IMPLEMENTATION OF A 3D EDUCATIONAL
GAME FOR INDUSTRIAL ENGINEERS
By
David Bengoa-Teran
A project report submitted in partial fulfilment the requirements for the degree of
MASTER OF ENGINEERING
In
COMPUTER ENGINEERING
UNIVERSITY OF PUERTO RICO
MAYAGUEZ CAMPUS
2013

Approved by:

Joseé Borges, PhD Date
Member, Graduate Committee

Cristina Pomales-Garcia, PhD Date
Member, Graduate Committee

Agustin Rullan, PhD Date
Co-President, Graduate Committee

Bienvenido Vélez, PhD Date
President, Graduate Committee

Maria de los A. Irizarry, PhD Date
Graduate Studies Representative

Pedro Rivera, PhD Date
Chairperson of the Department

ABSTRACT

Today’s “Gamer Generation” has led to a rapid ghoweft the game industry, with a
vast amount of money spent on commercial enter@iirgames, instead of educational
games. One reason is because it is difficult tdement a game that accurately represents

the concepts that one tries to teach while holthegstudents’ attention.

There has been some research into the developrheggnees which aim to teach
science concepts, but not Industrial Engineeririf) (@oncepts. Therefore in order to
address this issue, the purpose of this projetb idevelop a computer game, which is
focused on exposing freshman IE students to fundtaheconcepts applicable to
manufacturing systems and improve their problemisglskills in complex unstructured
problems. Besides being an educational game iatsambe called a “serious video game”,
since it is classified as a “strategy video gamBie player has to carefully plan and
manage resources in order to win. The project seolhde a single-player video game for

personal computers, with multi-platform support.

This game simulates daily activities in a factonywhich users must make many
decisions with the goal of fulfilling as many ordeyn time and as efficiently as possible.
Some of the decisions that the user can contrddidiec hiring or firing workers, buying or
selling machines and equipment, increasing or @sang storage space, setting unit loads

for each transport activity, among others.

In order to perform this project implementation,valahas been used as the
programming language, and the development has leere with Object Oriented
programming. In addition, two synchronized databasggines have been used: SQLite as
the local database and MySQL as the remote databamsly, JMonkey has been used as
the game engine; SimPack has been used as thetdiswment engine; and some algorithm
of Artificial Intelligence has been applied to detine the shortest way between two points

in the factory.

RESUMEN

Actualmente la generacion Gamer ha permitido uidcaprecimiento en la industria
del juego, enfocandose en el desarrollo de juegosrdretenimiento, en vez de juegos
educativos. Esto se debe a la complejidad queeealstiesarrollar un juego educativo, ya
que se debe conseguir que el jugador aprenda feepms que transmite el juego y a la

vez, mantenga la atencién de él.

Existen distintas investigaciones con el objetieithiplementar juegos educativos
que ensefan diferentes materias pero muy poco kgitzlo para la Ingenieria Industrial.
Es por esta razon que el presente proyecto prefemmementar un juego enfocado a los
estudiantes recién ingresados de Ingenieria Indudfste juego ademas de ser educativo,
también esta clasificado como “juego de estrateggiatjue el jugador estara planificando y
administrando cuidadosamente los recursos connklidad de obtener la victoria. El
producto obtenido es un juego para computadorassgoporte multiplataforma, y para un

solo jugador.

El juego consiste en la simulacion de las activedadiarias de una fabrica, en donde
el usuario toma decisiones con la finalidad de dingpn el maximo pedidos que van
llegando en el transcurso del juego. Entre lasint&st decisiones se puede resaltar:
contratar o despedir trabajadores, comprar o vemaguinarias y equipos de transporte,
alquilar una mayor o menor cantidad de espacimsralmacenes y variar la cantidad de

piezas o productos que se van a transportar egtrestaciones de trabajo.

Para llevar a cabo la implementacion de este ptoyse utilizé Java como lenguaje
de programacion, desarrollandose bajo una progiamacientada a objetos. Ademas, se
utilizé dos motores de base de datos que se emanegihcronizados entre si, uno local y
otro remoto, SQLite y MySQL respectivamente. Firaite, se esta utilizando JMonkey
como motor de juego, SimPack como generador det@vetiscretos, y aplicando un
algoritmo de Inteligencia Artificial para encontelrcamino més corto entre dos puntos en

la fabrica.

To my grandma, parents, brothers and newborn niece.

Thanks for being there for me

Vi

ACKNOWLEDGEMENTS

First at all, 1 would like to thank to my advisddr. Bienvenido Vélez, for his
continue support and recommendation in every sfeth® game development. Also, |
would like to thank my graduate committee, Dr. AgudRullan who trusted me from the
beginning, gave me the opportunity to be part sfrhain research; Dr. Cristina Pomales-
Garcia who guided me in different stages of the egalmvelopment, and promoted this
achievement in every available event; and Dr. J®séges who provided me with his

knowledge in the design patterns area and objemtted programming.

Thanks to my family, although they are far from mé&now that | always had their
unconditional support. Also, | appreciate having sweh good friends here in Puerto Rico,
especially my Ecuadorian friends Ana Negrete andcklamo Guachambala. Ana, | want to

thank you for your help to complete this projegias.

| want to thank to Yadrianna A., Christian V. am ttester team for their help the
testing phase has been completed successfully, Xismara A. and Irving D. for their

contribution helped in the game development.

Finally, 1 would like to acknowledge the supporbrfr the National Science

Foundation, Award No. 0835990.

Vii

TABLE OF CONTENTS

ABSTRACT ettt ettt mrree e st e e sttt e e e sttt e e e e e bbbt e e rnee e e e reeaenan i
RESUMEN ...ttt smeeent et et e et e e e e st e e e e e ns e e e esaeeeeeansneees iv
ACKNOWLEDGEMENTSiiiiiieiiiiiiee e eitiemme st e e s sieeee e e e etane e e e e nnneeeeeeanns Vii
TABLES LIST oottt emmmmt ettt e e s e e e Xii
FIGURES LIST oottt e et me e e e b e e Xiii
INTRODUGCTIONeiiiiiiiiiieee s eiiiieee e e s meemee e steee e e s nseeeeeessntaeeaesesseeeesenneas 1
1.1, JUSHFICALION ..eeeiiie et e e 1
1.2. Problem Statementooiiiiiiiiiiceeeeee e 2
1.3, OUN APPIOACK. ...ttt mmmmm s e aaeeanaaans 3
1.4, CoONtriDULIONS. ..o 4
1.5, ProjeCt ODJECHVESccocviiiiiiiiiiie ittt 4
1.5.1. General ODJECHVEuuiieiiiiiiee e 5.
1.5.2. SPeCific ODJECHVEScceiiiiiiiiiiiiee et 5.
1.6, OULINE ..o e 6
RELATED WORK ...ooiiiiiiiiiie ettt ettt e et e e e s s nneeeens 7
2.1. How to Build SErioUS GamMES...........euueuiimemeemieiininiiiniiiiiiiniiineeenneenenns 7
2.2. Games for Science and Engineering EAUCAtON coeeeeeevvvvvvviviiiiiiiiiieeneeee. 7
ARG TR - aTo (o] = B = o)t o] o[- oX (P 8
2.4. Serious computer games as instructional technolagy..............ccceeeeee. 8
OVERVIEW OF THE GAMING EXPERIENCE........cccccccvviiiieeiiiiiiee e, 10
% A [011 oo [F Tt 1o o PP PRPPTR TP 10
3.2. Educational CoNCEPLS......ccoeeiiiiiei e 10.
3.2.L. ACHVILIES ettt rmmmm s eeaaas 10
3.2.2. Process FIOWCNHArtouoiiiiiiiii e 11
T F O o 1 £ SR 12
3.2.4. Human Resources Management.............oeueemmmmmmeeeeeeenniinnneeeeeeeeenens 14
T ST 1177 T o1 o] VA @] o] { o PSP 15.
3.2.6. Production OPeratioNS...........cuuiiiiiiiiimemeemeeeeeeeaeeeeeeresessnesenenenensnenennne 16
3.2.7. Probability Distributions and TimiNg......... e 17
3.3, INItIAl SELHNGS ... eree ettt nnneas 18
3.4. Game Controls and StrategieS........ccoevicommmn e oo eee e 18

viii

I T € 1- 10 4 [-J T 1= | LR 19

4. DEVELOPMENT PLATFORMooiiiiiiiiiiiiiiiiiteee et 20
N P AV] USSP 20
4.2. JIMonkeyENngine 3.0 SDK RC2cccuiiiiiiiimmmmemiiaieiniais s s enee e naea e 20
4.3, NIty GUI L.3.2 i 21
4.4, MySQL Database..........oooiiiiiiiiiiii e 21
4.5, SQLite DAtabaSsecvuuiiiieeiieeeeie s e e e e e e eeaat e e e 21
4.6. SimPack Discrete EVENt ENQINEoooiiiiiiiieiiiiiiiieveeieeveevvevvevvecveneeenes 22
4.7. Artificial Intelligence — A* search algorithmcccccciiinne. 22

5. SOFTWARE REQUIREMENT SPECIFICATIONScccoeeeiiiiiiee e 23
5.1, INFOTUCTION ..cciiiiiiiiiiiiee e ee s 23

5.1.0. PUIMPOSE ..ottt et ettt e e e e e e 23
5.1.2. PrOJECT SCOPE ...uuuutuiiiiiiiii s immmmmm s e 23
5.2. External Interface ReqUIrEMENTS...........oceemeeeuimiiniin s 24
5.2.1. USEr INTEITACESuuuiiiiiiiieiee ittt ees et e e 24

5.2.2. Hardware INterfacCesooueiiiiiiiiiiieeceeeeiieiiiiieiiiiiiieeiieieeeeeenneaeennes 26
5.2.3. Software INterfaces ... 27.
5.2.4. CommuUNICAtIONS INTEITACEeuviiiiiiiiiiieeeeee e 28
5.3, SOftWAre FEALUIES........cuiiiiiiiiiiiiiiit et 29
5.4. DeSign CONSIIAINTSuuvuiiiiiiiiiiiiiiiiiimrmnnnea e e e e eeeeeeeeeeaeeeeeaeeeaaaeeeaeaeaeans 32
5.5. Database RequUIreMeNtS.........coooii oot 32
5.6. Software System AHDULESeueiiiiiiiiii e, 33
5.6.1. Reliabilitycvveeiiiiiiiiei e 33
5.6.2. AVAIADIIILYoeiiiiiiiiiiiiei ettt ettt 33
5.6.3. SECUIMY ... 34
5.6.4. Maintainability ... 34
5.6.5. POrtabilityccvvviiiiiiiiiiiiiiiiiiiiiismmmmm e s e 35
5.6.6. PerformanCe ... 35

6. SOFTWARE DESIGN DESCRIPTION.......cuutiiiii ittt 36

6.1. System Architectural Design ... 36
6.1.1. SYStEM OVEIVIEW ...ttt aeneaennee 36
6.1.2. Presentation LAYlooooiiiiiiiiii e 36.

iX

6.1.3. BUSINESS LAYEK ...iiiiieiiiiie e e eceee ettt eeeseeeeesenenenenes 317.

6.1.4. Data ACCESS LAYEIuuiiiiiiiiiiiiiiiii ettt eeeee e 9.3
6.2. Game Activities based on Petri Nets Models ... 39
6.3. Package Diagram and Design Patternsccccceeecvoeeeeeiiiiiiiiiieieeeeeeee, 44

6.3.1. Package Diagram.......ccccoeeeiiiiiiiiiiiiimmmmmemsns s A 4

6.3.2. Strategy Pattern ... A7

6.3.3. FACAUE PAtEINeeiiiiiiiiiiiiiiiiiieiiiii et en 49

6.3.4. SINGIEtON PAtternuuuueiiiiiiiiiiiiiieinmeeeeeeeeeeeeeeeeaeereeerereeeeeneeenenene 51
6.4. Database DESIGN.......uuuuuuiuiiiariere e e e e e e e e 51

6.4.1. MySQL and SQLIite DeSIgNccoeeeiiiiieiei e 52

6.4.2. Databases Synchronization ProCesscceeeeeeeeeereeirevieiierennnnnenenns 54
6.5. Detailed Description Of COMPONENLS..........cummmmeeererermmemmmememmmmmmnennnmnnnnnes 55

6.5.1. Java Threads ... 55

6.5.2. A* AlQOrtNM .o 56.

6.5.3. SIMPACK ...ttt 57

6.5.4. NIfty GUI ..oeiiiiiiiiie e 59
6.6. User Interface DeSIgNoooveeiiiiii ittt 59

6.6.1. Login and Main MENUccoeuiiiiiiiiiiiiicmeemueeieeiieieeineieeineneeenenenenenennees 60

6.6.2. Main Information PanelScoouiiiimmmecc e 60

6.6.3. CONrOl SCrEENSvuiiiiiiiiiee et eeeeeme e 61

6.6.4. ACUVItIES SCrEENSccoiiiiii e 64.

6.6.5. ULIlItIES SCrEENS.....ciiiiiiiiiiiiiiii it 66

6.6.6. AddItIONal SCrEENeiviiiiiiiiee e 68.

7. SOFTWARE INTEGRATION AND TESTINGcocoiiiieeiiiee e 69
7.1, SYSIEM OVEIVIEW ..ottt 69
7.2, TESEPIAN.....ceeeeie e 69

7.2.1. Features to De teSTedcoieiii i s sttt 70.

7.2.2. Features not to be tested ..o 70

7.2.3. Testing Tools and ENVIrONMENTccoooviicce e 71

8. CONCLUSIONS AND FUTURE WORKccciiiiirimmmmm e siieeeesaniiieae e 72
8.1, CONCIUSIONSuuiiiiiiiiiiiiititt it eeeeee e et e e e e e et eeeeeeeeeeeeeeeseesesseeensbeeneeas 72
8.2, FULUIrEe WOTKSooiiiiiiiiiiii i 72

8.2.1. Graphics Designs and Animation IMprovementS.veveeeeeeeeeee. 13

8.2.2. More Advance Game LeVelS............oooiuimemmmmeeeieeeee e 73

8.2.3. Allow User to Create and Share New Levels.......ccccoooeiiiiiiiiiieninnnn. 73

8.2.4. Game Migration to ANdroid DEVICESammmmmriiseiiiiiiiiainiaeaineanaens 74
REFERENCES ...ttt e e 75
APPENDIX A ettt ettt st e e e st e e e et e e e e e ntte e e e e e aneaeanrreeeeeanns 78
APPENDIX B ..eiiiiiiiiiiiie e iieiee e et mmmm st e e ettt e e e snteae e e e annstee e e s anneaeannreeeeeanns 90
GLOSSARY OF TERMS ...ttt s sttt enneeas 92

Xi

TABLES LIST

Tables Page
Table 3-1: Requirements for each kind of actiVity.............ccooevviiiiiiiiiiiiiiiiiinnnne. 10
Table 3-2: Equations to obtain different timesacleactivityccoooviiiiiiininnn. 17
Table 6-1: Package diagram detailed.......cccaceeeereiriieiiiiiiiiiiiiieiiiiiiiiieieieieeeeee. 45
Table 7-1: Features NOt tESTEA e 71

Xii

FIGURES LIST

Figures Page
Figure 3-1: Example of game process flowchart................uveveiiiiiiiiiiiiiiiiininnnes 12
Figure 3-2: Game overall — summary of expenditaragbinCoOmesccccvvvevennnes 14
Figure 3-3: Hire/fire workers using general vieef{) or specific view (right)........ 15
Figure 3-4: Raw Material Storage — three diffef@amttsevveeiiiiiiiiiiininnns 6.1
Figure 3-5: ASSEMDIY ProCESS.......uvuiiiii e 16
Figure 6-1: Overview of the game architeCture............ccccccvvvviiviieiiieiiiieeieeeen, 36
Figure 6-2: UML Sequence diagram — start a NEW game..............eeveevveveeeeeneennns 38
Figure 6-3: Purchase activity: Petri Net (top) dagla state machine (bottom) 40
Figure 6-4: Operation activity: Petri Net (top) alal/a state machine (bottom)....... 41
Figure 6-5: Transport activity: Petri Net (left)dadava state machine (right)........... 42
Figure 6-6: Management of activitieS iN JaVa. ..o 43
Figure 6-7: Overall game — Package diagram.............ccccccvvvvvivvivniieinnenennnnn 44
Figure 6-8: Strategy pattern — Class diagram.ccccc.....ooooeieiiiiiii A8
Figure 6-9: Facade pattern — Class diagram oo 50
Figure 6-10: Singleton pattern — Class diagramlcooveiiieiiiiieiiiiiiiiieieeeen. 51
Figure 6-11: Entity relationship diagram ... s 53
Figure 6-12: Synchronization process between da&mha............ccooeveieeiiiiiieieneenn. 55
Figure 6-13: A* pathfinding example in the gameiemvment...............ccccevvvvvinenes 57
Figure 6-15: GUI controls in the game environment..............cccccevvviiiviiiveneeennn, 9.5
Figure 6-16: Login menu (left) and main menu (1ght..............cevvviviiiiiiiiiiniiininnn. 60
Figure 6-17: Order, game log and overall screeng@akin one screen................... 61
Figure 6-18: Allocate SIOrage SCIEENcuueeeeiiiiiieiiiiiiiiieieieeeee e eeeeereeeeeeeaaeeens 61
Figure 6-19: ASSIgN WOIKEIS SCIEENciiieiieieeeeeeeeee et 62
Figure 6-20: RESOUICES SCIEEMccoeieiieeeee ettt 63
Figure 6-21: Unit 108d SCrEEN.........ooo ettt e e e e e 63
Figure 6-22: Operation actiVity SCreeN......occoceeeeeeeeeeeeeeeeeeeeeeee e 64
Figure 6-23: Purchase actiVity SCreeNcccoooiiiiiiiiiiiiiiiiiiiee e 65
Figure 6-24: Transport activity SCreEN ...t 65

Xiii

Figure 6-25: Different stations: no-storage (leftd storage (right)ccccoeevieennnn.

Figure 6-26: Machine screen

Figure 6-27: Operator screen

Figure 6-28: Game setup screen

Xiv

1.INTRODUCTION

1.1. Justification

Today's “Gamer Generation”, so called because gnew up playing video games
and spends hundreds and even thousands of hoursy dheir most formative years
playing video games [1]. This has led to a rapiowgh of the game industry, with a vast
amount of money spent on commercial entertainmamntes, instead of educational games.
However, playing video games may have both postive negative effects on cognition
and behavior. As Douglas Gentile, an associateepsol of psychology at lowa State
University [2] said “if content is chosen wiselyideo games can actually enhance some

skills.”

Concerning educational games, it is difficult topiement a game that accurately
represents the concepts that one tries to teacle Wbiding the students’ attention. There
has been some research into the development of sgavhech aim to teach science
concepts, but not Industrial Engineering (IE) cquise Therefore in order to address this
issue, professor Agustin Rullan and collaboratoop@sed a research project entitled “Can
gaming provide enough context to improve knowledggegration and retention in
Engineering freshmen”, which is sponsored by thdiddal Science Foundation with
Award No. 0835990 and is described as a learmabgwhich*...will be assessed in terms
of improved retention, interest, and motivatiorfreshman IE students, as well as support
of learning in context, improved student undersiagdf core concepts, and improved

problem-solving skills in complex unstructured geshs.”

Once requirements were analyzed and the game wdes established, the purpose
of this project is to create an educational videong based on a factory, to be played
mainly by IE students and other people interestetearning IE concepts management.
This game is classified as a “serious game” becthesenain purpose is to help freshman
students learn about IE concepts. It could alsa@lassified as a “strategy video game”
because the player will carefully plan and manageurces with the objective of fulfilling
orders on time and as efficiently as possible. Tdasne is a simulation of the daily
activities in a factory where decisions must be entdobtain desired results. Some of the
decisions that the user can control include: numbkractive workers, machines,
workstations, buckets, among others. The projecpesaowill allow playing on personal
computers, with different levels of difficulty. Albugh the graphic design of workers,
machines and equipment has been simple, the olgdstio help students learn various IE

concepts.

1.2. Problem Statement

In order to achieve that freshmen industrial engimg (IE) students learn
fundamental IE concepts applicable to manufactusygtems and improve problem-
solving skills in complex unstructured problemsseaaious educational game needs to be

developed.

Previous research has demonstrated that sciencebearaught through games,
however, industrial engineering is a field thayed to be studied regarding the possibility

of using games as a teaching tool.

To address this weakness, this project will focws developing, deploying and
assessing a video game based on a factory thatl @trfeeshmen students. This game will
have features that will allow the student to dismoand visualize several IE fundamental
concepts, to acquire a notion about the types oisims and actions that are required to
run a manufacturing environment, to develop critibénking skills and problem-solving
skills, to acquire a vocabulary of IE terms, andtactice IE concepts to strengthen their

technical background.

1.3. Our Approach

The original NSF proposal established the mainviiets of the game, which
included: operation, transport, store, and purchd$ese operations were described in
detail using Petri Nets [3]. Our game is based bosé¢ activities but with some
improvements. The new types of activities are: apen, transport, storage, purchase and
shipping. Each level has multiple instances of énastivities depending on the resources
available. Furthermore, the set of activities, ist#, storages, workers, machines,
equipment, etc., are stored in two databases (eearad local) for each phase of the game.
Therefore, when the administrator changes someiddtee remote database, the players’
instances will update their local databases. Tlayeplis able to change some features,
demanding a cost for each one. For example: hion@ring workers, buying or selling
machines and equipment, allocating slots per séosdgtion, among others. In addition,
each purchase activity involves a cost, and the€auséjective is to fulfill orders on time,

as profitable as possible and avoiding bankruptcy.

Each activity requires a set of skills and eachraipe has a skill set. If an operator
wants to perform the activity, this operator muavéd the required skills. Furthermore, the
machines or equipment used can also break down aftertain time, so the game is
considering a probabilistic time of repair. Howevlte user can avoid this break time,
carrying out a preventive maintenance with its eetipe fee. Finally, normal, uniform and
exponential distributions are used in order to $teufailures and repairs as realistically as

possible.

1.4. Contributions

The game development lets us identify three (3)feddht approaches as
contributions. First at all, the game is the pmatitool of the main research, which aims to
support learning of IE core concepts and improweblgm-solving skills by freshman IE
students. Once the game development is compléted,the main research can continue

with its next process step.

Another contribution is developing a game that esras a teaching tool for the
Industrial Engineering area, given the lack of aeske through games. We expect it will

encourage the development of other educationalities based on gaming.

Finally from a technical approach , we have sudaodlgsaccomplished the use and
integration of a game engine, an artificial inggince algorithm, two different databases

engines, a discrete event engine, and many motie Java as a the language programming.

1.5. Project Objectives

1.5.1. General Objective

The main objective of this project is to developideo game simulating a factory
that will allow freshman students (players) to tedmasic concepts of IE such as costs,

human resources management, inventory controlugtamh, planning, among others.

1.5.2. Specific Objectives

0 A single-player video game made of different levElarly levels will be easier than
later levels.

o Each phase will have an initial configuration wélset of activities and a process
flowchart, where the player has to figure out tharges in resource allocation to
complete the arriving orders on time. Furthermtrese activities will have a given
but changeable priority, and are dispatched focetxen in priority order. All the
information required for each phase will be stared database.

o Each phase will have available a set of workers;himes, equipment and storage
areas. The game will allow the users to hire oe fivorkers, and buy or sell
machines or equipment, to improve savings or regxpenditures.

0 The objective for each phase will be to dispatdivan set of orders with maximal
profitability. Each order will be described by thge of part, quantity, and due
date. Orders arrive as the game progresses.

o Users will be able to change some controls whieegame is running, such as the
“unit load” for each transport activity, the “re@dpoint”, “order quantity” and
“supplier” for the purchase activity. Also, the yda will have more options in the

“settings section.”

o It is important that the game allows to “play”’ atghuse” an ongoing game, and
change the “time factor” between 1/16x, 1/8x, 1/42x, 1x, 2X, 4x, and 8x, so that
users have time to analyze their decisions.

o Finally, the game will allow the user to know theemall state of the game
including: the available cash, i.e. initial capitainus expenditures plus incomes;
total expenditures, e.g. overhead cost per hourkeve' salaries, machines cost per
hour, storage cost per hour, among others; totanes, e.g. sales of machines,

equipment and parts; and total profit, i.e. incomm@sus expenditures.

1.6. Outline

The next chapters of this document are organizetblasvs: Chapter 2 describes
related works in the area of educational gamesptéhd8 describes the most important
information about the factory features. Chapter eéctdbes technologies used in this
application. Chapter 5 relates the software requarg specifications. Chapter 6 provides
detailed information about software design desiamptbased in [5]. Chapter 7 software
integration and testing, and is based in [6], [AH d8]. Finally, Chapter 8 presents

conclusions and recommendations.

2. RELATED WORK

This section presents related works about educdtigames regarding the immune
system and training of crisis managers. Also, ostadies about the use of games as a

teaching tool in the school, university or related.

2.1. How to Build Serious Games

The computer game “Immune Attack” was created byeam of computer
programmers as a serious science-based game [higl.gime combined a realistic 3D
depiction of biological structure and function diet human body with educational
technologies to teach immunology to high school aalege freshmen. As part of this
experience, the developers describe the proces®ating a serious game as a challenging
endeavor, as it has to satisfy experts and novitele addressing deeply held pedagogical
assumptions, distinct expert viewpoints, integratmf gameplay and learning content,

among others.

2.2. Games for Science and Engineering Education

The United States has a relatively small percentafjeengineering graduates
compared to other developing nations, a statiiat ts attributed to the perception that
science and engineering is a boring course of stdde author suggests that this
perception can be changed if computer programsised to teach science and engineering
topics, from kindergarten through grade twelve,cemaging more students to continue

college studies in these fields [18].

2.3. Pandora-Box project

Crisis management prevents emergency situatioma froning into disasters and
training plays an important role in preparing thisis manager. In order to achieve this, the
Pandora project [19] assists crisis managers’ itrgirusing innovative technology. In
particular, it is creating a tool that collaboratath traditional training methods to generate
and to improve decision-making skills for traineitsshows three important aspects: (a) a
novel use of timeline based planning as the cament in a dynamic training environment
for crisis managers; (b) a continuous loop of plagnexecution, and plan adaptation is
created to support personalized training; (c¢) anérais provided with a set of
functionalities that allow him/her to maintain aadapt a “lesson plan” as the basis for the

interaction between him/her and the involved trame

2.4. Serious computer games as instructional technology

The potential value of serious computer gamesdarning seems high, but there is
still some degree of resistance to the use of gamesclassroom. A reasonable way to
convince teachers to use games as a teaching sotirough pedagogy, connecting
elements of existing game designs with acceptedilegand instructional theories. At the
Faculty of Education of the University of Ljubljgniéie serious game TimeMesh [20] has
been developed in the framework of the Comeniugmamame. The game is intended to be
used for learning history in primary and secondsufyools, but at the same time students
learn about different cultures and social relationg&urope in different historical periods.
Research results show increasing students’ mativand their interest for topics covered

by the game. On the other hand, some teachers toonwpletely agree to use serious

games because games can be too time-consumingdaon & classroom; however, they are

willing to present the games as a home-based legadgtivity.

3. OVERVIEW OF THE GAMING EXPERIENCE

3.1. Introduction

The main objective of this chapter is to explaie thame development from a
different technical approach. This chapter dendifferent IE concepts that the user should
learn or notice during the game, initial settings édach game level, controls available for
the user, and game goals. It outlines the diffeaetivities during the game, the meaning of
the process flowchart, different costs involvedmian resource management, inventory

control in the factory, production operations, #mel use of probability distributions.

3.2. Educational Concepts

3.2.1. Activities

The game summarizes the daily activities of théofgcin four (4) main activities:
purchase, transport, operation, and shipping. Thebaties are executed constantly during
the game, and depending on the activities the reopgnts vary, as shown in Table 3-1.
The number for each kind of activity varies depagdin the level. Also, early levels will

be easier than later levels which have more a&svit

Table 3-1: Requirements for each kind of activity

Activity Validation Process — Step by Step

1. Partinventory + UnitsToArrive < OrderPoint

2. StationInventory + UnitsToArrive + OrderQuantity <
StationCapacity

3. OrderQuantity X PartPrice < CurrentMoney

Purchase

1. Available qualified operator & available transpequipment

Transport
2. EndStationInventory + UnitsToArrive + PartsToMove <

10

EndStationCapacity
InitialStationInventory — UnitsToRemove = PartsToMove
Available slot in initial/end station, if required

Available qualified operator & available machine
StationInventory + UnitsToArrive + PartsToProduce <
StationCapacity

3. PartRequired X QuantityRequired < PartInventory —
PartsToRemove

Operation

ISR B~ W

1. Next order required

Shipping
2. Stationlnventory = OrderQuantityRequired

The game allows players to change parameters foe sactivities in order to get a
desired result. Purchase activity allows changimg teorder point, order quantity, and
supplier. Transport activity allows changing thecaimt of parts to be transported, or unit
load. Other activities will not allow changing apgarameter, for example the operation
activity will produce the same amount of parts thawe been set, and the shipping activity
will ship the number of parts required in the wagtiorder. In the operation activity the
player can determine the number of machines avaiEbwell as number of operators and

their respective skills.

3.2.2. Process Flowchart

Figure 3-1 represents the set of activities thatuoén the factory using a process
flow symbols. It allows the player to get a genenadlerstanding of the game, in particular
the flow of materials. Each game level has a padicprocess flowchart. For example
Figure 3-1 shows the hardest level with multiplansport activities and assembly

processes.

11

Figure 3-1: Example of game process flowchart

The squares represent stations; triangles denetdiffierent type of storages (i.e. raw
material, work in process, and finished goods); aidles represent the assembly and
cutting process. In the Figure 3-1, three differgants are moved from thieceiving station
to theraw material storage Then two parts are moved to tfiest assembly statignto
create one intermediate part that is stored inwtbek in process storageéifter that, this
part and the part three are moved togbeond assembly statiém create the final product
that is stored in th&nished goods storagd-inally, once an order is received, this product

iIs moved to thelispatch station

3.2.3. Costs

This game manages different costs in order to mthecrealities in a factory. Figure

3-2 shows the summary of expenditures and incoamesthe costs include:

0 Storage stations. It includes raw material, workprocess and finished goods

station. Each of them has a limited number of sldépending of their station size.

12

The player will choose the number of available slabd will pay a fee per hour
even if they are not in use.

Workers. Once the game starts, the player will sedbe number of workers to hire
and will also be able to fire some or all of theéBoth processes will incur in costs,
meaning that the player will spend money hiring &ndg workers. Workers will
be paid an hourly salary which will depend on therker’s skills, including:
Material Handler, Machine Operator, and Versatile.

Machine and equipment. The game allows the playdruly and sell the available
machines and equipment as the player wishes. Alsost per hour will be charged
for machine and equipment usage, and after a oetiaie these will require
preventive maintenance, otherwise they will breawmnl This maintenance implies
another cost, so the player will choose betweelngahis cost, continue working,
or wait a few minutes for automatic repair. Morepuwbe machine or equipment
will have a depreciation cost that will impact gl price.

Supplier. The game will provide the player a lissappliers to be selected to start
the process, the first step is to purchase rawnmagtas shown in Figure 3-1 above.
The cost of the raw material will depend on theesteld supplier and the order
qguantity. Each supplier's catalog for a specifiatpgarovides three (3) different
prices based on time to receive the order.

Overhead. This is an average cost per hour th&tdas an ongoing expense of
operating the factory, for example: gas, elecyjctaxes, telephone bills, other

wages, etc.

13

o Part. Product sale is the last process and doeguadify as a cost, as shown in
Figure 3-2 below. It is important because withduis tstep the factory will go

bankrupt as soon as the costs are higher thamnitred capital.

Overall

Available Cash: usD 2,728.95
= Total Expenditures: USD @,271.05)
Overhead Cost/Hour: USD (530.00)
Operator Cost/Hour: USD (724.32)
Operator Hire: uUsD (0.00)
Operator Fire: usD (0.00)
Machine Cost/Hour: USD (0.35)
Machine Purchase: USD (0.00)
Machine PM: usD (0.00)
Equipment Cost/Hour USD (10.30)

Equipment Purchase: USD (0.00)
Equipment PM: uUsSD (0.00)
Storage Cost/Hour: USD (446.08)
Part Purchase: UsD (560.00)
= Total Incomes: usD 0.00

Machine Sale: usD 0.00
Equipment Sale: usD 0.00
Part Sale: UsD 0.00
Total Profit: USD (2,271.05)

Refresh

Figure 3-2: Game overall — summary of expenditaresincomes

3.2.4. Human Resources Management

The management of the workers is an important faotthe game. Hiring or firing
workers increases or decreases the production niéhd goods, and therefore the
fulfillment of the arriving orders. In addition,rimng workers involves choosing a role type
for each worker. As we mentioned above, there faeet(3) types: Material Handler, who
uses equipment (i.e. hand trolleys) to transpartispend products in the factory; operators,
who work directly with production; and versatile nkers that can perform both roles. Also,

it is important for the player to control how mangrkers of each type to have since it has

14

a direct impact on productivity and increases cdsgure 3-3 shows the two ways to hire

and fire workers, and deciding the worker’s role.

Characters Active/Inactive X Operator 1 (Hired)

Operators: 6/8 « i » Hirex6: $(600.00) Operator ID: 1
Name: Pepe

Fire
-Operator: ~ - Hire/Fire Cost: USD 100.00/ 250.00
-Versatile: - ~ Status: ldle

Machines: - Buyx2: $ (800.00) Category:

-MatHandler: 2 « » Firex0: $0.00

Sell x 0: $0.00 Current Location: (-15,-335)
Equipment: Buy x4: $ (400.00) Speed: 30.0
Sell x 0: $0.00 Material Handler Salary/Hour: USD 7.00
Total : $ (1,800.00) Operator Salary/Hour: USD 10.00
Versatile Salary/Hour: USD 12.00
Current Salary/Hour: USD 7.00
Update Earned Money: USD 0.00

Figure 3-3: Hire/fire workers using general vieef{) or specific view (right)

3.2.5. Inventory Control

The ease of use of the game allows the player tovkat every moment the exact
amount of inventory for each part or product. Tdasne feature is available to the player as
a general inventory for the part, which can be tbimthe Part window, or an inventory for
a specific station, or it can be found in the reicej dock located in the receiving zone. In
addition, the inventory in a specific storage stat{i.e. raw material, work in process,
finished goods) is different from the receiving Hobecause the storage stations are
controlled through slots available and is not lediby part types, as shown in Figure 3-4,

as opposed to the receiving dock which limits capamnd type of part.

However, the effective management of inventory mdntequires an adequate
knowledge of inventories for different types ofiaities. For example, the reorder point

and order quantity for purchase activity, the dodtd for transport activity, the amount of

15

required parts for the operation activity, and #mount of finished goods to fulfill the

orders for shipping activity.

Station 2 - StorageRM

Stations list: Station ID: 4
Description: Raw Material Storage
Slot Cost/Hour: USD 0.50
Selected Slots: 28/56 « Ll ~
Slot Total Cost/Hour: USD 14.00
Current Total Cost: USD 0.00
Current Slot Usage: 0/28

Slots Summary

Empty
Part Two
Part Five
Part Four
PartOne
Part Three

Update

Figure 3-4: Raw Material Storage — three diffengauts

3.2.6. Production Operations

Currently the game supports two kinds of operatiangting and assembly. Both
processes (example shown in Figure 3-5) can bedfonndifferent game levels. Each
process produces as many parts as it is specifidgidei operation activity and requires an

adequate machine and a skilled operator.

Figure 3-5: Assembly process

16

3.2.7. Probability Distributions and Timing

The use of statistical distributions is importamtthe game development process, in

order to achieve results that are as realistic assiple. Uniform and exponential

distributions are used as part of some elementierfactory, e.g. machine time between

failures, equipment repair times, and order shigmermMoreover, these statistical

distributions allow calculating different equations order to obtain a specific time to

execute some steps of many activities. Finallyeo#guations only require constant values

to get different times for each execution. Tab §hows the detailed equations.

Table 3-2: Equations to obtain different times acle activity

Activity Sub-Activity Equation
Operation Machine time Time = quantity X factorMachine X timeToCompleteTask
Time between failures Time = Exponential(x)
Repair time Time = Uniform(x, y)

Transport

Pick up./ Placement Time = quantity X timeToCompleteTask X factorOperator

time
Operation T T ; o
and Walk alone ime = (speed) X factorOperator
Transport
distance
Transport Walk_ 'Oade‘?'/ unloaded e — (———) X factorOperator X factorEquipment
with equipment speed

Shipping | Time to ship the orde| Time = Uniform(x, y)

speed = constant
timeToCompleteTask = constant
factorOperator = Uniform(x, y)
factorEquipment = Uniform(x,y)

factorMachine = Uniform(x,y)

17

3.3. Initial Settings

The initial settings process is comprised of sixdiferent steps, where the first four
are required and the last two are optional, as shiowFigure 6-23. During the setting
process, the user must know that some steps inaosts, for example step 1, 2, and 4. In
the first step, the user will hire some workerg] arnll buy some machines and equipment.
Also, he/she will need to choose the role for eaolker. The second step allows allocating
a quantity of slots for storages. In case the slotdfilled, then the game will not be able to
store more parts until some slots are releasedthittestep indicates the quantity of parts
or products to be moved from one station to anothiee fourth step denotes the reorder
point and the order quantity of raw material to ttext purchase. Optional steps are not
necessary to be setup, given that the game calayedpwithout them. Fifth step allows the
user to assign one or more workers to one or nuirétées. The last step allows modifying

the execution priority for each type of activity.

Once the player has started a new game, he oriflhesed to setup some features of
the game to start playing it. This game releasgiges two (2) ways to adjust settings: (1)
the “default setup” button or automatic configusatias shown in Figure 6-23, lets novice
players to focus on the game instead of setup éhturfes; (2) the manual configuration
allows expert users or user with some game knowlédgetup the game features as they

desire.

3.4. Game Controls and Strategies

The game provides a set of controls that allowsisemanage the game in different

ways, and to obtain many results as possible. Sam#&ols are implemented to execute

18

several tasks at same time but giving fewer detgilsut each task. Others give more
information and execute each task independentburEi3-3 shows the “Resource” screen
at the left, which allows the user to hire/fire Wwers and buy/sell machines and
equipments, and the “Operator” screen at the righich shows detailed information of the

operator and allows hiring or firing this curremterator.

In accordance with the wide range of options totrnthe game, the user can
implement different strategies to obtain diverssults. One strategy can be to use the least
amount of workers, machine and equipment. Thigegfyamay not generate much profit
but could win the game. However, another strategyicc be fulfilling every order as
possible, regardless the quantity of workers hiradd the amount of machines and
equipment purchased. Therefore, the more the Uags,ithe more strategies the user could

implement.

3.5. Game Goals

The main goal to win the game is to fulfill as mamygers as are required without
going to bankruptcy, where the quantity of ordessies depending of the game level.
Another goal is to earn the most profit as possiblth the least usage of workers,
machines and equipment. A final objective but nsslémportant is learning Industrial

Engineering concepts through play, given that &n educational game.

19

4. DEVELOPMENT PLATFORM

The project aims to provide a video game that teresible, portable, and efficient. In
order to achieve these goals, open-source softwaseused for the game engine, discrete

event engine, and database.

4.1. Java SE 6

Java [9] is used as the programming language dubetdeatures and facilities it
provides to support Object-Oriented programmingtd®ulity is one of the features in Java
which does not require that the program be devedlasing Windows OS. In order to take
advantage of this feature, the game as a prodwtlesto be executed in every platform,

e.g. Mac OS, Linux and Windows.

4.2. IMonkeyEngine 3.0 SDK RC2

This is the current version of the game engineal$ rewritten from the ground up to
accommodate modern standards in game developmeist.n€w version is only 2 years
old, but it reuses the best pieces of code andgrestice from many generations of Java

game programming [10].

However, currently there are many game enginesludimy commercial and
freeware. For example, Unity [24] has both versiand allows creating game for web,
mobile and game consoles. UDK (Unreal Developmaitit [R5] is freeware. GameStart
2D/3D [26] is freeware, allows creating multi-platih games, and is based on C++.
Cocos2d [27] is an open source 2D game framewaodknauti-platform. However, before

starting the game development, it is importantriovk something about each game engine

20

available, given that each one has pros and cdresefore, once you know the category of

your game, then you should decide the game engine.

4.3. Nifty GUI 1.3.2

This Java library creates interactive user inter$aand is well integrated into many
existing rendering systems (JME3, JME2, LWJGL, JOSIick2D and even Java2D). The
actual GUI is stored in XML files or it can be cire directly from Java. Java is used to
respond to events generated by the GUI and to makg GUI to reflect changes in the
state of your application. Additionally there idamge set of effects available that can be

used to modify the appearance of the GUI. [11]

4.4. MySQL Database

MySQL is the world’s most popular open source retal database management
system (RDBMS) that runs as a server providing irusker access to a number of
databases. It provides high scalability and peréoroe. There is also a free MySQL
Workbench (GUI Tool) available, that can be usedetficiently design, manage, and
document database schemata [12]. This databasesed im the game as the remote

database.

4.5. SQLite Database

SQLite is a software library that implements a -selfitained, serverless, zero-
configuration, transactional SQL database engiQg.ite is the most widely deployed SQL

database engine in the world [13]. In the proj#us database is used as the local database,

21

which means each game instance will contain SQlatabase as an extra file but it will act

as an engine.

4.6. SimPack Discrete Event Engine

SimPack is a collection of routines and programmsconputer simulation developed
by Dr. Paul Fishwick [15] from the Department ofr@Qauter and Information Science and
Engineering at the University of Florida. The sauof SimPack is Open Source under a
Gnu Public License (GPL). It has a version in Ctt &lso a later version in Java which is
the one that was finally adopted for the game. déasion was made because it would be
easier to develop the code using the selected gagi@e, JMonkey, which provided the

opportunity to be OS platform-independent sings written in Java.

4.7. Artificial Intelligence — A* search algorithm

It is a computer algorithm that is widely used athdinding and graph traversal, the
process of plotting an efficiently traversable ph#iween points, called nodes. Noted for
its performance and accuracy, it is widely usedusés a best-first search and finds a least-
cost path from a given initial node to one goal em@dut of one or more possible goals)
[16]. In the project, it is used to find the pasiet(of pixels) of the transport activity, from

one station to another.

22

5. SOFTWARE REQUIREMENT SPECIFICATIONS

5.1. Introduction

5.1.1. Purpose

The purpose of this chapter is to give a completedption of the Factory Game. It
will explain the features, interfaces, performameel development requirements of this
game. The chapter structure shown below is basedhenlEEE standards [4]. It is
supplemented by the software design descriptionthedsoftware integration and testing

chapters.

5.1.2. Project Scope

This game is a cross-platform application thatvedloa single player to improve
his/her understanding of some IE core concepts ahér problem-solving skills in
complex unstructured problems. This software reléasavailable only for personal and
desktop computers. It provides the user automagtitates, managed through different
synchronized databases, i.e. a remote databasesénvar and a local database for each
user. The game has been built with a 3D game erggidecontains several controls (i.e.
game variables) to achieve different results. Inegal, it focuses on providing an easy to

play, and a realistic playing experience.

23

5.2. External Interface Requirements

5.2.1. User Interfaces

5.2.1.1.Login and Create New User

The login process is the introductory screen ingame to further use other features.
In case the player does not have a “registered,us®ishe must go to the screen “create a
new user”. This screen should be filled thorouglihd requires some user information,
which is essential to know the player’'s profiles@lthe password is created automatically
and sent to the email registered. This last proediéslso validate the authenticity of the

email. Screens are implemented using Nifty GUI casat

5.2.1.2.Main Menu

The game provides the user a list of principal @@ien el main menu, e.g. new
game, profile, options, user manual, credits, dwitser and quit game. Once the player
clicks on “new game”, it will change to a new sereshowing the list of games available,
with appropriate information about the status o€hegame level, scores, number of
attempts, description and others. The “profile” tbat will redirect to another screen,
allowing to the player to change his or her usefiler. The “options” button will open a
new screen, where it allows the player to adjusiingeto their specifications: “sound”
option will allow enabling and disabling the soufidontrols” option will allow changing
the hot keys established; finally “screen” optioill @nable the user to change the screen
size resolution and full-screen resolution. Theetusnanual” button will open a web

browser, loading the user manual with definitiohthe game and examples to learn it. The

24

“credits” button will show information about thear® who developed the game, also

referencing to the NSF support. These screensrgrieimented using Nifty GUI controls.

5.2.1.3.Game Environment and Controls

The main user interface is the game environmergngthat it will show the factory
with 3D graphics design, moving every graphic elemm accordance to the game
activities, and with several controls, allowing thlayer to take control of the game. This
development is integrated with the Nifty GUI ane ttMonkey engine which means that
the user will interact with both. For example: @etions taken by Nifty GUI controls are
reflected in the game environment (i.e. JIMonkeyireg)g The 3D graphic design shown in

the game environment was designed by the art teaaded by Professor Felix A. Zapata.

Game development is not only a set of visual objaad controls; it requires a set of
sounds that should be played in different momeuntsd the game. For example, the game
will have a background music that can be disaldedhe activities like “processing a new
part” will have an assonantal sound according #wtofy machine used; equipment breaks
will have another sound, and so on. Most soundd usthe game have been found free on

the Internet, except of the background music, wiaek provided by the music team.

5.2.1.4.Pop-up Windows

The use of pop-ups in the game has been appliskdoas below:

o Starting the game. Once the game starts it wilwsagop-up that will synchronize the

game data between the remote and local databases.

25

o0 Login user. Once the user is logged into the gammejll show a pop-up that will
synchronize the user data between both databases.

o Quit game. When the user clicks on the “quit garbetton, the game will show a
warning before the game closes.

0 Win/Lost game. Even if, the user wins or lost a gaimhwill show a pop-up with the

” “

game statistics and some options like: “restantieXt game”, “quit game”, among

others.

5.2.2. Hardware Interfaces

5.2.2.1. Multi-platforms

This game version is a desktop application, desigiee be played correctly in

different platforms, for example:

o Windows: version XP, 7 and 8.
0 Mac OS: version Lion and Mountain Lion

o Linux: different distributions, e.g. Ubuntu, Mirgnd Fedora.

5.2.2.2. Graphic Library

The game development uses OpenGL library [14] toabke to show different
graphics animations and 3D designs, and also bedassipports multi-platform API for
rendering 2D and 3D computer graphics, that is ueedteract with a GPU, to achieve
hardware-accelerated rendering. Currently, thetprs in the version 4.3 but in order to
run this game in computers with standard and oégblgic cards, the game should use the

version 1.1.

26

5.2.2.3.Computer Devices

Playing this game requires a mouse and a keyb@dasimouse device will allow the
player to move in the game environment, click omesal game objects, and click on
different menu buttons. The keyboard device enalies user mainly to two main
objectives: game login and for the use of hot keysnmove the game camera. Other

computer devices are not allowed in this game.
5.2.3. Software Interfaces

5.2.3.1.Databases

The game uses two different relational databasearfaappropriate management of
the game and user data. In the user machine, ome gastance stores the gaming
application data and user data in a local datahesseg the SQLite relational database. The
connection with this database is done by a singhmection string, using a singleton design
pattern [21] that aims to decrease the excessigeotismemory. This connection must be

fully configurable, so it could be updated remotely

Moreover MySQL database is installed in a servechimee to collect user data and to
store the latest version of each gaming level. Tatabase instance could be managed
through the MySQL Workbench 5.2 application or MySQommand Line application by

the user administrator.

5.2.3.2.Main Libraries

Different libraries are used as part of game dgweknt. The discrete event machine

called SimPack is used to schedule all activitiesnd) the game. The Nifty GUI library

27

will allow the player to control the game througéveral graphical controls. The use of A*
algorithm [16], that manages an internal matrix elody the game environment, provides
the game engine the path on route between any dwdspn the factory. This algorithm is
executed only when is necessary, given that itstée many resources like memory RAM

and CPU clock cycles.
5.2.4. Communications Interface

5.2.4.1.Database Synchronization

The synchronization process between many SQLitabdae instances (i.e. client
side) and one MySQL instance (i.e. server sidd)takle different steps. First, it starts each
time the player executes the application, so tlemtkide must have an access key (i.e. user
and password). Second, the server will have tleavéi port access open but only will
allow secured and verified access. Third and fynahe access in the database must be
restricted and limited, allowing only the executminsome queries, e.g. select, update, and

insert statements; and modifying data of its curuser.

5.2.4.2. Communication Protocols

The process of registering a new user will invabending an e-mail with the new
password generated. In order to achieve that, SMillPbe used with previous settings
stored in an encrypted file located in the playecchine. For future changes, it could be

updated through the database sync process or wiglvagame version.

28

The database synchronization process mentioneceabitvuse the TCP/IP protocol
and default port number 3306, which are the comomes in MySQL database. Also, this

information will be stored in an encrypted file fech player machine.

5.3. Software Features

This stage in the software development life cy@e been a challenging work for the
team. The features have been adding, reducing¢laauging constantly during this whole
process, given the lack of experience developingegabut fortunately the software

specifications have been established, and these are

0 Synchronization process.This feature will be executed through differenpags as
mentioned in Section 4.2.1.4 (i.e. starting the gamd login user). Also, once the user
finishes one game level, the game engine shouldygdri this sync
process as mentioned in Section 4.5. More dethitgitathe synchronization process,
can be found in Section 4.2.4.1.

o User Profile. A new user will be required to fill the registi@ti screen as mentioned in
the Section 4.2.1.1. This screen contains sigmfideelds in order to use this user
information for future studies. These fields wié:lmame, last name, gender, status (i.e.
undergraduate student, graduate student, corp@mateg others), degree, country and
email. Once the new player completes it, he orsttmld receive a message with the
new password in the email account.

o Main Menu. This feature will be a screen that centralizes dtiterent ways that a

player can move in the game. The “New Game” bustbould be the most valuable

29

option to the player. For more details about thexmand the game list could be found
in Section 4.2.1.2.

Game Environment. This feature is the most notable graphically beeathe
environment is based on a factory, and each gawe leill be played in that
environment. Moreover, the factory should show pv@erator (i.e. material handler,
line operator, and versatile), every machine andpegent, and all the different parts
that are enrolled for each game level. Finallyrewbject contained in the environment
should be animated according to actions that tee iggaken.

GUI Controls. This set of controls allows the user to take tbetol of the game. It
means if the user sets up controls in some way,gme environment will show
graphics changes and statistical changes (i.ectadffe costs, fulfilling or missing

orders, among others). The list of the controls are

Play and pause button.

Time slider. The control should increase and dessrélae game speed.
» Clock for the game, and a timer for "next order"dad "next purchase".
» Game setup screen. Required configuration befarérgg the game
* Overall screen. It should show costs detailed.
» Order screen. It should show arriving orders wishdetails
* Game log screen. Every notable activity is showthis screen
» List of main buttons:
= Control option
» Allocate storages screenCan be used to allocate an amount of

slots available for each stock. It should entaitasts.

30

Assign operators screenCan be used to assign operators to one
or more activities, depending of the role required.

Priority activities screen. Can be used to prioritize the sequence
of activities execution.

Resources screenCan be used to hire and fire operators, and to
choose the function for each one. Also, to buy seltimachines
and equipment.

Unit load screen Can be used to set the quantity of parts to be

moved during each transport activity.

Activities option

Purchase screenCan be used to set the reorder point and order
guantity, and to choose the desired supplier.

Operation screen Can be used to change the quantity of parts to
assemble or process.

Transport screen Can be used to set the quantity of parts to

move during one transport activity.

Utilities option

Station screen Only stations qualified as storages will allow
changing the quantity of storage slots availabieother type of
stations this screen should be read-only.

Machine and Equipment screen Can be used to buy, sell
machines, or to make preventive maintenances, whwirs in

additional costs. The screen also shows someatriibormation

31

such as percentage of depreciation, cost per Ipaucentage of
availability, percentage of usage, among others.

» Operator screen Can be used to hire and fire operators, and to
update the functions carried out by the operators.

 Part screen. This screen is read-only and showscatri
information about the part such as type of unitrent stock,
price for sale, and assembly parts required.

» Supplier screen. This screen is read-only and shofgsmation
about the supplier and its catalogue of parts ditferent prices.
These prices are according to the quantity of iteeegsiired by

the factory.

5.4. Design Constraints

In accordance that this is an educational game,itan@rget audience is Industrial
Engineering freshman students, the wording is ¢isgém the design of user interfaces. For

example, labels and messages shown in differeeéssrshould use technical words.

For this current game version, the design of usterfiaces will use the default style
that comes in the game engine. However, in a futetease, the design should be

customized and the game should allow the userttiv sp.

5.5. Database Requirements

The communication with the remote database mustope only per request, which

means: (1) open connection, (2) perform requiregryjuand (3) close connection. It should

32

not keep logged with MySQL, and connections shdagddone only for synchronization

purposes.

In user machine, the connection with SQLite willdmne at the following instances:
(1) when the player starts the application, it Wild the list of game levels for the current
player. (2) When the player clicks on the button“$fart Game”, then the engine will
gather all data required for this game level. Bin@) it will happen each time that the
game level finishes, winning or losing and the gaewmgine should update the

corresponding user records.
5.6. Software System Attributes

5.6.1. Reliability

To ensure reliability in the game, the user dabeesk in the remote database must be
of real players. This is accomplished during thecpss of creating a new user, given that
the game will require an email, which will be validd through sending a message to this
email, attaching the new generated password bgdh® engine. Once the player receives
this password to his or her email account, he @ whil be able to start playing.
Furthermore, the user account automatically shbalactivated the first time the user logs
in. On the other side, the game server will vakdatery few days that if some user account

has not been activated for some time, it shouldrbpped.

5.6.2. Availability

Once the player has downloaded and installed theegéhe next step is to create a

new user account. This process will require anrietieconnection because the software

33

should synchronize the user data provided to adaiglicated user names. So the game
server should be available at all times. Otherwisee new user will be allowed to play the

game.

Furthermore, other steps in the synchronizatiorcgss will include game data and
user data synchronization. If the remote serveotsavailable, it will not be able to get the

current user data, and users will not have newldesvad/or updated levels.

5.6.3. Security

The security in the game was considered in diffestages. When someone tries to
play, the game should require a username and peasswoch should be registered in the
remote database. Therefore only registered usdrdeviallowed playing, thus ensuring

validated access to the game.

Additionally, the user data gotten in the proces&eating a new user” and through
the game should be serialized and encrypted befergling to the remote database.
Therefore, the game assures protection data ofyexsar. Furthermore, when some game
instance tries to access the remote databasepuldsbe with a username and password
different than the current user keys, which shdwdprovided in the game development

process.

5.6.4. Maintainability

Currently, this game version is the first releasailable to everybody, but

continuously it will have further versions with ingvements done. For future releases, it

34

should be based on fixed bugs, provide better geapibjects (i.e. animations and design),

and improve game performance.

Moreover, on the server side, it is managed byea administrator who will be in
charge of incorporating new game levels, updatingrent game levels, collecting
statistical data users, among others. Finally, tber should update the new installer of the

game where it is hosted.

5.6.5. Portability

In order to allow the game to be played in differptatforms (i.e. Windows, Mac
OS, and Linux) it has been developed using the Iavguage programming. Java also

facilitates creating an installer for each platform

5.6.6. Performance

Given that currently most of the new computers hpegerful components, as
graphic cards, memories, and processors, gamerpenice should not be a major issue.
However, there are still computers with old compdsghat will not allow the game to run,
or difficulties may occur making the game run slowihe game should be continuously

improved to make the experience enjoyable, regssdieéthe hardware.

35

6. SOFTWARE DESIGN DESCRIPTION

6.1. System Architectural Design

6.1.1. System Overview

The development of the proposed game will folloe flystem architecture shown in
Figure 6-1. This architecture is comprised of fawain tiers (layers) each having specific
functions. (1) The presentation layer; provides drephical user interface (GUI). (2) The
business layer; which contains and controls théaat intelligence algorithm, the discrete
event engine, input manager, sound engine, graptgse, and game engine. (3) The data
access layer; provides simplified access to dateedtin persistent storage. (4) The data

source; stores the set of tables and routinegyahes logic and the user data.

Presentation Business Data Access Data
Layer Layer Layer Source

) Display ¢ (;::gl’i:':
SEEIN T L
Z N

P\ (\

I G Engi C Game Logic
L)| Keyboard [T—7) M::a“‘" Game Engine A
) ’ 4 il N User Dat @D
e
> Sound

Speakers (r_ Engine

Discrete Event

Engine
(SimPack)

o y y

Figure 6-1: Overview of the game architecture

6.1.2. Presentation Layer

This is the top layer in the architecture, anchis éne the user will interact with. On

this layer the user will log into the applicatisgelect the game that will be played, and

36

begin playing the first levels of the game. Additidly, the user will be able to complete

the initial configuration of the game or choose=fadlt configuration.

Representation layer uses the Nifty GUI libraryisThava library provides a set of
tools to implement each visible element that theygt will use (e.g. window, panel, text
field, label, dropdown, list and other controlsgn× the controls available on this
library are not enough to give the user the flditibidesired. Since the library is open

source new tools can be incorporated to achievmproved new experience.

The presentation layer also incorporates the gecaplements that make up the
gaming stage such as: world, workshop, stationghinas, equipment, parts, buckets,
operators and their associated animations. Thepta$on layer is mostly managed by the

JMonkey game engine [10].

6.1.3. Business Layer

The business layer is the most important one bec&u®ntains the core elements of
the game. It serves as the interface between #septation layer and the data layer. The
presentation layer processes the user actions émand/or keyboard events), and sends
these events to the game engine through the inpnager. Depending on the action, the
game engine will call the data layer to carry dwe torresponding process. For example,
Figure 6-2 depicts a UML sequence diagram [22] wlih process required to start a new

game. The diagram includes the interactions betwreedifferent layers.

37

% Presentation Layer) Business Layer J Data Access Layer J Data Source

Mouse Keyboard | |Display | |Speakers Input Manager | | Graphic Engine | | Sound Engine | | Game Engine Game Logic User Data

A: Player

iL: startfiewGame()! 2i: startNewGame() L
E E E bl [3. runNewGame() .

[11f: returnUserData

...........................

: ; : : > :
5 E 5 5 1 5: getlsdrData() & :
E E E 5 6 : getGamelogic]
E E E 5 57 : getUsprDa
83 return'pameDau
: : : : e 19 returhUserDats
: : : A 110 : returpGameData | f :
z s s s T
H H H 112 : returnNewGameDataGraphics |
s s s i<
: E 14: ser amebata
4 :45.... A S p—— |
16 sHo'A-NewGa%eAmmahons '

T fEesmmaaey : 15 : sendNewGameSourid

17 : playhlewGameSounds

Figure 6-2: UML Sequence diagram — start a new game

In this layer we apply the “strategy design patt¢2d] in order to manage each type
of activity. This pattern allows us to achieve antainable, scalable and high performance
application. Additionally, an artificial intellige® algorithm called A* (A Star) [16] will be
used in order to find the shortest path between demgraphical locations in the factory.
For instance, when a transport activity occurs, filitls the path between the initial and

final stations to move the requested part.

The business layer will create as many threadeesssary to allow the presentation
layer to show a concurrent animation of being pickp and movements at parts around the
plant. Also, the business layer contains a disoegtnt engine called SimPack, which is
used to manage the events in the game. For exafipl@e use a periodic event managed

by SimPack to validate and execute all the avasladitivities that are obtained from the

38

database; (2) when the game engine executes aiityadti schedules a future event in
SimPack queue [15], and it must finish in some Bjgetime to release any resources

locked and make them available to other events.

6.1.4. Data Access Layer

This bottom layer serves as the middleware betweempplication and the database.
Whenever the application wants to run a new gamndrout something about a user, it
calls this layer to access the database and rettie® required information. The layer
applies the “facade design pattern,” [21] in orttersimplify the complexity when other
classes try to obtain all the information storedha database. The “singleton pattern” is
used when a class requires a large amount of meraody network to manage the

information of the database.

The game database will be completely designed anlt ib the MySQL database
engine. It will contain the game actors for eacreleas well as the user data. When the
user completes a new phase, his or her profilpdated, so that the next time the game

runs it will start at the same point that the uséroff.

6.2. Game Activities based on Petri Nets Models

Given all the different types of activities thathche executed in a real factory, we
have summarized them into 4 different activitiesthe game. These activity types are:
purchase, transport, operation, and shipping. Taetéties allow us to execute a complete
production cycle beginning with the purchasing atmrage of raw materials, assembling

and storage the new product, and finally shippimfinished product.

39

At a conceptual level we have udedtri Net[28] to model these activities that will
be implemented in the game. Once we understoodpération of the activities, we created
a specific state machine for each activity whiclswlaen translated into Java code to be
incorporated in the game. Each step in the stathima represents a state in the Petri Net
model. For example, as shown in Figure 6-3, a @sehwill be completed if and only if the

validation was successful.

placePurchaseOrder
[<hechVabhdPurchasedPartiped))

pd

orderPoint(ptd)

MrvalOfPurchaseOrder
purchasediptd)

orderQuantity(ped)

purchasedMathinventory
Part

outBuchets
PartiaBuchet

public PurchaseStrategy(int idStrategy, E_Purchase purchase, GameEngine gameEngine) {

this.i y = jdScrategy:

this.data e = purchase;

this.gameE: = gameEngine;

this.gameD GameData.getInstance ()
a ar

rchase,.setStatus (Status. Idle);
hine = new StateMachine():

Figure 6-3: Purchase activity: Petri Net (top) dagla state machine (bottom)

40

inBuckets
PartinBucket

Q

|
getRawMatis(st.y) l

(op.st)

1" (chuito, tableSaw) + +
1" (pepe, miterSaw)

processing

operatoridie PartinProcess

OperatorAssigned

(op.st)

pantQtyProduced(y,st)

(y.0op.st)

. startOperation
QO [checkValidOperation(st.y))

. finishOperation

outBuckets
PartinBucket

consumed(y)

haveBucketSpace(y,st)

purchasedMatisinventory
Part

—

public OperationStrategy(int idStrategy, E_Operation operation, GameEngine gameEngine) {

this.idStrategy idStrategy’
this.dataOperation operation;
this.gameData GameData.getInstance ()
this.gameEngine = gameEngine;
this.setInitialPosition false;

stateMachine new StateMachine():

order of !

stateMachine.add("Validate");
stateMachine.add ("OperatorWalksTo");
stateMachine.add ("Execute”);
stateMachine.add ("Release");

Figure 6-4: Operation activity: Petri Net (top) alal/a state machine (bottom)

41

outBuckets
PartinBucket

emptyCettingload

OperatorCommisioned

pxckload

(ptm,op,from to)

PartinMovement

movingload

[checkValidMove(ptm, from.to)) |

1" (alex, miter
o - . dropload
op.to)
s3igr

idleAtDrop
perato ned

OperatorA
aveUnitLoad(ptm,to)

haveBucketSpace(ptm,to)

inBuckets
PartinBucket

— L
— =

public TransportStrategy(int idStrategy, E_TransportStore transport, GameEngine gameEngine) {
this.idStrategy = idStrategy’
this.dataTransport = transport;
this.gameEngine =
this.gameData = GameData.getInstance ():
this.dataTransport.setStatus (Status. Idle);
this.fromStationl i = null;
this.toStationLocation = null;

gameEngine;

stateMachine.

Figure 6-5: Transport activity: Petri Net (left)dadava state machine (right)

On the other hand, each game level has many diffeaetivities that have been

loaded from the database. Therefore, in order toaga them as efficiently as possible, we

developed the process of activity execution shawRigure 6-6, which is carried out by the

game engine, the discrete event machine plus sddigamal classes.

42

Game Engine

Game Loop

Schedule events

2. Return recurrent event

Discrete Event Machine
1. Schedule recurrent event

Activities List

’_I:

Purchase

3. Execute recurrent event

’_I:

Manage Activities Class
/ Transport
ExecuteActivities 4. Activities
{ —

Operation

’_I:

Shipping

Figure 6-6: Management of activities in Java

According to Figure 4 above, this process takete@ssto execute activities. First, the
game engine schedules a recurrent event in theetksevent machine. Second, once this
event finishes, the discrete event machine retiirttsthe game engine. Third, the engine
calls the method&xecuteActivities(in theManageActivitieslass. Fourth, this method tries
to execute the current step in the state machineaoh activity. For examplezalidate
requirements of a transport activity, reteaseresources of an operation activity. The same
activity can be executed many times simultaneoasly independently, depending of the

availability of resources that it requires.

43

6.3. Package Diagram and Design Patterns

This section shows the package diagram of the girojecluding the dependencies
among packages and the main classes in each padkadgo describes the three design

patterns which have been used in the developmeheajame.

6.3.1. Package Diagram

Figure 6-3 shows the relation between the princgmtkages in the game. These
packages have been organized as efficiently ashp@ds/ grouping together classes with
similar functionalities. Most packages have beemettged by the author, except for
SimPack and A* Pathfinding, which have been adafited the public domain with a few

customizations required for the game.

— 1
............... > AT .
strategy < Entity | Data

I B
A Utilities
. AT —
—" 3 Gaming [-.... /4
SimPack ’7' h > Threads

— ¥
A* Pathfinding I‘ Rifty Sul

Figure 6-7: Overall game — Package diagram

Various design patterns have been applied in theegan order to reduce the use of

excessive memory, which will be explained in upaognsections. However, thEhreads

44

package is used and instanced every time thatss @arequired, because these classes

control each independent graphic animation withdifi@rent thread.

The A* Pathfinding package is used each time the game engine needw® gath
between two different objects (e.g. an operator arathine, machine and station, an
operator and station, etc.) Tis@mPackpackage is instanced only once because it has to
manage all activities in process. T8&ategypackage manages all the different ongoing
activity in the current game level (e.g. purchas#iviies, transports manufacturing,
operations and shipments.) Finalljfty GUI package manages every screen and GUI

control available to the user. Table 6-1 showscthsses used from each package.

Table 6-1: Package diagram detailed

Package Classes
_ GameEngine GameData InputManager
Gaming _ _
OpeMaMovingTo | OperatorWalksTo | TerrainMap
CloseGame GameDataloading | UserDatalLoading
Threads _ o _ o
MachineAnimation| StationAnimation UpdateSlotsStorage
_ InitialMenu ForgotYourPasswor(NewGameMenu
Nifty GUI _ _
NewUserScreen | MainMenu OptionsMenu
ActivityControl AssignOperator CharactersControl

FlowChartControl | GameLogControl GameSetupControl

_ MachineControl | OperatorControl OrderControl
Nifty GUI Controls o
OverallControl PartControl PriorityControl
StationControl StorageCostControl| StorageStationContrgl

SupplierControl UnitLoadControl

o AStarHeuristic AStarPathFinder Path
A* Pathfinding

PathFinder TileMap ClosestHeuristic

45

SimPack FutureEventList Token SimEvent
PurchaseStrategy | ManageEvents OperationStrategy
Strategy . _
TransportStrategy | ShipStrategy StateMachine
D_Activity D_AssenblyDetails | D_Bucket
D_Catalog D_Game D_Machine
D_Operation D_Operator D_Order
D_Part D_Player D_Purchase
Data _ _ .
D_Ship D_Skill D_Station
D_Supplier D_Terrain D_TerrainReserved
D_ToUpdate D_Transport MySqglConn
SQLiteConn SQLiteUtilities
E_Activity E_AssemblyDetails | E_Bucket
E_Catalog E_Event E_Game
E_Machine E_Operation E_Operator
_ E_Order E_Part E_Player
Entity)
E_PlayerLog E_Purchase E_Ship
E_Skill E_Slot E_Station
E_Supplier E_Terrain E_TerrainReserved
E_ToUpdate E_Transport
Actions Direction Distributions
GameCategory GameSounds GameStatus
GameTables GameType MessageType
Messages ObjectState OperatorCategory
Utilities :
OrderStates Pair Params
PasswordGeneratorSendEmail SlotStatus
Sounds StationType Status
TypeActivity TypeElements Utils

46

6.3.2. Strategy Pattern

The strategy design pattern is used in the ganoertrol every activity during each
game level. The game manages four types of aesvipurchase, operation, transport and
shipping. These are represented by correspondesses$, one type of activity for each
class (Figure 6-4). However, since the game engélects an activity at runtime, these
activities should be encapsulated to make themrdnéegeable. The class called
ManageEventscontrols a list of such activities by means at iaterface called

EventStrategy

47

+validateResources()

+ validatePositions()

+ getPricePerPart(quantity)
+ executeAlgorithm()

+ releaseResources()

ManageEvents EventStrategy
- tokenEvent : TOKEN
- arrEvents : ArrayList<EventStrategy> + getType()
- gameData : GameData + getldActivity()
- gameEngine : GameEngine S —* getData()
- arrEventsinstances : 0.* |*+getStatus()
Map<Integer,Pair<Integer,Integer>> + getOpergtor()
- arrldActivities : ArrayList<Integer> | > + gethachine() G-
- comparator : Comparator<EventStrategy> + getStation()
+ loadEvent(movingAlong,
+ loadEvents() TOpemralor)
+releaseResourcesEvent) | ipmmmees it ::Ii as:g <5
+ setStrategy(tokenEvent)
+ executeEvent() + getStateMachine()
+ getArrEvents() + getPriorityQueue()
+ getEvent(idStrategy) : getldStrategy()
+ getEventByActivity(idActivity) updateStrategy()
implements
TransportStrategy OperationStrategy
- dataTransport: E_Transport - dataOperation : E_Operation
- curOperator : E_Operator - curStation : E_Station
. curMachine : E_Machine - curOperator : E_Operator
L fromStation : E_Station - curMachine : E_Machine I
 toStation - E_Station - gameEngine : GameEngine
- fromStationLocation : Pair<Integer,Integer= | i1 | 9ameData: GameData
- toStationLocation : Pair<Integer,Integer= -idStrategy - int ;
- gameEngine : GameEngine - stateMachine : StateMachine
- gameData : GameData - arrldOperatorSkilled : ArrayList<Integer=
- idStrategy : int - gameSound : GameSounds
- stateMachine : StateMachine + initialPosition()]
- arrldOperatorSkilled : ArrayList<Integer= +validateResources()
|+ validateResources() +validatePositions()
i+ validatePositions_OperatorWalksToMachine() + executeAlgorithm()
+ pickUpltems() +releaseResources()
i+ validatePositions_OperatorAndMachineWalkTostation
(stationLocation, isLoaded)
I+ placementitems() ‘ ' StateMachine
: g;’: ;:z:r: :r:;lt"or:‘dgmme(temp()pe, iempMachine) - states : Map<Integer,String>
- currentState : int
i+ releaseResources() . i1 JrrentStatus - Status (0_1
+ add(state) N
+ getState()
+ getStatelndex() 0.1
Purchase Strategy 0.1 1 Sl reset)
- dataPurchase : E_Purchase + update(uState)
- curStation : E_Station + getStatus()
- gameEngine : GameEngine + getStates()
- gameData : GameData
- partToBuy : E_Part
- bucket: E_Bucket - SnipStrlategy
- catalog : E_Catalog - dataShip : E_Ship
- idStrategy : int - curStation : E_Station
- stateMachine : StateMachine - bucket : E_Bucket :
- isFirstMachine : boolean - gameEngine : GameEngine
- tempOrderPoint : int - gameData :'GameData
- tempOrderQuantity : int - partToShip : E_Part

- idStrategy : int
- stateMachine : StateMachine
- order : E_Order

+ assignOrder()
+validateResources()
+ executeAlgorithm()
+releaseResources()

Figure 6-8: Strategy pattern — Class diagram

The class calledstateMachingwhich is related to every activity class, prowcde
configurable state machine for each activity, sieaeh activity invokes a unique sequence

of steps to be completed. For instance: a purchetbaty has three (3) states, i.e. validate,
48

execute and release. On the other hand, a trangptvity has seven (7) states, i.e.
validate, operator walks to machine, operator aadhime walk to initial station, operator
loads items into machine, operator and machine walknal station, operator unloads

machine, and operator release machine.

6.3.3. Facade Pattern

A design pattern could be composed of many clagsgswhat matters is these
classes are structured and how they work togethsolte a problem. In a complex system
(i.e. many different classes with many functiongjch requires performing a function, it
will need to call each class required. In orderatmid this, we use the facade design

pattern, which provides a simplified interface toamplex system.

In the game development, this pattern is appligthiéndata management lager, which
set its information from a relational database.sTeomplex system is comprised of 38
classes located in two packagestity anddata The GameDataclass provides a simple
interface to this information (Figure 6-5.) Thigg$t manages all references and variables
for each of the 38 classes, and provides some @uiethods (e.g. loadGamesByType(),

createGame(), manageGame(), etc.)

49

E_AssemblyDetails

D_AssemblyDetails

D_Game

E_Game E_Player

- game : E_Game

E_Part

- assembly : E_AssemblyDetails
I+ select(idGame) : Map<Integer,
IE_AssemblyDetails>

- arGame : ArrayList<E_Game>

+ update(game) : boolean

I—O- part : E_Part

E_Station

I+ updateLocalDB(idGame, actionsToDo) : void

[+ insert(idGame, assembly) : boolean + updateGameBestScore(game) : void E_PlayerLog
I+ updateLocalDB(idGame, actionsToDo) : void + updateWonGame(game) : void —
+ updateFailedGame(game) : void
+ insert(game) : int
+ selectGamesOfAPlayer(idPlayer]
D_Part K ayer(idPlays ’)
+ selectGamesByType(gameType) D_Player
[+ select(idGame) : Map<Integer, E_Part> + updateLocalDB(idGame, actionsToDo) | |- player - E_Player
|+ insert(idGame, part) : boolean + updateLocalDBByPlayer(idPlayer) - arrPlayer - ArrayList<E_Player>

+ il) : boolean

{

P

D_Station

5
GameData

- station : E_Station

[+ select(idGame) : Map<integer, E_Station>
[+ insert(idGame, station) : boolean

[+ updateLocalDB(idGame, actionsToDo) : void

D_Bucket
- bucket : E_Bucket

- mapGamesSkill : Map<Integer, E_Skill>

- map pp peinteger, E_Suppli

- mapUserOperator : Map<Integer, E_Operator>

- mapUserOperatorCarrier - Map<Integer, E_Operator>

- mapUserOperatorAssembler : Map<Integer, E_Operator>
-mapUserOperatoerrsatlIe Map<lnleger E_Operator>
- mapUserO,
-mapUserStatlon Map<lnlegar E_! Slal|0n>

[+ select(idGame) : Map<integer, E_Bucket>

- mapl Map<|megsr E_Station>
-mapUserPart Map<lmeger E_Part>

+ selectOnePlayer(email pass) : E_Player
+ selectPlayerByEmail(email) : E_Player
+ insert(player) - int

+ update(player) : boolean

+ logout(idPlayer) : void

+ playerLog_Insert(playerLog) : boolean

+ playerLog_Update(playerLog) : boolean
+ playerLog_Select(idPlayer)

+ playerLog_Updateld(playerLog) : void

+ playerLog_Delete(playerLog) - void

D_Operation

- operation : E_Operation

|

oo

+ select(idGame) : Map<Integer, E_Operation>
+ insert(idGame, qperation) : boolean

E_Activity

q_

E_Ship E_Transport

D_Ship

- ship : E_Ship

+ select(idGame) : Map<Integer, E_Ship>
+ insert(idGame, ship) : boolean
+ updateLocalDB(idGame, actionsToDo) : void

D_Transport

+ updateLocalDB(idGame, actionsToDo) : void
D_Purchase
- purchase : E_Purchase
eelaciic) - Map<integer, E_Purch
+ insert(idGame, purchase) : boolean
+ updateLocalDB(idGame, actionsToDo) : void
E_Purchase l E_Operation

- transport : E_Transport

+ select(idGame) : Map<Integer, E_Transport>
+ insert(idGame, transport) : boolean
+ updateLocalDB(idGame, actionsToDo) : void

|

D_Skill

- skill : E_Skill

o updateLocaIDB(ldT enam acllonsToDo) void

+ select(idGame)
+ selectSkillsPerActivity(idGame,idActivity)
+ insert(idGame)

N

+ insertSkillsPerActivity(idGame,idActivity)
+ updateLocalDB(idGame)

E_Skill__| |, pdateLocalDBSkillActivity(idGame)

+ updateLocalDBSkillOperator(idGame)

insert(idGame, bucket) : boolean . - mapl
updateLocalDB(idGame, actionsToDo) : void ~rnapUserfv1ach|neByOperat|on Map(lmager E_Machine>
- mapl i Transport :
E_Machine -mapOperauon Map<integer, E 0peratuon>
E_Bucket = - mapPurchase : Map<Integer, E_Purchase>
- mapShip : Map<integer, E_Ship>
- mapTransport : Map<integer, E_Transport>
- mapOrder : Map<integer, E_Order> >
- arrOrders : ArrayList<E_Order>
- + loadGamesOfAPlayer(idPlayer) : ArrayList<E_Game>
D_Machine + loadGamesByType(gameType) : ArrayList<E_Game> <>
- machine : E_Machine + updatePlayerf layer) : boolean
Fe ~Map<integer, E + updatePlayerLog() : void
I+ insert(idGame, machine) : boolean + createGame(tempGame) - boolean
|+ updateLocalDB(idGame, actionsToDo) : void + updateCurrentGameTime() - void
+createPIayer(tempPIayer) void
- boolean
D_Operator + getPlayerByEmailtempEmail) - E_Player
- operator : E_Operator + getNoUserOperator(statusOperator) - int
+ select(idGame) : Map<Integer, E_Operator> + manageGame(idGame) - boolean
+ selectSkillPerOperator(idGame, idOperator) + updateWonGame() - void
+ insert(idGame, operator) : boolean + updateFailedGame() : void : >
+ insertSkillPerOperator(idGame, idSkill, idOpe) + getActivities_OrderByPriority() : ArrayList<E_Activity>
+ updateLocalDB(idGame, actionsToDo) : void + getGameLogic(idGame) : void
+ getGameUserData(idGame) : void
+ manageMachineStates() : void
E_Operator E_Supplier +updateUser0peratovCategones() vond
+ updateU:
+getNextOrderDueData() Stnng —>1
+ updateTimeOrders() : void
D_Supplier + JoginPlayer(email, password) : void
- supplier : E_Supplier
+ select(idGame) : Map<Integer, E_Suppli D ord
+ insert(idGame, supplier) : boolean > _Order
+ updateLocalDB(idGame, actionsToDo) : void - order : E Order
- Mapx<l , E_Order> —>
D_Catalog + updateLocalDB(ldGame acllansToDo)
-catalog E Catalog — - D_Terrain
+ sels M , E_Catalog> T = =
+ insert(idGame, catalog) boolean N E_Order et eirsin
+ selectByGame(idGame) : ArrayList<E_Catalog> + select(idTerrain) : E_Terrain
+ updateLocalDB(idGame, actionsToDo) : void + updateLocalDB(idTerrain, actionsToDo)
E_Catalog j E_TerrainReserved D_TerrainReserved i
SreraeD) 4 E T = - E_Terrain
+ select(idTerrain) : Map<l E_TerrainR d:

Figure 6-9: Facade pattern — Class diagram

50

6.3.4. Singleton Pattern

This design pattern is usually applied to avoidagassarily creating many instances
of a class. All other classes use a single instaicthe class every time. The pattern
coordinates when different threads try to obtaferimation from this instance at the same
time, by making the main method “synchronized”. TBameDataclass holds a lot of
information and thus requires a lot of memory; fplgng singleton pattern avoids
duplicating this data. Figure 6-6 below shows #lation between th€ameDataclass and

the GameEngine&lass indicateing that it uses the singleton patte

TheMySqglConrandSQLiteConrclasses also use the singleton pattern, and bee ca

each time the game engine needs to communicateeitlithr database.

GameEngine MySqlConn
- gameData : GameData - static instance : MySglConn
- mySglConn - MySqIConn + static synchronized getinstance() : MySglConn
- sgliteConn : SQLiteConn 1 + openConnection() - void
+ simplelnitApp() : void + closeConnection() : void
+ playGame(game) : void + synchronized executeSP(query) : boolean
+ loadElementsToDisplay(gameType) : void + synchronized exectueSP_Data(query, noCols)
+ simpleUpdate(tpf) : void
+ simpleRender(rm) : void
1 SQLiteConn
!_|“static instance - SQLiteConn
1 + static synchronized getinstance() : SQLiteConn
CanoDets + openConnectipn() :.voi.d
— + closeConnection() : void
- static instance : GameData + executeSP(query) - boolean
+ static synchronized getinstance() - GameData + exectueSP_Data(query, noCols)

Figure 6-10: Singleton pattern — Class diagram

6.4. Database Design

The database design changed continuously duringe giewelopment. Initially, the

game only managed the MySQL engine as the rema#base, storing all game and user

51

data. When a local user started a new game leeeétigine would have to download all
required data from the remote database. This psotmedk substantial time, depending of
the available Internet bandwidth. As a result, S®las used as the local database cache

while MySQL remained as the remote database holti@gnain data.

On the other hand, the database design allowed add and update each game level
from the database. This means that we did not teetbdify nor upgrade anything in the
game source code to incorporate new levels intgdmee. From the beginning of the game
development, the database has always maintaineghthe logic and user data. Therefore,
once the player starts a new game level, the gamgme dynamically creates the virtual
reality in accordance to the information storedhie database. However, this advantage is
not so easy to perform, given that it has beengdesi under a relational database model.
So if we want to add or modify a game level, we hwadidate different constraints among

tables, primary and foreign keys of every recordj different table hierarchies.

6.4.1. MySQL and SQLite Design

6.4.1.1.Principal Tables

Figure 6-7 displays the Entity Relationship ModERM) diagram for the game

application.

The ERM diagram depicts core tables, which areireddor game management, to
maintain each game level with their dependencied,ta store each user data with their
statistical data usage. Relationships betweendabke meant to create non-duplicate users,
to store the game level data independently of eesen, to save the usage data for each

user, while maintaining both local and remote dasals synchronized.
52

¥ id_output part INT(11)

1 id_ship INT(11)
1 id_input part INT(11)
¥ id_bucket INT(11) 7id_game INT(11) é::j:::‘n;:::)‘)
®id_sketion INT(11) quantty INT(11) OlokmmtyNIi0
Ll e o L shipping_ime_dstn VARCHAR(0)
7 id_part INT(11) e e < shipping_time_param eter 1 DECIMAL(S,2)
LT | vidgmen(in shipping_time_param eter2 DEQIMAL(S 2) PSR
| |©part description vaRGHAR(50) ?id_game INT(11)
| < unit VARCHAR(10) L. L < skil_description VARCHAR(S0)
I | o vdume oecoaL(02)
| |oweiontoecaL(10,2) 1 Ll B :
: 1_| ©quantly pdete INT(11) 1= | 7id_activty INT(11) 1.
T 7] © current_stock INT(11) ¥ id_activity INT(11) J id_skll INT(12)
| e Oprice_for_sdleDECMAL(10,2) | 01 _ ! ?1d_game INT(11) i id_game INT(11)
N owner VARCHAR(10) |]
 part_design VARCHAR(100) 1 1"_| & actvity_desarip L
< part_design_scale DECIMAL(10,2) | 1 type_activity VARGHAR(10)
© part_design_color VARCHAR(45) id_order_activity INT(11) 1
© factor DECIMAL(10,2) ©id_next_actity INT(11) 7 id_skil INT(11)
 output_quantty INT(11) processing_tme INT(11) ¥ id_operator INT(11)
£ 15 actity_state 1 i1d_game INT(11)
1 0.1 L ©activity_stais VARGHAR(20) | 1] & efficiency DECIMAL(10,2)
 cost_per_execution DECIMAL(S,2) © dist_param 1 DECIMAL(10,2)
" id_station INT(11) - z;a::;::o:‘vr :‘lkowus) < dist_param2 DECIMAL(10,2)
7id_game INT(11) =
© station_description VARGHAR(50) 1. 1
< station_location_x INT(11) 0.1
< station_location_y INT(11) :
size_w DECIMAL(10,2) B .
< size | DEMAL(10,2) -] id_operation INT(11) 8 e porakor NI
 price_for_purchase DECIMAL(10,2) | [bid_gme INT(1) +id_game INT(11)
input_paette_capacity NT(11) 0.1 | = —{ O operaton_desarption VARGHAR(SD) o name_operalor VARGHAR(0)
 output_palette_capacity INT(11) | Oproduction_policy INT(11) salary_pes_hour DECIMAL(10,2)
© status VARGHAR(10) Bt : ©id_station INT(11) status VARGHAR(10)
O omner | Ogmiiyasputha(ly). > owner VARCHAR(10)
 station_type VARCHAR(45) I 1.0 © virtual_id_location VARCHAR(45)
 cost_per_hour DEIMAL(10,2) L. | & virtual_matrix_i INT(11)
station_deson VARGHAR(100) ! " id_purchase INT(12) virtual matrix JINT(11)
O percentage_selected_shts DECIMAL(10,2) | 7 id_game INT(11) current_ocation_x INT(11)
! 1% id_station INT(11) current ocation_z INT(11)
< id_supplier INT(11) < speed DEIMAL(10,2)
< order_point INT(11) s moving INT(11)
ot 1 1 < order_quantity INT(11) 1" |, id_machine_attached INT(11)
7 id_tansport INT(11) & end_location_x INT(11)
id_game INT(11) 7 1d_game INT(11) e © end_location_z INT(11)
Ounit Jad INT(11) date_tme INT(11) 1 actiity_daing
©id_station_ini INT(11) 1 | i over ray ©id_actvity_assgned INT(11)
©id_station_end INT(11) T © current_money DECIMAL (10,2) < state VARCHAR(45)
il P aurrent_minute INT(11) L Qprice for_fire DECIMAL(10.2)
i © current_hour INT(11) Opricefor_fre DEQMAL(0,2)
< salary_per_hour_carrier DEQMAL(10,2)
¥ id_order INT(11) L: | < current_day INT(11) 1 sy e ool BEEIA(00
¥ id_game INT(11) © current_month INT(11)
 salary_per_hour_versatile DECIMAL(10,2)
©id_part INT(11) ©aurrent_game_tme DOUBLE :
1l © uniform Param 1 DECIMAL (10,2)
< quantity INT(11) < time_factor DOUBLE 1 ;
 uniform Param 2 DECIMAL (10,2)
j :z":l::fﬁm 9 1 j::-::wv il © normalParamt oad DECIMAL(10,2)
et X
< percentage_variabity_min DECIMAL(10,2) < description VARCHAR(500) 1 - & normalParamUnioad DECIMAL(10,2)
© percentage _variabilty_m ax DECIMAL(10,2) Qinital_money DOUBLE 1 id_part INT(11)
< percentage_to_win DEGIMAL(10,2))
1| G name VARGHAR(100) 1 s ::j;y"”’““"(m)
Qgame_siakus VARCHAR(45) s 7 id_b_update INT(11)
¥ id_machine INT(11) j:‘::ﬂl;)n(m)Mm_pmetymm&(w,l)
7 id_game INT(11) 1 | oid_eman mran)Wmfmnefavznml(wyz)
< machine_description VARGHAR(50) ° VARCHAR(100) = < price_function 1_imit INT(11)
< speed DEQMAL(10,2) ¢ m’ . image VARCHAR(100) L® < price_function 1_charge DEQMAL (10,2)
weight_capadity DECIMAL(10,2) S atiespt.pumbes B0 price_functian2_imit INT(11)
 vdlume_capacity DEGMAL(10,2) 4 oEcL(02) © price_function2_charge DEQMAL(10,2)
pick_up_time_distn VARCHAR(20) © price_function3_limit INT(11)
pick_up_time_parameter 1 DEAMAL(10,2) © price_function3_charge DEQMAL(10,2)
 pick_up_time_parameter2 DEMAL(10,2) "
machine_tme_distn VARCHAR(20)
< machine_tme_parameter 1 DECIMAL(10,2)
< machine_tme_parameter2 DECIMAL(10,2) 7 Id_eain INT(11)
< placem ent_tim e_distn VARCHAR(20) 0.1 | oname vARGHAR(45)
< placement_time_parameter 1 DECIMAL(10,2) © fle_name VARGHAR(100)
< placement_time_parameter2 DECIMAL(10,2) L= loca_scale DECIMAL(102)
 tme_between_faiures_distn VARGHAR(20) S VIRGIAAGON
© time_between_failures_param eter 1 DECIMAL(10,2)
 time_between_failures_param eter2 DECIMAL(10,2) 7 1d_player INT(11)
© repair_time_distn VARCHAR (20) ROUR
< repair_time_parameter1 DECIMAL(10,2) j::;:"ﬂ*c:z)(w) < senvice_level DEQMAL(10,2)
< repair_time_parameter2 DECIMAL (10,2) P —————
QiponforpRciess DETHA (/) @ password VARCHAR(20) id_terrain_reserved INT(11)
Ostabus VARGHAR(10) status VARGHAR(S0)) id_leran INT(11)
[WhAC G O stakus_desription VARCHAR(100) {_player_log INT(11) location_x INT(11)
Omadine_dedon VARGHAR(0D) gender VARCHAR(10) 7 id_player INT(11) location_z INT(11)
v docaton VRGUR() © degree VARCHAR(30) Slogin_tme INT(11) Svidth INT(11)
oWt nsEbc TINTCH) < degree_description VARGHAR(50) logout_time INT(11) Slengh INT(11)
© virtual_matix_ini_j INT(11) EERTVRGUS) i bae a0
© virtual_matrix_end_j INT(11) logn_tme DATETIME OomeleveVi 9
 virtual_matrix_end j INT(11) & game_tme INT(11) -
i last_Jogin_time INT(11)

Figure 6-11: Entity relationship diagram

53

6.4.1.2. Principal Routines

The remote database (managed by MySQL) is stommgenous routines that allow
the game engine to be managed satisfactorily aficlesftly. These routines are built to
maintain the data for each table, and for thataeasach table at least 2 basic routines (i.e.

select routine and update routine). The rest ofdliEnes represent more complex queries.

One drawback of the SQLite engine is that it doesstore routines. In that case,
gueries are stored inside the source code. Ifdoresreason the table changes its structure,
then routines located in the source code will bdatgd and implying in a new game

release.

6.4.2. Databases Synchronization Process

This synchronization process is the main tool Hilmws achieving three main tasks:
(1) to gather usage data for each user into thetedatabase, (2) to update the game data
for each user machine from the remote databasg3and update current game levels or to
add new game levels from remote database to ewedl database. Figure 6-8 below
illustrates the communication between the databaseer and different user machines (i.e.
desktop and laptop computers), where each one a@suérg the sync process. More

information about this process can be found iniSed&.3.

54

Server Machine i’

&S
N
B o

Players’ Machine

Sync Process

Figure 6-12: Synchronization process between datsha

6.5. Detailed Description of Components

This section will provide additional information @it important software
components that have been used in the developrméme game: included as Java threads,

A* algorithm, SimPack, and Nifty GUI.

6.5.1. Java Threads

Java SE provides different methods to implemermattis in a program. The project is
using classes that are subclasses ofTtlread class. Also the game contains a package
designated exclusively foFhread subclasses (Table 6-1.) Threads in the projectirare
charge of multiple independent graphics animatigngn that each animation should not
disrupt the normal execution of the other animatioNso, these threads execute different
functionalities concurrently such as: triggerinfatient sync processes, updating the use of

slots for storage, and controlling the inactivitpeé of the user during the game.

55

6.5.2. A* Algorithm

The A* algorithm is used for calculate routes ie |mme environment. This is a set
of classes which control internally a bi-dimensiomap with coordinates for each object,
indicating whether coordinates are available, bdackor step. The algorithm finds the
shortest path possible between two given coordindtbe repeated use of this algorithm
may consume many resources, i.e. RAM memory and.dPBrefore, the game engine
only calls the algorithm when it is absolutely resagy. Figure 6-9 shows five (5) different

paths found by A* among different stations.

A* is called when an instance of some transporiviigtis ready to be executed. It
means, once the operator is done loading partb@eduipment, the next step is to move
the equipment to the final station. However, befitre equipment is moved, this activity
executes the algorithm and finds a path. Finahg, material handler with the equipment

starts moving along the path computed by A*.

56

cto - By David Bengos D
e Level 4 (Playing) X C Janvary 1,01:04 '@ NextOrder Due @ NexPurchase: 0701 ()5 Busy Ozmm €.JUSD 113383

¥

Gami
N T
r
NS

Lo}
O Aok

Figure 6-13: A* pathfinding example in the game iemvment

6.5.3. SimPack

The SimPack library supplies the game engine with easy mechanism for
scheduling multiple concurrent activities. Thisrdéiby implements a list the scheduled
activities, and, in case it is required, the autiicnapdate of the due date of each activity

(e.g. if the game speed goes faster or slower.)

The main class in the game has on override metlatlddc“simpleUpdate”, this
method acts as an infinite loop because the gammewalls it several times per second.
For gaming purposes, inside this method the enginées if some activity in SimPack has
completed its due date. If this is the case, tbiwity is removed of the future event list of
SimPack and carried out in the game. SimPack manage (2) types of activities,
recurrent activitiesand different activitiesas shown in Figure 6-10. Each one has a

different meaning in the game.
57

A recurrent activityis scheduled each time unit (e.g. one second. @reactivity is
over two tasks are performed: (1) another simidivaly is scheduled in the future event
list of SimPack, and (2) the game engine executegthod in another class which has the

function of validating and executing other gameivacts (e.g. purchase, transport,

operation, and shipping.)

In accordance wittdifferent activities once the game engine validates an activity
successfully (e.g. purchase, transport, operatigghipping activity), then this activity has
to perform another task which will take some timmebe completed, e.g. three time units.
Therefore, this activity is scheduled in the futesent list of SimPack with a given due
date. Finally, when this activity in the list ismapleted, it will execute a code according to

the gaming activity, e.g. release resources, egemubther task, update inventory of some

parts, among others.

SimPack

Recurrent

Different
Activities == ﬁ
S 3
b= z G C oo .
g
_|—/ - o
Time Unit H
Main m: tm L L e o i e L
Pipeline || 1 || || || || || || ||
= BN E_H
T Recurrent activity
i;*‘: Purchase activity
AM: Transport activity
- Operation activity

Figure 6-14: SimPack — discrete event machineargtime

58

6.5.4. Nifty GUI

This library provides the game with a way to cradifeerent panels with a variety at

user controls. Figure 6-11 shows a subset at thiats available in Nifty GUI.

Nifty GUI allows the developer to create customteools. It means by combining
existing controls. For example, the standard listbontrol only shows text, but it can be

customized to show images, text, and buttons inglesrow.

r
& Fumiture Factory Game (BETA) - lNIN-UPI}M - NSF #0835990 - By D_avid Ee_ngoa (localhost)
Game: Level4 (Playing) - C January2,0052 ' NextOrder Due: - © Purchase: - Oseesy)21 €)uSD 2,728.95 Setup | Log

Menu Station (5) gDo Station 6- StorageFG X Overall

Information Mac) wMate e Station ID: 6 Available Cash: USD 272895
Description: Finished Goods Storag = Total Expenditures: USD R271.05)

Width: 50.0 Overhead Cost/Hour: USD (530.00)

Length: 50.0 - Operator Cos/Hour: USD (72432)

Current Location: (80,-150) = Operator Hire: usD (0.00)

Slot Cost/Hour: USD 0.50 Operator Fire: usbD (0.00)

Selected Slots: 45/90 « 0 > Machine Cost/Hour: USD 0.35)

- Window Slot Total Cost/Hour: USD 22.50 Machine Purchase: USD (0.00)

- Current Total Cost: USD 0.00 Machine PM: usb (0.00)

- Slider . Equipment CosyHour USD (1030)
I.abels Sl Equipment Purchase: USD 0.00)
OFree USD000 4 Equipment PM: Usb 0.00)

- ListBox OF,ee USD 0.00 X Storage Cosy/Hour: USD
- Buttons OFreg USD 0.00 L Part Purchase:

S8 = Total Incomes:
OFree UsD 0.00 S Machine Sale:

OFree USD 0.00 S Equipment Sale:
Unavailable USD 0.00 S Part Sale:

Unavailable USD 0.00 Total Profit:

Unavailable USD 0.00
Objective: Create and ship part 5 when the order: Unavailable USD 0.00
EL
Total Orders: 10 -
Max of Failed Orders: 6 Game Log

Update

Order

Unavailable USD 0.00

1 X PartFive Jan 1, 05:30 ‘ January2,00:34 % Game is running at 1/8x speed
2 X PartFive Jan 1,05:14 January2,00:35 ‘2 Gameis running at 1/4x speed
3 % PartFive Jan 1, 06:52 \ January2,00:36 |3 Game s running at 1/2x speed
4 X PartFive Jan2,00:39 N January2,00:38 ' Game s running at 1x speed
January2,00:40 /* Order 4 has been lost

Figure 6-15: GUI controls in the game environment

6.6. User Interface Design

The same user interface design is based on theaeftrequirements presented in

Section 5.3. This section describes the most netasdr interfaces features.

59

6.6.1. Login and Main Menu

Figure 6-12 shows the login and main menu panelfitht screen that the player sees
each time that he/she starts the game. The logiceps will require an email registered
with a valid password. Once the user is authemit;ahe game proceeds to synchronize the
user data between the local and remote databakesfigure also shows the main menu
consisting of several buttons that can be usecelkecsamong the options mentioned in

Section 5.2.1.2.

Main Menu
Welcome back: NAME NNN
NewGame

Profile

FURNT FACTORY

FORNITURE Snup

Tutorial

Credits

Email

Password:

Figure 6-16: Login menu (left) and main menu (r)ght

6.6.2. Main Information Panels

Figure 6-13 is composed of three subpanels, whaste Wifferent functionalities and
allow the player to watch constantly the most caitinformation in the game. The Order
subpanel (left) shows all pending and completecersrés they arrive during the game.
Game log subpanel (center) allows the user to miairgach activity as they occur during
the game (e.g. game is paused, you'll go bankromter 1 has arrived, etc.) Overall
subpanel (right) depicts detailed information altiet costs in the game. Furthermore, this

screen design avoids visual interference of thefgc

60

Order X Ga ¢ X Overall

Available Cash: USD 9927.50

= Total Expenditures: UsSD (3,322.50)
Overhead Cost/Hour: USD (511.00)

!' Order 2 has been completed successfully Operator Cost/Hour: USD 246.99)
April 11, 06:45 i Order 3 has arrived. Due date is in 180 minutes Operator Hire: usb (300.00)

— April 11,06:45 /2 Order 3 isin process Oper?(or A Wy 000

5 (_ﬂpan I A RO April 11, 06:53 POrder 3 hasbeen completed successfully MamfneCosﬂHour R (128)
> @ Part Two 20 Apr12,00:05 Machine Purchase: USD (1,000.00)
~ Machine PM: usD (0.00)
Equipment Cost/Hour USD (12.10)
Equipment Purchase: USD (700.00)
Equipment PM: usD (0.00)
Storage Cost/Hour: USD (310.86)
Part Purchase: usD 240.00)

= Total Incomes: USD 8250.00
Machine Sale: usD 0.00
Equipment Sale: usbD 0.00
Part Sale: USD 8250.00
Total Profit: USD 492750

Objective: Create and ship part 2 when the orders

arrive April 11, 0521 i Order2 isin process
Total Orders: 10 April 11, 05:29
Max. of Failed Orders:

3 @PartTwo 15 Apr12,01:44

Figure 6-17: Order, game log and overall screeng@tkin one screen

6.6.3. Control Screens

6.6.3.1. Allocate Storages

Figure 6-14 shows the screen that allows allocatimgmount of slots available for
storages. Selected slots will entail costs, whiehcalculated every hour. Also, an “update”
button will commit changes in storage.

Assign Storage Costs

Select the number of slots available for each storage

Raw Material Storage: 28/56 « C » 28x050« USD 14.00
Work In Process Storage 28/56 <« » 28x050= USD 14.00

Finished Goods Storage: 45/90 <« » 45x050= USD 2250
Total CostyHour: USD 5050

Figure 6-18: Allocate storage screen

6.6.3.2. Assign Operators

The screen shown in Figure 6-15, allows the usesetect an activity (left side list),

then he or she will be able to choose material leagdline operators, or versatile,

61

depending of the role required by the activity. Tadie found between brackets, i.e. “(#)”,
indicates the number of activities assigned andntmaber of operators assigned, for the

operator and the activity, respectively.

Assign Operators

Assign operators for each activity:
Activities list
A Material handler:
Pepe (0) Cali (0) Antonio (0)
Bruno (0) Cesar (0) Cristian (0)
Diego (0)
Line operator:
Frandsco (0) Brian (0)
Edwin (0) Fabio (0)
Versatile:
Jose (0) Ramon (0)
v Luis (0)

(7): Number of operators/activities assigned

Figure 6-19: Assign workers screen

6.6.3.3. Resources

The resource management screen (Figure 6-16) tisydarly crucial before starting
the game. It allows users to hire and fire opesatand to buy and sell machines and
equipment. Each decision of the user implies a aondtit will vary depending of the game
level, for example: hiring two (2) operators, buyione (1) machine, and selling three (3)
equipment. In addition, once the user hires opesat® or she has to choose if the operator

IS going to be a material handler an operator csatde.

62

Operators. 8/16 Hire x 0
-MatHandler: 2 Fire x 0
-Operator: P

-Versatile A4
Machines: 4/4

Equipment 7/12

Figure 6-20: Resources screen

6.6.3.4. Unit Load

The “unit load” screen is presented in Figure 6-Ifie screen shows the list of
activities for the current game level. The slidenttol is enabled only for transport
activities, allowing the user to choose the bullpafts to be moved in each activity. Also,

the “update” button registers the changes in fohesctivity.

Unit Load (Parts per Trip)

Set unit load (parts per trip) for each activity:

Ship Ship Part2

Transport Part2 from StorageFG to Shipping 12
Transport Part2 from Assemble to StorageFG 5
Operation Assemble Part2

Transport Partl from StorageRM to Assemble 10

Transport Partl from Purchase to StorageRM 10
Purchase Purchase Partl

Figure 6-21: Unit load screen

63

6.6.4. Activities Screens

6.6.4.1. Operation

The activity screen (Figure 6-18) shows an openatigst on the left side. Once the

user clicks on an activity, the activity's datdoaded on the right side of the screen, which

provides information about the current activity alldws changing the amount of pieces to

be assembled or cut. Furthermore, it has a ligterbottom of the right side, this list shows

the number of parts required in order to produnew product or part.

Activities list:

Operationl

Activity
Activity ID: 9
Description: Assemble Part4
Type Activity: Operation
Part: Part Four

Station: Assembly Process 1
Station Inventory: 0 (Max 40) PART
Output Quantity: 5

Input Parts Required

PartOne- 1)
PartTwo-2 10

Refresh

Figure 6-22: Operation activity screen

6.6.4.2. Purchase

The left side of this screen is similar than theesen in figure 6-18, the only

difference is that it shows a list of purchasewdiiéis. The right side has information about

the purchase activity and three (3) controls, wiiltbw the user to set up the reorder point,

order quantity, and desired supplier (Figure 6-19).

64

Activities list Acaivity ID: 1
Description: Purchase Partl
Type Aaivity: Purchase
Part: PartOne

Station: Receiving Dock
Station Inventory. 0 Max 100) PART
General Inventory. 0 PART

ReorderPoint: 20 « €

OrderQuantity: 20 « ¢
Supplier

Price Per Unit: 5.0

Money Required: 100.0
Time To Arrive: 08:00 hours

Figure 6-23: Purchase activity screen

6.6.4.3. Transport

The left side of Figure 6-20 is the same as theescin Figure 6-19, however, the
right sideshows information about the transportivégt e.g. description, part, initial
station, and final station. Also, it allows the uge choose the amount of parts desired for

the activity. The “refresh” button commits the chgas done only to the current activity.

Activities list Activity ID: 4

Description: pat1 from Purchase to
StorageRM
Type Activity: Transport
Part: PartOne

From Station: Receiving Dock
Inventory: 0 PART
UnitLoad: 10 « € >

To Station: Raw Material Storage
Inventory: 0 PART

Figure 6-24: Transport activity screen

65

6.6.5. Utilities Screens

6.6.5.1. Station

This game manages two (2) different kinds of stetioFigure 6-21 shows a no-
storage station (left side), and a storage stdftimht side). The station on the left side
contains a list of buckets, providing details likgit part, inventory and capacity, part
assigned, among others. The storage station (ligiiates costs, which is why it provides
the user a control to choose the number of slotdlable. Also, it has a slots summary,
detailing the number of slots available, numbeslofs occupied for each part, and number

of parts stored into slots.

Station 1- PurchaseZone X Station 2 - StorageRM

Stations list: Station ID: 3 Stations list: Station ID: 4
Station 1 Description: ~ Receiving Dock Description: Raw Material Storage
Buckets List Slot Cost/Hour: USD 0.50
Selected Slots: 28/56 « i >
Slot Total Cost/Hour: USD 14.00
PartOne Current Total Cost: USD 0.00

PartOne Current Slot Usage: 0/28

Part Two Slots Summary
Part Two
Part Three Empty 28
Part Three Part Two

Part Five

Part Four

PartOne

Part Three

Update

Figure 6-25: Different stations: no-storage (lafty storage (right)

6.6.5.2. Machine / Equipment

The equipment and machine screens (Figure 6-22%ianéar; the difference is the

concept of each one. These panel enables theaibaytor sell the machine or equipment.

66

When the user wants to sell a machine or equipnheyshe will notice that the current sale
price will decreasing. This depreciation occurs whlee machine or equipment is used,;
also the screen shows information about regardwegdepreciation, like percentage of
depreciation, and percentage of accumulated depi@ti In addition, the machine or

equipment has a cost per hour, percentage of auditapercentage of usage, number of
parts produced (only machines), and a percentadglofe. However, if the user wants to

avoid the machine to break, then he/she can perdopneventive maintenance as shown in

the figure below.

Furchased

Machines list Machine ID: 8
Description: Assembly Machine
Buy Sell
Purchase/Sale Price: USD 400.00/400.00
% Depredation: 10.00%
% Accumulated Depredation: 0.00%
Status: Idle
Current Location: (59.-327)
Cost Per Hour: 3.0
Total Cost: USD 0.00

% Availabily: %
% Usage: %
Parts Produced: 0.00
Aativity Assigned
% Probability of Failure: 0.00%
Preventive Maintenance: USD 25.00 Perforr

Figure 6-26: Machine screen

6.6.5.3. Operator

Figure 6-23 shows the “operator” screen that alldles user to hire or fire the
selected operator. This action should be takerfudréecause hiring or firing an operator

implies costs. Also, the user can change the notategory between material handler, line

67

operator, or versatile. Finally, the screen indisahe payment per hour of each category,

the full wages earned by the operator, and theepége of usage.

Operator 2 (Hired)

Operators list: Operator ID: 2
Name: Cali
Fire
Hire/Fire Cost: USD 100.00/250.00
Status: ldle
Category: v

Current Location: (-15,-330)
Speed: 15.0

Material Handler Salary/Hour: USD 7.00
Operator Salary/Hour: USD 10.00
Versatile Salary/Hour: USD 12.00

Current Salary/Hour: USD 7.00

Earned Money: USD 0.00

% Usage: %

Update

Figure 6-27: Operator screen

6.6.6. Additional Screen

This last screen is the first one before playing game because if the player do not
set up the game, then it will be impossible totstarFigure 6-23 shows the screen that
requires a configuration step by step. Otherwike, glayer should click on the “Default

Setup” button and every step will be setup autoraéyi.

Game Setup
Please setup the game step by step:
<1 Setup resources (workers, machines, and equipment)
2. Allocate storages (slots per storage)
§ 3. Setup unit load for each transport activity
o Setup reorder point and order quantity for each purchase (&)

¥=|5. Assign workers for each activity

E 6. Setup execution priority for each activity

Default Setup StartGame

Figure 6-28: Game setup screen

68

7. SOFTWARE INTEGRATION AND TESTING

7.1. System Overview

Software testing is the final stage in the softwdexelopment life cycle, and its
purpose is to evaluate, discover game defects Jbargs fix them, in order to achieve a
reliable and high quality product. Also, it helpsnéirm whether the game is following the
specified requirements or not, and solve issuesnwiBenecessary. Among the tests
available, only the “unit test” [23] and “integrati test” will be used to ensure the proper

functioning of the game features.

During the development phase (carried out by thieaxudifferent tests as mentioned
above were done. The testing process was perforeaeth time that the developer
completed programming a feature. Once all featwer® completed, eight (8) testers were
in charge of the testing process, using the testscéhat are shown below. The test team
was comprised of men and women, including gamedshan-gamers. Testing took two (2)
months, and initially two developers were involvedesting for additional support. Hence,
when a bug was found, or a feature improvementapasoved, the development team was

notified in order to deal with the issue.

7.2. Test Plan

The test plan is a list of the game’s features @ach aspect of their functionality
which was evaluated. Also, it defines every toauieed to carry out the execution, and

how the test environment is composed. During thecetton, every bug found and each

69

wrong behavior of the feature performed were sal@mte the testing is completed, then it

starts again as a finite cycle, finalizing whenrgtlgng is correct.

7.2.1. Features to be tested

The testing process of each feature, it meansgtectise, is detailed in the Appendix

A. The list of features tested is shown below.

1. Logging user

2. Create new user

3. Update existing user
4. Forgotten password
5. Synchronization process
6. Game navigation

7. Factory navigation
8. Game setup function
9. Control screens

10. Activities screens

11. Utilities screens
12.Complete game level
13. Miscellaneous

14. Multiplatform compatibility

7.2.2. Features not to be tested

This section mentions different features that artet@sted because they are out of the

project’'s scope. Table 7-2 describes each feandegplains why they are not tested.

70

Table 7-1: Features not tested

Feature Description Reason why feature is not tested

It will depend on the player's computer.
During testing, PC requirements were
validated. Once completed, the game
has run satisfactorily.

Appendix B provides th
computer requirements |
execute the game.

PC
requirements

The synchronization proces))
y P ’%\s was mentioned in the feature
could take some seconds |or jer

. : description, it will depend of the trans
minutes, depending on the S

speed which in turn depends on the
amount of data and the

user’'s bandwidth.
transfer speed.

Synchronization
speed

This game release is availal

Other 0Os | for the following operating The game has not been tested in Unix,
compatibility | Systems: Windows, Linux or any tablets or smartphones.
and Mac OS.

7.2.3. Testing Tools and Environment

Initially, when the game was in the developmengetdhe testing process was done
manually in the same machine, without requiring enigd party software to execute it. The
game was tested by test team after the game dewetdpvas completed. During testing,
the author showed and explained all functionalibéshe game, and each tester received
the game installer that was installed in their cataps. These computers complied with the

PC requirements, as shown in Appendix B.

Furthermore, testing took place once a week, ftferdint purposes, for example:
detailed results and feedback were given to theldpment team, new game versions were
tested and new tasks were executed. In additistersedid not use any automated testing

mechanism, everything was done manually and staradViki page for the game.

71

8. CONCLUSIONS AND FUTURE WORK

8.1. Conclusions

Game development has been a challenge for the tpaem the game complexity, as
well as the use and integration of different enmeggiechnologies. The current version
provides 4 different levels of increasing diffiguiind can be easily installed in different

platforms, i.e. Windows, Mac OS and Linux.

Currently the game has completed the pilot phasgilig process), and is ready to be
played by freshman students, in order to evallsedsearch objective which is to know if
the students learned or not Industrial Engineedoge concepts and improved problem-
solving skills. As part of this testing process,nyaritical bugs have been fixed but there
are still others of lower priority that must be eslbed. Furthermore, the GUI design has

been improved in order to make the user’s intevactis simple and efficient as possible.

Finally, we expect that this project will promotetdevelopment of other educational
activities based on gaming, given the lack of Indals Engineering research through

games.

8.2. Future Works

The game development was completed in accordantde the estimated scope.
However, some improvements and changes are gtilfjlm®nsidered to be implemented for

a future game release.

72

8.2.1. Graphics Designs and Animation Improvements

Currently, this game release was focused on dewgjop product that allows
students to learn through gaming, giving less emighan the design and animation of

graphics objects. For that reason, a future relebdee game will contain:

0 Operators with better design.

0 Machines with better quality graphics.

o Raw materials and products will represent realspafrthe factory

o The animation of an operator who is handling eqapinwill be more realistic.

o The animation when an operator is picking and pla@arts on the equipment will be
more realistic.

o Fonts and screen style will be interchangeablewatig the user to set up as desired.

8.2.2. More Advance Game Levels

Given that the game loads each level from the @aglt allows the administrator to
add many more levels from the remote database. thegalayer starts the application, then
the engine will synchronize both databases, gettirege new levels from the remote
database. Moreover, these levels can allow the tesepntinue learning and figure out

more strategies to successfully complete each.level

8.2.3. Allow User to Create and Share New Levels

Considering the advantage to add and update gasals leom the database, it would
be a great achievement creating a drag-and-drdpttiaballows designing new levels by

the player. This tool should be easy of usage aust thave an option to share this new

73

game level with other players. This good practsecommon on the biggest games as

StarCraft [29] and Age of Empires 3 [30], and pro@sao create a community of gamers.

8.2.4. Game Migration to Android Devices

The game was developed in Java and tested in @érgt@aptop) and desktop
computers. However, the game migration to Andradicks does not demand much effort
as if it were created from scratch. Also, this ratgm process will have to consider
updating the GUI and graphic design, simplifying@ thame engine given that Android
devices do not provide many resources, and manatfieg local database in the
synchronization process. Finally, the most adeqdatéces to play this game are tablets,

given the screen size, processors and memory ¢gpaci

74

[1]

[2]

[3]

[4]

[5]
[6]
[7]
[8]
[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

REFERENCES

Emrich, A. (2004-2005). The gamer generation ait/ baby boomers shouldn’t
worry so much about them
http://www.alanemrich.com/SGl/Week_10/SGI1%2010%20G2R%20GENERATI
ON.pdf

Thilmany, J. (2012). Gaming Pros and Cons. Meclahiiogineering; Mar2012, Vol.
134 Issue 3, p20-20

Peterson, J. L. (1981), Petri net theory and thelalwog of systems, 1st ed.
Englewood Cliffs, N.J.: Prentice-Hall Inc., pp. »o¢2

IEEE Std. 830-1998 IEEE Recommended Practice foftw@oe Requirements
Specifications

IEEE Std. 1016-1998 IEEE Recommended Practicedéim@re Design Descriptions
IEEE Std. 829-1998 IEEE Standard for Software Destumentation

IEEE Std. 1008-1997 IEEE Standard for Software Uetting

IEEE Std. 1012-1998 |IEEE Standard for Software fitaiion and Validation

Java SE 7 — Oracle Technology Network (2012),
http://www.oracle.com/technetwork/java/javase/ov@mw/index.html

JMonkeyEngine 3.0. Java OpenGL Game Engine (2012),
http://jmonkeyengine.com/engine/

Nifty GUI 1.3.1
http://nifty-gui.lessvoid.com/

MySQL — Database and Workbench
http://www.mysqgl.com/

SQLite — Database engine
http://www.sqlite.org/

OpenGL — Open Graphics Library — The Industry’srkaation for High Performance
Graphics. http://www.opengl.org/

SimPack by Dr. Paul Fishwick — University of Flaid
http://www.cise.ufl.edu/~fishwick/Welcome.html

Hart, P., Nilsson, N., Raphael, B. (1968). A Forntzdsis for the Heuristic
Determination of Minimum Cost Paths. IEEE Transawi on Systems and
Cybernetics SSC4; 100-107

75

[17] Kelly, H., Howell, K., Gilnert, E., Holding L., Svil, C., Burrowbridge, A., Roper,
M. (2007). How to Build Serious Games.
Communications of the ACM; Jul2007, Vol.50 Issu@Z4-49

[18] Mayo, Merrilea J. (2007). Games for Science and ir&®ging Education.
Communications of the ACM; Jul2007, Vol.50 Issu@30-35

[19] Bernardi, G., Cesta, A., Coraci, L., Cortellessa, @e Benedictis, R., Mohier, F.,
Polutnik, J. (2011). Only hope remains in the Paado
http://www.pandoraproject.eu/

[20] Zapusek, M. (2011). Serious computer games asuciginal technology. Mipro,
2011 Proceedings of the 34th International Coneenti

[21] Eric Freeman, Elisabeth Freeman, Kathy Sierra aed Bates (2004). Head First
Design Patterns, First Edition, O'Reilly Media,.Inc

[22] OMG (2007), OMG Unified Modeling Language (OMG UMLyuperstructure,
V2.1.2. http://lwww.omg.org/spec/UML/2.1.2/Supersture/PDF

[23] IEEE Std. 1008-1987 IEEE Standard for Software UFdsting: An American
National Standard

[24] Unity 3D v4.1.2
http://www.unity3d.com/unity

[25] UDK 3.0 (Unreal Development Kit)
http://www.unrealengine.com/udk

[26] GameStart — Cross-Platform 3D & 2D Engine — Betd 2R
http://lwww.gamestart3d.com/home

[27] Cocos2d 0.5.5
http://www.cocos2d.org/index.html

[28] Carl Adam Petri and Wolfgang Reisig (2008) Petri t.NeScholarpedia
http://www.scholarpedia.org/article/Petri_net

[29] StarCraft 2
http://us.battle.net/sc2/en/game/maps-and-mods/

[30] Age of Empires 3
http://www.ageofempires3.com/

76

i

APPENDIX A

Test Cases

1. Logging User

Each time a user wants to play, the game will mequ user and password.

Otherwise, it will be impossible start the game.

Table 1: Logging user

Test Test Case
Case Description Expected Results Comments
Name
ID
Validate User and password Password is case-
11 | No error messages. "
fields must be correct. sensitive.
. Once fields are Synchronization
Login . .
1.2 validated the game is Access the game. | process of user data
successful :
accessed. begins.
If user and/or
e password are A detailed error
1.3 | Login failed |. .
incorrect or not message is shown.
registered.

2. Create New User

A new player must create a new user in the systemrder to do that, the game will
need an Internet connection to validate the new wgé existing user data in the remote
database. Once the player completes the registrand it is validated, then he/she will

receive the generated password in the email registe

78

Table 2: Create new user

Test Test Case
Case Description Expected Results Comments
Name
ID
Clicking on “create
Access to the . . :
screen new user” button will| Access to the “create Displayed fields are
2.1 retrieve the new user” screen. empty.
successfully .
appropriate screen.
Fields are validated L When it is not
. If correct, it will . o
Validate to check that they roceed to the validated, it will
2.2 | fields have been correctly P . . show an error
. registration.
filled. message.
, The player will not
. Once fields are It sends the generate .
Register . L be able to play if
2.7 validated, it will password to the
successfully : : he/she adds a fake
register the new user email. .
email.
3. Update Existing User

After the player logged into the system, he orsilebe in the main menu. Clicking
the “Profile” button changes the screen and shoser profile, enabling fields to be

modified. Finally, the “Update Account” button wikturn the player to the main menu.

Table 3: Update existing user

Test
Case

Test Case
Name

Description

Expected Results

Comments

Access to the

Clicking the “profile

It will load the user

The registered
email cannot be

3.1 | screen button will enter the datain fields
successfully | appropriate screen. ' changed.
Fields are validated When it is not
Validate to check that they If correct, it will validated, it will
32 | fields have been correctly | proceed to the updateshow an error

filled. Also, the old

message.

79

and new password
field.

Once fields are

The updated data wil

The new password

3.3 Update validated, it will be stored locally and| will be required for
2 | successfully ,
update the user data| remotely. the next session.
4. Forgot your Password

In case the registered user forgot his/her passwioed the player should click on the
“Forgot Your Password?” link. The game will chartgeanother screen, and it will ask to

enter the registered email. Finally, the user ghoeteive an email with his/her password.

Table 4: Forgotten password

Test Test Case
Case Description Expected Results Comments
D Name

Access to the

Clicking the “forgot
your password” link

It will show the email

. . The field i :
4.1 | screen will enter the field. field is empty
successfully .
appropriate screen.
Once it is validated
Validate field It will validate the then it will send the | The email should
4.2 email entered. password to the be registered
email.
: . : Th wor
Validate The game will send € The message will shgurl)(?st;se t(f)led
4.3 | receiving message to the emai| contain the recovere(. .
' . indicated by the
email account password

user

80

5. Synchronization Process

It occurs twice: when the user executes the prograchwhen the user logs into the
game. It means that the game instance synchrotiizegame and user information stored

with the remote database. It requires Internet eotion; otherwise, it will not work.

Table 5: Game data synchronization

Test Test Case
Case Description Expected Results Comments
D Name

It synchronizes the

Validate game | game data between
5.1 |data the remote server | Game data updated
synchronization and the user machin
executing the game.

The user machine
must have an
Internet
connection.

It synchronizes the
Validate user | user data between
5.2 | data the remote server | User data updated.
synchronization and the user machine
executing the game.

The user machine
must have an
Internet
connection.

6. Game Navigation

This feature validates the correct consistency wtien user clicks on different
buttons in the main menu, and the game respondsatec For example: if the user clicks

the “Credits” button, the game should show a sctegplaying game credits.

Table 6: Game Navigation

Test Test Case
Case Description Expected Results Comments
Name
ID
6.1 | Validate Clicking this button | It shows the screen

81

“New game” | will access another | with the list of games
button click | screen which contain available.
the list of games to b
played.
Validate Clicking this button | It shows this screen
6.2 | “Profile” will access the with the current user
button click | “profile” screen. data.
Validate Clicking this button | Internet browser It will open the
6.3 | “Tutorial” will load the tutorial | containing the default Internet
button click | in a browser. tutorial. browser.
Validat As th tton’ . .
B alidate S ? b.u on's It will return to the When no game is
Return to description says, . .
6.4 y L e game only when a | running, then this
game” button| clicking on it will . . -
: game is running. button is disabled.
click return to the game.
Validate The button will open o This information
) o . Credits will be shown . . .
6.5 | “Credits a pop-up that will i 3 DOD-U identifies the main
button click | show game credits. Pop-Up. author and crew.
. The button will .
Validate logout the current Once the action is
“Switch g o completed it will Fields in the login
6.6 ” user, and it will :
user” button . show the login screen are empty.
. return to the login
click screen.
screen.
: It will trigger a pop-
Validate .gg. Pop Pop-up asks the The player can
— , | up asking if the user .
6.7 | “Quit game : player to confirm cancel the pop-up
: wants to exit the .
button click closing the game. and return to game
game or not.
7. Factory Navigation

This feature occurs in the game environment, he.factory, and it is triggered each
time that the user clicks and holds right buttonttoe mouse, then the game should move

the camera at the same direction that the mousevsd.

Table 7: Factory navigation

Test Test Case Comment

Description Expected Results

82

Case Name
ID

. This activity can be

: It allows rotating (i.e. , .
Validate The game’s camera | performed using the

360 degrees) and : .

7.1 | camera Jooming the game's has zooming and right button or

navigation rotation limit. center button of the

camera.

v

mouse.

8. Game Setup Function

This feature occurs mostly at the beginning of egenime level.

In the “Game Setup”

screen, it shows six (6) steps to set up befomtirgjaa game level. Also, it has a button

called “Default Setup”; it is used in case the plagoes not want to waste time configuring

the game. However, this functionality validates whiee user clicks on the image of each

step in the game setup screen to open the app®paeeen.

Table 8: Game setup function

Test

Test Case L
Case Description Expected Results Comments
Name
ID
: When at least one : The play button
Validate : The game engine located in the top
) , | step is not setup ther,
8.1 | “Start game . does not allow left of the screen
the game will not .
before setup start starting the game. | does not allow the
' game to start either.
Validate Every step must be | It starts the game
B " . The screen closes
8.2 | “Start game” | setup to allow the after it was correctly .
. after the action.
after setup | game to start. validated.
Each image that Once a step is set
Validate identifies the step or | Open a screen up, then the red
8.3 | click on each| each red circle imagg according to the step, circle image is

setup button

iS going to open an

appropriate screen.

selected.

updated to a green
circle image.

83

9. Control screens

The feature's objective is to validate the consisteof the user’s action with the

game. Once the player clicks the “Control” butttime game will show other five (5)

buttons: allocate storages, assign operators, ifyriactivities, resources, and unit load.

Each one will display a screen with some functiyal

Table 9: Control screens

Test Test Case
Case Description Expected Results Comments
Name
ID
The game has two
: Once this screen . different storages.
Validate . .| See the actions taker . .g
. opens, it shows a list| . The first one is
actions on in the game, e.g.
9.1 |« , of storages. The read-only
storages : added slots per . :
player will be able to information. The
screen . storage.
set up some options. other one allows
changes.
Validate .
. It allows allocating
actions on . Operators perform .
. and deallocating e .| It allows choosing
9.2 | “assign some activities during
, operators for each operators.
operators . the game.
activity.
screen
Validate . . .
. It will allow choosing It will not allow
actions on o .
“oriofit the priority of The game executes | choosing the same
9.3 apctivitiz:t/s” execution for each | activities by priority. | priority for more
activity. than one activity.
screen
. It will allow hirin .
Validate - g The number of A fired operator or
. and firing operators, . .
actions on] operators, machines| sold machine is
9.4 | . , | and buying and :) .
resources . . and equipment can | identified by a red
selling machines or .
screen vary during the game.sphere on the top.

equipment.

84

. It allows the player tc . :
Validate play The game is going to
. choose the amount o The amount
actions on .| move the amount
95 | y parts or raw material selected cannot be
: unit load . selected for each
to move during a . less than zero.
screen - transport activity.
transport activity.

10. Activities screens

This feature also validates the consistency of as@ons. Clicking the “Activities”
button shows: operation, purchase, and transpattormi Furthermore, these buttons

display an appropriate screen with some functi@igks on buttons or screens will be

validated
Table 10: Activities screens
Test
Test Case -
Case Description Expected Results Comments
Name
ID
This screen shows th
Validate list of operations The machine is going The operation time
actions on available for this to produce the will vary depending
10.1 | the game level. The amount of parts on the amount of
“operation” | player can change th| selected for each parts to be
screen amount of parts to be operation. produced.
produced.
Screen shows the lis .
of purchases Note that this
Validate p. : Raw material could | activity will be
. available for this .
actions on take more time to executed
game level. The . .
10.2 | the arrive, and the cost | automatically each
. . | player can change the
purchase . varies depending of | time the inventory
reorder point and . .
screen . the supplier selected| is less than the
order raw material, .
. reorder point.
and select a supplier
Validate The screen shows th) The game is going to
10.3 | actions on list of transports use the unit load for

85

the
“transport”
screen

available. The player
will be able to changg
the unit load for each

each transport
activity.

activity.

11. Utilities screens

Clicking the “Utilities” button will show: statiormachine, equipment, operator, part,
and supplier buttons. They will open different sore to be validated, and will look for

consistency.

Table 11: Utilities screens

Test Test Case
Case Description Expected Results Comments
Name
ID
This screen shows th
Validate list of stations Actions taken by the . .
. . . . Stations different
actions on available for this player in storages than storages. are
11.1 | the “station” game level. The will be shown during ges,
. read-only.
screen player will be able to| the game.
change some options
Validate The player can sell
actions on It will allow to buy or | Buying or selling a machine or
the sell machines/equipment| equipment that is
11.2 | “machine” machines/equipment| will be shown during | working, but the
and the as desired by the the game, it means in action is carried ou
“equipment” | player. the factory. when the machine
screen is idle.
Validate It will allow the user :
. The game will show
actions on to choose between : .
“part” and arts or suppliers the information
11.3 “p . P . pp. .| according to what the
supplier This information is
user has selected.
screen read-only.

86

12. Complete Game Level

This feature validates that the game will finisheafsome orders have arrived,
winning or losing the game level, or falling in amptcy. The completed game will show

a pop-up with statistical information and provider® options to the player.

Table 12: Complete game level

Test Test Case
Case Description Expected Results Comments
Name
ID
Game has three
different ways to
finish the level. First, . The player is not
. . It will show the pop-
Validate pop- falling in bankruptcy; . | able to make any
121 . up, once the game is
up shown second, failing more changes after the
| completed. .
orders than allowed, pop-up is shown.
finally, receiving all
orders.
The user will win the| Game will show a
game when he/she | pop-up saying that
Verify won | completes more the player won, and
12.2 : : ;
game orders than required | will provide
and a pop-up will be | statistical
shown. information.
The user will lose the .
Game will show a
game when he/she .
. pop-up saying that
. fails more orders tha
Verify lost . . the player has lost,
12.3 permitted or falls in . .
game and will provide
bankruptcy, and a -
on-up will be statistical
Pop-Up information.
shown.

87

13. Miscellaneous

This feature validates that other controls are wwylcorrectly. For example: game

time, next order due timer, next purchase timay plutton, and pause button.

Table 13: Miscellaneous

Test Test Case
Case Description Expected Results Comments
Name
ID
It will validate the . : :
. . The game time Graphic objects are
Verify game | relation between the .
. : should forward faster also affected with
13.1 | time and speed selected in the . :
: . if the slider has the speed of the
slider control | slider and the current . .
. increased the speed.| slider control.
game time.
The timer shows
If the user does not the nearest order tc
Validate next| This timer shows the| fulfill the order
S . be lost, when the
13.2 | order due remaining time before the timer
. game has two or
timer complete an order. | counts zero, then
order is lost more orders to be
' attended.
This timer shows the
: remaining time to The player will . :
Validate next . g .p Y This time will vary
receive more raw receive more raw .
13.3 | purchase . . : . depending on the
. materials, according | materials when timer .
timer . supplier selected.
to the purchase is zero.
activity.
If the game is
. . The game enables aused and the
Verify play | Once the game is g . P .
. these options after theplayer clicks on
13.4 | and pause | running, these

button action

buttons are available

initial setup has been
completed.

pause, then this
action will not have
any effect.

88

14. Multiplatform Compatibility

This feature should validate the correct executibthe game in different platforms

(i.e. Windows, Linux, Mac OS), having previouslgialled the game.

Table 14: Multiplatform compatibility

Test
Case
ID

Test Case
Name

Description

Expected Results

Comments

Verify
installation
and
execution on
Windows

14.1

Game development
provides a Windows
installer.

Game is installed anc
runs successfully.

Game runs from
Windows XP to
Windows 8

Verify
installation
and
execution on
Mac OS

14.2

Game development
provides a Mac OS
installer.

Game is installed anc
runs successfully.

155

It has been tested i
Mac OS version
10.6 and latest.

Verify
installation
and
execution on
Linux

14.3

Game development
provides a Linux
installer.

Game is installed anc
runs successfully.

It has been tested i
Linux Ubuntu,
Fedora, and Mint.

-

89

APPENDIX B

System Requirements and Game Installation

Minimum System Requirements:

o OS: Windows XP/Vista/7/8 with DirectX 9.0. Mac OS 20.6.8 or newer.
Linux Ubuntu/Fedora/Mint.

0 Processor: Intel Pentium D 2.8 GHz or AMD AthlonX%2 4400 or better.

o Graphic card: Intel HD Graphics 3000 or NVIDIA Ge€® G210 or ATI
Radeon HD 5450 or better.

o Hard disk: 1 GB available or more.

0 RAM memory: 1 GB (1.5GB required for Windows uset§B required for
Mac users) or more.

o Others: broadband Internet connection, and 1280x78@imum display

resolutions.
Recommended Specifications:

o OS: Windows 7/8. Mac OS X 10.7 or newer. Linux UtaiRedora/Mint
(latest version).

0 Processor: Intel Core 2 Duo 2.4 GHz or AMD AthlahX2 5600 2.8 GHz or
better.

o Graphic card: NVIDIA GeForce 260 or ATI Radeon H878 or better.

o Hard disk: 2 GB available or more.

o RAM memory: 2 GB

90

Game Installation:

1. Download the appropriate installer for your opergisystem.
2. Start the installation:
a. Windows: double-click on the installer.
b. Mac OS: double-click on the installer.
c. Linux: open a Terminal, type “sh” then add the fpkth of the
installer location plus the installer name file.
3. Once started, click on the “Next” button, then ‘teand accept” the user
agreement.
4. Click on the “Next” button and then choose the &oltbcation of the game.
5. In the new screen, click on the “Next” button, dmally it will copy the files

into your computer.

o

Finally, click on the “Close” button.

The user will find the game installed in his/heognams list, and the game will

be ready to play.

91

GLOSSARY OF TERMS

API — Application programming interface is a setpobtocols, routines, and tools for
building software applications.

GPU — Graphics processing unit, it is used pringdiat 3D applications.

OpenGL - It is a 3D graphics language that wad mid Windows NT and is designed
to improve performance on hardware that suppoissstandard.

SDK — Software development kit. It is a programmipgckage that enables a
programmer to develop applications for a specif@atfprm.

RC2 — Release candidate 2. It is a beta versidmpatential to be a final product.

GUI — Graphical user interface. This user interfaflews user to interact with the
computer or specific software.

XML - Extensible markup language. It allows devesp to create their own
customized tags, enabling the definition, transimigsvalidation and interpretation of
data between applications.

RDBMS — Relational database management systemedinmthat stores data in the
form of related tables.

SMTP — Simple mail transfer protocol. It is a piabfor sending email messages.
TCP/IP — Transmission control protocol / Internabtpcol. It is the suite of
communications protocols used to connect hostd@mnternet.

IEEE — Institute of Electrical and Electronics Emeggrs. It is best known for developing

standards for the computer and electronics industry

92

