
IMPLEMENTATION OF A 3D EDUCATIONAL
GAME FOR INDUSTRIAL ENGINEERS

By

David Bengoa-Terán

A project report submitted in partial fulfillment of the requirements for the degree of

MASTER OF ENGINEERING

In
COMPUTER ENGINEERING

UNIVERSITY OF PUERTO RICO

MAYAGÜEZ CAMPUS
2013

Approved by:

José Borges, PhD
Member, Graduate Committee

Date

Cristina Pomales-García, PhD
Member, Graduate Committee

Date

Agustín Rullán, PhD
Co-President, Graduate Committee

Date

Bienvenido Vélez, PhD
President, Graduate Committee

Date

María de los A. Irizarry, PhD
Graduate Studies Representative

Date

Pedro Rivera, PhD
Chairperson of the Department

Date

ii

ABSTRACT

Today’s “Gamer Generation” has led to a rapid growth of the game industry, with a

vast amount of money spent on commercial entertainment games, instead of educational

games. One reason is because it is difficult to implement a game that accurately represents

the concepts that one tries to teach while holding the students’ attention.

There has been some research into the development of games which aim to teach

science concepts, but not Industrial Engineering (IE) concepts. Therefore in order to

address this issue, the purpose of this project is to develop a computer game, which is

focused on exposing freshman IE students to fundamental concepts applicable to

manufacturing systems and improve their problem-solving skills in complex unstructured

problems. Besides being an educational game it can also be called a “serious video game”,

since it is classified as a “strategy video game”. The player has to carefully plan and

manage resources in order to win. The project scope will be a single-player video game for

personal computers, with multi-platform support.

This game simulates daily activities in a factory in which users must make many

decisions with the goal of fulfilling as many orders on time and as efficiently as possible.

Some of the decisions that the user can control include: hiring or firing workers, buying or

selling machines and equipment, increasing or decreasing storage space, setting unit loads

for each transport activity, among others.

iii

In order to perform this project implementation, Java has been used as the

programming language, and the development has been done with Object Oriented

programming. In addition, two synchronized databases engines have been used: SQLite as

the local database and MySQL as the remote database. Finally, JMonkey has been used as

the game engine; SimPack has been used as the discrete event engine; and some algorithm

of Artificial Intelligence has been applied to determine the shortest way between two points

in the factory.

iv

RESUMEN

Actualmente la generación Gamer ha permitido un rápido crecimiento en la industria

del juego, enfocándose en el desarrollo de juegos de entretenimiento, en vez de juegos

educativos. Esto se debe a la complejidad que existe al desarrollar un juego educativo, ya

que se debe conseguir que el jugador aprenda los conceptos que transmite el juego y a la

vez, mantenga la atención de él.

Existen distintas investigaciones con el objetivo de implementar juegos educativos

que enseñan diferentes materias pero muy poco se ha logrado para la Ingeniería Industrial.

Es por esta razón que el presente proyecto pretende implementar un juego enfocado a los

estudiantes recién ingresados de Ingeniería Industrial. Este juego además de ser educativo,

también está clasificado como “juego de estrategia” porque el jugador estará planificando y

administrando cuidadosamente los recursos con la finalidad de obtener la victoria. El

producto obtenido es un juego para computadoras, con soporte multiplataforma, y para un

solo jugador.

El juego consiste en la simulación de las actividades diarias de una fábrica, en donde

el usuario toma decisiones con la finalidad de cumplir con el máximo pedidos que van

llegando en el transcurso del juego. Entre las distintas decisiones se puede resaltar:

contratar o despedir trabajadores, comprar o vender maquinarias y equipos de transporte,

alquilar una mayor o menor cantidad de espacio en los almacenes y variar la cantidad de

piezas o productos que se van a transportar entre las estaciones de trabajo.

v

Para llevar a cabo la implementación de este proyecto, se utilizó Java como lenguaje

de programación, desarrollándose bajo una programación orientada a objetos. Además, se

utilizó dos motores de base de datos que se encuentran sincronizados entre sí, uno local y

otro remoto, SQLite y MySQL respectivamente. Finalmente, se está utilizando JMonkey

como motor de juego, SimPack como generador de eventos discretos, y aplicando un

algoritmo de Inteligencia Artificial para encontrar el camino más corto entre dos puntos en

la fábrica.

vi

To my grandma, parents, brothers and newborn niece.

Thanks for being there for me

vii

ACKNOWLEDGEMENTS

First at all, I would like to thank to my advisor, Dr. Bienvenido Vélez, for his

continue support and recommendation in every step of the game development. Also, I

would like to thank my graduate committee, Dr. Agustín Rullán who trusted me from the

beginning, gave me the opportunity to be part of his main research; Dr. Cristina Pomales-

García who guided me in different stages of the game development, and promoted this

achievement in every available event; and Dr. José Borges who provided me with his

knowledge in the design patterns area and object oriented programming.

Thanks to my family, although they are far from me, I know that I always had their

unconditional support. Also, I appreciate having met such good friends here in Puerto Rico,

especially my Ecuadorian friends Ana Negrete and Marcelino Guachambala. Ana, I want to

thank you for your help to complete this project report.

I want to thank to Yadrianna A., Christian V. and the tester team for their help the

testing phase has been completed successfully. Also, Xiomara A. and Irving D. for their

contribution helped in the game development.

Finally, I would like to acknowledge the support from the National Science

Foundation, Award No. 0835990.

viii

TABLE OF CONTENTS
ABSTRACT .. ii

RESUMEN .. iv

ACKNOWLEDGEMENTS .. vii

TABLES LIST .. xii

FIGURES LIST ... xiii

1. INTRODUCTION .. 1

1.1. Justification ... 1

1.2. Problem Statement .. 2

1.3. Our Approach.. 3

1.4. Contributions... 4

1.5. Project Objectives ... 4

1.5.1. General Objective ... 5

1.5.2. Specific Objectives ... 5

1.6. Outline... 6

2. RELATED WORK .. 7

2.1. How to Build Serious Games .. 7

2.2. Games for Science and Engineering Education .. 7

2.3. Pandora-Box project ... 8

2.4. Serious computer games as instructional technology 8

3. OVERVIEW OF THE GAMING EXPERIENCE ... 10

3.1. Introduction ... 10

3.2. Educational Concepts.. 10

3.2.1. Activities .. 10

3.2.2. Process Flowchart .. 11

3.2.3. Costs ... 12

3.2.4. Human Resources Management ... 14

3.2.5. Inventory Control ... 15

3.2.6. Production Operations .. 16

3.2.7. Probability Distributions and Timing ... 17

3.3. Initial Settings ... 18

3.4. Game Controls and Strategies ... 18

ix

3.5. Game Goals ... 19

4. DEVELOPMENT PLATFORM .. 20

4.1. Java SE 6 ... 20

4.2. JMonkeyEngine 3.0 SDK RC2 ... 20

4.3. Nifty GUI 1.3.2 ... 21

4.4. MySQL Database .. 21

4.5. SQLite Database ... 21

4.6. SimPack Discrete Event Engine ... 22

4.7. Artificial Intelligence – A* search algorithm ... 22

5. SOFTWARE REQUIREMENT SPECIFICATIONS .. 23

5.1. Introduction ... 23

5.1.1. Purpose ... 23

5.1.2. Project Scope .. 23

5.2. External Interface Requirements ... 24

5.2.1. User Interfaces .. 24

5.2.2. Hardware Interfaces ... 26

5.2.3. Software Interfaces ... 27

5.2.4. Communications Interface ... 28

5.3. Software Features.. 29

5.4. Design Constraints .. 32

5.5. Database Requirements ... 32

5.6. Software System Attributes .. 33

5.6.1. Reliability ... 33

5.6.2. Availability ... 33

5.6.3. Security ... 34

5.6.4. Maintainability ... 34

5.6.5. Portability ... 35

5.6.6. Performance ... 35

6. SOFTWARE DESIGN DESCRIPTION .. 36

6.1. System Architectural Design .. 36

6.1.1. System Overview ... 36

6.1.2. Presentation Layer .. 36

x

6.1.3. Business Layer ... 37

6.1.4. Data Access Layer .. 39

6.2. Game Activities based on Petri Nets Models ... 39

6.3. Package Diagram and Design Patterns ... 44

6.3.1. Package Diagram .. 44

6.3.2. Strategy Pattern .. 47

6.3.3. Façade Pattern .. 49

6.3.4. Singleton Pattern .. 51

6.4. Database Design.. 51

6.4.1. MySQL and SQLite Design ... 52

6.4.2. Databases Synchronization Process ... 54

6.5. Detailed Description of Components .. 55

6.5.1. Java Threads ... 55

6.5.2. A* Algorithm ... 56

6.5.3. SimPack .. 57

6.5.4. Nifty GUI ... 59

6.6. User Interface Design ... 59

6.6.1. Login and Main Menu .. 60

6.6.2. Main Information Panels .. 60

6.6.3. Control Screens .. 61

6.6.4. Activities Screens ... 64

6.6.5. Utilities Screens .. 66

6.6.6. Additional Screen ... 68

7. SOFTWARE INTEGRATION AND TESTING ... 69

7.1. System Overview .. 69

7.2. Test Plan.. 69

7.2.1. Features to be tested ... 70

7.2.2. Features not to be tested ... 70

7.2.3. Testing Tools and Environment ... 71

8. CONCLUSIONS AND FUTURE WORK .. 72

8.1. Conclusions ... 72

8.2. Future Works .. 72

xi

8.2.1. Graphics Designs and Animation Improvements 73

8.2.2. More Advance Game Levels .. 73

8.2.3. Allow User to Create and Share New Levels ... 73

8.2.4. Game Migration to Android Devices ... 74

REFERENCES ... 75

APPENDIX A ... 78

APPENDIX B ... 90

GLOSSARY OF TERMS ... 92

xii

TABLES LIST

Tables Page

Table 3-1: Requirements for each kind of activity ... 10

Table 3-2: Equations to obtain different times in each activity 17

Table 6-1: Package diagram detailed .. 45

Table 7-1: Features not tested ... 71

xiii

FIGURES LIST

Figures Page

Figure 3-1: Example of game process flowchart .. 12

Figure 3-2: Game overall – summary of expenditures and incomes 14

Figure 3-3: Hire/fire workers using general view (left) or specific view (right) 15

Figure 3-4: Raw Material Storage – three different parts ... 16

Figure 3-5: Assembly process ... 16

Figure 6-1: Overview of the game architecture .. 36

Figure 6-2: UML Sequence diagram – start a new game ... 38

Figure 6-3: Purchase activity: Petri Net (top) and Java state machine (bottom) 40

Figure 6-4: Operation activity: Petri Net (top) and Java state machine (bottom) 41

Figure 6-5: Transport activity: Petri Net (left) and Java state machine (right) 42

Figure 6-6: Management of activities in Java ... 43

Figure 6-7: Overall game – Package diagram ... 44

Figure 6-8: Strategy pattern – Class diagram.. 48

Figure 6-9: Façade pattern – Class diagram.. 50

Figure 6-10: Singleton pattern – Class diagram ... 51

Figure 6-11: Entity relationship diagram .. 53

Figure 6-12: Synchronization process between databases .. 55

Figure 6-13: A* pathfinding example in the game environment 57

Figure 6-15: GUI controls in the game environment .. 59

Figure 6-16: Login menu (left) and main menu (right) .. 60

Figure 6-17: Order, game log and overall screens merged in one screen 61

Figure 6-18: Allocate storage screen .. 61

Figure 6-19: Assign workers screen ... 62

Figure 6-20: Resources screen .. 63

Figure 6-21: Unit load screen.. 63

Figure 6-22: Operation activity screen.. 64

Figure 6-23: Purchase activity screen ... 65

Figure 6-24: Transport activity screen .. 65

xiv

Figure 6-25: Different stations: no-storage (left) and storage (right) 66

Figure 6-26: Machine screen .. 67

Figure 6-27: Operator screen .. 68

Figure 6-28: Game setup screen.. 68

1

1. INTRODUCTION

1.1. Justification

Today's “Gamer Generation”, so called because they grew up playing video games

and spends hundreds and even thousands of hours during their most formative years

playing video games [1]. This has led to a rapid growth of the game industry, with a vast

amount of money spent on commercial entertainment games, instead of educational games.

However, playing video games may have both positive and negative effects on cognition

and behavior. As Douglas Gentile, an associate professor of psychology at Iowa State

University [2] said “if content is chosen wisely, video games can actually enhance some

skills.”

Concerning educational games, it is difficult to implement a game that accurately

represents the concepts that one tries to teach while holding the students’ attention. There

has been some research into the development of games which aim to teach science

concepts, but not Industrial Engineering (IE) concepts. Therefore in order to address this

issue, professor Agustín Rullán and collaborators proposed a research project entitled “Can

gaming provide enough context to improve knowledge integration and retention in

Engineering freshmen”, which is sponsored by the National Science Foundation with

Award No. 0835990 and is described as a learning tool which “...will be assessed in terms

of improved retention, interest, and motivation of freshman IE students, as well as support

of learning in context, improved student understanding of core concepts, and improved

problem-solving skills in complex unstructured problems.”

2

Once requirements were analyzed and the game rules were established, the purpose

of this project is to create an educational video game based on a factory, to be played

mainly by IE students and other people interested in learning IE concepts management.

This game is classified as a “serious game” because the main purpose is to help freshman

students learn about IE concepts. It could also be classified as a “strategy video game”

because the player will carefully plan and manage resources with the objective of fulfilling

orders on time and as efficiently as possible. This game is a simulation of the daily

activities in a factory where decisions must be made to obtain desired results. Some of the

decisions that the user can control include: number of active workers, machines,

workstations, buckets, among others. The project scope will allow playing on personal

computers, with different levels of difficulty. Although the graphic design of workers,

machines and equipment has been simple, the objective is to help students learn various IE

concepts.

1.2. Problem Statement

In order to achieve that freshmen industrial engineering (IE) students learn

fundamental IE concepts applicable to manufacturing systems and improve problem-

solving skills in complex unstructured problems, a serious educational game needs to be

developed.

Previous research has demonstrated that science can be taught through games,

however, industrial engineering is a field that is yet to be studied regarding the possibility

of using games as a teaching tool.

3

To address this weakness, this project will focus on developing, deploying and

assessing a video game based on a factory that aimed at freshmen students. This game will

have features that will allow the student to discover and visualize several IE fundamental

concepts, to acquire a notion about the types of decisions and actions that are required to

run a manufacturing environment, to develop critical thinking skills and problem-solving

skills, to acquire a vocabulary of IE terms, and to practice IE concepts to strengthen their

technical background.

1.3. Our Approach

The original NSF proposal established the main activities of the game, which

included: operation, transport, store, and purchase. These operations were described in

detail using Petri Nets [3]. Our game is based on those activities but with some

improvements. The new types of activities are: operation, transport, storage, purchase and

shipping. Each level has multiple instances of these activities depending on the resources

available. Furthermore, the set of activities, stations, storages, workers, machines,

equipment, etc., are stored in two databases (remote and local) for each phase of the game.

Therefore, when the administrator changes some data in the remote database, the players’

instances will update their local databases. The player is able to change some features,

demanding a cost for each one. For example: hiring or firing workers, buying or selling

machines and equipment, allocating slots per storage station, among others. In addition,

each purchase activity involves a cost, and the user’s objective is to fulfill orders on time,

as profitable as possible and avoiding bankruptcy.

4

Each activity requires a set of skills and each operator has a skill set. If an operator

wants to perform the activity, this operator must have the required skills. Furthermore, the

machines or equipment used can also break down after a certain time, so the game is

considering a probabilistic time of repair. However, the user can avoid this break time,

carrying out a preventive maintenance with its respective fee. Finally, normal, uniform and

exponential distributions are used in order to simulate failures and repairs as realistically as

possible.

1.4. Contributions

The game development lets us identify three (3) different approaches as

contributions. First at all, the game is the principal tool of the main research, which aims to

support learning of IE core concepts and improve problem-solving skills by freshman IE

students. Once the game development is completed, then the main research can continue

with its next process step.

Another contribution is developing a game that serves as a teaching tool for the

Industrial Engineering area, given the lack of research through games. We expect it will

encourage the development of other educational activities based on gaming.

Finally from a technical approach , we have successfully accomplished the use and

integration of a game engine, an artificial intelligence algorithm, two different databases

engines, a discrete event engine, and many more, with Java as a the language programming.

1.5. Project Objectives

5

1.5.1. General Objective

The main objective of this project is to develop a video game simulating a factory

that will allow freshman students (players) to learn basic concepts of IE such as costs,

human resources management, inventory control, production, planning, among others.

1.5.2. Specific Objectives

o A single-player video game made of different levels. Early levels will be easier than

later levels.

o Each phase will have an initial configuration with a set of activities and a process

flowchart, where the player has to figure out the changes in resource allocation to

complete the arriving orders on time. Furthermore, these activities will have a given

but changeable priority, and are dispatched for execution in priority order. All the

information required for each phase will be stored in a database.

o Each phase will have available a set of workers, machines, equipment and storage

areas. The game will allow the users to hire or fire workers, and buy or sell

machines or equipment, to improve savings or reduce expenditures.

o The objective for each phase will be to dispatch a given set of orders with maximal

profitability. Each order will be described by the type of part, quantity, and due

date. Orders arrive as the game progresses.

o Users will be able to change some controls while the game is running, such as the

“unit load” for each transport activity, the “reorder point”, “order quantity” and

“supplier” for the purchase activity. Also, the player will have more options in the

“settings section.”

6

o It is important that the game allows to “play” and “pause” an ongoing game, and

change the “time factor” between 1/16x, 1/8x, 1/4x, 1/2x, 1x, 2x, 4x, and 8x, so that

users have time to analyze their decisions.

o Finally, the game will allow the user to know the overall state of the game

including: the available cash, i.e. initial capital minus expenditures plus incomes;

total expenditures, e.g. overhead cost per hour, workers’ salaries, machines cost per

hour, storage cost per hour, among others; total incomes, e.g. sales of machines,

equipment and parts; and total profit, i.e. incomes minus expenditures.

1.6. Outline

The next chapters of this document are organized as follows: Chapter 2 describes

related works in the area of educational games. Chapter 3 describes the most important

information about the factory features. Chapter 4 describes technologies used in this

application. Chapter 5 relates the software requirement specifications. Chapter 6 provides

detailed information about software design description, based in [5]. Chapter 7 software

integration and testing, and is based in [6], [7] and [8]. Finally, Chapter 8 presents

conclusions and recommendations.

7

2. RELATED WORK

This section presents related works about educational games regarding the immune

system and training of crisis managers. Also, other studies about the use of games as a

teaching tool in the school, university or related.

2.1. How to Build Serious Games

The computer game “Immune Attack” was created by a team of computer

programmers as a serious science-based game [17]. This game combined a realistic 3D

depiction of biological structure and function of the human body with educational

technologies to teach immunology to high school and college freshmen. As part of this

experience, the developers describe the process of creating a serious game as a challenging

endeavor, as it has to satisfy experts and novices while addressing deeply held pedagogical

assumptions, distinct expert viewpoints, integration of gameplay and learning content,

among others.

2.2. Games for Science and Engineering Education

The United States has a relatively small percentage of engineering graduates

compared to other developing nations, a statistic that is attributed to the perception that

science and engineering is a boring course of study. The author suggests that this

perception can be changed if computer programs are used to teach science and engineering

topics, from kindergarten through grade twelve, encouraging more students to continue

college studies in these fields [18].

8

2.3. Pandora-Box project

Crisis management prevents emergency situations from turning into disasters and

training plays an important role in preparing the crisis manager. In order to achieve this, the

Pandora project [19] assists crisis managers’ training using innovative technology. In

particular, it is creating a tool that collaborates with traditional training methods to generate

and to improve decision-making skills for trainees. It shows three important aspects: (a) a

novel use of timeline based planning as the core element in a dynamic training environment

for crisis managers; (b) a continuous loop of planning, execution, and plan adaptation is

created to support personalized training; (c) a trainer is provided with a set of

functionalities that allow him/her to maintain and adapt a “lesson plan” as the basis for the

interaction between him/her and the involved trainees.

2.4. Serious computer games as instructional technology

The potential value of serious computer games for learning seems high, but there is

still some degree of resistance to the use of games in a classroom. A reasonable way to

convince teachers to use games as a teaching tool is through pedagogy, connecting

elements of existing game designs with accepted learning and instructional theories. At the

Faculty of Education of the University of Ljubljana, the serious game TimeMesh [20] has

been developed in the framework of the Comenius programme. The game is intended to be

used for learning history in primary and secondary schools, but at the same time students

learn about different cultures and social relations in Europe in different historical periods.

Research results show increasing students’ motivation and their interest for topics covered

by the game. On the other hand, some teachers do not completely agree to use serious

9

games because games can be too time-consuming for use in a classroom; however, they are

willing to present the games as a home-based learning activity.

10

3. OVERVIEW OF THE GAMING EXPERIENCE

3.1. Introduction

The main objective of this chapter is to explain the game development from a

different technical approach. This chapter denotes different IE concepts that the user should

learn or notice during the game, initial settings for each game level, controls available for

the user, and game goals. It outlines the different activities during the game, the meaning of

the process flowchart, different costs involved, human resource management, inventory

control in the factory, production operations, and the use of probability distributions.

3.2. Educational Concepts

3.2.1. Activities

The game summarizes the daily activities of the factory in four (4) main activities:

purchase, transport, operation, and shipping. These activities are executed constantly during

the game, and depending on the activities the requirements vary, as shown in Table 3-1.

The number for each kind of activity varies depending on the level. Also, early levels will

be easier than later levels which have more activities.

Table 3-1: Requirements for each kind of activity

Activity Validation Process – Step by Step

Purchase 1. ����������	�
 + ��
���	���
�� ≤ ������	
��
2. ����
	�������	�
 + ��
���	���
�� + ����������
�
 ≤

����
	������
�

3. ����������
�
 × ������
�� ≤ ��������	��

Transport 1. Available qualified operator & available transport equipment
2. �������
	�������	�
 + ��
���	���
�� + ������	�	�� ≤

11

�������
	������
�

3. ��
�
������
	�������	�
 − ��
���	�� 	�� ≥ ������	�	��
4. Available slot in initial/end station, if required

Operation 1. Available qualified operator & available machine
2. ����
	�������	�
 + ��
���	���
�� + ������	��	���� ≤

����
	������
�

3. ������"�
��� × �����
�
��"�
��� ≤ ����������	�
 −

������	�� 	��

Shipping 1. Next order required
2. ����
	�������	�
 ≥ ����������
�
��"�
���

The game allows players to change parameters for some activities in order to get a

desired result. Purchase activity allows changing the reorder point, order quantity, and

supplier. Transport activity allows changing the amount of parts to be transported, or unit

load. Other activities will not allow changing any parameter, for example the operation

activity will produce the same amount of parts that have been set, and the shipping activity

will ship the number of parts required in the waiting order. In the operation activity the

player can determine the number of machines available as well as number of operators and

their respective skills.

3.2.2. Process Flowchart

Figure 3-1 represents the set of activities that occur in the factory using a process

flow symbols. It allows the player to get a general understanding of the game, in particular

the flow of materials. Each game level has a particular process flowchart. For example

Figure 3-1 shows the hardest level with multiple transport activities and assembly

processes.

12

Figure 3-1: Example of game process flowchart

The squares represent stations; triangles denote the different type of storages (i.e. raw

material, work in process, and finished goods); and circles represent the assembly and

cutting process. In the Figure 3-1, three different parts are moved from the receiving station

to the raw material storage. Then two parts are moved to the first assembly station, to

create one intermediate part that is stored in the work in process storage. After that, this

part and the part three are moved to the second assembly station to create the final product

that is stored in the finished goods storage. Finally, once an order is received, this product

is moved to the dispatch station.

3.2.3. Costs

This game manages different costs in order to mimic the realities in a factory. Figure

3-2 shows the summary of expenditures and incomes, and the costs include:

o Storage stations. It includes raw material, work in process and finished goods

station. Each of them has a limited number of slots, depending of their station size.

13

The player will choose the number of available slots and will pay a fee per hour

even if they are not in use.

o Workers. Once the game starts, the player will choose the number of workers to hire

and will also be able to fire some or all of them. Both processes will incur in costs,

meaning that the player will spend money hiring and firing workers. Workers will

be paid an hourly salary which will depend on the worker’s skills, including:

Material Handler, Machine Operator, and Versatile.

o Machine and equipment. The game allows the player to buy and sell the available

machines and equipment as the player wishes. Also, a cost per hour will be charged

for machine and equipment usage, and after a certain time these will require

preventive maintenance, otherwise they will break down. This maintenance implies

another cost, so the player will choose between paying this cost, continue working,

or wait a few minutes for automatic repair. Moreover, the machine or equipment

will have a depreciation cost that will impact the sell price.

o Supplier. The game will provide the player a list of suppliers to be selected to start

the process, the first step is to purchase raw material, as shown in Figure 3-1 above.

The cost of the raw material will depend on the selected supplier and the order

quantity. Each supplier’s catalog for a specific part provides three (3) different

prices based on time to receive the order.

o Overhead. This is an average cost per hour that includes an ongoing expense of

operating the factory, for example: gas, electricity, taxes, telephone bills, other

wages, etc.

14

o Part. Product sale is the last process and does not qualify as a cost, as shown in

Figure 3-2 below. It is important because without this step the factory will go

bankrupt as soon as the costs are higher than the initial capital.

Figure 3-2: Game overall – summary of expenditures and incomes

3.2.4. Human Resources Management

The management of the workers is an important factor in the game. Hiring or firing

workers increases or decreases the production of finished goods, and therefore the

fulfillment of the arriving orders. In addition, hiring workers involves choosing a role type

for each worker. As we mentioned above, there are three (3) types: Material Handler, who

uses equipment (i.e. hand trolleys) to transport parts and products in the factory; operators,

who work directly with production; and versatile workers that can perform both roles. Also,

it is important for the player to control how many workers of each type to have since it has

15

a direct impact on productivity and increases costs. Figure 3-3 shows the two ways to hire

and fire workers, and deciding the worker’s role.

Figure 3-3: Hire/fire workers using general view (left) or specific view (right)

3.2.5. Inventory Control

The ease of use of the game allows the player to know at every moment the exact

amount of inventory for each part or product. This game feature is available to the player as

a general inventory for the part, which can be found in the Part window, or an inventory for

a specific station, or it can be found in the receiving dock located in the receiving zone. In

addition, the inventory in a specific storage station (i.e. raw material, work in process,

finished goods) is different from the receiving dock, because the storage stations are

controlled through slots available and is not limited by part types, as shown in Figure 3-4,

as opposed to the receiving dock which limits capacity and type of part.

However, the effective management of inventory control requires an adequate

knowledge of inventories for different types of activities. For example, the reorder point

and order quantity for purchase activity, the unit load for transport activity, the amount of

16

required parts for the operation activity, and the amount of finished goods to fulfill the

orders for shipping activity.

Figure 3-4: Raw Material Storage – three different parts

3.2.6. Production Operations

Currently the game supports two kinds of operations: cutting and assembly. Both

processes (example shown in Figure 3-5) can be found in different game levels. Each

process produces as many parts as it is specified in the operation activity and requires an

adequate machine and a skilled operator.

Figure 3-5: Assembly process

17

3.2.7. Probability Distributions and Timing

The use of statistical distributions is important in the game development process, in

order to achieve results that are as realistic as possible. Uniform and exponential

distributions are used as part of some elements in the factory, e.g. machine time between

failures, equipment repair times, and order shipments. Moreover, these statistical

distributions allow calculating different equations in order to obtain a specific time to

execute some steps of many activities. Finally, other equations only require constant values

to get different times for each execution. Table 3-2 shows the detailed equations.

Table 3-2: Equations to obtain different times in each activity

Activity Sub-Activity Equation

Operation Machine time Time = quantity × factorMachine × timeToCompleteTask

Transport

Time between failures Time = Exponential(x)

Repair time Time = Uniform(x, y)

Pick up / Placement
time

Time = quantity × timeToCompleteTask × factorOperator

Operation
and

Transport
Walk alone Time = (

distance

speed
) × factorOperator

Transport
Walk loaded/unloaded

with equipment
Time = (

distance

speed
) × factorOperator × factorEquipment

Shipping Time to ship the order Time = Uniform(x, y)

speed = constant

timeToCompleteTask = constant

factorOperator = Uniform(x, y)

factorEquipment = Uniform(x, y)

factorMachine = Uniform(x, y)

18

3.3. Initial Settings

The initial settings process is comprised of six (6) different steps, where the first four

are required and the last two are optional, as shown in Figure 6-23. During the setting

process, the user must know that some steps incur in costs, for example step 1, 2, and 4. In

the first step, the user will hire some workers, and will buy some machines and equipment.

Also, he/she will need to choose the role for each worker. The second step allows allocating

a quantity of slots for storages. In case the slots are filled, then the game will not be able to

store more parts until some slots are released. The third step indicates the quantity of parts

or products to be moved from one station to another. The fourth step denotes the reorder

point and the order quantity of raw material to the next purchase. Optional steps are not

necessary to be setup, given that the game can be played without them. Fifth step allows the

user to assign one or more workers to one or more activities. The last step allows modifying

the execution priority for each type of activity.

Once the player has started a new game, he or she will need to setup some features of

the game to start playing it. This game release provides two (2) ways to adjust settings: (1)

the “default setup” button or automatic configuration, as shown in Figure 6-23, lets novice

players to focus on the game instead of setup the features; (2) the manual configuration

allows expert users or user with some game knowledge to setup the game features as they

desire.

3.4. Game Controls and Strategies

The game provides a set of controls that allow users to manage the game in different

ways, and to obtain many results as possible. Some controls are implemented to execute

19

several tasks at same time but giving fewer details about each task. Others give more

information and execute each task independently. Figure 3-3 shows the “Resource” screen

at the left, which allows the user to hire/fire workers and buy/sell machines and

equipments, and the “Operator” screen at the right, which shows detailed information of the

operator and allows hiring or firing this current operator.

In accordance with the wide range of options to control the game, the user can

implement different strategies to obtain diverse results. One strategy can be to use the least

amount of workers, machine and equipment. This strategy may not generate much profit

but could win the game. However, another strategy could be fulfilling every order as

possible, regardless the quantity of workers hired, and the amount of machines and

equipment purchased. Therefore, the more the user plays, the more strategies the user could

implement.

3.5. Game Goals

The main goal to win the game is to fulfill as many orders as are required without

going to bankruptcy, where the quantity of orders varies depending of the game level.

Another goal is to earn the most profit as possible with the least usage of workers,

machines and equipment. A final objective but no less important is learning Industrial

Engineering concepts through play, given that, it is an educational game.

20

4. DEVELOPMENT PLATFORM

The project aims to provide a video game that is extensible, portable, and efficient. In

order to achieve these goals, open-source software was used for the game engine, discrete

event engine, and database.

4.1. Java SE 6

Java [9] is used as the programming language due to the features and facilities it

provides to support Object-Oriented programming. Portability is one of the features in Java

which does not require that the program be developed using Windows OS. In order to take

advantage of this feature, the game as a product is able to be executed in every platform,

e.g. Mac OS, Linux and Windows.

4.2. JMonkeyEngine 3.0 SDK RC2

This is the current version of the game engine. It was rewritten from the ground up to

accommodate modern standards in game development. This new version is only 2 years

old, but it reuses the best pieces of code and best practice from many generations of Java

game programming [10].

However, currently there are many game engines, including commercial and

freeware. For example, Unity [24] has both versions and allows creating game for web,

mobile and game consoles. UDK (Unreal Development Kit) [25] is freeware. GameStart

2D/3D [26] is freeware, allows creating multi-platform games, and is based on C++.

Cocos2d [27] is an open source 2D game framework and multi-platform. However, before

starting the game development, it is important to know something about each game engine

21

available, given that each one has pros and cons. Therefore, once you know the category of

your game, then you should decide the game engine.

4.3. Nifty GUI 1.3.2

This Java library creates interactive user interfaces and is well integrated into many

existing rendering systems (JME3, JME2, LWJGL, JOGL, Slick2D and even Java2D). The

actual GUI is stored in XML files or it can be created directly from Java. Java is used to

respond to events generated by the GUI and to modify the GUI to reflect changes in the

state of your application. Additionally there is a large set of effects available that can be

used to modify the appearance of the GUI. [11]

4.4. MySQL Database

MySQL is the world’s most popular open source relational database management

system (RDBMS) that runs as a server providing multi-user access to a number of

databases. It provides high scalability and performance. There is also a free MySQL

Workbench (GUI Tool) available, that can be used to efficiently design, manage, and

document database schemata [12]. This database is used in the game as the remote

database.

4.5. SQLite Database

SQLite is a software library that implements a self-contained, serverless, zero-

configuration, transactional SQL database engine. SQLite is the most widely deployed SQL

database engine in the world [13]. In the project, this database is used as the local database,

22

which means each game instance will contain SQLite database as an extra file but it will act

as an engine.

4.6. SimPack Discrete Event Engine

SimPack is a collection of routines and programs for computer simulation developed

by Dr. Paul Fishwick [15] from the Department of Computer and Information Science and

Engineering at the University of Florida. The source of SimPack is Open Source under a

Gnu Public License (GPL). It has a version in C++ but also a later version in Java which is

the one that was finally adopted for the game. The decision was made because it would be

easier to develop the code using the selected game engine, JMonkey, which provided the

opportunity to be OS platform-independent since it is written in Java.

4.7. Artificial Intelligence – A* search algorithm

It is a computer algorithm that is widely used in pathfinding and graph traversal, the

process of plotting an efficiently traversable path between points, called nodes. Noted for

its performance and accuracy, it is widely used. A* uses a best-first search and finds a least-

cost path from a given initial node to one goal node (out of one or more possible goals)

[16]. In the project, it is used to find the path (set of pixels) of the transport activity, from

one station to another.

23

5. SOFTWARE REQUIREMENT SPECIFICATIONS

5.1. Introduction

5.1.1. Purpose

The purpose of this chapter is to give a complete description of the Factory Game. It

will explain the features, interfaces, performance and development requirements of this

game. The chapter structure shown below is based on the IEEE standards [4]. It is

supplemented by the software design description and the software integration and testing

chapters.

5.1.2. Project Scope

This game is a cross-platform application that allows a single player to improve

his/her understanding of some IE core concepts and other problem-solving skills in

complex unstructured problems. This software release is available only for personal and

desktop computers. It provides the user automatic updates, managed through different

synchronized databases, i.e. a remote database in a server and a local database for each

user. The game has been built with a 3D game engine and contains several controls (i.e.

game variables) to achieve different results. In general, it focuses on providing an easy to

play, and a realistic playing experience.

24

5.2. External Interface Requirements

5.2.1. User Interfaces

5.2.1.1. Login and Create New User

The login process is the introductory screen in the game to further use other features.

In case the player does not have a “registered user”, he/she must go to the screen “create a

new user”. This screen should be filled thoroughly and requires some user information,

which is essential to know the player`s profile. Also, the password is created automatically

and sent to the email registered. This last process will also validate the authenticity of the

email. Screens are implemented using Nifty GUI controls.

5.2.1.2. Main Menu

The game provides the user a list of principal options en el main menu, e.g. new

game, profile, options, user manual, credits, switch user and quit game. Once the player

clicks on “new game”, it will change to a new screen showing the list of games available,

with appropriate information about the status of each game level, scores, number of

attempts, description and others. The “profile” button will redirect to another screen,

allowing to the player to change his or her user profile. The “options” button will open a

new screen, where it allows the player to adjust setting to their specifications: “sound”

option will allow enabling and disabling the sound; “controls” option will allow changing

the hot keys established; finally “screen” option will enable the user to change the screen

size resolution and full-screen resolution. The “user manual” button will open a web

browser, loading the user manual with definitions of the game and examples to learn it. The

25

“credits” button will show information about the team who developed the game, also

referencing to the NSF support. These screens are implemented using Nifty GUI controls.

5.2.1.3. Game Environment and Controls

The main user interface is the game environment, given that it will show the factory

with 3D graphics design, moving every graphic element in accordance to the game

activities, and with several controls, allowing the player to take control of the game. This

development is integrated with the Nifty GUI and the JMonkey engine which means that

the user will interact with both. For example: the actions taken by Nifty GUI controls are

reflected in the game environment (i.e. JMonkey engine). The 3D graphic design shown in

the game environment was designed by the art team, headed by Professor Felix A. Zapata.

Game development is not only a set of visual objects and controls; it requires a set of

sounds that should be played in different moments during the game. For example, the game

will have a background music that can be disabled; some activities like “processing a new

part” will have an assonantal sound according the factory machine used; equipment breaks

will have another sound, and so on. Most sounds used in the game have been found free on

the Internet, except of the background music, which was provided by the music team.

5.2.1.4. Pop-up Windows

The use of pop-ups in the game has been applied as shown below:

o Starting the game. Once the game starts it will show a pop-up that will synchronize the

game data between the remote and local databases.

26

o Login user. Once the user is logged into the game, it will show a pop-up that will

synchronize the user data between both databases.

o Quit game. When the user clicks on the “quit game” button, the game will show a

warning before the game closes.

o Win/Lost game. Even if, the user wins or lost a game, it will show a pop-up with the

game statistics and some options like: “restart”, “next game”, “quit game”, among

others.

5.2.2. Hardware Interfaces

5.2.2.1. Multi-platforms

This game version is a desktop application, designed to be played correctly in

different platforms, for example:

o Windows: version XP, 7 and 8.

o Mac OS: version Lion and Mountain Lion

o Linux: different distributions, e.g. Ubuntu, Mint, and Fedora.

5.2.2.2. Graphic Library

The game development uses OpenGL library [14] to be able to show different

graphics animations and 3D designs, and also because it supports multi-platform API for

rendering 2D and 3D computer graphics, that is used to interact with a GPU, to achieve

hardware-accelerated rendering. Currently, the library is in the version 4.3 but in order to

run this game in computers with standard and old graphic cards, the game should use the

version 1.1.

27

5.2.2.3. Computer Devices

Playing this game requires a mouse and a keyboard. The mouse device will allow the

player to move in the game environment, click on several game objects, and click on

different menu buttons. The keyboard device enables the user mainly to two main

objectives: game login and for the use of hot keys to move the game camera. Other

computer devices are not allowed in this game.

5.2.3. Software Interfaces

5.2.3.1. Databases

The game uses two different relational databases for an appropriate management of

the game and user data. In the user machine, one game instance stores the gaming

application data and user data in a local database, using the SQLite relational database. The

connection with this database is done by a single connection string, using a singleton design

pattern [21] that aims to decrease the excessive use of memory. This connection must be

fully configurable, so it could be updated remotely.

Moreover MySQL database is installed in a server machine to collect user data and to

store the latest version of each gaming level. This database instance could be managed

through the MySQL Workbench 5.2 application or MySQL Command Line application by

the user administrator.

5.2.3.2. Main Libraries

Different libraries are used as part of game development. The discrete event machine

called SimPack is used to schedule all activities during the game. The Nifty GUI library

28

will allow the player to control the game through several graphical controls. The use of A*

algorithm [16], that manages an internal matrix modeling the game environment, provides

the game engine the path on route between any two points in the factory. This algorithm is

executed only when is necessary, given that it takes too many resources like memory RAM

and CPU clock cycles.

5.2.4. Communications Interface

5.2.4.1. Database Synchronization

The synchronization process between many SQLite database instances (i.e. client

side) and one MySQL instance (i.e. server side) will take different steps. First, it starts each

time the player executes the application, so the client side must have an access key (i.e. user

and password). Second, the server will have the firewall port access open but only will

allow secured and verified access. Third and finally, the access in the database must be

restricted and limited, allowing only the execution of some queries, e.g. select, update, and

insert statements; and modifying data of its current user.

5.2.4.2. Communication Protocols

The process of registering a new user will involve sending an e-mail with the new

password generated. In order to achieve that, SMTP will be used with previous settings

stored in an encrypted file located in the player machine. For future changes, it could be

updated through the database sync process or with a new game version.

29

The database synchronization process mentioned above will use the TCP/IP protocol

and default port number 3306, which are the common ones in MySQL database. Also, this

information will be stored in an encrypted file for each player machine.

5.3. Software Features

This stage in the software development life cycle has been a challenging work for the

team. The features have been adding, reducing, and changing constantly during this whole

process, given the lack of experience developing games but fortunately the software

specifications have been established, and these are:

o Synchronization process. This feature will be executed through different pop-ups as

mentioned in Section 4.2.1.4 (i.e. starting the game and login user). Also, once the user

finishes one game level, the game engine should trigger this sync

process as mentioned in Section 4.5. More details about the synchronization process,

can be found in Section 4.2.4.1.

o User Profile. A new user will be required to fill the registration screen as mentioned in

the Section 4.2.1.1. This screen contains significant fields in order to use this user

information for future studies. These fields will be: name, last name, gender, status (i.e.

undergraduate student, graduate student, corporate, among others), degree, country and

email. Once the new player completes it, he or she should receive a message with the

new password in the email account.

o Main Menu. This feature will be a screen that centralizes the different ways that a

player can move in the game. The “New Game” button should be the most valuable

30

option to the player. For more details about this menu and the game list could be found

in Section 4.2.1.2.

o Game Environment. This feature is the most notable graphically because the

environment is based on a factory, and each game level will be played in that

environment. Moreover, the factory should show every operator (i.e. material handler,

line operator, and versatile), every machine and equipment, and all the different parts

that are enrolled for each game level. Finally, every object contained in the environment

should be animated according to actions that the user is taken.

o GUI Controls. This set of controls allows the user to take the control of the game. It

means if the user sets up controls in some way, the game environment will show

graphics changes and statistical changes (i.e. affecting costs, fulfilling or missing

orders, among others). The list of the controls are:

• Play and pause button.

• Time slider. The control should increase and decrease the game speed.

• Clock for the game, and a timer for "next order due" and "next purchase".

• Game setup screen. Required configuration before starting the game

• Overall screen. It should show costs detailed.

• Order screen. It should show arriving orders with its details

• Game log screen. Every notable activity is shown in this screen

• List of main buttons:

� Control option

• Allocate storages screen. Can be used to allocate an amount of

slots available for each stock. It should entail in costs.

31

• Assign operators screen. Can be used to assign operators to one

or more activities, depending of the role required.

• Priority activities screen. Can be used to prioritize the sequence

of activities execution.

• Resources screen. Can be used to hire and fire operators, and to

choose the function for each one. Also, to buy and sell machines

and equipment.

• Unit load screen. Can be used to set the quantity of parts to be

moved during each transport activity.

� Activities option

• Purchase screen. Can be used to set the reorder point and order

quantity, and to choose the desired supplier.

• Operation screen. Can be used to change the quantity of parts to

assemble or process.

• Transport screen. Can be used to set the quantity of parts to

move during one transport activity.

� Utilities option

• Station screen. Only stations qualified as storages will allow

changing the quantity of storage slots available. In other type of

stations this screen should be read-only.

• Machine and Equipment screen. Can be used to buy, sell

machines, or to make preventive maintenances, which incurs in

additional costs. The screen also shows some critical information

32

such as percentage of depreciation, cost per hour, percentage of

availability, percentage of usage, among others.

• Operator screen. Can be used to hire and fire operators, and to

update the functions carried out by the operators.

• Part screen. This screen is read-only and shows critical

information about the part such as type of unit, current stock,

price for sale, and assembly parts required.

• Supplier screen. This screen is read-only and shows information

about the supplier and its catalogue of parts with different prices.

These prices are according to the quantity of items required by

the factory.

5.4. Design Constraints

In accordance that this is an educational game, and its target audience is Industrial

Engineering freshman students, the wording is essential in the design of user interfaces. For

example, labels and messages shown in different screens should use technical words.

For this current game version, the design of user interfaces will use the default style

that comes in the game engine. However, in a future release, the design should be

customized and the game should allow the user to set it up.

5.5. Database Requirements

The communication with the remote database must be done only per request, which

means: (1) open connection, (2) perform required query, and (3) close connection. It should

33

not keep logged with MySQL, and connections should be done only for synchronization

purposes.

In user machine, the connection with SQLite will be done at the following instances:

(1) when the player starts the application, it will load the list of game levels for the current

player. (2) When the player clicks on the button of “Start Game”, then the engine will

gather all data required for this game level. Finally (3) it will happen each time that the

game level finishes, winning or losing and the game engine should update the

corresponding user records.

5.6. Software System Attributes

5.6.1. Reliability

To ensure reliability in the game, the user data stored in the remote database must be

of real players. This is accomplished during the process of creating a new user, given that

the game will require an email, which will be validated through sending a message to this

email, attaching the new generated password by the game engine. Once the player receives

this password to his or her email account, he or she will be able to start playing.

Furthermore, the user account automatically should be activated the first time the user logs

in. On the other side, the game server will validate every few days that if some user account

has not been activated for some time, it should be dropped.

5.6.2. Availability

Once the player has downloaded and installed the game, the next step is to create a

new user account. This process will require an Internet connection because the software

34

should synchronize the user data provided to avoid duplicated user names. So the game

server should be available at all times. Otherwise, none new user will be allowed to play the

game.

Furthermore, other steps in the synchronization process will include game data and

user data synchronization. If the remote server is not available, it will not be able to get the

current user data, and users will not have new levels and/or updated levels.

5.6.3. Security

The security in the game was considered in different stages. When someone tries to

play, the game should require a username and password which should be registered in the

remote database. Therefore only registered users will be allowed playing, thus ensuring

validated access to the game.

Additionally, the user data gotten in the process of “creating a new user” and through

the game should be serialized and encrypted before sending to the remote database.

Therefore, the game assures protection data of every user. Furthermore, when some game

instance tries to access the remote database, it should be with a username and password

different than the current user keys, which should be provided in the game development

process.

5.6.4. Maintainability

Currently, this game version is the first release available to everybody, but

continuously it will have further versions with improvements done. For future releases, it

35

should be based on fixed bugs, provide better graphics objects (i.e. animations and design),

and improve game performance.

Moreover, on the server side, it is managed by a user administrator who will be in

charge of incorporating new game levels, updating current game levels, collecting

statistical data users, among others. Finally, this user should update the new installer of the

game where it is hosted.

5.6.5. Portability

In order to allow the game to be played in different platforms (i.e. Windows, Mac

OS, and Linux) it has been developed using the Java language programming. Java also

facilitates creating an installer for each platform.

5.6.6. Performance

Given that currently most of the new computers have powerful components, as

graphic cards, memories, and processors, game performance should not be a major issue.

However, there are still computers with old components that will not allow the game to run,

or difficulties may occur making the game run slower. The game should be continuously

improved to make the experience enjoyable, regardless of the hardware.

36

6. SOFTWARE DESIGN DESCRIPTION

6.1. System Architectural Design

6.1.1. System Overview

The development of the proposed game will follow the system architecture shown in

Figure 6-1. This architecture is comprised of four main tiers (layers) each having specific

functions. (1) The presentation layer; provides the graphical user interface (GUI). (2) The

business layer; which contains and controls the artificial intelligence algorithm, the discrete

event engine, input manager, sound engine, graphic engine, and game engine. (3) The data

access layer; provides simplified access to data stored in persistent storage. (4) The data

source; stores the set of tables and routines, the game logic and the user data.

Figure 6-1: Overview of the game architecture

6.1.2. Presentation Layer

This is the top layer in the architecture, and is the one the user will interact with. On

this layer the user will log into the application, select the game that will be played, and

37

begin playing the first levels of the game. Additionally, the user will be able to complete

the initial configuration of the game or choose a default configuration.

Representation layer uses the Nifty GUI library. This Java library provides a set of

tools to implement each visible element that the player will use (e.g. window, panel, text

field, label, dropdown, list and other controls.) Sometimes the controls available on this

library are not enough to give the user the flexibility desired. Since the library is open

source new tools can be incorporated to achieve an improved new experience.

The presentation layer also incorporates the graphic elements that make up the

gaming stage such as: world, workshop, stations, machines, equipment, parts, buckets,

operators and their associated animations. The presentation layer is mostly managed by the

JMonkey game engine [10].

6.1.3. Business Layer

The business layer is the most important one because it contains the core elements of

the game. It serves as the interface between the presentation layer and the data layer. The

presentation layer processes the user actions (mouse and/or keyboard events), and sends

these events to the game engine through the input manager. Depending on the action, the

game engine will call the data layer to carry out the corresponding process. For example,

Figure 6-2 depicts a UML sequence diagram [22] with the process required to start a new

game. The diagram includes the interactions between the different layers.

38

Figure 6-2: UML Sequence diagram – start a new game

In this layer we apply the “strategy design pattern” [21] in order to manage each type

of activity. This pattern allows us to achieve a maintainable, scalable and high performance

application. Additionally, an artificial intelligence algorithm called A* (A Star) [16] will be

used in order to find the shortest path between two geographical locations in the factory.

For instance, when a transport activity occurs, A* finds the path between the initial and

final stations to move the requested part.

The business layer will create as many threads as necessary to allow the presentation

layer to show a concurrent animation of being picked up and movements at parts around the

plant. Also, the business layer contains a discrete event engine called SimPack, which is

used to manage the events in the game. For example, (1) we use a periodic event managed

by SimPack to validate and execute all the available activities that are obtained from the

39

database; (2) when the game engine executes an activity, it schedules a future event in

SimPack queue [15], and it must finish in some specific time to release any resources

locked and make them available to other events.

6.1.4. Data Access Layer

This bottom layer serves as the middleware between the application and the database.

Whenever the application wants to run a new game or find out something about a user, it

calls this layer to access the database and retrieve the required information. The layer

applies the “façade design pattern,” [21] in order to simplify the complexity when other

classes try to obtain all the information stored in the database. The “singleton pattern” is

used when a class requires a large amount of memory and network to manage the

information of the database.

The game database will be completely designed and built in the MySQL database

engine. It will contain the game actors for each level, as well as the user data. When the

user completes a new phase, his or her profile is updated, so that the next time the game

runs it will start at the same point that the user left off.

6.2. Game Activities based on Petri Nets Models

Given all the different types of activities that can be executed in a real factory, we

have summarized them into 4 different activities in the game. These activity types are:

purchase, transport, operation, and shipping. These activities allow us to execute a complete

production cycle beginning with the purchasing and storage of raw materials, assembling

and storage the new product, and finally shipping the finished product.

40

At a conceptual level we have used Petri Net [28] to model these activities that will

be implemented in the game. Once we understood the operation of the activities, we created

a specific state machine for each activity which was then translated into Java code to be

incorporated in the game. Each step in the state machine represents a state in the Petri Net

model. For example, as shown in Figure 6-3, a purchase will be completed if and only if the

validation was successful.

Figure 6-3: Purchase activity: Petri Net (top) and Java state machine (bottom)

41

Figure 6-4: Operation activity: Petri Net (top) and Java state machine (bottom)

42

Figure 6-5: Transport activity: Petri Net (left) and Java state machine (right)

On the other hand, each game level has many different activities that have been

loaded from the database. Therefore, in order to manage them as efficiently as possible, we

developed the process of activity execution shown in Figure 6-6, which is carried out by the

game engine, the discrete event machine plus some additional classes.

43

1. Schedule recurrent event

Schedule events

Discrete Event Machine

Game Engine

Game Loop

2. Return recurrent event

ExecuteActivities

Manage Activities Class

3
.

E
xe

c
u

te
 r

e
c

u
rr

e
n

t
e

v
e

n
t

Activities List

Purchase

Transport

Operation

Shipping

4. Activities

Execution

Figure 6-6: Management of activities in Java

According to Figure 4 above, this process takes 4 steps to execute activities. First, the

game engine schedules a recurrent event in the discrete event machine. Second, once this

event finishes, the discrete event machine returns it to the game engine. Third, the engine

calls the method ExecuteActivities() in the ManageActivities class. Fourth, this method tries

to execute the current step in the state machine of each activity. For example: validate

requirements of a transport activity, or release resources of an operation activity. The same

activity can be executed many times simultaneously and independently, depending of the

availability of resources that it requires.

44

6.3. Package Diagram and Design Patterns

This section shows the package diagram of the project, including the dependencies

among packages and the main classes in each package. It also describes the three design

patterns which have been used in the development of the game.

6.3.1. Package Diagram

Figure 6-3 shows the relation between the principal packages in the game. These

packages have been organized as efficiently as possible by grouping together classes with

similar functionalities. Most packages have been developed by the author, except for

SimPack and A* Pathfinding, which have been adapted from the public domain with a few

customizations required for the game.

Figure 6-7: Overall game – Package diagram

Various design patterns have been applied in the game, in order to reduce the use of

excessive memory, which will be explained in upcoming sections. However, the Threads

45

package is used and instanced every time that a class is required, because these classes

control each independent graphic animation within a different thread.

The A* Pathfinding package is used each time the game engine needs a new path

between two different objects (e.g. an operator and machine, machine and station, an

operator and station, etc.) The SimPack package is instanced only once because it has to

manage all activities in process. The Strategy package manages all the different ongoing

activity in the current game level (e.g. purchase activities, transports manufacturing,

operations and shipments.) Finally, Nifty GUI package manages every screen and GUI

control available to the user. Table 6-1 shows the classes used from each package.

Table 6-1: Package diagram detailed

Package Classes

Gaming
GameEngine

OpeMaMovingTo

GameData

OperatorWalksTo

InputManager

TerrainMap

Threads
CloseGame

MachineAnimation

GameDataLoading

StationAnimation

UserDataLoading

UpdateSlotsStorage

Nifty GUI
InitialMenu

NewUserScreen

ForgotYourPassword

MainMenu

NewGameMenu

OptionsMenu

Nifty GUI Controls

ActivityControl

FlowChartControl

MachineControl

OverallControl

StationControl

SupplierControl

AssignOperator

GameLogControl

OperatorControl

PartControl

StorageCostControl

UnitLoadControl

CharactersControl

GameSetupControl

OrderControl

PriorityControl

StorageStationControl

A* Pathfinding
AStarHeuristic

PathFinder

AStarPathFinder

TileMap

Path

ClosestHeuristic

46

SimPack FutureEventList Token SimEvent

Strategy
PurchaseStrategy

TransportStrategy

ManageEvents

ShipStrategy

OperationStrategy

StateMachine

Data

D_Activity

D_Catalog

D_Operation

D_Part

D_Ship

D_Supplier

D_ToUpdate

SQLiteConn

D_AssenblyDetails

D_Game

D_Operator

D_Player

D_Skill

D_Terrain

D_Transport

SQLiteUtilities

D_Bucket

D_Machine

D_Order

D_Purchase

D_Station

D_TerrainReserved

MySqlConn

Entity

E_Activity

E_Catalog

E_Machine

E_Order

E_PlayerLog

E_Skill

E_Supplier

E_ToUpdate

E_AssemblyDetails

E_Event

E_Operation

E_Part

E_Purchase

E_Slot

E_Terrain

E_Transport

E_Bucket

E_Game

E_Operator

E_Player

E_Ship

E_Station

E_TerrainReserved

Utilities

Actions

GameCategory

GameTables

Messages

OrderStates

PasswordGenerator

Sounds

TypeActivity

Direction

GameSounds

GameType

ObjectState

Pair

SendEmail

StationType

TypeElements

Distributions

GameStatus

MessageType

OperatorCategory

Params

SlotStatus

Status

Utils

47

6.3.2. Strategy Pattern

The strategy design pattern is used in the game to control every activity during each

game level. The game manages four types of activities: purchase, operation, transport and

shipping. These are represented by corresponding classes, one type of activity for each

class (Figure 6-4). However, since the game engine selects an activity at runtime, these

activities should be encapsulated to make them interchangeable. The class called

ManageEvents controls a list of such activities by means at an interface called

EventStrategy.

48

Figure 6-8: Strategy pattern – Class diagram

The class called StateMachine, which is related to every activity class, provides a

configurable state machine for each activity, since each activity invokes a unique sequence

of steps to be completed. For instance: a purchase activity has three (3) states, i.e. validate,

49

execute and release. On the other hand, a transport activity has seven (7) states, i.e.

validate, operator walks to machine, operator and machine walk to initial station, operator

loads items into machine, operator and machine walk to final station, operator unloads

machine, and operator release machine.

6.3.3. Façade Pattern

A design pattern could be composed of many classes yet, what matters is these

classes are structured and how they work together to solve a problem. In a complex system

(i.e. many different classes with many functions), which requires performing a function, it

will need to call each class required. In order to avoid this, we use the façade design

pattern, which provides a simplified interface to a complex system.

In the game development, this pattern is applied in the data management lager, which

set its information from a relational database. This complex system is comprised of 38

classes located in two packages: entity and data. The GameData class provides a simple

interface to this information (Figure 6-5.) This class manages all references and variables

for each of the 38 classes, and provides some public methods (e.g. loadGamesByType(),

createGame(), manageGame(), etc.)

50

Figure 6-9: Façade pattern – Class diagram

51

6.3.4. Singleton Pattern

This design pattern is usually applied to avoid unnecessarily creating many instances

of a class. All other classes use a single instance of the class every time. The pattern

coordinates when different threads try to obtain information from this instance at the same

time, by making the main method “synchronized”. The GameData class holds a lot of

information and thus requires a lot of memory; so applying singleton pattern avoids

duplicating this data. Figure 6-6 below shows the relation between the GameData class and

the GameEngine class indicateing that it uses the singleton pattern.

The MySqlConn and SQLiteConn classes also use the singleton pattern, and are called

each time the game engine needs to communicate with either database.

Figure 6-10: Singleton pattern – Class diagram

6.4. Database Design

The database design changed continuously during game development. Initially, the

game only managed the MySQL engine as the remote database, storing all game and user

52

data. When a local user started a new game level the engine would have to download all

required data from the remote database. This process took substantial time, depending of

the available Internet bandwidth. As a result, SQLite was used as the local database cache

while MySQL remained as the remote database holding the main data.

On the other hand, the database design allowed us to add and update each game level

from the database. This means that we did not need to modify nor upgrade anything in the

game source code to incorporate new levels into the game. From the beginning of the game

development, the database has always maintained the game logic and user data. Therefore,

once the player starts a new game level, the game engine dynamically creates the virtual

reality in accordance to the information stored in the database. However, this advantage is

not so easy to perform, given that it has been designed under a relational database model.

So if we want to add or modify a game level, we must validate different constraints among

tables, primary and foreign keys of every record, and different table hierarchies.

6.4.1. MySQL and SQLite Design

6.4.1.1. Principal Tables

Figure 6-7 displays the Entity Relationship Model (ERM) diagram for the game

application.

The ERM diagram depicts core tables, which are required for game management, to

maintain each game level with their dependencies, and to store each user data with their

statistical data usage. Relationships between tables are meant to create non-duplicate users,

to store the game level data independently of each user, to save the usage data for each

user, while maintaining both local and remote databases synchronized.

53

Figure 6-11: Entity relationship diagram

54

6.4.1.2. Principal Routines

The remote database (managed by MySQL) is storing numerous routines that allow

the game engine to be managed satisfactorily and efficiently. These routines are built to

maintain the data for each table, and for that reason each table at least 2 basic routines (i.e.

select routine and update routine). The rest of the routines represent more complex queries.

One drawback of the SQLite engine is that it does not store routines. In that case,

queries are stored inside the source code. If for some reason the table changes its structure,

then routines located in the source code will be updated and implying in a new game

release.

6.4.2. Databases Synchronization Process

This synchronization process is the main tool that allows achieving three main tasks:

(1) to gather usage data for each user into the remote database, (2) to update the game data

for each user machine from the remote database, and (3) to update current game levels or to

add new game levels from remote database to every local database. Figure 6-8 below

illustrates the communication between the database server and different user machines (i.e.

desktop and laptop computers), where each one is executing the sync process. More

information about this process can be found in Section 5.3.

55

Internet

Server Machine

Players’ Machine

Sync Process

Figure 6-12: Synchronization process between databases

6.5. Detailed Description of Components

This section will provide additional information about important software

components that have been used in the development of the game: included as Java threads,

A* algorithm, SimPack, and Nifty GUI.

6.5.1. Java Threads

Java SE provides different methods to implement threads in a program. The project is

using classes that are subclasses of the Thread class. Also the game contains a package

designated exclusively for Thread subclasses (Table 6-1.) Threads in the project are in

charge of multiple independent graphics animations, given that each animation should not

disrupt the normal execution of the other animations. Also, these threads execute different

functionalities concurrently such as: triggering different sync processes, updating the use of

slots for storage, and controlling the inactivity time of the user during the game.

56

6.5.2. A* Algorithm

The A* algorithm is used for calculate routes in the game environment. This is a set

of classes which control internally a bi-dimensional map with coordinates for each object,

indicating whether coordinates are available, blocked, or step. The algorithm finds the

shortest path possible between two given coordinates. The repeated use of this algorithm

may consume many resources, i.e. RAM memory and CPU. Therefore, the game engine

only calls the algorithm when it is absolutely necessary. Figure 6-9 shows five (5) different

paths found by A* among different stations.

A* is called when an instance of some transport activity is ready to be executed. It

means, once the operator is done loading parts on the equipment, the next step is to move

the equipment to the final station. However, before the equipment is moved, this activity

executes the algorithm and finds a path. Finally, the material handler with the equipment

starts moving along the path computed by A*.

57

Figure 6-13: A* pathfinding example in the game environment

6.5.3. SimPack

The SimPack library supplies the game engine with an easy mechanism for

scheduling multiple concurrent activities. This library implements a list the scheduled

activities, and, in case it is required, the automatic update of the due date of each activity

(e.g. if the game speed goes faster or slower.)

The main class in the game has on override method called “simpleUpdate”, this

method acts as an infinite loop because the game engine calls it several times per second.

For gaming purposes, inside this method the engine verifies if some activity in SimPack has

completed its due date. If this is the case, this activity is removed of the future event list of

SimPack and carried out in the game. SimPack manages two (2) types of activities,

recurrent activities and different activities as shown in Figure 6-10. Each one has a

different meaning in the game.

58

A recurrent activity is scheduled each time unit (e.g. one second.) Once the activity is

over two tasks are performed: (1) another similar activity is scheduled in the future event

list of SimPack, and (2) the game engine executes a method in another class which has the

function of validating and executing other game activities (e.g. purchase, transport,

operation, and shipping.)

In accordance with different activities, once the game engine validates an activity

successfully (e.g. purchase, transport, operation or shipping activity), then this activity has

to perform another task which will take some time to be completed, e.g. three time units.

Therefore, this activity is scheduled in the future event list of SimPack with a given due

date. Finally, when this activity in the list is completed, it will execute a code according to

the gaming activity, e.g. release resources, execute another task, update inventory of some

parts, among others.

Purchase activity

Transport activity

Operation activity

Recurrent activity

Time Unit

Recurrent

Activities

Different

Activities

Main

Pipeline

T
im

e
lin

e

SimPack

Figure 6-14: SimPack – discrete event machine in the game

59

6.5.4. Nifty GUI

This library provides the game with a way to create different panels with a variety at

user controls. Figure 6-11 shows a subset at the controls available in Nifty GUI.

Nifty GUI allows the developer to create custom controls. It means by combining

existing controls. For example, the standard listbox control only shows text, but it can be

customized to show images, text, and buttons in a single row.

Figure 6-15: GUI controls in the game environment

6.6. User Interface Design

The same user interface design is based on the software requirements presented in

Section 5.3. This section describes the most notable user interfaces features.

60

6.6.1. Login and Main Menu

Figure 6-12 shows the login and main menu panel, the first screen that the player sees

each time that he/she starts the game. The login process will require an email registered

with a valid password. Once the user is authenticated, the game proceeds to synchronize the

user data between the local and remote databases. The figure also shows the main menu

consisting of several buttons that can be used to select among the options mentioned in

Section 5.2.1.2.

Figure 6-16: Login menu (left) and main menu (right)

6.6.2. Main Information Panels

Figure 6-13 is composed of three subpanels, which have different functionalities and

allow the player to watch constantly the most critical information in the game. The Order

subpanel (left) shows all pending and completed orders as they arrive during the game.

Game log subpanel (center) allows the user to maintain each activity as they occur during

the game (e.g. game is paused, you’ll go bankrupt, order 1 has arrived, etc.) Overall

subpanel (right) depicts detailed information about the costs in the game. Furthermore, this

screen design avoids visual interference of the factory.

61

Figure 6-17: Order, game log and overall screens merged in one screen

6.6.3. Control Screens

6.6.3.1. Allocate Storages

Figure 6-14 shows the screen that allows allocating an amount of slots available for

storages. Selected slots will entail costs, which are calculated every hour. Also, an “update”

button will commit changes in storage.

Figure 6-18: Allocate storage screen

6.6.3.2. Assign Operators

The screen shown in Figure 6-15, allows the user to select an activity (left side list),

then he or she will be able to choose material handlers, line operators, or versatile,

62

depending of the role required by the activity. The value found between brackets, i.e. “(#)”,

indicates the number of activities assigned and the number of operators assigned, for the

operator and the activity, respectively.

Figure 6-19: Assign workers screen

6.6.3.3. Resources

The resource management screen (Figure 6-16) is particularly crucial before starting

the game. It allows users to hire and fire operators, and to buy and sell machines and

equipment. Each decision of the user implies a cost and it will vary depending of the game

level, for example: hiring two (2) operators, buying one (1) machine, and selling three (3)

equipment. In addition, once the user hires operators, he or she has to choose if the operator

is going to be a material handler an operator or versatile.

63

Figure 6-20: Resources screen

6.6.3.4. Unit Load

The “unit load” screen is presented in Figure 6-17. The screen shows the list of

activities for the current game level. The slider control is enabled only for transport

activities, allowing the user to choose the bulk of parts to be moved in each activity. Also,

the “update” button registers the changes in for each activity.

Figure 6-21: Unit load screen

64

6.6.4. Activities Screens

6.6.4.1. Operation

The activity screen (Figure 6-18) shows an operations list on the left side. Once the

user clicks on an activity, the activity's data is loaded on the right side of the screen, which

provides information about the current activity and allows changing the amount of pieces to

be assembled or cut. Furthermore, it has a list in the bottom of the right side, this list shows

the number of parts required in order to produce a new product or part.

Figure 6-22: Operation activity screen

6.6.4.2. Purchase

The left side of this screen is similar than the screen in figure 6-18, the only

difference is that it shows a list of purchase activities. The right side has information about

the purchase activity and three (3) controls, which allow the user to set up the reorder point,

order quantity, and desired supplier (Figure 6-19).

65

Figure 6-23: Purchase activity screen

6.6.4.3. Transport

 The left side of Figure 6-20 is the same as the screen in Figure 6-19, however, the

right sideshows information about the transport activity, e.g. description, part, initial

station, and final station. Also, it allows the user to choose the amount of parts desired for

the activity. The “refresh” button commits the changes done only to the current activity.

Figure 6-24: Transport activity screen

66

6.6.5. Utilities Screens

6.6.5.1. Station

This game manages two (2) different kinds of stations. Figure 6-21 shows a no-

storage station (left side), and a storage station (right side). The station on the left side

contains a list of buckets, providing details like unit part, inventory and capacity, part

assigned, among others. The storage station (right) indicates costs, which is why it provides

the user a control to choose the number of slots available. Also, it has a slots summary,

detailing the number of slots available, number of slots occupied for each part, and number

of parts stored into slots.

Figure 6-25: Different stations: no-storage (left) and storage (right)

6.6.5.2. Machine / Equipment

The equipment and machine screens (Figure 6-22) are similar; the difference is the

concept of each one. These panel enables the user to buy or sell the machine or equipment.

67

When the user wants to sell a machine or equipment, he/she will notice that the current sale

price will decreasing. This depreciation occurs when the machine or equipment is used;

also the screen shows information about regarding the depreciation, like percentage of

depreciation, and percentage of accumulated depreciation. In addition, the machine or

equipment has a cost per hour, percentage of availability, percentage of usage, number of

parts produced (only machines), and a percentage of failure. However, if the user wants to

avoid the machine to break, then he/she can perform a preventive maintenance as shown in

the figure below.

Figure 6-26: Machine screen

6.6.5.3. Operator

Figure 6-23 shows the “operator” screen that allows the user to hire or fire the

selected operator. This action should be taken carefully because hiring or firing an operator

implies costs. Also, the user can change the role or category between material handler, line

68

operator, or versatile. Finally, the screen indicates the payment per hour of each category,

the full wages earned by the operator, and the percentage of usage.

Figure 6-27: Operator screen

6.6.6. Additional Screen

This last screen is the first one before playing the game because if the player do not

set up the game, then it will be impossible to start it. Figure 6-23 shows the screen that

requires a configuration step by step. Otherwise, the player should click on the “Default

Setup” button and every step will be setup automatically.

Figure 6-28: Game setup screen

69

7. SOFTWARE INTEGRATION AND TESTING

7.1. System Overview

Software testing is the final stage in the software development life cycle, and its

purpose is to evaluate, discover game defects (bugs) and fix them, in order to achieve a

reliable and high quality product. Also, it helps confirm whether the game is following the

specified requirements or not, and solve issues when is necessary. Among the tests

available, only the “unit test” [23] and “integration test” will be used to ensure the proper

functioning of the game features.

During the development phase (carried out by the author) different tests as mentioned

above were done. The testing process was performed each time that the developer

completed programming a feature. Once all features were completed, eight (8) testers were

in charge of the testing process, using the test cases that are shown below. The test team

was comprised of men and women, including gamers and non-gamers. Testing took two (2)

months, and initially two developers were involved in testing for additional support. Hence,

when a bug was found, or a feature improvement was approved, the development team was

notified in order to deal with the issue.

7.2. Test Plan

The test plan is a list of the game’s features and each aspect of their functionality

which was evaluated. Also, it defines every tool required to carry out the execution, and

how the test environment is composed. During the execution, every bug found and each

70

wrong behavior of the feature performed were solved. Once the testing is completed, then it

starts again as a finite cycle, finalizing when everything is correct.

7.2.1. Features to be tested

The testing process of each feature, it means the test case, is detailed in the Appendix

A. The list of features tested is shown below.

1. Logging user

2. Create new user

3. Update existing user

4. Forgotten password

5. Synchronization process

6. Game navigation

7. Factory navigation

8. Game setup function

9. Control screens

10. Activities screens

11. Utilities screens

12. Complete game level

13. Miscellaneous

14. Multiplatform compatibility

7.2.2. Features not to be tested

This section mentions different features that are not tested because they are out of the

project’s scope. Table 7-2 describes each feature and explains why they are not tested.

71

Table 7-1: Features not tested

Feature Description Reason why feature is not tested

PC
requirements

Appendix B provides the
computer requirements to
execute the game.

It will depend on the player’s computer.
During testing, PC requirements were
validated. Once completed, the game
has run satisfactorily.

Synchronization
speed

The synchronization process
could take some seconds or
minutes, depending on the
amount of data and the
transfer speed.

As was mentioned in the feature
description, it will depend of the transfer
speed which in turn depends on the
user’s bandwidth.

Other OS
compatibility

This game release is available
for the following operating
systems: Windows, Linux,
and Mac OS.

The game has not been tested in Unix,
or any tablets or smartphones.

7.2.3. Testing Tools and Environment

Initially, when the game was in the development stage, the testing process was done

manually in the same machine, without requiring any third party software to execute it. The

game was tested by test team after the game development was completed. During testing,

the author showed and explained all functionalities of the game, and each tester received

the game installer that was installed in their computers. These computers complied with the

PC requirements, as shown in Appendix B.

Furthermore, testing took place once a week, for different purposes, for example:

detailed results and feedback were given to the development team, new game versions were

tested and new tasks were executed. In addition, testers did not use any automated testing

mechanism, everything was done manually and stored in a Wiki page for the game.

72

8. CONCLUSIONS AND FUTURE WORK

8.1. Conclusions

Game development has been a challenge for the team, given the game complexity, as

well as the use and integration of different emerging technologies. The current version

provides 4 different levels of increasing difficulty and can be easily installed in different

platforms, i.e. Windows, Mac OS and Linux.

Currently the game has completed the pilot phase (testing process), and is ready to be

played by freshman students, in order to evaluate the research objective which is to know if

the students learned or not Industrial Engineering core concepts and improved problem-

solving skills. As part of this testing process, many critical bugs have been fixed but there

are still others of lower priority that must be addressed. Furthermore, the GUI design has

been improved in order to make the user’s interaction as simple and efficient as possible.

Finally, we expect that this project will promote the development of other educational

activities based on gaming, given the lack of Industrial Engineering research through

games.

8.2. Future Works

The game development was completed in accordance with the estimated scope.

However, some improvements and changes are still being considered to be implemented for

a future game release.

73

8.2.1. Graphics Designs and Animation Improvements

Currently, this game release was focused on developing a product that allows

students to learn through gaming, giving less emphasis on the design and animation of

graphics objects. For that reason, a future release of the game will contain:

o Operators with better design.

o Machines with better quality graphics.

o Raw materials and products will represent real parts of the factory

o The animation of an operator who is handling equipment will be more realistic.

o The animation when an operator is picking and placing parts on the equipment will be

more realistic.

o Fonts and screen style will be interchangeable, allowing the user to set up as desired.

8.2.2. More Advance Game Levels

Given that the game loads each level from the database, it allows the administrator to

add many more levels from the remote database. Once the player starts the application, then

the engine will synchronize both databases, getting these new levels from the remote

database. Moreover, these levels can allow the user to continue learning and figure out

more strategies to successfully complete each level.

8.2.3. Allow User to Create and Share New Levels

Considering the advantage to add and update game levels from the database, it would

be a great achievement creating a drag-and-drop tool that allows designing new levels by

the player. This tool should be easy of usage and must have an option to share this new

74

game level with other players. This good practice is common on the biggest games as

StarCraft [29] and Age of Empires 3 [30], and promotes to create a community of gamers.

8.2.4. Game Migration to Android Devices

The game was developed in Java and tested in personal (laptop) and desktop

computers. However, the game migration to Android devices does not demand much effort

as if it were created from scratch. Also, this migration process will have to consider

updating the GUI and graphic design, simplifying the game engine given that Android

devices do not provide many resources, and managing the local database in the

synchronization process. Finally, the most adequate devices to play this game are tablets,

given the screen size, processors and memory capacity.

75

REFERENCES

[1] Emrich, A. (2004-2005). The gamer generation and why baby boomers shouldn’t
worry so much about them
http://www.alanemrich.com/SGI/Week_10/SGI%2010%20GAMER%20GENERATI
ON.pdf

[2] Thilmany, J. (2012). Gaming Pros and Cons. Mechanical Engineering; Mar2012, Vol.
134 Issue 3, p20-20

[3] Peterson, J. L. (1981), Petri net theory and the modeling of systems, 1st ed.
Englewood Cliffs, N.J.: Prentice-Hall Inc., pp. x+290

[4] IEEE Std. 830-1998 IEEE Recommended Practice for Software Requirements
Specifications

[5] IEEE Std. 1016-1998 IEEE Recommended Practice for Software Design Descriptions

[6] IEEE Std. 829-1998 IEEE Standard for Software Test Documentation

[7] IEEE Std. 1008-1997 IEEE Standard for Software Unit Testing

[8] IEEE Std. 1012-1998 IEEE Standard for Software Verification and Validation

[9] Java SE 7 – Oracle Technology Network (2012),
http://www.oracle.com/technetwork/java/javase/overview/index.html

[10] JMonkeyEngine 3.0. Java OpenGL Game Engine (2012),
http://jmonkeyengine.com/engine/

[11] Nifty GUI 1.3.1
http://nifty-gui.lessvoid.com/

[12] MySQL – Database and Workbench
http://www.mysql.com/

[13] SQLite – Database engine
http://www.sqlite.org/

[14] OpenGL – Open Graphics Library – The Industry’s Foundation for High Performance
Graphics. http://www.opengl.org/

[15] SimPack by Dr. Paul Fishwick – University of Florida
http://www.cise.ufl.edu/~fishwick/Welcome.html

[16] Hart, P., Nilsson, N., Raphael, B. (1968). A Formal Basis for the Heuristic
Determination of Minimum Cost Paths. IEEE Transactions on Systems and
Cybernetics SSC4; 100-107

76

[17] Kelly, H., Howell, K., Gilnert, E., Holding L., Swain, C., Burrowbridge, A., Roper,
M. (2007). How to Build Serious Games.
Communications of the ACM; Jul2007, Vol.50 Issue 7, p44-49

[18] Mayo, Merrilea J. (2007). Games for Science and Engineering Education.
Communications of the ACM; Jul2007, Vol.50 Issue 7, p30-35

[19] Bernardi, G., Cesta, A., Coraci, L., Cortellessa, G., De Benedictis, R., Mohier, F.,
Polutnik, J. (2011). Only hope remains in the Pandora’s.
http://www.pandoraproject.eu/

[20] Zapusek, M. (2011). Serious computer games as instructional technology. Mipro,
2011 Proceedings of the 34th International Convention

[21] Eric Freeman, Elisabeth Freeman, Kathy Sierra and Bert Bates (2004). Head First
Design Patterns, First Edition, O'Reilly Media, Inc.

[22] OMG (2007), OMG Unified Modeling Language (OMG UML), Superstructure,
V2.1.2. http://www.omg.org/spec/UML/2.1.2/Superstructure/PDF

[23] IEEE Std. 1008-1987 IEEE Standard for Software Unit Testing: An American
National Standard

[24] Unity 3D v4.1.2
http://www.unity3d.com/unity

[25] UDK 3.0 (Unreal Development Kit)
http://www.unrealengine.com/udk

[26] GameStart – Cross-Platform 3D & 2D Engine – Beta 2R7
http://www.gamestart3d.com/home

[27] Cocos2d 0.5.5
http://www.cocos2d.org/index.html

[28] Carl Adam Petri and Wolfgang Reisig (2008) Petri Net. Scholarpedia
http://www.scholarpedia.org/article/Petri_net

[29] StarCraft 2
http://us.battle.net/sc2/en/game/maps-and-mods/

[30] Age of Empires 3
 http://www.ageofempires3.com/

77

78

APPENDIX A

Test Cases

1. Logging User

Each time a user wants to play, the game will require a user and password.

Otherwise, it will be impossible start the game.

Table 1: Logging user

Test
Case
ID

Test Case
Name

Description Expected Results Comments

1.1
Validate
fields

User and password
must be correct.

No error messages.
Password is case-
sensitive.

1.2
Login
successful

Once fields are
validated the game is
accessed.

Access the game.
Synchronization
process of user data
begins.

1.3 Login failed

If user and/or
password are
incorrect or not
registered.

A detailed error
message is shown.

2. Create New User

A new player must create a new user in the system. In order to do that, the game will

need an Internet connection to validate the new user with existing user data in the remote

database. Once the player completes the registration and it is validated, then he/she will

receive the generated password in the email registered.

79

Table 2: Create new user

Test
Case
ID

Test Case
Name

Description Expected Results Comments

2.1

Access to the
screen
successfully

Clicking on “create
new user” button will
retrieve the
appropriate screen.

Access to the “create
new user” screen.

Displayed fields are
empty.

2.2
Validate
fields

Fields are validated
to check that they
have been correctly
filled.

If correct, it will
proceed to the
registration.

When it is not
validated, it will
show an error
message.

2.3
Register
successfully

Once fields are
validated, it will
register the new user.

It sends the generated
password to the
email.

The player will not
be able to play if
he/she adds a fake
email.

3. Update Existing User

After the player logged into the system, he or she will be in the main menu. Clicking

the “Profile” button changes the screen and shows user profile, enabling fields to be

modified. Finally, the “Update Account” button will return the player to the main menu.

Table 3: Update existing user

Test
Case
ID

Test Case
Name

Description Expected Results Comments

3.1

Access to the
screen
successfully

Clicking the “profile”
button will enter the
appropriate screen.

It will load the user
data in fields.

The registered
email cannot be
changed.

3.2
Validate
fields

Fields are validated
to check that they
have been correctly
filled. Also, the old

If correct, it will
proceed to the update.

When it is not
validated, it will
show an error
message.

80

and new password
field.

3.3
Update
successfully

Once fields are
validated, it will
update the user data.

The updated data will
be stored locally and
remotely.

The new password
will be required for
the next session.

4. Forgot your Password

In case the registered user forgot his/her password, then the player should click on the

“Forgot Your Password?” link. The game will change to another screen, and it will ask to

enter the registered email. Finally, the user should receive an email with his/her password.

Table 4: Forgotten password

Test
Case
ID

Test Case
Name

Description Expected Results Comments

4.1

Access to the
screen
successfully

Clicking the “forgot
your password” link
will enter the
appropriate screen.

It will show the email
field.

The field is empty.

4.2 Validate field
It will validate the
email entered.

Once it is validated
then it will send the
password to the
email.

The email should
be registered

4.3

Validate
receiving
email

The game will send a
message to the email
account

The message will
contain the recovered
password

The password
should be the
indicated by the
user

81

5. Synchronization Process

It occurs twice: when the user executes the program and when the user logs into the

game. It means that the game instance synchronizes the game and user information stored

with the remote database. It requires Internet connection; otherwise, it will not work.

Table 5: Game data synchronization

Test
Case
ID

Test Case
Name

Description Expected Results Comments

5.1

Validate game
data
synchronization

It synchronizes the
game data between
the remote server
and the user machine
executing the game.

Game data updated.

The user machine
must have an
Internet
connection.

5.2

Validate user
data
synchronization

It synchronizes the
user data between
the remote server
and the user machine
executing the game.

User data updated.

The user machine
must have an
Internet
connection.

6. Game Navigation

This feature validates the correct consistency when the user clicks on different

buttons in the main menu, and the game responds accurate. For example: if the user clicks

the “Credits” button, the game should show a screen displaying game credits.

Table 6: Game Navigation

Test
Case
ID

Test Case
Name

Description Expected Results Comments

6.1 Validate Clicking this button It shows the screen

82

“New game”
button click

will access another
screen which contains
the list of games to be
played.

with the list of games
available.

6.2

Validate
“Profile”
button click

Clicking this button
will access the
“profile” screen.

It shows this screen
with the current user
data.

6.3

Validate
“Tutorial”
button click

Clicking this button
will load the tutorial
in a browser.

Internet browser
containing the
tutorial.

It will open the
default Internet
browser.

6.4

Validate
“Return to
game” button
click

As the button’s
description says,
clicking on it will
return to the game.

It will return to the
game only when a
game is running.

When no game is
running, then this
button is disabled.

6.5

Validate
“Credits”
button click

The button will open
a pop-up that will
show game credits.

Credits will be shown
in a pop-up.

This information
identifies the main
author and crew.

6.6

Validate
“Switch
user” button
click

The button will
logout the current
user, and it will
return to the login
screen.

Once the action is
completed it will
show the login
screen.

 Fields in the login
screen are empty.

6.7

Validate
“Quit game”
button click

It will trigger a pop-
up asking if the user
wants to exit the
game or not.

Pop-up asks the
player to confirm
closing the game.

The player can
cancel the pop-up
and return to game.

7. Factory Navigation

This feature occurs in the game environment, i.e. the factory, and it is triggered each

time that the user clicks and holds right button on the mouse, then the game should move

the camera at the same direction that the mouse is moved.

Table 7: Factory navigation

Test Test Case Description Expected Results Comments

83

Case
ID

Name

7.1

Validate
camera
navigation

It allows rotating (i.e.
360 degrees) and
zooming the game's
camera.

The game’s camera
has zooming and
rotation limit.

This activity can be
performed using the
right button or
center button of the
mouse.

8. Game Setup Function

This feature occurs mostly at the beginning of each game level. In the “Game Setup”

screen, it shows six (6) steps to set up before starting a game level. Also, it has a button

called “Default Setup”; it is used in case the player does not want to waste time configuring

the game. However, this functionality validates when the user clicks on the image of each

step in the game setup screen to open the appropriate screen.

Table 8: Game setup function

Test
Case
ID

Test Case
Name

Description Expected Results Comments

8.1

Validate
“Start game”
before setup

When at least one
step is not setup then
the game will not
start.

The game engine
does not allow
starting the game.

The play button
located in the top
left of the screen
does not allow the
game to start either.

8.2

Validate
“Start game”
after setup

Every step must be
setup to allow the
game to start.

It starts the game
after it was correctly
validated.

The screen closes
after the action.

8.3

Validate
click on each
setup button

Each image that
identifies the step or
each red circle image
is going to open an
appropriate screen.

Open a screen
according to the step
selected.

Once a step is set
up, then the red
circle image is
updated to a green
circle image.

84

9. Control screens

The feature's objective is to validate the consistency of the user’s action with the

game. Once the player clicks the “Control” button, the game will show other five (5)

buttons: allocate storages, assign operators, priority activities, resources, and unit load.

Each one will display a screen with some functionality.

Table 9: Control screens

Test
Case
ID

Test Case
Name

Description Expected Results Comments

9.1

Validate
actions on
“storages”
screen

Once this screen
opens, it shows a list
of storages. The
player will be able to
set up some options.

See the actions taken
in the game, e.g.
added slots per
storage.

The game has two
different storages.
The first one is
read-only
information. The
other one allows
changes.

9.2

Validate
actions on
“assign
operators”
screen

It allows allocating
and deallocating
operators for each
activity.

Operators perform
some activities during
the game.

It allows choosing
operators.

9.3

Validate
actions on
“priority
activities”
screen

It will allow choosing
the priority of
execution for each
activity.

The game executes
activities by priority.

It will not allow
choosing the same
priority for more
than one activity.

9.4

Validate
actions on
“resources”
screen

It will allow hiring
and firing operators,
and buying and
selling machines or
equipment.

The number of
operators, machines
and equipment can
vary during the game.

A fired operator or
sold machine is
identified by a red
sphere on the top.

85

9.5

Validate
actions on
“unit load”
screen

It allows the player to
choose the amount of
parts or raw material
to move during a
transport activity.

The game is going to
move the amount
selected for each
transport activity.

The amount
selected cannot be
less than zero.

10. Activities screens

This feature also validates the consistency of user actions. Clicking the “Activities”

button shows: operation, purchase, and transport buttons. Furthermore, these buttons

display an appropriate screen with some functions. Clicks on buttons or screens will be

validated

Table 10: Activities screens

Test
Case
ID

Test Case
Name

Description Expected Results Comments

10.1

Validate
actions on
the
“operation”
screen

This screen shows the
list of operations
available for this
game level. The
player can change the
amount of parts to be
produced.

The machine is going
to produce the
amount of parts
selected for each
operation.

The operation time
will vary depending
on the amount of
parts to be
produced.

10.2

Validate
actions on
the
“purchase”
screen

Screen shows the list
of purchases
available for this
game level. The
player can change the
reorder point and
order raw material,
and select a supplier.

Raw material could
take more time to
arrive, and the cost
varies depending of
the supplier selected.

Note that this
activity will be
executed
automatically each
time the inventory
is less than the
reorder point.

10.3
Validate
actions on

The screen shows the
list of transports

The game is going to
use the unit load for

86

the
“transport”
screen

available. The player
will be able to change
the unit load for each
activity.

each transport
activity.

11. Utilities screens

Clicking the “Utilities” button will show: station, machine, equipment, operator, part,

and supplier buttons. They will open different screens to be validated, and will look for

consistency.

Table 11: Utilities screens

Test
Case
ID

Test Case
Name

Description Expected Results Comments

11.1

Validate
actions on
the “station”
screen

This screen shows the
list of stations
available for this
game level. The
player will be able to
change some options.

Actions taken by the
player in storages
will be shown during
the game.

Stations different
than storages, are
read-only.

11.2

Validate
actions on
the
“machine”
and the
“equipment”
screen

It will allow to buy or
sell
machines/equipment
as desired by the
player.

Buying or selling
machines/equipment
will be shown during
the game, it means in
the factory.

The player can sell
a machine or
equipment that is
working, but the
action is carried out
when the machine
is idle.

11.3

Validate
actions on
“part” and
“supplier”
screen

It will allow the user
to choose between
parts or suppliers.
This information is
read-only.

The game will show
the information
according to what the
user has selected.

87

12. Complete Game Level

This feature validates that the game will finish after some orders have arrived,

winning or losing the game level, or falling in bankruptcy. The completed game will show

a pop-up with statistical information and provide some options to the player.

Table 12: Complete game level

Test
Case
ID

Test Case
Name

Description Expected Results Comments

12.1
Validate pop-
up shown

Game has three
different ways to
finish the level. First,
falling in bankruptcy;
second, failing more
orders than allowed;
finally, receiving all
orders.

It will show the pop-
up, once the game is
completed.

The player is not
able to make any
changes after the
pop-up is shown.

12.2
Verify won
game

The user will win the
game when he/she
completes more
orders than required
and a pop-up will be
shown.

Game will show a
pop-up saying that
the player won, and
will provide
statistical
information.

12.3
Verify lost
game

The user will lose the
game when he/she
fails more orders than
permitted or falls in
bankruptcy, and a
pop-up will be
shown.

Game will show a
pop-up saying that
the player has lost,
and will provide
statistical
information.

88

13. Miscellaneous

This feature validates that other controls are working correctly. For example: game

time, next order due timer, next purchase timer, play button, and pause button.

Table 13: Miscellaneous

Test
Case
ID

Test Case
Name

Description Expected Results Comments

13.1

Verify game
time and
slider control

It will validate the
relation between the
speed selected in the
slider and the current
game time.

The game time
should forward faster
if the slider has
increased the speed.

Graphic objects are
also affected with
the speed of the
slider control.

13.2

Validate next
order due
timer

This timer shows the
remaining time
complete an order.

If the user does not
fulfill the order
before the timer
counts zero, then
order is lost.

The timer shows
the nearest order to
be lost, when the
game has two or
more orders to be
attended.

13.3

Validate next
purchase
timer

This timer shows the
remaining time to
receive more raw
materials, according
to the purchase
activity.

The player will
receive more raw
materials when timer
is zero.

This time will vary
depending on the
supplier selected.

13.4

Verify play
and pause
button action

Once the game is
running, these
buttons are available.

The game enables
these options after the
initial setup has been
completed.

If the game is
paused and the
player clicks on
pause, then this
action will not have
any effect.

89

14. Multiplatform Compatibility

This feature should validate the correct execution of the game in different platforms

(i.e. Windows, Linux, Mac OS), having previously installed the game.

Table 14: Multiplatform compatibility

Test
Case
ID

Test Case
Name

Description Expected Results Comments

14.1

Verify
installation
and
execution on
Windows

Game development
provides a Windows
installer.

Game is installed and
runs successfully.

Game runs from
Windows XP to
Windows 8

14.2

Verify
installation
and
execution on
Mac OS

Game development
provides a Mac OS
installer.

Game is installed and
runs successfully.

It has been tested in
Mac OS version
10.6 and latest.

14.3

Verify
installation
and
execution on
Linux

Game development
provides a Linux
installer.

Game is installed and
runs successfully.

It has been tested in
Linux Ubuntu,
Fedora, and Mint.

90

APPENDIX B

System Requirements and Game Installation

Minimum System Requirements:

o OS: Windows XP/Vista/7/8 with DirectX 9.0. Mac OS X 10.6.8 or newer.

Linux Ubuntu/Fedora/Mint.

o Processor: Intel Pentium D 2.8 GHz or AMD Athlon 64 X2 4400 or better.

o Graphic card: Intel HD Graphics 3000 or NVIDIA GeForce G210 or ATI

Radeon HD 5450 or better.

o Hard disk: 1 GB available or more.

o RAM memory: 1 GB (1.5GB required for Windows users, 2GB required for

Mac users) or more.

o Others: broadband Internet connection, and 1280x780 minimum display

resolutions.

Recommended Specifications:

o OS: Windows 7/8. Mac OS X 10.7 or newer. Linux Ubuntu/Fedora/Mint

(latest version).

o Processor: Intel Core 2 Duo 2.4 GHz or AMD Athlon 64 X2 5600 2.8 GHz or

better.

o Graphic card: NVIDIA GeForce 260 or ATI Radeon HD 4870 or better.

o Hard disk: 2 GB available or more.

o RAM memory: 2 GB

91

Game Installation:

1. Download the appropriate installer for your operating system.

2. Start the installation:

a. Windows: double-click on the installer.

b. Mac OS: double-click on the installer.

c. Linux: open a Terminal, type “sh” then add the full path of the

installer location plus the installer name file.

3. Once started, click on the “Next” button, then “read and accept” the user

agreement.

4. Click on the “Next” button and then choose the folder location of the game.

5. In the new screen, click on the “Next” button, and finally it will copy the files

into your computer.

6. Finally, click on the “Close” button.

The user will find the game installed in his/her programs list, and the game will

be ready to play.

92

GLOSSARY OF TERMS

o API – Application programming interface is a set of protocols, routines, and tools for

building software applications.

o GPU – Graphics processing unit, it is used primarily for 3D applications.

o OpenGL – It is a 3D graphics language that was built into Windows NT and is designed

to improve performance on hardware that supports this standard.

o SDK – Software development kit. It is a programming package that enables a

programmer to develop applications for a specific platform.

o RC2 – Release candidate 2. It is a beta version with potential to be a final product.

o GUI – Graphical user interface. This user interface allows user to interact with the

computer or specific software.

o XML – Extensible markup language. It allows developers to create their own

customized tags, enabling the definition, transmission, validation and interpretation of

data between applications.

o RDBMS – Relational database management system. It means that stores data in the

form of related tables.

o SMTP – Simple mail transfer protocol. It is a protocol for sending email messages.

o TCP/IP – Transmission control protocol / Internet protocol. It is the suite of

communications protocols used to connect hosts on the Internet.

o IEEE – Institute of Electrical and Electronics Engineers. It is best known for developing

standards for the computer and electronics industry.

