - 60,000)

Between Rs. 150,000 and Rs.
300,000

12.5% of (Income - 150,000) +
6,750

Between Rs. 300,000 and Rs.
400,000

20% of (Income - 300,000) +
25,500

Between Rs. 400,000 and Rs.
700,000

25% of (Income - 400,000) +
45,500

Greater than Rs. 700,000 35% of (Income - 700,000) +
120,500

Once the information has been organized in the tabular form, in many cases it can be
simply stored and mapped onto an array or a database table and the programming of this

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

49

kind of a rule is simply reduced to a table or dictionary lookup. This reduces the
complexity of the domain and hence reduces the over all effort for designing, coding,
testing, and maintaining the system.

Data Flow Model
 Captures the flow of data in a system.
 It helps in developing an understanding of system’s functionality.
 What are the different sources of data, what different transformations take place

on data and what are final outputs generated by these transformations.
 It describes data origination, transformations and consumption in a system.
 Information is organized and disseminated at different levels of abstraction. Thus

this technique becomes a conduit for top down system analysis and requirements
modeling.

The Notation
There are several notations of the data flow diagrams. In the following, four different
shapes are explained.

Process
 What are different processes or work to be done in the system.
 Transforms of data.

Process

External Agent
External systems which are outside the boundary of this system. These are represented
using the squares

External
Agent

Data Store
 Where data is being stored for later retrieval.
 Provides input to the process
 Outputs of the processes may be going into these data stores.

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

50

Data Store

Data Flow
 Where the data is flowing.
 Represents the movement of the data in a data flow diagram.

DFD versus Flow Charts
Flow charts are usually used to describe flow of control in a system. It describes control
flow in an algorithm. Flow charts are quite detailed. Whereas DFD does not captures
control flow information, it just shows the flow of the data in a system. Flow charts show
the sequential activities of an algorithm. So, decisions are made, loops or iterations are
described. On the other hand, DFD does not show the sequential activities. It just displays
the business flow (without sequence among activities). As if you visit an organization,
business activities are being performed in parallel. Therefore, DFD does not contain
control or sequential activities just data transition is captured.

DFD Flow Chart
 Processes on a data flow can operate in

parallel.
 Looping and branching are typically

not shown.
 Each process path may have a very

different timing.

 Processes on flowcharts are sequential.
 Show the sequence of steps as an

algorithm and hence looping and
branching are part of flowcharts.

Data Flow Model – Bank Account Management
System
In the following, we are presenting a data flow model that describes an accounts
management system for a bank. This data flow diagram consists of the following entities

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

51

Monthly Acct

Bank

Account

Reconcile
Account
Balance

Withdraw
funds from an

Account

Deposit
funds into an

Account

Bank
Creditor

Employer

Other
income
Sources

stmt

 Accounts

Transactions

Pay
a

Bill

Processes
1. Reconcile account balance
2. Deposit funds into an account
3. Pay a bill
4. Withdraw funds from an account

External agents
1. Bank
2. Creditor
3. Employer
4. Other income sources

Data stores
1. Monthly Account statement
2. Bank accounts
3. Account transactions

Description:
First we shall discuss ‘withdraw funds from an account’ process. In this process,
information about the accounts and account transactions is retrieved (from the data
stores) and bank releases the funds. After this, it sends this information to ‘reconcile
account balance’ process which prepares a monthly account statement. In this statement,
information regarding bank accounts and account transactions are described. Next is the
‘pay a bill’ process through which a creditor pays his dues and the corresponding
accounts are updated against the cash transaction. A receipt is issued back to the creditor.
The fourth process is ‘deposits funds in an account’ in which an employer deposits
salaries of his employees and the salary information is deposited in the corresponding

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

52

bank accounts of the employees. Similarly, income received through other income
sources is also received and deposited in the corresponding bank accounts.

Data Flow Modeling
When data flow modeling is used to model a system’s functionality, following points
need to be remembered

 Data flow model captures the transformation of data between processes/functions
of a system. It does not represent the control flow information that is occurring in
a system to invoke certain functionality.

 A number of parallel activities are shown in this diagram where no specific
sequence among these activities is depicted

 All the previous models that we studied like business process models, state
transition diagrams, are used to capture business domain irrespective of their
automation.

 However, in data flow models, we represent only those processes which we need
to automate as they involve certain computation, processing or transformation of
data that can be best implemented using an automated system.

 For example, we may consider a mail desk in an office that receives mail and just
forwards it to their respective addressees. In this example, as the mail desk does
not process the mail, just forwards it, therefore it does not include any process that
need to be automated. Hence, we shall not use data flow diagrams to model this
process.

 In nutshell, processes that just move or transfer data (do not perform any
processing on that data), should not be described using data flow models.

 Taking the same example, if we modify the scenario such that a mail desk clerk
receives the mail, notes it down into a register and then delivers it to their
respective addressees then a processing has got involved in this scenario. At least
one process is there that can be automated. That is, the recording of mail
information into the register. Now we can use a data flow model in which we
shall use a data transformation that captures the detail of recording mail
information into a register (or a data store). Thus with this addition, it makes
sense to use data flow model to capture the details of this process.

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

53

Lecture No. 9

4.3 Typical Processes
Now we shall discuss processes which are typically modeled using data flow diagrams.
These processes transform data in one or the other way but these are found in almost all
the automated systems. Following are the examples

 Processes that take inputs and perform certain computations. For example,
Calculate Commission is a process that takes a few inputs like transaction
amount, transaction type, etc and calculates the commission on the deal.

 Processes which are involved in some sort of decision-making. For example, in a
point of sales application a process may be invoked that determines the
availability of a product by evaluating existing stocks in the inventory.

 Processes that alter information or apply a filter on data in a database.
For example , an organization is maintaining an issue log of the issues or complaints that

their clients report. Now if they want to see issues which are outstanding for more
then a weeks time then a filter would have to be applied to sort out all the issues
with Pending status and whose initiation date is a week old.

 Processes that sort data and present the results to users. For example, we pass an
array of arbitrary numbers to a QuickSort program and it returns an array that
contains the sorted numbers.

 Processes that trigger some other function/process
For example, monthly billing that a utility company like WAPDA, PTCL generates. This

is a trigger that invokes the billing application every month and it prepares and
prints all the consumer bills.

 Actions performed on the stored data. These are called CRUD operations and
described in the next subsection

CRUD Operations
These are four operations as describes below

 Create: creates data and stores it.
 Read: retrieves the stored data for viewing.
 Update: makes changes in an stored data.
 Delete: deletes an already stored data permanently.

4.4 Adding Levels of Abstraction to Data Flow
Modeling

As we have already described that in data flow modeling only those processes can be
expressed that perform certain processing or transformation of information. Now the
question arises how far these processes need to be expressed? As a single process like
CalculateCommission as described in the above section, can be described in sufficient
detail such that all of its minute activities can be captured in the data flow diagram.
However, if we start adding each bit of system functionality in a single data flow
diagram, it would become an enormously large diagram to be drawn on a single piece of
paper. Moreover, requirement analysis is an ongoing activity in which knowledge
expands as you dig out details of processes. Therefore, it may not be possible for an

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

54

analyst to know each bit of all the processes of the system from the very beginning.
Keeping the complexity of systems in view, data flow modeling technique has suggested
disseminating information of a system in more then just one levels of abstraction. What
are these levels, please see below for a discussion

Context Level Data Flow Diagram
In a top-down system analysis, an analyst is required to develop high level view of the
system at first. In data flow modeling, this high-level view is the Context level data flow
diagram. In this diagram, system’s context is clarified such that all the external agents or
entities with which the system interacts are captured. It captures the details of what
information flows between the system and these external entities, and what outputs are
generated against inputs from these external agents and so on. So, the analyst probes out
all the external agents that may involve persons, organizations or other systems who
directly interacts with this system and their specific involvement in the system. At this
level, systems internal details are not exposed, as we want to see system behavior as a
black box.

Detailed Data Flow diagrams
Once context of a system has been captured using context level diagram, the analyst
would expand his activities and start digging out system’s internal details. Therefore, the
same context level diagram is further expanded to include all major processes of the
system that make up system functionality. So, instead of portraying system as a black box
entity, the analyst would add processes that deal with the external agents and produces
certain outputs. This is level one of a data flow model.
In level two of data flow model, instead of refining the previous levels further, we take
one process from the level one diagram and expands it in a level two diagram. Hence, a
level one diagram that depict the whole system, may be expanded to more then one level
two diagrams each of which describes exactly one process in detail which were listed in
level one diagram as simply an oval (process or transform).
This process may continue to any level of details as the analyst can conveniently
captures. Where diagram at a specific level is a refinement of one of the processes listed
in a previous level. By adding levels of abstraction to a data flow diagram, it becomes
natural for a software engineer or a requirement analyst to readily express his knowledge
about the system in an appropriate level of data flow model that corresponds only to a
specific set of functionality.
It should be noted here that the number of external agents and their inputs to the system
and the outputs that the system would return to them, should remain the same throughout
different levels of a data flow model. It should be considered a mistake if context level
diagram contains three external agents, which are providing two inputs each, and getting
one output in return but at level one, we add one more external agent or input or the
outputs. This would make level one model inconsistent with the context level diagram.
This is true for any level of data flow model. For instance, at level two the number of
external agents, inputs and outputs shown in (all of level two) diagrams should match
exactly with the external agents, inputs and outputs shown in level one diagram.
Therefore, disseminating information at an appropriate level of abstraction with the
additional check of inter-level consistency makes data flow modeling a very powerful
domain-modeling tool. After this discussion, we shall give the reader an example in

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

55

which a system is modeled using data flow modeling technique where three levels of
abstraction have been developed.

Patient Monitoring System – A Data Flow Modeling
Example
Context Diagram

Following is the 0-level or the context level data flow diagram of the Patient Monitoring
System. In this data flow diagram, three external entities (users) are interacting with the
centralized system. Point to note here is that in this context level diagram, only one
process or transform takes place that is the Patient Monitoring System itself. A patient’s
vital signs are transmitted to this system which may invoke a warning message to the
nurse if these signs fall into the critical range. Nurse may request for a report, which the
patient monitoring system retrieves from the patient log, and return it to the nurse again.
In this manner the 0-level data flow diagram describes the context of this system.

In order to see detail processes involved in Patient Monitoring System, a level 1 data flow
diagram will have to be made. In the following, we are providing level 1 data flow
diagram which is a refinement of the level-0 data flow diagram.

rse

Log data

Report

Warning
Message

Vital signs

Request for
Report

Patient
Monitoring

System

Patient

Nurse

Nurse

Patient Log

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

56

Patient Monitoring System – Level 1 Data Flow
Diagram

Level 1 data flow diagram is the refinement of the context (0-level) data flow diagram.
All the external entities are the same (Nurse, and Patient), however, the process of
‘Patient Monitoring System’ is further elaborated by the three processes Local
Monitoring, Report Generator, and Central Monitoring. The Local Monitoring process
transforms vital signs that it receives from Patient entity into Patient data and passes this
information to Central Monitoring process. Central Monitoring process retrieves vital
signs bounds and compares Patient data and it may generate Warning message if the
Patient data goes out of normal Vital signs bounds. A nurse may request for a report, in
response the Report Generator process retrieves Log data from Patient Log, generates the
report and displays it back to the nurse.
It should be noted here that this level 1 diagram is a further refinement of level 0 diagram
such that the underlying system is the same but processes which were hidden in level 0
are represented in this diagram.
A further refinement of this model is also possible if we expand any of these three
processes to capture further details. For example, the Local Monitoring process may
further be expanded to capture detailed activities involved in the monitoring process.
Following is level 2 diagram of Central Monitoring process.

Central Monitoring System – Level 2 Data Flow
Diagram

Patient

Nurse

Log data

Report

Warning Message

Vital signs

Request for
Report

Nurse

Patient data Vital signs
bounds

Local
Monitoring

Central
Monitoring

Report
Generator

Patient Log

Patient bounds

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

57

In the above level 2 data flow diagram, Patient’s data is sent to the Unpack Signs process
which unpacks it and send Pulse, Temperature, and Blood pressure to the Evaluate
Bounds Violation process. This process retrieves Vital signs bounds information,
compares it with unpacked patient data and sends a violation sign to the Produce Warning
Message process upon an out of bound result of the comparison. The patient data is sent
to Format Patient Data process that generates the formatted patient data to be maintained
against patient profile. In this manner we elaborated the patient monitoring system up to
three levels describing different details at each level. In a similar manner, other two
processes in level 1 DFD could also be expanded in their respective level two diagrams in
order to describe their functionality in more detail.
By going through this example, the reader would have learnt how data flow modeling
technique helps in understanding domain of a system at different levels of abstractions. In
the following sub-section, we shall describe common mistakes that the people do while
preparing data flow diagrams.

Vital signs
boundsBlood pressure

Violation

Temperature
Patient
data

Warning
message Clock Date time

Blood pressure,
temp, and pulse

Unpack
Signs

Evaluate
Bounds
Violation

Format
Patient
Data

Produce
Warning
Messag

e

Patient boundsPulse

Formatted
patient data

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

58

4.5 Common Mistakes in Data Flow Diagrams
In the following data flow diagram, an accounting system has been described. Three
processes are given Generate an Employee Bank Statement, Create a New Member
Account, and Freeze Member Account. There are two external entities shown in this
diagram Employee and Accounts Receivable Department. The three processes described
in this diagram have associated problems. Can you guess these problems?
If you look at the arrows going inside each of these processes and coming out of them,
you will observe some peculiarity.
In fact, here we can apply the source and sink analysis that we studied in the last lectures.
What does the source and sink analysis suggest? It suggests that in order to check
completeness of a requirement, evaluate the sources as well as the sinks of the
requirements. Applying this knowledge in this case, we observe the following mistakes

Member

Generate an
Employee
Bank stmt

Create a
new member

Account

Accounts

Employee

 Employees
Accounts

Freeze
Member
Account

New Account
status

Existing
Accounts

Employee
Address

Bank Statement

Membership
Application

Employee
Status

Frozen
Account

Notification
Receivable
Department

 There is no input for the process Freeze Member Account
 In a similar manner, the process Create a New Member Account does not produce

any output.
 Similarly, Generate Employee Bank Statement process is having two inputs and

an output but the question really is, do these inputs correspond to the output?
The Freeze Member Account process that does not have any input is an example of a
requirement whose source is not known. Similarly, the Create a New Member Account
process that does not produce any output is an example of a requirement whose sink has
not been specified. Lastly, the Generate an Employee Bank Account process though have
two inputs and produces an output but in order to generate a bank statement, all that is

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

59

needed is an account number and the time period for which the statement is required. If
we analyze the inputs given to this process, we can observe that both of these inputs
cannot help in generating the account statement. Therefore, these inputs are irrelevant to
the output being generated by this process.
In the above mentioned example, it is evident that by applying the source and sink
analysis we determined all the missing inputs and outputs to the processes of this
diagram.
In the following subsection, we shall describe actions which are not only mistakes but
illegal too for the data flow diagrams.

Illegal Data Flows
Directly Communicating External Agents

Following diagram depicts a scenario in which one external entity is directly
communicating with another external entity. This form of communication is illegal to be
shown in a data flow diagram.

B1 B2

There must be an intermediate process which should transform data received from one
external entity and then send the transformed data to the other external entity. As we have
already described that data flow diagrams should be used to depict processes that
transform or process data. Simple data movement from one entity to another should not
be described using data flow diagrams.

B1 B2

A process is
needed to

exchange data
between

external agents

External Agent updating information in a Data
Store

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

60

As we explained in the above case, a transform/process is needed between
communicating entities. This is true even for an External Entity that wants to store/update
some information directly in a data store, a transformation would be required.

B1 Data
Store

Therefore, a process should be inserted between the interacting entities (external agent,
data store) that should store information received from the external agent after processing
it.

B1

A process is
needed to
update a

data store

Data
Store

External Agent accessing information from a Data
Store

Similarly, an external agent accessing information from a data store directly is also
illegal.

Again a data transform/process if needed in this communication. It should be able to
retrieve information from the data store and then pass it on to the external agent.

B1 Data
Store

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

61

Copying data to a data store
In the following diagram, a data store is shown copying data directly to another data
store. This is again illegal as there is not any intermediate process/data transform
mentioned.

Data
Store

Data
Store

So, the correct method is again to use a data transform/process between the two data
stores. It should retrieve data from one data store and after transforming that data, store it
into another data store.

A process is
needed to

copy data from
onr data store

to another

Data
Store

Data
Store

B1 Data
Store

A process is
needed to
use a data

store

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

62

Lecture No. 10

Prototyping and GUI Design
GUI Sketches

Adding user interface details in the SRS is controversial. The opponents of this argue that
by adding GUI details to the SRS document, focus shifts from what to how – GUI is
definitely part of the solution. On the other hand many people think that, it is still what
not how and hence it should be made part of the SRS document. By adding the GUIs in
the FS, requirements can be solidified with respect to scenario contents. It is my personal
experience that the client appreciates more the contents of the SRS document if our SRS
document contains the GUI details than if we don’t have them there. This document is
also going to be used as the base line for design, user manual, and test planning among
other things. Presence of the UI details imply that these activities can start right after SRS
is accepted and signed-off. Emergence of rapid GUI drafting tools has made the task a lot
simpler than it used to be. Exploring potential user interfaces can be of help in refining
the requirements and making the user-system interaction more tangible to both the user
and the developer. User displays can help in project planning and estimation. A user
interface might highlight weaknesses in addressing some of the non-functional
requirements (such as usability), which are otherwise very hard to fix later on. If you
cannot freeze the RS until UI is complete, requirement development process takes a
longer time. However, we need to be very careful when we use GUIs to the SRS
document. It is a very common mistake to use UI layouts as substitute of defining the
functional requirements. We must remember that these are supplementary information
and cannot replace other components of the SRS document. Any change in the
requirements entails a change in the UI. If the requirements are not stable, this can mean
a lot of rework.

Motivation for GUI
 System users often judge a system by its interface rather than its functionality
 A poorly designed interface can cause a user to make catastrophic errors
 Poor user interface design is the reason why so many software systems are never

used

Pitfalls of using GUIs in Functional Specifications
 UIs distract from business process understanding (what) to interfacing details

(how)
 Unstable requirements cause frequent modifications in UIs
 An extra work to be done at the requirement level each time a GUI change has to

be incorporated

In the following we shall discuss how unstable requirements cause difficulties in
preparing GUIs

Example

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

63

The following GUI implements the delete component use case that we discussed in use
case section. The GUI displays a drop down list box that contains a list of component
types. The top of the list entry is ‘None’ where the user can click on the arrow and select
the component type whose component he wants to delete.

The next GUI implements the scenario when user has clicked over the arrow and a few
component types are populated in the list. User then selects a component type ‘Plan
Type’. Corresponding plans are populated and displayed in the list box at the right side of
the GUI.

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

64

Following GUI depicts the scenario when user selects a particular plan ‘Plan 3’ and clicks
on the ‘Delete’ button. Now assume that ‘Plan 3’ is currently being used. So, the
application displays a dialog box to the user informing him that he cannot deletes this
plan as it is in use.

The next GUI, another dialog box is shown in which user is getting another message from
the system. It says that Plan 3 is not in his hierarchy.

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

65

The user then selects ‘Plan 2’ and deletes it. System confirms the user and upon
confirmation, deletes ‘Plan 2’.

After deleting ‘Plan 2’, it displays the message that Plan 2 has been permanently deleted.
Whereas, ‘Plan 2’ is still visible in the list.

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

66

However, it should be noted that, all the above GUIs presented two major mistakes about
the GUIs. First, if a plan is currently in use, it should not have been displayed in the list at
the right. Secondly, instead of displaying two messages separately in two dialog boxes, it
would have been appropriate to combine them in one message.
The following GUI displays what this GUI should have displayed ideally. As, user can
only delete plans 1 and 2, therefore, only these plans should have displayed to him.

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

67

In the above example, it is evident that if requirements are partially generated a number
of changes have to be made and sometimes the frequency of these changes rise so much
that it takes all of the requirements and design time just in finalizing GUIs.

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

68

Prototype

Prototyping is yet another technique that can be used to reduce customer dissatisfaction at
the requirement stage. The idea is to capture user’s vision of the product and get early
feedback from user to ensure that the development team understands requirements. This
is used when there is uncertainty regarding requirements. Sometimes, even the customer
does not know what he/she actually needs. This happens when there is no manual
solution.

A prototype is not the real product. It is rather just a real looking mock-up of what would
be eventually delivered and might not do anything useful. However, the presence of a
prototype makes a new product tangible. It brings use cases to life and closes gaps in
your understanding of the requirements. From a user’s perspective, it is easier to play
with a prototype and try it out than to read SRS.

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

69

Lecture No. 11

Software Design

6.1 Introduction

Recalling our discussion of software construction process, once the requirements of a
software system have been established, we proceed to design that system. During the
design phase, the focus shifts from what to how. That is, at this stage we try to answer the
question of how to build the system. The objective of the design process is to analyze and
understand the system in detail so that features and constituent components of at least one
feasible solution are identified and documented. The design activity provides a roadmap
to progressively transform the requirements through a number on stages into the final
product by describing the structure of the system to be implemented.

It includes modeling of the data structures and entities, the physical and logical
partitioning of the system into components, and the interfaces between different
components of the system as well as interfaces to the outside world. Sometimes design of
algorithms is also included in this activity.

6.2 Managing Complexity of a Software System

A complex system that works is invariably found to have evolved from a simple system
that worked. The structure of a system also plays a very important role. It is likely that
we understand only those systems that have hierarchical structure and where intra-
component linkages are generally stronger than inter component linkages. To manage the
complexity of the system we need to apply the principles of separation of concern,
modularity, and abstraction. This leads to designs that are easy to understand and hence
easy to maintain.

Separation of concern, modularity, and abstraction are different but related principles.

Separation of concern allows us to deal with different individual aspects of a problem by
considering these aspects in isolation and independent of each other.

A complex system may be divided into smaller pieces of lesser complexity called
modules. This is the classic divide-and-conquer philosophy – if you cannot solve a
complex problem, try to break it into smaller problems that you can solve separately and
then integrate them together in a systematic fashion to solve the original problem. One
major advantage of modularity is that it allows the designer to apply the principle of
separation of concern on individual modules.

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

70

Software Design Process

Software design is not a sequential process. Design of a software system evolves through
a number of iterations. The design process usually involves developing a number of
different models, looking at the system from different angles and describing the system at
various levels of abstraction. Like the various different models used during requirement
engineering domain models, these models complement each other. As stated earlier,
software design provides a road map for implementation by clearly describing how the
software system is to be realized.

A activities performed at this stage include design of the software architecture by
showing the division of system into sub-systems or modules, the specification of the
services provided by these sub-systems and their interfaces with each other, division of
each sub-system into smaller components and services and interfaces provided by each
one of these components. Data modeling is also an essential activity performed during the
design phase. This includes the identification of data entities and their attributes,
relationships among these entities, and the appropriate data structures for managing this
data.

Software Design Strategies

Software design process revolves around decomposing of the system into smaller and
simpler units and then systematically integrates these units to achieve the desired results.
Two fundamental strategies have been used to that end. These are functional or structured
design and object oriented design.

In the functional design, the structure of the system revolves around functions. The entire
system is abstracted as a function that provides the desired functionality (for example, the
main function of a C program). This main function is decomposed into smaller functions
and it delegates its responsibilities to these smaller functions and makes calls to these
functions to attain the desired goal. Each of these smaller functions is decomposed into
even smaller functions if needed. The process continues till the functions are defined at a
level of granularity where these functions can be implemented easily. In this design
approach, the system state, that is the data maintained by the system, is centralized and is
shared by these functions.

The object-oriented design takes a different approach. In this case the system is
decomposed into a set of objects that cooperate and coordinate with each other to
implement the desired functionality. In this case the system state is decentralized and
each object is held responsible for maintaining its own state. That is, the responsibility of
marinating the system state is distributed and this responsibility is delegated to individual
objects. The communication and coordination among objects is achieved through
message passing where one object requests the other object if it needs any services from
that object.

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

71

The object-oriented approach has gained popularity over the structured design approach
during the last decade or so because, in general, it yields a design that is more
maintainable than the design produced by the functional approach.

Software Design Qualities

A software design can be looked at from different angles and different parameters can be
used to measure and analyze its quality. These parameters include efficiency,
compactness, reusability, and maintainability. A good design from one angle may not
seem to be suitable when looked from a different perspective. For example, a design that
yields efficient and compact code may not be very easy to maintain. In order to establish
whether a particular design is good or not, we therefore have to look at the project and
application requirements. For example, if we need to design an embedded system for the
control of a nuclear reactor or a cruise missile, we would probably require a system that
is very efficient and maintainability would be of secondary concern. On the other hand, in
the case of an ordinary business system, we would have a reversal in priorities.

Maintainable Design

Since, in general, maintenance contributes towards a major share of the overall software
cost, the objective of the design activity, in most cases, is to produce a system that is easy
to maintain. A maintainable design is the one in which cost of system change is minimal
and is flexible enough so that it can be easily adapted to modify exiting functionality and
add new functionality.

In order to make a design that is maintainable, it should be understandable and the
changes should be local in effect. That is, it should be such that a change in some part of
the system should not affect other parts of the system. This is achieved by applying the
principles of modularity, abstraction, and separation of concern. If applied properly, these
principles yield a design that is said to be more cohesive and loosely coupled and thus is
easy to maintain.

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

72

A component should implement a single concept or a single logical entity. All the parts of
a component should be related to each other and should be necessary for implementing
that component. If a component includes parts that are not related to its functionality,
then the component is said to have low cohesion.

Coupling and cohesion are contrasting concepts but are indirectly related to each other.
Cohesion is an internal property of a module whereas coupling is its relationship with
other modules. Cohesion describes the intra-component linkages while couple shows the
inter-component linkages. Coupling measures the interdependence of two modules while
cohesion measures the independence of a module. If modules are more independent, they
will be less dependent upon others. Therefore, a highly cohesive system also implies less
coupling.

A good example of a system with a very high cohesion and very less (almost nil)
coupling is the electric subsystem of a house that is made up of electrical appliances and
wires. Since each one of the appliances has a clearly definable function that is completely
encapsulated within the appliance. That means that an appliance does not depend upon
any other appliance for its function. Therefore, each appliance is a highly cohesive unit.
Since there are no linkages between different appliances, they are not coupled. Let us
now assume that we have added a new centralized control unit in the system to control
different appliances such as lights, air conditioning, and heating, according to certain
settings. Since this control unit is dependent upon the appliances, the overall system has
more coupling than the first one.

Modules with high cohesion and low coupling can be treated and analyzed as black
boxes. This approach therefore allows us to analyze these boxes independent of other
modules by applying the principle of separation of concern.

Lecture No. 12

6.3 Coupling and Cohesion

Coupling is a measure of independence of a module or component. Loose coupling
means that different system components have loose or less reliance upon each other.
Hence, changes in one component would have a limited affect on other components.

Strong cohesion implies that all parts of a component should have a close logical
relationship with each other. That means, in the case some kind of change is required in
the software, all the related pieces are found at one place. Hence, once again, the scope is
limited to that component itself.

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

73

modules can be identified easily. In this case intra component linkages are stronger while
inter component linkages are weak.

Coupling and cohesion can be represented graphically as follows.

High Coupling Low Coupling

This diagram depicts two systems, one with high coupling and the other one with low
coupling. The lines depict linkages between different components. In the case of highly
coupled system, module boundaries are not well defined, as everything seems to be
connected with everything else. On the other hand, in the system with low coupling

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

74

Example of Coupling

The modules that interact with each other through message passing have low coupling
while those who interact with each other through variables that maintain information
about the state have high coupling. The following diagram shows examples of two such
systems.

In order to understand this concept, let us consider the following example. In this
example, we have a class vector in which the data members have been put in the public
part.

class vector {
 public:

float x;
float y;
vector (float x, float y);
float getX();
float getY();
float getMagnitude();
float getAngle();

};

Now let us assume that we want to write a function to calculate dot product of two
vectors. We write the following function.

Module A

A's Data

Module A

A's Data

Module C

C's Data

Module D

D's Data

Module B

B's Data

Low Coupling

Module 1

Module 4Module 3

Module 2

Shared
Data

High Coupling

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

75

float myDotProduct1(vector a, vector b)
{

float temp1 = a.getX() * b.getX();
float temp2 = a.getY() * b.getY();
return temp1 + temp2;

}

Since the data members are public, one could be enticed to use these members directly
(presumably saving some function calls overhead) and rewrite the same function as
follows:

float myDotProduct2(vector a, vector b)
{

float temp1 = a.x * b.x;
float temp2 = a.y * b.y;
return temp1 + temp2;

}

So far, there does not seem to be any issue. But the scenario changes as soon as there are
changes in the class implementation. Now let us assume that for some reason the class
designer changes the implementation and data structure and decides to stores the angle
and magnitude instead of the x and y components of the vector. The new class looks like
as follows:

class vector {
 public:

float magnitude;
float angle;
vector (float x, float y);
vector (float magnitude, float angle);
float getX();
float getY();
float getMagnitude();
float getAngle();

};

Now we see the difference in the two implementations of the dot product function written
by the user of this class. In the first case, as the dot product function is dependent upon
the public interface of the vector class, there will be no change while in the second case
the function will have to be rewritten. This is because in the first case the system was
loosely coupled while in the second case there was more dependency on the internal
structure of the vector class and hence there was more coupling.

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

76

Example of Cohesion

As mentioned earlier, strong cohesion implies that all parts of a component should have a
close logical relationship with each other. That means, in case some kind of change is
required in the software, all the related pieces are found at one place.

A class will be cohesive if most of the methods defined in a class use most of the data
members most of the time. If we find different subsets of data within the same class being
manipulated by separate groups of functions then the class is not cohesive and should be
broken down as shown below.

f2

f1

f4

f3

f2

f1

Class X1

f4

f3

Class X2

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

77

As an example, consider the following order class:

class order {
 public:

int getOrderID();
date getOrderDate();
float getTotalPrice();
int getCustometId();
string getCustomerName();
string getCustometAddress();
int getCustometPhone();

void setOrderID(int oId);
void setOrderDate(date oDate);
void setTotalPrice(float tPrice);
void setCustometId(int cId);
void setCustomerName(string cName);
void setCustometAddress(string cAddress);
void setCustometPhone(int cPhone);
void setCustomerFax(int cFax)

 private:
int oredrId;
date orderDate;
float totalPrice;
item lineItems[20];
int customerId;
string customerName;
int customerPhone;
int customerFax;

};

The Order class shown above represents an Order entity that contains the attributes and
behavior of a specific order. It is easy to see that this contains information about the order
as well as the customer which is a distinct entity. Hence it is not a cohesive class and
must be broken down into two separate classes as shown. In this case each on of these is
a more cohesive class.

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

78

class order {
 public:

int getOrderID();
date getOrderDate();
float getTotalPrice();
int getCustometId();

void setOrderID(int oId);
void setOrderDate(date oDate);
void setTotalPrice(float tPrice);
void setCustometId(int cId);
void addLineItem(item anItem);

 private:
int oredrId;
date orderDate;
float totalPrice;
item lineItems[20];
int customerId;

};

class customer {
 public:

int getCustometId();
string getCustomerName();
string getCustometAddress();
int getCustometPhone();
int getCustomerFax();

void setCustometId(int cId);
void setCustomerName(string cName);
svoid setCustometAddress(string cAddress);
void setCustometPhone(int cPhone);
void setCustomerFax(int cFax)

 private:
int customerId;
string customerName;
int customerPhone;
int customerFax;

};

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

79

6.4 Abstraction and Encapsulation

Abstractions is a technique in which we construct a model of an entity based upon its
essential characteristics and ignore the inessential details. The principle of abstraction
also helps us in handling the inherent complexity of a system by allowing us to look at its
important external characteristic, at the same time, hiding its inner complexity. Hiding
the internal details is called encapsulation. In fact, abstraction is a special case of
separation of concern. In this case we separate the concern of users of the entity who only
need to understand its external interface without bothering about its actual
implementation.

Engineers of all fields, including computer science, have been practicing abstraction for
mastering complexity. Consider the following example.

void selectionSort(int a[], int size)
{

int i, j, min, temp;
for(i = 0; i < size –1; i++)
{

min = i;
for (j = i; j < size; j++)
{

if (a[j] < a[min])
min = j;

}
temp = a[i];
a[i] = a[min];
a[min] = temp;

}
}

This function can be rewritten by abstracting out some of the logical steps into auxiliary
functions. The new code is as follows.

viod swap(int &x, int &y)
{

int temp;
temp = x;
x = y;
y = temp;

}

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

80

int indexOfMinimumValue(int a[], int from, int to)
{

int i, min;
min = from;
for (i = from+1; i < to; i++)

if (a[i] < a[min]) min = i;
return min;

}

void selectionSort(int a[], int size)
{

int i, min;
for (i = 0; i < size; i++)
{

min = indexOfMinimumValue(a, i, size);
swap(a[i], a[min]);

}
}

In this function we have abstracted out two logical steps performed in this functions.
These functions are finding the index of the minimum value in the given range in an array
and swapping the minimum value with the value at the ith index in the array. It is easy to
see that the resultant new function is easier to understand than the previous version of the
selection sort function. In the process, as a by-product, we have created two auxiliary
function mentioned above, which are general in nature and hence can be used elsewhere
as well. Principle of abstraction thus generates reusable self-contained components.

6.5 Function Oriented versus Object Oriented Design

Let us now try to understand the difference between object-oriented and function oriented
(or action oriented) approach.

In the case of action-oriented approach, data is decomposed according to functionality
requirements. That is, decomposition revolves around function. In the OO approach,
decomposition of a problem revolves around data. Action-oriented paradigm focuses only
on the functionality of a system and typically ignores the data until it is required. Object-
oriented paradigm focuses both on the functionality and the data at the same time. The
basic difference between these two is decentralized control mechanism versus centralized
control mechanism respectively. Decentralization gives OO the ability to handle essential
complexity better than action-oriented approach.

This difference is elaborated with the help of the following diagram:

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

81

Functions

Data

In this diagram, the ovals depict the function while rectangles/squares depict data. Since a
function contains dynamic information while data contains only static information, if the
function and data are managed separately, the required data components can be found by
scanning a function but the functions that use a particular data cannot be found by just
looking at the data. That is, the function knows about the data it needs to use but the data
do not know about the functions using it. That means it is easy to make a change in a
function since we would know which data components would be affected by this change.
On the other hand, changing a data structure would be more difficult because it would not
be easy to find all the functions that are using this data and hence also need to be
modified.

Object oriented approach solves this problem by putting the relevant data and
functionality together at one place. Hence, in case of a change, the effected components
can be identified easily and the effect of change is localized. Therefore, maintenance
becomes relatively easy as compared to function-oriented approach. This is made
possible because the data is not shared in this case. Anyone needing any information
contained in there would request the encapsulating object by sending it a message
through the interface provided by the object. In this case we create highly cohesive
objects by keeping the related data and function at one place and spinning-off non-related
information into other classes. This can be elaborated with the help of the following
diagram.

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

82

3

4

1

5

2

33

44

11

55

22

Let us assume that the circles represent sets of functions and rectangles represent data
that these function use to carry out their operation. In the object-oriented design, the data
areas that are common among different sets of functions would be spun-off into their own
classes and the user function would use these data through their interfaces only. This is
shown in the following diagram.

106

7

8 9

10101066

77

88 99

3

4

1

5

2

33

44

11

55

22

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

83

Lecture No. 13

Object Oriented Analysis and Design

Object Oriented Design - Why?
Software is primarily used to represent real-life players and processes inside a computer.
In the past, software was considered as a collection of information and procedures to
transform that information from input to the output format. There was no explicit
relationship between the information and the processes which operate on that
information. The mapping between software components and their corresponding real-
life objects and processes was hidden in the implementation details. There was no
mechanism for sharing information and procedures among the objects which have similar
properties. There was a need for a technology which could bridge the gap between the
real-life objects and their counter-parts in a computer. Object oriented technology
evolved to bridge the gap. Object-oriented technology helps in software modeling of real-
life objects in a direct and explicit fashion, by encapsulating data and processes related to
a real-life object or process in a single software entity. It also provides a mechanism so
that the object can inherit properties from their ancestors, just like real-life objects.

A complex system that works is invariably found to have evolved from a simple system
that worked. The structure of a system also plays a very important role. It is likely that
we understand only those systems which have hierarchical structure and where intra-
component linkages are generally stronger than inter component linkages. That leads to
loose coupling, high cohesion and ultimately more maintainability which are the basic
design considerations. Instead of being a collection of loosely bound data structures and
functions, an object-oriented software system consists of objects which are, generally,
hierarchical, highly cohesive, and loosely coupled.

Some of the key advantages which make the object-oriented technology significantly
attractive than other technologies include:

 Clarity and understandability of the system, as object-oriented approach is closer to
the working of human cognition.

 Reusability of code resulting from low inter-dependence among objects, and
provision of generalization and specialization through inheritance.

 Reduced effort in maintenance and enhancement, resulting from inheritance,
encapsulation, low coupling, and high cohesion.

Difference between object-oriented and function-oriented design

Before talking about how to derive and object-oriented design, we first need to
understand the basic difference between object-oriented and function oriented (or action
oriented) approach.

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

84

In the case of action-oriented approach, data is decomposed according to functionality
requirements. That is, decomposition revolves around function. In the OO approach,
decomposition of a problem revolves around data. Action-oriented paradigm focuses only
on the functionality of a system and typically ignores the data until it is required. Object-
oriented paradigm focuses both on the functionality and the data at the same time. The
basic difference between these two is decentralized control mechanism versus centralized
control mechanism respectively. Decentralization gives OO the ability to handle essential
complexity better than action-oriented approach.

This difference is elaborated with the help of the following diagram:

Functions

Data

In this diagram, the ovals depict the function while rectangles/squares depict data. Since a
function contains dynamic information while data contains only static information, if the
function and data are managed separately, the required data components can be found by
scanning a function but the functions that use a particular data cannot be found by just
looking at the data. That is, the function knows about the data it needs to use but the data
do not know about the functions using it. That means, it is easy to make a change in a
function since we would know which data components would be affected by this change.
On the other hand, changing a data structure would be difficult because it would not be
easy to find all the functions that are using this data and hence also need to be modified.

In the case of OO design since data and function are put together in one class, hence, in
case of a change, the effected components can be identified easily and the effect of
change is localized. Therefore, maintenance becomes relatively easy as compared to
function-oriented approach.

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

85

Object Oriented Design Components - What?

The Object and the Class
The basic unit of object oriented design is an object. An object can be defined as a
tangible entity that exhibits some well defined behavior. An object represents an
individual, identifiable item, unit, or entity, either real or abstract, with a well defined
role in the problem domain. An object has state, behavior, and identity.

The state of an object encompasses all of the properties of the object and their current
values. A property is an inherent or distinctive characteristic. Properties are usually static.
All properties have some value. The state of an object is encapsulated within the object.

Behavior is how an object acts and reacts in terms of its state changes and message
passing. The behavior of an object is completely defined by its actions. A message is
some action that one object performs upon another in order to elicit a reaction. The
operations that clients may perform upon an object are called methods.

The structure and behavior of similar objects are defined in their common class. A class
represents an abstraction - the essence or the template of an object. A class specifies an
interface (the outside view - the public part) and defines an implementation (the inside
view - the private part). The interface primarily consists of the declaration of all the
operations applicable to instances of this class. The implementation of a class primarily
consists of the implementation of all the operations defined in the interface of the class

Classification
The most important and critical stage in the OOA and OOD is the appropriate
classification of objects into groups and classes. Proper classification requires looking at
the problem from different angles and with an open mind. When looked at from different
perspectives and analyzed with different set of characteristics, same object can be
classified into different categories. Let us try to understand this with the help of an
example.

Data-Driven
head, tail, body, leg

Behavior-Driven
walk, run, eat

Responsibility-Driven
carry things, communicate,
maintain its living system

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

86

Here, we can take a data-driven, behaviour driven, or responsibility driven perspective
and will categorize the horse accordingly.

The Object Model
The elements of object oriented design collectively are called the Object Model. The
object model encompasses the principles of abstraction, encapsulation, and hierarchy or
inheritance.

Abstraction is an extremely powerful technique for dealing with complexity. Unable to
master the entirety of a complex object, we ignore its essential details, dealing instead
with generalized, idealized model of the object. An abstraction focuses on the outside
view of an object, and hence serves to separate an objects external behavior from its
implementation. Deciding upon the right set of abstractions for a given domain is the
central problem in object oriented design.

Abstraction and encapsulation are complementary concepts. Abstraction provides the
outside view to the client and encapsulation prevents clients from seeing its inside view.
For abstraction to work, implementation must be encapsulated. Encapsulation hides the
details of the implementation of an object. Intelligent encapsulation localizes design
decisions that are likely to change. The ability to change the representation of an object
without disturbing any of its clients is the essential benefit of encapsulation.

Relationship Among Objects
The object model presents a static view of the system and illustrates how different objects
collaborate with one another through patterns of interaction. Inheritance, association and
aggregation are the three inter-object relationships specified by the object model.

Inheritance defines a “kind of” hierarchy among classes. By inheritance, we specify
generalization/specialization relationship among objects. In this relationship, a class
(called the subclass) shares the structure and behavior defined in another class (called the
superclass). A subclass augments or redefines the existing structure and behavior of its
superclass. By classifying objects into groups of related abstractions, we come to
explicitly distinguish the common and distinct properties of different objects, which
further help us to master their inherent complexity. Identifying the hierarchy within a
complex system requires the discovery of patterns among many objects.

In an association relationship, when object A “uses” object B, then A may send messages
to B. The relationship defines visibility among objects.

The aggregation relationship defines part-of structure among objects. When object A is
part of the state of object B, A is said to be contained by B. There are some tradeoffs
between aggregation and association relationships. Aggregation reduces the number of
objects that must be visible at the level of enclosing objects and may lead to undesirable
tighter coupling among objects.

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

87

Aggregation and Association - Conceptual and Implementation Issues and
Differences

Association and Aggregation - Some basic differences
Objects do not exist in isolation. They rather collaborate with one another in many
different ways to achieve an overall goal. The different types of relationships in which
these objects are involved include association, aggregation, and inheritance. Briefly,
inheritance denotes a “kind of” relationship, aggregation denotes a “part of” relationship,
and association denotes some semantic connection among otherwise unrelated classes.
Any further elaboration on inheritance relationship is beyond the scope of this discussion
and therefore we shall concentrate on agrregation and association relationships only.

As mentioned earlier, aggregation is the “part-whole” or “a-part-of” relationship in which
objects representing the components of something are encapsulated within an object
representing the entire assembly. In other words, the whole is meaningless without its
parts and the part cannot exist without its container or assembly. Some properties of the
assembly propagate to the components as well, possibly with some local modifications.
Unless there are common properties of components that can be attached to the assembly
as a whole, there is little point in using aggregation. Therefore, as compared to
association, aggregation implies a tighter coupling between the two objects which are
involved in this relationship. Therefore, one way to differentiate between aggregation and
association is that if the two objects are tightly coupled, that is, if they cannot exist
independently, it is an aggregation, and if they are usually considered as independent, it is
an association.

Object Creation and Life Time
From the object creation and life time point of view, when an object is instantiated, all of
its parts must also be instantiated at the same time before any useful work can be done
and all of its part die with it. While in the case of association, the life time of two
associated object is independent of one another. The only limitation is that an object must
be alive or has to be instantiated before a message can be sent to it.

Coupling and Linkages
As mentioned earlier, aggregation implies a much tighter coupling than association. In
case of aggregation, the links between the whole and its part are permanent while in case
of association the links may be maintained only just for the period an object requires the
services of its associated object and may be disconnected afterwards.

Ownership and visibility
Another way of differentiating among the two is to look at them from the ownership and
sharing point of view. In case of aggregation, since the whole contains the part, the part is
encapsulated or hidden within the whole and is not accessible from outside while in case
of association, the associated object may be used directly by other objects also. That is,
in case of aggregation, only the whole is supposed to send a message to its parts while in
case of association, anyone who holds a reference to it can communicate with it directly.

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

88

In other words, in case of aggregation, the whole owns its parts and the part becomes a
private property of the whole. For all practical purposes, any other object does not even
need to know about its existence. On the other hand, an associated object may be shared
among many different objects. That is, many different object may hold reference to the
same object simultaneously.

Database persistence

From a database perspective, when an object is persisted or stored in the database, all of
its components (all parts of the whole) must also be persisted in their entirety along with
the “whole” for future reference while only a reference to the associated object may be
stored in the database. Note that a normalized database would also enforce the above
restriction.

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

89

Object Oriented Design
OOD transforms the analysis model into design model that serves as a blueprint for
software construction. OOD results in a design that achieves a number of different levels
of modularity. The four layers of the OO design pyramid are:

1) The subsystem layer. Contains a representation of each of the subsystems that
enable the software to achieve its customers defined requirements and to implement
the technical infrastructure that supports customer requirements.

2) The class and object layer. Contains the class hierarchies that enable the system to
be created using generalization and increasingly more targeted specializations. The
layer also contains design representations for each object.

3) The message layer. Contains the details that enable each object to communicate with
its collaborators. This layer establishes the external and internal interfaces for the
system.

4) The responsibility layer. Contains the data structures and algorithmic design for all
attributes and operations for each object.

Analysis Model

Classes

attributes

methods

relationships

behavior

Design Model

Objects

data structures

algorithms

messaging

control

Translating the analysis model into a design model during object design

Lecture No. 14

Object Oriented Analysis
The intent of OOA is to define all classes, their relationships, and their behavior. A
number of tasks must occur:

1) Static Model
a) Identify classes (i.e. attributes and methods are defined)
b) Specify class hierarchy
c) Identify object-to-object relationships
d) Model the object behavior

2) Dynamic Model
a) Scenario Diagrams

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

90

Object-Oriented Analysis using Abbot’s Textual Analysis
The first object-orientation technique that we will study is one of the oldest techniques to
identify objects and their relationships. This technique is called Textual Analysis. It was
initially developed by Abbot and then extended by Graham and others. In this technique
different parts of speech are identified within the text of the specification and these parts
are modeled using different components. The following table shows this scheme.

Part of speech Model component Example
proper noun
improper noun
doing verb
being verb
having verb
adjective
adjective phrase

instance
class/type/role
operation
classification
composition
attribute value or class
association
operation

Mehdi Hassan
student, teacher
buy
is a horse, is a book
fan has wings
this ball is green
the customer with children
the customer who bought the kite

Once all the model components have been identified, we will eliminate the redundant or
irrelevant components by again analyzing the text and the context of the problem.
Let’s now try to understand this with the help of an example:

Problem Statement:
A simple cash register has a display, an electronic wire with a plug, and a numeric
keypad, which has keys for subtotal, tax, and total. This cash storage device has a total
key, which triggers the release on the drawer. The numeric buttons simply place a
number on the display screen, the subtotal displays the current total, the tax key computes
the tax, and the total key adds the subtotal to the tax.

Our task now is to:
 Identify all the classes in this problem statement.
 Eliminate the unnecessary classes.

We are now going to use nouns to find classes.

Nouns (initial)

Register Display Wire
Plug Keypad Keys
Devices Release Drawer
Buttons Screen Number

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

91

Total Tax

Nouns (General Knowledge)

0-9 keys Money Subtotal Key
Tax Key Total Key

Eliminating Irrelevant/Redundant Nouns

We now analyze the identified nouns and try to establish whether they would be stand-
alone classes in our domain or not. Outcome of this analysis is shown below.

Register
Display
Wire  Irrelevant
Plug  Irrelevant
Keypad
Keys
Devices  Vague
Release  Irrelevant
Drawer
Buttons  Redundant
Screen  Redundant
Number  Attribute
Total  Attribute
Tax  Attribute
0-9 Key
Value  Attribute
Money
Subtotal Key
Tax Key
Total Key

We will continue with technique to identify all the constituent components of the model
and derive our object-oriented design.

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

92

 Lecture No. 15

The Notation
Many different notations are used for documenting the object oriented design. Most
popular of these include, Rumbaugh, Booch, and Coad, and UML(Unified Modeling
Language). We will be using UML to document our design. Although the notation is very
comprehensive and detailed, but the key features of this notation are presented in the
following diagram.

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

93

 Lecture No. 16

Derivation of the Object Model – The Coad Methodology
An object model of a system captures the static structure of a system by showing the
objects in the systems, their relationships, their attributes, and their services. To stream
line the derivation of the object model, Peter Coad has divided the process into 5
activities, each being further subdivided into a number of steps. Following is the
description of these activities.

Select Objects – who am I?
We have used an approach that divides the objects into different categories to make it
easier to find them and establish their attributes, services, and collaborations. This
activity, consisting of 6 steps, can help you find objects and categorize them. These steps
are:

Select actors
Actors are people and organizations that take part in the system under consideration.
Examples of actors are: person, organization (agency, company, corporation, foundation).
Note that we are talking about actors and not their “roles”. e.g. a customer is a role that a
person plays, so if we have a customer in our problem domain, we will also add a person
as actor in the model.

Select Participants
A participant is a role that each actor plays in the system under consideration. Examples
of participants are: agent, applicant, buyer, cashier, clerk, customer, dealer, distributor,
donor, employee, investor, member, officer, owner, policy holder, recipient, student,
supervisor, supplier, teacher, worker. It may be noted that the same person may play
different roles at different times in the system. That means that if we model this behavior
using Generalization-Specialization instead of Actor-Participant, we may end up with
multiple inheritance.

Select Places
Places are where things come to rest or places that contain other objects. Examples of
places are: airport, assembly-line, bank, city, clinic, country, depot, garage, hanger,
hospital, plant, region, sales outlet, service center, shelf, station, store, warehouse, zone.

Select Transactions
Transactions are the “events” that must be remembered through time. These are entries
that must be maintained in a historical record or log which may be used to answer
questions or perform assessments. These transactions usually come from a window
(GUI), some object which monitors for significant event and logs that information, or a
another system that interacts with the system under consideration and logs some

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

94

information. Examples of transactions are: agreement, assignment, authorization,
contract, delivery, deposit, incident, inquiry, order, payment, problem report, purchase,
refund, registration, rental, reservation, sale, shift, shipment, subscription, withdrawal.
Note that nearly all transactions consist of a number of transaction line items.

Select Container Objects
Containers are objects that hold other objects. Note the similarity of definition between
container and places. The difference is that a place is a place in the literal sense while a
container is a any object that can hold other objects, e.g. bin, box, cabinet, folder, locker,
safe, shelf, etc. Therefore a place is also a container but every container need not be a
place.

Select Tangible things
Take a “walk” through the system and select “tangible” things around you used in the
problem domain. These may be characterized as all the remaining (not yet selected)
“nouns” that make up the problem domain. Examples are: account, book, calendar, cash
box, cash drawer, item, plan, procedure, product, schedule, skill, tool, etc.

While selecting objects, the following considerations should be kept in mind for a simpler
(and better) object model.

1. Every object that you put in your object model should have some responsibility or
role to play in the problem domain. You need to know each object, its attributes, and
services. If there is no way to know about the object, remove it from the object
model.

2. Avoid having controller objects because controllers usually end up with functionality
that’s better done by other objects themselves, making the message passing more
complicated, and resulting in higher coupling. Use delegation instead. Note the
difference between controlling and delegation; a controller wants to do every thing by
himself (doesn’t trust anyone), while a good manager delegates responsibility (and
takes credit).

3. In large systems several objects are likely to have similar or even identical
responsibilities. Look for such objects and seek a common name to simplify the
object model.

4. Use meaningful class names, names that describe objects in that class. Try to use
names from the domain vocabulary to avoid confusion.

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

95

Generalization-Specialization (Gen-Spec) and whole-part. This activity covers the
identification of these structures in the following 2 steps:

Identify Gen-Spec Structures (Hierarchy)
Consider each class that you have identified as a specialization and then look for its
generalization and vice versa.

Identify Whole-Part structures (Aggregations) - What are my
components?
For each object that you have identified, consider it as a whole and then try to find out its
parts - objects that make up this object.

Define Attributes - What I Know?
The first two activities would identify most of the objects (classes) in the problem
domain. Now is the time to think about the role and responsibilities of these objects. The
first thing to consider is their attributes, i.e., what it knows.

For each object include the attributes that come to mind when you first think about the
object. The criteria for the inclusion of an attribute is that it should be included if the
system needs to know its value and it cannot get it any other way. Don not add an
attribute for an association or aggregation. Examples of attributes are: number, name,
address, date, time, operational state, phone, status, threshold, type, etc. In particular,
consider the following attributes for different types of objects.

1. For actors consider name, address, phone.
2. for participants consider number, date and time, password, authorization level.
3. for place/location consider number, name, address (perhaps latitude, longitude,

altitude).
4. for transaction consider number, date, time, status.
5. for line item consider quantity, status.
6. for item consider name, description, dimension, size, UPC, weight.

Like object selection, there are a number of issues that every designer must be aware of
while defining attributes of an object. These are:

1. An attribute that varies over time, e.g., price of an item, should be replaced by an
additional class with an effective date and value.

2. An attribute that may have a number of values should be replaced by a new class and
an object connection.

3. Replace “yes/no” type attributes with “status” type attributes for flexibility.
4. If there are classes with common attributes and generalization-specialization makes

good sense, then add a generalization class and factor out the commonality.

Lecture No. 17

Identify Structures
A structure is a manner of organization which expresses a semantically strong
organization within the problem domain. There are two type of structures:

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

96

Show Collaborations (associations and aggregations) - Who I
know?
The second step in establishing each object’s responsibility is to identify and show how
this object collaborates with other objects, i.e., who it knows. These collaborations can be
identified with the help of the following 8 steps:

1. For an actor, include an object connect to its participants (association).
2. For a participant, include an object connection to its actor (already established) and its

transactions (association).
3. For a location, include object connections to objects that it can hold (association), to

its part objects (aggregation), and to the transactions that are taking place at that
location (association).

4. For transactions, include object connections to its participants (already established),
its line items (aggregation), and its immediate subsequent transaction (aggregation).

5. For a transaction line item, include object connections to its transaction (already
established), its item (association), a companion “item description” object
(association), and a subsequent line item (association).

6. For an item, include object connections to transaction line item (already established),
a companion “item description” object (association).

7. For a composite object, include object connections to its “part” object (aggregation).
8. For all objects (including all of the above) select connecting objects to which the

object under consideration sends a message (within one or more scenarios) to get
some information or to answer a query about objects directly related to it
(association).

Define Services - What I do?
The third and last step in establishing each object’s responsibility is to define what
services does each object in the problem domain provide, i.e., what it does. Putting the
right service with the right object is also very important since any mistake in judgment
will increase coupling and reduce cohesion. The verbs in your problem domain usually
indicate some of the services required of the associated object.

Software objects do things that the system is responsible to do with regard to that object.
By putting the services with the attributes they work on results in lower coupling and
stronger cohesion, and increased likelihood of reuse. The basic principle is to keep data
and action together for lower coupling and better cohesion. The basic services, done by
all (such as get, set, create, initialize), are not shown in the object model. While
establishing the services for an object, the following fundamental questions should be
asked:

1. Why does the system need this object any way?
2. What useful questions can it answer?
3. What useful action can it perform?
4. What this object can do, based upon what it knows?
5. What this object can do, based upon whom it knows?

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

97

6. What calculations can it do?
7. What ongoing monitoring could it do?
8. What calculations across a collection could it make (letting each worker do its part)?
9. What selections across a collection could it make (letting each worker do its part)?

While establishing services of certain specific types of objects, the following should be
considered:

1. For an actor, consider: calculate for me, rate me, is <value>, rank participants,
calculate over participants.

2. For a participant, consider: calculate for me, rate me, is <value>, rank transactions,
calculate over transactions.

3. For a place, consider: calculate for me, rate me, is <value>, rank transactions,
calculate over contents, calculate over container line items.

4. For a Transaction, consider: calculate for me, rate me, is <value>, how many, how
much, rank transaction line items, rank subsequent transactions, calculate over
transaction line items, calculate over subsequent transactions.

5. For a line item, consider: calculate for me, rate me.
6. For an item, consider: calculate for me, rate me, is <value>, how many, how much,

rank, calculate over specific items.

Lecture No. 18

CASE STUDY: Connie’s Convenience Store - A point of
Sale System

The System

Identify the purpose of the system
 develop an overall purpose statement in 25 words or less. Why this system?

Why now?
 Keep the overall goal, the critical success factor, always before you.
 “To support, to help, to facilitate, ...”

Connie’s Wish List

 scan items and automatically price them
 know whether an item is on sale
 automatically total the sale and calculate tax
 handle purcahses and returns
 handle payments with cash, check, or charge
 authorize checks and cards
 calculate change when working with cash or checks
 record all of the information about a customer transaction

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

98

 balance the cash in the drawer with the amount recorded by the point-of-sale
system.

Why ?

 speed up checkout time
 reduce the number of pricing errors
 reduce the labour required to ticket the item with a price, originally and when

prices change.

Summary

to help each cashier work more effectively during checkout, to keep good records
of each sale, and to store more efficient store operations.

Identify system features
Be certain to include features that cover the following

1. log important information
2. conduct business
3. analyze business results
4. interact with other systems

Identify features for logging important information

 to maintain prices based upon UPC
 to maintain tax categories (categories, rates, and effective dates)
 to maintain the authorized cashiers
 to maintain what items we sell in a store
 to log the results of each sale in a store

Identify features for conducting business

 to price each item, based upon its UPC
 to subtotal, calculate tax, and total
 to accept payment by cash, check, or charge

Identify features for analyzing business results

 to count how many of each item sold
 to count how much we received in cash, check, or credit card sales
 to assess how each cashier is performing
 to assess how each store is performing

Identify features for working with interacting systems

 to obtain authorization from one or more credit (or check) authorization
system

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

99

SELECTING OBJECTS

Select Actors
the actor is:

 person

Select Participants
the Participants are:

 cashier
 head cashier
 customer

Cashier and Head Cashier
Is there a difference between head cashier and cashier in terms of their behavior
and knowledge?. If no then we don not need a separate class for head cashier.

Customer
customer. You must have a way to know about customer objects; otherwise it
should not be put in the domain model.

Select Places
The places are:

 store
 shelf

Shelf
The system does not keep track of the shelves.

Select Transactions
Significant Transactions are:

 sale
 every sale is a collection of sale line items
 return
 payment
 session

Select Container Classes
The store is a container class.
a store contains

 cashiers
 registers
 items

Select Tangible Things
Tangible things in store:

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

100

 item
 register
 cash drawer
 Tax Category (Descriptive things)

Session
Is it important? It is important in order to evaluate a cashier’s performance.

 Lecture No. 199

Identify Structures

Identify Gen-Spec Structures
Kinds of stores:

A store is a kind of sales outlet. Perhaps over time, Connie will expand to other
kinds of sales outlets. Stores might be specialized into kinds of stores. For now on
leave store as it is.

Kinds of sales:
- sales, returns
- only different is that the amount is positive or negative. Is there any other
difference?

Prices:
- regular price, and promotional (sales) price

Payment:
- cash, check, and charge are kind of payments

Identify Whole-Part Structures
 A store as a whole is made up of cashiers, registers, and items.
 A register contains a cash drawer.
 A sale is constituted of sale line items.

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

101

Price

Promotional Price

Payment

ChargeCheque Cash Payment

Object Hierarchy

Sale

Sales Line Item

Stote

Register

Cash Drawer

ItemCashier

Whole-Part Structures

Establishing Responsibilities

Who I Know - Rules of Thumb
 an actor knows about its participants

person knows about cashier
 a transaction knows about its participants

a session knows about its register and cashier
 A transaction contains its transaction line items

sale contains its sales line items

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

102

 A transaction knows its sub transactions
session knows about its sales
sale knows about its payments

 A place knows about its transactions
store knows about its sessions

 A place knows about its descriptive objects
store knows about its tax categories

 A container knows about its contents
a store knows about its cashiers, items, and registers

Tax Category

Register

Store

SalesPayment

SessionCashier

Person

Association Relationships

Define Attributes, Services, and Links - What I know, What I do, and Who I
know?
Actors:

person
Attributes: name, address, phone
Services:

Participants:
cashier

Attributes: number, password, authorization level, current session
Services: isAuthorized, assess Performance

Places:
store

Attributes: name
Services: get item for UPC, get cashier for number

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

103

Tangible things:
item

Attributes: number, description, UPCs, prices, taxable
attributes with repeating names - create new objects
UPC, Price (specialization - promotional price)

Services: get price for a date, how much for quantity
Who I Know? UPC, Price, tax category, sale line item

register
Attributes: number
Services: how much over interval, how many over interval
Who I know? store, session, cash drawer (part of register)

cash drawer
Attributes: balance, position (open, close), operational state
Services: open
Who I know? register

Tax Category
Attributes: category, rate, effective date
Services: just the basic services - get, add, set - don’t show
Who I know? items?

Transactions:
sale

Attributes: date and time
Services: calculate subtotal, calculate total, calculate discount,
calculate

tax, commit
Who I Know? session, payment, SLIs

sale line item
Attributes: date and time ?, quantity, tax status (regular, resale, tax-
exempt)
Services: calculate sub total
Who I Know? item, sale

sale line item - how do you handle returns and sales
sale - you have control
return - more difficult

- return to a different store
- purchased for a different price
- returns an item no longer in the inventory

return
Attributes: return price, reason code, sale date, sale price

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

104

Services:
Who I Know?

is it a case for gen-spec, what’s same, what’s different

payment - we have types of payments
Attributes:

each payment knows about its
amount paid, cash tendered

a check object knows its
bank, account number, amount tendered, authorization code

a credit object knows about its
card type, card number, expiration date, authorization code

common attributes among check and credit - use gen-spec
hierarchy becomes:

payment
cash payment
authorized payment

check
card

Services:
who I know: sale

Payment

ChargeCheque

Cash Payment
Authorized
Payment

Sales Line Item

Return Line Item

session
Attributes: start date, end date, start time, end time
Services: how much money collected over interval, how many sales

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

105

Who I know? register, cashier, store, sales

Payment

ChargeCheque

Cash Payment
Authorized
Payment

Sales Line Item

Return Line Item

Session

Store

RegisterCashier

SalePerson

Item

Tax Category

Cash Drawer

UPCs

Price

Promotional Price

Object Model Diagram for Connie’s Convenience Store

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

106

Lecture No. 20
9Interaction Diagrams – depicting the dynamic behaviour of

the system

A series of diagrams can be used to describe the dynamic behavior of an object-oriented
system. This is done in terms of a set of messages exchanged among a set of objects
within a context to accomplish a purpose. This is often used to model the way a use case
is realized through a sequence of messages between objects.

The purpose of Interaction diagrams is to:
 Model interactions between objects
 Assist in understanding how a system (a use case) actually works
 Verify that a use case description can be supported by the existing classes
 Identify responsibilities/operations and assign them to classes

UML provides two different mechanisms to document the dynamic behaviour of the
system. These are sequence diagrams which provide a time-based view and
Collaboration Diagrams which provide an organization-based view of the system’s
dynamics.

The Sequence Diagram
Let us first look at Sequence Diagrams. These diagrams illustrate how objects interacts
with each other and emphasize time ordering of messages by showing object interactions
arranged in time sequence. These can be used to model simple sequential flow,
branching, iteration, recursion and concurrency. The focus of sequence diagrams is on
objects (and classes) and message exchanges among them to carry out the scenarios
functionality. The objects are organized in a horizontal line and the events in a vertical
time line.

The Notation
Following diagram illustrates the notation used for drawing sequence diagrams.

: Professor
CourseManager

Math 101 - Section
1 : CourseOffering

Add professor (Professor)

Lifeline Message

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

107

The boxes denote objects (or classes), the solid lines depict messages being sent from one
object to the other in the direction of the arrow, and the dotted lines are called life-lines of
objects. The life line represents the object’s life during interaction. We will discuss this in
more detail later.

These concepts are further elaborated with the help of the following sequence diagram.

As shown above, in a sequence diagram, objects (and classes) are arranged on the X-Axis
(horizontally) while time is shown on the Y-Axis (vertically). The boxes on the life-line
are called activation boxes and show for how long a particular message will be active,
from its start to finish. We can also show if a particular condition needs to occur before a
message is invoked simply by putting the condition in a box before the message. For
example, object member:LibraryMember sends a message to object book:book if the
value of ok is true.

The syntax used for naming objects in a sequence diagram is as follows:
 syntax: [instanceName][:className]
 Name classes consistently with your class diagram (same classes).
 Include instance names when objects are referred to in messages or when several

objects of the same type exist in the diagram.

An interaction between two objects is performed as a message sent from one object to
another. It is most often implemented by a simple operation call. It can however be an

member:
LibraryMember

book:Bookbook:Book
:Book
Copy
:Book
Copy

borrow(book)borrow(book)
ok = mayBorrow()ok = mayBorrow()

[ok] borrow(member)[ok] borrow(member)
setTaken(member)setTaken(member)

X-Axis (objects)

Y
-A

xis (tim
e)

ObjectLife
Linemessage

Activation
box

condition

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

108

actual message sent through some communication mechanism, either over the network or
internally on a computer.

If object obj1 sends a message to another object obj2 an association must exist between
those two objects. There has to be some kind of structural dependency. It can either be
that obj2 is in the global scope of obj1, or obj2 is in the local scope of obj1 (method
argument), or obj1 and obj2 are the same object.

A message is represented by an arrow between the life lines of two objects. Self calls are
also allowed. These are the messages that an object sends to itself. This notation allows
self calls. In the above example, object member:LibraryMember sends itself the
mayBorrow message. A message is labeled at minimum with the message name.
Arguments and control information (conditions, iteration) may also be included. It is
preferred to use a brief textual description whenever an actor is the source or the target of
a message.

The time required by the receiver object to process the message is denoted by an
activation-box.

 Lecture No. 19

9

Lecture No. 21

9
Message Types
Sequence diagrams can depict many different types of messages. These are: synchronous
or simple, asynchronous, create, and destroy. The following diagram shows the notation
and types of arrows used for these different message types.

Synchronous Messages

Synchronous messages are “call events” and are denoted by the full arrow. They
represent nested flow of control which is typically implemented as an operation call. In
case of a synchronous message, the caller waits for the called routine to complete its

Synchronous

Asynchronous

Create

Destroy

<<create>><<create>>

<<destroy>><<destroy>>

operation before moving forward. That is, the routine that handles the message is
completed before the caller resumes execution. Return values can also be optionally
indicated using a dashed arrow with a label indicating the return value. This concept is
illustrated with the help of the following diagram.

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

109

While modeling synchronous messages, the following guidelines should be followed:

 Don’t model a return value when it is obvious what is being returned, e.g.
getTotal()

 Model a return value only when you need to refer to it elsewhere, e.g. as a
parameter passed in another message.

 Prefer modeling return values as part of a method invocation, e.g.
ok = isValid()

Asynchronous messages

Asynchronous messages are “signals,” denoted by a half arrow. They do not block the
caller. That is, the caller does not wait for the called routine to finish its operation for
continuing its own sequence of activities. This occurs in multi-threaded or multi-
processing applications where different execution threads may pass information to one
another by sending asynchronous messages to each other. Asynchronous messages
typically perform the following actions:

 Create a new thread
 Create a new object
 Communicate with a thread that is already running

Object Creation and Destruction

An object may create another object via a <<create>> message. Similarly an object may
destroy another object via a <<destroy>> message. An object may also destroy itself. One
should avoid modeling object destruction unless memory management is critical. The
following diagrams show object creation and destruction. It is important to note the
impact of these activities on respective life lines.

:A :B

doYouUnderstand()

Caller
Blocked

return
(optional)yes

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

110

Sequence diagrams and logical complexity
It is important to judiciously use the sequence diagrams where they actually add value.
The golden principle is to keep it small and simple. It is important to understand that the
diagrams are meant to make things clear. Therefore, in order to keep them simple, special
attentions should be paid to the conditional logic. If it is simple then there is no harm in
adding it to the diagram. On the other hand if the logic is complex then we should draw
separate diagrams like flow charts.

:A :B

<<destroy>>

:A :B

<<destroy>>

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

111

Collaboration diagrams
Collaboration diagrams can also be used to depict the dynamic behaviour of a system.
They show how objects interact with respect to organizational units (boundaries!).
Since a boundary shapes communication between system and outside world e.g. user
interface or other system, collaboration diagrams can be used to show this aspect of the
system. The sequence of messages determined by numbering such as 1, 2, 3, 4, … This
shows which operation calls which other operation.

Collaboration diagrams have basically two types of components: objects and messages.
Objects exchange messages among each-other. Collaboration diagrams can also show
synchronous, asynchronous, create, and destroy message using the same notation as used
in sequence diagrams. Messages are numbered and can have loops

The following diagrams illustrate the use of collaboration diagrams.

Comparing sequence & collaboration diagrams

: ProfessorCourseManager

Math 101 - Section 1 : CourseOffering

1 : Add professor (Professor)

: Registrar: Registrar

course form : CourseForm

theManager : CurriculumManageraCourse : Course

4 : <<create>>

3 : add course

1 : set course info
2 : process

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

112

Sequence diagrams are best to see the flow of time. On the other hand, static object
connections are best represented by collaboration diagrams. Sequence of messages is
more difficult to understand in collaboration diagrams than in the case of sequence
diagrams. On the other hand, object organization with control flow is best seen through
collaboration diagrams. It may be noted that complex control is difficult to express

anyway but collaboration diagrams can become very complex very quickly.

Evaluating the Quality of an Object-Oriented Design

Judging the quality of a design is difficult. We can however look at certain object-
oriented design attributes to estimate its quality. The idea is to analyze the basic principle
of encapsulation and delegation to judge whether the control is centralized or distributed,
hence judging the coupling and cohesion in a design. This will tell us how maintainable a
design is.

You may also recall our earlier discussion of coupling and cohesion. It can be easy to see
that OO design yield more cohesive and loosely coupled systems.

The issue of centralized versus distributed control can be illustrated with the help of the
following example.

Consider a heat regulatory system for a room as shown below.

In this case, the room is not encapsulated as one entity and three different objects namely
Desired Temp, Actual Temp, and Occupancy maintain necessary information about a
room. In this case the Heat Flow Regulator has to communicate with three different
objects.

Furnace
Heat Flow
Regulator

Desired
Temp

Actual
Temp

Occupancy

desiredTemp()

anyonePresent()

actualTemp()

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

113

If we encapsulate the three objects into one Room object as shown below, then the Heat
Flow Regulator will need to communicate with one object, hence the overall coupling of
the system will be reduced.

This happened because in the first case intelligence is distributed while in the second case
it is encapsulated. However, the control is still centralized as the Heat Flow Regulator has
the control logic that first analyses the values from different queries and then makes a
decision about turning the furnace on of off. We can improve the situation even further
by delegating this responsibility to the Room object as shown below.

By doing that we reduce coupling even further because now we have made Room more
cohesive by putting the function with the related data and have thus reduced the number
and types of messages being sent from the regulator to the room.

That is, we can reduce the coupling of a system by minimizing the number of messages
in the protocol of a class. The problem with large public interfaces is that you can never
find what you are looking for…smaller public interfaces make a class easier to
understand and modify. This can be further elaborated with the help of the following
example. Suppose we have two functions defined for setting the desired temperature in
the room:

Desired
Temp

Actual
Temp

Occupancy

Room

Furnace
Heat Flow
Regulator

desiredTemp()

actualTemp()

anyonePresent()

Desired
Temp

Actual
Temp

Occupancy

Room

Furnace
Heat Flow
Regulator

doYouNeedHeat()

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

114

 SetMinimumValue(int aValue)
 SetMaximimumValue(int aValue)

We can reduce the total number of messages in the protocol of this class by consolidation
these as shown below, hence reducing the overall complexity of the protocol.

 SetLimits(int minValue, int maxValue)

It is however important to use these kinds of heuristics judiciously and care must be taken
so that the scope of the function does not go beyond providing one single operation.

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

115

 Lecture No. 229

Software and System Architecture

Introduction

When building a house, the architect, the general contractor, the electrician, the plumber,
the interior designer, and the landscaper all have different views of the structure.
Although these views are pictured differently, all are inherently related: together, they
describe the building’s architecture. The same is true with software architecture.
Architectural design basically establishes the overall structure of a software system.

The design process for identifying the sub-systems making up a system and the
framework for sub-system control and communication is architectural design. The output
of this design process is a description of the software architecture.

The study of software architecture is in large part a study of software structure that began
in 1968 when Edsger Dijkstra pointed out that it pays to be concerned with how software
is partitioned and structured, as opposed to simply programming so as to produce a
correct result. Dijkstra was writing about an operating system, and first put forth the
notion of a layered structure, in which programs were grouped into layers, and programs
in one layer could only communicate with programs in adjoining layers. Dijkstra pointed
out the elegant conceptual integrity exhibited by such an organization, with the resulting
gains in development and maintenance ease.

David Parnas pressed this line of observation with his contributions concerning
information-hiding modules, software structures, and program families.

A program family is a set of programs (not all of which necessarily have been or will
ever be constructed) for which it is profitable or useful to consider as a group. This
avoids ambiguous concepts such as "similar functionality" that sometimes arise when
describing domains. For example, software engineering environments and video games
are not usually considered to be in the same domain, although they might be considered
members of the same program family in a discussion about tools that help build graphical
user interfaces, which both happen to use.1

Parnas argued that early design decisions should be ones that will most likely remain
constant across members of the program family that one may reasonably expect to

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

116

produce. In the context of this discussion, an early design decision is the adoption of a
particular architecture. Late design decisions should represent trivially-changeable
decisions, such as the values of compile-time or even load-time constants.

All of the work in the field of software architecture may be seen as evolving towards a
paradigm of software development based on principles of architecture, and for exactly the
same reasons given by Dijkstra and Parnas: Structure is important, and getting the
structure right carries benefits.

Before talking about the software architecture in detail, let us first look at a few of its
definitions.

8.2 What is Software Architecture?

What do we mean by software architecture? Unfortunately, there is yet no single
universally accepted definition. Nor is there a shortage of proposed definition candidates.
The term is interpreted and defined in many different ways. At the essence of all the
discussion about software architecture, however, is a focus on reasoning about the
structural issues of a system. And although architecture is sometimes used to mean a
certain architectural style, such as client-server, and sometimes used to refer to a field of
study, it is most often used to describe structural aspects of a particular system.

Before looking at the definitions for the software architecture, it is important to
understand how a software system is defined. It is important because many definitions of
software architecture make a reference to software systems.

According to UML 1.3, a system is a collection of connected units that are organized to
accomplish a specific purpose. A system can be described by one or more models,
possibly from different viewpoints. IEEE Std. 610.12-1990 defines a system as a
collection of components organized to accomplish a specific function or set of functions.
That is, a system is defined as an organized set of connected components to accomplish
the specified tasks.

Let us now look at some of the software architecture definitions from some of the most
influential writers and groups in the field.

Software Architecture Definitions

UML 1.3:

Architecture is the organizational structure of a system. An architecture can be
recursively decomposed into parts that interact through interfaces, relationships
that connect parts, and constraints for assembling parts. Parts that interact through
interfaces include classes, components and subsystems.

Bass, Clements, and Kazman. Software Architecture in Practice, Addison-Wesley 1997:

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

117

'The software architecture of a program or computing system is the structure or
structures of the system, which comprise software components, the externally
visible properties of those components, and the relationships among them.

By "externally visible" properties, we are referring to those assumptions other
components can make of a component, such as its provided services, performance
characteristics, fault handling, shared resource usage, and so on. The intent of this
definition is that a software architecture must abstract away some information
from the system (otherwise there is no point looking at the architecture, we are
simply viewing the entire system) and yet provide enough information to be a
basis for analysis, decision making, and hence risk reduction."

Garlan and Perry, guest editorial to the IEEE Transactions on Software Engineering, April
1995:

Software architecture is "the structure of the components of a program/system,
their interrelationships, and principles and guidelines governing their design and
evolution over time."

IEEE Glossary

Architectural design: The process of defining a collection of hardware and
software components and their interfaces to establish the framework for the
development of a computer system.

Shaw and Garlan

The architecture of a system defines that system in terms of computational
components and interactions among those components. Components are such
things as clients and servers, databases, filters, and layers in a hierarchical system.
Interactions among components at this level of design can be simple and familiar,
such as procedure call and shared variable access. But they can also be complex
and semantically rich, such as client-server protocols, database accessing
protocols, asynchronous event multicast, and piped streams.

Each of these definitions of software architecture, though seemingly different,
emphasizes certain structural issues and corresponding ways to describe them. It is
important to understand that although they are apparently different, they do not conflict
with one another.

One can thus conclude from these definitions that an architectural design is an early stage
of the system design process. It represents the link between specification and design
processes. It provides an overall abstract view of the solution of a problem by identifying
the critical issues and explicitly documenting the design choices made under the specified
constraints as its primary goal is to define the non-functional requirements of a system
and define the environment. It is often carried out in parallel with some specification

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

118

activities and It includes the high-level design of modular components, their relationships
and organization, and provides a foundation that one can build on to solve a problem.

8.3 Why is architecture important?

Barry Boehm says:

If a project has not achieved a system architecture, including its rationale, the
project should not proceed to full-scale system development. Specifying the
architecture as a deliverable enables its use throughout the development and
maintenance process.

Why is architecture important and why is it worthwhile to invest in the development of a
architecture? Fundamentally, there are three reasons:

1. Mutual communication. Software architecture represents a common high-level
abstraction of the system that most, if not all, of the system's stakeholders can use
as a basis for creating mutual understanding, forming consensus, and
communicating with each other.

Each stakeholder of a software system (customer, user, project manager, coder,
tester, and so on) is concerned with different characteristics of the system that are
affected by its architecture. Architecture provides a common language in which
different concerns can be expressed, negotiated, and resolved at a level that is
intellectually manageable, even for large, complex systems. Without such
language, it is difficult to understand large systems sufficiently to make the early
decisions that influence both quality and usefulness.

2. Early design decisions. Software architecture represents the embodiment of the
earliest set of design decisions about a system, and these early bindings carry
weight far out of proportion to their individual gravity with respect to the system's
remaining development, its service in deployment, and its maintenance life. It is
also the earliest point at which the system to be built can be analyzed.

An implementation exhibits an architecture if it conforms to the structural design
decisions described by the architecture. This means that the implementation must
be divided into the prescribed components, the components must interact with
each other in the prescribed fashion, and each component must fulfill its
responsibility to the other components dictated by the architecture.

Resource allocation decisions also constrain implementation. These decisions
may be invisible to implementers working on individual components. The
constraints permit a separation of concerns that allows management decisions that
make best use of personnel and computational capacity. Component builders must
be fluent in the specification of their individual components but not in
architectural trade-offs. Conversely, the architects need not be experts in all

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

119

aspects of algorithm design or the intricacies of the programming language, but
they are the ones responsible for architectural trade-offs.

Not only does architecture prescribe the structure of the system being developed,
but it also engraves that structure on the structure of the development project. The
normal method of dividing up the labor in a large system is to assign different
portions of the system to different groups to construct. This is called the work
breakdown structure of a system. Because the system architecture includes the
highest level decomposition of the system, it is typically used as the basis for the
work breakdown structure. Specifically, the module structure is most often the
basis for work assignments. The work breakdown structure, in turn, dictates units
of planning, scheduling, and budget, as well as inter-team communications
channels, configuration control and file system organization, integration and test
plans and procedures. Teams communicate with each other in terms of the
interface specifications to the major components. The maintenance activity, when
launched, will also reflect the software structure, with teams formed to maintain
specific structural components.

A side effect of establishing the work breakdown structure is to effectively freeze
the software architecture, at least at the level reflected in the work breakdown. A
group that is responsible for one of the subsystems will resist having its
responsibilities distributed across other groups. If these responsibilities have been
formalized in a contractual relationship, changing responsibilities could become
expensive. Tracking progress on a collection of tasks that is being distributed
would also become much more difficult.

Thus, once the architecture’s module structure has been agreed on, it becomes
almost impossible for managerial and business reasons to modify it. This is one
argument (among many) for carrying out extensive analysis before freezing the
software architecture for a large system.

Is it possible to tell that the appropriate architectural decisions have been made
(i.e., if the system will exhibit its required quality attributes) without waiting until
the system is developed and deployed? If the answer were “no,” choosing an
architecture would be a hopeless task: random architecture selection would
perform as well as any other method. Fortunately, it is possible to make quality
predictions about a system based solely on an evaluation of its architecture.

3. Reusable abstraction of a system. Software architecture embodies a relatively
small, intellectually graspable model for how the system is structured and how its
components work together; this model is transferable across systems; in
particular, it can be applied to other systems exhibiting similar requirements, and
can promote large scale reuse.

In an architecture-based development of a product line, the architecture is in fact
the sum of the early design decisions. System architects choose an architecture

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

120

(or a family of closely related architectures) that will serve all envisioned
members of the product line by making design decisions that apply across the
family early and by making other decisions that apply only to individual members
late. The architecture defines what is fixed for all members of the family and
what is variable.

A family-wide design solution may not be optimal for all systems derived from it,
but the quality gained and labor savings realized through architectural-level reuse
may compensate for the loss of optimality in particular areas. On the other hand,
reusing a family-wide design reduces the risk that a derived system might have an
inappropriate architecture. Using a standard design reduces both risk and
development costs, at the risk of non-optimality.

8.4 Architectural Attributes

Software architecture must address the non-functional as well as the functional
requirements of the software system. This includes performance, security, safety,
availability, and maintainability. Following are some of the architectural design
guidelines that can help in addressing these challenges.

 Performance
– Performance can be enhanced by localising operations to minimise sub-

system communication. That is, try to have self-contained modules as
much as possible so that inter-module communication is minimized.

 Security
– Security can be improved by using a layered architecture with critical

assets put in inner layers.
 Safety

– Safety-critical components should be isolated
 Availability

– Availability can be ensured by building redundancy in the system and
having redundant components in the architecture.

 Maintainability
– Maintainability is directly related with simplicity. Therefore,

maintainability can be increased by using fine-grain, self-contained
components.

8.5 Architectural design process

Just like any other design activity, design of software architecture is a creative and
iterative process. This involves performing a number of activities, not necessarily in any
particular order or sequence. These include system structuring, control modeling, and
modular decomposition. These are elaborated in the following paragraphs.

 System structuring

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

121

System structuring is concerned with decomposing the system into interacting
sub-systems. The system is decomposed into several principal sub-systems
and communications between these sub-systems are identified. The
architectural design is normally expressed as a block diagram presenting an
overview of the system structure. More specific models showing how sub-
systems share data, are distributed and interface with each other may also be
developed. A sub-system is a system in its own right whose operation is
independent of the services provided by other sub-systems. A module is a
system component that provides services to other components but would not
normally be considered as a separate system.

 Control modelling

Control modelling establishes a model of the control relationships between the
different parts of the system.

 Modular decomposition

During this activity, the identified sub-systems are decomposed into modules.

This design process is further elaborated in the following section where architectural
views are discussed.

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

122

Lecture No. 23
9

8.6 Architectural Views
Software architecture defines the high level structure of the software by putting together a
number of architectural elements in an organized fashion. These elements are chosen to
satisfy the functional as well as non-functional requirements of the system. Perry and
Wolfe proposed the following formula for software architecture:

Software architecture = {Elements, Forms, Rationale}

That is, a software architecture is a set of elements which have a certain form. These
elements are further divided into three categories. These are: data elements, processing
elements, and connecting elements. The data elements contain the information that is
used and transformed in the system; the processing elements process the data elements
and specify the transformation functions, and connecting elements connect different
pieces of architecture together. These can themselves be data or processing elements.

This formula was modified by Boehm as follows:

Software architecture = {Elements, Forms, Rationale/Constraints}

Krutchen proposed that the software architecture model should be composed of multiple
views as a software architecture deals with abstraction, with decomposition and
composition, with style and esthetics as well as requirements from different stake holders.
His architectural model is known as Krutchen’s 4+1 architectural view model. As
evident, this model proposes the development of 5 main views namely the logical view,
the process view, the physical view, the development view, and the use case view. The
logical view is the object model of the design, the process view captures the concurrency
and synchronization aspects of the design, the physical view documents the mapping(s)
of the software onto the hardware and reflects its distributed aspect, the development
view describes the static organization of the software in its development environment,
and the use case view uses selected use cases or scenarios to validate that the architecture
supports the required functionality.

This model is shown in the following diagram.

Logical View

End-user
Functionality
End-user
Functionality

Implementation View

Programmers
Software management

Process View

Performance
Scalability
Throughput

System integrators
Performance
Scalability
Throughput

System integrators

Deployment View

System topology
Delivery, installation

Communication

System engineering

Use Case View

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

123

This model has been slightly modified by Clements et. al. and is shown in the following
diagram.

Clement’s modified version of Krutchen’s 4+1 Architectural View Model

In this model, the architecture is again prepared and analyzed from 5 different
perspectives. The 4 main views are Functional View, the Concurrency View, the Physical
View, and the Development View. Code view in not present in the original Krutchen
model and is basically an extension of the development view.

The Functional View comprises of various different functions provided by the system,
key system abstraction, and the domain elements. It connects different dependencies and
data flows into a single view. This view can be used by the domain engineers, product-
line engineers, as well as the end users of the system. It can be used for understanding the
functionality provided by the system, modifiability of the system, reusability, tool
support, and allocation of work.

The Development View documents the different files and directories in the system and
users of this view include the development and the configuration management staff as
well as the project managers. The major uses of this view include maintenance, testing,
configuration management, and version control.

The components of the Code View include classes, objects, procedures, functions,
subsystems, layers, and modules. It documents the calling as well as the containing
hierarchy of different components of the system. Its primary users are the programmers
and designers of the system. The primary intent of developing this view is to use it for
maintenance and portability.

Functional

Concurrency Physical

Scenarios

Code
Develop-

ment
Functional

ConcurrencyConcurrency PhysicalPhysical

Scenarios

CodeCode
Develop-

ment

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

124

Concurrency View intends to document different parallel processes and threads in the
system. Its main focus is on event synchronization and parallel data flows. It is used
primarily by integrators, performance engineers, and testers. The main purpose of
building this view is to identify ways and means to improve performance by highlighting
possible opportunities for parallelism.

The Physical View depicts the physical organization of this system and how this system
will be physically deployed. This includes different processors, sensors, and storage
devices used by the system. This view connects various network elements and
communication devices. The primary users of this system include hardware and system
engineers. The view is developed with an intention to document and analyze system
delivery and installation mechanism. The view is also used in understanding and
analyzing issues pertaining to system performance, availability, scalability, and security.

Finally, there are Scenarios. Scenarios are basically use cases which describe the
sequences of responsibilities and change cases which are changes to the system. As stated
earlier, the first objective of developing a system is to fulfill the functional requirements
setout for the system. These functional requirements are written in the form of use cases.
Therefore, scenarios are used to understand and validate the system. Their secondary
purpose is to communicate the design to the other users of the system. Scenarios tie all
the view together into an integrated system. They are also used to understand the
dynamic behavior of the system and understand the limits of design.

This is summarized in the following table:

View Components Users Rationale
Functional
View

functions, key
system abstractions,
domain elements

domain engineers,
product-line
designers, end users

functionality,
modifiability, product
lines/reusability, tool
support, work allocation

Code View classes, objects,
procedures,
functions,
subsystems, layers,
modules

programmers,
designers, reusers

modifiability/maintainabi
lity, portability,
subsetability

Development
View

files, directories managers,
programmers,
configuration
managers

managers, programmers,
configuration managers

Physical
View

CPUs, sensors,
storage

hardware engineers,
system engineers

system delivery and
installation, performance,
availability, scalability,
security

Concurrency
View

processes, threads performance
engineers,
integrators, testers

performance, availability

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

125

What Are Views Used For?

Views are an engineering tool to help achieve desired system qualities. Each view
provides an engineering handle on certain quality attributes. In some systems, distinct
views collapse into one (e.g., the concurrency and physical views may be the same for
small systems.). Views are also used as documentation vehicle for current development
and future development. Users of views include both managers and customers. For these
reasons views must be annotated to support analysis. This annotation can be achieved
with the help of scenarios and design rationale.

Structures can also be used to document how the current system was developed and how
future development should occur. This information is needed by managers and
customers.

Although one often thinks about a system’s structure in terms of functionality, there are
other system properties in addition to functionality (such as physical distribution, process
communication, and synchronization) that must be reasoned about at an architectural
level. Each structure provides a method for reasoning about some of the relevant quality
attributes. The uses structure, for instance, must be engineered (not merely recorded) to
build a system that can easily be extended or contracted. The calls structure is engineered
to reduce bottlenecks. The module structure is engineered to produce modifiable systems,
and so on. Each structure provides a different view into the system and a different
leverage point for design to achieve desired qualities in the system.

Hierarchical Views

Every view is potentially hierarchical, e.g. functional view could contain sub-functions.
Similarly development view contains directories which contain files. Code view would
have modules and systems that contain sub-modules and sub-systems respectively.
Concurrency view contains processes that are further subdivided into threads. Finally,
physical view clusters contain computers which contain processors.

Architectural views are related to each other in complicated ways. One has to choose the
views that are useful to the system being built and to the achievement of qualities that are
important for that particular application. The architectural views should be hierarchical
(where needed) and should contain enough annotated information to support desired
analyses.

Architectural styles

The architectural model of a system may conform to a generic architectural model or
style. An awareness of these styles can simplify the problem of defining system
architectures. However, most large systems are heterogeneous and do not follow a single
architectural style.

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

126

Each style describes a system category that encompasses:

(1) a set of components (e.g., a database, computational modules) that perform a function
required by a system,

(2) a set of connectors that enable “communication, coordination and cooperation”
among components,

(3) constraints that define how components can be integrated to form the system, and

semantic models that enable a designer to understand the overall properties of a system

by analyzing the known properties of its constituent parts.

 Lecture No. 24

8.7 Architectural models

Like analysis models, many different kinds of architectural models are developed during
the architectural design process. Static structural model shows the major system
components while a dynamic process model shows the process structure of the system.
Interface models are developed to define sub-system interfaces.

8.8 Architectural Styles

Architectural design may be based upon a certain pattern of model. These different
patterns are also called architectural styles. These styles have different characteristics and
attributes and can be useful to solve problems related to a particular situation of
requirement. Among the many styles, the most commonly practiced are the following:

 Data-centered architectures
 Client Server Architecture and its variations
 Layered architectures
 Reference Architecture

Data-Centered or the repository model

In any system, sub-systems need to exchange information and data. This may be done in
two ways:

1. Shared data is held in a central database or repository and may be accessed by all sub-
systems

2. Each sub-system maintains its own database and passes data explicitly to other sub-
systems

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

127

When large amounts of data are to be shared, the repository model of sharing is most
commonly used. This model has been extensively used in the main-frame based

application. The model is depicted in the following diagram:

Repository model characteristics

 Advantages

Repository model is an efficient way to share large amounts of data. In this case
sub-systems need not be concerned with how data is produced Centralised
management e.g. backup, security, etc. This model also provides a global view of
the system and the sharing model is published as the repository schema.

 Disadvantages

Repository model suffers from a number of disadvantages. First of all, sub-
systems must agree on a repository data model. This inevitably leads to a
compromise. The major problem however is that data evolution is difficult and
expensive. There is also little scope for implementing specific management
policies. It is also difficult to distribute efficiently

8.9 Client-server model

Client server model tries to distribute data and processing. This is a shift from main-
frame based applications where both the data management and the processing of data
used to be typically carried out by the same main-frame computer. In those applications,
the user interface used to be a provided through a “dumb” terminal which did not have
much processing power. With the availability of the cheaper but power machines, it was
possible to shift some load from the back-end computer to other smaller machines.

The client-server model is a distributed system model which shows how data and
processing is distributed across a range of components. In this model, the application is
modeled as a set of services that are provided by servers and a set of clients that use these
services. The system is organized as a set of stand-alone servers which provide specific
services such as printing, data management, etc. and a set of clients which call on these

Central Data
Repository

Client
Software

Client
Software

Client
Software

Client
Software

Client
Software

Client
Software

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

128

services. These clients and servers are connected through a network which allows clients
to access servers. Clients and servers are logical processes (not always physical
machines). Clients know the servers but the servers do not need to know all the clients
and the mapping of processes to processors is not always 1:1.

The following diagram depicts a general client-server organization.

S1

S3 S4

S2

C1 C2

C6 C5

C7 C3

C4

Server

Client

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

129

8.10Client/Server Software Components

A typical client-server architecture based system is composed of a number of different
components. These include user interaction/presentation subsystem, application
subsystem, database management subsystem, and middleware. The application subsystem
implements requirements defined by the application within the context of the operating
environment. In this case the application components may reside on either client or server
side. Middleware provides the mechanism and protocols to connect clients with the
servers.

Representative Client/Server Systems

Following are some of the representative server types in a client-server systems.
 File servers

In this case, client requests selected records from a file and the server
transmits records to client over the network.

 Database servers
In this case, client sends requests, such as SQL queries, to the database server,
the server processes the request and returns the results to the client over the
network.

 Transaction servers
In this configuration, client sends requests that invokes remote procedures on
the server side, server executes procedures invoked and returns the results to
the client.

 Groupware servers
Groupware servers provide set of applications that enable communication
among clients using text, images, bulletin boards, video, etc.

Client-server characteristics

 Advantages
The main advantage of the client-server architecture is that it makes effective
use of networked systems. Instead of building the system with very expensive
large computers and hardware devices, cheaper hardware may be used to gain
performance and scalability. In addition, adding new servers or upgrading
existing servers becomes easier. Finally, distribution of data is straightforward
in this case.

 Disadvantages
The main disadvantage of this model is that there is no standard way of
sharing data, so sub-systems may use different data organisation. Hence data
interchange may be inefficient. From a management point of view, each
server needs attention and hence there is redundant management in each
server. Finally there is no central register of names and services - it may be
hard to find out what servers and services are available.

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

130

8.11 Representative Client/Server Configurations

The client-server model can have many different configurations. In the following
sections, we look at some of these configurations.

Thin Client Model

This model was initially used to migrate legacy systems to client server architectures.
In this case the legacy system may act as a server in its own right and the GUI may be
implemented on a client. It chief disadvantage is that it places a heavy processing
load on both the server and the network.

Fat Client Model

With advent of cheaper and more powerful hardware, people thought of using the
processing power of client side machines. So the fat client model came into being. In
this model, more processing is delegated to the client as the application processing is
locally extended. It is suitable for new client/server systems when the client system
capabilities are known in advance. It however is more complex than thin client model
with respect to management issues. Since the client machine now also has a
significant part of the application resident on it, new versions of each application need

to be installed on every client.

Lecture No. 25

9

Zero Install

As discussed earlier, fat-client architecture posed major challenges in terms of
installation and maintenance of the client side of the application, especially when
there are large number of client machines. So the idea behind zero install architecture
is to develop a system where no installation on the client side is needed. This can only
be done when there is no or little processing done at the client side. This is basically a
trade-off between using the computing power available at the client machine versus
maintenance overhead. This in essence takes us back to an architecture which is
similar to thin-client architecture. There is little difference though. In the classical
thin-client architecture, the entire processing is carried-out by a single server, in the
case of zero-install, the network environment is used to distribute server side
processing by adding a number of servers which share processing load. Web-based
application where the web-pages are put on a web-server is an example of this type of
architecture. In this case, whenever there is a change, the web page is updated
accordingly. Now when the user logs in, he gets to use the modified version of the
application without any changes or updates at the client side.

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

131

N-Tier architecture

N-tier architecture stems from the struggle to find a middle ground between the fat-
client architecture and the thin-client architecture. In this case the idea is to enhance
scalability and performance by distributing both the data and the application using
multiple server machines. This could involve different types of servers such as
application server, web server, and DB server. Three-tier architecture which is
explained below is a specialized form of this architecture.

Three-tier Architecture

In this architecture, each application architecture layers (presentation, application,
database) may run on separate processors. It therefore allows for better performance
than a thin-client approach. It is simpler to manage than fat client approach and
highly scalable (as demands increase add more servers).

A typical 3-tier architecture is depicted in the following diagram.

N-tier architecture generalizes the concepts of 3-tier architecture. In this case the system
architecture may have more than 3 layers. That is, in n-tier architecture, in order to
increase performance, we may distribute the application over different servers by putting
different subsystems on different servers.

Database server

Customer
account
database

Web server

Client

Client

Client

Client

Account service
provision

SQL
SQL query

HTTP interaction

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

132

8.12 Data Flow or Pipes and Filters Architecture

This architecture is very similar to data flow diagrams. This is used when the input data is
processed through a series of transformations to yield the desired output. It is also known
as pipes and filters architecture where each processing step is called a filter and the
connecting link from one process to the other is called the pipe through which the
information flows from one process to the other. An important aspect of this model is that
each filter works independently of others and does not require knowledge of the working
of any of the other filters including its neighbours.

If the dataflow has only a single sequence of processes with no alternative or parallel
paths, then it is called batch sequential. These models are depicted in the following
diagrams.

Filter1

Filter3

Filter2 Filter5

Filter6Filter7

Filter4
pipes

Filter1 Filter3Filter2

Batch Sequential

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

133

Layered Architecture

As the name suggests, a layered architecture has many different layers. One typical
example of a layered architecture is an operating system where different layers are used
to provide services and functionality and the inner layers are closer to the machine
hardware than the outer layers. In this way, each layer isolates the outer layer from inner
complexities. In order to work properly, the outer layer only needs to know the interface
provided by the inner layer. If there are any changes in the inner layer, as long as the
interface does not change, the outer layer is not affected. This scheme tremendously
portability of the system. The basic layered architecture is depicted in the following
diagram.

User Interface Layer

Application Layer

Utility Layer

Core Layer

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

134

8.13 Reference architectures

Reference architecture is not a physical architecture. It is only a reference for defining
protocols and designing and implementing systems developed by different parties.
Reference models are derived from a study of the application domain rather than from
existing systems. It may be used as a basis for system implementation or to compare
different systems. It acts as a standard against which systems can be evaluated. One very
common example of such a reference model is the OSI model which is a layered model
for communication systems. The success of this kind model is evident from the success
of the Internet where all kinds of heterogeneous systems can talk to each other only
because all of them use the same reference architecture.

OSI reference model

Ap pl icat io n

Presen tati on

Ses si on

Trans po rt

Net wo rk

Dat a link

Phy si cal

7

6

5

4

3

2

1

C o m mu nica t io ns m edium

Netwo rk

Data link

Phy si cal

Ap pl icat io n

Presen tati on

Ses si on

Trans po rt

Netwo rk

Data lin k

Phy si cal

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

135

8.14 Partitioning the Architecture

Partitioning of architecture is an important concept. What we basically want to do is
distribute the responsibilities to different subsystems so that we get a software system
which is easy to maintain. Partitioning results in a system that suffers from fewer side
effects. This ultimately means that we get a system that is easier to test and extend
and hence is easier to maintain.

Partitioning of an architecture may be “horizontal” and/or “vertical”.

In the horizontal partitioning we define separate branches of the module hierarchy for
each major function and control modules are used to coordinate communication
between functions. This concept is depicted in the following diagram.

Partition 1 Partition 2 Partition 3

Vertical partitioning divides the application from a decision making perspective. The
architecture is partitioned in horizontal layers so that decision making and work are
stratified with the decision making modules residing at the top of the hierarchy and
worker coming at the bottom. This partitioning is also known as factoring and the
general model is depicted in the following diagram.

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

136

Top Partition
Decision Makers

Bottom Partition
Workers

8.15 Analyzing Architecture design

In a given system, the required characteristics may conflict. Trade-offs seek optimal
combinations of properties based on cost/benefit analysis. So the analysis requires an
understanding of what is required and the relative priority of the attributes has to be
established. The following sequence of steps provides a guideline for performing
architectural analysis.

1. Collect scenarios.
2. Elicit requirements, constraints, and environment description.
3. Describe the architectural styles/patterns that have been chosen to address the

scenarios and requirements. These views include module view, process view, and
data flow view.

4. Evaluate quality attributes by considered each attribute in isolation.
5. Identify the sensitivity of quality attributes to various architectural attributes for a

specific architectural style.

Critique candidate architectures (developed in step 3) using the sensitivity analysis

conducted in step 5.

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

137

Introduction to Design Patterns

Lecture No. 26

9
Design Patterns

Christopher Alexander says, “Each pattern describes a problem which occurs over and
over again in our environment, and then describes the core of the solution to that
problem, in such a way that you can use this solution a million times over, without ever
doing it the same way twice.” A Pattern Language: Towns/Buildings/Construction, 1977

Even though Alexander was talking about patterns in buildings and towns, what he says
is true about object-oriented design patterns. Our solutions are expressed in terms of
objects and interfaces instead of walls and doors, but the core of both kinds of patterns is
a solution to a problem in a context.

Design Patterns defined

“Description of communicating objects and classes that are customized to solve a general
design in a particular context.”

Patterns are devices that allow programs to share knowledge about their design. In our
daily programming, we encounter many problems that have occurred, and will occur
again. The question we must ask our self is how we are going to solve it this time.
Documenting patterns is one way that you can reuse and possibly share the information
that you have learned about how it is best to solve a specific program design problem.

Essay writing is usually done in a fairly well defined form, and so is documenting design
patterns. The general form for documenting patterns is to define items such as:

 The motivation or context that this pattern applies to.
 Prerequisites that should be satisfied before deciding to use a pattern.
 A description of the program structure that the pattern will define.
 A list of the participants needed to complete a pattern.
 Consequences of using the pattern...both positive and negative.
 Examples!

Historical perspective of design patterns

The origin of design patterns lies in work done by an architect named Christopher
Alexander during the late 1970s. He began by writing two books, A Pattern

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

138

Language[Alex77] and A Timeless Way of Building [Alex79] which, in addition to giving
examples, described his rationalle for documenting patterns.

The pattern movement became very quiet until 1987 when patterns appeared again at an
OOPSLA conference. Since then, many papers and presentations have appeared,
authored by people such as Grady Booch, Richard Helm, and Erich Gamma, and Kent
Beck. From then until 1995, many periodicals, featured articles directly or indirectly
relating to patterns. In 1995, Erich Gamma, Richard Helm, Ralph Johnson, and John
Vlissides published Design Patterns: Elements of Reusable Object-Oriented Software
[Gamma95], which has been followed by more articles in trade journals.

The concept of design patterns is not new as we can find a number of similar pursuits in
the history of program designing and writing. For instance, Standard Template Library
(STL) is a library of reusable components provided by C++ compilers. Likewise, we use
algorithms in data structures that implement typical operations of manipulating data in
data structures. Another, similar effort was from Peter Coad whose patterns are known
for object-oriented analysis and design.
Anti-patterns is another concept that corresponds to common mistakes in analysis and
design. These are identified in order to prevent potential design and analysis defects from
entering into the design. Another, similar concept is object-oriented framework that is a
set of cooperative classes that make up reusable design of a system. Framework dictates
the architecture of the software and describes the limitations and boundaries of
architecture.
With this introduction, we now describe the format that has been adopted in GoF book
for describing various design patterns.

GOF Design Pattern Format
The basic template includes ten things as described below

Name
 Works as idiom
 Name has to be meaningful

Problem
 A statement of the problem which describes its intent
 The goals and objectives it wants to reach within the given context

Context
 Preconditions under which the problem and its solutions seem to occur
 Result or consequence
 State or configuration after the pattern has been applied

Forces
 Relevant forces and constraints and their interactions and conflicts.
 motivational scenario for the pattern.

Solution
 Static and dynamic relationships describing how to realize the pattern.
 Instructions on how to construct the work products.

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

139

 Pictures, diagrams, prose which highlight the pattern’s structure, participants, and
collaborations.

Examples
 One or more sample applications to illustrate

o a specific context
o how the pattern is applied



Resulting context
 the state or configuration after the pattern has been applied
 consequences (good and bad) of applying the pattern

Rationale
 justification of the steps or rules in the pattern
 how and why it resolves the forces to achieve the desired goals, principles, and

philosophies
 how are the forces orchestrated to achieve harmony
 how does the pattern actually work

Related patterns
 the static and dynamic relationships between this pattern and other patterns

Known uses
 to demonstrate that this is a proven solution to a recurring problem

Classifications of deerns
Creational patterns

 How to create and instantiate
 Abstract the instantiation process and make the system independent of its creational

process.
 Class creational rules
 Object creational rules
 Abstract factory and factory method
 Abstract the instantiation process
 Make a system independent to its realization
 Class Creational use inheritance to vary the instantiated classes
 Object Creational delegate instantiation to an another object

Structural patterns
 Deals with object’s structure
 Class structural patterns concern the aggregation of classes to form the largest classes.
 Object structural patterns concerns the aggregation of objects to form the largest

classes
 Class Structural patterns concern the aggregation of classes to form largest structures
 Object Structural pattern concern the aggregation of objects to form largest structures

Behavioral patterns

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

140

 Describe the patterns of communication between classes and objects
 How objects are communicating with each other
 Behavioral class patterns
 Behavioral object patterns
 Use object composition to distribute behavior between classes
 Help in distributing object’s intelligence
 Concern with algorithms and assignment of responsibilities between objects
 Describe the patterns of communication between classes or objects
 Behavioral class pattern use inheritance to distribute behavior between classes
 Behavioral object pattern use object composition to distribute behavior between

classes

In the following, one pattern from each of the above mentioned categories of design
patterns is explained on GoF format.

 Lecture No. 27

Observer Pattern
Name
 Observer

Basic intent
 It is intended to define a many to many relationship between objects so that when

one object changes state all its dependants are notified and updated automatically.
 Dependence/publish-subscribe mechanism in programming language

o Smalltalk being the first pure Object Oriented language in which observer
pattern was used in implementing its Model View Controller (MVC)
pattern. It was a publish-subscribe mechanism in which views (GUIs)
were linked with their models (containers of information) through
controller objects. Therefore, whenever underlying data changes in the
model objects, the controller would notify the view objects to refresh
themselves and vice versa.

o MVC pattern was based on the observer pattern.

Motivation
 It provides a common side effect of partitioning a system into a collection of

cooperating classes that are in the need to maintain consistency between related
objects.

Description
 This can be used when multiple displays of state are needed.

Consequences
 Optimizations to enhance display performance are impractical.

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

141

Many graphical user interface toolkits separate the presentational aspects of the user
interface from the underlying application data. Classes defining application data and
presentations can be reused independently. They can work together, too. Both a
spreadsheet object and bar chart object can depict information in the same application
data object using different presentations. The spreadsheet and the bar chart don’t know
about each other, thereby letting you reuse only the one you need. But they behave as
though they do. When the user changes the information in the spreadsheet, the bar chart
reflects the changes immediately, and vice versa.

A

B
C
D

Subject
A: 40
B: 25
C: 15
D: 20

Observer 2Observer 1

50
25
0 A B C D

Structure
Subject
Attach(Observer)
Detach(Observer)
Notify()

Observer

Update()

ConcreteObserver

Update()

ObserverState

ConcreteSubject

GetState()

SubjectState

return SubjectState

for all o in observers
o -> Update()

observerState =
subject -> GetState()

Participants

Example implementation of Observer PatternObject Model

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

142

Subject
 Knows its observers. Any number of Observer objects may observe a subject.
 Provides an interface for attaching and detaching Observer objects.

Observer
 Defines an updating interface for objects that should be notified of changes in a

subject.
ConcreteSubject

 Stores state of interest to concreteObserver objects.
 Sends a notification to its observers when its state changes.

ConcreteObserver
 Maintains a reference to a ConcreteSubject object.
 Stores state state that should stay consistent with the subject’s.
 Implements the Observer updating interface to keep its state consistent with the

subject’s.

Singleton Pattern
Intent
 It ensures that a class only has one instance and provides a global point of access

to it.

Applicability
 Singleton pattern should be used when there must be exactly one instance of a

class and it must be accessible to clients from a well-known access point.
 Singleton pattern should be used when controlling the total number of instances

that would be created for a particular class.
 Singleton pattern should be used when the sole instance should be extensible by

sub classing and clients should be able to use an extended instance without
modifying their code.

Structure

Singleton
static instance()
SingletonOperation()
GetSingletonData()

static uniqueInstance
singletonData

return uniqueInstance

Participants
Singleton

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

143

 Defines an instance operation that lets clients access its unique instance. Instance
is a class operation (that is, a class method in Smalltalk and a static member
function in C++).

 May be responsible for creating its own unique instance.

Singleton Pattern Example
The Singleton class is declared as

class Singleton {
public:
 static Singleton* Instance();
protected:
 Singleton();
private:
 static Singleton* _instance;
};

The corresponding implementation is

Singleton* Singleton::_instance = 0;

Singleton* Singleton::Instance(){
 if (_instance == 0) {
 _instance = new Singleton;
 }
 return _instance;
}
Clients access the singleton exclusively through the Instance member function. The
variable _instance is initialized to 0, and the static member function Instance returns its
value, initializing it with the unique instance if it is 0.

Façade Pattern
Intent
 It provides a unified interface to a set of interfaces in a sub-system.
 Façade defines a higher level interface that makes a subsystem easier to use

Applicability
 You would use façade when you want to provide a simple interface to a complex

sub-system.
 You would use façade pattern when there are many dependencies between clients

and the implementation classes of an abstraction.
 You should introduce a façade to decouple the system from clients and other

subsystems.
 You want to layer your subsystem.
 You would use façade when you want to provide a simple interface to a complex

sub-system

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

144

 You would use façade pattern when there are many dependencies between clients
and the implementation classes of an abstraction

 You should introduce a façade to decouple the system from clients and other
subsystems

 You want to layer the subsystem

Abstract example of façade
Structuring a system into subsystems helps reduce complexity. A common design goal is
to minimize the communication and dependencies between subsystems. One way to
achieve this goal is to introduce a façade object that provides a single, simplified
interface to the more general facilities of a subsystem.

Facade

client classes

subsystem classes
Structure

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

145

Facade

Participants
Façade

 Knows which subsystem classes are responsible for a request.
 Delegates client requests to appropriate subsystem objects.

Subsystem classes
 Implement subsystem functionality.
 Handle work assigned by the Façade object.

 Have no knowledge of the façade, that is, they keep no references to it.

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

146

 Lecture No. 28

Good Programming Practices and Guidelines

10.1 Maintainable Code

As we have discussed earlier, in most cases, maintainability is the most desirable quality
of a software artifact. Code is no exception. Good software ought to have code that is
easy to maintain. Fowler says, “Any fool can write code that computers can understand,
good programmers write code that humans can understand.” That is, it is not important
to write code that works, it is important to write code that works and is easy to understand
so that it can be maintained. The three basic principles that guide maintainability are:
simplicity, clarity, and generality or flexibility. The software will be easy to maintain if it
is easy to understand and easy to enhance. Simplicity and clarity help in making the code
easier to understand while flexibility facilitates easy enhancement to the software.

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

147

From a maintenance perspective, what we need is what is called self documenting code.
A self documenting code is a code that explains itself without the need of comments and
extraneous documentation, like flowcharts, UML diagrams, process-flow state diagrams,
etc. That is, the meaning of the code should be evident just by reading the code without
having to refer to information present outside this code.

The question is: how can we write code that is self-documenting?

There are a number of attributes that contributes towards making the program self
documented. These include, the size of each function, choice of variable and other
identifier names, style of writing expressions, structure of programming statements,
comments, modularity, and issues relating to performance and portability.

The following discussion tries to elaborate on these points.

Function Size

The size of individual functions plays a significant role in making the program easy or
difficult to understand. In general, as the function becomes longer in size, it becomes
more difficult to understand. Ideally speaking, a function should not be larger than 20
lines of code and in any case should not exceed one page in length. From where did I get
this number 20 and one page? The number 20 is approximately the lines of code that fit
on a computer screen and one page of course refers to one printed page. The idea behind
these heuristics is that when one is reading a function, one should not need to go back and
forth from one screen to the other or from one page to the other and the entire context
should be present on one page or on one screen.

Self Documenting Code

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

148

Identifier Names

Identifier names also play a significant role in enhancing the readability of a program.
The names should be chosen in order to make them meaningful to the reader. In order to
understand the concept, let us look at the following statement.

if (x==0) // this is the case when we are allocating a new number

In this particular case, the meanings of the condition in the if-statement are not clear and
we had to write a comment to explain it. This can be improved if, instead of using x, we
use a more meaningful name. Our new code becomes:

if (AllocFlag == 0)

The situation has improved a little bit but the semantics of the condition are still not very
clear as the meaning of 0 is not very clear. Now consider the following statement:

If (AllocFlag == NEW_NUMBER)

We have improved the quality of the code by replacing the number 0 with a named
constant NEW_NUMBER. Now, the semantics are clear and do not need any extra
comments, hence this piece of code is self-documenting.

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

149

10.2 Coding Style Guide

Consistency plays a very important role in making it self-documenting. A consistently
written code is easier to understand and follow. A coding style guide is aimed at
improving the coding process and to implement the concept of standardized and
relatively uniform code throughout the application or project. As a number of
programmers participate in developing a large piece of code, it is important that a
consistent style is adopted and used by all. Therefore, each organization should develop a
style guide to be adopted by its entire team.

This coding style guide emphasizes on C++ and Java but the concepts are applicable to
other languages as well.

10.3 Naming Conventions

Hungarian Notation was first discussed by Charles Simonyi of Microsoft. It is a variable
naming convention that includes information about the variable in its name (such as data
type, whether it is a reference variable or a constant variable, etc). Every company and
programmer seems to have their own flavor of Hungarian Notation. The advantage of
Hungarian notation is that by just looking at the variable name, one gets all the
information needed about that variable.

Bicapitalization or camel case (frequently written CamelCase) is the practice of writing
compound words or phrases where the terms are joined without spaces, and every term is
capitalized. The name comes from a supposed resemblance between the bumpy outline of
the compound word and the humps of a camel. CamelCase is now the official convention
for file names and identifiers in the Java Programming Language.

In our style guide, we will be using a naming convention where Hungarian Notation is
mixed with CamelCase.

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

150

General Naming Conventions

General naming conventions for Java and C++

1. Names representing types must be nouns and written in mixed case starting with
upper case.

Line, FilePrefix

2. Variable names must be in mixed case starting with lower case.

line, filePrefix

This makes variables easy to distinguish from types, and effectively resolves potential
naming collision as in the declaration Line line;

3. Names representing constants must be all uppercase using underscore to separate
words.

MAX_ITERATIONS, COLOR_RED

In general, the use of such constants should be minimized. In many cases
implementing the value as a method is a better choice. This form is both easier to
read, and it ensures a uniform interface towards class values.

int getMaxIterations()// NOT: MAX_ITERATIONS = 25
{
 return 25;

}

4. Names representing methods and functions should be verbs and written in mixed case
starting with lower case.

getName(), computeTotalWidth()

5. Names representing template types in C++ should be a single uppercase letter.

template<class T> ...
template<class C, class D> ...

6. Global variables in C++ should always be referred to by using the :: operator.
::mainWindow.open() , ::applicationContext.getName()

7. Private class variables should have _ suffix.

class SomeClass
{
 private int length_;
 ...

}

Apart from its name and its type, the scope of a variable is its most important feature.
Indicating class scope by using _ makes it easy to distinguish class variables from local
scratch variables.

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

151

8. Abbreviations and acronyms should not be uppercase when used as name.

exportHtmlSource(); // NOT: xportHTMLSource();
openDvdPlayer(); // NOT: openDVDPlayer();

Using all uppercase for the base name will give conflicts with the naming conventions
given above. A variable of this type would have to be named dVD, hTML etc. which
obviously is not very readable.

9. Generic variables should have the same name as their type.

void setTopic (Topic topic) // NOT: void setTopic (Topic value)
// NOT: void setTopic (Topic aTopic)

// NOT: void setTopic (Topic x)

void connect (Database database) // NOT: void connect (Database db)
// NOT: void connect (Database oracleDB)

Non-generic variables have a role. These variables can often be named by combining role
and type:

Point startingPoint, centerPoint;
Name loginName;

10. All names should be written in English.

fileName; // NOT: filNavn

11. Variables with a large scope should have long names, variables with a small scope
can have short names. Scratch variables used for temporary storage or indices are best
kept short. A programmer reading such variables should be able to assume that its
value is not used outside a few lines of code. Common scratch variables for integers
are i, j, k, m, n and for characters c and d.

12. The name of the object is implicit, and should be avoided in a method name.

line.getLength(); // NOT: line.getLineLength();

The latter seems natural in the class declaration, but proves superfluous in use.

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

152

Specific Naming Conventions for Java and C++

1. The terms get/set must be used where an attribute is accessed directly.
employee.getName();
matrix.getElement (2, 4);
employee.setName (name);
matrix.setElement (2, 4, value);

2. is prefix should be used for boolean variables and methods.
isSet, isVisible, isFinished, isFound, isOpen

Using the is prefix solves a common problem of choosing bad boolean names like status
or flag. isStatus or isFlag simply doesn't fit, and the programmer is forced to chose more
meaningful names.

There are a few alternatives to the is prefix that fits better in some situations. These are
has, can and should prefixes:

boolean hasLicense();
boolean canEvaluate();
boolean shouldAbort = false;

3. The term compute can be used in methods where something is computed.
valueSet.computeAverage(); matrix.computeInverse()

Using this term will give the reader the immediate clue that this is a potential time
consuming operation, and if used repeatedly, he might consider caching the result.

4. The term find can be used in methods where something is looked up.
vertex.findNearestVertex(); matrix.findMinElement();

This gives the reader the immediate clue that this is a simple look up method with a
minimum of computations involved.

5. The term initialize can be used where an object or a concept is established.
printer.initializeFontSet();

6. List suffix can be used on names representing a list of objects.
vertex (one vertex), vertexList (a list of vertices)

Simply using the plural form of the base class name for a list (matrixElement (one
matrix element), matrixElements (list of matrix elements)) should be avoided since the
two only differ in a single character and are thereby difficult to distinguish.
A list in this context is the compound data type that can be traversed backwards,
forwards, etc. (typically a Vector). A plain array is simpler. The suffix Array can be used
to denote an array of objects.

7. n prefix should be used for variables representing a number of objects.
nPoints, nLines

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

153

The notation is taken from mathematics where it is an established convention for
indicating a number of objects.

8. No suffix should be used for variables representing an entity number.
tableNo, employeeNo

The notation is taken from mathematics where it is an established convention for
indicating an entity number. An elegant alternative is to prefix such variables with an i:
iTable, iEmployee. This effectively makes them named iterators.

9. Iterator variables should be called i, j, k etc.
while (Iterator i = pointList.iterator(); i.hasNext();) {
 :

}

for (int i = 0; i < nTables; i++) {
 :

}

The notation is taken from mathematics where it is an established convention for
indicating iterators. Variables named j, k etc. should be used for nested loops only.

10. Complement names must be used for complement entities.

get/set, add/remove, create/destroy, start/stop, insert/delete, increment/decrement, old/new, begin/end,
first/last, up/down, min/max, next/previous, old/new, open/close, show/hide
Reduce complexity by symmetry.

11. Abbreviations in names should be avoided.
computeAverage(); // NOT: compAvg();

There are two types of words to consider. First are the common words listed in a
language dictionary. These must never be abbreviated. Never write:

cmd instead of command

cp instead of copy

pt instead of point

comp instead of compute

init instead of initialize
etc.

Then there are domain specific phrases that are more naturally known through their
acronym or abbreviations. These phrases should be kept abbreviated. Never write:

HypertextMarkupLanguage instead of html

CentralProcessingUnit instead of cpu

PriceEarningRatio instead of pe
etc.

12. Negated boolean variable names must be avoided.

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

154

boolean isError; // NOT: isNotError
boolean isFound; // NOT: isNotFound

The problem arise when the logical NOT operator is used and double negative arises. It is
not immediately apparent what !isNotError means.

13. Functions (methods returning an object) should be named after what they return and
procedures (void methods) after what they do. This increases readability. Makes it clear
what the unit should do and especially all the things it is not supposed to do. This again
makes it easier to keep the code clean of side effects. Naming pointers in C++
specifically should be clear and should represent the pointer type distinctly.

Line *line //NOT Line *pLine; or Line *lineptr; etc

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

155

 Lecture No. 299

10.4 File handling tips for Java and C++

1. C++ header files should have the extension .h. Source files can have the extension
.c++ (recommended), .C, .cc or .cpp.

MyClass.c++, MyClass.h

These are all accepted C++ standards for file extension.

2. Classes should be declared in individual header files with the file name matching the
class name. Secondary private classes can be declared as inner classes and reside in the
file of the class they belong to. All definitions should reside in source files.

class MyClass
{
 public:

 int getValue () {return value_;} // NO!
 ...

 private:
 int value_;

}

The header files should declare an interface, the source file should implement it. When
looking for an implementation, the programmer should always know that it is found in
the source file. The obvious exception to this rule is of course inline functions that must
be defined in the header file.

3. Special characters like TAB and page break must be avoided. These characters are
bound to cause problem for editors, printers, terminal emulators or debuggers when used
in a multi-programmer, multi-platform environment.

5. The incompleteness of split lines must be made obvious.
totalSum = a + b + c +
 d + e);
function (param1, param2,
 param3);
setText ("Long line split"
 "into two parts.");
for (tableNo = 0; tableNo < maxTable;
 tableNo += tableStep)

Split lines occurs when a statement exceed the 80 column limit given above. It is difficult
to give rigid rules for how lines should be split, but the examples above should give a
general hint. In general:

 Break after a comma.
 Break after an operator.
 Align the new line with the beginning of the expression on the previous line.

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

156

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

157

Include Files and Include Statements for Java and C++

1. Header files must include a construction that prevents multiple inclusion. The
convention is an all uppercase construction of the module name, the file name and the h
suffix.

#ifndef MOD_FILENAME_H
#define MOD_FILENAME_H
:

#endif

The construction is to avoid compilation errors. The construction should appear in the top
of the file (before the file header) so file parsing is aborted immediately and compilation
time is reduced.

Classes and Interfaces

Class and Interface declarations should be organized in the following manner:
1. Class/Interface documentation.
2. class or interface statement.
3. Class (static) variables in the order public, protected, package (no access

modifier), private.
4. Instance variables in the order public, protected, package (no access modifier),

private.
5. Constructors.
6. Methods (no specific order).

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

158

10.5 Statements in Java and C++

Types

1. Type conversions must always be done explicitly. Never rely on implicit type
conversion.

floatValue = (float) intValue; // NOT: floatValue = intValue;

By this, the programmer indicates that he is aware of the different types involved and that
the mix is intentional.

2. Types that are local to one file only can be declared inside that file.

3. The parts of a class must be sorted public, protected and private. All sections must be
identified explicitly. Not applicable sections should be left out. The ordering is "most
public first" so people who only wish to use the class can stop reading when they
reach the protected/private sections.

Variables

1. Variables should be initialized where they are declared and they should be declared in
the smallest scope possible.

2. Variables must never have dual meaning. This enhances readability by ensuring all
concepts are represented uniquely. Reduce chance of error by side effects.

3. Class variables should never be declared public. The concept of information hiding
and encapsulation is violated by public variables. Use private variables and access
functions instead. One exception to this rule is when the class is essentially a data
structure, with no behavior (equivalent to a C++ struct). In this case it is appropriate
to make the class' instance variables public.

4. Related variables of the same type can be declared in a common statement.
Unrelated variables should not be declared in the same statement.

float x, y, z;
float revenueJanuary, revenueFebrury, revenueMarch;

The common requirement of having declarations on separate lines is not useful in the
situations like the ones above. It enhances readability to group variables.

5. Variables should be kept alive for as short a time as possible. Keeping the operations
on a variable within a small scope, it is easier to control the effects and side effects of
the variable.

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

159

6. Global variables should not be used. Variables should be declared only within scope
of their use. Same is recommended for global functions or file scope variables. It is
easier to control the effects and side effects of the variables if used in limited scope.

7. Implicit test for 0 should not be used other than for boolean variables and pointers.

if (nLines != 0) // NOT: if (nLines)
if (value != 0.0) // NOT: if (value)

It is not necessarily defined by the compiler that ints and floats 0 are implemented as
binary 0. Also, by using explicit test the statement give immediate clue of the type being
tested. It is common also to suggest that pointers shouldn't test implicit for 0 either, i.e. if
(line == 0) instead of if (line). The latter is regarded as such a common practice in
C/C++ however that it can be used.

Loop structures

1. Only loop control statements must be included in the for() construction.

sum = 0; // NOT: for (i=0, sum=0; i<100; i++)
for (i=0; i<100; i++) // sum += value[i];
 sum += value[i];

2. Loop variables should be initialized immediately before the loop.

boolean done = false; // NOT: boolean done = false;
while (!done) { // :
 : // while (!done) {

} // :
 }

3. The use of do while loops should be avoided. There are two reasons for this. First
is that the construct is superflous; Any statement that can be written as a do while
loop can equally well be written as a while lopp or a for loop. Complexity is reduced
by minimizing the number of constructs being used. The other reason is of
readability. A loop with the conditional part at the end is more difficult to read than
one with the conditional at the top.

4. The use of break and continue in loops should be avoided. These statements should
only be used if they prove to give higher readability than their structured counterparts.
In general break should only be used in case statements and continue should be
avoided alltogether.

5. The form for (;;) should be used for empty loops.

for (;;) { // NOT: while (true) {
 : // :

} // }

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

160

This form is better than the functionally equivalent while (true) since this implies a test
against true, which is neither necessary nor meaningful. The form while(true) should be
used for infinite loops.

Conditionals

1. Complex conditional expressions must be avoided. Introduce temporary boolean
variables instead.

if ((elementNo < 0) || (elementNo > maxElement)||
 elementNo == lastElement) {
 :

}

should be replaced by:

boolean isFinished = (elementNo < 0) || (elementNo > maxElement);
boolean isRepeatedEntry = elementNo == lastElement;
if (isFinished || isRepeatedEntry) {
 :

}

2. The nominal case should be put in the if-part and the exception in the else-part of an
if statement.

boolean isError = readFile (fileName);
if (!isError) {
 :

}
else {
 :

}

3. The conditional should be put on a separate line.

if (isDone) // NOT: if (isDone) doCleanup();
 doCleanup();

4. Executable statements in conditionals must be avoided.

file = openFile (fileName, "w"); // NOT: if ((file = openFile
(fileName, "w")) != null) {
if (file != null) { // :
 : // }

}

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

161

Miscellaneous

1. The use of magic numbers in the code should be avoided. Numbers other than 0 and 1
should be considered declared as named constants instead.

2. Floating point constants should always be written with decimal point and at least one
decimal.

double total = 0.0; // NOT: double total = 0;
double speed = 3.0e8; // NOT: double speed = 3e8;

double sum;
:
sum = (a + b) * 10.0;

This emphasizes the different nature of integer and floating point numbers even if their
values might happen to be the same in a specific case. Also, as in the last example above,
it emphasize the type of the assigned variable (sum) at a point in the code where this
might not be evident.

3. Floating point constants should always be written with a digit before the decimal
point.

double total = 0.5; // NOT: double total = .5;

The number and expression system in Java is borrowed from mathematics and one should
adhere to mathematical conventions for syntax wherever possible. Also, 0.5 is a lot more
readable than .5; There is no way it can be mixed with the integer 5.

4. Functions in C++ must always have the return value explicitly listed.
int getValue() // NOT: getValue()
{
 :

}

If not explicitly listed, C++ implies int return value for functions.

5.goto in C++ should not be used. Goto statements violates the idea of structured code.
Only in some very few cases (for instance breaking out of deeply nested structures)
should goto be considered, and only if the alternative structured counterpart is proven

to be less readable.

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

162

 Lecture No. 309

10.6 Layout and Comments in Java and C++

Comments

The problem with comments is that they lie. Comments are not syntax checked, there is
nothing forcing them to be accurate. And so, as the code undergoes change during
schedule crunches, the comments become less and less accurate.

As Fowler puts it, comments should not be used as deodorants. Tricky code should not be
commented but rewritten. In general, the use of comments should be minimized by
making the code self-documenting by appropriate name choices and an explicit logical
structure.

If, however, there is a need to write comments for whatever reason, the following
guidelines should be observed.

1. All comments should be written in English. In an international environment English
is the preferred language.

2. Use // for all comments, including multi-line comments.

// Comment spanning
// more than one line

Since multilevel commenting is not supported in C++ and Java, using // comments ensure
that it is always possible to comment out entire sections of a file using /* */ for
debugging purposes etc.

3. Comments should be indented relative to their position in the code.

while (true) { // NOT: while (true) {
 // Do something // // Do something
 something(); // something();

} // }

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

163

10.7 Expressions and Statements

Layout

1. Basic indentation should be 2.

for (i = 0; i < nElements; i++)
 a[i] = 0;

Indentation of 1 is to small to emphasize the logical layout of the code. Indentation larger
than 4 makes deeply nested code difficult to read and increase the chance that the lines
must be split. Choosing between indentation of 2, 3 and 4, 2 and 4 are the more common,
and 2 chosen to reduce the chance of splitting code lines.

Natural form for expression

Expression should be written as if they are written as comments or spoken out aloud.
Conditional expression with negation are always difficult to understand. As an example
consider the following code:

if (! (block < activeBlock) || !(blockId >= unblocks))

The logic becomes much easier to follow if the code is written in the natural form as
shown below:

if ((block >= activeBlock) || (blockId < unblocks))

Parenthesize to remove ambiguity

Parentheses should always be used as they reduce complexity and clarify things by
specifying grouping. It is especially important to use parentheses when different
unrelated operators are used in the same expression as the precedence rules are often
assumed by the programmers, resulting in logical errors that are very difficult to spot. As
an example consider the following statement:

if (x & MASK == BITS)

This causes problems because == operator has higher precedence than & operator.
Hence, MASK and BITS are first compared for equality and then the result, which is 0 or
1, is andded with x. This kind of error will be extremely hard to catch. If, however,
parentheses are used, there will be no ambiguity as shown below.

if ((x & MASK) == BITS)

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

164

Following is another example of the use of parentheses which makes the code easier to
understand and hence easier to maintain.

leapYear = year % 4 == 0 && year % 100 != 0 || year % 400 == 0 ;

In this case parentheses have not been used and therefore the definition of a leap year is
not very clear for the code. The code becomes self explanatory with the help of proper
use of parentheses as shown below:

leapYear = ((year % 4 == 0) && (year % 100 != 0)) ||
(year % 400 == 0);

Breakup complex expressions

Complex expressions should be broken down into multiple statements. An expression
is considered to be complex if it uses many operators in a single statement. As an
example consider the following statement:

*x += (*xp=(2*k < (n-m) ? c[k+1] : d[k--]));

This statement liberally uses a number of operators and hence is very difficult to follow
and understand. If it is broken down into simple set of statements, the logic becomes
easier to follow as shown below:

if (2*k < n-m)
*xp = c[k+1];

else
*xp = d[k--];

*x = *x + *xp;

10.8 Shortcuts and cryptic code

Sometimes the programmers, in their creative excitement, try to write very concise code
by using shortcuts and playing certain kinds of tricks. This results in a code which is
cryptic in nature and hence is difficult to follow. Maintenance of such code therefore
becomes a nightmare. Following are some examples of such code.

1. Let us start with a very simple shortcut, often used by programmers. Assume that we
have the following statement.

x *= a;

For some reason the code was later modified to:

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

165

x *= a + b;

This seemingly harmless change is actually a little cryptic and causes confusion. The
problem lies with the semantics of this statement. Does it mean x = x*a+b or x =
x*(a+b)? The second one is the right answer but is not obvious from the syntax and
hence causes problems.

2. Let us now look at a more complex example. What is the following code doing?

subkey = subkey >> (bitoff – (bitoff >> 3) << 3));

As can be seen, it is pretty hard to understand and therefore difficult to debug in case
there is any problem. What this code is actually doing is masking bitoff with octal 7
and then use the result to shift subkey those many time. This can be written as
follows:

subkey = subkey >> (bitoff & 0x7);

It is quite evident that the second piece of code is much follow to read than the first
one.

3. The following piece of code is taken from a commercial software:

a = a >> 2;

It is easy to see that a is shifted right two times. However, the real semantics of this
code are hidden – the real intent here is to divide a by 4. No doubt that the code above
achieves this objective but it is hard for the reader to understand the intent as to why a
is being shifted right twice. It would have been much better had the code been written
as follows:

a = a/4;

4. A piece of code similar to the following can be found in many data structures books
and is part of circular implementation of queues using arrays.

bool Queue::add(int n)
{

int k = (rear+1) % MAX_SIZE;
if (front == k)

return false;
 else {

rear = k;
queue[rear] = n;
return true;

}
}

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

166

bool Queue::isFull()
{

if (front == (rear+1 % MAX_SIZE))
return true;

else
return false;

}

This code uses the % operator to set the rear pointer to 0 once it has reached
MAX_SIZE. This is not obvious immediately. Similarly, the check for queue full is
also not trivial.

In an experiment, the students were asked to implement double-ended queue in which
pointer could move in both directions. Almost everyone made the mistake of writing
something like rear = (rear-1) % MAX_SIZE. This is because the semantics of %
operation are not obvious.

It is always much better to state the logic explicitly. Also, counting is also much
easier to understand and code as compared to some tricky comparisons (e.g. check for
isFull in this case). Application of both these principles resulted in the following
code. It is easy to see that this code is easier to understand. It is interesting to note that
when another group of students were asked to do implement double-ended queue
after showing them this code, almost everyone did it without any problems.

bool Queue::add()
{

if (! isFull()) {
rear++;
if (rear == MAX_SIZE) rear = 0;
QueueArray[rear] = n;
size++;
return true;

}
else return false;

}

bool Queue::isFull(int n)
{

if (size == MAX_SIZE)
return true;

else
return false;

}

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

167

 Lecture No. 319
Coding Style Guidelines (Continued)

In the switch statement, cases should always end with a break. A tricky sequence of fall-
through code like the one below causes more trouble than being helpful.

switch(c) {
case ‘-’ : sign = -1;
case ‘+’ : c = getchar();
case ‘.’ : break;
default : if (! isdigit(c))
 return 0;
}

This code is cryptic and difficult to read. It is much better to explicitly write what is
happening, even at the cost of duplication.

switch(c) {
case ‘-’: sign = -1;

 c = getchar();
 break;

case ‘+’: c = getchar();
 break;

case ‘.’: break;
default: if (! isdigit(c))

 return 0;
 break;

}

It would even be better if such code is written using the if statement as shown below.

if (c == ‘-’) {
sign = -1;
c = getchar();

}
else if (c == ‘+’) {

c = getchar();
}
else if (c != ‘.’ && !isdigit(c)) {

return 0;
}

Switch Statement

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

168

Magic Numbers

Consider the following code segment:

fac = lim / 20;
if (fac < 1)

fac = 1;
for (i =0, col = 0; i < 27; i++, j++) {

col += 3;
k = 21 – (let[i] /fac);
star = (let[i] == 0) ? ‘ ’ : ‘*’;
for (j = k; j < 22; j++)

draw(j, col, star);
}
draw(23, 1, ‘ ’);
for (i=‘A’; i <= ‘Z’; i++)

cout << i;

Can you tell by reading the code what is meant by the numbers 20, 27, 3, 21, 22, and 23.
These are constant that mean something but they do not give any indication of their
importance or derivation, making the program hard to understand and modify. To a
reader they work like magic and hence are called magic numbers. Any number (even 0 or
1) used in the code is a magic number. It should rather have a name of its own that can be
used in the program instead of the number.

The difference would be evident if we look at the code segment below that achieves the
same purpose as the code above.

enum {
MINROW = 1,
MINCOL = 1,
MAXROW = 24,
MAXCOL = 80,
LABELROW = 1,
NLET = 26,
HEIGHT = MAXROW –4,
WIDTH = (MAXCOL-1) / NLET

};

fac = (lim+HEIGHT-1) /HEIGHT;
if (fac < 1)

fac = 1;
for (i =0; i < NLET; i++) {

if (let[i] == 0)
continue;

for (j = HEIGHT – let[i] / fac; j < HEIGHT; j++)
draw(j-1 + LABELROW,
 (i+1)*WIDTH, ‘*’);

}

draw(MAXROW-1, MINCOL+1, ‘ ’);

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

169

for (i=‘A’; i <= ‘Z’; i++)
cout << i;

Use (or abuse) of Zero

The number 0 is the most abused symbol in programs written in C or C++. One can
easily find code segment that 0 in a fashion similar to the examples below in almost every
C/C++ program.

flag = 0; // flag is boolean
str = 0; // str is string
name[i] = 0; // name is char array
x = 0; // x is floating pt
i = 0; // i is integer

This is a legacy of old style C programming. It is much better to use symbols to explicitly
indicate the intent of the statement. It is easy to see that the following code is more in line
with the self-documentation philosophy than the code above.

flag = false;
str = NULL;
name[i] = ‘\0’;
x = 0.0;
i = 0;

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

170

 Lecture No. 329

10.9 Clarity through modularity

As mentioned earlier, abstraction and encapsulation are two important tools that can help
in managing and mastering the complexity of a program. We also discussed that the size
of individual functions plays a significant role in making the program easy or difficult to
understand. In general, as the function becomes longer in size, it becomes more difficult
to understand. Modularity is a tool that can help us in reducing the size of individual
functions, making them more readable. As an example, consider the following selection
sort function.

void selectionSort(int a[], int size)
{

int i, j;
int temp;
int min;

for (i = 0; i < size-1; i++){
min = i;
for (j = i+1; j < size; j++){

if (a[j] < a[min])
min = j;

}
temp = a[i];
a[i] = a[min];
a[min] = temp;

}
}

Although it is not very long but we can still improve its readability by breaking it into
small functions to perform the logical steps. The modified code is written below:

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

171

void swap(int &x, int &y)
{

int temp;
temp = x;
x = y;
y = temp;

}

int minimum(int a[], int from, int to)
{

int i;
int min;
min = a[from];
for (i = from; i <= to; i++){

if (a[i] < a[min])
min = i;

}
return min;

}

void selectionSort(int a[], int size)
{

int min;
int i;
for (i = 0; i < size; i++){

min = minimum(a, i, size –1);
swap(a[i], a[min]);

}
}

It is easy to see that the new selectionSort function is much more readable. The logical
steps have been abstracted out into the two functions namely, minimum and swap. This
code is not only shorter but also as a by product we now have two functions (minimum
and swap) that can be reused.

Reusability is one of the prime reasons to make functions but is not the only reason.
Modularity is of equal concern (if not more) and a function should be broken into smaller
pieces, even if those pieces are not reused. As an example, let us consider the quickSort
algorithm below.

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

172

void quickSort(int a[], int left, int right)
{

int i, j;
int pivot;
int temp;
int mid = (left + right)/2;
if (left < right){

i = left - 1;
j = right + 1;
pivot = a[mid];
do {

do i++; while (a[i] < pivot);
do j--; while (a[i] < pivot);
if (i<j){

temp = a[i];
a[i] = a[j];
a[j] = temp;

}
} while (i < j);
temp = a[left];
a[left] = a[j];
a[j] = temp;

quickSort(a, left, j);
quickSort(a, j+1, right);

}

This is actually a very simple algorithm but students find it very difficult to remember. If
is broken in logical steps as shown below, it becomes trivial.

void quickSort(int a[], int left, int right)
{

int p;
if (left < right){

p = partition(a, left, right);
quickSort(a, left, p-1);
quickSort(a, p+1, right);

}
}

int partition(int a[], int left, int right)
{

int i; j;
int pivot;
i = left + 1;
j = right;
pivot = a[left];
while(i < right && a[i] < pivot) i++;
while(j > left && a[j] >= pivot) j++;
if(i < j)

swap(a[i], a[j]);
swap(a[left], a[j]);
return j;

}

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

173

10.10 Short circuiting || and &&

The logical and operator, &&, and logical or operators, ||, are special due to the C/C++
short circuiting rule, i.e. a || b and a && b are short circuit evaluated. That is, logical
expressions are evaluated left to right and evaluation stops as soon as the final truth value
can be determined.

Short-circuiting is a very useful tool. It can be used where one boolean expression can be
placed first to “guard” a potentially unsafe operation in a second boolean expression.
Also, time is saved in evaluation of complex expressions using operators || and &&.
However, a number of issues arise if proper attention is not paid.

Let us look at the following code segment taken from a commercially developed software
for a large international bank:

struct Node {
int data;
Node * next;

};

Node *ptr;
...

while (ptr->data < myData && ptr != NULL){
// do something here

}

What’s wrong with this code?

The second part of condition, ptr != NULL, is supposed to be the guard. That is, if the
value of the pointer is NULL, then the control should not enter the body of the while loop
otherwise, it should check whether ptr->data < myData or not and then proceed
accordingly. When the guard is misplaced, if the pointer is NULL then the program will
crash because it is illegal to access a component of a non-existent object. This code is
rewritten as follows. This time the short-circuiting helps in achieving the desired
objective which would have been a little difficult to code without such help.

while (ptr != NULL && ptr->data < myData){
// do something here

}

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

174

10.11 Operand Evaluation Order and Side Effects

A side effect of a function occurs when the function, besides returning a value, changes
either one of its parameters or a variable declared outside the function but is accessible to
it. That is, a side effect is caused by an operation that may return an explicit result but it
may also modify the values stored in other data objects. Side effects are a major source of
programming errors and they make things difficult during maintenance or debugging
activities. Many languages do not specify the function evaluation order in a single
statement. This combined with side effects causes major problems. As an example,
consider the following statement:

c = f1(a) + f2(b);
The question is, which function (f1 or f2) will be evaluated first as the C/C++ language
does not specify the evaluation order and the implementer (compiler writer) is free to
choose one order or the other. The question is: does it matter?

To understand this, let’s look at the definition of f1 and f2.

int f1(int &x)
{

x = x * 2;
return x + 1;

}

int f2(int &y)
{

y = y / 2;
return y - 1;

}

In this case both f1 and f2 have side effects as they both are doing two things - changing
the value of the parameter and changing the value at the caller side. Now if we have the
following code segment,

a = 3;
b = 4;

c = f1(a) + f2(b);

then the value of a, b, and c would be as follows:

a = 6
b = 2
c = 8

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

175

So far there seem to be any problem. But let us now consider the following statement:

c = f1(a) + f2(a);

What will be the value of a and c after this statement?

If f1 is evaluated before f2 then we have the following values:

a = 3
c = 9 // 7 + 2

On the other hand, if f2 is evaluated before f1 then, we get totally different results.

a = 2
c = 3 // 3 + 0

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

176

 Lecture No. 339

Common Coding mistakes

Following is short list of common mistakes made due to side-effects.
1.

array[i++] = i;

If i is initially 3, array[3] might be set to 3 or 4.
2.

array[i++] = array[i++] = x;

Due to side effects, multiple assignments become very dangerous. In this
example, a whole depends upon when i is incremented.

3.
“,” is very dangerous as it causes side effects. Let’s look at the following
statement:

int i, j = 0;

Because of the syntax, many people would assume that i is also being initialized
to 0, while it is not. Combination of , and = -- is fatal. Look at the following
statement:

a = b, c = 0;

A majority of the programmers would assume that all a, b, and c are being
initialized to 0 while only c is initialized and a and b have garbage values in them.
This kind of overlook causes major programming errors which are not caught
easily and are caused only because there are side effects.

Guidelines

If the following guidelines are observed, one can avoid hazards caused by side effects.

1. never use “,” except for declaration
2. if you are initializing a variable at the time of declaration, do not declare another

variable in the same statement
3. never use multiple assignments in the same statement
4. Be very careful when you use functions with side effects – functions that change

the values of the parameters.
5. Try to avoid functions that change the value of some parameters and return some

value at the same time.

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

177

10.12 Performance

In many cases, performance and maintainability are at odds with one another. When
planning for performance, one should always remember the 80/20 rule - you spend 80
percent of your time in 20 percent of the code. That is, we should not try to optimize
everything. The proper approach is to profile the program and then identify bottlenecks to
be optimized. This is similar to what we do in databases – we usually normalize the
database to remove redundancies but then partially de-normalize if there are performance
issues.

As an example, consider the following. In this example a function isspam is profiled by
calling 10000 times. The results are shown in the following table:

sec % Cum% cycles instructions calls function
11314990000 9440110000 4835000 strchr
1520280000 156646000 4618000 strncmp
648080000 854500000 2170000 strstr
456225559 344882213 2170435 strlen
21950000 28510000 isspam

 11 other functions with insignificant performance overhead

The profiling revealed that most of time was spent in strchr and strncmp and both of these
were called from strstr.

When a small set (a couple of functions) of functions which use each other is so
overwhelmingly the bottleneck, there are two alternatives:

1. use a better algorithm
2. rewrite the whole set

In this particular case strstr was rewritten and profiled again. It was and found out that
although it was much faster but now 99.8% of the time was spent in strstr.

The algorithm was rewritten and restructured again by eliminating strstr, strchr, and
strncmp and used memcmp. Now memcmp was much more complex than strstr but it
gained efficiency by eliminating a number of loops and the new results are as shown:

sec % Cum% cycles instructions calls function
880890000 1027590000 46180000 memcmp
665550000 902920000 isspam
140304 106043 strlen

strlen now went from over two million calls to 652.

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

178

Many details of the execution can be discovered by examining the numbers. The trick is
to concentrate on hot spots by first identifying them and then cooling them. As mentioned
earlier, most of the time is spent in loops. Therefore we need to concentrate on loops.

As an example, consider the following:

for (j = i; j < MAX_FIELD; j++)
clear(j);

This loop clears field before each new input is read. It was observed that it was taking
almost 50% of the total time. On further investigation it was found out that MAX_FIELD
was 200 but the actual fields that needed to be cleared were 2 or 3 in most cases. The
code was subsequently modified as shown below:

for (j = i; j < maxField; j++)
clear(j);

This reduced the overall execution time by half.

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

179

 Lecture No. 349

10.13 Portability

Many applications need to be ported on to many different platforms. As we have seen, it
is pretty hard to write error free, efficient, and maintainable software. So, if a major
rework is required to port a program written for one environment to another, it will be
probably not come at a low cost. So, we ought to find ways and means by which we can
port applications to other platforms with minimum effort. The key to this lies in how we
write our program. If we are careful during writing code, we can make it portable. On the
other hand if we write code without portability in mind, we may end-up with a code that
is extremely hard to port to other environment. Following is brief guideline that can help
you in writing portable code.

Stick to the standard

1. Use ANSI/ISO standard C++
2. Instead of using vendor specific language extensions, use STL as much as

possible

Program in the mainstream

Although C++ standard does not require function prototypes, one should always write
them.

double sqrt(); // old style acceptable by ANSI C

double sqrt(double); // ANSI – the right approach

Size of data types

Sizes of data types cause major portability issues as they vary from one machine to the
other so one should be careful with them.

int i, j, k;

…
j = 20000;
k = 30000;

i = j + k;

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

180

 // works if int is 4 bytes
 // what will happen if int is 2 bytes?

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

181

Order of Evaluation
As mentioned earlier during the discussion of side effects, order of evaluation varies from
one implementation to other. This therefore also causes portability issues. We should
therefore follow guidelines mentioned in the side effect discussion.

Signedness of char

The language does not specify whether char is signed or unsigned.

char c;
// between 0 and 255 if unsigned
// -128 to 127 if signed

c = getchar();
if (c == EOF) ??

// will fail if it is unsigned

It should therefore be written as follows:

int c;
c = getchar();
if (c == EOF)

Arithmetic or Logical Shift

The C/C++ language has not specified whether right shift >> is arithmetic or logical. In
the arithmetic shift sign bit is copied while the logical shift fills the vacated bits with 0.
This obviously reduces portability.

Interestingly, Java has introduced a new operator to handle this issue. >> is used for for
arithmetic shift and >>> for logical shift.

Byte Order and Data Exchange

The order in which bytes of one word are stored is hardware dependent. For example in
Intel architecture the lowest byte is the most significant byte while in Motorola
architecture the highest byte of a word is the most significant one. This causes problem
when dealing with binary data and we need to be careful while exchanging data between
to heterogeneous machines. One should therefore only use text for data exchange. One
should also be aware of the internationalization issues and hence should not assume
ASCII as well as English.

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

182

Alignment

The C/C++ language does not define the alignment of items within structures, classes, an
unions. data may be aligned on word or byte boundaries. For example:

struct X {
char c;
int i;

};

address of i could be 2, 4, or 8 from the beginning of the structure. Therefore, using
pointers and then typecasting them to access individual components will cause all sorts of
problems.

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

183

Bit Fields

Bit fields allow the packing of data in a structure. This is especially useful when memory
or data storage is at a premium. Typical examples:

 Packing several objects into a machine word. e.g. 1 bit flags can be compacted --
Symbol tables in compilers.

 Reading external file formats -- non-standard file formats could be read in. E.g. 9
bit integers.

C lets us do this in a structure definition by putting :bit length after the variable. i.e.

struct packed_struct {
 unsigned int f1:1;
 unsigned int f2:1;
 unsigned int f3:1;
 unsigned int f4:1;
 unsigned int type:4;
 unsigned int funny_int:9;

} pack;

Here the packed_struct contains 6 members: Four 1 bit flags f1..f3, a 4 bit
type and a 9 bit funny_int.

C automatically packs the above bit fields as compactly as possible, provided that the
maximum length of the field is less than or equal to the integer word length of the
computer. If this is not the case then some compilers may allow memory overlap for the
fields whilst other would store the next field in the next word.

Bit fields are a convenient way to express many difficult operations. However, bit fields
do suffer from a lack of portability between platforms:

 integers may be signed or unsigned
 Many compilers limit the maximum number of bits in the bit field to the size of an

integer which may be either 16-bit or 32-bit varieties.
 Some bit field members are stored left to right others are stored right to left in

memory.
 If bit fields too large, next bit field may be stored consecutively in memory

(overlapping the boundary between memory locations) or in the next word of
memory.

Bit fields therefore should not be used.

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

184

 Lecture No. 359

10.14 Exception handling

Exception handling is a powerful technique that separates error-handling code from
normal code. It also provides a consistent error handling mechanism. The greatest
advantage of exception handling is its ability to handle asynchronous errors.

The idea is to raise some error flag every time something goes wrong. There is a system
that is always on the lookout for this error flag. Third, the previous system calls the error
handling code if the error flag has been spotted. The raising of the imaginary error flag is
simply called raising or throwing an error. When an error is thrown the overall system
responds by catching the error. Surrounding a block of error-sensitive code with
exception handling is called trying to execute a block. The following code segment
illustrates the general exception handling mechanism.

try {
___...
___...
___throw Exception()
___...
___...
} catch(Exception e)
{
___...
___...
}

One of the most powerful features of exception handling is that an error can be thrown
over function boundaries. This allows programmers to put the error handling code in one
place, such as the main-function of your program.

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

185

Exceptions and code complexity

A number of invisible execution paths can exist in simple code in a language that allows
exceptions. The complexity of a program may increase significantly if there are
exceptional paths in it. Consider the following code:

String EvaluateSalaryAnadReturnName(Employee e)
{
 if (e.Title() == “CEO” || e.Salary() > 10000)
 {

cout << e.First() << “ “ << e.Last() << “ is overpaid” << endl;
 }
 return e.First() + “ “ + e.Last();
}

Before moving any further, let’s take the following assumptions:

1. Different order of evaluating function parameters are ignored.
2. Failed destructors are ignored
3. Called functions are considered atomic

a. for example: e.Title() could throw for several reasons but all that matters
for this function is whether e.Title() results in an exception or not.

4. To count as different execution paths, an execution path must be made-up of a
unique sequence of function calls performed and exited in the same way.

Question: How many more execution paths are there?

Ans: 23. There are 3 non-exceptional paths and 20 exceptional paths.

The non-exceptional paths:

The three non-exceptional paths are enumerated as below:

1. if (e.Title() == “CEO” || e.Salary() > 10000)
 if e.Title() == “CEO” is true then the second part is not evaluated and

e.Salary() will not be called.
 cout will be performed

2. if e.Title() != “CEO” and e.Salary() > 10000
 both parts of the condition will be evaluated
 cout will be performed.

3. if e.Title() != “CEO” and e.Salary() <= 10000
 both parts of the condition will be evaluated
 cout will not be performed.

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

186

Exceptional Code Paths

The 20 exceptional code path are listed below.

1. String EvaluateSalaryAnadReturnName(Employee e)

The argument is passed by value, which invokes the copy constructor. This copy

operation might throw an exception.

2. if (e.Title() == “CEO” || e.Salary() > 10000)

e.Title() might itself throw, or it might return an object of class type by value, and

that copy operation might throw.

3. if (e.Title() == “CEO” || e.Salary() > 10000)

Same as above.

4. if (e.Title() == “CEO” || e.Salary() > 10000)

To match a valid ==() operator, the string literal may need to be converted to a

temporary object of class type and that construction of the temporary might throw.

5. if (e.Title() == “CEO” || e.Salary() > 10000)

Same as above.

6. if (e.Title() == “CEO” || e.Salary() > 10000)

operator ==() might throw.

7. if (e.Title() == “CEO” || e.Salary() > 10000)

Same as above.

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

187

8. if (e.Title() == “CEO” || e.Salary() > 10000)

Same as above.

9-13 cout << e.First() << “ “ << e.Last() << “ is overpaid” << endl;

As per C++ standard, any of the five calls to << operator might throw.

14-15 cout << e.First() << “ “ << e.Last() << “ is overpaid” << endl

similar to 2 and 3.

16-17 return e.First() + “ “ + e.Last();

similar to 14-15.

18-19 return e.First() + “ “ + e.Last();

similar to 6,7, and 8.

20. return e.First() + “ “ + e.Last();

similar to 4.

Summary:

 A number of invisible execution paths can exist in simple code in a language
that allows exceptions.

 Always be exception-aware. Know what code might emit exceptions.

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

188

The Challenge:
Can we make this code exception safe and exception neutral? That is, rewrite it (if
needed) so that it works properly in the presence of an exception and propagates all
exceptions to the caller?

Exception-Safety:
A function is exception safe if it might throw but do not have any side effects if it does
throw and any objects being used, including temporaries, are exception safe and clean-up
there resources when destroyed.

Exception Neutral:
A function is said to be exception neutral if it propagates all exceptions to the caller.

Levels of Exception Safety
 Basic Guarantee: Ensures that temporaries are destroyed properly and there are no

memory leaks.
 Strong Guarantee: Ensures basic guarantee as well as there is full-commit or roll-

back.
 No-throw Guarantee: Ensure that a function will not throw.

Exception-safety requires either no-throw guarantee or basic and strong guarantee.

Does the function satisfy basic guarantee?
Yes. Since the function does not create any objects, in the presence of an exception, it

does not leak any resources.

Does the function satisfy strong guarantee?
No. The strong guarantee says that if the function fails because of an exception,
the program state must not be change.

This function has two distinct side-effects:
 an overpaid message is emitted to cout.
 A name strings is returned.

As far as the second side-effect is concerned, the function meets the strong
guarantee because if an exception occurs the value will never be returned.

As far as the first side-effect is concerned, the function is not exception safe for
two reasons:

 if exception is thrown after the first part of the message has been emitted
to cout but before the message has been completed (for example if the
fourth << operator throws), then a partial message was emitted to cout.

 If the message emitted successfully but an exception occurs in later in the
function (for example during the assembly of the return value), then a

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

189

message was emitted to cout even though the function failed because of an
exception. It should be complete commit or complete roll-back.

Does the function satisfy no-throw guarantee?
No. This is clearly not true as lots of operations in the function might throw.

Strong Guarantee
To meet strong guarantee, either both side-effects are completed or an exception is

thrown and neither effect is performed.

// First attempt:

String EvaluateSalaryAnadReturnName(Employee e)
{

String result = e.First() + “ “ + e.Last();

if (e.Title() == “CEO” || e.Salary() > 10000)
{

String message = result + “ is overpaid\n”;
cout << message;

}
return result;

}

What happens if the function is called as follows:

String theName;
theName = evaluateSalarayAndReturnName(someEmplyee);

1. string copy constructor is invoked because the result is returned by value.
2. The copy assignment operator is invoked to copy the result into theName
3. If either copy fails then the function has completed its side-effects (since the

message was completely emitted and the return value was completely
constructed) but the result has been irretrievable lost.

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

190

Can we do better and perhaps avoid the problem by avoiding the copy?

// Second attempt:

String EvaluateSalaryAnadReturnName(Employee e, String &r)
{

String result = e.First() + “ “ + e.Last();

if (e.Title() == “CEO” || e.Salary() > 10000)
{

String message = result + “ is overpaid\n”;
cout << message;

}
r = result;

}

Looks better but assignment to r might still fail which leaves us with one side-effect
completed and other incomplete.

// Third attempt:

auto_ptr<String> EvaluateSalaryAnadReturnName(Employee e)
{

auto_ptr<String> result = new String(e.First() + “ “ + e.Last());

if (e.Title() == “CEO” || e.Salary() > 10000)
{

String message = (*result) + “ is overpaid\n”;
cout << message;

}
return result;(); // rely on transfer of ownership

// this can’t throw
}

We have effectively hidden all the work to construct the second side-effect (the return
value), while we ensured that it can be safely returned to the caller using only non-
throwing operation after the first side-effect has completed the printing of the
message. In this case we know that once the function is complete, the return value
will make successfully into the hands of the caller and be correctly cleaned-up in all
cases. This is because the aut_ptr semantics guarantee that If the caller accepts the
returned value, the act of accepting a copy of the auto_ptr causes the caller to take the
ownership and if the caller does not accept the returned value, say by ignoring the

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

191

return value, the allocated string will automatically be destroyed with proper clean-
up.

Exception Safety and Multiple Side-effects

It is difficult and some-times impossible to provide strong exception safety when
there are two or more side-effects in one function and these side-effects are not
related with each other. For example we would not have been able to provide
exception safety if there are two output messages, one to cout and the other one to
cerr. This is because the two cannot be combined.

When such a situation comes with two or more unrelated side-effects which cannot be
combined then the best way to handle such a situation is break it into two separate
functions. That way, at least, the caller would know that these are two separate atomic
steps.

Summary
1. Providing the strong exception-safety guarantee often requires you to trade-off

performance.
2. If a function has multiple un-related side-effects, it cannot always be made

strongly exception safe. If not, it can be done only by splitting the function
into several functions, each of whose side-effects can be performed
atomically.

3. Not all functions need to be strongly exception-safe. Both the original code
and attempt#1 satisfy the basic guarantee. For many clients, attempt # 1 is
sufficient and minimizes the opportunity for side-effects to occur in the
exceptional situation, without requiring the performance trade-off of attempt
#3.

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

192

 Lecture No. 369

Software Verification and Validation

11.1 Software Testing
To understand the concept of software testing correctly, we need to understand a few
related concepts.
Software verification and validation
Verification and validation are the processes in which we check a product against its
specifications and the expectations of the users who will be using it. According to a
known software engineering expert Berry Boehm, verification and validation are
Verification

 Does the product meet system specifications?
 Have you built the product right?

Validation
 Does the product meet user expectations?
 Have you built the right product?

It is possible that a software application may fulfill its specifications but it may deviate
from users expectations or their desired behavior. That means, software is verified but not
validated. How is it possible? It is possible because during the requirements engineering
phase, user needs might not have been captured precisely or the analyst might have
missed a major stakeholder in the analysis. Therefore, it is important to verify as well as
validate the software product.
11.2 Defect
The second major and a very important concept is Defect. A defect is a variance from a
desired product attribute. These attributes may involve system specifications well as user
expectation. Anything that may cause customer dissatisfaction, is a defect. Whether these
defects are in system specifications or in the software products, it is essential to point
these out and fix.
Therefore software defect is that phenomenon in which software deviates from its
expected behavior. This is non-compliance from the expected behavior with respect to
written specifications or the stakeholder needs.
Software and Defect
Software and defects go side by side in the software development life cycle. According to
a famous saying by Haliburton, Death and taxes are inevitable. According to Kernighan:
Death, taxes, and bugs are the only certainties in the life of a programmer. Software and
defects cannot be separated, however, it is important to learn how discovering defects at
an appropriate stage improves the software quality. Therefore, software application needs
to be verified as well as validated for a successful deployment.
Software Testing
With these concepts, we are in a position to define software testing. Software testing is
the process of examining the software product against its requirements. Thus it is a
process that involves verification of product with respect to its written requirements and
conformance of requirements with user needs. From another perspective, software testing

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

193

is the process of executing software product on test data and examining its output vis-à-
vis the documented behavior.
Software testing objective

 The correct approach to testing a scientific theory is not to try to verify it, but to
seek to refute the theory. That is to prove that it has errors. (Popper 1965)

 The goal of testing is to expose latent defects in a software system before it is put
to use.

 A software tester tries to break the system. The objective is to show the presence
of a defect not the absence of it.

 Testing cannot show the absence of a defect. It only increases your confidence in
the software.

 This is because exhaustive testing of software is not possible – it is simply too
expansive and needs virtually infinite resources.

Successful Test
From the following sayings, a successful test can be defined
“If you think your task is to find problems then you will look harder for them than if you
think your task is to verify that the program has none” – Myers 1979.

“A test is said to be successful if it discovers an error” – doctor’s analogy.

The success of a test depends upon the ability to discover a bug not in the ability to prove
that the software does not have one. As, it is impossible to check all the different
scenarios of a software application, however, we can apply techniques that can discover
potential bugs from the application. Thus a test that helps in discovering a bug is a
successful test. In software testing phase, our emphasis is on discovering all the major
bugs that can be identified by running certain test scenarios. However it is important to
keep in mind that testing activity has certain limitations.
Limitations of testing
With the help of the following example, we shall see how difficult it may become to
discover a defect from a software application.

Example (adapted from Backhouse)
This is a function that compares two strings of characters stored in an array for equality.
The tester who has to test this function has devised the following test cases in which
different combinations of inputs are tried and their expected behavior is documented.
From the look of this table, it seems that almost all major combinations of inputs have
been documented.

Inputs and Expected Outputs

A b Expected result
“cat” “dog” False
“” “” True
“hen” “hen” True
“hen” “heN” False
“” “” False

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

194

“” “ball” False
“cat” “” False
“HEN” “hen” False
“rat” “door” False
“ ” “ ” True

Results of testing
The tester runs all the above-mentioned test cases and function returns the same results as
expected. But it is still not correct. What can be a problem To analyze the problem, lets
look at the code of this string equal routine

Code of the Function
bool isStringsEqual(char a[], char b[])
{
 bool result;
 if (strlen(a) != strlen(b))
 result = false;
 else {
 for (int i =0; i < strlen(a); i++)
 if (a[i] == b[i])
 result = true;
 else result = false;
 }
 return result;
}

Analysis of the code
It passes all the designated tests but fails for two different strings of same length
ending with the same character. For example, “cut” and “rat” would results in true
which is not correct.
The above-mentioned defect signifies a clear limitation of the testing process in
discovering a defect which is not very frequent. However, it should be noted from this
example that a tester cannot generate all possible combinations of test cases to test
an application as the number of scenarios may become exhaustive.

Testing limitations
 In order to prove that a formula or hypothesis is incorrect all you have to do to

show only one example in which you prove that the formula or theorem is not
working.

 On the other hand, million of examples can be developed to support the
hypothesis but this will not prove that it is correct.

 These examples only help you in coming up with a hypothesis but they are not
proves by themselves and they only enhance your comfort level in that particular
hypothesis or in this particular case, in your piece of software.

 You cannot test a program completely because:
o the domain of the possible inputs is too large to test.
o there are too many possible paths through the program to test.

 According to Discrete Mathematics

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

195

o To prove that a formula or hypothesis is incorrect you have to show only
one example.

o To prove that it is correct any numbers of examples are insufficient. You
have to give a formal proof of its correctness.

11.3 Test Cases and Test Data
In order to test a software application, it is necessary to generate test cases and test data
which is used in the application. Test cases correspond to application functionality such
that the tester writes down steps which should be followed to achieve certain
functionality. Thus a test case involves

 Input and output specification plus a statement of the function under test.
 Steps to perform the function
 Expected results that the software application produces

However, test data includes inputs that have been devised to test the system.

 Lecture No. 379

11.3 Testing vs. development
Testing is an intellectually demanding activity and has a lifecycle parallel to software
development. A common misperception about testing is that it is not a challenging
activity. It should be noted here that the testing demands grip over the domain and
application functionality as is required from an analyst or a designer who has to develop
the application from requirements. As without having an in-depth knowledge about the
system and the requirements from users, a tester cannot write test cases that can verify
and validate software application with respect to documented specifications and user
needs. Writing test cases and generating test data are processes that demand scenario-
building capabilities. These activities essentially require destructive instincts in a tester
for the purpose of breaking system to discover loopholes into its functionality.
At the time when these two activities are being performed, merely initial design of the
application is completed. Therefore, tester uses his/her imagination to come up with use
patterns of the application that can help him/her in describing exact steps that should be
executed in order to test a particular functionality. Moreover, tester needs to figure out
loose points in the system from where he/she can discover defects. All these activities are
highly imaginative and a tester is supposed to possess above average (if not excellent)
analytical skills.
We shall explain the testing activities parallel to development activities with the help of
the following diagram

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

196

Description
 Functional specification document is the starting point, base document for both

testing and the development
 Right side boxes describe the development, whereas, left side boxes explain the

testing process
 Development team is involved into the analysis, design and coding activities.
 Whereas, testing team too is busy in analysis of requirements, for test planning,

test cases and test data generation.
 System comes into testing after development is completed.
 Test cases are executed with test data and actual results (application behavior) are

compared with the expected results,
 Upon discovering defects, tester generates the bug report and sends it to the

development team for fixing.
 Development team runs the scenario as described in the bug report and try to

reproduce the defect.
 If the defect is reproduced in the development environment, the development

team identifies the root cause, fixes it and sends the patch to the testing team
along with a bug resolution report.

 Testing team incorporates the fix (checking in), runs the same test case/scenario
again and verifies the fix.

 If problem does not appear again testing team closes down the defect, otherwise,
it is reported again.

11.5 The Developer and Tester
Development Testing

Development is a creative activity Testing is a destructive activity
Objective of development is to show that
the program works

Objective of testing is to show that the
program does not work

FS

Analysis,
Test Planning,
Test Case and

Test Data
Preparation

Analysis,
Design,
Coding

Test Case
Execution and

Defect
Reporting

Bug Fixing

Activities
carried out
by the
development
team

Activities
carried out
by the testing
team

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

197

Scenarios missed or misunderstood during development analysis would never be tested
correctly because the corresponding test cases would either be missing or would be
incorrect.
The left side column is related to the development, and the right side describes the
testing. Development is a creative process as developers have to build the system,
whereas, testing is a destructive activity as the goal of a tester is to break the system to
discover the defects. Objective of development is to show that the program works,
objective of testing is to show that program does not work. However, FS is the base
document for both of these activities.
Tester analyzes FS with respect to testing the system whereas; developer analyzes FS
with respect to designing and coding the system. If developer does not understand the FS
correctly then he cannot implement and test it right. Thus if the same person who has
developed a system, tests it, chances of carrying the same misunderstanding in testing
will be very high. Therefore, an independent testing can only prove his understanding
wrong. Therefore, it is highly recommended that developer should not try to test his/her
own work.
11.6 Usefulness of testing
Objective of testing is to discover and fix as many errors as possible before the software
is put to use. That is before it is shipped to the client and the client runs it for acceptance.
In software development organizations, a rift exists between the development and the
testing teams. Often developers are found questioning about the significance or even need
to have the testing resources in the project teams. Whoever doubts on the usefulness of
the testing team should understand what could happen if the application is delivered to
client without testing? At the best, the client may ask to fix all the defects (free of cost)
he would discover during the acceptance testing. At the worst, probably he would sue the
development firm for damages. However, in practice, clients are often seen complaining
about the deliverables and a couple of defected deliverables are sufficient for breaking
the relations next to the cancellation of contract.
Therefore, it should be well preserved among the community of developers that testers
are essential rather inevitable. A good tester has a knack of smelling errors – just like
auditors and it is for the good of the organization not to harm it.

11.7 Testing and software phases
With the help of the following diagram we shall explain different phases of testing

Requirement
Specification

System
Specification

System
Design

Detailed
Design

Code and
unit test

Acceptance
Test Plan

System
Integration

Sub-system
Integration

Sub-systemSystem
Integration

AcceptanceProduction
Test

Test Plan Test Plan

Integration
TestTest

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

198

Software development process diagram

Description of testing phases
• Unit testing – testing individual components independent of other components.
• Module testing – testing a collection of dependent components – a module

encapsulates related components so it can be tested independently.
• Subsystem testing – testing of collection of modules to discover interfacing

problems among interacting modules.
• System testing – after integrating subsystems into a system – testing this system

as a whole.
• Acceptance test – validation against user expectations. Usually it is done at the

client premises.
• Alpha testing – acceptance testing for customized projects, in-house testing for

products.
• Beta testing – field testing of product with potential customers who agree to use it

and report problem before system is released for general use
In the following two types of testing activities are discussed.

11.8 Black box testing
In this type of testing, a component or system is treated as a black box and it is tested for
the required behavior. This type of testing is not concerned with how the inputs are
transformed into outputs. As the system’s internal implementation details are not visible
to the tester. He gives inputs using an interface that the system provides and tests the
output. If the outputs match with the expected results, system is fine otherwise a defect is
found.

11.9 Structural testing (white box)
As opposed to black box testing, in structural or white box testing we look inside the
system and evaluate what it consists of and how is it implemented. The inner of a system
consists of design, structure of code and its documentation etc. Therefore, in white box
testing we analyze these internal structures of the program and devise test cases that can
test these structures.
Effective testing
The objective of testing is to discover the maximum number of defects with a minimum
number of resources before the system is delivered to the next stage. Now the question
arises here how to increase the probability of finding a defect?
As, good testing involves much more than just running the program a few times to see
whether it works or not. A good tester carries out a thorough analysis of the program to
devise test cases that can be used to test the system systematically and effectively.
Problem here is how to develop a representative set of test cases that could test a
complete program. That is, selection of a few test cases from a huge set of possibilities.
What should be the sets of inputs that should be used to test the system effectively and
efficiently?

String Equal Example
 For how many equal strings do I have to test to be in the comfortable zone?
 For how many unequal strings do I have to test to be in the comfortable zone?

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

199

 When should I say that further testing is unlikely to discover another error?
Testing types

To answer these questions, we divide a problem domain in different classes. These are
called Equivalence Classes.

Lecture No. 38
Equivalence Classes or Equivalence Partitioning
Two tests are considered to be equivalent if it is believed that:

 if one discovers a defect, the other probably will too, and
 if one does not discover a defect, the other probably won’t either.

Equivalence classes help you in designing test cases to test the system effectively and
efficiently. One should have reasons to believe that the test cases are equivalent. As for
this purpose, one would need to understand the system and see in how many partitions it
can be divided. These partitions should be devised such that a clear distinction should be
marked. Test cases written for one partition should not yield the same results when run
for the second partition as otherwise these two partitions should become one. However,
finding equivalence classes is a subjective process, as two people analyzing a program

will probably come up with different sets of equivalence classes .
Equivalence partitioning guidelines

 Organize your equivalence classes. Write them in some order, use some template,
sequence, or group them based on their similarities or distinctions. These
partitions can be hierarchical or organized in any other manner.

 Boundary conditions: determine boundary conditions. For example, adding in an
empty linked list, adding after the last element, adding before the first element,
etc.

 You should not forget invalid inputs that a user can give to a system. For
example, widgets on a GUI, numeric instead of alphabets, etc.

Equivalence partitioning example
In the following example, we shall see how equivalence partitions can be developed for a
string matching function.

String matching
Organization

For equivalence partitions, we divide the problem in two obvious categories of equal
strings and the other one for unequal strings. Within these equivalent partitions, further
partitioning is done. Following is the description of the equivalence partitions and their
test cases

Test cases for equivalence partitions
Equal
 Two equal strings of arbitrary length

o All lower case “cat” “cat”
o All upper case “CAT” “CAT”

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

200

o Mixed case “Cat” “Cat”
o Numeric values “123” “123”
o Two strings with blanks only “ ” “ ”
o Numeric and character mixed “Cat1” “Cat1”
o Strings with special characters “Cat#1” “Cat#1”

 Two NULL strings “” “”

Unequal Strings
 Two different equal strings of arbitrary length

o Two strings with different length “cat” “mouse”
o Two strings of same length “cat” “dog”

 Check for case sensitivity
o Same strings with different characters capitalized

“Cat” “caT”
 One string is empty

o First is NULL “” “cat”
o Second is NULL “cat” “”

11.10 Basis Code Structures
For structural testing it is important to know about basic coding structures. There are four
basic coding structures sequence, if statement, case statement, and while loop. These four
basic structures can be used to express any type of code.

Flow graph notation
In analysis and design, you have already seen the flow graph notation. This is used to
describe flow of data or control in an application. However, we do not use flow graphs to
describe decisions. That is, how a branch is taken is not shown in flow graphs.
In the following, we are using flow graph notation to describe different coding structures.

Sequence
Sequence depicts programming instructions that do not have branching or any control
information. So we lump together several sequential instructions in one node of the
graph.

If
Second structural form is the If statement. In the following graph, the first node at the left
depicts the if statement and the two nodes next to the first node correspond to the
successful case (if condition is true) and unsuccessful case (if condition is false)
consecutively. The control comes to the same instruction from either of these
intermediate instructions.

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

201

Case
In Case statement, control can take either of several branches (as opposed to only two in
If statement.) First node represents the switch statement (C/C++) and nodes in middle
correspond to all different cases. Program can take one branch and result into the same
instruction.

While
A while loop structure consists of a loop guard instruction through which the iteration in
the loop is controlled. The control keeps iterating in the loop as long as the loop guard
condition is true. It branches to the last instruction when it becomes false.

Flow graph for bubble sort
In the following example, code is given for a bubble sort function. The diagram opposite
to the code is the corresponding flow graph model. It consists of six nodes. Node one is
the while loop instruction that contains loop guard and node six is the ending instruction
of the while loop. Node two corresponds to the for loop instructions. Node three
corresponds to the swapping instruction. Nodes five and six correspond to the last
instructions of the if statement and the for loop consecutively.
Point to note here is the assignment of node numbers to program instructions. As, the
corresponding flow graph model would consist of nodes that correspond to instructions
which are major decision points in the code. For example, when this function will be
invoked, control will certainly come to the while loop instruction and at the minimum it
will traverse from node one to node six. However, if control enters into the while loop
even for a single iteration, it will traverse through nodes two, four and five for certain and
node three too if it enters for loop and check in the if condition is true.
So all these combinations are to be tested during white box testing.

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

202

Paths
Following are possible paths from starting to the end of this code.
Path1: 1-6
Path2: 1-2-3-4-5-1-6
Path3: 1-2-4-5-1-6
Path4: 1-2-4-2-3-4-5-6-1

Lecture No. 39

White box testing
As described in the section above, in white box testing we test the structure of the
program. In this technique the test cases are written in a manner to cover different
possibilities in code. Below are described three coverage schemes.

Coverage
 Statement Coverage: In this scheme, statements of the code are tested for a

successful test that checks all the statements lying on the path of a successful
scenario.

 Branch Coverage: In this scheme, all the possible branches of decision structures
are tested. Therefore, sequences of statements following a decision are tested.

 Path Coverage: In path coverage, all possible paths of a program from input
instruction to the output instruction are tested. An exhaustive list of test cases is
generated and tested against the code.

White Box Testing Example
With the help of the following example, we shall see how many test cases are generated
for each type of coverage schemes.

sorted = false;
while (!sorted) { //1
 sorted = true;
 for (i=0; i < N-1; i++) { //2
 if a[i] > a[i+1] {
 swap(a[i], a[i+1]); //3
 sorted = false;
 } //4
 } //5
} //6

1

2

3

4

6

5

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

203

Statement coverage:
 a=1,b=1
 If a==b then statement 2, statement 3

Branch coverage
 Statement 1: two braches 1-2, 1-3
 Test case 1: if a =1, b=1 then statement 2
 Test case 2: if a=1,b=2: then statement 3

Path coverage
Same as branch testing

Paths in a program containing loops
Now we shall apply the path coverage scheme on a piece of code that contains a loop
statement and see how many test cases can possibly be developed.

Paths
The following is an analysis of the above-mentioned code and the flow diagram. It
determines the number of paths against different iterations of the loop.

 N = 0: If the control does not enter into the loop then only one path will be
traversed. It is 1-5.

 N=1: Two different paths can possibly be traversed (depending on condition).
o 1-2-4-1-5
o 1-3-4-1-5

 N=2: Four possible paths can be traversed.
o 1-2-4-1-2-4-1-5
o 1-2-4-1-3-4-1-5

for (i = 0; i < N; i++) { //1
if (condition1)

// do something here //2
else

// do something here //3
// something here //4

}
 //5

1

2

4

3

5

if (a = = b) //1

 c = d; //2

a++; //3

1

2

3

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

204

o 1-3-4-1-2-4-1-5
o 1-3-4-1-3-4-1-5

 Generalizing the relation between loop variable N and the number of possible
paths, for the value of N, 2N paths are possible

o Thus if N = 20 it means more then 1 million paths are possible.

Flow graph of a hypothetical program
Following is a flow graph of a hypothetical program whose structure is such that it
consists of two loops, one embedded in the other. Left side of the diagram signifies the
loops where inner loop seem to be containing two if statements. Second loop has a branch
and then program finishes.
Simple graph contains 1852 paths with each loop not iterated more than twice

Thus, the number of paths in a program that contains loops tends to infinity. It is
impossible to conduct exhaustive testing of a program that may consist of infinite number
of test cases. The question arises, how many test cases need to be executed in order to test
all the major scenarios in the code at least once? The answer is, calculate the cyclomatic

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

205

complexity of the code. This will give us a number that corresponds to the total number
of test cases that need to be generated in order to test all the statements and branches in
the code at least once.

Cyclomatic complexity
The concept of cyclomatic complexity is extremely useful in white box testing when
analyzing the relative complexity of the program to be tested. It revolves around
independent paths in a program which is any path through the program (from start to end)
that introduces at least one new set of processing statements or a new condition. An
independent path covers statements and branches of the code.
Cyclomatic complexity is a quantitative measure of the logical complexity of a program.
It defines number of independent paths in the basis set of a program. It provides an upper
bound for the number of tests that must be conducted to ensure that all statements and
branches have been executed at least once.

Cyclomatic Complexity, V(G), for a flow graph G is defined as:
V(G) = E - N + 2

Where E is the number of edges and N is the number of nodes in the flow graph G.
Cyclomatic complexity provides us with an upper bound for the number of independent
paths that comprise the basis set.
Cyclomatic Complexity of a Sort Procedure
Following is the same bubble sort program that we discussed above. This time we shall
calculate its cyclomatic complexity and see how many test cases are needed to test this
function.

Cyclomatic complexity
 Number of edges = 8
 Number of nodes = 6
 C(G) = 8-6+2 = 4

Paths to be tested
 Path1: 1-6

Sorted = FALSE;
while (!sorted) { //1
 sorted = TRUE;
 for (i=0; i < N-1; i++) { //2
 if a[i] > a[i+1] {
 swap(a[i], a[i+1]); //3
 sorted = FALSE;
 } //4
 } //5
} //6 5

1

2

3

4

6

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

206

 Path2: 1-2-3-4-5-1-6
 Path3: 1-2-4-5-1-6
 Path4: 1-2-4-2-3-4-5-6-1

Infeasible paths
Infeasible path is a path through a program which is never traversed for any input data.

Example

In the above-mentioned example, there are two infeasible paths that will never be
traversed.

 Path1: 1-2-3-4-5
 Path2: 1-3-5

A good programming practice is such that minimize infeasible paths to zero. It will
reduce the number of test cases that need to be generated in order to test the application.
How can we minimize infeasible paths, by simply using else part with the if statement
and avoid program statements as given above.

Modified code segment
Infeasible paths can be analyzed and fixed.

There are no infeasible paths now!

if (a == b) //1
c = c-1; //2

if (a != b) //3
c = c+1; //4

 //5

1

2

3

4

5

if (a == b) //1
c = c-1; //2

else
c = c+1; //3

 //4

1

2

4

3

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

207

Lecture No. 40

11.11 Unit testing
A software program is made up of units that include procedures, functions, classes etc.
The unit testing process involves the developer in testing of these units. Unit testing is
roughly equivalent to chip-level testing for hardware in which each chip is tested
thoroughly after manufacturing. Similarly, unit testing is done to each module, in
isolation, to verify its behaviour. Typically the unit test will establish some sort of
artificial environment and then invoke routines in the module being tested. It then checks
the results returned against either some known value or against the results from previous
runs of the same test (regression testing). When the modules are assembled we can use
the same tests to test the system as a whole.
Software should be tested more like hardware, with

 Built-in self testing: such that each unit can be tested independently
 Internal diagnostics: diagnostics for program units should be defined.
 Test harness

The emphasis is on built in testability of the program units from the very beginning
where each piece should be tested thoroughly before trying to wire them together.

Unit Testing Principles
 In unit testing, developers test their own code units (modules, classes, etc.) during

implementation.
 Normal and boundary inputs against expected results are tested.
 Thus unit testing is a great way to test an API.

Quantitative Benefits
 Repeatable: Unit test cases can be repeated to verify that no unintended side

effects have occurred due to some modification in the code.
 Bounded: Narrow focus simplifies finding and fixing defects.
 Cheaper: Find and fix defects early

Qualitative Benefits
 Assessment-oriented: Writing the unit test forces us to deal with design issues -

cohesion, coupling.
 Confidence-building: We know what works at an early stage. Also easier to

change when it’s easy to retest.

Testing against the contract (Example)
When we write unit tests we want to write test cases that ensure a given unit honors its
contract. This will tell us whether the code meets the contract and whether the contract
means what we think the unit is supposed to do in the program.

Contract for square root routine

result = squareRoot(argument);
assert (abs (result * result – argument) < epsilon);

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

208

The above contract tells us what to test:
 Pass in a negative argument and ensure that it is rejected
 Pass in an argument of zero to ensure that it is accepted (this is a boundary value)
 Pass in values between zero and the maximum expressible argument and verify

that the difference between the square of the result and the original argument is
less than some value epsilon.

When you design a module or even a single routine, you should design both its contract
and the code to test that contract. By designing code to pass a test that fulfill its contract,
you might consider boundary conditions and other issues that you wouldn't consider
otherwise. The best way to fix errors is to avoid them in the first place. By building the
tests before you implement the code you get to try out the interface before you commit to
it.

Unit Testing Tips
Unit test should be conveniently located

 For small projects you can imbed the unit test for a module in the module itself
 For larger projects you should keep the tests in the package directory or a /test

subdirectory of the package
By making the code accessible to developers you provide them with:

 Examples of how to use all the functionality of your module
 A means to build regression tests to validate any future changes to the code

You can use the main routine with conditional compilation to run your unit tests.
11.12 Defect removal efficiency
Is the ability to remove defects from the application. We shall further elaborate this idea
with the help of the above-mentioned table.

The above table depicts data that was published after analyzing 1500 projects. In these
projects, four different types of quality assurance mechanisms were employed. It is
evident from this table that testing alone can only remove 53% of defects. However,
testing and quality assurance mechanisms combine yield up to 65% efficiency. Whereas,
if we combine code inspection and testing together, results are up to 75%. Similarly,
design inspections and testing yield up to 80%. Moreover, combining design inspections,
quality assurance and testing results are up to 95%. If all four techniques are combined,
results are up to 99.9%.

Design Inspection
Code Inspection
Quality Assurance
Testing
Worst 30% 37% 50% 55% 65% 75% 77% 85% 95%
Median 40% 53% 65% 70% 80% 87% 90% 97% 99%
Best 50% 60% 75% 80% 87% 93% 95% 99% 99.9%

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

209

Inspection and chaotic zone

In this diagram, a chaotic zone has been defined. In fact, if defects are not discovered and
fixed at the appropriate stage, then at the testing and maintenance phases, these defects
are piled up. Therefore, a chaotic zone is formed for the testing and the development
teams as the number of defects which are piled up, destabilize the application and it
becomes extremely hard to fix all these defects as some of these bugs may involve
changes in requirements and design. At testing or the maintenance phases, fixing a defect
in requirements or design becomes extremely expensive, as underlying code will have to
be changed as well.
If we combine the results of the above two diagrams, it is evident that testing alone does
not suffice. We need to employ inspection techniques and combine them with testing to
increase the effectiveness of defect removal efficiency.

11.13 Defect origination
In inspections the emphasis is on early detection and fixing of defects from the program.
Following are the points in a development life cycle where defects enter into the
program.

 Requirements
 Design
 Coding
 User documentation
 Testing itself can cause defects due to bad fixes
 Change requests at the maintenance or initial usage time

Chaotic
Zone

Defect
Origination

Defect
Detection

Requirement Design Coding Documentatio
n

Testing
Maintenance

Requirement Design Coding Documentatio
n

Testing
Maintenance

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

210

It is important to identify defects and fix them as near to their point of origination as
possible.

Lecture No. 41

11.14 Inspection versus Testing

Inspections and testing are complementary and not opposing verification techniques.
Both should be used during the verification and validation process. Inspections can check
conformance with a specification but not conformance with the customer’s real
requirements. Inspections cannot check non-functional characteristics such as
performance, usability, etc. Inspection does not require execution of program and they
maybe used before implementation. Many different defects may be discovered in a single
inspection. In testing, one defect may mask another so several executions are required.
For inspections, checklists are prepared that contain information regarding defects. Reuse
domain and programming knowledge of the viewers likely to help in preparing these
checklists. Inspections involve people examining the source representation with the aim
of discovering anomalies and defects. Inspections may be applied to any representation of
the system (requirements, design, test data, etc.) Thus inspections are a very effective
technique for discovering errors in a software program.

Inspection pre-conditions

A precise specification must be available before inspections. Team members must be
familiar with the organization standards. In addition to it, syntactically correct code must
be available to the inspectors. Inspectors should prepare a checklist that can help them
during the inspection process.

Inspection checklists.

Checklist of common errors in a program should be developed and used to drive the
inspection process. These error checklists are programming language dependent such that
the inspector has to analyze major constructs of the programming language and develop
checklists to verify code that is written using these checklists. For example, in a language
of weak type checking, one can expect a number of peculiarities in code that should be
verified. So the corresponding checklist can be larger. Other example of programming
language dependant defects are defects in variable initialization, constant naming, loop
termination, array bounds, etc.

Inspection Checklist
Following is an example of an inspection checklist.

Exception
management
faults

 Have all possible error conditions been taken into account?

Fault Class  Inspection Check

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

211

Data faults  Are all program variables initialized before their values are used?
 Have all constants been named?
 Should the lower bound of arrays be 0, 1, or something else?
 Should the upper bound of arrays be size or size -1?
 If character strings are used, is a delimiter explicitly assigned?

Control faults  For each conditional statement, is the condition correct?
 Is each loop certain to terminate?
 Are compound statements correctly bracketed?
 In case statements, are all possible cases accounted for?

Input/Output
faults

 Are all input variables used?
 Are all output variables assigned a value before they are output?

Interface faults  Do all function and procedure calls have correct number of parameters?
 Do formal and actual parameters types match?
 Are the parameters in right order?
 If components access shared memory, do they have the same model of

shared memory structure?
Storage
management
faults

 If a linked structure is modified, have all links been correctly assigned?
 If dynamic storage is used, has space been allocated correctly?
 Is space explicitly de-allocated after it is no longer required?

In the checklist mentioned above, a number of fault classes have been specified and their
corresponding inspection checks are described in the column at the right side. This type
of checklist helps an inspector to look for specific defects in the program. These
inspection checks are the outcomes of experience that the inspector has gained out of
developing or testing similar programs.

11.15 Static analyzers
Static analyzers are software tools for source text processing. They parse the program text
and try to discover potentially erroneous conditions and bring these to the attention of the
verification and validation team. These tools are very effective as an aid to inspections.
But these are supplement to but not a replacement for inspections.

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

212

Checklist for static analysis

Data faults  variable used before initialization
 variable declared but never used
 variables assigned twice but never used between assignments
 possible array bound violations
 undeclared variables

Control faults  unreachable code
 unconditional branches into loops

Input/Output faults  variable output twice with no intervening assignment
Storage Management
fault

 unassigned pointers
 pointer arithmetic

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

213

Lecture No. 42

Debugging
12.1 Debugging
As Benjamin Franklin said, “in this world, nothing is certain but death and taxes.” If you
are in the software development business, however, you can amend that statement.
Nothing in life is certain except death, taxes, and software bugs. If you cryogenically
freeze yourself, you can delay death indefinitely. If you move to a country with no
income tax, you can avoid paying taxes by not buying anything. If you develop software,
however, no remedy known to mankind can save you from the horror of software bugs.

What is a Bug?

We call them by many names: software defects, software bugs, software problems, and
even software “features.” Whatever you want to call them, they are things the software
does that it is not supposed to do (or, alternatively, something the software doesn’t do
that it is supposed to). Software bugs range from program crashes to returning incorrect
information to having garbled displays.

12.2 A Brief History of Debugging

It would appear that as long as there have been computers, there have been computer
bugs. However, this is not exactly true. Even though the earliest known computer
programs contained errors, they were not, at that time, referred to as “bugs.” It took a
lady named Admiral Grace Hopper to actually coin the term “bug.”
After graduating from Vassar in 1928, she went to Yale to receive her master’s degree in
mathematics. After graduating from Yale, she worked at the university as a mathematics
professor. Leaving Yale in 1943, with the onset of World War II, Mrs. Hopper decided to
work for the Navy. Mrs. Hopper’s first assignment was under Commander Howard Aiken
at Howard University, working at the Bureau of Ordinance Computation. She was a
programmer on the Mark II, the world’s first automatically sequenced digital computer.
The Mark II was used to determine shooting angles for the big guns in varying weather
conditions during wartime.
It was during her term with the Mark II that Hopper was credited with coining the term
“bug” for a computer problem. The first “bug” was actually a moth, which flew through
an open window and into one of the Mark II’s relays. At that time, physical relays were
used in computers, unlike digital components we use today. The moth shorted out across
two contacts, temporarily shutting down the system. The moth would later be removed
(de-bugged?) and pasted into the logbook of the project. From that point on, if her team
was not producing numbers or working on the code, they claimed to be “debugging” the
system.
From that auspicious beginning, computer debugging developed into something of a hit-
or-miss procedure for quite a few years. Early debugging efforts mostly centered around
either data dumps of the system or used output devices, such as printers and display
lights, to indicate when an error occurred. Programmers would then step through the code
line by line until they could determine the location of the problem. The next step in the

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

214

evolution of debugging came with the advent of command-line debuggers. These simple
programs were an amazing step forward for the programmers. Although difficult to use,
even at the time, these programs represented the first real attempt to turn debugging from
a hit-or-miss proposition into a reproducible process.
Once the debugger became a part of the programmer’s arsenal, the software world began
to consider other ways that programs could be more easily debugged. Software projects
starting getting bigger, and the same techniques that worked well for small projects no
longer worked when the program reached a certain size.

Importance of Debugging

As we mentioned earlier in this course, one of the prime objectives of software
engineering is to develop cost effective software applications. According to a survey,
when a software application is in the maintenance phase, 20% of its lifecycle cost is
attributed towards the defects which are found in the software application after
installation. Please bear in mind that the maintenance is the phase in which 2/3rd of the
overall software cost incurs. Therefore, 20% of the 2/3rd cost is again a huge cost and we
need to understand why this much cost and effort is incurred. In fact, when a software
application is installed and being used, any peculiarity in it can cost a lot of direct and
indirect damages to the organization. A system downtime is the period in which
tremendous pressure is on developers end to fix the problem and make the system
running again. In these moments, every second costs hugs losses to the organization and
it becomes vital to find out the bug in the software application and fix it. Debugging
techniques are the only mechanism to reach at the code that is malfunctioning. In the
following subsection, we shall discuss an incident that took place in 1990 and see how
much loss the company had to suffer due to a mere bug in the software application.

12.4 Problem at AT&T

In the telecommunications industry, loss of service is known as an outage. For most of us,
when as outage occurs, we lose our telephone service; we cannot make calls and we
cannot receive calls. Outages are accepted and expected hazards in the industry.
On January 15. 1990, AT&T had a US wide telephone system outage that lasted for nine
hours. The cause was due to a program error in the software that was meant to make the
system more efficient. Eight years later, on April 13, 1998, AT&T suffered another
massive failure in its frame-relay network, which affected ATM machines, credit card
transactions and other business data services. This failure lasted 26 hours. Again, the bug
was introduced during a software upgrade.

Description of the Problem
The code snippet that caused the outage is illustrated as follows

1. do {
2. . . .
3. switch (expression) {
4. case 0: {
5. if (some_condition) {

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

215

6. . . .
7. break;
8. } else {
9. . . .
10. }
11. . . .
12. break;
13. }
14. . . .
15. }
16. . . .
17. } while (some_other_condition);

In this case the break statement at line 7 was the culprit. As implemented, if the
logical_test on line 5 was successful, the program should have proceeded to line 6 to
execute those statements. When the program stepped to line 7, the break statement caused
the program to exit the “switch” block between line 3 and line 15, and proceeded to
execute the codes in line 16. However, this path of execution was not the intention of the
programmer. The programmer intended the break statement in line 7 to break the if-then
clause; so, after the program executed line 7, it was supposed to continue execution in
line 11.

AT&T statement about the Problem
“We believe that the software design, development, and testing processes we use are
based on solid, quality foundations. All future releases of software will continue to be
religiously tested. We will use the experience we've gained through this problem to
further improve our procedures.”

We do not believe we can fault AT&T’s software development process for the 1990
outage, and we have no reason to believe that AT&T did not rigorously test its software
update. In hindsight, it is easy to say that if the developers had only tested the software,
they would have seen the bug. Or that if they had performed a code inspection, they
would have found the defect. Code inspection might have helped in this case. However,
the only way the code inspection could have uncovered this bug is if another engineer
saw this particular line of code and asked the original programmer if that was his or her
intension. The only reason that the code reviewers might have asked this question is if
they were familiar with the specifications for this particular code block.

12.5Art and Science of Debugging

Debugging is taken as an art but in fact it is a scientific process. As people learn about
different defect types and come across situations in which they have to debug the code,
they develop certain heuristics. Next time they come across a similar situation, they apply
those heuristics and solve the problem in lesser time and with a lesser effort. While
discussing the debugging process we discuss the phenomenon of “you miss the obvious”.
When a person writes a code, he develops certain impression about that code. One can
term this impression as a personal bias that the developer builds towards his creation the

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

216

“code” and when he has to check this code, he can potentially miss out obvious mistakes
due to this impression or bias. Therefore, it is strongly recommended that in order to
reach to a defect in the code, one needs “another pair of eyes”. That is, start discovering
the defect by applying your own heuristics and if you could reach to the problem, fine,
otherwise ask a companion to help you in this process. We shall further elaborate this
idea based on the following example.

Program at Bulletin Board Example
Following piece of code was once placed on a bulletin board making an invitation to
people to discover the problem in this code. Please look at this code and discover the
problem

1. while (i =0; i < 10; i++) {
2. cout << i << newl;
3. }

Well if you could not guess it by now, the problem lies with the syntax of the while loop.
This is so obvious that almost everyone forgot to ponder upon when placed on the
bulletin board of a university. The loop is “while” but the syntax used is a “for” loop.

In order to reach such defects, one needs a scientific approach to check and verify the
code methodically. Based on this discussion, we are now in a position to introduce a few
classes of bugs to the reader. This is not an exhaustive list since there could be a number
of other classes of bugs as well but the following classes will help the reader know about
some well known bugs that we usually find in the code.

Lecture No. 43

12.6 Bug Classes

Memory and resource leak
A memory leak bug is one in which memory is somehow allocated from either the
operating system or an internal memory "pool", but never deallocated when the memory
is finished being used.

Symptoms
 System slowdowns
 Crashes that occur "randomly" over a long period of time

Example 1
Let’s take a look at a simple memory leak error that can occur trivially in a C program.
This type of code is found in hundreds of programs across the programming spectrum. It
illustrates the simplest possible case of a memory leak, which is when memory is
allocated and not deallocated in all cases. This particular form of the bug is the most
frustrating because the memory is usually deallocated, but not always

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

217

char *buffer = new char[kMaxBufferSize+1];
memset(buffer,0,kMaxBufferSize+1);

// Do some stuff to fill and work with the character buffer

if (IsError(nCondition)) // Did we get an error in the processing piece?
{
 Message(("An error occured.
 Skipping final stage"));
 return FailureCode;
}

// Final stage of code

// Free up all allocated memory

delete buffer;
return okCode;

Note that in many cases, this code works perfectly. If no error occurs in the processing
stage (which is the norm) the memory is freed up properly. If, however, the processing
stage encounters an error, the memory is not freed up and a leak occurs.

Example 2
The following code snippet from some old C++ code contains a slightly more insidious
bug. It illustrates the point well.

Class Foo
{
 private:
 int nStringLength;
 char *sString;
 public:
 Foo()
 {
 nStringLength = 20; //Default
 sString = new
 char[nStringLength + 1];
 }
 ~Foo()
 {
 delete sString;
 }
 void SetString(const char
 *inString)
 {

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

218

 sString = new char
 [strlen(inString+1)];
 if(inString == NULL)
 return;
 strncpy(sString, inString,
 strlen(inString));
 nStringLength =
 strlen(inString)+1;
 }
};

Let’s discuss what happens. In most cases, the Foo object is created and nothing bad
happens. If, however, you call the SetString method, all bets are off. The previously
allocated string is overwritten by the new allocation, and the old allocated memory goes
nowhere. We have an instant memory leak. Worse, we can do this multiple times if we
accidentally call the method with a NULL string because it first allocates the block, and
then checks to see if the input string was correct. Don’t do things like this. If you see an
allocation in a class, check to see if the string can be allocated before it gets to that point.

Logical Errors
A logical error occurs when the code is syntactically correct but does not do what you
expect it to do.

Symptoms
 The code is misbehaving in a way that isn't easily explained.
 The program doesn't crash, but the flow of the program takes odd branches

through the code.
 Results are the opposite of what is expected.
 Output looks strange, but has no obvious symptoms of corruption.

Example
// Make sure that the input is valid. For this value, valid ranges are 1-10 and 15-20

if((input >= 1 && input <= 10) &&
 (input >= 15 && input <= 20))
 {
 // Do something for valid case
 }
else
 {
 // Do something for invalid case
 }
In order for the code to enter the valid case, the number must be between 1 and 10 and be
between 15 and 20. If a number is between 1 and 10, how can it possibly be between 15
and 20 as well? Seems unlikely, doesn’t it? This is a typical logical error.

Coding errors

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

219

A coding error is a simple problem in writing the code. IT can be a failure to check error
returns, a failure to check for certain valid conditions, or a failure to take into account
other parts of the system. Yet another form of a coding error is incorrect parameter
passing and invalid return type coercion.

Symptoms
 Unexpected errors in black box testing.
 The errors that unexpectedly occur are usually caused by coding errors.
 Compiler warnings.
 Coding errors are usually caused by lack of attention to details.

Example
In the following example, a function accepts an input integer and converts it into a string
that contains that integer in its word representation.

void convertToString(int InInteger,
 char* OutString, int* OutLength)
{
 switch(InInteger){
 case 1: OutString = "One";OutLength = 3;
 break;
 case 2: OutString = "Two";OutLength = 3;
 break;
 case 3: OutString = "Three";OutLength = 5;
 break;
 case 4: OutString = "Four";OutLength = 4;
 break;
 case 5: OutString = "Five";OutLength = 4;
 break;
 case 6: OutString = "Six";OutLength = 3;
 break;
 case 7: OutString = "Seven";OutLength = 5;
 break;
 case 8: OutString = "Eight";OutLength = 5;
 break;
 case 9: OutString = "Nine";OutLength = 4;
 break;

 }
}

There are a few things to notice in the preceding code. The ConvertToString function
does not handle all cases of inputs, which becomes very obvious you pass a zero value.
Worse, the function does not initialize the output variables, leaving them at whatever they
happened to be when they came into the function. This isn’t a problem for the output
string, necessarily, but it will become a serious issue for the output length.

Memory over-runs

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

220

a memory overrun occurs when you use memory that does not belong to you. This can be
caused by overstepping an array boundary or by copying a string that is too big for the
block of memory it is defined to hold. Memory overruns were once extremely common in
the programming world because of the inability to tell what the actual size of something
really was.

Symptoms
 Program crashes quite regularly after a given routine is called, that routine should

be examined for a possible overrun condition.
 If the routine in question does not appear to have any such problem the most

likely cause is that another routine, called in the prior sequence, has already
trashed variables or memory blocks.

 Checking the trace log of the called routines leading up to one with the problem
will often show up the error.

Example
This particular example shows not only a memory overrun, but also how most
programmers “fix” problems in an application. The ZeroArray function steps all over the
array boundaries by initializing 100 separate entries. The problem is that that particular
array only has 50 slots available in its allocation. What happens at that point is that the
function goes past the end of the array and starts to walk on things beyond its control.

const kMaxEntries = 50;
int gArray[kMaxEntries];
char szDummyBuffer[256];
int nState = 10;

int ZeroArray (int *pArray)
{
 for (inti=0;i<100;++i)
 pArray[i] = 0;
}

Loop Errors
 Loop errors break down into several different subtypes.
 They occur around a loop construct in a program.
 Infinite loops, off-by-one loops, and improperly exited loops.

Symptoms
 If your program simply locks up, repeatedly displays the same data over and over,

or infinitely displays the same message box, you should immediately suspect an
infinite loop error.

 Off-by-one loop errors are quite often seen in processes that perform calculations.
 If a hand calculation shows that the total or final sum is incorrect by the last data

point, you can quickly surmise that an off-by-one loop error is to blame.
 Likewise, if you were using graphics software and saw all of the points on the

screen, but the last two were unconnected, you would suspect an off-by-one error.

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

221

 Watching for a process that terminates unexpectedly when it should have
continued.

Example
bool doneFlag;
doneFlag = false;
while(!doneFlag){
 ...
 if(impossibleCondition)
 doneFlag = true;
}

The preceding code fragment contains an indirect looping error such that the loop will
continue until the impossibleCondition becomes true which is impossible to happen.

int anArray[50];
int i;
i = 50;
while(i >= 0){
 anArray[i] = 0;
 i = i - 1;
}

In this example, the programmer was trying to be smart. He worked his way backward
though the array, assuming that this way there would be no chance of an error. Of course,
if you examine the loop, you will find that it performed 51 times. There are only fifty
elements in the array. This will certainly lead to a problem later on in the program, if it
doesn’t first trigger an immediate error from the system.

int nIndex = 0;
for(int i=0; i<kMaxIterations; ++i)
{
 while (nIndex < 20)
 {
 ComputeSomething(i*20 + nIndex);
 nIndex ++;
 }
}

The final situation is an improper exit condition for a loop. This is most easily illustrated
using a set of nested loops. In the above example, we are trying to compute something
within the inner loop for some number of iterations. The code appears to do what we said
it should do. It computes whatever it is we are computing in the inner loop for each
iteration of the outer loop, 20 times. The problem, however, is that the exit condition
simply says that nIndex should be less than 20. The first time through the outer loop, this
variable will become 21, and the inner loop will exit. This is correct, and exactly the way

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

222

you would expect this to happen. The problem, however, is that the next time through the
loop, the inner loop will not be executed at all.

Pointer errors
 A pointer error is any case where something is being used as an indirect pointer to

another item.
 Uninitialized pointers: These are pointers that are used to point at something, but

we fail to ever assign them something to point at.
 Deleted pointers, which continue to be used.
 An Invalid pointer is something that is pointing to a valid block of memory, but

that memory does not contain the data you expect it to.

Symptoms
 The program usually crashes or behaves in an unpredictable and baffling way.
 You will generally observe stack corruptions, failure to allocate memory, and odd

changing of variable values.
 Changing a single line of code can change where the problem occurs.
 If the problem "goes away" when you place a print statement or new variable into

the code that you suspect contains the problem.

Example
Let’s take a look at one of the most common forms of the pointer error, using a pointer
after it has been deleted. As you can see by the following example, it is not always clear
when you are doing this incorrectly:

void cleanup_function(char *ptr)
{
 SaveToDisk(ptr);
 delete ptr;
}

int func()
{
 char *s = new char[80];
 cleanup_function(s);
 delete s;
}
In this example, the programmer meant to be neat and tidy. He probably wrote the code
originally to allocate the pointer at the top of this function, and then by habit put in a
deallocation at the bottom of the function. This is, after all, good programming practice to
avoid memory leaks. The problem is introduced with th3e cleanup_function routine. This
function was probably written at a later time by another developer and might have been
used to ensure that all allocated pointers were stored to the permanent drive and then
freed up to avoid any possible leaks. In fact, the code in question comes from a set of
functions that was reused from a memory pool system that saved its data to disk before
destroying the pointer, so that another pointer could be retrieved from the persistent pool.

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

223

The problem is, the reuse did not take into account the existing system. This problem is
common when reusing only parts of a system.
When the second delete occurs at the bottom of func(), the results are unpredictable. At
best, the delete function recognizes that this pointer has been deleted already and doesn’t
do anything. At worst, memory is corrupted and you are left with a memory crash
somewhat later in the program, which will be very difficult to find and fix.

Boolean bugs
Boolean bugs occur because the mathematical precision of Boolean algebra has virtually
nothing to do with equivalent English words.
When we say "and", we really mean the boolean "or" and vice versa.

Symptoms
 When the program does exactly the opposite of what you expect it to. For

example, you might have thought you needed to select only one entry from a list
in order to proceed. Instead, the program will not continue until you select more
than one. Worse, it keeps telling you to select only one value.

 For true/false problems, you will usually see some sort of debug output indicating
an error in a function, only to see the calling function proceed as though the
problem had not occurred.

Examples
The following code contains a simple example of a function that returns a counter-
intuitive Boolean value and shows how that value leads to problems in the rest of the
application code. This case performs an action and indicates to the user whether or not
the action succeeded.

int DoSomeAction(int InputNum)
{
 if(InputNum < 1 || InputNum > 10)
 DoSomeAction = 0;
 else
 {
 PerformTheAction(InputNum);
 DoSomeAction = NumberOfAction + 1;
 NumberOfAction = NumberOfAction + 1;
 }
 return DoSomeAction;
}

After looking at the function, ask yourself this – What is the return value in the case of
success? What would it be in the case of failure? How would you know this by simply
glancing at the function declaration?

int Value;
int Ret;

Value = 11;

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

224

Ret = DoSomeAction(Value);
if(Ret)
 cout <<Error in DoSomeAction<<;

If you were debugging this application, you might start out by wondering why it didn’t
work. Further investigation would show that the error statement is never triggered in spite
of the fact that the routine did, in fact, encounter an error.. Why did this happen? It
happened because the routine didn’t return nonzero value for failure, it returned nonzero
for success. This Boolean value was not intuitive given the condition of the function and
led to a poor assumption by the programmer who wrote the code that used it.

Lecture No. 44

12.7 Holistic approach
Holistic means

 Emphasizing the importance of the whole and the interdependence of its parts.
 Concerned with wholes rather than analysis or separation into parts

What this meant is that a holistic approach focuses on the entire system rather than
whatever piece appears to be broken. Holistic medicine, for example, concerns itself with
the state of the body as a whole, not the disease that is currently attacking it. Similarly,
programmers and debuggers must understand that you cannot treat the symptoms of a
problem, you must focus on the application system as a whole.
Now that you understand what holistic means, how do you apply holistic concepts to
debugging the software programs and procedures? Let’s start by thinking about what
emphasizing the whole over the individual pieces means in debugging. When you are
debugging an application, you often simply look at the problem reported by the user and
how you can make that problem go away.

As a simple example, consider the case where the program mysteriously crashes at a
particular point in the code each and every time the program is run. The point at which
the code crashes makes no sense at all. For example, in C++, you might have a member
function of a class that reads:

void SetX(int X)
{
 mX = X;
}

The program always crashes on the line that assigns X to the member variable mX(mX =
X). Looking at this code snippet, we see very few valid ways in which the program could
be encountering a problem at this point. Oddly, we might discover that inserting a
message statement makes the problem stop occurring when the indicated steps are
followed for reproducing the problem. Is the problem fixed?

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

225

Most experienced programmers, managers, or debuggers would say that the problem is
not fixed, although few could tell you exactly why that is the case. The fact is, in this
case, we are directly treating the symptoms (the program crashing) rather than looking
into the actual problem and ignoring the overall problem is endemic in our industry.

12.8 The debugging process

In normal circumstances, you will have a user description of the problem. This
description might have been given to you directly by the user, or it might have been
gathered by a customer support person or other no technical person, In any event, this
data has to be considered suspiciously until you can get a first hand description of what
really happened. First hand accounts of the problem are always useful, so be sure to write
down exactly what you are told. That way, you can compare several accounts of the same
problem and look for similarities. Consider, for example, the following accounts of a
reported bug in a system:

1. "I started by trying to setup a Favorites list. I first went to the home page. Then, I
selected Favorites from the menu on the right. I scrolled down to the third entry and
pressed Enter on the keyboard. Then I moved to the fourth entry on the submenu and
clicked it with the mouse. Finally, I entered my name as Irving, clicked on OK, and
the program crashed."

2. "I went to the programming menu and selected the New menu option. I then clicked
on the Create Object menu entry and entered the name HouseObject for the object
name field. Then I clicked OK, and the program crashed."

3. "I selected the New Project menu option, and then clicked on the icon that looks like
a Gear. I entered the name Rudolph for the project name, and then clicked OK. The
program crashed."

 After all, they appear to relate to three different sections of the program.
Most people, when reporting bugs, focus on what they think was the important
step in the process.

 Filter out the unimportant information and see what each case really has in
common.
First, each user clicked on the OK button to finalize the process, and the program
crashed.

 It might seem likely, therefore, that the program OK handler contains a fatal flaw.
 A bit of experimentation will show whether this is the case or not.
 When we examine the statements of the witnesses, we notice that each was

working with a menu.
 We can see that each person used both the keyboard and the mouse to select from

the menus before clicking the OK button.

"I selected Favorites from the menu on the right. I scrolled down to the third entry and
pressed Enter on the keyboard. Then I moved to the fourth entry on the submenu and

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

226

clicked it with the mouse."

"... selected the New menu option. I then clicked on the Create Object menu entry ..."

"I selected the New Project menu option, and then clicked on the icon that looks ..."

 We can infer, therefore, that the user in this case used both the keyboard and
mouse.
The next logical place to look is in the menu handler to see whether it deals with
mouse and keyboard entries differently.

 The final clue is in the third entry, where the user did not select anything from the
menu with the mouse, but instead clicked on an icon.

 While looking at the code, I would try to see what happens when the program
deals with a combination of keyboard and menu entry.

 It is likely, given the user discussion, that you will find the root of the problem in
this area.

 After finding such a common bug, it is likely that the fix will repair a whole lot of
problems at once

 This is a debugger's dream.
Good clues, Easy Bugs

Get A Stack Trace
In the debugging process a stack trace is a very useful tool.
Following stack trace information may help in debugging process.

 Source line numbers in stack trace is the single, most useful piece of debugging
information.

 After that, values of arguments are important
o Are the values improbable (zero, very large, negative, character strings

with non-alphabetic characters?
 Debuggers can be used to display values of local or global variables.

o These give additional information about what went wrong.

Non-reproducible bugs
 Bugs that won't "stand still" (almost random) are the most difficult to deal with.
 Randomness itself, however, is information.
 Are all variables initialized? (random data in variables could affect output).
 Does bug disappeared when debugging code is inserted? Memory allocation

(malloc) problems are probably a culprit.
 Is the crash site far away from anything that could be wrong?
 Check for dangling pointers.

Example

char *msg(int n, char *s)
{
 char buf[100];

CS504-Software Engineering – I VU

 © Copyright Virtual University of Pakistan

227

 sprintf(buf, "error %d: %s\n",
 n, s);
 return buf;
}
...
p = msg(20, "Output values");
...
q = msg(30, "Input values");
...
printf("%s\n",p);

Lecture No. 45

Summary

