IBV - ECHTZEIT- UND EMBEDDED GMBH & CO. KG :

Realtime is BLUE

® lib-modbus

MODBUS/TCP Client- and Server-Library

Programmers Manual

IBV-MODBUS-0001

Issue 1.0

06.03.2008

Author Reviewed Released

- v . :I('ll _,._ﬂ'""'-'—”

Dominic Rath Liytz Vollbraght Lufz/Vollbracht

LIB-MODBUS - PROGRAMMERS MANUAL.DOC Seite 1 von 11

IBV - ECHTZEIT- UND EMBEDDED GMBH & CO. KG

)
Change Log
Issue Date Chapter | Description Author
1.0 06-Mar-2008 | All First Issue Dominic Rath

LIB-MODBUS - PROGRAMMERS MANUAL.DOC

Seite 2 von 11

IBV - ECHTZEIT- UND EMBEDDED GMBH & CO. KG ‘ ’

Table of Contents

1. About this DocUMENt ... ———————————— 4
I T Uy oY 1= PSP PPPPPPPPPNY 4
2 =Y 1 11 o] o T PSPPI 4
LR T o 01 o - TP ST PPPOUPUPPTUPRRP 4
T4, REFEIEINCES ...ttt et e e e ea b et e e e aab et e e e aab e e e e e aabe e e e s anbeeeeeas 4

7 15 1=3 =1 =11 oo 5
Nt IR o (=TT] g e 11T o 1= O PO P PR P PP RPT 5
2.2, InStallation PrOCEAUIE.........oeiiiiiieee ettt e e e e e e e e s e e s e e e e 5

BT I o1 =T 2 0 T T7 o g o o T o 6
O R (o= Lo L= g 1= PSP PPP 6
3.2, Library INitialiZation ... ———— 6
3.3 SEIVEI INTEITACE ... ettt ettt et rb et e b 7

3.3.1. BacCKend INTEITACEoiiieiiiiiii et 7

3.4, ClIENt INTEITACE ..o ettt ettt se e e bt e s e e s r e e s e e e ne e e 9

3.4.1. Bit ACCESS FUNCHIONS.....cciiiiiii et 10

3.4.2. Register ACCESS FUNCLONScccoeiiiiie e 10
3.4.3. Miscellaneous FUNCHONS.......... .. it e e e e e e e e e e e e e e 11
°

LIB-MODBUS - PROGRAMMERS MANUAL.DOC Seite 3 von 11

IBV - ECHTZEIT- UND EMBEDDED GMBH & CO. KG J

1. About this Document

1.1. Purpose

This document functions as manual for the software module
"lib-modbus" - Release 1.0.

The intended readership is:

¢ Project Manager for review and release

+ Software Engineer as input for the implementation and maintenance phase

¢ Software Engineer as input for the design and implementation of other modules
¢ Technical personnel as Installation Manual

¢ End User as User’s Manual
This document is compliant with the IBV documentation standards.

Familiarity with the C programming language, the QNX Momentics development environment, and the
MODBUS protocol and data model is assumed.

1.2. Terminology
MODBUS

Modbus is a communications protocol existing in multiple variants for communication over serial lines
(MODBUS/ASCII and MODBUS/RTU) and over TCP/IP networks (MODBUS/TCP).

1.3. Acronyms

IBV IBV - Echtzeit- und Embedded GmbH & Co. KG
TCP Transmission Control Protocol
RTU Remote Terminal Unit

1.4. References

[MBAP] MODBUS APPLICATION PROTOCOL SPECIFICATION V1.1b
[MBTCPIP] MODBUS MESSAGING ON TCP/IP IMPLEMENTATION GUIDE V1.0b
[MBSER] MODBUS over Serial Line Specification and Implementation Guide V1.02

[
LIB-MODBUS - PROGRAMMERS MANUAL.DOC Seite 4 von 11

IBV - ECHTZEIT- UND EMBEDDED GMBH & CO. KG J

2. Installation
The software is released for
¢ Operating System QNX 6.3.0 with Service Pack 3

2.1. Preconditions
¢ QNX 6 running on the target platform.

¢ Ethernet link to the target platform.

2.2. Installation Procedure

Copy the file "1iblib-modbus. so" to the desired target directory (usually "/11ib"), renaming it to
"liblib-modbus.so.1".

The header files from the "common /" subdirectory have to be made available to the user application, either
by copying them to a system wide location or by adding the directory to the include paths searched by the
compiler.

The library files "1iblib-modbus.so" and "liblib-modbus g.so" (debug variant) from the
"binaries/" subdirectory have to made available to the user application, either by copying them to a
system wide location or by adding the directory to the library paths searched by the linker.

[
LIB-MODBUS - PROGRAMMERS MANUAL.DOC Seite 5 von 11

IBV - ECHTZEIT- UND EMBEDDED GMBH & CO. KG ® J

3. Library Description

3.1. Header Files
The following headers have to be included by a user application:

¢ modbus-common.h Defines and declarations used by client and server
¢ modbus-client.h Application interface to client functionality
¢ modbus-server.h Application interface to server functionality

All necessary header files can be found in the "source/common /" subdirectory. A user application may
decide to include only one of "modbus-client.h" and "modbus-server.h", if client and server
functionality isn’t required at the same time.

3.2. Library Initialization

Prior to calling any other library function, the libraries initialization function should be called:

int modbus_init () ;

The function takes no arguments and returns MODBUS ERR_OK 0N success.

[
LIB-MODBUS - PROGRAMMERS MANUAL.DOC Seite 6 von 11

IBV - ECHTZEIT- UND EMBEDDED GMBH & CO. KG

3.3. Server Interface

The server interface consists of two functions:

struct server *modbus start server (int type, void *server params,
_backend interface *backend);

int modbus stop_ server (struct _ server *server);

To start a server, the user application has to call modbus_start server (), specifying the connection type
(only MODBUS CONNECTION TCP is implemented), a set of parameters specific to the connection type, and
the backend interface used by the library to retrieve data for client requests.

The parameter set for TCP connections is a pointer to a structure of type modbus tcp params as
declared in modbus-common . h. It consists of a pointer to a C-String specifying the IP address the server
should bind itself to, and a short integer specifying the TCP port the connection should listen at. The IP
address pointer may be NULL, in which case the server will listen on all addresses assigned to the system.

typedef struct modbus_ tcp params
{

char *ip;

short port;
} _tcp params;

The modbus start server () function returns a pointer to the newly created server on success, or NULL
in case of an error.

3.3.1. Backend Interface

The backend interface is declared in modbus-server.h. The callback functions supplied in the
_backend interface structure have to be implemented by the user application. They will be called by the
server to retrieve data for client requests.

typedef struct _ backend interface
{
int (*read coils) (uintl6_t start ref, uint8 t *bit array,
uintlé_t ref count);
int (*write coils) (uintl6_t start ref, uint8 t *bit array,
uintlé_t ref count);
int (*read input discretes) (uintl6 t start ref, uint8 t *bit array,
uintl6 t ref count);

int (*read input registers) (uintl6_t start ref, uintl6 t *reg array,
uintlé_t ref count);

int (*read holding registers) (uintl6é t start ref, uintl6 t *reg array,
uintlé_t ref count);
int (*write holding registers) (uintl6_t start ref, uintl6 t *reg array,

uintlé_t ref count);
int (*read exception status) (uint8 t *exception status);

[
LIB-MODBUS - PROGRAMMERS MANUAL.DOC Seite 7 von 11

IBV - ECHTZEIT- UND EMBEDDED GMBH & CO. KG J

int (*process pdu) (uint8 t *request, uint8 t request length,
uint8 t **reply, wuint8 t *reply length);

int (*lock) ();
int (*unlock) ();
} backend interface;

The backend interface functions closely follow the MODBUS data model according to [MBAP]. References
and reference counts are expressed as integer numbers between 0 and 65535 (zero based).

Functions accessing coils or input discretes use arrays of uint8 t where each array element corresponds
to one coil or input discrete.

Functions operating on input or holdings registers use arrays of uint16_ t, where each array element
corresponds to one input or holding register.

Functions for reading data (read coils (), read input discretes() and

read input registers ()) are supposed to fill the array elements with the appropriate application
specific values. The first array element (index [0]) corresponds to the reference supplied as start ref.
The last array element (index [ref count]) corresponds to reference start ref + ref count - 1.

Functions for writing data (write coils (), write input discretes and
write input registers)are supposed to use the values from the array elements to write application
specific data.

The user application should return MODBUS ERR ILLEGAL DATA ADDRESS if addresses outside of the
application specific data model are requested. If no errors occurred while processing the backend callback
function, MODBUS_ERR_OK has to be returned to cause 1ib-modbus to send a positive reply.

When read exception status () gets called, the current status of the exception register (8 bit) should
be returned to the MODBUS server library using the uint8 t *exception status pointer.

The function process_pdu () will be called for all MODBUS function codes not handled by the server
library. This allows the user application to handle additional application-specific function codes. In case the
application doesn’t want to handle a certain function code it should return

MODBUS ERR ILLEGAL FUNCTION.

The request and request length arguments hold the MODBUS PDU as received by the server, while
reply and reply length are pointers to the location where the user application should store any results
produced. The memory for the reply buffer has to be allocated by the user application. It will be freed by the
server library once the reply has been sent. The length of the reply buffer has to be returned using the
reply length pointer.

The lock () and unlock () functions are called to ensure data consistency for the Read/Write Multiple
Registers and Mask Write Register function codes. It is up to the user application to ensure that the data is
held consistent between a 1ock () and a subsequent unlock () call.

In order to stop a previously started MODBUS server, the user application has to call the
modbus_stop_server () function using the server pointer returned by the modbus_start server ()
function as an argument. The pointer will be invalid once the modbus_stop server () function returned.

[
LIB-MODBUS - PROGRAMMERS MANUAL.DOC Seite 8 von 11

IBV - ECHTZEIT- UND EMBEDDED GMBH & CO. KG J

3.4. Client Interface

Two functions exist that allow the user application to open and close connections to clients. In case of a
MODBUS/TCP connection, an individual connection has to be opened for every client that should be
accessed. If MODBUS/RTU support was to be implemented, a single connection could be used to access
multiple clients.

struct _ client connection *modbus open(int type, void *connection params,
int timeout);

int modbus close(struct _ client connection *connection);

The parameters required by the modbus open () function are the same as those required by the
modbus_start_ server () function, see 3.3 “Server Interface” for more information. The additional
timeout argument specifies the timeout for client requests in milliseconds. The function will return a poiner
to the newly created client connection on success, or NULL in case an error occurred. The returned pointer
has to be used in all subsequent calls as a handle to identify the particular connection.

A connection should be closed using the modbus_close () function if the client connection isn’t required
anymore. The connection pointer is invalid once the modbus_close () function returned, and must not be
used in subsequent calls to client request functions.

All functions for sending MODBUS requests to a MODBUS server take a pointer to the connection and a
slave ID as an argument. For MODBUS/TCP requests, the slave parameter is ignored, and the
corresponding field in the request is filled with 0xFF.

Possible return values from client request functions are

¢ MODBUS ERR OK

¢ MODBUS ERR CONNECTION CLOSED

¢ MODBUS ERR COMMUNICATION FAILURE
¢ One of the MODBUS protocol error codes

In case of a connection or communication error the corresponding client connection should be closed and
reopened. No automatic retransmission is performed.

[
LIB-MODBUS - PROGRAMMERS MANUAL.DOC Seite 9 von 11

IBV - ECHTZEIT- UND EMBEDDED GMBH & CO. KG

3.4.1. Bit Access Functions

The following functions may be called by the user application to send MODBUS requests accessing bit
quantities:

int modbus read coils(struct _ client connection *connection, uint8 t
slave, uintl6é_t start ref, uint8 t *bit array, uintlé t ref count);

int modbus_ read input discretes(struct client connection *connection,
uint8 t slave, uintl6_t start ref, uint8 t *bit array, uintlé6 t
ref count);

int modbus write coil(struct _ client connection *connection, uint8 t
slave, uintl6 t bit ref, uint8 t bit value);

int modbus write multiple coils(struct _ client connection *connection,
uint8 t slave, uintl6é_t start ref, uint8 t *bit array, uintlé6 t
ref count);

Arrays of uint8 t are used to transfer data from the user application to the MODBUS library. Each coil or
input discrete corresponds to one array element, with index 0 referencing the item specified by the

start ref parameter. The modbus write coil () function operates on a single coil, whose value is
supplied as a single uint8 t argument.

3.4.2. Register Access Functions

The following functions may be called by the user application to send MODBUS requests accessing
registers:

int modbus read multiple registers(struct _ client connection *connection,
int8 t slave, uintl6_t start ref, uintl6_t *reg array, uintlé t
ref count);

int modbus_ read input registers(struct client connection *connection,
uint8 t slave, uintlé_t start ref, uintl6 t *reg array, uintlé t
ref count);

int modbus write single register(struct _ client connection*, uint8 t
slave, uintl6 t reg ref, uintl6 t reg value);

int modbus write multiple registers(struct _ client connection
*connection, uint8 t slave, uintl6é t start ref, uintl6 t *reg array,
uintlé t ref count);

int modbus mask write register(struct _ client connection *connection,
uint8 t slave, uintl6é_t reg ref, uintl6_t and mask, uintl6_t or mask);

LIB-MODBUS - PROGRAMMERS MANUAL.DOC Seite 10 von 11

IBV - ECHTZEIT- UND EMBEDDED GMBH & CO. KG

int modbus read write registers(struct client connection *connection,
uint8 t slave, uintl6é t read ref, uintl6 t *read array, uintlé t

read count, uintl6é t write ref, uintl6 t *write array, uintlé6 t

write count);

Arrays of uint16 t are used to transfer data from the user application to the MODBUS library. Each input
register or holding register corresponds to one array element, with index 0 referencing the item specified by
the start ref parameter.

The modbus_write single register () function operates on a single holding register, whose value is
supplied as a single uint16 t argument.

The modbus _mask write register () function operates on a single holding register, too, but takes an
and mask and an or mask as specified by the MODBUS standard.

The modbus read write registers () function uses two arrays, one to hold the values that should be
written, and one holding the values read from the server. Two different count parameters exist to allow
reading and writing arbitrary numbers of registers.

3.4.3. Miscellaneous Functions

int modbus read exception status(struct _ client connection *connection,
uint8 t slave, uint8 t *status);

The modbus_read exception status () function allows a client to read a servers exception status
register. The exception register value is returned using the uint8 t Pointer status.

int modbus_ send pdu(struct _ client connection *connection, uint8 t slave,
uint8 t *request, uint8 t request length, uint8 t **reply, uint8 t
*reply length);

The modbus_read exception status () function provides direct access to the MODBUS PDU interface
implemented by lib-modbus. The request is transmitted as is, and any data received is returned using the
reply and reply length pointers. The buffer space for the reply is allocated by the library, and has to be
freed by the user application once the reply has been processed. In case of an error (either communication
or protocol error), no reply is returned, and the pointers are set to NULL.

[
LIB-MODBUS - PROGRAMMERS MANUAL.DOC Seite 11 von 11

