
VMware Scripting API

Version 2.0

User’s Manual

-

TM

Please note that you will always find the most up-to-date technical docu-
mentation on our Web site at http://www.vmware.com/support/.

The VMware Web site also provides the latest product updates.

Copyright © 2002-2003 VMware, Inc. All rights reserved. Protected by one or more of U.S. Patent Nos. 6,397,242
and 6.496.847; patents pending. VMware, the VMware “boxes” logo, GSX Server and ESX Server are trademarks
of VMware, Inc. Microsoft, Windows, Windows NT, Visual C++, Visual Basic, JScript, and ActiveX are registered
trademarks of Microsoft Corporation. Linux is a registered trademark of Linus Torvalds. All other marks and

VMware, Inc.

3145 Porter Drive
Palo Alto, CA 94304
www.vmware.com
names mentioned herein may be trademarks of their respective companies.

http://www.vmware.com/support/

Table of Contents
Introduction __ 7
VMware Scripting APIs ___ 8

Supported Products ___ 9
Intended Audience ___ 9
Getting Support from VMware __________________________________ 9

Using the VMware Scripting APIs ___________________________________ 9
Installing the VMware Scripting API _________________________________ 9

Installing the VMware Scripting API on a Windows Machine ___________ 10
Installing VmPerl Scripting API on a Linux Machine __________________ 11

Using VmCOM __ 13
What is VmCOM? __ 14
VmCOM Objects ___ 15
VmConnectParams ___ 15
VmServerCtl __ 16

Property ___ 16
Methods __ 16

VmCollection ___ 16
VmCtl ___ 17

Properties __ 17
Methods __ 19

VmQuestion __ 22
Symbolic Constant Enumerations _________________________________ 22

VmExecutionState ___ 22
VmPowerOpMode ___ 23
VmProdInfoType __ 24
VmProduct ___ 24
VmPlatform __ 24

Using VmCOM to Pass User-Defined Information Between a Running Guest
Operating System and a Script ____________________________________ 25

GuestInfo Variables __ 25
Sending Information Set in a VmCOM Script to the Guest
Operating System ___ 26
Sending Information Set in the Guest Operating System to a
VmCOM Script __ 27
3www.vmware.com

4 www.vmware.
Using Sample VmCOM Programs ________________________________ 29
Sample VmCOM Programs _______________________________________ 30

Copyright Information __ 30
MiniMUI Visual Basic Sample Program ____________________________ 31
JScript and VBScript Sample Programs ___________________________ 31

Using VmPerl __ 43
VmPerl Modules ___ 44
VMware::VmPerl::ConnectParams __________________________________ 45
VMware::VmPerl::Server __ 46
VMware::VmPerl::VM __ 47

Additional Information on get_tools_last_active ____________________ 51
VMware::VmPerl::Question _______________________________________ 52
Symbolic Constants __ 52

VM_EXECUTION_STATE_<XXX> Values ___________________________ 52
VM_POWEROP_MODE_<XXX> Values ____________________________ 53
Infotype Values ___ 54
VM_PRODINFO_PRODUCT_<XXX> Values ________________________ 54
VM_PRODINFO_PLATFORM_<XXX> Values ________________________ 54

Using VmPerl to Pass User-Defined Information Between a Running Guest
Operating System and a Script ____________________________________ 55

GuestInfo Variables __ 55
Sending Information Set in a VmPerl Script to the Guest
Operating System ___ 56
Sending Information Set in the Guest Operating System to a
VmPerl Script ___ 57

Using Sample VmPerl Scripts ___________________________________ 59
Sample Perl Scripts ___ 60

Copyright Information __ 60
Listing the Virtual Machines on the Server _________________________ 61
Starting All Virtual Machines on a Server __________________________ 63
Checking a Virtual Machine’s Power Status ________________________ 65
Monitoring a Virtual Machine’s Heartbeat _________________________ 67
Answering Questions Posed by a Virtual Machine ___________________ 70
Suspending a Virtual Machine __________________________________ 74
Setting a Virtual Machine’s IP Address Configuration Variable __________ 75
Getting a Virtual Machine’s IP Address ____________________________ 77
com

Error Codes and Event Logging _________________________________ 81
Error Codes and Event Logging ___________________________________ 82
Error Codes ___ 82

Error Handling for the VmCOM Library ___________________________ 82
Error Handling for the VmPerl Library ____________________________ 82
Common VmCOM and VmPerl Errors ____________________________ 83

Event Logging __ 84
Using the Event Viewer _______________________________________ 85
Reading the Event Log __ 86

Appendix A: vmware-cmd Utility ________________________________ 89
Using the vmware-cmd Utility ____________________________________ 90

Options ___ 90
vmware-cmd Operations on a Server ____________________________ 90
vmware-cmd Operations on a Virtual Machine _____________________ 91
<powerop_mode> Values _____________________________________ 93
vmware-cmd Utility Examples __________________________________ 93

Index ___ 97
5www.vmware.com

1

Introduction

Introduction
VMware Scripting APIs
This release of VMware™ scripting APIs version 2.0 comprises two components: VmCOM and VmPerl.

VmCOM is a Component Object Model (COM) interface for languages such as Microsoft® Visual
Basic®, Microsoft® Visual Basic® Scripting Edition (also known as VBScript), Microsoft® Visual C++® and
JScript®. You may install the VmCOM Scripting API on machines with the Microsoft® Windows®
operating system.

VmPerl is an application programming interface (API) that utilizes the Perl scripting language. You
may install the VmPerl Scripting API on machines with the Microsoft Windows or Linux operating
system.

You may install the Scripting APIs on the GSX Server host and on remote workstations.

Although the interfaces for VmCOM and VmPerl are different, both components are functionally
equivalent. Depending on your operating system, you can either use VmCOM or VmPerl to
accomplish the same tasks.

VMware has designed VmCOM and VmPerl to provide task automation and simple, single-purpose
user interfaces. The Scripting APIs are not intended for building advanced interactive user interfaces.

For example, you can use the VMware Scripting APIs to perform power operations (start, stop,
suspend or reset) on VMware servers and virtual machines, locally and remotely across servers. You
can also use the API to register and unregister virtual machines and gather information about them,
including sending and receiving configuration to a virtual machine. You can also send properties you
define, from the host or a script, into a virtual machine's guest operating system and vice versa.

We provide example scripts and applications demonstrating possible uses for the Scripting APIs. The
directory in which you installed VmCOM contains two subdirectories; MiniMUI, that contains a
sample Visual Basic project that uses VmCOM, and SampleScripts, that contains sample VmCOM

Windows remote workstation

VmPerl

VmPerl

VmCOM

Linux remote workstation
GSX Server on a Linux host

GSX Server on a Windows host
4 www.vmware.com

Introduction
scripts. Similarly, the directory in which you installed VmPerl contains a subdirectory, SampleScripts,
that contains sample VmPerl scripts.

Supported Products
We support the installation of the VmCOM and VmPerl Scripting APIs on VMware™ GSX Server™ 2.x.
Refer to the VMware GSX Server User's Manual for complete information on system requirements at
www.vmware.com/support/gsx25/doc.

Intended Audience
This manual is written for programmers that are familiar with either the Perl language or the
Component Object Model (COM) interface for programming languages. Readers of this manual
should be comfortable with developing system administration and system monitoring programs and
general debugging techniques. In addition, developers who use this manual should be familiar with
the operation and management of VMware GSX Server and the host operating system used for this
application. For more information on VMware GSX Server refer to the VMware GSX Server User's Manual
at www.vmware.com/support/gsx25/doc.

Getting Support from VMware
See www.vmware.com/support/developer for full details on the VMware Scripting APIs support policy.

Using the VMware Scripting APIs
By using the VMware Scripting APIs, you can access and administer virtual machines without using a
local or remote console. The virtual machines — or the server for that matter — do not have to be
running in order to use the VMware Scripting APIs.

Each VmCOM object and Perl module is described in the following chapters and includes the
methods, the properties, and their usage. In addition, sample scripts and lists of error codes are
provided. For VmCOM sample scripts, see Sample VmCOM Programs on page 26 and for VmPerl
scripts, see Sample Perl Scripts on page 56. For the list of error codes, see Error Codes on page 78.

Note: For more information about VMware API development, see www.vmware.com/support/
developer.

Installing the VMware Scripting API
You have the option of installing the VMware Scripting API on your server when you installed the
software. For complete information on installing GSX Server, see www.vmware.com/support/gsx25/
doc/install_gsx.html.

However, if you want to run VMware Scripting APIs from a machine other than the server, you need to
install VmCOM or VmPerl on that machine. Your administrator will provide you with the appropriate
5www.vmware.com

http://www.vmware.com/support/gsx25/doc
http://www.vmware.com/support/gsx25/doc
http://www.vmware.com/support/developer
http://www.vmware.com/support/developer
http://www.vmware.com/support/developer
http://www.vmware.com/support/gsx25/doc/install_gsx.html
http://www.vmware.com/support/gsx25/doc/install_gsx.html

Introduction
script or executable file, or ask you to download it from the VMware Management Interface (requires
customization).

Installing the VMware Scripting API on a Windows Machine
You have a choice of installing either the VmCOM or the VmPerl Scripting API.

1. Choose Start > Run and browse to the directory where you saved the downloaded installer file
(the name is similar to VMware-VmPERLAPI-<xxxx>.exe or VMware-VmCOMAPI-
<xxxx>.exe, where <xxxx> is a series of numbers representing the version and build
numbers).

2. The installer starts. Click Next.

3. Acknowledge the end user license agreement (EULA). Select Yes, I accept the terms in the
license agreement, then click Next.

4. Choose the directory in which to install the Scripting API. To install it in a directory other than
the default, click Change and browse to your directory of choice. If the directory does not exist,
the installer creates it for you. Click Next.

Note: Windows and the Microsoft Installer limit the path length to 255 characters for a path to
a folder on a local drive and 240 characters for a path to a folder on a mapped or shared drive. If
the path to the Scripting API program folder exceeds this limit, an error message appears. You
must select or enter a shorter path.

5. Click Install. The installer begins copying files to your machine.

6. Click Finish. The VMware Scripting API is installed.

If you install VmCOM, two folders named MiniMUI and SampleScripts are created in the same
directory as the VmCOM Scripting API. The MiniMUI folder contains a sample Microsoft Visual Basic 6
project that uses VmCOM. The SampleScripts folder contains VBScript and JScript samples using the
VmCOM Scripting API. See Sample VmCOM Programs on page 26 for additional information.

If you install VmPerl, a SampleScripts (Samples) folder is created in the same directory as the VmPerl
Scripting API. The SampleScripts folder contains sample scripts using the VmPerl Scripting API. See
Sample Perl Scripts on page 56 for additional information on the sample scripts.

At any time, you can decide to remove this software from your system by running the installer and
selecting the Remove option. Alternately, use Add/Remove Programs in the Control Panel to remove
the Scripting API.
6 www.vmware.com

Introduction
Installing VmPerl Scripting API on a Linux Machine
You can install only the VmPerl Scripting API on a Linux machine. VmCOM is not supported.

1. Copy the VmPerl package to the machine on which you want to run the VMware Scripting API.

2. In a terminal window, become root so you can carry out the installation.

3. Untar the package

tar xzf VMware-VmPERLAPI-v.v.v-####.tar.gz

where v.v.v is the specific version number and #### is the build number.

4. Change to the directory where you expanded the package.

cd vmware-api-distrib

5. Run the install script.

./vmware-install.pl

6. Press Enter to read the end user license agreement (EULA). You may page through it by pressing
the space bar. If the Do you accept? prompt doesn’t appear, press Q to get to the next
prompt.

7. Choose the directory to install the VmPerl executable files or accept the default location.

This directory includes the uninstall script for the VmPerl API.

8. Choose the directory to install the VmPerl library files or accept the default location.

This directory includes the sample scripts for the VmPerl API. The SampleScripts directory
contains example scripts that demonstrate use of the VmPerl API. You may customize these
scripts for your particular organization. See Sample Perl Scripts on page 56 for more information
on the sample scripts.

This completes the VmPerl API installation.

At any time, you can decide to remove this software from your system by invoking the following
command as root:

<executable_files_directory>/vmware-uninstall-api.pl
7www.vmware.com

2

Using VmCOM

Using VmCOM
What is VmCOM?
The VmCOM component exposes VmServerCtl and VmCtl as the primary objects for
communicating with VMware components. VmConnectParams, VmCollection and
VmQuestion are support objects used as inputs or outputs to the methods and properties of the
primary objects.

A VmServerCtl object represents a server and exports server-level services, such as virtual
machine enumeration and registration. A VmCtl object represents a virtual machine on a particular
server and provides virtual machine specific methods such as power operations. You must first
activate the VmServerCtl or VmCtl object by calling its Connect() method before accessing
any other method.

The Connect() method requires a VmConnectParams input parameter containing the host
identifier and user credentials supplied for authentication. If the host identifier is not supplied or is
undefined, the authentication is performed on the local system. If the user name and password are
also not supplied, the current user is authenticated on the local machine. Otherwise, you may supply
the user name and password for authentication as that user.

Unlike the VmServerCtl object, VmCtl.Connect() also takes a string specifying the
configuration file name of the virtual machine that will be connected.

Once a VmServerCtl object is connected, you can enumerate the virtual machines on the server,
and register or unregister the virtual machines. You can obtain a list of virtual machines on a
particular server from the VmServerCtl.RegisteredVmNames property. This property returns
a collection object named VmCollection. The collection’s elements comprise virtual machine
configuration file names and you can enumerate these elements using, for example, the for each
syntax in Visual Basic. If you know the configuration file name of a specific virtual machine, you can
connect the VmCtl object directly without using a VmServerCtl object.

You can use languages such as Visual Basic or Visual C++ to access VmCOM components. For
example, to use VmCOM from Visual Basic, choose Project > References, and enable the check box
for VMware VmCOM <version> Type Library. If this entry is not present, verify that the VMware
product is installed correctly.

To use VmCOM from another language, refer to the documentation for that language. Look for the
section in the documentation that describes ActiveX® components or the COM interface for that
language.
10 www.vmware.com

Using VmCOM
VmCOM Objects
The VmCOM component provides the following objects:

• VmConnectParams

• VmServerCtl

• VmCollection

• VmCtl

• VmQuestion

VmConnectParams
This object supplies connection information and user credentials to VmServerCtl.Connect()
or VmCtl.Connect() and exposes the properties listed in the following table. All
VmConnectParams properties allow you to retrieve (GET) and modify (PUT) these properties.

The security for your connection depends upon the security configuration of your VMware server. If
you’re connecting to a VMware server or a virtual machine on a host with GSX Server, then the
connections is encrypted as long as the VMware server is configured to encrypt connections.

Property Name Property Type Access Type Description

Hostname string GET/PUT Retrieves and sets the name of a server, where Hostname is the

server’s hostname or IP address. If Hostname is not given or

undefined, the authentication is performed on the local system. The

C library connects to the local host and uses current user information

when it connects. However, this user information is not passed back

to VmConnectParams.

Otherwise, you may supply the user name and password for

authentication as that user.

Port integer GET/PUT Retrieves and sets the TCP port to use when connecting to the server.

Its default value is 0 (zero), indicating the default port number (902)

should be used. Otherwise, enter the correct port number.

A port number set to a negative value is treated as an incorrect value

and the default port number is used instead.

Username string GET/PUT Retrieves and sets the name of a user on the server.

Password string GET/PUT Retrieves and sets the user’s password on the server.
11www.vmware.com

Using VmCOM
VmServerCtl
The VmServerCtl object represents a VMware server running on a particular machine.

Property
The RegisteredVmNames read-only (GET) property returns a VmCollection of strings
specifying the configuration file names of the virtual machines currently registered on the server. The
server must be connected using Connect(), or this property throws an error.

Methods
The VmServerCtl object also exposes the methods listed in the following table. Except where
noted otherwise, these methods are synchronous; the method does not return until it finishes its
operation, fails, or times out. Most operations time out after 2 minutes.

VmCollection
The VmCollection object is a collection of variants that are typically strings. You can enumerate
its elements by using the for each syntax in Visual Basic. You can individually access each element
by passing its index to the Item property, or by using the
VmCollection(<index_as_integer>) array syntax in Visual Basic. The first element's index
is always the integer 1 (one).

Method Description

object.Connect(<params>) The Connect() method connects the object to a VMware GSX Server or a VMware

ESX Server where params is a VmConnectParams object that specifies the

system and user information.

There is no method to disconnect from a server. To reconnect to a different server,

destroy the VmServerCtl object, create a new one, then call its Connect()

method.

The total number of connected VmCtl and VmServerCtl objects cannot

exceed 62. The Connect() method fails with error code

vmErr_INSUFFICIENT_RESOURCES if this limit is reached. In order to connect new

objects, destroy one or more connected VmCtl or VmServerCtl objects. For

example, you can do this by setting an object to Nothing in Visual Basic.

object.RegisterVm(<vmName>) The RegisterVm method registers a virtual machine on a server where vmName

is a string specifying the virtual machine’s configuration file name.

object.UnregisterVm(<vmName>) The UnRegisterVm method unregisters a virtual machine from a server where

vmName is a string specifying the virtual machine’s configuration file name.
12 www.vmware.com

Using VmCOM
Both VmServerCtl.RegisteredVmNames and VmQuestion.Choices return a
VmCollection of strings.

The VmCollection object includes the read-only (GET) properties listed in the following table:

VmCtl
The VmCtl object represents a virtual machine running on a particular server machine and exposes
symbolic constant enumerations, properties and methods.

Properties
The VmCtl object includes the properties listed in the following table. All of the properties can be
retrieved (GET); some of these properties can also be modified (PUT).

Property Name Property Type Access Type Description

Count integer GET Gets the number of elements in the collection.

Item(<index_as_integer>) string GET Gets the element at the specified index.

Property Name Property Type Access

Type

Description

ExecutionState VmExecutionState GET Current state of the virtual machine; powered on,

powered off, suspended, or stuck. For more information

on VmExecutionState, see VmExecutionState on

page 18.

PendingQuestion VmQuestion GET Returns a VmQuestion object if the virtual machine is

currently in the vmExecutionState_Stuck state.

Otherwise, an error is thrown

GuestInfo(keyName) string GET/PUT Accesses a shared variable identified by the string

keyName.

For additional information, see Using VmCOM to Pass

User-Defined Information Between a Running Guest

Operating System and a Script on page 21.
13www.vmware.com

Using VmCOM
Config(keyName) string GET/PUT Accesses the value of a configuration variable identified

by the string keyName. When a virtual machine

process is spawned on the server, the process reads

configuration variables from the virtual machine's

configuration file into memory. If you write a

configuration variable by using the Config()

property, the new value is written into memory and is

discarded when the virtual machine process terminates.

You cannot change the value of a configuration variable

in a virtual machine’s configuration file.

The property throws an error if it accesses an undefined

configuration variable.

Do not change the memory size while a virtual machine

is suspended. First power off the virtual machine, then

change its memory size.

ConfigFileName string GET Returns the configuration file name for the virtual

machine. This method fails if the VmCtl object is not

connected.

Heartbeat integer GET Returns the current heartbeat count generated by the

VMware Tools service running in the guest operating

system. The count is initialized to zero when the virtual

machine is powered on.

The heartbeat count is typically incremented at least

once per second when the VMware Tools service is

running under light load conditions. The count stays

constant if this service is not running.

ToolsLastActive integer GET Returns an integer indicating how much time has

passed, in seconds, since the last heartbeat was

detected from the VMware Tools service.

This value is initialized to zero when the virtual machine

powers on. It stays at zero until the first heartbeat is

detected, after which the value is always greater than

zero until the virtual machine is power-cycled again.

For additional information, see Additional Information

on ToolsLastActive on page 15.

DeviceIsConnected(devName) Boolean GET Returns True if the specified device is connected.

Otherwise, False is returned.

ProductInfo(infoType) integer, VmProduct

or VmPlatform

GET Returns an integer representing the value of the

product information field specified by infoType, which is

of type VmProdInfoType. See VmProdInfoType on

page 20 for a list of valid types and return values.

Property Name Property Type Access

Type

Description
14 www.vmware.com

Using VmCOM
Additional Information on ToolsLastActive
If the guest operating system is heavily loaded, this value may occasionally reach several seconds. If
the service stops running, either because the guest operating system has experienced a failure or is
shutting down, the ToolsLastActive value keeps increasing.

You can use a script with the ToolsLastActive property to monitor the start of the VMware
Tools service, and once started, the health of the guest operating system. If the guest operating
system has failed, the ToolsLastActive property indicates how long the guest has been down.
The following table summarizes how you may interpret the ToolsLastActive property values

Methods
The VmCtl object includes the methods listed in the following table.

You can connect to a virtual machine, start, stop, suspend and resume virtual machines, query and
modify the configuration file settings, and connect and disconnect devices.

Except where noted otherwise, these methods are synchronous; the method does not return until it
finishes its operation, fails or times out. Most operations time out after 2 minutes, except for power
operations, which time out after 4 minutes.

ToolsLastActive Property

Value

Description

0 The VMware Tools service has not started since the power-on of the virtual

machine.

1 The VMware Tools service is running and is healthy.

2, 3, 4, or 5 The VMware Tools service could be running, but the guest operating system

may be heavily loaded or is experiencing temporary problems.

Greater than 5 The VMware Tools service stopped running, possibly because the guest

operating system experienced a fatal failure, is restarting, or is shutting

down.
15www.vmware.com

Using VmCOM
Method Description

object.Connect(<params>, <vmName>) The Connect() method establishes a connection with a virtual machine

where params is a VmConnectParams object that specifies the

system and user information and vmName is a string specifying the virtual

machine’s configuration file name.

You should use this as the first method invoked on a VmCtl object. You

must first activate the VmCtl object by calling its Connect() method

before accessing any other method or property.

There is no method to disconnect from a virtual machine. To reconnect to a

different virtual machine, destroy the VmCtl object, create a new one, then

call its Connect() method.

The total number of connected VmCtl and VmServerCtl objects

cannot exceed 62. The Connect() method fails with error code

vmErr_INSUFFICIENT_RESOURCES if this limit is reached. In order to connect

new objects, destroy one or more connected VmCtl or VmServerCtl

objects. For example, you can do this by setting an object to Nothing in

Visual Basic.

object.Start(<mode>) The Start() method powers on a previously powered-off virtual

machine or resumes a suspended virtual machine, where mode is a

VmPowerOpMode object that specifies the Start operation’s behavior. For

more information, see VmPowerOpMode on page 19.

If the virtual machine is powered off, then it is powered on. If it is suspended,

this method resumes the virtual machine. If the virtual machine is in any

other state, the Start() method fails and throws an error.

object.Stop(<mode>) The Stop() method shuts down and powers off a virtual machine where

mode is a VmPowerOpMode object that specifies the Stop operation’s

behavior. For more information, see VmPowerOpMode on page 19.

This method always fails if the virtual machine is not in the

vmExecutionState_On state.

object.Reset(<mode>) The Reset() method shuts down, then reboots a virtual machine where

mode is a VmPowerOpMode object that specifies the operation’s

behavior. For more information, see VmPowerOpMode on page 19.

This method always fails if the virtual machine is not in the

vmExecutionState_On state.
16 www.vmware.com

Using VmCOM
object.Suspend(<mode>) The Suspend() method suspends a virtual machine where mode is a

VmPowerOpMode object that specifies the Suspend operation’s behavior.

It saves the current state of the virtual machine to a suspend file. For more

information, see VmPowerOpMode on page 19.

This method always fails if the virtual machine is not in the

vmExecutionState_On state. If you attempt to suspend a virtual

machine with more the 2GB of memory, the suspend operation will time fail

after a time-out period.

object.AnswerQuestion(<question>, <choice>) The AnswerQuestion() method replies to a question where

question is a VmQuestion object that represents the question that

requires an answer and choice represents the index of the selected

answer to the question. The index is an integer and the first choice’s index is

always 1 (one). The second choice’s index is 2, and so on.

When a virtual machine is in the vmExecutionState_Stuck state

and requires user input to continue, use this method to answer the current

question or dismiss the current error message.

First, get a VmQuestion object from VmCtl.PendingQuestion.

You can retrieve the possible choices and their respective indices from the

VmQuestion.Choices property. Then, use the AnswerQuestion

method to answer the question.

object.ConnectDevice(<devName>) The ConnectDevice() method sets a virtual device to the connected

state where devName is a string that identifies the virtual device you want

to connect. The virtual machine must be powered on for this method to

succeed, otherwise a vmErr_BADSTATE error is returned.

Use the Config() property to set configuration parameters relevant to

the virtual device before calling the ConnectDevice() method. The

following code example illustrates connecting a virtual drive to a CD image

file:

vm.Config("ide1:0.devicetype") = "cdrom-image"

vm.Config("ide1:0.filename") = "/iso/foo.iso"

vm.ConnectDevice("ide1:0")

object.DisconnectDevice(devName) The DisconnectDevice() method sets a virtual device to the

disconnected state where devName is a string that identifies the virtual

device you want to disconnect. The virtual machine must be powered on for

this method to succeed, otherwise a vmErr_BADSTATE error is returned.

Method Description
17www.vmware.com

Using VmCOM
VmQuestion
The VmQuestion object is created and returned by VmCtl.PendingQuestion(). It describes
a question or error condition requiring user input. Once the script selects one of the possible answers,
it passes the object and the selected answer as inputs to VmCtl.AnswerQuestion().

The VmQuestion object includes the read-only (GET) properties listed in the following table:

Symbolic Constant Enumerations
The VmCtl object exposes the following symbolic constant enumerations, where each element of
an enumeration is a symbolic constant:

• VmExecutionState

• VmPowerOpMode

• VmProdInfoType

• VmProduct

• VmPlatform

VmExecutionState
The VmExecutionState symbolic constant enumeration specifies the state (or condition) of a
virtual machine. The possible values are listed in the following table:

Property Name Property Type Access Type Description

Text string GET Gets the question text.

Choices string GET Gets a VmCollection of strings representing a list of possible

answers to the question.

Id integer GET Gets an integer used internally by the VmCOM component to identify

the question.

VmExecutionState Values Description

vmExecutionState_On The virtual machine is powered on.

vmExecutionState_Off The virtual machine is powered off.

vmExecutionState_Suspended The virtual machine is suspended.

vmExecutionState_Stuck The virtual machine requires user input. The user must answer a question or dismiss

an error.

vmExecutionState_Unknown The virtual machine is in an unknown state.
18 www.vmware.com

Using VmCOM
VmPowerOpMode
The VmPowerOpMode symbolic constant enumeration specifies the behavior of a power transition
(start, stop, reset, or suspend) method.

During a soft power transition, the VMware Tools service runs a script inside the guest operating
system. For example, the default scripts that run during suspend and resume operations, respectively
release and renew DHCP leases, for graceful integration into most corporate LANs. You may also
customize these scripts. For more information on these scripts, see www.vmware.com/support/gsx25/
doc/tools_gsx.html. Refer to the section on executing scripts.

The following table includes the possible values for a VmPowerOpMode symbolic constant
enumeration.

VmPowerOpMode Values Description

vmPowerOpMode_Soft

To succeed, soft power transitions

require the current version of the

Vmware Tools service to be installed

and running in the guest operating

system.

Start when a virtual machine is suspended — After resuming the virtual machine, it

attempts to run a script in the guest operating system to restore network

connections by renewing the DHCP lease. The Start() operation always succeeds.

However, if the VMware Tools service is not present or is malfunctioning, the running

of the script may fail.

Start when virtual machine is powered off — After powering on the virtual machine,

the operation attempts to run a script in the guest operating system when the

VMware Tools service becomes active. This default script does nothing during this

operation as there is no DHCP lease to renew. The Start() operation always succeeds.

However, if the VMware Tools service is not present or is malfunctioning, the running

of the script may fail.

Stop — Attempts to shut down the guest operating system and then powers off the

virtual machine.

Reset — Attempts to shut down the guest operating system, then reboots the virtual

machine.

Suspend — Attempts to run a script in the guest operating system that safely

disables network connections (such as releasing a DHCP lease) before suspending

the virtual machine.

vmPowerOpMode_Hard Start — Starts or resumes a virtual machine without running any scripts; a standard

power on or resume.

Stop, reset or suspend — Immediately and unconditionally powers off, resets, or

suspends the virtual machine.

vmPowerOpMode_TrySoft First attempts to perform the power transition operation with

vmPowerOpMode_Soft. If this fails, the same operation is performed with

vmPowerOpMode_Hard.
19www.vmware.com

http://www.vmware.com/support/gsx25/doc/tools_gsx.html
http://www.vmware.com/support/gsx25/doc/tools_gsx.html

Using VmCOM
VmProdInfoType
VmProdInfoType symbolic constant enumeration specifies the type of product information
when reading the ProductInfo property.

VmProduct
The VmProduct symbolic constant enumeration denotes a VMware product type. The
ProductInfo property returns this information when the requested product information type is
vmProdInfo_Product.

VmPlatform
The VmPlatform symbolic constant enumeration denotes a VMware machine’s platform type. The
ProductInfo property returns this information when the requested product information type is
vmProdInfo_Platform.

VmProdInfoType Values Description

vmProdInfo_Product The VMware product type is returned as VmProduct. For more information on

VmProduct, see the following section.

vmProdInfo_Platform The host platform type is returned as VmPlatform. For more information on

VmPlatform, see VmPlatform on page 20.

vmProdInfo_Build The product’s build number.

vmProdInfo_Version_Major The product’s major version number.

vmProdInfo_Version_Minor The product’s minor version number.

vmProdInfo_Version_Revision The product’s revision number.

VmProduct Values Description

vmProduct_WS The product is VMware Workstation.

vmProduct_GSX The product is VMware GSX Server.

vmProduct_ESX The product is VMware ESX Server.

vmProduct_UNKNOWN The product type is unknown.

VmPlatform Values Description

vmPlatform_WINDOWS The host platform is a Microsoft Windows operating system.

vmPlatorm_LINUX The host platform is a Linux operating system.

vmPlatform_VMNIX The host platform is the ESX Server console operating system.
20 www.vmware.com

Using VmCOM
Using VmCOM to Pass User-Defined Information

Between a Running Guest Operating System

and a Script
When the guest operating system is running inside a virtual machine, you can pass information from
a script (running in another machine) to the guest operating system, and from the guest operating
system back to the script, through the VMware Tools service. You do this by using a class of shared
variables, commonly referred to as GuestInfo. VMware Tools must be installed and running in the
guest operating system before a GuestInfo variable can be read or written inside the guest operating
system.

For example, create and connect a VmCtl object, assuming the virtual machine is powered off. Next,
set the GuestInfo variable with the VmCOM API. Then, power on the virtual machine and use the
VMware Tools service to retrieve the variable. See Sending Information Set in a VmCOM Script to the
Guest Operating System on page 22 for an example of this procedure.

See www.vmware.com/support/gsx25/doc/tools_gsx.html for more information about VMware Tools.

GuestInfo Variables
You pass to the virtual machine variables you define yourself. What you pass is up to you, but you
might find it useful to pass items like the virtual machine’s IP address, Windows system ID (SID, for
Windows guest operating systems) or machine name.

This is useful in situations where you want to deploy virtual machines on a network using a common
configuration file, while providing each machine with its own unique identity. By providing each
virtual machine with a unique identifying string, you can use the same configuration file to launch
the same nonpersistent virtual disk multiple times in a training or testing environment, where each
virtual machine would be unique on the network. Note that in the case of persistent or undoable
disks, each virtual disk file must be copied into its own directory if it shares its file name with another
virtual disk file.

When a virtual machine process is created on the server, all GuestInfo variables are initially undefined.
A GuestInfo variable is created the first time it is written.

vmPlatform_UNKNOWN The host platform is unknown.

VmPlatform Values Description
21www.vmware.com

http://www.vmware.com/support/gsx25/doc/tools_gsx.html

Using VmCOM
You identify a GuestInfo variable with a key name. You can define and create any number of
GuestInfo variable key names. The information you pass is temporary, lasting until the virtual machine
is powered off and all consoles connected to the virtual machine are closed.

Sending Information Set in a VmCOM Script to the Guest Operating
System
To send information from a VmCOM script to a running guest operating system, you use the
GuestInfo() property. You need to specify the string value of the configuration variable
identified by keyName.

For example, you might want to deploy virtual machines for a training class. When a virtual machine
starts, you want to display a banner welcoming the student to the class. You can pass their name
from a VmCOM script to the guest operating system on a student’s virtual machine.

If you have not already done so, connect a VmCtl object and set the student’s name for this virtual
machine to “Susan Williams”:

vm.GuestInfo("name") = "Susan Williams"

This statement passes a string “name” to the guest operating system. A script in the guest operating
system reads the string, then calls a command (specific to the guest operating system) to set the
student’s name in the banner. (This operation is explained in the following section).

This setting lasts until you power off the virtual machine and close all connected consoles.

Retrieving the Information in the Guest Operating System
In the running guest operating system, you use the VMware Tools service to retrieve variables set for
the virtual machine. You can then use this passed “name” string inside a guest operating system
startup sequence. Use the following to read the GuestInfo variable keyName.

In a Windows guest operating system:

VMwareService.exe --cmd "info-get guestinfo.<keyName>"

In a Linux guest operating system:

/etc/vmware-tools/vmware-guestd --cmd 'info-get guestinfo.<keyName>'

For example, to get the current value for the “name” variable, you can type the following in a Linux
guest operating system:

/etc/vmware-tools/vmware-guestd --cmd 'info-get guestinfo.name'
22 www.vmware.com

Using VmCOM
Sending Information Set in the Guest Operating System to a VmCOM
Script
Similarly, in a virtual machine’s guest operating system, you can use the VMware Tools service to set
GuestInfo variables for the virtual machine. Use the following to write the GuestInfo variable
keyName.

In a Windows guest operating system:

VMwareService.exe --cmd "info-set guestinfo.<keyName> <value>"

In a Linux guest operating system:

/etc/vmware-tools/vmware-guestd --cmd 'info-set guestinfo.<keyName> <value>'

Continuing with the previous example, Susan Williams prefers “Sue”. To set the value of “Sue Williams”
for the “name” variable, type the following in a Linux guest operating system:

/etc/vmware-tools/vmware-guestd --cmd 'info-set guestinfo.name Sue Williams'

Retrieving Information in a VmCOM Script
With the VmCOM API, you use the GuestInfo(keyName) property to retrieve information set in
the guest operating system, into a VmCOM script running on any machine, including GSX Server or
any remote workstation that can connect to the virtual machine.

For example, to retrieve Sue’s name set by the VMware Tools service, query the guest operating
system by using the VmCOM API:

str = vm.GuestInfo("name")
23www.vmware.com

3

Using Sample VmCOM Programs

Using Sample VmCOM Programs
Sample VmCOM Programs
This section contains sample VmCOM programs written by VMware to demonstrate example uses of
the VmCOM API. You can modify them to suit the needs of your organization.

These sample programs are installed with the VmCOM component. During installation, two folders
named MiniMUI and SampleScripts are created in the same directory as the Scripting API. The
MiniMUI folder contains a sample VmCOM project that you may open with Microsoft Visual Basic 6.
The SampleScripts folder contains VBScript and JScript samples using the VmCOM Scripting API.

Note: You may also obtain these sample scripts from the VMware Web site. The scripts on the Web
site are saved with a .TXT extension for online viewing. Remove the .TXT extension before using these
scripts.

Copyright Information
Each sample script and sample program included with the VmCOM Scripting API includes a
copyright. However, for brevity, we do not include this copyright in its entirety with each sample
script and sample program in this manual. Instead, we include the first line of the copyright followed
by ellipses, to indicate its placement. The complete copyright is as follows:

Copyright (c) 1999-2003 VMware, Inc.

Permission is hereby granted, free of charge, to any person obtaining a copy
of the software in this file (the "Software"), to deal in the Software
without restriction, including without limitation the rights to use, copy,
modify, merge, publish, distribute, sublicense, and/or sell copies of the
Software, and to permit persons to whom the Software is furnished to do so,
subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

The names "VMware" and "VMware, Inc." must not be used to endorse or promote
products derived from the Software without the prior written permission of
VMware, Inc.

Products derived from the Software may not be called "VMware", nor may
"VMware" appear in their name, without the prior written permission of
VMware, Inc.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
VMWARE,INC. BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
26 www.vmware.com

Using Sample VmCOM Programs
AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

MiniMUI Visual Basic Sample Program
The MiniMUI sample program illustrates the use of VmCOM interfaces from a Visual Basic application.
It is a control panel application allowing users to get status information and to perform power
operations on virtual machines registered on a particular server.

The source code demonstrates how to:

• initialize a server object

• enumerate virtual machines on a server

• perform power operations on a virtual machine

• handle errors and get status information

• answer a question for a stuck virtual machine

To run the program, open the project file in Visual Basic. The source for the MiniMUI application is in
the MiniMUI folder in the VmCOM Scripting API directory. The following image shows the
application’s main window.

JScript and VBScript Sample Programs
The sample scripts included in the SampleScripts folder are designed to run under the Windows
Script Host environment, which is included with all Microsoft Windows 2000 and subsequent
27www.vmware.com

Using Sample VmCOM Programs
compatible operating systems. To run a script under a different environment, such as an ASP or HTML
page, refer to that environment’s documentation.

Each sample program comprises two files: a script, with a .js (JScript) or .vbs (VBScript) extension,
and the accompanying Windows Script File with the same name and the .wsf extension. For
example, the first sample program consists of the files sample1.js and sample1.wsf. Both the
script and the associated .wsf file must be in the same directory when you execute the sample
program.

To execute a sample program, type the following in a command line window:

cscript //nologo sample<n>.wsf

where <n> is the sample program number.

Note: The cscript command loads the Windows Script Host environment and is included with
the supported operating system. The .js or .vbs script contains the program’s actual logic. The
associated .wsf file defines and initializes an execution environment for the script. In this example,
the .wsf file loads VmCOM’s type library to allow the script to use VmCOM’s symbolic constants. For
more information on symbolic constants, see Properties on page 13.

JScript Sample Program 1
This JScript program connects to the local server and lists all registered virtual machines. If a virtual
machine is in the stuck state, the pending question is also displayed.

The source for the sample program 1 script is in the SampleScripts folder in the VmCOM Scripting API
directory.

You can also find it on the VMware Web site, saved with a .TXT extension for online viewing, at
www.vmware.com/support/developer/scripting-API/doc/sample1.js.txt.

//
// VmCOM JScript Sample Script (sample1)
// Copyright (c) 1999-2003 VMware, Inc.
// .
// .
// .
// This program is for educational purposes only.
// It is not to be used in production environments.
//
// Description:
//
// This script displays the virtual machines on the local server.
// It prints the configuration file path and current execution
// state of each VM. If a VM is in the stuck state, the current
// question and its choices are also printed.
28 www.vmware.com

http://www.vmware.com/support/developer/scripting-API/doc/sample1.js.txt

Using Sample VmCOM Programs
//
// Instructions for Windows 2000 and later operating systems:
//
// - save the contents of this file to a file named 'sample1.js'
// unless it's already named that way
//
// - there should be an accompanying file named 'sample1.wsf'
// It is placed in the same directory as this file during
// product installation. This file is responsible for setting
// up the Windows Script Host environment and loading the
// VmCOM type library, thereby enabling this script to
// reference symbolic constants such as vmExecutionState_On
//
// - in a command line window, type:
// cscript //nologo sample1.wsf
//

cp = WScript.CreateObject("VmCOM.VmConnectParams");
server = WScript.CreateObject("VmCOM.VmServerCtl");
server.Connect(cp)
vmCollection = server.RegisteredVmNames

for (j = 1; j <= vmCollection.count; j++) {

 vmName = vmCollection(j);
 vm = WScript.CreateObject("VmCOM.VmCtl");
 vm.Connect(cp, vmName);

 str = "config path=" + vmName + " OS=" + vm.Config("guestOS") + "
state=";
 execStateString = State2Str(vm);
 str += execStateString;

 if (execStateString == "STUCK") {

 question = vm.PendingQuestion;
 str += " pending question='" + question.text + "' choices=";

 choices = question.choices
 for (i = 1; i <= choices.count; i ++) {
 str += "[" + choices(i) + "] ";
 }
 }
 WScript.Echo(str);
}

function State2Str(vm) {
29www.vmware.com

Using Sample VmCOM Programs
 switch (vm.ExecutionState) {
 case vmExecutionState_On:
 return "ON";
 break;
 case vmExecutionState_Off:
 return "OFF";
 break;
 case vmExecutionState_Suspended:
 return "SUSPENDED";
 break;
 case vmExecutionState_Stuck:
 return "STUCK";
 break;
 default:
 return "UNKNOWN";
 break;
 }
}

The source for the sample program 1 accompanying Windows Script File is in the SampleScripts
folder in the VmCOM Scripting API directory.

You can also find it on the VMware Web site, saved with a .TXT extension for online viewing, at
www.vmware.com/support/developer/scripting-API/doc/sample1.wsf.txt.

Note: If you are using Microsoft® Internet Explorer as your browser, select View > Source to view the
file. Alternately, right-click this link and download this file.

<job id="Sample1">
 <reference object="VmCOM.VmCtl" />
 <script language="JScript" src="sample1.js" />
</job>

VBScript Sample Program 2
This VBScript sample program 2 provides similar functionality to sample program 1. It also connects
to the local server and lists all registered virtual machines. If a virtual machine is in the stuck state, the
pending question is displayed.

In addition, sample program 2 also illustrates how to handle a virtual machine that is waiting for input
to a question (that is, the virtual machine is in the vmExecutionState_Stuck state). For
example, if a virtual machine is configured with an undoable disk and a redo log is found, this script
automatically keeps the redo log during a shutdown operation or appends the redo log during a
power-on operation.

Note: The script’s question-answering code is highly dependent on the version of your server
product and the language used in the question. This script can malfunction with a newer version of
30 www.vmware.com

http://www.vmware.com/support/developer/scripting-API/doc/sample1.wsf.txt

Using Sample VmCOM Programs
the server product or different language version of the VMware server product. This sample program
is for example purposes only and is written for VMware GSX Server 2.x.

The source for the sample program 2 script is in the SampleScripts folder in the VmCOM Scripting API
directory.

You can also find it on the VMware Web site, saved with a .TXT extension for online viewing, at
www.vmware.com/support/developer/scripting-API/doc/sample2.vbs.txt.

'
' VmCOM VBScript Sample Script (sample2)
' Copyright (c) 1999-2003 VMware, Inc.
' .
' .
' .
' This program is for educational purposes only.
' It is not to be used in production environments.
'
' Description:
'
' This script displays the virtual machines on the local server.
' It prints the configuration file path and current execution
' state of each VM. If a VM is in the stuck state, the current
' question and its choices are also printed.
' Additionally, if a VM is stuck on an undoable disk related
' question, the script automatically answers 'Keep' on a power-off
' and 'Append' on a power-on.
'
' NOTE: the question-answering logic used is language and product
' dependent, and is only provided for illustration purposes only!
'
' Instructions for Windows 2000 and later operating systems:
'
' - save the contents of this file to a file named 'sample2.vbs'
' unless it's already named that way
'
' - there should be an accompanying file named 'sample2.wsf'
' It is placed in the same directory as this file during
' product installation. This file is responsible for setting
' up the Windows Script Host environment and loading the
' VmCOM type library, thereby enabling this script to
' reference symbolic constants such as vmExecutionState_On
'
' - in a command line window, type:
' cscript //nologo sample2.wsf
'
31www.vmware.com

http://www.vmware.com/support/developer/scripting-API/doc/sample2.vbs.txt

Using Sample VmCOM Programs
Set cp = CreateObject("VmCOM.VmConnectParams")
Set server = CreateObject("VmCOM.VmServerCtl")

server.Connect cp
Set vmCollection = server.RegisteredVmNames

for each vmName in vmCollection
 Set vm = CreateObject("VmCOM.VmCtl")
 vm.Connect cp,vmName
 s = "path=" & vmName & " state=" & State2Str(vm) & " os=" &
vm.Config("guestos")

 if vm.ExecutionState = vmExecutionState_Stuck then
 Set q = vm.PendingQuestion
 Set choices = q.choices
 s = s & " question= '" & q.text & "' choices="
 for each choice in choices
 s = s & "[" & choice & "] "
 next

 ' If this looks like an undoable disk save question,
 ' automatically answer 'Append' or 'Keep'
 '
 ' NOTE: this code makes a lot of assumptions about the product
 ' and the language used, and may break under some environments.
 ' It is shown for illustration purposes only!

 Set r = new RegExp
 r.pattern = "undoable disk"
 r.ignorecase = True
 Set matches = r.Execute(q.text)

 if matches.count > 0 then
 for i = 1 to choices.count
 if choices(i) = "Append" or choices(i) = "Keep" then
 WScript.Echo(s)
 s = " --> Automatically selecting '" & q.choices(i) & "' as
answer"
 vm.AnswerQuestion q,i
 exit for
 end if
 next
 end if

 end if
32 www.vmware.com

Using Sample VmCOM Programs
 WScript.Echo(s)
next

function State2Str(vm)
 select case vm.ExecutionState
 case vmExecutionState_On
 State2Str = "ON"
 case vmExecutionState_Off
 State2Str = "OFF"
 case vmExecutionState_Suspended
 State2Str = "SUSPENDED"
 case vmExecutionState_Stuck
 State2Str = "STUCK"
 case else
 State2Str = "UNKNOWN"
 end select
end function

The source for the sample program 2 accompanying Windows Script File is in the SampleScripts
folder in the VmCOM Scripting API directory.

You can also find it on the VMware Web site, saved with a .TXT extension for online viewing, at
www.vmware.com/support/developer/scripting-API/doc/sample2.wsf.txt.

Note: If you are using Microsoft Internet Explorer as your browser, select View > Source to view the
file. Alternately, right-click this link and download this file.

<job id="Sample2">
 <reference object="VmCOM.VmCtl" />
 <script language="VBScript" src="sample2.vbs" />
</job>

VBScript Sample Program 3
This VBScript sample program lists, then starts locally registered virtual machines that are not already
running on a server. This script powers on powered-off virtual machines and resumes suspended
virtual machines that have the line "autostart=true" in their configuration files.

This script includes a slight delay after starting each virtual machine. This delay balances the load on
the server. Do not start many virtual machines in rapid succession without this delay.

You can use a script like the following to start selected virtual machines automatically after a server
boots. However, this script must be configured as a service for it to run without requiring a login from
a user.

Tools exist that allow any application, including a script, to run as a service. One example is the
instsrv and srvany programs from the Microsoft Windows 2000 Resource Kit. If you use
srvany to implement the service, then configure your service to launch the cscript program.
33www.vmware.com

http://www.vmware.com/support/developer/scripting-API/doc/sample2.wsf.txt

Using Sample VmCOM Programs
Set the program’s argument to the path of the script’s .wsf file. Refer to the Microsoft Windows 2000
Resource Kit documentation for more details. If you choose to use a different tool, then refer to your
specific tool’s documentation to configure the script to run as a service.

The source for the sample program 3 script is in the SampleScripts folder in the VmCOM Scripting API
directory.

You can also find it on the VMware Web site, saved with a .TXT extension for online viewing, at
www.vmware.com/support/developer/scripting-API/doc/sample3.vbs.txt.

'
' VmCOM VBScript Sample Program 3
' Copyright (c) 1999-2003 VMware, Inc.
' .
' .
' .
' This program is for educational purposes only.
' It is not to be used in production environments.
'
' Description:
'
' This script gets a list of virtual machines registered on
' the local server. It attempts to power-on each VM that
' is not already running and has a line in the config file:
'
' autostart=true
'
'
' Instructions for Windows 2000 and Windows XP host:
'
' - save the contents of this file to a file named 'sample3.vbs'
'
' - there should be an accompanying file named 'sample3.wsf'
' It is placed in the same directory as this file during
' product installation. This file is responsible for setting
' up the Windows Script Host environment and loading the
' VmCOM type library, thereby enabling this script to
' reference symbolic constants such as vmExecutionState_On
'
' - in a command line window, type:
' cscript //nologo sample3.wsf
'

Set connect_params = CreateObject("VmCOM.VmConnectParams")
34 www.vmware.com

http://www.vmware.com/support/developer/scripting-API/doc/sample3.vbs.txt

Using Sample VmCOM Programs
' By default, connects to the local server.
' To connect to a remote server, uncomment these lines and set
' the values appropriately.
'
' connect_params.hostname = "<host>"
' connect_params.username = "<user>"
' connect_params.password = "<password>"
'
' And use this if your port number is different
' connect_params.port = 902

Set vm_server = CreateObject("VmCOM.VmServerCtl")

' Handle errors non-fatally from here on
On Error Resume Next

'
' Try connecting to server a few times. It's possible the VMware services
' are still in the process of starting up. We'll wait a maximum of
' 12 * 10 = 120 seconds = 2 minutes
'
connected = false
for tries = 1 to 12
 vm_server.Connect connect_params
 if Err.number = 0 then
 connected = true
 exit for
 end if
 WScript.Echo "Could not connect to server: " & Err.Description
 WScript.Echo "Retrying in 10 seconds ..."
 WScript.Sleep 10000
 Err.clear
next

if not connected then
 WScript.Echo "Failed to connect to server. Giving up."
 WScript.Quit
end if

' Get a list of all VMs from the server.
Set vmlist = vm_server.RegisteredVmNames

for each config in vmlist
 ' Connect to the VM
 Set vm = CreateObject("VmCOM.VmCtl")
 vm.Connect connect_params, config
35www.vmware.com

Using Sample VmCOM Programs
 if Err.Number <> 0 then
 WScript.Echo "Could not connect to VM " & config & ": " &
Err.Description
 Err.Clear
 else
 ' Check that the VM should be started automatically
 auto_start = vm.Config("autostart")
 if Err.Number <> 0 then
 if Err.Number <> vmErr_NOPROPERTY then
 WScript.Echo "Could not read autostart variable: " & Err.Number
& ": " & Err.Description
 else
 WScript.Echo "This VM is not configured for autostart: " & config
 end if
 Err.Clear
 else
 if auto_start = "true" or auto_start = "TRUE" then
 ' Check that the VM is powered off

 power_state = vm.ExecutionState
 if Err.Number <> 0 then
 WScript.Echo "Error getting execution state: " &
Err.Number & ": " & Err.Description
 Err.Clear
 else
 if power_state = vmExecutionState_Off or power_state =
vmExecutionState_Suspended then
 WScript.Echo "Powering on " & config
 vm.Start(vmPowerOpMode_Soft)
 if Err.Number <> 0 then
 WScript.Echo "Error powering on " & config & ": " &
Err.Description
 Err.Clear
 else
 ' Wait between starting up VMs to smooth out the load
on the server
 WScript.Sleep 5000
 end if
 end if
 end if
 end if
 end if
 end if

next
36 www.vmware.com

Using Sample VmCOM Programs
The source for the sample program 3 accompanying Windows Script File is in the SampleScripts
folder in the VmCOM Scripting API directory.

You can also find it on the VMware Web site, saved with a .TXT extension for online viewing, at
www.vmware.com/support/developer/scripting-API/doc/sample3.wsf.txt.

Note: If you are using Microsoft Internet Explorer as your browser, select View > Source to view the
file. Alternately, right-click this link and download this file.

<job id="sample3">
 <reference object="VmCOM.VmCtl" />
 <script language="VBScript" src="sample3.vbs" />
</job>
37www.vmware.com

http://www.vmware.com/support/developer/scripting-API/doc/sample3.wsf.txt

4

Using VmPerl

Using VmPerl
VmPerl Modules
The VmPerl interface provides controlled access to VMware servers and virtual machines. You can
incorporate VmPerl function calls in a Perl script you write to automate the day-to-day functioning of
your server and virtual machines.

The VmPerl API consists of four modules or packages:

• VMware::VmPerl::ConnectParams — that provides connection information and authentication
(user credentials) when connecting to a server.

• VMware::VmPerl::Server — that controls interaction with a GSX Server or ESX Server machine.

• VMware::VmPerl::VM — that controls interaction with a particular virtual machine on a GSX
Server or ESX Server.

• VMware::VmPerl::Question — that provides for user interaction when there is a question or error
condition requiring a response.

VMware::VmPerl::Server and VMware::VmPerl::VM are the primary modules for communicating with
VMware components. VMware::VmPerl::ConnectParams and VMware::VmPerl::Question are support
modules used as inputs or outputs to the methods and properties of the primary modules.

A VMware::VmPerl::Server object represents a server and exports server-level services, such as virtual
machine enumeration and registration. A VMware::VmPerl::VM object represents a virtual machine on
a particular server and provides virtual machine specific methods including power operations. You
activate the VMware::VmPerl::Server or VMware::VmPerl::VM object by calling its connect()
method before accessing any other method.

The connect() method requires a $connectparams input parameter containing the host
identifier and user credentials supplied for authentication. If the host identifier is not supplied or is
undefined, the authentication is performed on the local system. If the user name and password are
also not supplied, the current user is authenticated on the local machine. Otherwise, you may supply
the user name and password for authentication as that user.

Unlike a VMware::VmPerl::Server object, $vm->connect() also takes the string $vm_name
specifying the configuration file name of the virtual machine that will be connected.

Once a VMware::VmPerl::Server object is connected, you can enumerate the virtual machines on the
server, and register or unregister the virtual machines. You can obtain a list of virtual machines on a
particular server by using the $server->registered_vm_names() method. This method
returns an array of strings specifying the configuration file names of the virtual machines currently
registered on the server. If you know the configuration file name of a specific virtual machine, you can
connect the VMware::VmPerl::VM object directly without using a VMware::VmPerl::Server object.
40 www.vmware.com

Using VmPerl
VMware::VmPerl::ConnectParams
VMware::VmPerl::ConnectParams::new($hostname, $port, $username, $password) connects to the
given hostname and network port and authenticates the connection with the supplied user name
and password.

The VMware::VmPerl::ConnectParams module supplies connection information and user credentials
to the $server->connect() or $vm->connect() methods and exposes the methods listed
in the following table. All VMware::VmPerl::ConnectParams methods have both read and write
permissions, allowing you to retrieve (GET) and set (PUT) the values.

The security for your connection depends upon the security configuration of your VMware server. If
you’re connecting to a VMware server or a virtual machine on a host with GSX Server, then the
connections is encrypted as long as the VMware server is configured to encrypt connections.

Method Description

$connectparams->get_hostname()

Returns the defined value on success or undef

(undefined value) on failure or if the value is not set. Set

the value and retry the API call.

$connectparams->set_hostname($hostname)

Gets or sets the name of a server, where $hostname is the server’s

hostname or IP address. If $hostname is not given or undefined,

the authentication is performed on the local system. The C library

connects to the local host and uses current user information when it

connects. However, this user information is not passed back to

$connectparams.

Otherwise, you may supply the user name and password for

authentication as that user.

$connectparams->get_port()

Returns the defined value on success or undef

(undefined value) on failure or if the value is not set. Set

the value and retry the API call.

$connectparams->set_port($port)

Gets or set the TCP port to use when connecting to the server. Its

default value is 0 (zero), indicating the default port number (902)

should be used. Otherwise, enter the correct port number.

A port number set to a negative value is treated as an incorrect value

and the default port number is used instead.

$connectparams->get_username()

Returns the defined value on success or undef

(undefined value) on failure or if the value is not set. Set

the value and retry the API call.

$connectparams->set_username($username)

Gets or set the name of a user on the server.

$connectparams->get_password()

Returns the defined value on success or undef

(undefined value) on failure or if the value is not set. Set

the value and retry the API call.

$connectparams->set_password($password)

Gets or set the user’s password on the server.
41www.vmware.com

Using VmPerl
VMware::VmPerl::Server
The VMware::VmPerl::Server module represents a VMware server running on a particular machine.

The remaining methods only work after you connect to the server with $server->connect().

Method Description

$server->connect($connectparams)

Returns the defined value on success or undef

(undefined value) on failure.

Connects the object to a VMware GSX Server or a VMware ESX Server

where $connectparams specifies the system and user

information.

The total number of connected VMware::VmPerl::VM and

VMware::VmPerl::Server objects cannot exceed 62. The

connect() method fails with error code

VM_E_INSUFFICIENT_RESOURCES if this limit is reached. In order to

connect new objects, destroy one or more connected

VMware::VmPerl::VM or VMware::VmPerl::Server objects.

$server->get_last_error()

Returns the error code and descriptive string.

Gets details about the last error that occurred in an array of form

[$error_num, $error_string].

$server->is_connected()

Returns the defined value on success or undef

(undefined value) on failure (if the server is not

connected or if there is a failure). You can use

$vm->get_last_error to determine if an error

occurred or if the server is not connected.

Use this method to determine whether or not a connection exists to

the server specified by $server.

Method Description

$server->registered_vm_names()

Returns a list of virtual machine configuration file

names, an empty list (if no virtual machines are

registered or if there is a failure). You can use

$vm->get_last_error to determine if an

error occurred or there are no registered virtual

machines.

Gets an array of strings specifying the configuration file names of the

virtual machines currently registered on the server. The array is indexed

beginning at 0 (zero). The server must be connected using the

connect() method, or this method throws an error.

$server->register_vm($vm_name)

Returns the defined value on success or undef

(undefined value) on failure.

Registers a virtual machine on a server where $vm_name is a string

specifying the virtual machine’s configuration file name.

$server->unregister_vm($vm_name)

Returns the defined value on success or undef

(undefined value) on failure.

Unregisters a virtual machine from a server where $vm_name is a string

specifying the virtual machine’s configuration file name.
42 www.vmware.com

Using VmPerl
VMware::VmPerl::VM
The VMware::VmPerl::VM object represents a virtual machine running on a particular server.

You can connect to a virtual machine, start, stop, suspend and resume virtual machines, query and
modify the configuration file settings, and connect and disconnect devices.

Except where noted otherwise, these methods are synchronous; the method does not return until it
finishes its operation, fails or times out. Most operations time out after 2 minutes, except for power
operations, which time out after 4 minutes.

The remaining methods only work after you connect to the virtual machine with
$vm->connect().

Method Description

$vm->connect($connectparams, $vm_name)

Returns the defined value on success or undef

(undefined value) on failure.

Establishes a connection with a virtual machine using the specified

parameters where $connectparams specifies the system and

user information and $vm_name is a string specifying the virtual

machine’s configuration file name.

The total number of connected VMware::VmPerl::VM and

VMware::VmPerl::Server objects cannot exceed 62. The

connect() method fails with error code

VM_E_INSUFFICIENT_RESOURCES if this limit is reached. In order to

connect new objects, destroy one or more connected

VMware::VmPerl::VM or VMware::VmPerl::Server objects.

$vm->get_last_error()

Returns the error code and descriptive string.

Gets details about the last error that occurred in an array of form

[$error_num, $error_string].

$vm->is_connected()

Returns the defined value on success or undef

(undefined value) on failure (if the virtual machine is not

connected or if there is a failure). You can use

$vm->get_last_error to determine if an error

occurred or if the virtual machine is not connected.

Use this method to determine whether or not a connection exists to

the virtual machine specified by $vm.
43www.vmware.com

Using VmPerl
Method Description

$vm->start($mode)

Returns the defined value on success or

undef (undefined value) on failure.

Powers on a previously powered-off virtual machine or resumes a suspended

virtual machine where $mode specifies the operation’s behavior based on

the value of the VMware::VmPerl::VM_POWEROP_MODE_<XXX> where

<XXX> is HARD, SOFT, or TRYSOFT. If $mode is not specified, the default

mode is VM_POWEROP_MODE_SOFT. For more information, see

VM_POWEROP_MODE_<XXX> Values on page 49.

Note: If you are connecting to GSX Server 1.x or ESX Server 1.x, then you

must specify VMware::VmPerl::VM_POWEROP_MODE_HARD as the mode or

the operation will fail.

f the virtual machine is powered off, then it is powered on. If it is suspended,

this method resumes the virtual machine. If the virtual machine is in any other

state, the start() method fails and throws an error.

$vm->stop($mode)

Returns the defined value on success or

undef (undefined value) on failure.

Shuts down and powers off a virtual machine where $mode specifies the

operation’s behavior based on the value of the

VMware::VmPerl::VM_POWEROP_MODE_<XXX> where <XXX> is HARD, SOFT,

or TRYSOFT. If $mode is not specified, the default mode is

VM_POWEROP_MODE_SOFT. For more information, see

VM_POWEROP_MODE_<XXX> Values on page 49.

Note: If you are connecting to GSX Server 1.x or ESX Server 1.x, then you

must specify VMware::VmPerl::VM_POWEROP_MODE_HARD as the mode or

the operation will fail.

This method always fails if the virtual machine is not in the

VM_EXECUTION_STATE_ON state.

$vm->reset($mode)

Returns the defined value on success or

undef (undefined value) on failure.

Shuts down, then reboots a virtual machine where $mode specifies the

operation’s behavior based on the value of the

VMware::VmPerl::VM_POWEROP_MODE_<XXX> where <XXX> is HARD, SOFT,

or TRYSOFT. If $mode is not specified, the default mode is

VM_POWEROP_MODE_SOFT. See VM_POWEROP_MODE_<XXX> Values on

page 49.

Note: If you are connecting to GSX Server 1.x or ESX Server 1.x, then you

must specify VMware::VmPerl::VM_POWEROP_MODE_HARD as the mode or

the operation will fail.

This method always fails if the virtual machine is not in the

VM_EXECUTION_STATE_ON state.
44 www.vmware.com

Using VmPerl
$vm->suspend($mode)

Returns the defined value on success or

undef (undefined value) on failure.

Suspends a virtual machine where $mode specifies the operation’s behavior

based on the value of the VMware::VmPerl::VM_POWEROP_MODE_<XXX>

where <XXX> is HARD, SOFT, or TRYSOFT. It saves the current state of the

virtual machine to a suspend file. If $mode is not specified, the default mode

is VM_POWEROP_MODE_SOFT. For more information, see

VM_POWEROP_MODE_<XXX> Values on page 49.

Note: If you are connecting to GSX Server 1.x or ESX Server 1.x, then you

must specify VMware::VmPerl::VM_POWEROP_MODE_HARD as the mode or

the operation will fail.

This method always fails if the virtual machine is not in the

VMware::VmPerl::VM_EXECUTION_STATE_ON state. If you attempt to suspend

a virtual machine with more the 2GB of memory, the suspend operation will

time fail after a time-out period.

$vm->get_execution_state()

Returns the defined value on success or

undef (undefined value) on failure.

Returns the virtual machine’s current state: powered on, powered off,

suspended, or stuck. For a list of the execution states, see

VM_EXECUTION_STATE_<XXX> Values on page 48.

$vm->get_guest_info($key_name)

Returns the defined value on success or

undef (undefined value) on failure.

$vm->set_guest_info($key_name, $value)

Returns the defined value on success or

undef (undefined value) on failure.

It accesses a shared variable identified by the string $key_name.

If you write a GuestInfo variable by using the set_guest_info()

method, the new value is written into memory and is discarded when the

virtual machine process terminates.

For additional information, see Using VmPerl to Pass User-Defined

Information Between a Running Guest Operating System and a Script on

page 51.

$vm->get_config_file_name()

Returns the defined value on success or

undef (undefined value) on failure.

Returns a string containing the configuration file name for the virtual

machine. This method fails if the VMware::VmPerl::VM object is not

connected.

$vm->get_config($key_name)

Returns the defined value on success or

undef (undefined value) on failure.

$vm->set_config($key_name, $value)

Returns the defined value on success or

undef (undefined value) on failure.

Accesses the value of a configuration variable identified by the string

key_name. When a virtual machine process is spawned on the server, the

process reads configuration variables from the virtual machine's

configuration file into memory.

If you write a configuration variable by using the set_config() method,

the new value is written into memory and is discarded when the virtual

machine process terminates. You cannot change the value of a configuration

variable in a virtual machine’s configuration file.

The method throws an error if it accesses an undefined configuration

variable.

Do not change the memory size while a virtual machine is suspended. First

power off the virtual machine, then change its memory size.

Method Description
45www.vmware.com

Using VmPerl
$vm->get_product_info($infotype)

Returns the defined value on success or

undef (undefined value) on failure.

Gets information about the product. For additional information, see Infotype

Values on page 50.

$vm->get_heartbeat()

Returns the defined value on success or

undef (undefined value) on failure.

Returns the current heartbeat count generated by the VMware Tools service

running in the guest operating system. The count is initialized to zero when

the virtual machine is powered on.

The heartbeat count is typically incremented at least once per second when

the VMware Tools service is running under light load conditions. The count

stays constant if the service is not running.

$vm->get_tools_last_active()

Returns the defined value on success or

undef (undefined value) on failure.

Returns an integer indicating how much time has passed, in seconds, since

the last heartbeat was detected from the VMware Tools service.

This value is initialized to zero when the virtual machine powers on. It stays at

zero until the first heartbeat is detected, after which the value is always

greater than zero until the virtual machine is power-cycled again.

For additional information, see Additional Information on

get_tools_last_active on page 47.

$vm->get_pending_question()

Returns the defined value on success or

undef (undefined value) on failure.

Returns a Vmware::VmPerl::VmQuestion object if the virtual machine is

currently in the VM_EXECUTION_STATE_STUCK state. Otherwise, an error is

thrown.

$vm->answer_question($question, $choice)

Returns the defined value on success or

undef (undefined value) on failure.

Replies to a question where $question represents the question and

$choice represents the index of the selected answer to the question. The

index is a number associated with an answer. The first choice’s index is always

0. The second choice’s index is 2, and so on.

Use this method to answer the current question or dismiss the current error

message when a virtual machine is in the VM_EXECUTION_STATE_STUCK

state and requires user input to continue.

First, get a VMware::VmPerl::Question object from the VMware::VmPerl::VM

object’s get_pending_question() method. You can retrieve the

possible choices and their respective indices from the

VMware::VmPerl::Question object’s get_choices() method. Then, use

the answer_question() method to answer the question.

$vm->device_is_connected($dev_name)

Returns the defined value on success or false

on failure (if the device is not connected or if

there is a failure). You can use

$vm->get_last_error to determine if

an error occurred or if the device is not

connected.

Determines the connection state where $dev_name identifies the virtual

device.

Method Description
46 www.vmware.com

Using VmPerl
Additional Information on get_tools_last_active
If the guest operating system is heavily loaded, this value may occasionally reach several seconds. If
the service stops running, either because the guest operating system has experienced a failure or is
shutting down, the value keeps increasing.

You can use a script with the get_tools_last_active() method to monitor the start of the
VMware Tools service, and once started, the health of the guest operating system. If the guest
operating system has failed, the get_tools_last_active() method indicates how long the
guest has been down. The following table summarizes how you may interpret the
get_tools_last_active() method values:

$vm->connect_device($dev_name)

Returns the defined value on success or

undef (undefined value) on failure.

Sets a virtual device to the connected state where $dev_name identifies

the virtual device you want to connect. The virtual machine must be

powered on for this method to succeed, otherwise a VM_E_BADSTATE error is

returned.

Use the set_config() method to set configuration parameters relevant

to the virtual device before calling the connect_device() method.

The following code example illustrates connecting a virtual drive to a CD

image file:

$vm->set_config("ide1:0.devicetype") = "cdrom-image"

$vm->set_config("ide1:0.filename") = "/iso/foo.iso"

$vm->connect_device("ide1:0")

$vm->disconnect_device ($dev_name)

Returns the defined value on success or

undef (undefined value) on failure.

Sets a virtual device to the disconnected state where $dev_name is a string

identifying the virtual device you want to disconnect. The virtual machine

must be powered on for this method to succeed, otherwise a

VM_E_BADSTATE error is returned.

get_tools_last_active Method Value Description

0 The VMware Tools service has not started since the power-on of the

virtual machine.

1 The VMware Tools service is running and is healthy.

2, 3, 4, or 5 The VMware Tools service could be running, but the guest operating

system may be heavily loaded or is experiencing temporary

problems.

Greater than 5 The VMware Tools service stopped running, possibly because the

guest operating system experienced a fatal failure, is restarting, or is

shutting down.

Method Description
47www.vmware.com

Using VmPerl
VMware::VmPerl::Question
The VMware::VmPerl::Question method describes a question or error condition requiring input. The
script selects one from the list of possible answers.

Symbolic Constants
The VMware::VmPerl::VM object exposes the following symbolic constants:

• VM_EXECUTION_STATE_<XXX> Values

• VM_POWEROP_MODE_<XXX> Values

• Infotype Values

• VM_PRODINFO_PRODUCT_<XXX> Values

• VM_PRODINFO_PLATFORM_<XXX> Values

VM_EXECUTION_STATE_<XXX> Values
VM_EXECUTION_STATE_<XXX> values specify the state (or condition) of a virtual machine. The
possible values are listed in the following table:

Method Description

$question->get_text()

Returns the defined value on success or undef

(undefined value) on failure.

Gets the question text.

$question->get_choices()

Returns the defined value on success or undef

(undefined value) on failure.

Gets an array of strings representing a list of possible answers to the

question.

$question->get_id()

Returns the defined value on success or undef

(undefined value) on failure.

Gets an integer used internally by VmPerl to identify the question.

Execution_state Values Description

VM_EXECUTION_STATE_ON The virtual machine is powered on.

VM_EXECUTION_STATE_OFF The virtual machine is powered off.

VM_EXECUTION_STATE_SUSPENDED The virtual machine is suspended.

VM_EXECUTION_STATE_STUCK The virtual machine requires user input. The user must answer a question or

dismiss an error.
48 www.vmware.com

Using VmPerl
VM_POWEROP_MODE_<XXX> Values
VMware::VmPerl::VM_POWEROP_MODE_<XXX> specifies the behavior of a power transition (start,
stop, reset, or suspend) method. If $mode is not specified, the default mode is
VM_POWEROP_MODE_SOFT. However, if you are connecting to GSX Server 1.x or ESX Server 1.x, then
you must specify VMware::VmPerl::VM_POWEROP_MODE_HARD as the mode or the operation will
fail.

During a soft power transition, the VMware Tools service runs a script inside the guest operating
system. For example, the default scripts that run during suspend and resume operations, respectively
release and renew DHCP leases, for graceful integration into most corporate LANs. You may also
customize these scripts. For more information on these scripts, see www.vmware.com/support/gsx25/
doc/tools_gsx.html. Refer to the section on executing scripts.

The possible values are listed in the following table:

VM_EXECUTION_STATE_UNKNOWN The virtual machine is in an unknown state.

Powerop_mode Values Description

VM_POWEROP_MODE_SOFT

To succeed, soft power transitions require the

current version of the Vmware Tools service to

be installed and running in the guest operating

system.

Start when a virtual machine is suspended — After resuming the virtual

machine, the operation attempts to run a script in the guest operating

system to restore network connections by renewing the DHCP lease. The

Start() operation always succeeds. However, if the VMware Tools service is not

present or is malfunctioning, the running of the script may fail.

Start when virtual machine is powered off — After powering on the virtual

machine, it attempts to run a script in the guest operating system when the

VMware Tools service becomes active. This default script does nothing

during this operation as there is no DHCP lease to renew. The Start()

operation always succeeds. However, if the VMware Tools service is not

present or is malfunctioning, the running of the script may fail.

Stop — Attempts to shut down the guest operating system and then powers

off the virtual machine.

Reset — Attempts to shut down the guest operating system, then reboots

the virtual machine.

Suspend — Attempts to run a script in the guest operating system that safely

disables network connections (such as releasing a DHCP lease) before

suspending the virtual machine.

VM_POWEROP_MODE_HARD Start — Starts or resumes a virtual machine without running any scripts; a

standard power on or resume.

Stop, reset or suspend — Immediately and unconditionally powers off, resets,

or suspends the virtual machine.

Execution_state Values Description
49www.vmware.com

http://www.vmware.com/support/gsx25/doc/tools_gsx.html
http://www.vmware.com/support/gsx25/doc/tools_gsx.html

Using VmPerl
Infotype Values
$infotype specifies the product information for the get_product_info() method.

VM_PRODINFO_PRODUCT_<XXX> Values
The get_product_info method returns the VMware product when the requested $infotype
is VM_PRODINFO_PRODUCT_<XXX>.

VM_PRODINFO_PLATFORM_<XXX> Values
The get_product_info method returns the host’s platform when the requested $infotype is
VM_PRODINFO_PLATFORM_<XXX>.

VM_POWEROP_MODE_TRYSOFT First attempts to perform the power transition operation with

VM_POWEROP_MODE_SOFT. If this fails, the same operation is performed

with VM_POWEROP_MODE_HARD.

Infotype Values Description

VM_PRODINFO_PRODUCT The VMware product is returned as VmProduct. For more information on

VmProduct, see the following section.

VM_PRODINFO_PLATFORM The host’s operating system is returned as VmPlatform. For more information

on VmPlatform, see VM_PRODINFO_PLATFORM_<XXX> Values on page 50.

VM_PRODINFO_BUILD The product’s build number.

VM_PRODINFO_VERSION_MAJOR The product’s major version number.

VM_PRODINFO_VERSION_MINOR The product’s minor version number.

VM_PRODINFO_VERSION_REVISION The product’s revision number.

VM_PRODINFO_PRODUCT Values Description

VM_PRODUCT_WS The product is VMware Workstation.

VM_PRODUCT_GSX The product is VMware GSX Server.

VM_PRODUCT_ESX The product is VMware ESX Server.

VM_PRODUCT_UNKNOWN The product is unknown.

VM_PRODINFO_PLATFORM Values Description

VM_PLATFORM_WINDOWS The platform is a Microsoft Windows operating system.

VM_PLATORM_LINUX The platform is a Linux operating system.

Powerop_mode Values Description
50 www.vmware.com

Using VmPerl
Using VmPerl to Pass User-Defined Information

Between a Running Guest Operating System

and a Script
When the guest operating system is running inside a virtual machine, you can pass information from
a script (running in another machine) to the guest operating system, and from the guest operating
system back to the script, through the VMware Tools service. You do this by using a class of shared
variables, commonly referred to as GuestInfo. VMware Tools must be installed and running in the
guest operating system before a GuestInfo variable can be read or written inside the guest operating
system.

For example, create and connect a VMware::VmPerl::VM object, assuming the virtual machine is
powered off. Next, set the GuestInfo variable with the VmPerl API. Then, power on the virtual machine
and use the VMware Tools service to retrieve the variable. See Sending Information Set in a VmPerl
Script to the Guest Operating System on page 52 for an example of this procedure.

See www.vmware.com/support/gsx25/doc/tools_gsx.html for more information about VMware Tools.

GuestInfo Variables
You pass to the virtual machine variables you define yourself. What you pass is up to you, but you
might find it useful to pass items like the virtual machine’s IP address, Windows system ID (SID, for
Windows guest operating systems) or machine name.

This is useful in situations where you want to deploy virtual machines on a network using a common
configuration file, while providing each machine with its own unique identity. By providing each
virtual machine with a unique identifying string, you can use the same configuration file to launch
the same nonpersistent virtual disk multiple times in a training or testing environment, where each
virtual machine would be unique on the network. Note that in the case of persistent or undoable
disks, each virtual disk file must be copied into its own directory if it shares its file name with another
virtual disk file.

When a virtual machine process is created on the server, all GuestInfo variables are initially undefined.
A GuestInfo variable is created the first time it is written.

VM_PLATFORM_VMNIX The platform is the ESX Server console operating system.

VM_PLATFORM_UNKNOWN The platform is unknown.

VM_PRODINFO_PLATFORM Values Description
51www.vmware.com

http://www.vmware.com/support/gsx25/doc/tools_gsx.html

Using VmPerl
You identify a GuestInfo variable with a key name. You can define and create any number of
GuestInfo variable key names. The information you pass is temporary, lasting until the virtual machine
is powered off and all consoles connected to the virtual machine are closed.

For an example showing how the VMware guest service can be invoked in a Perl script, see the
sample Perl script to get the IP address of a guest operating system on Setting a Virtual Machine’s IP
Address Configuration Variable on page 71.

Sending Information Set in a VmPerl Script to the Guest Operating System
To send information from a VmPerl script to a running guest operating system, you use VmPerl API’s
$vm->set_guest_info() method. You need to specify a variable name ($key_name) and its
value ($value).

For example, you might want to deploy virtual machines for a training class. When a virtual machine
starts, you want to display a banner welcoming the student to the class. You can pass their name
from a VmPerl script to the guest operating system on a student’s virtual machine.

If you have not already done so, connect a VMware::VmPerl::VM object and set the student’s name for
this virtual machine to “Susan Williams”:

$vm->set_guest_info("name", "Susan Williams");

This statement passes a string “name” to the guest operating system. You can write a script that reads
the string, then calls a command (specific to the guest operating system) to set the student’s name in
the banner. This operation is explained in the following section.

This setting lasts until you power off the virtual machine and close all connected consoles.

Retrieving the Information in the Guest Operating System
In the running guest operating system, you use the VMware Tools service to retrieve variables set for
the virtual machine. You can then use this passed “name” string inside a guest operating system
startup sequence. Use the following to read the GuestInfo variable key_name.

In a Windows guest operating system:

VMwareService.exe --cmd "info-get guestinfo.<key_name>"

In a Linux guest operating system:

/etc/vmware-tools/vmware-guestd --cmd 'info-get guestinfo.<key_name>'

For example, to get the current value for the “name” variable, you can type the following in a Linux
guest operating system:

/etc/vmware-tools/vmware-guestd --cmd 'info-get guestinfo.name'
52 www.vmware.com

Using VmPerl
Sending Information Set in the Guest Operating System to a VmPerl Script
Similarly, in a virtual machine’s guest operating system, you can use the VMware Tools service to set
GuestInfo variables for the virtual machine. Use the following to write the GuestInfo variable
key_name.

In a Windows guest operating system:

VMwareService.exe --cmd "info-set guestinfo.<key_name> <value>"

In a Linux guest operating system:

/etc/vmware-tools/vmware-guestd --cmd 'info-set guestinfo.<key_name> <value>'

Continuing with the previous example, Susan Williams prefers “Sue”. To set the value of “Sue Williams”
for the “name” variable, type the following in a Linux guest operating system:

/etc/vmware-tools/vmware-guestd --cmd 'info-set guestinfo.name Sue Williams'

Retrieving Information in a VmPerl Script
With the VmPerl API, you use the $vm->get_guest_info() method to retrieve information set
in the guest operating system, into a VmPerl script running on any machine, including GSX Server or
any remote workstation that can connect to the virtual machine.

For example, to retrieve Sue’s name set by the VMware Tools service, query the guest operating
system by using the VmPerl API:

$vm->get_guest_info('name')
53www.vmware.com

5

Using Sample VmPerl Scripts

Using Sample VmPerl Scripts
Sample Perl Scripts
This section contains sample Perl scripts written by VMware to demonstrate example uses of the
VmPerl API. You can modify these scripts to suit the needs of your organization. They are located in
the SampleScripts subdirectory in the VmPerl directory.

Note: You may also obtain these sample scripts from the VMware Web site. The scripts on the Web
site are saved with a .TXT extension for online viewing. Remove the .TXT extension before using these
scripts.

The sample scripts illustrate:

• Listing the Virtual Machines on the Server

• Starting All Virtual Machines on a Server

• Checking a Virtual Machine’s Power Status

• Monitoring a Virtual Machine’s Heartbeat

• Answering Questions Posed by a Virtual Machine

• Suspending a Virtual Machine

• Setting a Virtual Machine’s IP Address Configuration Variable

• Getting a Virtual Machine’s IP Address

Note: If you plan on using the VMware Perl API remotely on a Windows machine, you must copy your
scripts into the same directory in which you installed the VMware Perl API.

Copyright Information
Each sample script and sample program included with the VmPerl Scripting API includes a copyright.
However, for brevity, we do not include this copyright in its entirety with each sample script and
sample program in this manual. Instead, we include the first line of the copyright followed by ellipses,
to indicate its placement. The complete copyright is as follows:

Copyright (c) 1999-2003 VMware, Inc.

Permission is hereby granted, free of charge, to any person obtaining a copy
of the software in this file (the "Software"), to deal in the Software
without restriction, including without limitation the rights to use, copy,
modify, merge, publish, distribute, sublicense, and/or sell copies of the
Software, and to permit persons to whom the Software is furnished to do so,
subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
56 www.vmware.com

Using Sample VmPerl Scripts
The names "VMware" and "VMware, Inc." must not be used to endorse or promote
products derived from the Software without the prior written permission of
VMware, Inc.

Products derived from the Software may not be called "VMware", nor may
"VMware" appear in their name, without the prior written permission of
VMware, Inc.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
VMWARE,INC. BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Listing the Virtual Machines on the Server
You can use a script like the following to generate a list of all the registered virtual machines on a
server. You need to know the name of the machine and you must provide a valid user name and
password to connect to the server.

This script (enumerate.pl), saved with a .TXT extension for online viewing, can be found on the
VMware Web site at www.vmware.com/support/developer/scripting-API/doc/enumerate.pl.txt.

#!/usr/bin/perl -w
#
Copyright (C) 1999-2003 VMware, Inc.
.
.
.

#
enumerate.pl
#
This script lists all of the registered virtual machines
on the server specified by hostname.
#
usage:
enumerate.pl <hostname> <user> <password>
#

BEGIN {
 if ($^O eq "MSWin32") {
 @INC = (
 # Set the path to your VmPerl Scripting directory if different
 'C:\Program Files\VMware\VMware VmPerl Scripting API\perl5\site_perl\5.005',
57www.vmware.com

http://www.vmware.com/support/developer/scripting-API/doc/enumerate.pl.txt

Using Sample VmPerl Scripts
 'C:\Program Files\VMware\VMware VmPerl Scripting API\perl5\site_perl\5.005\MSWin32-x86');
 }
}

use VMware::VmPerl;
use VMware::VmPerl::Server;
use VMware::VmPerl::ConnectParams;
use strict;

my ($server_name, $user, $passwd) = @ARGV;

Use the default port of 902. Change this if your port is different.
my $port = 902;

Create a new VMware::VmPerl::Server to connect to the server
To connect to the remote server, use the following line:
my $connect_params =
 VMware::VmPerl::ConnectParams::new($server_name,$port,$user,$passwd);

To connect to a local server, you would use the following line:
my $connect_params =
VMware::VmPerl::ConnectParams::new(undef,$port,$user,$passwd);

To connect to a local server as the current user, you would use the
following line:
my $connect_params = VMware::VmPerl::ConnectParams::new();

Establish a persistent connection with server
my $server = VMware::VmPerl::Server::new();
if (!$server->connect($connect_params)) {
 my ($error_number, $error_string) = $server->get_last_error();
 die "Could not connect to server: Error $error_number: $error_string\n";
}

print "\nThe following virtual machines are registered:\n";

Obtain a list containing every config file path registered with the server.
my @list = $server->registered_vm_names();
if (!defined($list[0])) {
 my ($error_number, $error_string) = $server->get_last_error();
 die "Could not get list of VMs from server: Error $error_number: ".
 "$error_string\n";
}

print "$_\n" foreach (@list);
58 www.vmware.com

Using Sample VmPerl Scripts
Destroys the server object, thus disconnecting from the server.
undef $server;

Starting All Virtual Machines on a Server
You can use a script like the following to start all virtual machines that are not already running on a
server. This script powers on powered-off virtual machines and resumes suspended virtual machines
that have the line "autostart=true" in their configuration files.

This script includes a slight delay after starting each virtual machine. This delay balances the load on
the server. Do not start many virtual machines in rapid succession without this delay.

This script (startallvms.pl), saved with a .TXT extension for online viewing, can be found on the
VMware Web site at www.vmware.com/support/developer/scripting-API/doc/startallvms.pl.txt.

#!/usr/bin/perl -w
#
Copyright (C) 1999-2003 VMware, Inc.
.
.
.
#
startallvms.pl
#
This script powers on all VMs on the system that are not
already running.
#
usage:
startallvms.pl <hostname> <user> <password>
#

BEGIN {
 if ($^O eq "MSWin32") {
 @INC = (
 # Set the path to your VmPerl Scripting directory if different
 'C:\Program Files\VMware\VMware VmPerl Scripting API\perl5\site_perl\5.005',
 'C:\Program Files\VMware\VMware VmPerl Scripting API\perl5\site_perl\5.005\MSWin32-x86');
 }
}

use VMware::VmPerl;
use VMware::VmPerl::VM;
use VMware::VmPerl::Server;
use VMware::VmPerl::ConnectParams;
use strict;
59www.vmware.com

http://www.vmware.com/support/developer/scripting-API/doc/startallvms.pl.txt

Using Sample VmPerl Scripts
my ($server_name, $user, $passwd) = @ARGV;

Change this to your port if it is different.
my $port = 902;

Create a ConnectParams object
my $connect_params =
 VMware::VmPerl::ConnectParams::new($server_name,$port,$user,$passwd);

Create a Server object
my $server = VMware::VmPerl::Server::new();

Establish a persistent connection with server
if (!$server->connect($connect_params)) {
 my ($error_number, $error_string) = $server->get_last_error();
 die "Could not connect to server: Error $error_number: $error_string\n";
}

Get a list of all virtual machine configuration files registered
with the server.
my @list = $server->registered_vm_names();

if(!defined($list[0])) {
 my ($error_number, $error_string) = $server->get_last_error();
 die "Could not get list of VMs: Error $error_number: $error_string\n";
}

my $config;

foreach $config (@list) {

 my $vm = VMware::VmPerl::VM::new();

 # Connect to the VM, using the same ConnectParams object.
 if (!$vm->connect($connect_params, $config)) {
 my ($error_number, $error_string) = $server->get_last_error();
 print STDERR "Could not connect to VM $config: Error $error_number: ".
 "$error_string\n";
 } else {
 # Only power on VMs with the config setting autostart = "true"
 my $autostart = $vm->get_config("autostart");

 if($autostart && $autostart =~ /true/i) {

 # Only try this for VMs that are powered off or suspended.
60 www.vmware.com

Using Sample VmPerl Scripts
 my $power_state = $vm->get_execution_state();

 if (!defined($power_state)) {
 my ($error_number, $error_string) = $server->get_last_error();
 print STDERR "Could not get execution state of VM $config: Error ".
 "$error_number: $error_string\n";
 } elsif ($power_state == VM_EXECUTION_STATE_OFF ||
 $power_state == VM_EXECUTION_STATE_SUSPENDED) {

 print "Powering on $config...\n";
 if (!$vm->start()) {
 # If an error occurs, report it and continue
 my ($error_number, $error_string) = $server->get_last_error();
 print STDERR "Could not power on VM $config: Error ".
 "$error_number: $error_string\n";
 } else {

 # Delay slightly between starting each VM.
 # This prevents too much initial load on the server.

 # Warning: starting many VMs in rapid succession
 # is not recommended.

 sleep 5;
 }
 }
 }

 # Destroys the virtual machine object, thus disconnecting from the virtual machine.
 undef $vm;
 }
}

Destroys the server object, thus disconnecting from the server.
undef $server;

Checking a Virtual Machine’s Power Status
You can use a script like the following to determine whether a virtual machine is running, suspended
or powered off. Once you know its power status, you can use this information in conjunction with
other scripts to start, stop or suspend a virtual machine.

This script (status.pl), saved with a .TXT extension for online viewing, can be found on the VMware
Web site at www.vmware.com/support/developer/scripting-API/doc/status.pl.txt.
61www.vmware.com

http://www.vmware.com/support/developer/scripting-API/doc/status.pl.txt

Using Sample VmPerl Scripts
#!/usr/bin/perl -w
#
Copyright (C) 1999-2003 VMware, Inc.
.
.
.
#
status.pl
#
This script returns the current power status (on, off, suspended) of the
virtual machine specified by config on the server defined by hostname.
#
usage:
status.pl <path_to_config_file> [<server> <user> <password>]
#
If server, user and password are not given, connect to the local server
as the current user.
#

BEGIN {
 if ($^O eq "MSWin32") {
 @INC = (
 # Set the path to your VmPerl Scripting directory if different
 'C:\Program Files\VMware\VMware VmPerl Scripting API\perl5\site_perl\5.005',
 'C:\Program Files\VMware\VMware VmPerl Scripting API\perl5\site_perl\5.005\MSWin32-x86');
 }
}

use VMware::VmPerl;
use VMware::VmPerl::VM;
use VMware::VmPerl::ConnectParams;
use strict;

Retrieves a pre-defined constant value.
sub vm_constant {
 my $constant_str = shift;
 return VMware::VmPerl::constant($constant_str, 0);
}

if (@ARGV < 1) {
 print "Usage $0: <path_to_config_file> [<server> <user> <password>]\n";
 exit(1);
}

my $state_string_map = {};
my @state_strings = (
 "VM_EXECUTION_STATE_ON",
62 www.vmware.com

Using Sample VmPerl Scripts
 "VM_EXECUTION_STATE_OFF",
 "VM_EXECUTION_STATE_SUSPENDED",
 "VM_EXECUTION_STATE_STUCK",
 "VM_EXECUTION_STATE_UNKNOWN"
);

foreach my $state_string (@state_strings) {
 $state_string_map->{vm_constant($state_string)} = $state_string;
}

Read in parameters.
my ($cfg_path, $server_name, $user, $passwd) = @ARGV;

Use the default port of 902. Change this if your port is different.
my $port = 902;

my $connect_params = VMware::VmPerl::ConnectParams::new($server_name,$port,$user,$passwd);

my $vm = VMware::VmPerl::VM::new();
if (!$vm->connect($connect_params, $cfg_path)) {
 my ($error_number, $error_string) = $vm->get_last_error();
 die "Could not connect to vm: Error $error_number: $error_string\n";
}

Get the power status of the virtual machine.
my $cur_state = $vm->get_execution_state();
if (!defined($cur_state)) {
 my ($error_number, $error_string) = $vm->get_last_error();
 die "Could not get execution state: Error $error_number: $error_string\n";
}
print "The execution state of $cfg_path is: $state_string_map->{$cur_state}\n";

Destroys the virtual machine object, thus disconnecting from the virtual machine.
undef $vm;

Monitoring a Virtual Machine’s Heartbeat
The following sample Perl script provides one method to monitor a virtual machine's heartbeat. If the
heartbeat is lost or is not detected, the script powers on a second instance of the virtual machine.

This script (hb_check.pl), saved with a .TXT extension for online viewing, can be found on the VMware
Web site at www.vmware.com/support/developer/scripting-API/doc/hbcheck.pl.txt.
63www.vmware.com

http://www.vmware.com/support/developer/scripting-API/doc/hbcheck.pl.txt

Using Sample VmPerl Scripts
#!/usr/bin/perl -w
#
Copyright (C) 1999-2003 VMware, Inc.
.
.
.
#
hbcheck.pl
#
You can use this script to check the virtual machine specified by
ConfigToCheck for a heartbeat within a certain interval in seconds.
If no heartbeat is received within the specified Interval, then this
script will forcefully shutdown ConfigToCheck, and start ConfigToStart.
#
usage:
hbcheck.pl <ConfigToCheck> <ConfigToStart> [Interval]
#

BEGIN {
 if ($^O eq "MSWin32") {
 @INC = (
 # Set the path to your VmPerl Scripting directory if different
 'C:\Program Files\VMware\VMware VmPerl Scripting API\perl5\site_perl\5.005',
 'C:\Program Files\VMware\VMware VmPerl Scripting API\perl5\site_perl\5.005\MSWin32-x86');
 }
}

Import required VMware Perl modules and version.
use VMware::VmPerl;
use VMware::VmPerl::VM;
use VMware::VmPerl::ConnectParams;
use strict;

Display the script usage.
sub usage() {
 print STDERR "Usage: hbcheck.pl <config_to_check> <config_to_start> [interval_in_secs]\n";
 exit(1);
}

Retrieves a pre-defined constant value.
sub vm_constant {
 my $constant_str = shift;
 return VMware::VmPerl::constant($constant_str, 0);
}

Read in command line options.
usage() unless (scalar(@ARGV) == 3 || scalar(@ARGV) == 2);
64 www.vmware.com

Using Sample VmPerl Scripts
my $cfg_to_check = shift;
my $cfg_to_start = shift;
my $interval = shift;

Set the interval to 30 seconds if it is not specified.
$interval ||= 30;

Connect to the local host on the default port as the current user.
Change the port number if it is different.
my $connect_params = VMware::VmPerl::ConnectParams::new(undef, 902, undef, undef);

Initialize the object for the virtual machine we want to check.
my $vm = VMware::VmPerl::VM::new();
if (!$vm->connect($connect_params, $cfg_to_check)) {
 my ($error_number, $error_string) = $vm->get_last_error();
 die "Could not connect to virtual machine at $cfg_to_check:\n" .
 "Error $error_number: $error_string\n";
}

Check to see if the virtual machine is powered on; if not, end.
my $vm_state = $vm->get_execution_state();
if (!($vm_state eq vm_constant("VM_EXECUTION_STATE_ON"))) {
 # Destroys the virtual machine object, thus disconnecting from the virtual machine
 undef $vm;
 die "The virtual machine $cfg_to_check\nis not powered on. Exiting.\n";
}

Maintain the last read heartbeat value for comparison.
The heartbeat count begins at zero, so a value of -1 ensures
at least one comparison.
my $last_hb = -1;

while ($vm->is_connected()) {

 # Get the current heartbeat count. This should steadily increase
 # as long as VMware tools is running inside the virtual machine.
 my $hb = $vm->get_heartbeat();
 unless (defined $hb) {
 my ($error_number, $error_string) = $vm->get_last_error();
 die "Could not get virtual machine heartbeat:\n" .
 "Error $error_number: $error_string\n";
 }

 if ($hb == $last_hb) {
 # Since we don't have a heartbeat, we need to do something
 # about it. Let's shut this virtual machine down, and then start
 # the backup virtual machine (specified by vm_to_start).
65www.vmware.com

Using Sample VmPerl Scripts
 # Use the "TRYSOFT" mode to shutdown gracefully if possible.
 $vm->stop(vm_constant("VM_POWEROP_MODE_TRYSOFT"));
 undef $vm;

 # Initialize the new virtual machine object.
 my $vm_to_start = VMware::VmPerl::VM::new();
 if (!$vm_to_start->connect($connect_params, $cfg_to_start)) {
 my ($error_number, $error_string) = $vm_to_start->get_last_error();
 die "Could not connect to virtual machine at $cfg_to_start:\n" .
 "Error $error_number: $error_string\n";
 }

 # Start the new virtual machine and clean up.
 my $start_ok = $vm_to_start->start();
 unless ($start_ok) {
 my ($error_number, $error_string) = $vm_to_start->get_last_error();
 undef $vm_to_start;
 die "Could not start virtual machine $cfg_to_start:n" .
 "Error $error_number: $error_string\n";
 }
 undef $vm_to_start;
 die "Lost heartbeat of $cfg_to_check,\npowered on $cfg_to_start.\n";
 } else {
 # Wait $interval seconds before checking for the virtual machine's heartbeat.
 print "Got heartbeat count $hb\n";
 sleep ($interval);
 }
 $last_hb = $hb;
}

Answering Questions Posed by a Virtual Machine
You can use a script like the following to answer a question posed by a virtual machine in a stuck
state; that is, one that is waiting for user acknowledgment before it can complete an operation such
as suspending or resuming the virtual machine. The script allows the question to be answered at the
command line, saving you the effort of connecting to the virtual machine from a console or the
VMware Management Interface in order to answer the question.

This script (answer_question.pl), saved with a .TXT extension for online viewing, can be found on the
VMware Web site at www.vmware.com/support/developer/scripting-API/doc/answerquestion.pl.txt.

66 www.vmware.com

http://www.vmware.com/support/developer/scripting-API/doc/answerquestion.pl.txt

Using Sample VmPerl Scripts
#!/usr/bin/perl -w
#
Copyright (C) 1999-2003 VMware, Inc.
.
.
.
#
answerquestion.pl
#
You can use this script to check if the virtual machine specified by
config is stuck. If it's stuck, you can answer any question posed by this
virtual machine to allow it to continue.
#
usage:
answerquestion.pl <config-file>

BEGIN {
 if ($^O eq "MSWin32") {
 @INC = (
 # Set the path to your VmPerl Scripting directory if different
 'C:\Program Files\VMware\VMware VmPerl Scripting API\perl5\site_perl\5.005',
 'C:\Program Files\VMware\VMware VmPerl Scripting API\perl5\site_perl\5.005\MSWin32-x86');
 }
}

Import the required VMware Perl modules and version.
use VMware::VmPerl;
use VMware::VmPerl::VM;
use VMware::VmPerl::ConnectParams;
use VMware::VmPerl::Question;
use strict;

Read in command line options.
my $cfg = shift or die "Usage: $0 <config-file>\n";

Connect to the local host on the default port as yourself.
my $connect_params = VMware::VmPerl::ConnectParams::new();

Initialize the object for the virtual machine we want to check.
my $vm = VMware::VmPerl::VM::new();
my $vm_ok = $vm->connect($connect_params, $cfg);
unless ($vm_ok) {
 my ($err, $errstr) = $vm->get_last_error();
 undef $vm;
 die "Could not connect to vm; error $err: $errstr\n";
}

67www.vmware.com

Using Sample VmPerl Scripts
Check the power state of the virtual machine. If it's stuck, get the
question and list the possible responses.
my $state = $vm->get_execution_state();
if (!defined($state)) {
 my ($err, $errstr) = $vm->get_last_error();
 # Destroys the virtual machine object, thus disconnecting from the virtual machine
 undef $vm;
 die "Could not get execution state of vm; error $err: $errstr\n";
}

if ($state ne VM_EXECUTION_STATE_STUCK) {
 print "There is no question to answer.\n";
} else {
 my $q = $vm->get_pending_question();
 unless (defined($q)) {
 undef $vm;
 die "Could not get the pending question.\n";
 }
 my $text = $q->get_text();
 unless (defined($text)) {
 undef $vm;
 die "Could not get the text of the pending question.\n";
 }
 my @choices = $q->get_choices();
 unless (defined($choices[0])) {
 undef $vm;
 die "Could not get the choices to answer the pending question.\n";
 }
 # Print question and choices for user:
 print "\n" . $q->get_text() . "\n";

 my $answer;
 do {
 prompt(@choices);
 $answer = get_answer();
 }
 until (valid_answer($answer,@choices));

 my $op_ok;
 $op_ok = $vm->answer_question($q, $answer-1);
 unless ($op_ok) {
 my ($err, $errstr) = $vm->get_last_error();
 undef $vm;
 die "Could not answer pending question; error $err: $errstr\n";
 }
}

68 www.vmware.com

Using Sample VmPerl Scripts
Destroys the virtual machine object, thus disconnecting from the virtual machine.
undef $vm;

#--
Prints answer choices, prompts user for an answer number.
sub prompt {
 my @choices = shift;
 print "To answer the question, type the number that corresponds to\n";
 print "one of the answers below:\n";
 for (my $i = 0; $i <= $#choices; $i++) {
 print "\t" . ($i + 1) . ". $choices[$i]\n";
 }
 print "Final answer? ";
}

Reads user's answer number.
sub get_answer {
 my $answer;
 chop($answer = <STDIN>);
 print "\n";

 # Remove unintentional whitespace.
 $answer =~ s/^(\s*)(.*?)(\s*)$/$2/;
 return $answer;
}

Checks if an answer number is within the valid range of choices.
sub valid_answer {
 my $answer = shift;
 my @choices = shift;
 $answer--; # convert to 0-based indexing.
 if ($answer < 0 || $answer > $#choices) {
 my $num = scalar(@choices);
 print "Valid answer numbers are from 1 to $num; please try again.\n";
 return 0;
 }
 else {
 return 1;
 }
}

69www.vmware.com

Using Sample VmPerl Scripts
Suspending a Virtual Machine
A script like the following allows you to suspend a virtual machine remotely without connecting to it
through a remote console or the VMware Management Interface.

This script (suspend.pl), saved with a .TXT extension for online viewing, can be found on the VMware
Web site at www.vmware.com/support/developer/scripting-API/doc/suspend.pl.txt.

#!/usr/bin/perl -w
#
Copyright (C) 1999-2003 VMware, Inc.
.
.
.
#
suspend.pl
#
This script suspends to disk the virtual machine specified by config on
the server defined by hostname.
#
usage:
suspend.pl hostname user password config

BEGIN {
 if ($^O eq "MSWin32") {
 @INC = (
 # Set the path to your VmPerl Scripting directory if different
 'C:\Program Files\VMware\VMware VmPerl Scripting API\perl5\site_perl\5.005',
 'C:\Program Files\VMware\VMware VmPerl Scripting API\perl5\site_perl\5.005\MSWin32-x86');
 }
}

use VMware::VmPerl;
use VMware::VmPerl::VM;
use VMware::VmPerl::ConnectParams;
use strict;

if (@ARGV < 1) {
 print "Usage $0: <path_to_config_file> [<server> [<user> <password>]]\n";
 exit(1);
}

my ($cfg_path, $server_name, $user, $passwd) = @ARGV;
Use the default port of 902. Change this if your port is different.
my $port = 902;
70 www.vmware.com

http://www.vmware.com/support/developer/scripting-API/doc/suspend.pl.txt

Using Sample VmPerl Scripts
Connect to the local host on the default port as yourself.
my $connect_params = VMware::VmPerl::ConnectParams::new($server_name,$port,$user,$passwd);

Create a new VMware::VmPerl::VM object to interact with a virtual machine.
my $vm = VMware::VmPerl::VM::new();

Establish a persistent connection with virtual machine.
if (!$vm->connect($connect_params, $cfg_path)) {
 my ($errorNumber, $errorString) = $vm->get_last_error();
 # Destroys the virtual machine object, thus disconnecting from the virtual machine.
 undef $vm;
 die "Cannot connect to vm: Error $errorNumber: $errorString\n";
}

Gets the Power status of the virtual machine to determine if it is running.
my $curState = $vm->get_execution_state();
if ($curState != VM_EXECUTION_STATE_ON) {
 print "Can only suspend a powered on Virtual Machine.\n";
} else {
Suspends the running vm.
 if (!$vm->suspend()) {
 my ($errorNumber, $errorString) = $vm->get_last_error();
 print "Couldn't suspend: Error $errorNumber: $errorString\n";
 }
}

Destroys the virtual machine object, thus disconnecting from the virtual machine.
undef $vm;

Setting a Virtual Machine’s IP Address Configuration Variable
This Perl script invokes the VMware guest operating system service to set a virtual machine’s IP
address “ip” configuration variable. This sample script complements the following sample script that
retrieves a virtual machine’s IP address “ip” configuration variable. The saveguestip.pl script runs inside
a virtual machine, while the getguestip.pl sample script runs in the host operating system or another
machine. See Getting a Virtual Machine’s IP Address on page 73.

For more information on passing information between a script and a guest operating system, see
Using VmPerl to Pass User-Defined Information Between a Running Guest Operating System and a
Script on page 51.

This script (saveguestip.pl, formerly known as configsetip.pl), saved with a .TXT extension for online
viewing, can be found on the VMware Web site at
 www.vmware.com/support/developer/scripting-API/doc/saveguestip.pl.txt.
71www.vmware.com

http://www.vmware.com/support/developer/scripting-API/doc/saveguestip.pl.txt

Using Sample VmPerl Scripts
#!/usr/bin/perl -w
#
Copyright (C) 1999-2003 VMware, Inc.
.
.
.
#
saveguestip.pl
#
This script demonstrates the use of the VMware guest service to set
a configuration variable from within a running virtual machine's guest
operating system. It stores the guest operating system's IP address.
The host can retrieve the IP address with a corresponding script.
#
usage:
saveguestip.pl
#
NOTE:
This script should be run from within a running virtual machine's guest
operating system. The corresponding script getguestip.pl can be run
from the host operating system.

if (@ARGV != 0) {
 print "Usage: $0\n";
 exit(1);
}

my($err);

Get the IP for the Guest
my($ip) = (undef);
$ip = &get_ip();

if(!defined($ip)) {
 die "$0: Could not get guest ip\n";
}
else {
 print "$0: guest ip is $ip\n";
}

Sets the ip address configuration variable.
$err = &set_ip_variable();
if($err != 0) {
 die "$0: Could not set guest ip\n";
}

Captures IP address from the OS.
72 www.vmware.com

Using Sample VmPerl Scripts
sub get_ip {
 my ($myip, @iparr) = (undef, []);

 # For Windows Guest OS.
 if ($^O eq "MSWin32") {
 $_ = `ipconfig`;
 @iparr = /IP Address.*?(\d+\.\d+\.\d+\.\d+)/ig;

 $myip = $iparr[0];
 }
 # For Linux Guest OS.
 # Please ensure that ifconfig is in your path. The root user has it by default.
 else {
 $_ = `ifconfig`;
 @iparr = /inet addr:(\d+\.\d+\.\d+\.\d+)/ig;

 $myip = $iparr[0];
 }

 return $myip;
}

Stores the IP address in the guestinfo name space.
sub set_ip_variable {
 if ($^O eq "MSWin32") {
 # Please ensure that VMwareService is in your path.
 # VMwareService needs double quotes around the command.
 my $cmd = "VMwareService -cmd " . '"' . "info-set guestinfo.ip $ip" . '"';
 system($cmd);
 }
 else {
 # Please ensure that vmware-guestd is found in the path used below
 system("/etc/vmware/vmware-guestd --cmd 'info-set guestinfo.ip $ip'");
 }
 return $?;
}

Getting a Virtual Machine’s IP Address
This script runs in the host operating system (or another machine) and invokes the VMware Perl API
to retrieve the value of the “ip” variable (a virtual machine’s IP address). This sample script
complements the preceding sample script (Setting a Virtual Machine’s IP Address Configuration
Variable on page 71), that sets a virtual machine’s IP address configuration variable in the guest
operating system.
73www.vmware.com

Using Sample VmPerl Scripts
For more information on passing information between a script and a guest operating system, see
Using VmPerl to Pass User-Defined Information Between a Running Guest Operating System and a
Script on page 51.

This script (getguestip.pl), saved with a .TXT extension for online viewing, can be found on the
VMware Web site at www.vmware.com/support/developer/scripting-API/doc/getguestip.pl.txt.

#!/usr/bin/perl -w
#
Copyright (C) 1999-2003 VMware, Inc.
.
.
.
#
getguestip.pl
#
This script returns the value of the guest_info variable 'ip' set by
the guest OS in a virtual machine on a given server.
#
usage:
getguestip.pl <path_to_config_file> [<server> <user> <password>]
#

BEGIN {
 if ($^O eq "MSWin32") {
 @INC = (
 # Set the path to your VmPerl Scripting directory if different
 'C:\Program Files\VMware\VMware VmPerl Scripting API\perl5\site_perl\5.005',
 'C:\Program Files\VMware\VMware VmPerl Scripting API\perl5\site_perl\5.005\MSWin32-x86');
 }
}

use VMware::VmPerl;
use VMware::VmPerl::VM;
use VMware::VmPerl::ConnectParams;
use strict;

if (@ARGV ne 1 && @ARGV ne 4) {
 print "Usage $0: <path_to_config_file> [<server> <user> <password>]\n";
 exit(1);
}

Read in parameters.
my ($cfg_path, $server_name, $user, $passwd) = @ARGV;
74 www.vmware.com

http://www.vmware.com/support/developer/scripting-API/doc/getguestip.pl.txt

Using Sample VmPerl Scripts
Use the default port of 902. Change this if your port is different.
my $port = 902;

If $server_name, $user, and $passwd are missing, connect to localhost as current user.
my $connect_params = VMware::VmPerl::ConnectParams::new($server_name,$port,$user,$passwd);

my $vm = VMware::VmPerl::VM::new();
if (!$vm->connect($connect_params, $cfg_path)) {
 my ($error_number, $error_string) = $vm->get_last_error();
 undef $vm;
 die "Could not connect to vm: Error $error_number: $error_string\n";
}

Get the IP address of the virtual machine.
my $ip = $vm->get_guest_info('ip');
if (!defined($ip)) {
 my ($error_number, $error_string) = $vm->get_last_error();
 undef $vm;
 die "Could not get IP address: Error $error_number: $error_string\n";
}
if (!($ip)) {
 undef $vm;
 die "The guest OS did not set the variable 'ip'.\n";
}
print "The IP address of $cfg_path is:\n$ip\n";

Destroys the virtual machine object, thus disconnecting from the virtual machine.
undef $vm;
75www.vmware.com

6

Error Codes and Event Logging

Error Codes and Event Logging
Error Codes and Event Logging
This chapter includes information to help you use the VMware Scripting APIs. In particular, we
describe VMware Scripting API errors. We also describe how you can use Event Viewer to view and
manage event logs for virtual machines on a Windows machine.

Error Codes
The following sections describe error handling in the VMware Scripting APIs.

Error Handling for the VmCOM Library
VmCOM methods and properties throw error exceptions when they fail. VmCOM supports the
ISupportErrorInfo interface for detailed error reporting.

For example, in Visual Basic, use standard error trapping and examine the err object to retrieve
detailed error information. The object's Description field contains a string describing the failure. The
Number field contains a VmCOM error code. For more information on VmCOM error codes, see
Common VmCOM and VmPerl Errors on page 79.

If a remote virtual machine or server unexpectedly disconnects, most operations fail, giving you
either the vmErr_NOTCONNECTED or vmErr_DISCONNECT error code. You cannot reconnect
to an existing VmCtl or VmServerCtl object. Instead, destroy the object (for example, Set obj
= Nothing in Visual Basic), then create a new object and call Connect() on it.

If a virtual machine operation fails with error code vmErr_NEEDINPUT, obtain a VmQuestion
object from VmCtl.PendingQuestion property and examine the question or error description.
Then call AnswerQuestion() to answer the question or dismiss the error.

Error Handling for the VmPerl Library
The error codes listed in the following section apply to, and can be returned by, all of the VmPerl
modules.

When a $server method returns an error, use $server->get_last_error() in a script to
retrieve the error code and, optionally, its description. For example, to return an error code and a
description of the error in your scripts, use:

my ($ret, $string) = $server->get_last_error();

Alternately, to return only the error code in your scripts, use:

my $ret = $server->get_last_error();

When a $vm method returns undef, use $vm->get_last_error() in a script to retrieve the
error code and, optionally, its description.
78 www.vmware.com

Error Codes and Event Logging
For example, to return an error code and a description of the error in your scripts, use:

my ($ret, $string) = $vm->get_last_error();

Alternately, to return only the error code, in your scripts, use:

my $ret = $vm->get_last_error();

Common VmCOM and VmPerl Errors
The following table is a partial list of common VmCOM and VmPerl errors. Any error code not listed in
this table indicates an internal failure in VmCOM, VmPerl or another VMware component.

VmCOM Error Code VmPerl Error Code Description

vmErr_BADSTATE VM_E_BADSTATE You attempted to move a virtual machine from a valid

state to an invalid one. For example, you tried to

restore a non-suspended virtual machine or power on

an already powered-on virtual machine. Either

change the virtual machine’s state (for example, from

powered on to suspended) or attempt a different

operation.

vmErr_BADVERSION VM_E_BADVERSION The version of the VmCOM component/VmPerl

module and the VMware server product are

incompatible.

vmErr_DISCONNECT VM_E_DISCONNECT The network connection to the virtual machine was

lost.

vmErr_INSUFFICIENT_RESOURCES VM_E_INSUFFICIENT_RESOURCES The operation failed because an internal or system

limit was exceeded. For example, the Connect()

method may return this error if the maximum number

of connected objects has been reached.

vmErr_INVALIDARGS VM_E_INVALIDARGS The specified arguments are not valid for this

operation.

vmErr_INVALIDVM VM_E_INVALIDVM The specified virtual machine configuration file does

not exist. The path to the configuration file may have

been entered incorrectly or the virtual machine is not

registered.

vmErr_NEEDINPUT VM_E_NEEDINPUT The operation did not complete because the virtual

machine is stuck and waiting for user input; that is,

the user must answer a question or acknowledge an

error before the virtual machine can continue its

operation.

vmErr_NETFAIL VM_E_NETFAIL A network failure or misconfiguration prevented the

operation from completing.
79www.vmware.com

Error Codes and Event Logging
Event Logging
If you are running GSX Server on a Windows machine, you can use Event Viewer to view the following
types of events for virtual machines:

• Power transitions

By default, Event Viewer logs an event whenever the virtual machine changes power state (on,
off, or suspended).

• Messages

vmErr_NOACCESS VM_E_NOACCESS The operation could not be completed because of an

access violation (a permissions problem).

vmErr_NOMEM VM_E_NOMEM Your system has run out of memory. Shut down some

processes to free up memory.

vmErr_NOPROPERTY VM_E_NOPROPERTY The requested variable or property name does not

exist.

vmErr_NOTCONNECTED VM_E_NOTCONNECTED An operation was attempted on a disconnected

virtual machine. Connect the virtual machine before

performing this operation.

vmErr_NOTSUPPORTED VM_E_NOTSUPPORTED The attempted operation is not supported by your

version of VMware server.

vmErr_PROXYFAIL VM_E_PROXYFAIL The Scripting API could not connect to the server

because of a proxy failure. You see this error only if

you have configured your remote workstation to use

a Web proxy. For more information on using a Web

proxy, see www.vmware.com/support/gsx25/doc/

consoles_gsx.html.

vmErr_TIMEOUT VM_E_TIMEOUT There is no response to the request (the operation

timed out).

vmErr_UNSPECIFIED VM_E_UNSPECIFIED An unspecified error has occurred.

vmErr_VMBUSY VM_E_VMBUSY You attempted to connect to a virtual machine that is

under the control of a local console running on the

server.

vmErr_VMEXISTS VM_E_VMEXISTS You attempted to register a virtual machine that is

already registered.

vmErr_VMINITFAILED VM_E_VMINITFAILED The virtual machine process could not be started on

the server.

VmCOM Error Code VmPerl Error Code Description
80 www.vmware.com

http://www.vmware.com/support/gsx25/doc/consoles_gsx.html
http://www.vmware.com/support/gsx25/doc/consoles_gsx.html

Error Codes and Event Logging
Messages occur whenever an error condition exists in a virtual machine. The Event Viewer logs a
message with its type (hint, warning, error, or question), the text of the message, and the
choices to acknowledge a message.

• Message answers

When a message is acknowledged, the answer is logged with the message that is answered and
the choice that was selected as the answer for that message.

By default, the Event Viewer logs all three types of events. However, you may turn off logging for one
or more of these event types by editing the config.ini file.

1. Change directories to the VMware GSX Server program directory. The default location is
C:\Program Files\VMware\VMware GSX Server.

2. Edit the config.ini file with a text editor of your choice. Add one or more of the following
configuration variables. Each configuration variable turns off event logging for that event type.

eventlog.win.power = "FALSE"

eventlog.win.message = "FALSE"

eventlog.win.answer = "FALSE"

Using the Event Viewer
1. Open the Event Viewer application. This application is typically in the Administrative Tools

folder. Refer to your operating system’s documentation for additional information on this
application.

2. Open the Application Log file.

The Event Viewer is displayed as shown in the following image.

You can use the filtering feature in Event Viewer to see selected events on a virtual machine. All
virtual machine events are stored in the “Virtual Machines” category. By contrast, all serverd and
authd events are stored in the default “None” category.
81www.vmware.com

Error Codes and Event Logging
Each event type has an event ID. For example, all virtual machine power transition events share the
event ID 1100. You may use this event ID to filter virtual machine events. The event IDs for virtual
machines are listed in the following table.

Right-click on a single event log and select Properties. The Event Properties window is displayed with
additional details about the event as shown in the following image.

Reading the Event Log
Each event always begins with a string that describes what happened to the virtual machine.

Power Transitions
The Event Viewer logs virtual machine power transitions as Windows information type events
(EVENTLOG_INFORMATION_TYPE). Each power transition event log begins with a simple string
indicating the new power state of the virtual machine. Power transition event log strings follow. In
these examples, D:\foo.vmx is the path to the configuration file for the virtual machine.

Virtual machine powered on (was powered off): D:\foo.vmx.

Virtual machine powered off (was powered on): D:\foo.vmx.

Virtual machine suspended (was powered on): D:\foo.vmx.

Event ID Event Type

1100 Power transition events

1101 Message events

1102 Message answer events
82 www.vmware.com

Error Codes and Event Logging
Messages
The Event Viewer logs messages with a severity appropriate for the message:

• VMware hints have an “info” type and are logged as a Windows information type event
(EVENTLOG_INFORMATION_TYPE).

• VMware warnings have a “warning” type and are logged as a Windows warning type event
(EVENTLOG_WARNING_TYPE).

• VMware errors have a “error” type and are logged as a Windows error type event
(EVENTLOG_ERROR_TYPE).

• VMware questions have a “question” type and are logged as a Windows information type event
(EVENTLOG_INFORMATION_TYPE).

Each message event log begins with a simple string indicating that a message was received. The
message event log includes the type of message and the message text. Example message event log
strings follow.

This first example is for a message hint.

Virtual machine received hint: D:\foo.vmx.

Don't forget to install VMware Tools inside this virtual machine.
Wait until your guest operating system finishes booting, then choose
'VMware Tools Install...' from the Settings menu in VMware GSX
Server. Then follow the instructions that are provided.

[Ok]

This second example is for an error message.

Virtual machine received error: D:\foo.vmx

Failed to resume disk ide0:0. The disk was modified since the virtual
machine was suspended.

Error encountered while trying to restore ide0:0 state from file
.\foo.vmss.

[OK]

This third example is for a question.

Virtual machine received question: D:\foo.vmdk.

Select an action for the redo log of undoable disk D:\foo.vmdk.

[Commit, Discard, Keep]

Message Answers
The Event Viewer logs message answers as Windows information type events
(EVENTLOG_INFORMATION_TYPE). Each message answer event log begins with a simple string
83www.vmware.com

Error Codes and Event Logging
indicating that an answer to a message was received. The message answer event log includes the
type of message, the message text, and the answer.

An example message answer event log string follows.

Virtual machine received answer "Discard": D:\foo.vmdk.

Select an action for the redo log of undoable disk D:\foo.vmdk.
84 www.vmware.com

A

Appendix A: vmware-cmd Utility

Appendix A: vmware-cmd Utility
Using the vmware-cmd Utility
You can use the vmware-cmd utility to perform various operations on a virtual machine, including
registering a virtual machine (on the local server), getting the power state of a virtual machine,
setting configuration variables, and so on.

The previous vmware-control utility is deprecated. If you are using scripts with the
vmware-control utility, update your scripts with the new vmware-cmd utility or they will not
work with GSX Server 2.x.

By default, the vmware-cmd utility is installed in the /usr/bin directory (Linux operating system)
or in C:\Program Files\VMware\VMware VmPerl Scripting API (Windows
operating system).

Options
The vmware-cmd utility takes the following options.

vmware-cmd Operations on a Server
The syntax for this utility on a server is:

vmware-cmd -s <options> <server-operation> <arguments>

The vmware-cmd utility performs the following operations on a VMware server.

Option Description

-H Specifies an alternate host other than the local host. If the -H option is used, then the -U

and -P options must also be specified.

-O Specifies an alternative port. The default port number is 902.

-U Specifies the username.

-P Specifies the user’s password.

-h Prints a help message, listing the options for this utility.

-q Turns on the quiet option with minimal output. The specified operation and arguments

are not specified in the output.

-v Turns on the verbose option.
86 www.vmware.com

Appendix A: vmware-cmd Utility
vmware-cmd Operations on a Virtual Machine
The syntax for this utility on a virtual machine is:

vmware-cmd <options> <vm-cfg-path> <vm-operation> <arguments>

The vmware-cmd utility performs the following operations on a virtual machine, where
<vm-cfg-path> represents the complete path to the virtual machine’s configuration file.

Server Operation Description

vmware-cmd -l Lists the virtual machines on the local server. Unlike the other

server operations, this option does not require the -s option.

vmware-cmd -s register <vm-cfg-path> Registers a virtual machine specified by <vm-cfg-path> on the

server.

vmware-cmd -s unregister <vm-cfg-path> Unregisters a virtual machine specified by <vm-cfg-path> on

the server.

Virtual Machine Operation Description

vmware-cmd <vm-cfg-path> getstate Retrieves the execution state of a virtual machine: on, off,

suspended, stuck (requires user input) or unknown.

vmware-cmd <vm-cfg-path> start

<powerop_mode>

Powers on a previously powered-off virtual machine or

resumes a suspended virtual machine. Hard, soft or trysoft

specifies the behavior of the power operation

<powerop_mode>. If <powerop_mode> is not specified, the

default behavior is soft. For more information, see

<powerop_mode> Values on page 89.

vmware-cmd <vm-cfg-path> stop

<powerop_mode>

Shuts down and powers off a virtual machine. Hard, soft or

trysoft specifies the behavior of the power operation

<powerop_mode>. If <powerop_mode> is not specified, the

default behavior is soft. For more information, see

<powerop_mode> Values on page 89.

vmware-cmd <vm-cfg-path> reset

<powerop_mode>

Shuts down, then reboots a virtual machine. Hard, soft or

trysoft specifies the behavior of the power operation

<powerop_mode>. If <powerop_mode> is not specified, the

default behavior is soft. For more information, see

<powerop_mode> Values on page 89.

vmware-cmd <vm-cfg-path> suspend

<powerop_mode>

Suspends a virtual machine. Hard, soft or trysoft specifies the

behavior of the power operation <powerop_mode>. If

<powerop_mode> is not specified, the default behavior is soft.

For more information, see <powerop_mode> Values on

page 89.
87www.vmware.com

Appendix A: vmware-cmd Utility
vmware-cmd <vm-cfg-path> setconfig <variable>

<value>

Sets a configuration variable for the virtual machine connected

to the remote console.

vmware-cmd <vm-cfg-path> getconfig <variable> Retrieves the value for a configuration variable for the virtual

machine connected to the remote console.

vmware-cmd <vm-cfg-path> setguestinfo

<variable> <value>

Writes a GuestInfo variable into memory. The variable is

discarded when the virtual machine process terminates.

vmware-cmd <vm-cfg-path> getguestinfo

<variable>

Retrieves the value for a GuestInfo variable.

vmware-cmd <vm-cfg-path> getproductinfo

<prodinfo>

Returns information about the product, where <prodinfo> is

product, platform, build, majorversion (product’s major version

number), minorversion (product’s minor version number) or

revision.

If product is specified, the return value is one of the following:

ws (VMware Workstation), gsx (VMware GSX Server) esx

(VMware ESX Server) or unknown (unknown product type).

If platform is specified, the return value is one of the following:

windows (Microsoft Windows), linux (Linux operating system)

or unknown (unknown platform type).

vmware-cmd <vm-cfg-path> connectdevice

<device_name>

Connects the specified virtual device to a virtual machine.

vmware-cmd <vm-cfg-path> disconnectdevice

<device_name>

Disconnects the specified virtual device from the virtual

machine.

vmware-cmd <vm-cfg-path> getconfigfile Returns a string containing the configuration file name for the

virtual machine. This method fails if the virtual machine is not

connected.

vmware-cmd <vm-cfg-path> getheartbeat Returns the current heartbeat count generated by the VMware

Tools service running in the guest operating system. The count

is initialized to zero when the virtual machine is powered on.

The heartbeat count is typically incremented at least once per

second when the VMware Tools service is running under light

load conditions. The count stays constant if this service is not

running.

vmware-cmd <vm-cfg-path> gettoolslastactive Returns an integer indicating how much time has passed, in

seconds, since the last heartbeat was detected from the

VMware Tools service.

This value is initialized to zero when the virtual machine

powers on. It stays at zero until the first heartbeat is detected,

after which the value is always greater than zero until the

virtual machine is power-cycled again.

vmware-cmd <vm-cfg-path> answer Prompts the user to answer a question for a virtual machine

waiting for user input.

Virtual Machine Operation Description
88 www.vmware.com

Appendix A: vmware-cmd Utility
<powerop_mode> Values
The following table describes hard, soft and trysoft power operations.

vmware-cmd Utility Examples
This section includes examples of using the vmware-cmd utility on a virtual machine.

Retrieving the State of a Virtual Machine
The following examples illustrate retrieving the execution state of a virtual machine.

Change directories to the directory (folder) containing the vmware-cmd utility or include the full
path to the utility when typing the following on a command line. Note that you must use double
quotes when specifying a path with spaces; for example,
"C:\Program Files\VMware\VMware VmPerl Scripting API\vmware-cmd".

In a Linux guest operating system:

vmware-cmd /home/vmware/win2000.cfg getstate

where /home/vmware/win2000.cfg is the path to the virtual machine’s configuration file.

Powerop_mode Values Description

soft

To succeed, soft power operations

require the current version of Vmware

Tools to be installed and running in the

guest operating system.

Start when a virtual machine is suspended — After resuming the virtual

machine, the operation attempts to run a script in the guest operating

system. The Start operation always succeeds. However, if VMware Tools is

not present or is malfunctioning, the running of the script may fail.

Start when virtual machine is powered off — After powering on the virtual

machine, it attempts to run a script in the guest operating system when

the VMware Tools service becomes active. The default script does nothing

during this operation as there is no DHCP lease to renew. The Start

operation always succeeds. However, if VMware Tools is not present or is

malfunctioning, the running of the script may fail.

Stop — Attempts to shut down the guest operating system and then

powers off the virtual machine.

Reset — Attempts to shut down the guest operating system, then reboots

the virtual machine.

Suspend — Attempts to run a script in the guest operating system before

suspending the virtual machine.

hard Start — Starts or resumes a virtual machine without running any scripts; a

standard power on or resume.

Stop, reset or suspend — Immediately and unconditionally powers off,

resets, or suspends the virtual machine.

trysoft First attempts to perform the soft power transition operation. If this fails,

the hard power operation is performed.
89www.vmware.com

Appendix A: vmware-cmd Utility
In a Windows guest operating system:

vmware-cmd C:\home\vmware\win2000.vmx getstate

where C:\home\vmware\win2000.vmx is the path to the virtual machine’s configuration file.

Performing a Power Operation
The following examples illustrate performing a power operation. The first example illustrates
powering on a virtual machine and the second example illustrates performing a hard reset.

Change directories to the directory (folder) containing the vmware-cmd utility or include the full
path to the utility when typing the following on a command line. Note that you must use double
quotes when specifying a path with spaces; for example,
"C:\Program Files\VMware\VMware VmPerl Scripting API\vmware-cmd".

In a Linux guest operating system:

vmware-cmd -v /home/vmware/win2000.cfg start

where -v indicates the verbose option, /home/vmware/win2000.cfg is the path to the virtual
machine’s configuration file and start is the power operation. Since a <powerop_mode> is not
specified, the default soft behavior is performed.

Similarly, in a Windows guest operating system:

vmware-cmd -q C:\home\vmware\win2000.vmx reset hard

where -q indicates the quiet option (only the results of the operation are printed),
C:\home\vmware\win2000.vmx is the path to the virtual machine’s configuration file and reset
is the power operation. This example specifies a hard reset so the virtual machine is immediately and
unconditionally reset.

Setting a Configuration Variable
The following example illustrates setting a configuration variable in a Linux guest operating system.

Change directories to the directory (folder) containing the vmware-cmd utility or include the full
path to the utility when typing the following on a command line.

vmware-cmd foo.cfg setconfig ide1:0.file /tmp/cdimages/foo.iso

where foo.cfg is the virtual machine’s configuration file, ide1:0.file is the variable and its
value is /tmp/cdimages/foo.iso.

Connecting a Device
The following example illustrates connecting a virtual IDE device in a Windows guest operating
system.

Change directories to the directory (folder) containing the vmware-cmd utility or include the full
path to the utility when typing the following on a command line. Note that you must use double
90 www.vmware.com

Appendix A: vmware-cmd Utility
quotes when specifying a path with spaces; for example,
"C:\Program Files\VMware\VMware VmPerl Scripting API\vmware-cmd".

vmware-cmd D:\foo.vmx connectdevice ide1:0

where D:\foo.vmx is the virtual machine’s configuration file and ide1:0 is the device name.
91www.vmware.com

Index

Symbols

$choice 50

$connectparams 44, 46, 47

$dev_name 50, 51

$infotype 50, 54

$key_name 49, 56–57

$mode 48

$question 50

$vm_name 47

A

answer_question() method 50

answering a question 22, 44,
50, 52, 70–73, 85, 87–88, 92

AnswerQuestion() method 21,
22, 82

API incompatible with server 83

authd 85

C

choice 21

Choices property 17, 21, 22

collection object 14

command, cscript 32, 37

concepts
VmCOM 14
VmPerl 44

Config property 18, 21

config.ini file 85

ConfigFileName property 18

configuration file for virtual
machine 14, 16, 18, 20, 44, 46,
47, 49, 83, 92

configuration variable 18, 49,
75–77, 77–79, 92

Connect() method 14, 15, 16,
20, 82, 83

connect() method 44, 46, 47,
83

connect_device() method 51

ConnectDevice() method 21

connecting

to a device 21, 51, 92
to a server 14, 16, 20, 44, 46,
47
to a virtual machine 20, 47,
84

connection parameters 14, 15,
16, 20, 46, 47

connection security 15, 45

connections, total number of
simultaneous 16, 20, 46, 47

Count property 17

cscript 32, 37

D

device, connecting to 21, 51,
92

device, disconnecting from 21,
51, 92

device_is_connected() method
50

DeviceIsConnected property 18

devName 21

DHCP lease 23, 53

disconnect_device() method
51

DisconnectDevice() method 21

disconnected virtual machine
84

disconnecting from a device 21,
51, 92

E

error condition requiring user
input 22, 44, 50, 52, 85, 87–88

error handling 82

error, VmCOM 83–84
vmErr_BADSTATE 21, 83
vmErr_BADVERSION 83
vmErr_DISCONNECT 82, 83
vmErr_INSUFFICIENT_RESOU
RCES 83
vmErr_INVALIDARGS 83
vmErr_INVALIDVM 83
vmErr_NEEDINPUT 82, 83

vmErr_NETFAIL 83
vmErr_NOACCESS 84
vmErr_NOMEM 84
vmErr_NOPROPERTY 84
vmErr_NOTCONNECTED 82,
84
vmErr_NOTSUPPORTED 84
vmErr_PROXYFAIL 84
vmErr_TIMEOUT 84
vmErr_UNSPECIFIED 84
vmErr_VMBUSY 84
vmErr_VMEXISTS 84
vmErr_VMINITFAILED 84

error, VmPerl 83–84
VM_E_BADSTATE 51, 83
VM_E_BADVERSION 83
VM_E_DISCONNECT 83
VM_E_INSUFFICIENT_RESOU
RCES 83
VM_E_INVALIDARGS 83
VM_E_INVALIDVM 83
VM_E_NEEDINPUT 83
VM_E_NETFAIL 83
VM_E_NOACCESS 84
VM_E_NOMEM 84
VM_E_NOPROPERTY 84
VM_E_NOTCONNECTED 84
VM_E_NOTSUPPORTED 84
VM_E_PROXYFAIL 84
VM_E_TIMEOUT 84
VM_E_UNSPECIFIED 84
VM_E_VMBUSY 84
VM_E_VMEXISTS 84
VM_E_VMINITFAILED 84

event ID 86

Event Viewer 84–88

ExecutionState property 17

G

get_choices() method 50, 52

get_config() method 49

get_config_file_name()
method 49

get_execution_state() method
49
97www.vmware.com

Index

98
get_guest_info() method 49,
57

get_heartbeat() method 50

get_hostname() method 45

get_id() method 52

get_last_error() method 46, 47,
50, 82–83

get_password() method 45

get_pending_question()
method 50

get_port() method 45

get_product_info() method 50,
54

get_text() method 52

get_tools_last_active() method
50, 51

get_username() method 45

guest operating system 19, 25–
27, 51, 55–57

GuestInfo property 17

GuestInfo variable 25–27, 55–
57, 92

H

hard power transition 23, 53, 93

heartbeat 18, 50, 67–70, 92

Heartbeat property 18

host platform 24, 54, 92

hostname 15, 45

I

Id property 22

index 50

infoType 18

input, requiring 21, 22, 44, 50,
52, 70–73, 85, 87–88, 92

installation
VmCOM 10
VmPerl 10, 11

instsrv 37

insufficient memory 84

insufficient resources 16, 20, 46,
47, 83

invalid power transition 83

is_connected() method 46, 47

ISupportErrorInfo 82

Item property 17

J

JScript 32, 32–34

K

keyName 17, 26–27

L

limits 16, 20, 46, 47, 83

Linux operating system
installing VmPerl on 11

list of virtual machines 14, 32–
34, 34–37, 37–41, 44, 61–63,
63–65, 91

M

memory 21, 49, 84

memory size 18, 49

memory, values stored in 18, 49

messages 85

method, VmCOM
AnswerQuestion() 21, 22, 82
Connect() 14, 15, 16, 20, 82,
83
ConnectDevice() 21
DisconnectDevice() 21
RegisterVm() 16
Reset() 20
Start() 20
Stop() 20
Suspend() 21
UnregisterVm() 16

method, VmPerl
answer_question() 50
connect() 44, 46, 47, 83
connect_device() 51
device_is_connected() 50
disconnect_device() 51
get_choices() 50, 52
get_config() 49
get_config_file_name() 49
get_execution_state() 49
get_guest_info() 49, 57
get_heartbeat() 50
get_hostname() 45
get_id() 52
get_last_error() 46, 47, 50,
82–83

get_password() 45
get_pending_question() 50
get_port() 45
get_product_info() 50, 54
get_text() 52
get_tools_last_active() 50,
51
get_username() 45
is_connected() 46, 47
register_vm() 46
registered_vm_names() 44,
46
reset() 48
set_config() 49, 51
set_guest_info() 49, 56
start() 48
stop() 48
suspend() 49
unregister_vm() 46

MiniMUI Visual Basic project 10,
31

N

network failure 83

network port 45

no response 84

not enough memory 84

P

passing information between
script and guest operating sys-
tem 25–27, 55–57

password 15, 45

PendingQuestion property 17,
21, 22, 82

permission 84

platform 24, 54, 92

platform information 24

port 15, 45, 90

power status of a virtual
machine 17, 49, 65–67, 91

power transition 23, 53, 84, 86
hard 23, 53, 93
invalid 83
soft 23, 53, 93
trysoft 23, 54, 93

powering off a virtual machine
20, 23, 48, 53, 91, 93
www.vmware.com

Index
powering on a virtual machine
20, 23, 48, 53, 91, 93

product information 18, 24, 50,
54, 92

ProductInfo property 18

property
Choices 17, 21, 22
Config 18, 21
ConfigFileName 18
Count 17
DeviceIsConnected 18
ExecutionState 17
GuestInfo 17
Heartbeat 18
Id 22
Item 17
PendingQuestion 17, 21, 22,
82
ProductInfo 18
RegisteredVmNames 16
Text 22
ToolsLastActive 18, 19

proxy 84

proxy failure 84

Q

question 44, 50, 52, 70–73, 85,
87–88, 92

R

reconnect to a virtual machine
20

redo log 34

register_vm() method 46

registered_vm_names()
method 44, 46

RegisteredVmNames property
16

registering virtual machine 46,
84, 91

RegisterVm() method 16

Reset() method 20

reset() method 48

resetting a virtual machine 20,
23, 48, 53, 91, 93

resuming a suspended machine
20, 48, 91, 93

S

sample scripts, VmCOM 10, 30–
41

connecting to server and
listing virtual machines 32–
34, 34–37
listing and starting virtual
machines 37–41

sample scripts, VmPerl 60–79
answering question for stuck
virtual machine 70–73
determining power status
65–67
listing and starting virtual
machines 63–65
listing virtual machines 61–
63
monitoring virtual machine
heartbeat 67–70
retrieving a configuration
variable 77–79
setting a configuration vari-
able 75–77
suspending a virtual
machine 74–75

sample scripts. VmPerl 11

script 25–27, 55–57

security 15, 45, 84

server
connecting to 14, 16, 20,
32–34, 34–37, 44, 46, 47
incompatible with API 83
security 15, 45
virtual machines on 14
VmServerCtl 14, 16, 82
VMware::VmPerl::Server 44,
46

serverd 85

set_config() method 49, 51

set_guest_info() method 49, 56

shared variables 25–27, 55–57

simultaneous connections 16,
20, 46, 47

soft power transition 23, 53, 93

srvany 37

Start() method 20

start() method 48

starting a virtual machine 20,
23, 48, 53, 91, 93

state of virtual machine 17, 49,
91

Stop() method 20

stop() method 48

stopping a virtual machine 20,
23, 48, 53, 91, 93

string
$key_name 49
keyName 17

Suspend() method 21

suspend() method 49

suspended machine, resuming
20, 48, 91, 93

suspending a virtual machine
21, 23, 49, 53, 74–75, 91, 93

T

TCP port 15, 45

Text property 22

time out 84

time out during suspension 21,
49

ToolsLastActive property 18, 19

trysoft power transition 23, 54,
93

U

undoable disk 34

uninstalling VmPerl 11

unregister_vm() method 46

UnregisterVm() method 16

user input 21, 22, 44, 50, 52,
70–73, 85, 87–88, 92

user name 15, 45, 90

V

variable 18, 25–27, 49, 55–57,
92

VBScript 32, 34–37, 37–41

virtual device 18, 21, 50, 51, 92

virtual machine 44, 47–51, 55
configuration file 14, 16, 18,
20, 44, 46, 47, 49, 83, 92
99www.vmware.com

Index

100
connecting to 20, 47, 84
disconnected 84
event logging 84–88
execution state 22, 52
heartbeat 18, 50, 67–70, 92
list of 14, 32–34, 34–37, 37–
41, 44, 61–63, 63–65, 91
memory size 18, 49
network failure 83
no response 84
power operations 20–21, 23,
48–49, 53, 84, 86
power state 17, 49, 65–67,
91
reconnect 20
registering 46, 84, 91
resetting 20, 23, 48, 53, 91,
93
security 15, 45
starting 20, 23, 37–41, 48,
53, 63–65, 91, 93
stopping 20, 23, 48, 53, 91,
93
suspending 21, 23, 49, 53,
74–75, 91, 93
VmCtl 14, 17–21, 25, 82
waiting for input 21, 22, 50,
82

Visual Basic 31, 82

vm.See virtual machine.

VM_E_BADSTATE 51, 83

VM_E_BADVERSION 83

VM_E_DISCONNECT 83

VM_E_INSUFFICIENT_RESOURC
ES 46, 47, 83

VM_E_INVALIDARGS 83

VM_E_INVALIDVM 83

VM_E_NEEDINPUT 83

VM_E_NETFAIL 83

VM_E_NOACCESS 84

VM_E_NOMEM 84

VM_E_NOPROPERTY 84

VM_E_NOTCONNECTED 84

VM_E_NOTSUPPORTED 84

VM_E_PROXYFAIL 84

VM_E_TIMEOUT 84

VM_E_UNSPECIFIED 84

VM_E_VMBUSY 84

VM_E_VMEXISTS 84

VM_E_VMINITFAILED 84

VM_EXECUTION_STATE_<XXX>
52

VM_POWEROP_MODE_<XXX>
48–49, 53

VM_PRODINFO_PLATFORM_<X
XX> 54

VM_PRODINFO_PRODUCT_<X
XX> 54

VmCollection 14, 16–17

VmCOM
AnswerQuestion() method
21, 22, 82
concepts 14
Connect() method 14, 15,
16, 20, 82, 83
ConnectDevice() method 21
DisconnectDevice() method
21
error handling 82
RegisterVm() method 16
Reset() method 20
sample scripts 10, 30–41
Start() method 20
Stop() method 20
Suspend() method 21
UnregisterVm() method 16
use with Windows operat-
ing system 8

VmConnectParams 14, 15, 16,
20

VmCtl 14, 17–21, 25, 82

VmCtl.AnswerQuestion 21, 22,
82

VmCtl.Connect 15, 20

VmCtl.ConnectDevice 21

VmCtl.DisconnectDevice 21

VmCtl.PendingQuestion 21, 22,
82

VmCtl.Reset 20

VmCtl.Stop 20

VmCtl.Suspend 21

vmErr_BADSTATE 21, 83

vmErr_BADVERSION 83

vmErr_DISCONNECT 82, 83

vmErr_INSUFFICIENT_RESOURC
ES 16, 20, 83

vmErr_INVALIDARGS 83

vmErr_INVALIDVM 83

vmErr_NEEDINPUT 82, 83

vmErr_NETFAIL 83

vmErr_NOACCESS 84

vmErr_NOMEM 84

vmErr_NOPROPERTY 84

vmErr_NOTCONNECTED 82, 84

vmErr_NOTSUPPORTED 84

vmErr_PROXYFAIL 84

vmErr_TIMEOUT 84

vmErr_UNSPECIFIED 84

vmErr_VMBUSY 84

vmErr_VMEXISTS 84

vmErr_VMINITFAILED 84

VmExecutionState 22

vmName 20

VmPerl
answer_question() method
50
concepts 44
connect() method 44, 46,
47, 83
connect_device() method
51
device_is_connected()
method 50
disconnect_device() method
51
error handling 82–83
get_choices() method 50, 52
get_config() method 49
get_config_file_name()
method 49
get_execution_state()
method 49
get_guest_info() method 49,
57
get_heartbeat() method 50
get_hostname() method 45
www.vmware.com

Index
get_id() method 52
get_last_error() method 46,
47, 50, 82–83
get_password() method 45
get_pending_question()
method 50
get_port() method 45
get_product_info() method
50, 54
get_text() method 52
get_tools_last_active()
method 50, 51
get_username() method 45
is_connected() method 46,
47
register_vm() method 46
registered_vm_names()
method 44, 46
reset() method 48
sample scripts 11, 60–79
set_config() method 49, 51
set_guest_info() method 49,
56
start() method 48
stop() method 48
suspend() method 49
unregister_vm() method 46
use with Linux operating sys-
tem 8
use with Windows operat-
ing system 8

VmPlatform 24

VmPowerOpMode 20–21, 23

vmProdInfo_Platform 24

vmProdInfo_Product 24

VmProdInfoType 18, 24

VmProduct 24

VmQuestion 21, 22, 82

VmQuestion.Choices 17

VmServerCtl 14, 16, 82

VmServerCtl.Connect() 15, 16,
20

VmServerCtl.RegisteredVm-
Names 17

VMware Tools 18, 19, 25–27,
50, 51, 55–57, 92

VMware::VmPerl::Connect-

Params 44, 45

VMware::VmPerl::Question 44,
50, 52

VMware::VmPerl::Server 44, 46

VMware::VmPerl::VM 44, 47–51,
55

vmware-cmd
options 90
server operations 90–91
virtual machine operations
91–92

vmware-control 90

W

waiting for user input 21, 22,
34–37, 44, 50, 52, 70–73, 85,
87–88, 92

Web proxy 84

Windows operating system
installing Scripting APIs on
10

Windows Script File 32, 34, 37,
41
101www.vmware.com

Index

102
 www.vmware.com

	Introduction
	VMware Scripting APIs
	Supported Products
	Intended Audience
	Getting Support from VMware

	Using the VMware Scripting APIs
	Installing the VMware Scripting API
	Installing the VMware Scripting API on a Windows Machine
	Installing VmPerl Scripting API on a Linux Machine

	Using VmCOM
	What is VmCOM?
	VmCOM Objects
	VmConnectParams
	VmServerCtl
	Property
	Methods

	VmCollection
	VmCtl
	Properties
	Additional Information on ToolsLastActive

	Methods

	VmQuestion
	Symbolic Constant Enumerations
	VmExecutionState
	VmPowerOpMode
	VmProdInfoType
	VmProduct
	VmPlatform

	Using VmCOM to Pass User-Defined Information Between a Running Guest Operating System and a Script
	GuestInfo Variables
	Sending Information Set in a VmCOM Script to the Guest Operating System
	Retrieving the Information in the Guest Operating System

	Sending Information Set in the Guest Operating System to a VmCOM Script
	Retrieving Information in a VmCOM Script

	Using Sample VmCOM Programs
	Sample VmCOM Programs
	Copyright Information
	MiniMUI Visual Basic Sample Program
	JScript and VBScript Sample Programs
	JScript Sample Program 1
	VBScript Sample Program 2
	VBScript Sample Program 3

	Using VmPerl
	VmPerl Modules
	VMware::VmPerl::ConnectParams
	VMware::VmPerl::Server
	VMware::VmPerl::VM
	Additional Information on get_tools_last_active

	VMware::VmPerl::Question
	Symbolic Constants
	VM_EXECUTION_STATE_<XXX> Values
	VM_POWEROP_MODE_<XXX> Values
	Infotype Values
	VM_PRODINFO_PRODUCT_<XXX> Values
	VM_PRODINFO_PLATFORM_<XXX> Values

	Using VmPerl to Pass User-Defined Information Between a Running Guest Operating System and a Script
	GuestInfo Variables
	Sending Information Set in a VmPerl Script to the Guest Operating System
	Retrieving the Information in the Guest Operating System

	Sending Information Set in the Guest Operating System to a VmPerl Script
	Retrieving Information in a VmPerl Script

	Using Sample VmPerl Scripts
	Sample Perl Scripts
	Copyright Information
	Listing the Virtual Machines on the Server
	Starting All Virtual Machines on a Server
	Checking a Virtual Machine’s Power Status
	Monitoring a Virtual Machine’s Heartbeat
	Answering Questions Posed by a Virtual Machine
	Suspending a Virtual Machine
	Setting a Virtual Machine’s IP Address Configuration Variable
	Getting a Virtual Machine’s IP Address

	Error Codes and Event Logging
	Error Codes and Event Logging
	Error Codes
	Error Handling for the VmCOM Library
	Error Handling for the VmPerl Library
	Common VmCOM and VmPerl Errors

	Event Logging
	Using the Event Viewer
	Reading the Event Log
	Power Transitions
	Messages
	Message Answers

	Appendix A: vmware-cmd Utility
	Using the vmware-cmd Utility
	Options
	vmware-cmd Operations on a Server
	vmware-cmd Operations on a Virtual Machine
	<powerop_mode> Values
	vmware-cmd Utility Examples
	Retrieving the State of a Virtual Machine
	Performing a Power Operation
	Setting a Configuration Variable
	Connecting a Device
	Symbols
	$choice 50
	$connectparams 44, 46, 47
	$dev_name 50, 51
	$infotype 50, 54
	$key_name 49, 56–57
	$mode 48
	$question 50
	$vm_name 47
	A
	answer_question() method 50
	answering a question 22, 44, 50, 52, 70–73, 85, 87–88, 92
	AnswerQuestion() method 21, 22, 82
	API incompatible with server 83
	authd 85
	C
	choice 21
	Choices property 17, 21, 22
	collection object 14
	command, cscript 32, 37
	concepts
	VmCOM 14
	VmPerl 44

	Config property 18, 21
	config.ini file 85
	ConfigFileName property 18
	configuration file for virtual machine 14, 16, 18, 20, 44, 46, 47, 49, 83, 92
	configuration variable 18, 49, 75–77, 77–79, 92
	Connect() method 14, 15, 16, 20, 82, 83
	connect() method 44, 46, 47, 83
	connect_device() method 51
	ConnectDevice() method 21
	connecting
	to a device 21, 51, 92
	to a server 14, 16, 20, 44, 46, 47
	to a virtual machine 20, 47, 84

	connection parameters 14, 15, 16, 20, 46, 47
	connection security 15, 45
	connections, total number of simultaneous 16, 20, 46, 47
	Count property 17
	cscript 32, 37
	D
	device, connecting to 21, 51, 92
	device, disconnecting from 21, 51, 92
	device_is_connected() method 50
	DeviceIsConnected property 18
	devName 21
	DHCP lease 23, 53
	disconnect_device() method 51
	DisconnectDevice() method 21
	disconnected virtual machine 84
	disconnecting from a device 21, 51, 92
	E
	error condition requiring user input 22, 44, 50, 52, 85, 87–88
	error handling 82
	error, VmCOM 83–84
	vmErr_BADSTATE 21, 83
	vmErr_BADVERSION 83
	vmErr_DISCONNECT 82, 83
	vmErr_INSUFFICIENT_RESOU RCES 83
	vmErr_INVALIDARGS 83
	vmErr_INVALIDVM 83
	vmErr_NEEDINPUT 82, 83
	vmErr_NETFAIL 83
	vmErr_NOACCESS 84
	vmErr_NOMEM 84
	vmErr_NOPROPERTY 84
	vmErr_NOTCONNECTED 82, 84
	vmErr_NOTSUPPORTED 84
	vmErr_PROXYFAIL 84
	vmErr_TIMEOUT 84
	vmErr_UNSPECIFIED 84
	vmErr_VMBUSY 84
	vmErr_VMEXISTS 84
	vmErr_VMINITFAILED 84

	error, VmPerl 83–84
	VM_E_BADSTATE 51, 83
	VM_E_BADVERSION 83
	VM_E_DISCONNECT 83
	VM_E_INSUFFICIENT_RESOU RCES 83
	VM_E_INVALIDARGS 83
	VM_E_INVALIDVM 83
	VM_E_NEEDINPUT 83
	VM_E_NETFAIL 83
	VM_E_NOACCESS 84
	VM_E_NOMEM 84
	VM_E_NOPROPERTY 84
	VM_E_NOTCONNECTED 84
	VM_E_NOTSUPPORTED 84
	VM_E_PROXYFAIL 84
	VM_E_TIMEOUT 84
	VM_E_UNSPECIFIED 84
	VM_E_VMBUSY 84
	VM_E_VMEXISTS 84
	VM_E_VMINITFAILED 84

	event ID 86
	Event Viewer 84–88
	ExecutionState property 17
	G
	get_choices() method 50, 52
	get_config() method 49
	get_config_file_name() method 49
	get_execution_state() method 49
	get_guest_info() method 49, 57
	get_heartbeat() method 50
	get_hostname() method 45
	get_id() method 52
	get_last_error() method 46, 47, 50, 82–83
	get_password() method 45
	get_pending_question() method 50
	get_port() method 45
	get_product_info() method 50, 54
	get_text() method 52
	get_tools_last_active() method 50, 51
	get_username() method 45
	guest operating system 19, 25– 27, 51, 55–57
	GuestInfo property 17
	GuestInfo variable 25–27, 55– 57, 92
	H
	hard power transition 23, 53, 93
	heartbeat 18, 50, 67–70, 92
	Heartbeat property 18
	host platform 24, 54, 92
	hostname 15, 45
	I
	Id property 22
	index 50
	infoType 18
	input, requiring 21, 22, 44, 50, 52, 70–73, 85, 87–88, 92
	installation
	VmCOM 10
	VmPerl 10, 11

	instsrv 37
	insufficient memory 84
	insufficient resources 16, 20, 46, 47, 83
	invalid power transition 83
	is_connected() method 46, 47
	ISupportErrorInfo 82
	Item property 17
	J
	JScript 32, 32–34
	K
	keyName 17, 26–27
	L
	limits 16, 20, 46, 47, 83
	Linux operating system
	installing VmPerl on 11

	list of virtual machines 14, 32– 34, 34–37, 37–41, 44, 61–63, 63–65, 91
	M
	memory 21, 49, 84
	memory size 18, 49
	memory, values stored in 18, 49
	messages 85
	method, VmCOM
	AnswerQuestion() 21, 22, 82
	Connect() 14, 15, 16, 20, 82, 83
	ConnectDevice() 21
	DisconnectDevice() 21
	RegisterVm() 16
	Reset() 20
	Start() 20
	Stop() 20
	Suspend() 21
	UnregisterVm() 16

	method, VmPerl
	answer_question() 50
	connect() 44, 46, 47, 83
	connect_device() 51
	device_is_connected() 50
	disconnect_device() 51
	get_choices() 50, 52
	get_config() 49
	get_config_file_name() 49
	get_execution_state() 49
	get_guest_info() 49, 57
	get_heartbeat() 50
	get_hostname() 45
	get_id() 52
	get_last_error() 46, 47, 50, 82–83
	get_password() 45
	get_pending_question() 50
	get_port() 45
	get_product_info() 50, 54
	get_text() 52
	get_tools_last_active() 50, 51
	get_username() 45
	is_connected() 46, 47
	register_vm() 46
	registered_vm_names() 44, 46
	reset() 48
	set_config() 49, 51
	set_guest_info() 49, 56
	start() 48
	stop() 48
	suspend() 49
	unregister_vm() 46

	MiniMUI Visual Basic project 10, 31
	N
	network failure 83
	network port 45
	no response 84
	not enough memory 84
	P
	passing information between script and guest operating system 25–27, 55–57
	password 15, 45
	PendingQuestion property 17, 21, 22, 82
	permission 84
	platform 24, 54, 92
	platform information 24
	port 15, 45, 90
	power status of a virtual machine 17, 49, 65–67, 91
	power transition 23, 53, 84, 86
	hard 23, 53, 93
	invalid 83
	soft 23, 53, 93
	trysoft 23, 54, 93

	powering off a virtual machine 20, 23, 48, 53, 91, 93
	powering on a virtual machine 20, 23, 48, 53, 91, 93
	product information 18, 24, 50, 54, 92
	ProductInfo property 18
	property
	Choices 17, 21, 22
	Config 18, 21
	ConfigFileName 18
	Count 17
	DeviceIsConnected 18
	ExecutionState 17
	GuestInfo 17
	Heartbeat 18
	Id 22
	Item 17
	PendingQuestion 17, 21, 22, 82
	ProductInfo 18
	RegisteredVmNames 16
	Text 22
	ToolsLastActive 18, 19

	proxy 84
	proxy failure 84
	Q
	question 44, 50, 52, 70–73, 85, 87–88, 92
	R
	reconnect to a virtual machine 20
	redo log 34
	register_vm() method 46
	registered_vm_names() method 44, 46
	RegisteredVmNames property 16
	registering virtual machine 46, 84, 91
	RegisterVm() method 16
	Reset() method 20
	reset() method 48
	resetting a virtual machine 20, 23, 48, 53, 91, 93
	resuming a suspended machine 20, 48, 91, 93
	S
	sample scripts, VmCOM 10, 30– 41
	connecting to server and listing virtual machines 32– 34, 34–37
	listing and starting virtual machines 37–41

	sample scripts, VmPerl 60–79
	answering question for stuck virtual machine 70–73
	determining power status 65–67
	listing and starting virtual machines 63–65
	listing virtual machines 61– 63
	monitoring virtual machine heartbeat 67–70
	retrieving a configuration variable 77–79
	setting a configuration variable 75–77
	suspending a virtual machine 74–75

	sample scripts. VmPerl 11
	script 25–27, 55–57
	security 15, 45, 84
	server
	connecting to 14, 16, 20, 32–34, 34–37, 44, 46, 47
	incompatible with API 83
	security 15, 45
	virtual machines on 14
	VmServerCtl 14, 16, 82
	VMware::VmPerl::Server 44, 46

	serverd 85
	set_config() method 49, 51
	set_guest_info() method 49, 56
	shared variables 25–27, 55–57
	simultaneous connections 16, 20, 46, 47
	soft power transition 23, 53, 93
	srvany 37
	Start() method 20
	start() method 48
	starting a virtual machine 20, 23, 48, 53, 91, 93
	state of virtual machine 17, 49, 91
	Stop() method 20
	stop() method 48
	stopping a virtual machine 20, 23, 48, 53, 91, 93
	string
	$key_name 49
	keyName 17

	Suspend() method 21
	suspend() method 49
	suspended machine, resuming 20, 48, 91, 93
	suspending a virtual machine 21, 23, 49, 53, 74–75, 91, 93
	T
	TCP port 15, 45
	Text property 22
	time out 84
	time out during suspension 21, 49
	ToolsLastActive property 18, 19
	trysoft power transition 23, 54, 93
	U
	undoable disk 34
	uninstalling VmPerl 11
	unregister_vm() method 46
	UnregisterVm() method 16
	user input 21, 22, 44, 50, 52, 70–73, 85, 87–88, 92
	user name 15, 45, 90
	V
	variable 18, 25–27, 49, 55–57, 92
	VBScript 32, 34–37, 37–41
	virtual device 18, 21, 50, 51, 92
	virtual machine 44, 47–51, 55
	configuration file 14, 16, 18, 20, 44, 46, 47, 49, 83, 92
	connecting to 20, 47, 84
	disconnected 84
	event logging 84–88
	execution state 22, 52
	heartbeat 18, 50, 67–70, 92
	list of 14, 32–34, 34–37, 37– 41, 44, 61–63, 63–65, 91
	memory size 18, 49
	network failure 83
	no response 84
	power operations 20–21, 23, 48–49, 53, 84, 86
	power state 17, 49, 65–67, 91
	reconnect 20
	registering 46, 84, 91
	resetting 20, 23, 48, 53, 91, 93
	security 15, 45
	starting 20, 23, 37–41, 48, 53, 63–65, 91, 93
	stopping 20, 23, 48, 53, 91, 93
	suspending 21, 23, 49, 53, 74–75, 91, 93
	VmCtl 14, 17–21, 25, 82
	waiting for input 21, 22, 50, 82

	Visual Basic 31, 82
	vm.See virtual machine.
	VM_E_BADSTATE 51, 83
	VM_E_BADVERSION 83
	VM_E_DISCONNECT 83
	VM_E_INSUFFICIENT_RESOURC ES 46, 47, 83
	VM_E_INVALIDARGS 83
	VM_E_INVALIDVM 83
	VM_E_NEEDINPUT 83
	VM_E_NETFAIL 83
	VM_E_NOACCESS 84
	VM_E_NOMEM 84
	VM_E_NOPROPERTY 84
	VM_E_NOTCONNECTED 84
	VM_E_NOTSUPPORTED 84
	VM_E_PROXYFAIL 84
	VM_E_TIMEOUT 84
	VM_E_UNSPECIFIED 84
	VM_E_VMBUSY 84
	VM_E_VMEXISTS 84
	VM_E_VMINITFAILED 84
	VM_EXECUTION_STATE_<XXX> 52
	VM_POWEROP_MODE_<XXX> 48–49, 53
	VM_PRODINFO_PLATFORM_<X XX> 54
	VM_PRODINFO_PRODUCT_<X XX> 54
	VmCollection 14, 16–17
	VmCOM
	AnswerQuestion() method 21, 22, 82
	concepts 14
	Connect() method 14, 15, 16, 20, 82, 83
	ConnectDevice() method 21
	DisconnectDevice() method 21
	error handling 82
	RegisterVm() method 16
	Reset() method 20
	sample scripts 10, 30–41
	Start() method 20
	Stop() method 20
	Suspend() method 21
	UnregisterVm() method 16
	use with Windows operating system 8

	VmConnectParams 14, 15, 16, 20
	VmCtl 14, 17–21, 25, 82
	VmCtl.AnswerQuestion 21, 22, 82
	VmCtl.Connect 15, 20
	VmCtl.ConnectDevice 21
	VmCtl.DisconnectDevice 21
	VmCtl.PendingQuestion 21, 22, 82
	VmCtl.Reset 20
	VmCtl.Stop 20
	VmCtl.Suspend 21
	vmErr_BADSTATE 21, 83
	vmErr_BADVERSION 83
	vmErr_DISCONNECT 82, 83
	vmErr_INSUFFICIENT_RESOURC ES 16, 20, 83
	vmErr_INVALIDARGS 83
	vmErr_INVALIDVM 83
	vmErr_NEEDINPUT 82, 83
	vmErr_NETFAIL 83
	vmErr_NOACCESS 84
	vmErr_NOMEM 84
	vmErr_NOPROPERTY 84
	vmErr_NOTCONNECTED 82, 84
	vmErr_NOTSUPPORTED 84
	vmErr_PROXYFAIL 84
	vmErr_TIMEOUT 84
	vmErr_UNSPECIFIED 84
	vmErr_VMBUSY 84
	vmErr_VMEXISTS 84
	vmErr_VMINITFAILED 84
	VmExecutionState 22
	vmName 20
	VmPerl
	answer_question() method 50
	concepts 44
	connect() method 44, 46, 47, 83
	connect_device() method 51
	device_is_connected() method 50
	disconnect_device() method 51
	error handling 82–83
	get_choices() method 50, 52
	get_config() method 49
	get_config_file_name() method 49
	get_execution_state() method 49
	get_guest_info() method 49, 57
	get_heartbeat() method 50
	get_hostname() method 45
	get_id() method 52
	get_last_error() method 46, 47, 50, 82–83
	get_password() method 45
	get_pending_question() method 50
	get_port() method 45
	get_product_info() method 50, 54
	get_text() method 52
	get_tools_last_active() method 50, 51
	get_username() method 45
	is_connected() method 46, 47
	register_vm() method 46
	registered_vm_names() method 44, 46
	reset() method 48
	sample scripts 11, 60–79
	set_config() method 49, 51
	set_guest_info() method 49, 56
	start() method 48
	stop() method 48
	suspend() method 49
	unregister_vm() method 46
	use with Linux operating system 8
	use with Windows operating system 8

	VmPlatform 24
	VmPowerOpMode 20–21, 23
	vmProdInfo_Platform 24
	vmProdInfo_Product 24
	VmProdInfoType 18, 24
	VmProduct 24
	VmQuestion 21, 22, 82
	VmQuestion.Choices 17
	VmServerCtl 14, 16, 82
	VmServerCtl.Connect() 15, 16, 20
	VmServerCtl.RegisteredVmNames 17
	VMware Tools 18, 19, 25–27, 50, 51, 55–57, 92
	VMware::VmPerl::ConnectParams 44, 45
	VMware::VmPerl::Question 44, 50, 52
	VMware::VmPerl::Server 44, 46
	VMware::VmPerl::VM 44, 47–51, 55
	vmware-cmd
	options 90
	server operations 90–91
	virtual machine operations 91–92

	vmware-control 90
	W
	waiting for user input 21, 22, 34–37, 44, 50, 52, 70–73, 85, 87–88, 92
	Web proxy 84
	Windows operating system
	installing Scripting APIs on 10

	Windows Script File 32, 34, 37, 41

	Index

