
RTI Real-Time Connect

User’s Manual

Version 5.1.0

© 2006-2013 Real-Time Innovations, Inc.
All rights reserved.

Printed in U.S.A. First printing.
Decemer 2013.

Trademarks
Real-Time Innovations, RTI, and Connext are trademarks or registered trademarks of Real-Time
Innovations, Inc. All other trademarks used in this document are the property of their respective owners.

Third Party Copyright Notices
The Oracle® TimesTen® In-Memory Database and the Oracle® Database are products of Oracle.

Copy and Use Restrictions
No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
(including electronic, mechanical, photocopy, and facsimile) without the prior written permission of Real-
Time Innovations, Inc. All software and documentation (whether in hard copy or electronic form) enclosed
are subject to the license agreement. The software and documentation may be used or copied only under
the terms of the license agreement.

The programs in this book have been included for their instructional value. RTI does not offer any
warranties or representations in respect of their fitness for a particular purpose, nor does RTI accept any
liability for any loss or damage arising from their use.

Technical Support
Real-Time Innovations, Inc.
232 E. Java Drive
Sunnyvale, CA 94089
Phone: (408) 990-7444
Email: support@rti.com
Website: https://support.rti.com/

https://support.rti.com/

iii

Available Documentation

The following documentation is available for RTI® Real-Time Connect:

❏ The Release Notes, RTI_RTC_ReleaseNotes.pdf. This document provides an overview of the cur-
rent release’s features and lists changes since the previous release, system requirements, supported
architectures, and compatibility with other products.

❏ The Getting Started Guide, RTI_RTC_GettingStarted.pdf. This document provides installation
instructions, a short ‘Hello World’ tutorial, and troubleshooting tips.

❏ The User’s Manual, RTI_RTC_UsersManual.pdf. This document starts with an overview of RTI
Real-Time Connect’s basic concepts, terminology, and unique features. It then describes how to
develop and implement applications that use RTI Real-Time Connect.

Additional Resources:

❏ The ODBC API Reference from Microsoft is available from http://msdn.microsoft.com/en-us/
library/ms714562(VS.85).aspx.

❏ The documentation for the Oracle TimesTen In-Memory Database can be found in the doc/ direc-
tory of the Oracle TimesTen installation.

❏ The documentation for Oracle databases can be found here:
http://www.oracle.com/technology/documentation/index.html.

❏ The documentation for MySQL databases can be found here:
http://dev.mysql.com/doc/refman/5.1/en/index.html.

http://msdn.microsoft.com/en-us/library/ms714562(VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms714562(VS.85).aspx
http://www.oracle.com/technology/documentation/index.html
http://dev.mysql.com/doc/refman/5.0/en/index.html

Contents

1 Welcome to RTI Real-Time Connect
1.1 Intended Readers.. 1-1
1.2 Background Reading.. 1-1

2 Introduction
2.1 The Edge to Enterprise Integration Solution .. 2-1
2.2 Real-Time Connect’s Unique Features .. 2-2

2.2.1 Interconnecting Standards.. 2-3
2.2.2 Connectivity To Edge Devices ... 2-3
2.2.3 Flexibility and Scalability ... 2-4
2.2.4 Matching Real-Time Performance... 2-4
2.2.5 High Availability ... 2-4
2.2.6 Additional Benefits of Real-Time Connect... 2-4

3 Architecture
3.1 Real-Time Connect Architecture .. 3-1

3.1.1 Real-Time Connect Daemon .. 3-1
3.1.2 Real-Time Connect’s Unique Features.. 3-2

3.2 Capturing Real-Time Data in a DBMS... 3-3
3.3 Remote Real-Time Notification of Table Changes ... 3-4
3.4 Bidirectional Integration.. 3-4
3.5 Bridging between Domains... 3-4
3.6 High-Rate Data Streams Cached before Storage.. 3-6
3.7 Real-Time Database Replication... 3-6

4 Using Real-Time Connect
4.1 Introduction to the Real-Time Connect Daemon ... 4-1

4.1.1 How to Run the Real-Time Connect Daemon with Oracle ... 4-2
4.1.2 How to Run the Real-Time Connect Daemon with MySQL ... 4-4
4.1.3 How to Run the Real-Time Connect Daemons as Windows Services 4-5
4.1.4 Typecodes ... 4-6

4.2 Command-Line Parameters .. 4-6
4.3 Environment Variables... 4-10
4.4 Configuration File... 4-10

4.4.1 How to Load the XML Configuration .. 4-10
4.4.2 XML Syntax and Validation ..4-11
4.4.3 Top-Level XML Tags ... 4-12
4.4.4 Database Configuration Using the Real-Time Connect XML Tag................................ 4-14

4.5 Meta-Tables.. 4-25
4.5.1 Publications Table.. 4-25
4.5.2 Subscriptions Table.. 4-36
4.5.3 Table Info... 4-52
4.5.4 Log Table... 4-53
iv

4.6 User-Table Creation.. 4-55
4.7 Support for Extensible Types .. 4-57
4.8 Enabling RTI Distributed Logger in Real-Time Connect .. 4-58
4.9 Enabling RTI Monitoring Library in Real-Time Connect ... 4-59

5 IDL/SQL Semantic and Data Mapping
5.1 Semantic Mapping.. 5-1
5.2 Data Representation Mapping.. 5-3

5.2.1 IDL to SQL Mapping... 5-3
5.2.2 Primitive Types Mapping... 5-6
5.2.3 Oracle In-Memory Database Cache Mapping... 5-8
5.2.4 Bit Field Mapping .. 5-9
5.2.5 Enum Types Mapping... 5-10
5.2.6 Simple IDL Structures ... 5-10
5.2.7 Complex IDL Structures ... 5-10
5.2.8 Array Fields .. 5-12
5.2.9 Sequence Fields.. 5-12
5.2.10 NULL Values .. 5-13
5.2.11 Sparse Data Types.. 5-13

A Error Codes
B Database Limits

B.1 Maximum Columns for Oracle 11g..B-1
B.2 Maximum Columns for MySQL...B-2
v

Chapter 1 Welcome to RTI Real-Time Connect

Welcome to RTI® Real-Time Connect—a high-performance solution for integrating applications
and data across real-time and enterprise systems from RTI.

Real-Time Connect is the integration of two complementary technologies: data-centric publish-
subscribe middleware and relational database management systems (RDBMS). This powerful
integration allows your applications to uniformly access data from real-time/embedded and
enterprise data sources via RTI Connext™ (formerly RTI Data Distribution Service), or via data-
base interfaces. Since both these technologies are data-centric and complementary, they can be
combined to enable a new class of applications. In particular, Connext can be used to produce a
truly decentralized, distributed RDBMS, while RDBMS technology can be used to provide per-
sistence for real-time data.

1.1 Intended Readers
This document presents the general concepts behind Real-Time Connect’s architecture and pro-
vides basic information on how to develop applications using Real-Time Connect.

The chapters assume general knowledge of relational databases and SQL, familiarity with the
ODBC API, IDL and the Connext API, and a working knowledge of the C/C++ programming
languages.

1.2 Background Reading
For information on distributed systems and databases:

❏ George Coulouris, Jean Dollimore, Tim Kindberg. Distributed Systems: Concepts and
Design (3rd edition). Addison-Wesley, 2000

❏ M. Tamer Ozsu, Patrick Valduriez. Principles of Distributed Database Systems (2nd Edition).
Prentice Hall, 1999

❏ Andrew S. Tanenbaum, Maarten van Steen. Distributed Systems: Principles and Paradigms
(1st edition). Prentice Hall, 2002

For information on real-time systems:

❏ Qing Li, Caroline Yao. Real-Time Concepts for Embedded Systems. CMP Books, 2003
1-1

Background Reading
❏ Doug Abbott. Linux for Embedded and Real-Time Applications. Butterworth-Heinemann,
2002

❏ David E. Simon. An Embedded Software Primer. Addison-Wesley, 1999

For information on SQL:

❏ Joe Celko. Joe Celko’s SQL for Smarties: Advanced SQL Programming (expanded 2nd Edition).
Morgan Kaufmann, 1999

❏ Rick van der Lans. Introduction to SQL: Mastering the Relational Database Language (3rd edi-
tion). Addison-Wesley, 1999

For information on ODBC:

❏ Microsoft Corporation. Microsoft ODBC 2.0 Software Development Kit and Programmer’s
Reference. Microsoft Press, 1997

For information on the C programming language:

❏ Brian W. Kernighan, Dennis M. Ritchie. The C programming Language (2nd edition). Pren-
tice Hall Software Series, 1988
1-2

Chapter 2 Introduction

This chapter presents a conceptual view of Real-Time Connect’s architecture and highlights its
unique features. It includes the following sections:

❏ The Edge to Enterprise Integration Solution (Section 2.1)

❏ Real-Time Connect’s Unique Features (Section 2.2)

2.1 The Edge to Enterprise Integration Solution
Real-Time Connect is a solution for integrating existing applications, including service-oriented
architectures (SOAs), with high performance real-time applications, data, and edge devices.
Real-Time Connect provides a run-time bridge between RTI's high-throughput, embeddable mes-
saging infrastructure, Connext, and integration and data management standards such as SQL,
XML, Web services and JMS. This allows developers to benefit from the performance, scalability,
Quality of Service (QoS) control and broad platform support provided by RTI's messaging tech-
nology while retaining interoperability with existing enterprise applications, see Figure 2.1.

Figure 2.1 Real-Time Connect Bridges Embedded and Enterprise Applications

Oracle TimesTen
In-Memory
Database

RTI Real-Time Connect
Daemon

Connext ODBC
SQL

Connext
Application

Connext
Application

Connext
Application

Oracle 10g
Database

High performance Permanent storage

Cache
Connect to

Oracle

BPEL Process
Manager

Web Server JMS Application SQL Application

WSDL, XML SOAs
2-1

Real-Time Connect’s Unique Features
Real-Time Connect is a fully standards-based solution for the integration of enterprise applica-
tions and high performance real-time applications. Enterprise applications typically use Struc-
tured Query Language (SQL) and Extensible Markup Language (XML) for data access and Java
Message Service (JMS), Service-Oriented Architectures (SOAs), and Web services for integration.

The most commonly adopted standard in high performance real-time systems, for both integra-
tion and data access, is Object Management Group's (OMG) Data Distribution Service for Real-
Time Systems (DDS). Real-Time Connect enables interoperability by bridging between enterprise
and embedded standards at the data and communications levels, allowing existing applications
to be integrated with few or no changes.

Real-Time Connect also mitigates the performance mismatch between enterprise and embedded
applications. Real-time applications using Connext can deliver messages and data at rates
between 10 and 100 times faster than can be accepted by enterprise applications. Real-Time Con-
nect decouples applications at the data level, preventing high throughput real-time messages
and data from overwhelming applications managing business processes by buffering and stor-
ing all data in an in-memory DBMS, the Oracle TimesTen In-Memory database which is bundled
with Real-Time Connect.

Oracle TimesTen is a memory-optimized database delivering exceptionally high performance,
enabling it to easily support the high data throughput of real-time and embedded applications.
Using the Oracle TimesTen Cache Connect to Oracle, the data and messages buffered by the in-
memory database can be synchronized and stored in a disk-based Oracle database for access by
enterprise applications directly or through enterprise-level integration options such as a BPEL
(Business Process Execution Language) process manager.

Multiple copies of Real-Time Connect can also run in parallel on separate systems. Different
instances can be responsible for a discrete set of messages and data, maximizing throughput and
providing load balancing. Or each instance can bridge the same messages and data providing
high availability and fault tolerance.

2.2 Real-Time Connect’s Unique Features
In this section, a few of the unique qualities and features of Real-Time Connect are discussed in
greater detail. Figure 2.2 shows an example system where Real-Time Connect serves as the central
integration technology to interconnect the real-time, embedded world with the analysis and
high-level decision-making processes of the enterprise world.

In Figure 2.2, sensors of physical processes produce data that must be filtered, fused, and stored
for use in business processes. In addition, multiple user consoles must have concurrent access to
both raw and fused data. Real-Time Connect is used to store the raw data at high rates into an
Oracle TimesTen In-Memory database where Oracle Cache Connect is then used to propagate
the data into an Oracle 11g database for permanent storage. Enterprise applications used for
analysis or applying other business logic can access the data stored in Oracle using SQL or other
standards such as JMS, XML, and HTTP via a BPEL process manager.

Real-Time Connect is the bridge that connects real-time/high performance to complex analysis,
edge devices to business systems, and embedded to enterprise.
2-2

Real-Time Connect’s Unique Features
2.2.1 Interconnecting Standards

Until recently, distributed real-time systems were built using custom-developed data structures
and algorithms to store and manipulate data in combination with a commercial, or even propri-
etary, data-distribution middleware layer. This was necessary to meet real-time performance
requirements. However, in recent years, DDS, a standard for data distribution, has emerged as
the premier method to integrate and build distributed real-time systems.

For decades in enterprise systems, standards for communications, data representation and data
storage has enabled the tremendous growth of software applications for business processes
worldwide. The standards such as SQL, ODBC, JMS, HTML, XML, and WDSL have greatly
increased the interoperability of those business systems.

Real-Time Connect is the first commercial product that interconnects the DDS standard newly
established in the embedded world to the common standards of the enterprise world. With Real-
Time Connect, enterprise applications have direct access to real-time data, and real-time applica-
tions have access to the plethora of processes and logic that has been developed to configure and
direct actions based on business decisions.

2.2.2 Connectivity To Edge Devices

For edge devices, such as sensors and hand-helds, Real-Time Connect integrates Connext
applications with databases. Applications can publish data into relational databases and
subscribe to changes in relational databases using the standard Connext application
programming interface. Integration between Connext and relational database applications is

Figure 2.2 Example System Using Real-Time Connect

Sensor 1 Sensor 2

Data Fusion

Sensor 1
tracks

Sensor 2
tracks

System
tracks

Console 1 Console 2

Oracle
Database

Connext App

RTI Real-Time Connect
daemon

RDBMS App

Oracle TimesTen
In-Memory database

Business System 1

Oracle BPEL Process
Manager

Business System 2

foo
bar
bird
fish

124
345
378
675

Y
N
Y
N

345
109
562
298

t
t
f
f

Summary and
Statistics
2-3

Real-Time Connect’s Unique Features
supported by an IDL-to-SQL mapping that allows both types of applications to access a uniform
data model.

2.2.3 Flexibility and Scalability

By leveraging Connext Quality-of-Service (QoS) settings, Real-Time Connect supports an
unprecedented variety of deployment configurations to accommodate a wide range of
scenarios, from reliable point-to-point delivery to best-effort multicasting that enables real-time
transaction streaming to large numbers of subscribers. By setting QoS policies, system
throughput, response time, reliability, footprint, and network bandwidth consumption can be
tuned to meet application requirements. Previously, a system was hard-coded with parameters
set for a specific operation profile during integration. In contrast, Real-Time Connect provides
run-time configurable policy settings, which greatly enhances system deployment flexibility.

2.2.4 Matching Real-Time Performance

Real-Time Connect integration with the Oracle TimesTen In-Memory Database allows the user to
capture data into standard relational databases at rates far exceeding most application require-
ments. Data in Oracle TimesTen can be synchronized in the background to a permanent Oracle
database using the TimesTen option Cache Connect to Oracle.

Thus the in-memory database can act as a fast data cache in front of terabytes of data storage
and tremendous analysis capability of a disk-based database. Real-Time Connect solves the
“impedance mismatch” between real-time and enterprise applications.

2.2.5 High Availability

Availability is an essential requirement for most distributed real-time applications. Systems built
in the Defense and Aerospace industries are typically safety critical and are required to operate
in crisis situations. In telecommunications, a minute of system downtime may mean many mil-
lions of dollars in lost revenue. With Real-Time Connect, automatic data caching and replication
can serve as the foundation technology for high-availability. Applications can use Real-Time Con-
nect to maintain copies of SQL database tables on two or more hosts in the network. In the event
of a host failure, copies of the tables are available from other hosts to continue operation.

Real-Time Connect’s automated replication management and no-single-point-of-failure guaran-
tees the availability of critical information. With Real-Time Connect, tables can be stored on multi-
ple hosts, allowing applications and services to concurrently read and write in multiple tables.
Conflict resolution can be based on application-defined timestamps.

2.2.6 Additional Benefits of Real-Time Connect
❏ Achieve quick time-to-market

• Start application development immediately using well-known interfaces.

• Minimize time-consuming custom programming.

• Easily integrate into existing solutions using industry- standard interfaces.

❏ Reduce development costs

• Use widely available modeling and database tools.

• Eliminate expensive complex coding for real-time data management and commu-
nication.

• Integrate edge devices, distributed real-time data management, and enterprise
databases using a single set of standard Application Programming Interfaces.
2-4

Real-Time Connect’s Unique Features
❏ Deliver cutting-edge solutions
• Process massive amounts of information across networks in real-time.

• Turn near-instantaneous responses to (remote) critical events into a business
advantage.

• Seamlessly integrate networked applications, services, and devices.

❏ Minimize operational costs

• Maintain complex networked applications with near-zero administration.

• Dynamically add or change system components.

• Run on common hardware platforms and networks.

❏ Reduce risks
• Guarantee continuous system availability through dynamic replication manage-

ment.

• Rely on continuous high-quality technical support.

• Build on years of experience in the world’s most demanding real-time application
domains.

Figure 2.3 High Availability with Real-Time Connect

Oracle TimesTen
In-Memory
Database

RTI Real-Time Connect
Daemon

Connext ODBC
SQL

Connext
Application

Connext
Application

Connext
Application

Oracle 10g
Database

High performance Permanent storage

Cache
Connect to

Oracle

BPEL Process
Manager

Web Server JMS Application SQL Application

WSDL, XML SOAs
2-5

Chapter 3 Architecture

This chapter presents a more detailed view of RTI Real-Time Connect’s architecture and high-
lights the different ways that RTI Real-Time Connect can be used to integrate systems. It includes
the following sections:

❏ Real-Time Connect Architecture (Section 3.1)

❏ Capturing Real-Time Data in a DBMS (Section 3.2)

❏ Remote Real-Time Notification of Table Changes (Section 3.3)

❏ Bidirectional Integration (Section 3.4)

❏ Bridging between Domains (Section 3.5)

❏ High-Rate Data Streams Cached before Storage (Section 3.6)

❏ Real-Time Database Replication (Section 3.7)

3.1 Real-Time Connect Architecture
The Real-Time Connect architecture is designed to integrate existing systems that use the Connext
API or relational databases with minimal modification to working applications. In many situa-
tions, existing applications do not have to change at all.

As seen in Figure 3.1, Real-Time Connect consists of a daemon that acts like bridge between two
software development domains. One uses the OMG Data Distribution Service API to publish
and subscribe to data that may be generated at high rates with real-time constraints. The other
applies algorithms and logic representing business processes to megabytes, gigabytes or tera-
bytes of data stored in relational databases.

3.1.1 Real-Time Connect Daemon

The Real-Time Connect Daemon oversees the incoming (subscribed) data and outgoing (pub-
lished) data. It enables automatic storage of data published by Connext applications in a data-
base by mapping a Topic to a table in the database and storing an instance of a Topic as a row in
that table. Also, the daemon can automatically publish changes in a database table as a Topic.
3-1

Real-Time Connect Architecture
Users have total control of the Quality of Service that the daemon uses for publishing and sub-
scribing to Connext data.

The Real-Time Connect Daemon uses the Connext API, as well as SQL through the ODBC API. In
addition, there is a custom interface for each supported database management system (DBMS).
The three currently supported DBMSs are Oracle 11g, Oracle TimesTen In-Memory Database
11.2.1, and MySQL 5.1. There is a separate daemon executable for each of the specific DBMSs.

As illustrated in Figure 3.1, Oracle TimesTen In-Memory Database and Oracle Database 11g can
be used in combination. In this case, TimesTen acts as a front-end cache to Oracle Database, pro-
viding high-performance access to real-time data.

3.1.2 Real-Time Connect’s Unique Features

Real-Time Connect offers a unique set of features that enable seamless integration of real-time/
embedded Connext applications and enterprise services:

❏ Storage of Connext Data in a DBMS

Real-Time Connect automatically stores received values of specified Topics in a database.
Once the data is propagated to the database, it can be accessed by a user application via
regular SQL queries.

❏ Publication of DBMS Data via Connext

Real-Time Connect automatically publishes changes in specified database tables. Changes
made via the SQL API (with the INSERT, UPDATE and DELETE statements) will be pub-
lished into the network via Connext, so real-time/embedded applications and devices
can respond to time-critical changes with near-zero latency.

❏ Mapping Between IDL to SQL Data Types

Real-Time Connect provides automatic mapping between an IDL data type representation
and a SQL table schema representation. This mapping is used to directly translate a table
record to a Connext data structure and vice-versa. Previously, this translation had to be
done by custom-developed code.

Figure 3.1 Real-Time Connect Architecture

Oracle TimesTen
In-Memory
Database

RTI Real-Time Connect
Daemon

DDS ODBC
SQL

Connext
Application

Connext
Application

Connext
Application

Oracle 10g
Database

High performance Permanent storage

Cache
Connect to

Oracle

BPEL Process
Manager

Web Server JMS Application SQL Application

WSDL, XML SOAs
3-2

Capturing Real-Time Data in a DBMS
❏ History

Real-Time Connect can store a history of received values of a data instance. Normally, an
instance of a topic is mapped to a single row in the associated database with the IDL key
used as the primary key for the table. But when Real-Time Connect’s data history feature is
enabled, multiple samples of a topic instance can be stored across multiple rows in the
same table of the database, supporting both real-time and off-line analysis based on his-
torical data.

❏ Configurable QoS

Real-Time Connect exposes many of the QoS attributes defined by the DDS standard. This
gives the user full control over the quality of service when capturing real-time data or
subscribing to changes in the database. Supported QoS attributes include reliability,
durability, multicasting, delivery ordering, and many others.

3.2 Capturing Real-Time Data in a DBMS
Figure 3.2 shows how Real-Time Connect can be used to capture real-time data streams generated
by embedded Connext applications into one or more tables in a [in-memory] DBMS. In this sce-
nario, the Real-Time Connect Daemon has been configured with user-customizable QoSs to sub-
scribe to Topics. When new values arrive, the daemon stores the data in the appropriate table in
the database. Mapping the Topic described by IDL to the equivalent SQL table schema is done
automatically by the daemon with no user configuration necessary.

Figure 3.2 Storing Published Connext Data in a SQL Database

Relational
Database

Table.Passengers
Flt Name Addrs

C129 A. Johnson …
C054 J. Smith ….
…
…

Table.Tracks
Flt Lat. Long.

C129 34.5 102.3
C054 27.7 46.8
…
…

RTI Real-Time Connect
Daemon

Connext App

Connext App

Connext App

Embedded Enterprise

write

SQL
UPDATE/INSERT

RDBMS AppRDBMS App

SQL SELECT

write

write
3-3

Remote Real-Time Notification of Table Changes
3.3 Remote Real-Time Notification of Table Changes
Figure 3.3 shows how Real-Time Connect can be used to notify remote Connext applications run-
ning in embedded devices of time-critical changes in the database. In this scenario, the Real-Time
Connect Daemon has been configured with user-customizable QoSs to publish Topics whenever
the specified table changes in the database. Mapping the SQL table schema to the equivalent
Topic described by IDL is done automatically by the daemon—no user configuration necessary.

3.4 Bidirectional Integration
Figure 3.4 shows a system that integrates the capabilities described in the last two sections. Real-
Time Connect provides bidirectional dataflow between embedded Connext applications and
enterprise database systems. This approach can typically be used to create a closed-loop system,
where sensory data is collected, processed, and analyzed in an in-memory database, and the
resulting analysis creates state changes that are fed back to remote sensors and devices to control
their behavior and mode of operation.

3.5 Bridging between Domains
Figure 3.5 shows how Real-Time Connect can be used as a bridge between two domains by con-
figuring the Real-Time Connect Daemon to subscribe to data in one domain and publishing the
same data in a different domain. Data sent by Connext applications in the first domain are stored
by the daemon in a local in-memory table. Since changes in the table are sent by the daemon into
a second domain, the data is ultimately received by Connext applications in the second domain.

Figure 3.3 Storing Published Connext Data in a SQL Database

Relational
Database

Table.Passengers
Flt Name Addrs

C129 A. Johnson …
C054 J. Smith ….
…
…

Table.Tracks
Flt Lat. Long.

C129 34.5 102.3
C054 27.7 46.8
…
…

RTI Real-Time Connect
Daemon

Connext App

Connext App

Connext App

Embedded Enterprise

SQL SELECT

RDBMS AppRDBMS App

SQL
UPDATE/INSERT

write
3-4

Bridging between Domains
There is no feedback cancellation needed since the data is being bridged across domains. Usu-
ally domain bridges have to be written by users and modified whenever data types or Topics
change. Using Real-Time Connect, no programming is required to create a high performance
bridge for any topic of any data type between any domains.

Figure 3.4 Storing Published Connext Data in a SQL Database

Connext

Relational
Database

Table.Passengers
Flt Name Addrs

C129 A. Johnson …
C054 J. Smith ….
…
…

Table.Tracks
Flt Lat. Long.

C129 34.5 102.3
C054 27.7 46.8
…
…

RTI Real-Time Connect
Daemon

Connext App

Connext App

Connext App

Embedded Enterprise

Connext

SQL

RDBMS AppRDBMS App

SQL

Connext

Figure 3.5 Storing Published Connext Data in a SQL Database

Domain 1 Domain 2

RTI Real-Time Connect
Daemon

Connext App

Connext App

Connext App

Relational
Database

Table.Passengers
Flt Name Addrs

C129 A. Johnson …
C054 J. Smith ….
…
…

Table.Tracks
Flt Lat. Long.

C129 34.5 102.3
C054 27.7 46.8
…
…

Embedded Embedded

write

write

write

Connext App

Connext App

Connext App
3-5

High-Rate Data Streams Cached before Storage
3.6 High-Rate Data Streams Cached before Storage
While disk-based persistent databases can store terabytes of data, the performance of such
DBMSs is usually too low to capture data of real-time applications streaming at ultra-high rates
of tens of thousands to over a million samples per second. Figure 3.6 shows how Real-Time Con-
nect can use the Oracle TimesTen In-Memory database as a front-end cache to the persistent Ora-
cle database, with Cache Connect to Oracle transferring table data from memory to disk in the
background.

This solution enables the archival of high throughput Connext data streams that would other-
wise be uncaptureable by standard database technologies.

3.7 Real-Time Database Replication
By running multiple Real-Time Connect daemons on different nodes connected to different data-
bases, and configuring all of the daemons to publish and subscribe to the same table, changes
made by applications to a table on one node can be automatically replicated to tables on all of
the other nodes. Figure 3.7 shows how Real-Time Connect can be used to perform lazy table repli-
cation between distributed databases.

With lazy replication, an update is sent to the subscribers after the transaction is committed into
the local database. The advantages of lazy replication are short response time and high concur-
rency, since locks in the data cache are immediately released after a transaction commits and
before it is sent on the network.

If you need remote table initialization and application timestamp-based conflict resolution, you
can enable this either by using the Real-Time Connect configuration properties or by setting indi-
vidual QoS values. This is described further in Configuration File (Section 4.4).

Figure 3.6 High-rate Data Streams are Cached Before Storing onto Disk

Oracle
TimesTen

Table.Passengers
Flt Name Addrs

C129 A. Johnson …
C054 J. Smith ….
…
…

Table.Tracks
Flt Lat. Long.

C129 34.5 102.3
C054 27.7 46.8
…
…

RTI Real-Time Connect
Daemon

Connext
App

High data rates
Permanent disk

storage

High-Performance
In-Memory Database

RDBMS App RDBMS App

Connext
App

Connext
App

Oracle
Database

TimesTen Cache
Connect to Oracle
3-6

Real-Time Database Replication
Even different DBMSs can be synchronized by the Real-Time Connect Daemon with table changes
in Oracle TimesTen In-Memory databases propagated to corresponding tables in Oracle 11g or
MySQL 5.1 databases, and vice versa.

Figure 3.7 Replicating Tables Across Databases

Enterprise Enterprise

Relational
Database

Table.Passengers
Flt Name Addrs

C129 A. Johnson …
C054 J. Smith ….
…
…

Table.Tracks
Flt Lat. Long.

C129 34.5 102.3
C054 27.7 46.8
…
…

RTI Real-Time Connect
Daemon

SQL

RDBMS AppRDBMS App

SQL

Relational
Database

Table.Passengers
Flt Name Addrs

C129 A. Johnson …
C054 J. Smith ….
…
…

Table.Tracks
Flt Lat. Long.

C129 34.5 102.3
C054 27.7 46.8
…
…

RTI Real-Time Connect
Daemon

SQL

Connext AppConnext App

SQL
3-7

Chapter 4 Using Real-Time Connect

This chapter provides detailed information on using the Real-Time Connect Daemon to subscribe
to and store data received as Topics into relational databases, as well as to publish as Topic
changes in relational database tables.

The contents of this chapter assume you have a working knowledge of Connext and relational
databases, especially the MySQL, Oracle and/or Oracle TimesTen In-Memory databases. The
chapter also assumes familiarity with IDL (Interface Definition Language), the DDS and SQL
specifications and APIs. Finally, you should be able to create and run applications using Connext
to publish and subscribe to data, as well as applications that can access Oracle databases using
SQL through either ODBC or JDBC interfaces.

Users can configure the Real-Time Connect Daemon to subscribe to Topics and store received val-
ues in a table, or to publish database changes as Topics using a combination of methods:

❏ Command-line parameters

❏ Environment variables

❏ Configuration file

❏ Configuration tables in the database

This chapter includes the following sections:

❏ Introduction to the Real-Time Connect Daemon (Section 4.1)

❏ Command-Line Parameters (Section 4.2)

❏ Environment Variables (Section 4.3)

❏ Configuration File (Section 4.4)

❏ Meta-Tables (Section 4.5)

❏ User-Table Creation (Section 4.6)
❏ Enabling RTI Monitoring Library in Real-Time Connect (Section 4.9)

4.1 Introduction to the Real-Time Connect Daemon
Real-Time Connect bridges the world of Connext and the world of relational databases. The main
element of the bridge is an executable that must run on the same host as the database manage-
ment system (DBMS). This executable is called the Real-Time Connect Daemon.

Real-Time Connect uses Connext and supports three databases: Oracle Database 11g, Oracle
TimesTen In-Memory Database 11.2.1, and MySQL 5.1. There is a separate executable that you
must run depending on which database you are using.
4-1

Introduction to the Real-Time Connect Daemon
❏ Oracle Database: rtirtc_oracle[.exe]

❏ Oracle TimesTen In-Memory Database: rtirtc_timesten[.exe]

❏ MySQL: rtirtc_mysql[.exe]

These executables can be executed as foreground processes during development or as back-
ground processes or as a service on Windows systems. You can configure the general behavior
of the Real-Time Connect Daemon by using command-line parameters, environment variables
and configuration files. Meta-tables in the database are used to configure the specific topics and
tables that are bridged by the daemon.

Besides using compatible versions of Connext and Oracle/Oracle TimesTen/MySQL databases
(see the Release Notes for a list of compatible versions), the Real-Time Connect Daemon expects
that typecodes for the IDL types used by Connext applications have been generated and are being
propagated. If typecodes for IDL types were not generated, you must create the tables (used by
the daemon for storing or publishing data) yourself or declare the types in the configuration
files.

4.1.1 How to Run the Real-Time Connect Daemon with Oracle

To run Real-Time Connect correctly with an Oracle database, you must complete the procedures
described in this section.

These procedures are not needed when using Real-Time Connect with the Oracle TimesTen In-
Memory database.

To work with an Oracle database, there is a shared library distributed with Real-Time Connect
that must be installed correctly on the host of the Oracle database server. Communication by the
Real-Time Connect Daemon with the Oracle server is accomplished through external procedures
executed by the server when triggers installed by the daemon are fired. These external proce-
dures are provided in the shared library (on UNIX-based systems) or DLL (on Windows sys-
tems) called [lib]rtirtc_oracleq[.so,.dll].

This library is distributed with Real-Time Connect and can be found in the lib/<platform>
directory of the installation directory. The correct version of the library to use depends on the
platform on which Oracle server is running. For example, <platform> can be

❏ x64Linux2.6cc4.1.1 for Red Hat Enterprise Linux 5 systems on 64-bit x86 processors

❏ i86Linux2.6cc4.1.1 for Red Hat Enterprise Linux 5 systems on 32-bit x86 processors

❏ i86Win32 for Windows systems on 32-bit x86 processors

Since the library, [lib]rtirtc_oracleq[.so,.dll], internally uses Connext, the corresponding shared
libraries, [lib]nddsc[.so,.dll] and [lib]nddscore[.so,.dll], distributed with Connext must also be
installed on the Oracle server host.

Notes:

❏ The exact platforms that are supported on Windows and Linux systems may be different
for Oracle versus Oracle TimesTen In-Memory databases. Please consult the Release Notes
for specific details of the supported platforms for your release of Real-Time Connect.

❏ Not only do the libraries have to be present on the Oracle server host, the Oracle server
must also be configured to find the libraries. There are separate procedures for the
librtirtc_oracleq and libnddsxxx libraries. These procedures are detailed below.
4-2

Introduction to the Real-Time Connect Daemon
4.1.1.1 Installing and Configuring the Oracle Server to Access (lib)rtirti_oracleq[.so,.dll]

There are two options for installing [lib]rtirti_oracleq[.so,.dll]:

1. Copy the appropriate version of the library into either $ORACLE_HOME/bin or
$ORACLE_HOME/lib on the server host. $ORACLE_HOME is the installation direc-
tory of the Oracle DBMS.

or

2. Copy the appropriate version of the library into any directory on the server host. It can
even be used directly from the Real-Time Connect installation directory if that directory
can be accessed by the Oracle server.

With the second option, the location of the [lib]rtirti_oracleq[.so,.dll] library must be
defined in the file extproc.ora (located at $ORACLE_HOME/hs/admin on UNIX operat-
ing systems and at ORACLE_HOME\hs\admin on Windows) or in the file listener.ora
(located at $ORACLE_HOME/network/admin) using the ENVS parameter.

Additional information on how to load external procedures can be found in the Oracle
manual by following this URL: http://download.oracle.com/docs/cd/E11882_01/app-
dev.112/e10471/adfns_externproc.htm

Important: With either option, if [lib]rtirti_oracleq[.so,.dll] is not located in
$ORACLE_HOME/bin, the rtirtc_oracle daemon executable must be started with the
additional command-line option “-queuelibpath <directory containing
[lib]rtirti_oracleq[.so.dll]>”— see Command-Line Parameters (Section 4.2).

4.1.1.2 Installing (lib)nddsc[.so,.dll) and (lib)nddscore(.so,.dll) on the Oracle Server

The shared library, [lib]rtirti_oracleq[.so,.dll], installed in the previous section will need access
to additional shared libraries provided by Connext.

The libraries [lib]nddsc[.so,.dll] and [lib]nddscore[.so,.dll] should be copied to the server host
from the appropriate lib/<platform> directory in the installation of Connext. Then follow the
procedure below to add these files to the library search path for the Oracle server.

UNIX-based Systems

The directory containing the Connext libraries should be added to the environment vari-
able LD_LIBRARY_PATH. This environment variable must be set in the environment of
the user who started the Oracle server.

A better method for setting this environment variable is in the extproc.ora file or with the
ENVS parameter in the file listener.ora.

Refer to the Oracle Net manual and this link for more information on the listener.ora file:
http://download.oracle.com/docs/cd/E11882_01/network.112/e10835/listener.htm.

Refer to this link for more information on extproc.ora: http://download.oracle.com/
docs/cd/E11882_01/appdev.112/e10471/adfns_externproc.htm.

Windows Systems

Using the dialog opened with Start, Settings, Control Panel, System, Advanced tab,
Environment Variables button, add the directory (with backslash ‘\’ and semicolon sep-
arators ‘;’) containing the Connext libraries to the System variable “Path”. You will need
to reboot the computer for this change to take effect.

A better method for setting this environment variable (it only requires restarting the Ora-
cle database service and the Oracle listener service) is using the extproc.ora file or the
ENVS parameter in the file listener.ora.
4-3

http://download.oracle.com/docs/cd/E11882_01/network.112/e10835/listener.htm
http://download.oracle.com/docs/cd/E11882_01/appdev.112/e10471/adfns_externproc.htm
http://download.oracle.com/docs/cd/E11882_01/appdev.112/e10471/adfns_externproc.htm

Introduction to the Real-Time Connect Daemon
Refer to the Oracle Net manual and this link for more information on the listener.ora file:
http://download.oracle.com/docs/cd/E11882_01/network.112/e10835/listener.htm.

Refer to this link for more information on extproc.ora: http://download.oracle.com/
docs/cd/E11882_01/appdev.112/e10471/adfns_externproc.htm.

4.1.2 How to Run the Real-Time Connect Daemon with MySQL

Before Real-Time Connect will run correctly with a MySQL database, the procedures described in
this section must be completed.

4.1.2.1 Installing MySQL ODBC 5.1.6 driver

The Real-Time Connect Daemon requires the installation of the MySQL ODBC 5.1.6 driver (or
higher). The driver is not bundled with the MySQL server and must be installed separately.

The ODBC connector can be downloaded from http://dev.mysql.com/downloads/connector/
odbc/5.1.html.

The installation guide can be found at http://dev.mysql.com/doc/refman/5.1/en/connector-
odbc-installation.html.

The MySQL ODBC driver requires an ODBC driver manager. In Windows, the ODBC driver
manager is automatically installed with the OS. For Linux systems we recommend the use of
UnixODBC 2.2.12 (or higher), a complete, free/open ODBC solution for Unix and Linux sys-
tems. The driver manager can be downloaded from http://www.unixodbc.org.

4.1.2.2 Installing and Configuring the MySQL Server to Access (lib)rtirti_mysqlq[.so,.dll]

To work with a MySQL database, there is a shared library distributed with Real-Time Connect
that must be installed correctly on the host of the MySQL database server. Communication by
the Real-Time Connect Daemon with the MySQL server is accomplished through user-defined
functions (UDF) executed by the MySQL server when triggers installed by the Real-Time Connect
Daemon are fired. These functions are provided in a shared library (on UNIX-based systems) or
DLL (on Windows systems) called [lib]rtirtc_mysqlq[.so,.dll].

This library is distributed with Real-Time Connect and can be found in the lib/<platform> direc-
tory of the installation directory. The correct version of the library to use depends on the plat-
form on which MySQL server is running. For example, <platform> can be:

❏ x64Linux2.6cc4.1.1 for Red Hat Enterprise Linux 5 systems on 64-bit x86 processors

❏ i86Linux2.6cc4.1.1 for Red Hat Enterprise Linux 5 systems on 32-bit x86 processors

❏ i86Win32 for Windows systems on 32-bit x86 processors

To install [lib]rtirtc_mysqlq[.so,.dll] copy the appropriate version of [lib]rtirtc_mysqlq[.so,.dll]
into the MySQL server’s plugin directory (the directory named by the plugin_dir system vari-
able). The plugin directory can be changed by setting the value of plugin_dir when the MySQL
server is started. For example, you can set its value in the my.cnf configuration file:

[mysqld]
plugin_dir=/path/to/plugin/directory

For additional information about the plugin directory see the following link:
http://dev.mysql.com/doc/refman/5.1/en/install-plugin.html
4-4

http://dev.mysql.com/doc/refman/5.1/en/connector-odbc-installation.html
http://dev.mysql.com/doc/refman/5.1/en/connector-odbc-installation.html
http://dev.mysql.com/downloads/connector/odbc/3.51.html
http://dev.mysql.com/downloads/connector/odbc/5.1.html
http://dev.mysql.com/downloads/connector/odbc/5.1.html
http://www.unixodbc.org
http://download.oracle.com/docs/cd/E11882_01/appdev.112/e10471/adfns_externproc.htm
http://download.oracle.com/docs/cd/E11882_01/appdev.112/e10471/adfns_externproc.htm
http://download.oracle.com/docs/cd/E11882_01/network.112/e10835/listener.htm
http://dev.mysql.com/doc/refman/5.1/en/install-plugin.html

Introduction to the Real-Time Connect Daemon
4.1.2.3 Installing libnddsc[.so,.dll) and libnddscore(.so,.dll) on the MySQL Server

Since the library librtirtc_mysqlq[.so,.dll] internally uses Connext, the corresponding shared
libraries [lib]nddsc[.so,.dll] and [lib]nddscore[.so,.dll] distributed with Connext also need to be
installed on the MySQL server host.

Note: Please consult the Release Notes for specific details of the supported platforms for your
release of Real-Time Connect to MySQL.

The libraries nddsc and nddscore must be located in a directory that is searched by the system
dynamic linker.

UNIX-based Systems:

❏ Copy the shared libraries to a directory such as /usr/lib.

❏ Alternatively, add the libraries to the environment variable LD_LIBRARY_PATH that
must be set for the user who starts the MySQL server. This method requires restarting the
MySQL server.

Windows Systems:

❏ Copy the .dll files to the system directory (WINDOWS\System32 or WINDOWS\Sys-
tem).

❏ Alternatively, you can add the directories containing the libraries to the System variable
Path as follows:

Using the dialog opened with Start, Settings, Control Panel, System, Advanced tab,
Environment Variables button, add the directories (with backslash ‘\’ and semicolon
separators ‘;’) containing the libraries to the System variable “Path”. If the MySQL server
is running as a service, you will need to reboot the computer for this change to take
effect.

4.1.2.4 Starting the MySQL Server in ANSI_QUOTES mode

The MySQL server can operate in different sql modes. The Real-Time Connect Daemon requires
the MySQL server to be configured in ANSI_QUOTES mode. Under that configuration, the
MySQL server treats ‘”’ as an identifier quote character instead of a string quote character.

To verify if the MySQL server is already configured in ANSI_QUOTES mode, run the following
SQL statement:

SELECT @@global.sql_mode;

If the string ‘ANSI_QUOTES’ is not part of the result, the MySQL server needs to be configured
in ANSI_QUOTES mode using the option --sql_mode=’ANSI_QUOTES’ to start the server

That same effect can be achieved at runtime by executing the following SQL statement:

SET GLOBAL sql_mode = ‘ANSI_QUOTES’

Note: The specific configuration of the MySQL server may require the use of additional SQL
mode strings when starting the server.

4.1.3 How to Run the Real-Time Connect Daemons as Windows Services

On Windows, the Real-Time Connect Daemons, rtirtc_oracle.exe, rtirtc_timesten.exe and
rtirtc_mysql.exe, can be run as system services. During the installation process, you may choose
to install these daemons as Windows services, which can then be controlled through the Start,
Programs, Administrative Tools, Services application. The Real-Time Connect services will be
installed in manual mode. Use the Services application to change this automatic to have the ser-
vices start when the Windows machine boots up.
4-5

Command-Line Parameters
The configuration file used by the Windows services is the default file, <Real-Time Connect
installation directory>/resource/xml/RTI_REAL_TIME_CONNECT.xml. .

You can change the location of the configuration file by running the Windows service with the
command line option, -cfgFile (see Section 4.2).

4.1.4 Typecodes

Typecodes are runtime parsible descriptions of data, generated for user data types from an IDL
file by the Connext utility rtiddsgen. Typecodes are automatically propagated during the discov-
ery process of Connext applications. Unless the user has specifically disabled rtiddsgen from gen-
erating typecodes, applications built with types generated by rtiddsgen should be propagating
typecodes for all of the Topics that they use, and thus are compatible with Real-Time Connect.
Please consult Connext documentation for more information about typecodes and their genera-
tion.

An important note is that typecodes can become quite large as the corresponding IDL type
becomes more complex. By default, Connext applications allocate 2048 bytes to store a typecode.
The default size for the Real-Time Connect Daemon is 2048 bytes as well. The typecode size is
controlled by the QoS parameter, DomainPartici-
pantQos::resource_limits.type_code_max_serialized_length, in the Connext API. In Real-Time
Connect, you can change the typecode limit using XML QoS Profiles (see Table 4.2).

If the Real-Time Connect Daemon discovers Topics that have typecodes that (a) are larger than
what it has been configured to handle or (b) have no associated typecodes at all, the daemon will
not be able to subscribe to or publish those topics unless the user manually creates the corre-
sponding tables in the database or defines the topic types in the configuration file (see Table 4.2).
The only way to determine whether or not this situation exists is to examine the log messages
printed by the daemon.

A status message will indicate when there is no typecode found for a Topic. This message may
have been generated because the typecode associated with the topic is too large for the daemon.
By increasing the DomainParticipantQos::resource_limits.type_code_max_serialized_length
QoS policy, the daemon can be configured to handle larger typecodes for complex IDL types.

The Real-Time Connect Daemon will store all the typecodes that it receives with discovered Top-
ics. These typecodes may be used by the daemon to create user-accessible tables in the database
from which changes are published or data received via Connext is stored. See Publications Table
(Section 4.5.1) and Subscriptions Table (Section 4.5.2) for more information of how typecodes are
used by the daemon.

4.2 Command-Line Parameters
Any user can start a Real-Time Connect Daemon. The user name/ID and password with which it
connects to a database is specified in the configuration file, see Table 4.9.

When starting a Real-Time Connect Daemon, the following command-line parameters are sup-
ported; the -cfgName parameter is required.

Usage: rtirtc_mysql [options]
Options:

 -cfgFile <file> Configuration file. This parameter is optional
 since the configuration can be loaded from
 other locations

-cfgName <name> Configuration name. This parameter is required
4-6

Command-Line Parameters
 and it is used to find a <real_time_connect>
 matching tag in the configuration files

-appName <name> Application name
 Used to name the domain participants
 Default: -cfgName

-logFile <file> Log file

-noDaemon Run as a regular process. Messages are sent to
 stdout and stderr

-use42eAlignment Enables compatibility with
 RTI Data Distribution Service 4.2e
 This option should be used when compatibility
 with 4.2e is required and the topic data types
 contain double, long long, unsigned long long,
 or long double members
-queueLibPath <path> Location of the library rtirtc_oracleq
 Default: $ORACLE_HOME/bin

-queueDomainId <int> Domain ID of the channel connecting the MySQL
 server with RTI Real-Time Connect
 Default: 1

-dbTransport <1|2> Transport used to communicate the MySQL server
 with RTI Real-Time Connect
 * 1: UDPv4
 * 2: Shared Memory
 Default: 2 (Shared memory)
 -typeMode <0|1> Type mode
 Specifies whether the names and semantics of
 the data types follow Oracle or TimesTen type
 rules
 Default: 0 (Oracle type mode)

-verbosity [0-6] RTI Real-Time Connect verbosity
 * 0 - silent
 * 1 - exceptions (Core Libraries and Service)
 * 2 - warnings (Service)
 * 3 - information (Service)
 * 4 - warnings (Core Libraries and Service)
 * 5 - tracing (Service)
 * 6 - tracing (Core Libraries and Service)
 Default: 1 (exceptions)

-version Prints the RTI Real-Time Connect version

-licenseFile <file> License file. This parameter is optional

-help Displays this information

Table 4.1 Command-line Options

Option Description

-appName <application name>

Assigns a name to the Real-Time Connect execution.

The application name is used to set the EntityNameQosPol-
icy of the DomainParticipants created by Real-Time Connect.

-cfgFile <configuration file>

Specifies an XML configuration file for Real-Time Connect.

The parameter is optional since the Real-Time Connect con-
figuration can be loaded from other locations. See
Section 4.4.1 for further details.
4-7

Command-Line Parameters
-cfgName <configuration name>

Required.

Specifies the name of the configuration to load. The Real-
Time Connect Daemon will look for the first tag
<real_time_connect> with that name. (See Configuration
File (Section 4.4).)

-dbTransport <1|2>

This parameter is only available for the rtirtc_oracle-[.exe]
for Oracle Database 11g and the rtirtc_mysql-[.exe] for
MySQL.

By default, Real-Time Connect uses shared memory to com-
municate with the MySQL and Oracle database servers.

The -dbTransport parameter can be used to change the
communication transport. There are two possible values:

1: UDPv4

2: Shared memory (default)

Note: Shared memory communication between the Real-
Time Connect Daemon and the database servers does not
work on Windows 2003, Windows Vista or Windows 7 sys-
tems when the Real-Time Connect daemon runs with the
option -nodaemon and the database server runs as a ser-
vice. For this use case, communication can be enabled by
using UDPv4 as the transport.

-help
Prints out a usage message listing the command-line
parameters.

-licenseFile <file>

Specifies the license file (path and filename). Only applica-
ble to licensed versions of Real-Time Connect.
If not specified, Real-Time Connect looks for the license as
described in Chapter 9 in the Getting Started Guide.

-logFile <log file>

Pathname of the file to be used for log messages.

If specified, log messages will automatically be stored in the
file.

-noDaemon

Start as a normal process.

Without this option, running the Real-Time Connect Daemon
executable will start a daemon process on Linux systems, or
start a service on Windows systems. As a daemon, no log
messages of any kind are printed to stdout or stderr. How-
ever, by specifying this option, the daemon will start as a
regular process, which can be run as a background process
using the standard OS with the command-line option (“&”),
and log messages will be printed to stdout and stderr.

-queueDomainId <domain ID>

This parameter is only available for the rtirtc_oracle-[.exe]
for Oracle Database 11g and the rtirtc_mysql-[.exe] for
MySQL.

The Real-Time Connect Daemon uses Connext to communi-
cate with the MySQL and Oracle 11g servers. This com-
mand-line option sets the domain ID used for the
connection between the daemon and the servers.

Default: 1

Table 4.1 Command-line Options

Option Description
4-8

Command-Line Parameters
-queueLibPath
<directory containing
[lib]rtirtc_oracleq[.so,.dll]>

This parameter is only available for the rtirtc_oracle-[.exe]
for Oracle Database 11g:

The Oracle server must find and load
[lib]rtirti_oracle[.so,.dll] in order to connect to the Real-
Time Connect Daemon. See How to Run the Real-Time Con-
nect Daemon with Oracle (Section 4.1.1) for more informa-
tion. By default, the daemon will ask the Oracle server to
look in the directory $ORACLE_HOME/bin.

If [lib]rtirti_oracle[.so,.dll] is installed on the server in a
different directory, then the Real-Time Connect Daemon
must be started with this option set to that directory.

-typeMode

This parameter is only available for rtirtc_timesten[.exe]

Specifies whether the names and semantics of the data
types in the TimesTen database follow Oracle or TimesTen
type rules.

There are two possible values:

 0: Oracle type mode (default)

 1: TimesTen type mode

For additional information about TypeMode refer to Ora-
cle® TimesTen In-Memory Database Reference

Note: To work with Oracle In-Memory Database Cache this
option must be set to 0.

-verbosity <verbosity level>

Real-Time Connect verbosity level:

0 - No verbosity

1 - Exceptions (Connext and Real-Time Connect) (default)

2 - Warnings (Real-Time Connect)

3 - Information (Real-Time Connect)

4 - Warnings (Connext and Real-Time Connect)

5 - Tracing (Real-Time Connect)

6 - Tracing (Connext and Real-Time Connect)

Each verbosity level, n, includes all the verbosity levels
smaller than n.

As the Real-Time Connect Daemon runs, it may generate log
messages reflecting error conditions, warning messages or
general execution status. The messages may be produced
by the daemon or by Connext.

The messages produced by the daemon can be redirected to
three possible destinations: stdout/stderr, a file, and log
tables in the databases to which it is connected.Each of
these destinations may be enabled independently of each
other. The first two, stdout/stderr and file, are controlled by
command line parameters discussed above, and the last,
log table, is controlled in the configuration of a connection,
as discussed in Database Connection Options (Section
4.4.4.3).

In this Real-Time Connect version, the messages produced by
Connext can be redirected only to stdout/stderr.

-version Prints the Real-Time Connect version.

Table 4.1 Command-line Options

Option Description
4-9

Environment Variables
4.3 Environment Variables
Since the Real-Time Connect Daemon will be making connections to databases using ODBC, on
UNIX-based systems, the following environment variables may be used to find DSNs (data
source names) via ODBCINI files.

❏ ODBCINI: location of INI file for database connections. If not set, ODBCINI will be set to
“$HOME/.odbc.ini”, where $HOME is the home directory of the user who started the
daemon.

❏ SYSODBCINI: location of system INI file, used if the DSN is not found in the file speci-
fied by ODBCINI.

If the Real-Time Connect Daemon cannot find a valid DSN in any ODBC.INI file, then no connec-
tions to any databases can be made.

On a Windows system, the equivalent functionality of the ODBCINI file is found in the Win-
dows registry. You create and modify DSNs using the application found in Start, Programs,
Administrative Tools, Data Sources (ODBC).

4.4 Configuration File
When you start Real-Time Connect, you can provide a configuration file in XML format (it is not
required). Among other things, this file can be used to specify the set of databases to which the
daemon will connect and the properties of the database connections.

This section describes:

❏ How to Load the XML Configuration (Section 4.4.1)

❏ XML Syntax and Validation (Section 4.4.2)

❏ Top-Level XML Tags (Section 4.4.3)

❏ Database Configuration Using the Real-Time Connect XML Tag (Section 4.4.4)

4.4.1 How to Load the XML Configuration

Real-Time Connect loads its XML configuration from multiple locations. This section presents the
various approaches, listed in load order.

The first three locations only contain QoS Profiles and are inherited from Connext (see Chapter
15 in the RTI Core Libraries and Utilities User's Manual).

❏ $NDDSHOME/resource/qos_profiles_5.x.y1/xml/NDDS_QOS_PROFILES.xml

This file contains the Connext default QoS values; it is loaded automatically if it exists.
(First to be loaded.)

❏ File in NDDS_QOS_PROFILES

The files (or XML strings) separated by semicolons referenced in this environment vari-
able are loaded automatically.

1. x and y stand for version numbers of the current release.
4-10

Configuration File
❏ <working directory>/USER_QOS_PROFILES.xml

This file is loaded automatically if it exists.

The next locations are specific to Real-Time Connect.

❏ <Real-Time Connect executable location>/../../resource/xml/
RTI_REAL_TIME_CONNECT.xml

This file contains the default Real-Time Connect configuration and QoS Profiles; it is
loaded if it exists. The default configuration does not work out-of-the-box because it
requires setting the parameters that configure the database connections such as dsn,
username and password (see Section 4.4.4).

❏ <working directory>/USER_REAL_TIME_CONNECT.xml

This file is loaded automatically if it exists.

❏ File specified using the command line parameter -cfgFile

The command-line option -cfgFile (see Section 4.2) can be used to specify a configuration
file.

You may use a combination of the above approaches.

4.4.2 XML Syntax and Validation

The XML configuration file must follow these syntax rules:

❏ The syntax is XML; the character encoding is UTF-8.

❏ Opening tags are enclosed in <>; closing tags are enclosed in </>.

❏ A tag value is a UTF-8 encoded string. Legal values are alphanumeric characters. The
routing service’s parser will remove all leading and trailing spaces1 from the string
before it is processed.

For example, " <tag> value </tag>" is the same as "<tag>value</tag>".

❏ All values are case-sensitive unless otherwise stated.

❏ Comments are enclosed as follows: <!-- comment -->.

❏ The root tag of the configuration file must be <dds> and end with </dds>.

Real-Time Connect provides DTD and XSD files that describe the format of the XML content. We
recommend including a reference to one of these documents in the XML file that contains the
Real-Time Connect’s configuration—this provides helpful features in code editors such as Visual
Studio and Eclipse, including validation and auto-completion while you are editing the XML
file.

The DTD and XSD definitions of the XML elements are in <Real-Time Connect installation
directory>/resource/schema/rti_real_time_connect.dtd and <Real-Time Connect installation
directory>/resource/schema/rti_real_time_connect.xsd, respectively.

1. Leading and trailing spaces in enumeration fields will not be considered valid if you use the distributed XSD doc-
ument to do validation at run-time with a code editor.
4-11

Configuration File
To include a reference to the XSD document in your XML file, use the attribute
xsi:noNamespaceSchemaLocation in the <dds> tag. For example:

<?xml version="1.0" encoding="UTF-8"?>
<dds xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation= "<installation directory for Real-Time
Connect>/resource/schema/rti_real_time_connect.xsd">
 ...
</dds>

To include a reference to the DTD document in your XML file, use the <!DOCTYPE> tag.

For example:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE dds SYSTEM "<installation directory for RTI Real-Time Connect>/
resource/schema/rti_routing_service.dtd">
<dds>
 ...
</dds>

We recommend including a reference to the XSD file in the XML documents; this provides
stricter validation and better auto-completion than the corresponding DTD file.

4.4.3 Top-Level XML Tags

Let’s look at an example configuration file. You will learn the meaning of each line as you read
the rest of the sections.

<?xml version="1.0"?>
<dds>

<real_time_connect name="Example">
<database_mapping_options>

<identifier_separator_char>$
</identifier_separator_char>

</database_mapping_options>

<mysql_connection>
<dsn>Example_MySQL</dsn>
<user_name>Student</user_name>
<password>mypsswrd</password>

</mysql_connection>

<oracle_connection>
<dsn>Example_Oracle</dsn>
<user_name>Student</user_name>
<password>mypsswrd</password>

</oracle_connection>

<timesten_connection>
<dsn>Example_TT</dsn>

</timesten_connection>
</real_time_connect>

</dds>

Table 4.2 describe the top-level tags allowed within the root <dds> tag. Notice that the
<real_time_connect> tag is required.

Because a configuration file may contain multiple <real_time_connect> tags, one file can be
used to configure multiple daemon executions. When you start RTI Real-Time Connect, you have
to use the -cfgName option to specify which <real_time_connect> tag to use.
4-12

Configuration File
For example:

<dds>
...
<real_time_connect name="rtcA">

...
</ real_time_connect >

<real_time_connect name="rtcB">
...

</real_time_connect>
...

</dds>

Table 4.2 Top-Level Tags

Tags within <dds> Description
Number
of Tags

Allowed

<qos_library>

Specifies a QoS library and profiles.

The contents of this tag are specified in the same manner as for an Con-
next QoS profile file—see Chapter 15 in the RTI Core Libraries and Utili-
ties User’s Manual.

The profiles you specify here can be used in three ways.

❏ By setting the attribute is_default_qos in the tag <qos_profile>
to true. In this case, that profile is the default configuration for
all the Entities created by the Real-Time Connect daemon.

❏ By referring to a profile using the XML tag <profile_name>
within <publication> and <subscription> (see Section 4.4.4.4).

❏ By referring to a profile in the profile_name column of the tables
RTIDDS_PUBLICATIONS or RTIDDS_SUBSCRIPTIONS (see
Section 4.5.1 and Section 4.5.2).

0 or more

<real_time_connect>

Specifies a Real-Time Connect configuration.

This tag is used to specify the set of databases to which the daemon will
connect.

Note: There is no way to dynamically configure the Real-Time Connect
Daemon Daemon to connect to a database after it has started. All data-
base connections must be specified within this tag before the daemon
starts.

See Table 4.3 for a description of the elements contained inside
<real_time_connect>.

1 or more
(required)

<types>

Defines types that can be used to create database tables.

The type description is done using the Connext XML format for type
definitions. For more information, see Section 3.4 in the RTI Core Librar-
ies and Utilities User's Manual.
For example:

<types>
 <struct name="Point">
 <member name="x" type="long"/>
 <member name="y" type="long"/>
 </struct>
</types>

Real-Time Connect supports automatic table creation by using the types
defined within this tag or the typecode sent by Connext applications.

See Section 4.6 for additional information on user table creation.

0 or 1
4-13

Configuration File
Starting Real-Time Connect with the following command will use the <real_time_connect> tag
with the name rtcA:

rtirtc_mysql -cfgFile example.xml -cfgName rtcA

If there is no <real_time_connect> tag matching the name provided with the command line
option –cfgName, the daemon will report an error and it will list the available configurations.

4.4.4 Database Configuration Using the Real-Time Connect XML Tag

Table 4.3 describes the tags allowed with the <real_time_connect> section of the XML file.

4.4.4.1 General Options

Table 4.4 describes the general options; these attributes are independent of any particular data-
base connection made by the Real-Time Connect Daemon.

Table 4.3 Real-Time Connect Tags

Tags within
<real_time_connect> Description Number of Tags Allowed

<database_mapping_
options>

Configures how the IDL identifier names
are mapped to the database column names.
See Section 4.4.4.2.

0 or 1

<general_options>

Contains attributes that are independent of
any particular database connection made
by the Real-Time Connect Daemon. See
Section 4.4.4.1.

0 or 1

<mysql_connection>
Configures a connection to a MySQL data-
base. See Section 4.4.4.3.

1 or more (required) if running
rtirtc_mysql;

0 or more (ignored) if running other
DBMS version of the daemon

<oracle_connection>
Configures a connection to an Oracle data-
base. See Section 4.4.4.3.

1 or more (required) if running
rtirtc_oracle;

0 or more (ignored) if running other
DBMS version of the daemon

<timesten_connection>
Configures a connection to an Oracle
TimesTen database. See Section 4.4.4.3.

1 or more (required) if running
rtirtc_timesten;

0 or more (ignored) if running other
DBMS version of the daemon

Table 4.4 General Options Tags

Tags within
<general_options > Description

Number
of Tags

Allowed

<administration> See Table 4.5, “Administration Tags” 0 or 1

<enable_table_replication>

Real-Time Connect can be configured to perform real-time, lazy
database replication (see Section 3.7) by setting this attribute to
true.

Default: false

0 or 1
4-14

Configuration File
4.4.4.1.1 Enabling Table Replication

Enabling database replication will automatically configure the QoS values of publications and
subscriptions to provide conflict resolution and table initialization (see Table 4.6 and Table 4.7).
The attribute also enables automatic table creation (see <typecode_from_table_schema> in
Table 4.4) and propagation of NULL values.

<max_objects_per_thread>

This parameter controls the maximum number of objects per
thread that Connext can store. If you run into problems related to
the creation of Entities, increasing this number may be necessary.
See the RTI Core Libraries and Utilities User’s Manual for more infor-
mation.

Default: Connext default (1024)

0 or 1

<typecode_from_table_
schema>

This tag can be used to enable typecode generation from table
schemas.

If this parameter is set to true and a publication or subscription is
created for a database table without an associated typecode, Real-
Time Connect will create the typecode from the table schema.

The new typecode will be made available to other Connext appli-
cations or RTC daemons via discovery traffic.

When Real-Time Connect is used for table replication, the default
value for this parameter is true allowing automatic table creation
in the replicas.

Default: false (except when enable_table_replication is set to true).

0 or 1

Table 4.5 Administration Tags

Tags within
<administration> Description

Number
of Tags

Allowed

<distributed_logger>
Configures RTI Distributed Logger.
See Enabling RTI Distributed Logger in Real-Time Connect (Section
4.8)

0 or 1

<domain_id>
Specifies which domain ID Real-Time Connect will use to send log mes-
sages when Distributed Logger is enabled.

1
(required)

<profile_name>

Determines which QoS profile to use when creating the DomainPartic-
ipant that will be used for Distributed Logger (when enabled). The value
is the fully qualified name of the QoS Profile, represented as a string
with this form:
<QoS profile library name>::<QoS profile name>

0 or 1

Table 4.4 General Options Tags

Tags within
<general_options > Description

Number
of Tags

Allowed

Table 4.6 DataWriter QoS Changes when <enable_table_replication> is True

QoS Change Purpose

reliability.kind = RELIABLE_RELIABILITY_QOS Enables reliability

destination_order.kind =
BY_SOURCE_TIMESTAMP_DESTINATIONORDER_QOS

destination_order.source_timestamp_tolerance.sec = 0
destination_order.source_timestamp_tolerance.nanosec = 0
ownership.kind = SHARED_OWNERSHIP_QOS

Performs conflict resolution
4-15

Configuration File
These QoS changes have priority over the values set using QoS Profiles. However, they can be
overwritten per publication and per subscription by setting the corresponding fields in the
RTIDDS_PUBLICATIONS and RTIDDS_SUBSCRIPTIONS meta tables (see Section 4.5.1 and
Section 4.5.2).

4.4.4.1.2 Conflict Resolution

Because there are no global (network-wide) locks on records when a transaction is being exe-
cuted, conflicts can occur. The best way to avoid conflicts is to have only one host modify a spe-
cific row (instance) or table (topic), but that is not always possible. The second best way is to
design the application in such a way that conflicts can never occur, for instance due to data flow
dependencies. But that also is often hard to achieve.

By default, conflict resolution is not enabled when you set <enable_table_replication> to true.
You can enable conflict resolution by setting the column dr.destination_order.kind in
RTIDDS_SUBSCRIPTIONS to BY_SOURCE_TIMESTAMP_DESTINATIONORDER_QOS
(see Section 4.5.2.1.18). With this setting, eventual consistency can be guaranteed. Conflicts can
cause a temporary inconsistency between the databases, but eventually these are resolved by the
Real-Time Connect conflict-resolution mechanism. By default, conflicts are resolved using a time-
stamp corresponding to the system time when the update occurred. You can overwrite this
behavior by providing your own timestamp in a separate database column (see
Section 4.5.1.1.9).

protocol.serialize_key_with_dispose = true
writer_data_lifecycle.autodispose_unregistered_instances = false

Propagates delete operations

durability.kind = TRANSIENT_LOCAL_DURABILITY_QOS
Sends table contents to late
joiners (table initialization)

history.depth = 1
history.kind = KEEP_LAST_HISTORY_QOS

Keeps one record per primary
key value

writer_resource_limits.instance_replacement =
DDS_DISPOSED_INSTANCE_REPLACEMENT

writer_resource_limits.replace_empty_instances =
DDS_BOOLEAN_FALSE

Enables replacement of
deleted rows

Table 4.7 DataReader QoS Changes when <enable_table_replication> is True

QoS Change Purpose

reliability.kind = RELIABLE_RELIABILITY_QOS Enables reliability

destination_order.source_timestamp_tolerance.sec =
DURATION_INFINITE_SEC

destination_order.source_timestamp_tolerance.nanosec =
DURATION_INFINITE_ NSEC

ownership.kind = SHARED_OWNERSHIP_QOS;

Performs conflict resolution

Note: <enable_table_replication> sets
some QoS related to conflict resolution,
but it does not enable the feature. See
Section 4.4.4.1.2 for additional details

protocol.propagate_dispose_of_unregistered_instances = true
Enables propagation of delete opera-
tions

durability.kind = TRANSIENT_LOCAL_DURABILITY_QOS;
Sends table contents to late joiners
(table initialization)

history.kind = KEEP_LAST_HISTORY_QOS;
Keeps one sample per primary key
value

Table 4.6 DataWriter QoS Changes when <enable_table_replication> is True

QoS Change Purpose
4-16

Configuration File
If you do not need conflict resolution, you can disable it by setting the column
dr.destination_order.kind in RTIDDS_SUBSCRIPTIONS to
BY_RECEPTION_TIMESTAMP_DESTINATIONORDER_QOS.

4.4.4.1.3 Table Initialization

When a host starts using a table in the distributed shared database, it is essential that the local
table is up-to-date. Real-Time Connect supports two approaches to filling the local table's con-
tents:

1. If all the rows in the table are updated frequently, it is sufficient to apply these updates to
the data cache.

2. The table can be synchronized by explicitly requesting the table's contents from the other
hosts. This is called table initialization.

If table initialization is not needed, you can disable it by setting the columns dw.durability.kind
in RTIDDS_PUBLICATIONS and dw.durability.kind in RTIDDS_SUBSCRIPTIONS to
VOLATILE_DURABILITY_QOS.

4.4.4.2 Database Mapping Options

Table 4.8 describes the options that are allowed with the <database_mapping_options> tag.

Table 4.8 Database Mapping Options

Tags within
<database_mapping_

options>
Description

Number
of Tags

Allowed

<close_bracket_char>

Sets the closing bracket character that is used in the index
component of the arrays and sequences members names.

See Array Fields (Section 5.2.8) and Sequence Fields (Section
5.2.9) for more information about the mapping of IDL arrays
and sequences into SQL columns.

The default value of ‘]’ will generate columns names that must
be referenced using double quotes.

Default: ‘]’

0 or 1

<identifier_separator_char>

Sets the character that is used as a separator in the hierarchical
names generated when mapping IDL fields into SQL table col-
umns.

The attribute is also used to configure the separator character
for the columns in the meta tables.

The default value of ‘.’ in Oracle and Oracle TimesTen will
generate columns names that must be referenced using double
quotes. See IDL to SQL Mapping (Section 5.2.1) for more infor-
mation about double quoted identifiers.

Default: ‘.’ For Oracle/TimesTen; ‘$’ for MySQL

0 or 1
4-17

Configuration File
<idl_member_prefix_
max_length>

Controls the prefix length of the IDL member identifiers that
will be used to truncate column names when a table is auto-
matically created.

If the default value (-1) is used, Real-Time Connect will not
truncate IDL member identifiers when these are used to create
column names.

If a positive value, n, is provided, Real-Time Connect will use
the first n characters from the IDL member identifier to com-
pose the associated column name.

A value of 0 tells Real-Time Connect to compose the column
name using only the last characters of the identifiers, as
defined by <idl_member_suffix_max_length>.

This value can be overridden per table by assigning a value to
the idl_member_prefix_max_length column in the meta-
tables.

Default: -1 (unlimited)

0 or 1

<idl_member_suffix_
max_length>

Controls the suffix length of the IDL member identifiers that
will be used to truncate column names when a table is auto-
matically created.

If a positive value, n, is provided, Real-Time Connect will use
the last n characters from the IDL member identifier to com-
pose the associated column name.

A value of 0 tells Real-Time Connect to compose the column
name using only the first characters of the identifiers, as
defined by <idl_member_prefix_max_length>.

This value can be overridden per table by assigning a value to
the idl_member_suffix_max_length column in the meta-
tables.

Note that although <idl_member_prefix_max_length> and
<idl_member_suffix_max_length> can be individually set to
zero, they cannot be both zero at the same time.

Default: -1 (unlimited)

0 or 1

<open_bracket_char>

Sets the opening bracket character that is used in the index
component of the arrays and sequences members names.

See Array Fields (Section 5.2.8) and Sequence Fields (Section
5.2.9) for more information about the mapping of IDL arrays
and sequences into SQL columns.

The default value of ‘[’ will generate columns names that must
be referenced using double quotes.

Default: ‘[‘

0 or 1

Table 4.8 Database Mapping Options

Tags within
<database_mapping_

options>
Description

Number
of Tags

Allowed
4-18

Configuration File
4.4.4.3 Database Connection Options

The database connection tags in the XML file direct the Real-Time
Connect Daemon to connect to a particular database as specified
by a DSN (data source name) and configure the connection.

The database connection tags are DBMS-specific:

❏ <mysql_connection>

❏ <oracle_connection>

❏ <timesten_connection>

A <real_time_connect> tag may have multiple database connec-
tion tags. The DBMS-specific Real-Time Connect Daemon will only
parse the tags that apply to it. As explained earlier, the Real-Time
Connect Daemon will make a connection to a database using the
DSN attribute for every connection tag that it parses. This is the
only way to direct the daemon to connect to a database. No other
connections will be made after startup.

Example:

<real_time_connect name=”MyRtc”>
<mysql_connection>

<dsn>Example_MySQL</dsn>
<user_name>Student</user_name>
<password>mypsswrd</password>
<send_period>100</send_period>
<database_logging>

<enabled>true</enabled>
<history_depth>100</history_depth>

</database_logging>
<publications>

<publication>...</publication>
</publications>
<subscriptions>

<subscription>...</subscription>
</subscriptions>

</mysql_connection>
</real_time_connect>

Table 4.9 describes tags allowed within all three types of <database_connection> tags. Tables
4.10 through 4.12 describe additional tags for each connection type.

Table 4.9 Common Tags for all Database Connections

Common Tags
for <mysql_connection>,

<oracle_connection>,
<timesten_connection>

Description Number of
Tags Allowed

<database_logging>

<enabled>

<history_depth>

If enabled, the Real-Time Connect Daemon’s log messages
will be stored in a table named “RTIRTC_LOG” in the data-
base specified by the DSN.

Optionally, you can specify the history depth of the log. This
value limits the size of the table, RTIRTC_LOG, in the data-
base that the daemon uses for logging messages. The default
is 1000 rows, and a value of -1 implies no limit. When the
table is filled, new log messages will replace the oldest mes-
sages, effectively using the table as a circular buffer.

Default: disabled

0 or 1
4-19

Configuration File
<dsn>

You must specify a valid DSN that is found in a ODBCINI
file or the Windows registry (see Environment Variables
(Section 4.3)). The Real-Time Connect Daemon will make a
connection to this DSN.

Real-Time Connect detects changes in an Oracle TimesTen
data store by reading from the transaction log. Consequently,
Real-Time Connect will not work for DSN configurations
where logging is turned off (Logging=0). This limitation
applies only to Oracle TimesTen In-Memory Database, not to
Oracle Database 11g or MySQL.

1 (required)

<password> Specifies the password to connect to the database.

1 (required) in
<mysql_
connection>
and <oracle_
connection>

0 or 1 (optional)
in <timesten_
connection>

<publications>
This tags allows inserting publications in the table
RTIRTC_PUBLICATIONS when the daemon starts up. See
Initial Subscriptions and Publications (Section 4.4.4.4).

0 or 1

<send_period>

The send_period value specifies the milliseconds interval at
which the Real-Time Connect Daemon publishes database
changes. The value must be greater than or equal to 0. With a
value of 0 the daemon publishes database changes as soon as
they are available. A shorter time interval reduces latency.

Default: 100 ms

0 or 1

<subscriptions>
This tags allows inserting subscriptions in the table
RTIRTC_SUBSCRIPTIONS when the daemon starts up. See
Initial Subscriptions and Publications (Section 4.4.4.4).

0 or 1

<user_name>

Specifies the user name to connect to the database.

This attribute is mandatory for Oracle and MySQL data-
bases, since there is no default user for database connections.

It is optional for Oracle TimesTen: if this attribute is missing,
then the connection to the database will use the username of
the UID who owns the Real-Time Connect Daemon process.

1 (required) in
<mysql_conn
ection> and
<oracle_conne
ction>

0 or 1 (optional)
in
<timesten_co
nnection>

Table 4.9 Common Tags for all Database Connections

Common Tags
for <mysql_connection>,

<oracle_connection>,
<timesten_connection>

Description Number of
Tags Allowed
4-20

Configuration File
Table 4.10 Tags for MySQL Connections

Additional Tags
Allowed within

<mysql_connection>
Description

Number
of Tags

Allowed

<transaction_max_
duration>

Provides an estimation of the maximum duration of a database trans-
action. If a table change is not committed in the interval specified by
this attribute, it will not be published to Connext.

Uncommitted table changes are stored in a per-table queue. The maxi-
mum size of that queue can be configured setting the value of the
changes_queue_maximum_size column in the
RTIDDS_PUBLICATIONS table (see Section 4.5.1.1.21).

If a change in the uncommitted changes queue has not been committed
after transaction_max_duration milliseconds, it will be discarded by
the Real-Time Connect Daemon.

With a value of -1, the Real-Time Connect Daemon will not discard
changes into the uncommitted queue until they are committed.

Default: 5000

0 or 1

Table 4.11 Tags for Oracle Connections

Additional Tags
Allowed within

<oracle_connection>
Description

Number
of Tags

Allowed

<blob_default_size>

Limits the size of BLOB columns for tables that do not have an associ-
ated TypeCode (see Section 4.1.4) in the RTIRTC_TBL_INFO meta
table (see Section 4.5.3).

If a user table has an associated TypeCode, the maximum size of the
BLOB columns is determined on a per-column basis using the Type-
Code information.

Default: 65536

0 or 1

<clob_default_size>

Limits the size of CLOB and NCLOB columns for tables that do not
have an associated TypeCode (see Section 4.1.4) in the
RTIRTC_TBL_INFO meta table (see Section 4.5.3).

If a user table has an associated TypeCode, the maximum size of the
CLOB and NCLOB columns is determined on a per-column basis
using the TypeCode information.

Default: 65536

0 or 1

Table 4.12 Tags for TimesTen Connections

Additional Tags Allowed
within <timesten_connection> Description

Number
of Tags

Allowed

<log_acknowledgement_period>

Sets the transaction log acknowledgement period in seconds.
The transaction log will be acknowledged at the period speci-
fied by the tag value. This allows TimesTen to purge old trans-
action log files when no longer needed.
Default: 30 seconds

0 or 1

<xla_buffer_size>

This attribute is only used if the Oracle TimesTen DSN specifies
a diskless connection.
See Setting the XLA Staging Buffer Size for Diskless Connnec-
tions (Section 4.4.4.5)
Default: 409600

0 or 1
4-21

Configuration File
4.4.4.4 Initial Subscriptions and Publications

As explained in Meta-Tables (Section 4.5), the daemon is configured to publish and subscribe to
data in the database by inserting entries in two meta-tables, RTIDDS_PUBLICATIONS and
RTIDDS_SUBSCRIPTIONS. In your XML configuration you can specify initial values to insert in
these tables.

For example:

<mysql_connection>
...

<subscriptions delete="true">
<subscription>

<table_owner>user</table_owner>
<table_name>mytable1</table_name>
<domain_id>54</domain_id>
<topic_name>mytopic1</topic_name>
<type_name>mytype1</type_name>

</subscription
...
<subscription>

...
</subscription>
...

</subscriptions>

<publications>
<publication overwrite="true">

<table_owner>user</table_owner>
<table_name>mytable2</table_name>
<domain_id>54</domain_id>
<topic_name>mytopic2</topic_name>
<type_name>mytype2</type_name>

</publication>

<publication>
...
</publication>
...

</publications>
</mysql_connection>

Within <subscriptions> and <publications> tags, you can specify as many <subscription> and
<publication> tags as you want. The content of each tag inside <subscription>/<publication>
represents the value for a column with the same name in the table RTIDDS_SUBSCRIPTIONS/
RTIDDS_PUBLICATIONS. Each of these <subscription>/<publication> tags may result in the
insertion or update of a row in the corresponding meta-table.

All the rows in the tables can be deleted before inserting new rows if the attribute “delete” in
<publications>/<subscriptions> is set to true.

If a <publication> or <subscription> already exists in its table (the primary key is the same),
then the insertion won’t succeed. However you can set the attribute “overwrite” to true. In that
case, if the insertion fails, an update is performed on that row.

Note that there are columns in the tables RTIDDS_PUBLICATIONS and
RTIDDS_SUBSCRIPTIONS that don’t have a corresponding tag inside <publications> and
<subscriptions>. Those columns represent configuration of QoS. However, you can configure
the quality of service by using <profile_name>, where you can refer to a QoS profile in your
4-22

Configuration File
Table 4.13 Subscriptions Tags

Tags Allowed
within

<subscriptions>
Description

Number
of Tags

Allowed

<subscription>
Configures a subscription by inserting or updating a row in the table
RTIDDS_SUBSCRIPTIONS. See Table 4.14 on page 4-23.

1 or
more

Table 4.14 Subscription Tags

Tags Allowed within
<subscription> Description

Number
of Tags

Allowed

<domain_id>
Inserts the tag value into the column with the same name in the table
RTIDDS_SUBSCRIPTIONS

See Section 4.5.2.

1
(required)

<table_name>

<table_owner>

<topic_name>

<cache_initial_size>

Inserts the tag value into the column with the same name in the table
RTIDDS_SUBSCRIPTIONS

If the value is not specified, NULL is inserted.

See Section 4.5.2.

0 or 1

<cache_maximum_size>

<commit_type>

<delete_on_dispose>

<filter_duplicates>

<idl_member_prefix_
max_length>

<idl_member_suffix_
max_length>

<ordered_store>

<persist_state>

<process_batch>

<process_period>

<profile_name>

<table_history_depth>

<type_name>

Table 4.15 Publications Tags

Tags Allowed within
<publications> Description

Number
of Tags

Allowed

<publication>
Configures a publication by inserting or updating a row in the table
RTIDDS_PUBLICATIONS. See Table 4.16 on page 4-23.

1 or
more

Table 4.16 Publication Tags

Tags Allowed within
<publication> Description

Number
of Tags

Allowed

<domain_id>
Inserts the tag value into the column with the same name in the
table RTIDDS_PUBLICATIONS.
See Section 4.5.1

1
(required)

<table_name>

<table_owner>

<topic_name>
4-23

Configuration File
own XML configuration file or in any of the other QoS profile files loaded by the daemon (see
How to Load the XML Configuration (Section 4.4.1)).

4.4.4.5 Setting the XLA Staging Buffer Size for Diskless Connnections

For diskless connections, the minimum size of the Oracle TimesTen XLA staging buffer must be
at least as big as the largest single SQL transaction executed through the database connection.
The size of a transaction is related to the aggregated size of data values that have changed as a
result of the transaction. For example, if a transaction modifies every column in a row of a table,
then the transaction is at least as large as the size (in bytes) of a row.

Note that a single transaction may modify multiple rows of a table. It is up to the user to deter-
mine what the largest transaction size in a database may be and set the XLABUFFERSIZE attri-
bute for the Real-Time Connect Daemon appropriately. However, the maximum transaction size
is only the minimum value that should be set for XLABUFFERSIZE. You may need to set
XLABUFFERSIZE to be much larger, since the XLA staging buffer in Oracle TimesTen must hold
more than a single non-committed transaction simultaneously if there are multiple threads or
processes accessing the same database at the same time. Recall that this discussion only pertains
to Oracle TimesTen DSNs that specify a diskless connection.

If the XLABUFFERSIZE is too small, then SQLExecute or SQLExecDirect statements that were
working will return an error indicating that a buffer is full. You should see these errors in your
own applications as well as in the Real-Time Connect Daemon if the daemon is subscribing to
Topics and trying to store the received data in the database. These ODBC errors will appear in
the daemon log. If you encounter this situation, you should increase the value of XLABUFFER-
SIZE appropriately. The Oracle TimesTen native error codes that you may see when the
XLABUFFERSIZE is too small are:

❏ TT8009: Transaction Log API Buffer size too small or too large

❏ TT986: Log buffer overflow; transaction must rollback

❏ TT987: Log record larger than log buffer; transaction must rollback

More details about Oracle TimesTen error codes can be found in the Oracle TimesTen In-Memory
Database Error Messages and SNMP Traps Release 11.2.1.

<idl_member_prefix_
max_length>

Inserts the tag value into the column with the same name in the
table RTIDDS_PUBLICATIONS.
If the value is not specified, NULL is inserted.

See Section 4.5.1

0 or 1

<idl_member_suffix_
max_length>

<resolution_column >

<profile_name>

<table_history_depth>

<type_name>

Table 4.16 Publication Tags

Tags Allowed within
<publication> Description

Number
of Tags

Allowed
4-24

Meta-Tables
4.5 Meta-Tables
After the Real-Time Connect Daemon has started and successfully made a connection to a data-
base, the user will still need to configure the daemon to publish table changes as Topics as well
as subscribe to Topics for storing received data into a table. This configuration is done by insert-
ing entries into two tables RTIDDS_PUBLICATIONS and RTIDDS_SUBSCRIPTIONS. These
tables will be created by the Real-Time Connect Daemon if they do not already exist in the data-
base.

The two tables are referred to as meta-tables since their data is not user data but information used
by the daemon to create DataWriters and DataReaders, as well as corresponding user tables in
the database. The tables are just ordinary tables that users can create themselves before starting
the Real-Time Connect Daemon if so desired. However, if the user chooses to do so, it is important
that the tables be created with the exact tables schemas presented below, otherwise the daemon
may not work correctly. If the daemon finds existing meta-tables upon startup, it will process
every row in the tables as if they were newly inserted. The meta-tables
RTIDDS_PUBLICATIONS and RTIDDS_SUBSCRIPTIONS can be populated using the <publica-
tion> and <subscription> tags in the configuration file (see Section 4.4.4.4) or running Insert/
Update SQL statements.

There are two more meta-tables created by the Real-Time Connect Daemon:

❏ The meta-table RTIRTC_TBL_INFO will store the typecode associated with the user
tables created automatically by the RTC daemon (see Section 4.5.3).

❏ The meta-table RTIRTC_LOG will be created to store log messages generated by the
Real-Time Connect Daemon. Use of this table is controlled by command-line parameters
and the connection discussed in Section 4.2 andSection 4.4.4.3.

The following sections discuss the usage of these tables and describe the actions taken by the
daemon when these tables are modified:

❏ Publications Table (Section 4.5.1)

❏ Subscriptions Table (Section 4.5.2)

❏ Table Info (Section 4.5.3)

❏ Log Table (Section 4.5.4)

4.5.1 Publications Table

When entries (rows) are added to the meta-table RTIDDS_PUBLICATIONS, the Real-Time Con-
nect Daemon will try to create a DataWriter (and Publisher along with a DomainParticipant if
required) and use it to send changes to the designated user table via the Connext.

If the RTIDDS_PUBLICATIONS table does not exist at startup, the Real-Time Connect Daemon
will create it with the table owner set to the user name of the database connection as specified in
the daemon’s configuration file, see Section 4.4. The schema and meaning of the columns of this
table are described in the next section.

Users may insert new rows or modify the column values of existing rows in this table at any-
time. For a new row, the daemon will first check to see if the designated user table exists. If so, it
will immediately create the DataWriter with the QoS values as specified by the entry. The name
of the Topic to publish may be specified by the topic_name column or be automatically con-
structed as <table_owner>.<table_name> if the topic_name entry is NULL.
4-25

Meta-Tables
If the user table does not exist, the Real-Time Connect Daemon will look for the typecode associ-
ated with the topic defined in the topic_name column. If it finds the typecode, the daemon will
create the user table with a SQL table schema derived from the typecode following the IDL type
to SQL type mapping described in Chapter 5: IDL/SQL Semantic and Data Mapping. Then the
daemon will proceed to create the associated DataWriter. More about the creation of user tables
by the daemon can be found in User-Table Creation (Section 4.6).

How the daemon discovers and stores typecodes is described in Typecodes (Section 4.1.4). If the
Real-Time Connect Daemon has not yet have a typecode associated with the topic_name, it will
defer the creation of the DataWriter until the typecode is discovered. When a new typecode is
discovered, the daemon will scan all rows in the RTIDDS_PUBLICATIONS meta-table and cre-
ate the user tables and DataWriters for entries that were pending on the discovery of the type-
code.

The daemon will also create the DataWriter if there is an entry in the
RTIDDS_PUBLICATIONS table without an associated typecode, but the user subsequently
creates the corresponding table.

If user applications modify an existing row in the RTIDDS_PUBLICATIONS table, the Real-
Time Connect Daemon will first delete the DataWriter that was created for that entry (if it exists)
and then go through the same process of trying to create the user table and DataWriter as if the
row was newly inserted. If user applications delete an existing row in the
RTIDDS_PUBLICATIONS table, the Real-Time Connect Daemon will delete the associated
DataWriter (if it exists).

A flow chart describing this logic is provided below.

wait for
change

what kind of
change?

does user
table exist?

does type-
code exist?

create user-
table in DB

create new
pub

delete existing
pub

INSERT

UPDATE

No

No, defer creation until typecode is discovered

Yes

Yes

if necessary, create
DomainParticipant

in RTIDDS_PUBLICATIONS meta-table
4-26

Meta-Tables
4.5.1.1 Publications Table Schema

The RTIDDS_PUBLICATIONS table is created with the following SQL statement.

Oracle TimesTen (with command-line option -typeMode 1):

Create Table RTIDDS_PUBLICATIONS (
 table_owner VARCHAR(128) NOT NULL,
 table_name VARCHAR(128) NOT NULL,
 domain_id INTEGER NOT NULL,
 topic_name VARCHAR(200),
 type_name VARCHAR(200),
 table_history_depth INTEGER,
 resolution_column VARCHAR(255),
 idl_member_prefix_max_length INTEGER,
 idl_member_suffix_max_length INTEGER,
 profile_name VARCHAR(255),
 "pub.present.access_scope" VARCHAR(25),
 "pub.present.ordered_access" TINYINT,
 "pub.partition.name" VARCHAR(256),
 "dw.durability.kind" VARCHAR(30),
 "dw.liveliness.lease_dur.sec" INTEGER,
 "dw.liveliness.lease_dur.nsec" INTEGER,
 "dw.deadline.period.sec" INTEGER,
 "dw.deadline.period.nsec" INTEGER,
 "dw.history.kind" VARCHAR(21),
 "dw.history.depth" INTEGER,
 "dw.ownership.kind" VARCHAR(23),
 "dw.ownership_strength.value" INTEGER,
 "dw.publish_mode.kind" VARCHAR(29),
 "dw.res_limits.max_samples" INTEGER,
 "dw.res_limits.max_instances" INTEGER,
 PRIMARY KEY(table_owner,table_name,domain_id,topic_name)
)

Oracle TimesTen (with command-line option -typeMode 0):

Create Table RTIDDS_PUBLICATIONS (
 table_owner TT_VARCHAR(128) NOT NULL,
 table_name TT_VARCHAR(128) NOT NULL,
 domain_id TT_INTEGER NOT NULL,
 topic_name TT_VARCHAR(200),
 type_name TT_VARCHAR(200),
 table_history_depth TT_INTEGER,
 resolution_column TT_VARCHAR(255),
 idl_member_prefix_max_length TT_INTEGER,
 idl_member_suffix_max_length TT_INTEGER,
 profile_name TT_VARCHAR(255),
 "pub.present.access_scope" TT_VARCHAR(25),
 "pub.present.ordered_access" TT_TINYINT,
 "pub.partition.name" TT_VARCHAR(256),
 "dw.durability.kind" TT_VARCHAR(30),
 "dw.liveliness.lease_dur.sec" TT_INTEGER,
 "dw.liveliness.lease_dur.nsec" TT_INTEGER,
 "dw.deadline.period.sec" TT_INTEGER,
 "dw.deadline.period.nsec" TT_INTEGER,
 "dw.history.kind" TT_VARCHAR(21),
 "dw.history.depth" TT_INTEGER,
 "dw.ownership.kind" TT_VARCHAR(23),
 "dw.ownership_strength.value" TT_INTEGER,
4-27

Meta-Tables
 "dw.publish_mode.kind" TT_VARCHAR(29),
 "dw.res_limits.max_samples" TT_INTEGER,
 "dw.res_limits.max_instances" TT_INTEGER,
 PRIMARY KEY(table_owner,table_name,domain_id,topic_name)
)

Oracle Database 11g:

Create Table RTIDDS_PUBLICATIONS (
 table_owner VARCHAR(128) NOT NULL,
 table_name VARCHAR(128) NOT NULL,
 domain_id NUMBER(10) NOT NULL,
 topic_name VARCHAR(200),
 type_name VARCHAR(200),
 table_history_depth NUMBER(10),
 resolution_column VARCHAR(255),
 idl_member_prefix_max_length NUMBER(10),
 idl_member_suffix_max_length NUMBER(10),
 profile_name VARCHAR(255),
 "pub.present.access_scope" VARCHAR(25),
 "pub.present.ordered_access" NUMBER(3),
 "pub.partition.name" VARCHAR(256),
 "dw.durability.kind" VARCHAR(30),
 "dw.liveliness.lease_dur.sec" NUMBER(10),
 "dw.liveliness.lease_dur.nsec" NUMBER(10),
 "dw.deadline.period.sec" NUMBER(10),
 "dw.deadline.period.nsec" NUMBER(10),
 "dw.history.kind" VARCHAR(21),
 "dw.history.depth" NUMBER(10),
 "dw.ownership.kind" VARCHAR(23),
 "dw.ownership_strength.value" NUMBER(10),
 "dw.publish_mode.kind" VARCHAR(29),
 "dw.res_limits.max_samples" NUMBER(10),
 "dw.res_limits.max_instances" NUMBER(10),
 PRIMARY KEY(table_owner,table_name,domain_id,topic_name)
)

MySQL1:

Create Table RTIDDS_PUBLICATIONS (
 table_owner VARCHAR(128) NOT NULL,
 table_name VARCHAR(128) NOT NULL,
 domain_id INTEGER NOT NULL,
 topic_name VARCHAR(200),
 type_name VARCHAR(200),
 table_history_depth INTEGER,
 resolution_column VARCHAR(255),
 idl_member_prefix_max_length INTEGER,
 idl_member_suffix_max_length INTEGER,
 profile_name VARCHAR(255),
 "pub.present.access_scope" VARCHAR(25),
 "pub.present.ordered_access" TINYINT,
 "pub.partition.name" VARCHAR(256),
 "dw.durability.kind" VARCHAR(30),
 "dw.liveliness.lease_dur.sec" INTEGER,
 "dw.liveliness.lease_dur.nsec" INTEGER,
 "dw.deadline.period.sec" INTEGER,

1. See Starting the MySQL Server in ANSI_QUOTES mode (Section 4.1.2.4).
4-28

Meta-Tables
 "dw.deadline.period.nsec" INTEGER,
 "dw.history.kind" VARCHAR(21),
 "dw.history.depth" INTEGER,
 "dw.ownership.kind" VARCHAR(23),
 "dw.ownership_strength.value" INTEGER,
 "dw.publish_mode.kind" VARCHAR(29),
 "dw.res_limits.max_samples" INTEGER,
 "dw.res_limits.max_instances" INTEGER,
 changes_queue_maximum_size INTEGER,
 RTIRTC_SCN BIGINT DEFAULT 0,
 PRIMARY KEY(table_owner,table_name,domain_id,topic_name)
)

Users should use the same SQL statement in their own applications if they want to create and
populate this table before the Real-Time Connect Daemon is started. Table 4.17 describes how
each column is used by the daemon in creating and using DataWriters that publish table
changes.

Table 4.17 RTIDDS_PUBLICATIONS Table Schema

Column Name SQL Type Null
-able Default if NULL Described in...

table_ownera VARCHAR(128) No N/A Section 4.5.1.1.4

table_namea VARCHAR(128) No N/A Section 4.5.1.1.4

domain_ida INTEGER No N/A Section 4.5.1.1.5

topic_namea VARCHAR(200) Yes <table_owner>.<table_name> Section 4.5.1.1.6

type_name VARCHAR(200) Yes <topic_name> Section 4.5.1.1.7

table_history_depth INTEGER Yes 0 Section 4.5.1.1.8

resolution_column VARCHAR(255) Yes None Section 4.5.1.1.9

idl_member_prefix_max_length INTEGER Yes Value specified in the configuration file Section 4.5.1.1.10

idl_member_suffix_max_length INTEGER Yes Value specified in the configuration file Section 4.5.1.1.10

profile_name VARCHAR(255) Yes
Real-Time Connect will not use a profile to
create the publication

Section 4.5.1.1.11

pub.present.access_scope VARCHAR(25) Yes INSTANCE_PRESENTATION_QOS Section 4.5.1.1.12

pub.present.ordered_access TINYINT Yes 0 (false) Section 4.5.1.1.12

pub.partition.name VARCHAR(256) Yes Empty string partition Section 4.5.1.1.13

dw.durability.kind VARCHAR(30) Yes VOLATILE_DURABILITY_QOS Section 4.5.1.1.14

dw.liveliness.lease_dur.sec INTEGER Yes Infinite Section 4.5.1.1.15

dw.liveliness.lease_dur.nsec INTEGER Yes Infinite Section 4.5.1.1.15

dw.deadline.period.sec INTEGER Yes Infinite Section 4.5.1.1.16

dw.deadline.period.nsec INTEGER Yes Infinite Section 4.5.1.1.16

dw.history.kind VARCHAR(21) Yes KEEP_LAST_HISTORY_QOS Section 4.5.1.1.17

dw.history.depth INTEGER Yes 1 Section 4.5.1.1.17

dw.ownership.kind VARCHAR(23) Yes SHARED_OWNERSHIP_QOS Section 4.5.1.1.18

dw.ownership_strength.value INTEGER Yes 0 Section 4.5.1.1.18

dw.publish_mode.kind VARCHAR(29) Yes
SYNCHRONOUS_PUBLISH_
MODE_QOS

Section 4.5.1.1.19

dw.res_limits.max_samples INTEGER Yes Infinite Section 4.5.1.1.20

dw.res_limits.max_instances INTEGER Yes Infinite Section 4.5.1.1.20

changes_queue_maximum_size INTEGER Yes Infinite Section 4.5.1.1.21
4-29

Meta-Tables
4.5.1.1.4 table_owner, table_name

These columns specify the user table for which changes will be published using a DataWriter.
Because a DBMS uses a combination of <table_owner>.<table_name> to identify a table, both of
these columns must have valid values should the user want these entries to refer to an existing
table.

If no table exists in the database with the identifier “<table_owner>.<table_name>” at the time
that the daemon sees this entry in the RTIDDS_PUBLICATIONS meta-table, it will create a
user table with this name automatically, see User-Table Creation (Section 4.6).

Note: In MySQL, the value of the table_owner column corresponds to the table schema or data-
base name.

4.5.1.1.5 domain_id

This column specifies the domain ID that will be used to publish changes in the table. Before cre-
ating a DataWriter, if no DomainParticipant has previously been created with the domain ID, the
Real-Time Connect Daemon will create a DomainParticipant with the specified ID.

If the publications entry has associated a QoS profile, Real-Time Connect will use the values in
this profile to create the participant. The participant will also be configured using the QoS values
of a profile when the attribute, is_default_qos, is set to 1 in that profile (see the RTI Core Libraries
and Utilities User’s Manual for additional details).

4.5.1.1.6 topic_name

These column defines the Topic that will be used to publish the changes in the associated table.
The <topic_name> need to match the Topic used by subscriptions in user applications that
expect to received data changes from the table. If the Real-Time Connect Daemon has discovered
the typecode associated with the <topic_name> and the user table does not exist in the data-
base, the daemon will use the typecode to create the table using entries in the <table_owner>
and <table_name> column. See User-Table Creation (Section 4.6) for more details.

4.5.1.1.7 type_name

This column defines the registered name of the type associated with the Topic defined using the
column <topic_name>. If the user table does not exist in the database, the daemon will use the
type name to find a typecode in the XML configuration file. See User-Table Creation (Section 4.6)
for more details.

4.5.1.1.8 table_history_depth

The <table_history_depth> column in the RTIDDS_PUBLICATIONS determines whether or
not the Real-Time Connect Daemon will create the user table with additional meta-columns that
support the storing of historic, or past, values of instances of Topics by DataReaders created
with the RTIDDS_SUBSCRIPTIONS table. It is only used if the daemon creates the table
because it does not exist.

More about the ability to store historic data in the table as well as the added meta-columns can
be found in table_history_depth (Section 4.5.2.1.5) and in User-Table Creation (Section 4.6).

RTIRTC_SCN BIGINT Yes Next SCN number Section 4.5.1.1.22

a. Primary key column

Table 4.17 RTIDDS_PUBLICATIONS Table Schema

Column Name SQL Type Null
-able Default if NULL Described in...
4-30

Meta-Tables
This column is useful in the case that the user wants the Real-Time Connect Daemon to both pub-
lish and subscribe to a Topic for the same user table. The value set in <table_history_depth>
will enable the daemon to create the user table correctly if the user wants to store more than a
single value for an instance of the Topic in the table.

The possible values for <table_history_depth> column are:

❏ NULL or 0

These values should be used if the user does not want to store more than a single value
for an instance of a Topic in the table.

If the Real-Time Connect Daemon creates the table, it will not add any meta-columns for
table history to the table schema.

❏ Any other value

For any non-zero value in this column, the Real-Time Connect Daemon will add meta-col-
umns for table history to the table schema when it creates the user table automatically.

A table’s schema or definition cannot be changed to accommodate the table-history
meta-columns after a table has been created. So a non-zero value for this column is useful
if the user wants the table to be created with the ability to store historic values in support
of entries in the RTIDDS_SUBSCRIPTIONS table that may be made later.

4.5.1.1.9 resolution_column

This column is used to designate one of the columns of the user table for use as the timestamp
when data changes are published with the DataWriter. Instead of using the system time, when a
row in the user table changes, the Real-Time Connect Daemon will take the current value of the
designated column and use it in the DataWriter::write_w_timestamp() method when publish-
ing the value of the row.

The possible values for the <resolution_column> column are:

❏ NULL

If this column is NULL, then the Real-Time Connect Daemon will just call DDSDataW-
riter::write() to publish the table changes. This implies that the source timestamp used by
Connext will be the system time when the write occurred.

❏ “column_name”

The column name of any column in the user table that has a valid type. The column must
be one of the following SQL types: INTEGER, SMALLINT, BIGINT, or TIMESTAMP.

If the user directs the daemon to use a column from the user table as the timestamp, then
it is imperative to the proper operation of the publication that the value in the timestamp
column is monotonically increasing with every table change. So when a change is made to
a row of the table, the value in the column <resolution_column> must be larger than the
last value of this column that was published.

The <resolution_column> can be used with the <dr.destination_order.kind> column of the
RTIDDS_SUBSCRIPTIONS table to implement a conflict resolution policy in a system where
Real-Time Connect is used to implement database table replication across a network. See
dr.destination_order.kind (Section 4.5.2.1.18) and TableReplicationMode on page 4-15 for more
information.
4-31

Meta-Tables
4.5.1.1.10 idl_member_prefix_max_length, idl_member_suffix_max_length

These columns define how Real-Time Connect maps IDL member identifiers into column names.
In particular, they control how the column names are formed by using as a prefix n characters
from the identifier’s prefix and m characters from the identifier’s suffix.

They can assume any value greater than or equal to -1. They cannot both be set to zero.

If a positive value n is provided for idl_member_prefix_max_length, Real-Time Connect will use
the first n characters from the IDL member identifier to compose the associated column name. A
value of 0 tells Real-Time Connect to compose the column name using only the last characters of
the identifiers, as defined by the ‘idl_member_suffix_max_length’ column. A value of -1,
instructs Real-Time Connect to use all the available characters.

If a positive value n is provided for idl_member_suffix_max_length, Real-Time Connect will use
the last n characters from the IDL member identifier to compose the associated column name. A
value of 0 tells Real-Time Connect to compose the column name using only the first characters of
the identifiers, as defined by the ‘idl_member_prefix_max_length’ column. A value of -1,
instructs Real-Time Connect to use all the available characters.

4.5.1.1.11 profile_name

This column specifies the name of the QoS Profile that Real-Time Connect will use to create the
publication.

The name must have the following format:

<QoS profile library name>::<QoS profile name>

See the Connext documentation for a complete description of QoS Profiles.

The QoS values specified in the publication table (if they are not NULL) take precedence over
the same values specified in the QoS profile.

4.5.1.1.12 pub.present.access_scope, pub.present.ordered_access

These two columns map directly to the DDS_PresentationQosPolicy of the DDS_PublisherQos
used by the Publisher that is created with the DataWriter for publishing changes to the table.
The DDS_PresentationQosPolicy specifies how the samples representing changes to data
instances are presented to a subscribing application.

The specific columns affect the relative order of changes seen by subscribers to the table. The
values of these columns must be coordinated with the values of the DDS_PresentationQosPolicy
used by the Subscriber in the receiving application or else published data may not be received
by the subscriber.

The possible values for the <pub.present.access_scope> column are:

❏ “INSTANCE_PRESENTATION_QOS” (default value if the column is NULL)

❏ “TOPIC_PRESENTATION_QOS”

❏ “GROUP_PRESENTATION_QOS”

The possible values for the <pub.present.ordered_access> column are:

❏ 0 (default value if the column is NULL)

❏ 1

For the best performance of the Real-Time Connect Daemon, you should set <pub.pres-
ent.access_scope> to “TOPIC_PRESENTATION_QOS” and <pub.present.ordered_access> to 1.
4-32

Meta-Tables
This will require that the corresponding values in the DDS_PresentationQosPolicy of the Sub-
scriber in the receiving applications to be changed to those values as well.

See the Connext documentation for more details on how this QoS policy may be used. See also
sub.present.access_scope, sub.present.ordered_access (Section 4.5.2.1.14).

4.5.1.1.13 pub.partition.name

For publishing table changes, Real-Time Connect creates a DataWriter per table. The pub.parti-
tion.name column maps directly to the DDS_PartitionQosPolicy of the DDS_PublisherQos used
by the Publisher that is created with the DataWriter. The DDS_PartitionQosPolicy introduces a
logical partition concept inside the ‘physical’ partition concept introduced by the domain ID. A
Publisher can communicate with a Subscriber only if they have some partition in common. The
value of the pub.partition.name column specifies a list of partitions separated by commas to
which the Publisher belongs.

See the Connext documentation for more details on how this QoS policy may be used. See also
sub.partition.name (Section 4.5.2.1.15)

4.5.1.1.14 dw.durability.kind

This column maps directly to the DDS_DurabilityQosPolicy of the DataWriter created to publish
table changes. By changing this policy, the Real-Time Connect Daemon can be configured to
resend past changes to the database table to remote applications as soon as their subscriptions
are discovered.

Only changes made by local applications to the table will be sent. That is, if the daemon is con-
figured to subscribe to and store changes into the table from remote DataWriters, those changes
are not sent. In addition, the changes will only be sent if the DataReader is created with a reliable
setting for its DDS_ReliabilityQosPolicy.

The number of past changes that will be sent is limited by the values of the <dw.history.kind>,
<dw.history.depth> and <dw.res_limits.max_samples> columns.

The possible values for the <dw.durability.kind> column are:

❏ “VOLATILE_DURABILITY_QOS”

This value prevents the daemon from sending past changes to the table to newly discov-
ered DataReaders.

This also the default value if the column is NULL.

❏ “TRANSIENT_LOCAL_DURABILITY_QOS”

This value will enable the daemon to send past changes to the table to newly discovered
DataReaders. The DataReaders must be created with reliable DDS_ReliabilityQosPolicy.

NOTE: If a table exists when the Real-Time Connect Daemon creates a DataWriter, the daemon
will initialize the DataWriter with the current contents of the table such that those values will be
sent to new DataReaders with their DDS_DurabilityQosPolicy set to
”TRANSIENT_LOCAL_DURABILITY_QOS.”

See the Connext documentation for more details on how this QoS policy may be used. See also
dr.durability.kind (Section 4.5.2.1.16) and dr.reliability.kind (Section 4.5.2.1.17).

4.5.1.1.15 dw.liveliness.lease_dur

These columns specify the lease duration for the DDS_LivelinessQosPolicy for the DataWriter
created to publish table changes. The user may need to change the lease duration if remote
applications have modified their DataReaders’ corresponding DDS_LivelinessQosPolicy to non-
default values.
4-33

Meta-Tables
The possible values of the <dw.liveliness.lease_dur.sec> (seconds) and <dw.liveli-
ness.lease_dur.nsec> (nanoseconds) columns are:

❏ An infinite lease duration is specified if both columns are NULL or contain the value
2147483647 (231 - 1). This is the DDS default value.

❏ A non-zero value representing the number of seconds and nanoseconds for the lease
duration.

Note: DDS_LivelinessQosPolicy.kind is always set to DDS_AUTOMATIC_LIVELINESS_QOS.

See the Connext documentation for more details on how this QoS policy may be used. See also
dr.liveliness.lease_dur (Section 4.5.2.1.19).

4.5.1.1.16 dw.deadline.period

These columns specify the deadline period for the DDS_DeadlineQosPolicy for the DataWriter
created to publish table changes. The user may need to change the deadline period if remote
applications have modified their DataReaders’ corresponding DDS_DeadlineQosPolicy to non-
default values.

The possible values of the <dw.deadline.period.sec> (seconds) and <dw.deadline.period.nsec>
(nanoseconds) columns are:

❏ An infinite deadline period is specified if both columns are NULL or contain the value
2147483647 (231 - 1). This is the DDS default value.

❏ A non-zero value representing the number of seconds and nanoseconds for the deadline
period.

The DDS_DeadlineQosPolicy sets a commitment by the DataWriter to publish a value for every
data instance to DataReaders every deadline period. If this value is set to a non-infinite value,
user applications must update the value of every instance of the Topic stored in the table within
each deadline period or the contract with DataReaders that subscribe to the changes to the table
will be violated.

See the Connext documentation for more details on how this QoS policy may be used. See also
dr.deadline.period (Section 4.5.2.1.20).

4.5.1.1.17 dw.history.kind, dw.history.depth

These columns directly map to the DDS_HistoryQosPolicy for the DataWriter created to publish
table changes. The values set for this QoS policy affect the DDS_ReliabilityQosPolicy and the
DDS_DurabilityQosPolicy.

Using a “KEEP_ALL_HISTORY_QOS” will ensure that reliable DataReaders will receive every
change to the table reliably. With a “KEEP_LAST_HISTORY_QOS,” the Real-Time Connect Dae-
mon will only guarantee that the last <dw.history.depth> changes for each data instance are
sent reliably.

If the <dw.durability.kind> column of the row is set to “TRANSIENT_LOCAL_DURA-
BILITY_QOS”, then these columns determine how many past data changes are sent to new sub-
scribers to table changes.

The possible values of the <dw.history.kind> and <dw.history.depth> columns are:

❏ “KEEP_LAST_HISTORY_QOS”

For this setting, the column <dw.history.depth> determines how many published
changes for each data instance in the table are stored in the DataWriter to support reli-
ability or durability.
4-34

Meta-Tables
<dw.history.depth> should be set to an integer greater than 0. The default value for his-
tory depth is 1 if this column is NULL.

❏ “KEEP_ALL_HISTORY_QOS” (default value if the column is NULL)

This setting implies that the DataWriter created to publish table changes will store all of
the changes to the table that it has sent. The total number of changes that can be stored is
limited by the value in the
<dw.res_limits.-max_samples> column.

For this setting, the value in <dw.history.depth> is ignored.

See the Connext documentation for more details on how this QoS policy may be used. See also
dw.durability.kind (Section 4.5.1.1.14) and dw.res_limits.max_samples,
dw.res_limits.max_instances (Section 4.5.1.1.20).

4.5.1.1.18 dw.ownership.kind, dw.ownership_strength.value

These columns directly map to the DDS_OwnershipQosPolicy and DDS_Ownership-Strength-
QosPolicy for the DataWriter created to publish table changes. These policies control whether or
not DataReaders are allowed to receive changes to an instance of a Topic from multiple DataW-
riters simultaneously.

The possible values of the <dw.ownership.kind> and <dw.ownership_strength.value> columns
are:

❏ “SHARED_OWNERSHIP_QOS” (default value if the column is NULL)

This setting allows DataReaders to receive updates for an instance of a Topic from multi-
ple DataWriters at the same time.

❏ “EXCLUSIVE_OWNERSHIP_QOS”

This setting prevents a DataReader from receiving changes from more than a single
DataWriter for an instance of a Topic at the same time.

The DataReader will receive changes for a topic instance from the DataWriter with the
greatest value of ownership strength. If the liveliness of the DataWriter fails or if the
DataWriter fails to write within a deadline period, then the DataReader will receive pub-
lished changes to the topic instance from the DataWriter with the next highest ownership
strength.

The ownership strength set is set in the <dw.ownerhip_strength.value> column. The
default value is 0 if the column is NULL.

See the Connext documentation for more details on how this QoS policy may be used. See also
dw.liveliness.lease_dur (Section 4.5.1.1.15), dw.deadline.period (Section 4.5.1.1.16), and dr.own-
ership.kind (Section 4.5.2.1.22).

4.5.1.1.19 dw.publish_mode.kind

This column controls the type of DataWriter that Real-Time Connect will create for publishing
data. This column can take the following values:

❏ ASYNCHRONOUS_PUBLISH_MODE_QOS

❏ SYNCHRONOUS_PUBLISH_MODE_QOS (default value)

Asynchronous DataWriters were introduced in Connext to support large data packets (greater
than 64Kb). If IDL data types exceed the 64Kb limit and reliable communication is used,
dw.publish_mode.kind must be set to ‘ASYNCHRONOUS_PUBLISH_MODE_QOS’.
4-35

Meta-Tables
See the Connext documentation for more details on the differences between synchronous and
asynchronous DataWriters.

4.5.1.1.20 dw.res_limits.max_samples, dw.res_limits.max_instances

These columns set some parameters for the DDS_ResourceLimitsQosPolicy for the DataWriter
created to publish table changes. In particular, they control the amount of memory that the sys-
tem is allowed to allocate for storing published data values as well as the total number of data
instances (different primary keys) that can be handled by the DataWriter.

A value of -1 for either of these columns means infinite. An infinite setting means that the
DataWriter is allowed to allocate memory as needed to store published table changes and man-
age new keys.

❏ The default value for dw.res_limits.max_samples (if set to NULL) is 32.

❏ The default value for dw.res_limits.max_instances (if set to NULL) is -1.

The number of keys that the DataWriter is allowed to manage places an upper limit on the num-
ber of rows that the related table in the database can have.

See the Connext documentation for more details on how this QoS policy may be used.

4.5.1.1.21 changes_queue_maximum_size

This column is available only for connections to a MySQL database. The value of the column
configures the maximum size of the queue that maintains the list of uncommitted changes. Note
that there is a separate queue per table.

A value of -1 is used to indicate unlimited size.

4.5.1.1.22 RTIRTC_SCN

The System Change Number (SCN) column is available only for connections to a MySQL data-
base. The value of this column is automatically maintained by Real-Time Connect and is usually
of no interest to the application. For more information about the RTIRTC_SCN column see
Section 4.6.

4.5.2 Subscriptions Table

When entries (rows) are added to the meta-table RTIDDS_SUBSCRIPTIONS, the Real-Time
Connect Daemon will try to create a DataReader (and Subscriber along with a DomainPartici-
pant if required) and use it to receive data via the Connext for a Topic and store values into the
designated user table.

If the RTIDDS_SUBSCRIPTIONS table does not exist at startup, the Real-Time Connect Daemon
will create it with the table owner set to the user name of the database connection as specified in
the daemon’s configuration file, see Section 4.4. The schema and meaning of the columns of this
table are described in the next section.

You may insert new rows or modify the column values of existing rows in this table at any time.
For a new row, the daemon will first check to see if the designated user table exists. If so, it will
immediately create the DataReader with the QoS values specified by the entry. The name of the
Topic to subscribe to may be specified by the topic_name column or automatically constructed
as <table_owner>.<table_name> if the topic_name entry is NULL.

If the user table does not exist, the Real-Time Connect Daemon will look for the typecode associ-
ated with the type defined in the topic_name column. If it finds the typecode, the daemon will
create the user table with a SQL table schema derived from the typecode following the IDL type
to SQL type mapping described in Chapter 5: IDL/SQL Semantic and Data Mapping. Then the
4-36

Meta-Tables
daemon will proceed to create the associated DataReader. More about the creation of user tables
by the daemon can be found in User-Table Creation (Section 4.6).

How the daemon discovers and stores typecodes is described in Typecodes (Section 4.1.4).

If the Real-Time Connect Daemon does not yet have a typecode associated with the topic_name, it
will defer the creation of the DataReader until the typecode is discovered. When a new typecode
is discovered, the daemon will scan all rows in the RTIDDS_SUBSCRIPTIONS meta-table and
create the user tables and DataReaders for entries that were pending on the discovery of the
typecode.

The daemon will also create the DataReader if there is an entry in the
RTIDDS_SUBSCRIPTIONS table without an associated typecode, but the user subsequently
creates the corresponding table.

If user applications modify an existing row in the RTIDDS_SUBSCRIPTIONS table, the Real-
Time Connect Daemon will first delete the DataReader that was created for that entry (if it exists)
and then go through the same process of trying to create the user table and DataReader as if the
row was newly inserted.

If user applications delete an existing row in the RTIDDS_SUBSCRIPTIONS table, the Real-
Time Connect Daemon will delete the associated DataReader (if it exists).

A flow chart describing this logic is provided below.

wait for
change

what kind of
change?

does user
table exist?

does type-
code exist?

create user-
table in DB

create new
sub

delete existing
sub

INSERT

UPDATE

No

No, defer creation until typecode is discovered

Yes

Yes

if necessary, create
DomainParticipant

in RTIDDS_SUBSCRIPTIONS meta-table
4-37

Meta-Tables
4.5.2.1 Subscriptions Table Schema

The RTIDDS_SUBSCRIPTIONS table is created with the following SQL statement.

Oracle TimesTen (with command-line option -typeMode 1):

Create Table RTIDDS_SUBSCRIPTIONS (
 table_owner VARCHAR(128) NOT NULL,
 table_name VARCHAR(128) NOT NULL,
 domain_id INTEGER NOT NULL,
 topic_name VARCHAR(200),
 type_name VARCHAR(200),
 table_history_depth INTEGER,
 process_batch INTEGER,
 "process_period.sec" INTEGER,
 "process_period.nsec" INTEGER,
 commit_type VARCHAR(17),
 cache_maximum_size INTEGER,
 cache_initial_size INTEGER,
 delete_on_dispose INTEGER,
 idl_member_prefix_max_length INTEGER,
 idl_member_suffix_max_length INTEGER,
 profile_name VARCHAR(255),
 filter_duplicates TINYINT,
 ordered_store TINYINT,
 persist_state TINYINT,
 "sub.present.access_scope" VARCHAR(25),
 "sub.present.ordered_access" TINYINT,
 "sub.partition.name" VARCHAR(256),
 "dr.durability.kind" VARCHAR(30),
 "dr.reliability.kind" VARCHAR(27),
 "dr.destination_order.kind" VARCHAR(43),
 "dr.liveliness.lease_dur.sec" INTEGER,
 "dr.liveliness.lease_dur.nsec" INTEGER,
 "dr.deadline.period.sec" INTEGER,
 "dr.deadline.period.nsec" INTEGER,
 "dr.history.kind" VARCHAR(21),
 "dr.history.depth" INTEGER,
 "dr.ownership.kind" VARCHAR(23),
 "dr.time_filter.min_sep.sec" INTEGER,
 "dr.time_filter.min_sep.nsec" INTEGER,
 "dr.res_limits.max_samples" INTEGER,
 "dr.res_limits.max_instances" INTEGER,
 "dr.unicast.receive_port" INTEGER,
 "dr.multicast.receive_address" VARCHAR(39),
 "dr.multicast.receive_port" INTEGER,
 PRIMARY KEY(table_owner,table_name,domain_id,topic_name)
)

Oracle TimesTen (with command-line option -typeMode 0):

Create Table RTIDDS_SUBSCRIPTIONS (
 table_owner TT_VARCHAR(128) NOT NULL,
 table_name TT_VARCHAR(128) NOT NULL,
 domain_id TT_INTEGER NOT NULL,
 topic_name TT_VARCHAR(200),
 type_name TT_VARCHAR(200),
 table_history_depth TT_INTEGER,
 process_batch TT_INTEGER,
 "process_period.sec" TT_INTEGER,
 "process_period.nsec" TT_INTEGER,
 commit_type TT_VARCHAR(17),
 cache_maximum_size TT_INTEGER,
 cache_initial_size TT_INTEGER,
4-38

Meta-Tables
 delete_on_dispose TT_INTEGER,
 idl_member_prefix_max_length TT_INTEGER,
 idl_member_suffix_max_length TT_INTEGER,
 profile_name TT_VARCHAR(255),
 filter_duplicates TT_TINYINT,
 ordered_store TT_TINYINT,
 persist_state TT_TINYINT,
 "sub.present.access_scope" TT_VARCHAR(25),
 "sub.present.ordered_access" TT_TINYINT,
 "sub.partition.name" TT_VARCHAR(256),
 "dr.durability.kind" TT_VARCHAR(30),
 "dr.reliability.kind" TT_VARCHAR(27),
 "dr.destination_order.kind" TT_VARCHAR(43),
 "dr.liveliness.lease_dur.sec" TT_INTEGER,
 "dr.liveliness.lease_dur.nsec" TT_INTEGER,
 "dr.deadline.period.sec" TT_INTEGER,
 "dr.deadline.period.nsec" TT_INTEGER,
 "dr.history.kind" TT_VARCHAR(21),
 "dr.history.depth" TT_INTEGER,
 "dr.ownership.kind" TT_VARCHAR(23),
 "dr.time_filter.min_sep.sec" TT_INTEGER,
 "dr.time_filter.min_sep.nsec" TT_INTEGER,
 "dr.res_limits.max_samples" TT_INTEGER,
 "dr.res_limits.max_instances" TT_INTEGER,
 "dr.unicast.receive_port" TT_INTEGER,
 "dr.multicast.receive_address" TT_VARCHAR(39),
 "dr.multicast.receive_port" TT_INTEGER,
 PRIMARY KEY(table_owner,table_name,domain_id,topic_name)
)

Oracle Database 11g:

Create Table RTIDDS_SUBSCRIPTIONS (
 table_owner VARCHAR(128) NOT NULL,
 table_name VARCHAR(128) NOT NULL,
 domain_id NUMBER(10) NOT NULL,
 topic_name VARCHAR(200),
 type_name VARCHAR(200),
 table_history_depth NUMBER(10),
 process_batch NUMBER(10),
 "process_period.sec" NUMBER(10),
 "process_period.nsec" NUMBER(10),
 commit_type VARCHAR(17),
 cache_maximum_size NUMBER(10),
 cache_initial_size NUMBER(10),
 delete_on_dispose NUMBER(10),
 idl_member_prefix_max_length NUMBER(10),
 idl_member_suffix_max_length NUMBER(10),
 profile_name VARCHAR(255),
 filter_duplicates NUMBER(3),
 ordered_store NUMBER(3),
 persist_state NUMBER(3),
 "sub.present.access_scope" VARCHAR(25),
 "sub.present.ordered_access" NUMBER(3),
 "sub.partition.name" VARCHAR(256),
 "dr.durability.kind" VARCHAR(30),
 "dr.reliability.kind" VARCHAR(27),
 "dr.destination_order.kind" VARCHAR(43),
 "dr.liveliness.lease_dur.sec" NUMBER(10),
 "dr.liveliness.lease_dur.nsec" NUMBER(10),
 "dr.deadline.period.sec" NUMBER(10),
 "dr.deadline.period.nsec" NUMBER(10),
 "dr.history.kind" VARCHAR(21),
4-39

Meta-Tables
 "dr.history.depth" NUMBER(10),
 "dr.ownership.kind" VARCHAR(23),
 "dr.time_filter.min_sep.sec" NUMBER(10),
 "dr.time_filter.min_sep.nsec" NUMBER(10),
 "dr.res_limits.max_samples" NUMBER(10),
 "dr.res_limits.max_instances" NUMBER(10),
 "dr.unicast.receive_port" NUMBER(10),
 "dr.multicast.receive_address" VARCHAR(39),
 "dr.multicast.receive_port" NUMBER(10),
 PRIMARY KEY(table_owner,table_name,domain_id,topic_name)
)

MySQL1:

Create Table RTIDDS_SUBSCRIPTIONS (
 table_owner VARCHAR(128) NOT NULL,
 table_name VARCHAR(128) NOT NULL,
 domain_id INTEGER NOT NULL,
 topic_name VARCHAR(200),
 type_name VARCHAR(200),
 table_history_depth INTEGER,
 process_batch INTEGER,
 "process_period.sec" INTEGER,
 "process_period.nsec" INTEGER,
 commit_type VARCHAR(17),
 cache_maximum_size INTEGER,
 cache_initial_size INTEGER,
 delete_on_dispose INTEGER,
 idl_member_prefix_max_length INTEGER,
 idl_member_suffix_max_length INTEGER,
 profile_name VARCHAR(255),
 filter_duplicates TINYINT,
 ordered_store TINYINT,
 persist_state TINYINT,
 "sub.present.access_scope" VARCHAR(25),
 "sub.present.ordered_access" TINYINT,
 "sub.partition.name" VARCHAR(256),
 "dr.durability.kind" VARCHAR(30),
 "dr.reliability.kind" VARCHAR(27),
 "dr.destination_order.kind" VARCHAR(43),
 "dr.liveliness.lease_dur.sec" INTEGER,
 "dr.liveliness.lease_dur.nsec" INTEGER,
 "dr.deadline.period.sec" INTEGER,
 "dr.deadline.period.nsec" INTEGER,
 "dr.history.kind" VARCHAR(21),
 "dr.history.depth" INTEGER,
 "dr.ownership.kind" VARCHAR(23),
 "dr.time_filter.min_sep.sec" INTEGER,
 "dr.time_filter.min_sep.nsec" INTEGER,
 "dr.res_limits.max_samples" INTEGER,
 "dr.res_limits.max_instances" INTEGER,
 "dr.unicast.receive_port" INTEGER,
 "dr.multicast.receive_address" VARCHAR(39),
 "dr.multicast.receive_port" INTEGER,
 RTIRTC_SCN BIGINT DEFAULT 0,
 PRIMARY KEY(table_owner,table_name,domain_id,topic_name)
)

Users should use the same SQL statement in their own applications if they want to create and
populate this table before the Real-Time Connect Daemon is started. Table 4.18 describes how

1. See Starting the MySQL Server in ANSI_QUOTES mode (Section 4.1.2.4).
4-40

Meta-Tables
each column is used by the daemon in creating DataReaders and storing received data into
tables.

Table 4.18 RTIDDS_SUBSCRIPTIONS Table Schema

Column Name SQL Type Null-
able Default if NULL Described in...

table_ownera VARCHAR(128) No N/A Section 4.5.2.1.1

table_namea VARCHAR(128) No N/A Section 4.5.2.1.1

domain_ida INTEGER No N/A Section 4.5.2.1.2

topic_namea VARCHAR(200) YES <table_owner>.<table_name> Section 4.5.2.1.3

type_name VARCHAR(200) YES <topic_name> Section 4.5.2.1.4

table_history_depth INTEGER YES 0 Section 4.5.2.1.5

process_batch INTEGER YES 10 Section 4.5.2.1.6

process_period.sec INTEGER YES 0 Section 4.5.2.1.6

process_period.nsec INTEGER YES 100000000 Section 4.5.2.1.6

commit_type VARCHAR(17) YES COMMIT_ON_PROCESS Section 4.5.2.1.6

cache_maximum_size INTEGER YES 0 Section 4.5.2.1.7

cache_initial_size INTEGER YES 0 Section 4.5.2.1.7

delete_on_dipose INTEGER YES 0 Section 4.5.2.1.8

idl_member_prefix_max_length INTEGER YES Value specified in the configuration file Section 4.5.2.1.9

idl_member_suffix_max_length INTEGER YES Value specified in the configuration file Section 4.5.2.1.9

profile_name VARCHAR(255) YES
Real-Time Connect will not use a profile to
create the publication

Section 4.5.2.1.10

filter_duplicates TINYINT YES 0 Section 4.5.2.1.11

ordered_store TINYINT YES 1 Section 4.5.2.1.12

persist_state TINYINT YES 0 Section 4.5.2.1.13

sub.present.access_scope VARCHAR(25) YES INSTANCE_PRESENTATION_QOS Section 4.5.2.1.14

sub.present.ordered_access TINYINT YES 0 (false) Section 4.5.2.1.14

sub.partition.name VARCHAR(256) YES Empty partition string Section 4.5.2.1.15

dr.durability.kind VARCHAR(30) YES VOLATILE_DURABILITY_QOS Section 4.5.2.1.16

dr.reliability.kind VARCHAR(27) YES BEST_EFFORT_RELIABILITY_QOS Section 4.5.2.1.17

dr.destination_order.kind VARCHAR(43) YES
BY_RECEPTION_TIMESTAMP_
DESTINATIONORDER_QOS

Section 4.5.2.1.18

dr.liveliness.lease_dur.sec INTEGER YES Infinite Section 4.5.2.1.19

dr.liveliness.lease_dur.nsec INTEGER YES Infinite Section 4.5.2.1.19

dr.deadline.period.sec INTEGER YES Infinite Section 4.5.2.1.20

dr.deadline.period.nsec INTEGER YES Infinite Section 4.5.2.1.20

dr.history.kind VARCHAR(21) YES KEEP_LAST_HISTORY_QOS Section 4.5.2.1.21

dr.history.depth INTEGER YES 1 Section 4.5.2.1.21

dr.ownership.kind VARCHAR(23) YES SHARED_OWNERSHIP_QOS Section 4.5.2.1.22

dr.time_filter.min_sep.sec INTEGER YES 0 Section 4.5.2.1.23

dr.time_filter.min_sep.nsec INTEGER YES 0 Section 4.5.2.1.23

dr.res_limits.max_samples INTEGER YES Infinite Section 4.5.2.1.24

dr.res_limits.max_instances INTEGER YES Infinite Section 4.5.2.1.24

dr.unicast.receive_port INTEGER YES 0 Section 4.5.2.1.25

dr.multicast_receive_address VARCHAR(15) YES None Section 4.5.2.1.26

dr.multicast.receive_port INTEGER YES 0 Section 4.5.2.1.27
4-41

Meta-Tables
4.5.2.1.1 table_owner, table_name

These columns specify the user table into which data received by a DataReader will be stored.
Because a DBMS uses a combination of <table_owner>.<table_name> to identify a table, both of
these columns must have valid values should the user want these entries to refer to an existing
table.

If no table exists in the database with the identifier “<table_owner>.<table_name>” at the time
that the daemon sees this entry in the RTIDDS_SUBSCRIPTIONS meta-table, it will create a
user table with this name automatically, see User-Table Creation (Section 4.6).

Note: In MySQL, the value of the table_owner column corresponds to the table schema or data-
base name.

4.5.2.1.2 domain_id

This column specifies the domain ID that will be used to subscribe to Topics whose values will
be stored in the table. Before creating a DataReader, if no DomainParticipant has previously
been created with the domain ID, the Real-Time Connect Daemon will create a DomainParticipant
with the specified ID.

If the subscriptions entry has an associated QoS profile, Real-Time Connect will use the values in
this profile to create the participant. The participant will also be configured using the QoS values
of a profile when the attribute, is_default_qos, is set to 1 in that profile (see the RTI Core Libraries
and Utilities User’s Manual for additional details).

4.5.2.1.3 topic_name

This column defines the Topic that will be subscribed to and whose received values will be
stored in the associated table. The “<topic_name>” entry needs to match the Topic used by the
DataWriters that are sending data changes.

If the Real-Time Connect Daemon has discovered the typecode associated with the <topic_name>
and the user table does not exist in the database, the daemon will use the typecode to create the
table using entries in the <table_owner> and <table_name> column. See User-Table Creation
(Section 4.6) for more details.

4.5.2.1.4 type_name

This column defines the registered name of the type associated with the Topic defined using the
column <topic_name>. If the user table does not exist in the database, the daemon will use the
type name to find a typecode in the XML configuration file. See User-Table Creation (Section 4.6)
for more details.

4.5.2.1.5 table_history_depth

This column determines the number of values of each instance received by the DataReader that
can be stored in the table by the Real-Time Connect Daemon. For non-keyed Topics, there is only a
single instance, thus the <table_history_depth> would correspond to the maximum size of the
table (in rows).

RTIRTC_SCN BIGINT YES Next SCN number Section 4.5.2.1.28

a. Primary key column.

Table 4.18 RTIDDS_SUBSCRIPTIONS Table Schema

Column Name SQL Type Null-
able Default if NULL Described in...
4-42

Meta-Tables
For keyed Topics, the Real-Time Connect Daemon may store up to <table_history_depth> values
of each instance of the Topic that the DataReader receives. When the history depth is reached,
the rows are reused as a circular buffer with the newest values replacing the oldest.

To support this capability, the associated user table may be created with additional columns,
meta-columns, to help the Real-Time Connect Daemon manage history for a table. Whether or not
meta-columns need to be added to support table history is based on the value of the entry in
<table_history_depth>.

The two meta-columns for supporting table history are:

❏ RTIRTC_HISTORY_SLOT: INTEGER

This column is also added to the Primary Key of the table. There is usually no need for
users to access this column, it is only used by the daemon. It is only needed since many
DBMS systems do not allow you to alter the value of a Primary Key column.

❏ RTIRTC_HISTORY_ORDER: INTEGER

This value of this column is maintained by the Real-Time Connect Daemon when it stores
data received via Connext into the table. The column stores a strictly incrementing coun-
ter that represents the received sequence number (starting at 0) of the data that is stored
in that row.

User should use a combination of the instance key and the value of
RTIRTC_HISTORY_ORDER to find the latest data received for an instance in the table.

The possible values for the <table_history_depth> column are:

❏ NULL or 0

Only the current value of an instance of the Topic is stored. For non-keyed topics, this
implies the table will only have a single row. For keyed topics, each instance will corre-
spond to a single row in the table. This is the most common value for tables that are pub-
lished with Connext.

No meta-columns are added to help manage history.

❏ 1

Exactly the same behavior as NULL or 0, a single value is stored in the table per instance
of the Topic. However, table-history meta-columns are added to the table schema if the
Real-Time Connect Daemon creates the user table automatically.

This value is useful for preparing the table to store more than a single value per instance
after the table is created. Because table schema cannot be changed to accommodate the
table-history meta-columns after a table has been created, using a value of 1 for this col-
umn is useful if the user wants to store historic values of instances, but does not know
how many instances to store at the time the entry is made.

❏ n > 1

Meta-columns will be added to accommodate the storing of historic values for instances.
The last n values received for an instance will be stored by the table.

❏ -1

Meta-columns will be added to accommodate the storing of historic values for instances.
All values received by the DataReader will be stored by the table.

See User-Table Creation (Section 4.6) for more information on meta-columns.
4-43

Meta-Tables
4.5.2.1.6 process_batch, process_period, commit_type

These columns allow users to tune the Real-Time Connect Daemon for optimal throughput per-
formance. When the daemon receives data from a DataReader, it may be configured to delay
storing the data into a table and/or committing the transaction until more data arrives. For a
data streams with high throughput, thousands of samples per seconds, the ability for the dae-
mon to process incoming data in batches greatly improves the efficiency and ultimately the
maximum sustainable throughput rate for a given Topic.

The trade-off is latency. The more data that is processed in a single batch, the more efficiently the
processing can occur. However, A greater delay between the receiving of the data by the dae-
mon and the time that it can be accessed by user applications in the database.

The column <process_batch> controls how many data samples are processed at a time by the
Real-Time Connect Daemon. Instead of executing SQL UPDATE or INSERT every time data is
received, the daemon only stores the data after it receives a certain number of samples set by
<process_batch>. If the value <process_batch> is greater than 1, then it is essential that the
<process_period.[sec,nsec]> is set to be non-zero. Thus, the daemon will process stored data
periodically, even if the total number of data samples received is less than <process_batch>.

<process_period.[sec,nsec]> is an upper limit on the amount of delay that will be incurred
before received data is stored in the database. The period can be set to 0 only if <process_batch>
is set to 1. This means that the daemon will store each data sample as it is received so there is no
need for periodic processing of the received samples. Use these values to have the daemon store
the data with minimal latency (at the cost of lower overall throughput).

Finally, using the column <commit_type>, you can choose whether or not the SQL UPDATE/
INSERT statements are committed when each data sample is stored or after all of the data being
processed have been stored. There is significant performance enhancement if the storing of mul-
tiple data samples is committed as a single transaction.

However, if there is a problem during an SQL commit, for example, the transaction log of the
database is full, then the entire transaction is rolled back which means that none of the received
data in that batch will be stored in the table. If the storing of each data sample is committed sep-
arately, then an error committing any one sample will only result in the loss of that sample.

The possible values of the <process_batch> column are:

❏ n > 0

The daemon will process data samples in batches of n. A value less than or equal to 0 will
result in an error that is logged by the daemon.

A value of n = 1 means that the daemon will store each data sample as it arrives.

The default value is 10 if this column is NULL.

The possible values of the <process_period.sec> (seconds) and <process_period.nsec> (nanosec-
onds) columns are:

❏ 0

If both columns are 0, then the daemon will not commit received samples periodically.

❏ n > 0

A background thread will process received but un-stored data at the period specified by
these columns. It is essential that a non-zero period be used if <process_batch> is greater
than 1 to insure that all received data is eventually stored.

The default value for process period is 0.1 seconds (0 sec, 100000000 nanosec) if both col-
umns are NULL.
4-44

Meta-Tables
The possible values of the <commit_type> column are:

❏ “COMMIT_ON_PROCESS” (default value if the columns are NULL)

This value will direct the Real-Time Connect Daemon to commit the storage of a batch of
data as a single transaction. This will result in higher performance at the risk of losing
more data than necessary when the transaction is rolled-back because an error with the
database.

❏ “COMMIT_ON_SAMPLE”

This value will direct the daemon to commit the storage of each data sample as a sepa-
rate transaction. Although the daemon will use more resources, if an error occurs when a
transaction is committed, only that data sample is lost.

4.5.2.1.7 cache_maximum_size, cache_initial_size

These columns control the size of a cache, used to store keys that exist in the table, that the Real-
Time Connect Daemon maintains for each DataReader. When a data instance is received, the dae-
mon first checks the cache to see if a row corresponding to the data already exists in the table. If
the key is in the cache, then the daemon executes an SQL UPDATE to store the data in the table.

If the key does not exist in the cache, then the Real-Time Connect Daemon will INSERT a row
with the key instead. The key cache can greatly enhance the performance of the daemon in stor-
ing data into the database by saving an SQL operation each time data is received. Without a
cache, the daemon would need to execute 2 SQL statements. to store data; with the cache, only 1.

The trade off is the memory used to store keys versus the performance gain.

The default values of <cache_maximum_size> and <cache_initial_size> are 0 if the columns are
NULL. The sizes are specified as the number of keys.

For small tables, the cache could be sized to hold all of the keys. Thus the size of the cache would
be the maximum number of rows in the table. However, this is not practical for large tables and
thus the cache will be smaller.

4.5.2.1.8 delete_on_dispose

This column configures the behavior of the Real-Time Connect Daemon when a DataWriter dis-
poses an instance stored into the database. When delete_on_dispose is initialized to 0 (the
default value), the rows corresponding to the instance will not be deleted from the database. If
delete_on_dispose is initialized to 1, all the rows associated with the instance will be deleted
from the database.

4.5.2.1.9 idl_member_prefix_max_length, idl_member_suffix_max_length

These columns define how Real-Time Connect maps IDL member identifiers into column names.
In particular, they control how the column names are formed by using as a prefix n characters
from the identifier’s prefix and m characters from the identifier’s suffix.

They can assume any value greater than or equal to -1. They cannot both be set to zero.

If a positive value n is provided for idl_member_prefix_max_length, Real-Time Connect will use
the first n characters from the IDL member identifier to compose the associated column name. A
value of 0 tells Real-Time Connect to compose the column name using only the last characters of
the identifiers, as defined by the ‘idl_member_suffix_max_length’ column. A value of -1,
instructs Real-Time Connect to use all the available characters.

If a positive value n is provided for idl_member_suffix_max_length, Real-Time Connect will use
the last n characters from the IDL member identifier to compose the associated column name. A
value of 0 tells Real-Time Connect to compose the column name using only the first characters of
4-45

Meta-Tables
the identifiers, as defined by the ‘idl_member_prefix_max_length’ column. A value of -1,
instructs Real-Time Connect to use all the available characters.

4.5.2.1.10 profile_name

This column specifies the name of the QoS Profile that Real-Time Connect will use to create the
subscription.

The name must have the following format:

<QoS profile library name>::<QoS profile name>

See the RTI Core Libraries and Utilities User’s Manual for a complete description of QoS Profiles.

QoS values specified in the subscription table (if they are not NULL) take precedence over the
same values specified in the QoS profile.

4.5.2.1.11 filter_duplicates

There are multiple scenarios in which Real-Time Connect may receive duplicate samples (see
Chapter 11, Mechanisms for Achieving Information Durability and Persistence, in the RTI Core Librar-
ies and Utilities User’s Manual). For example, if RTI Persistence Service is used in the system, Real-
Time Connect could receive the same sample from the original writer and from RTI Persistence
Service.

The filter_duplicates column specifies whether or not duplicates should be filtered by the Real-
Time Connect Daemon. If duplicates are not filtered, the subscription data table may end up con-
taining duplicates rows.

Note: Durable Reader State configurations (see Section 11.4 in the RTI Core Libraries and Utilities
User’s Manual) are ignored by Real-Time Connect. Duplicate filtering and subscription state per-
sistence are implemented by the Real-Time Connect Daemon.

4.5.2.1.12 ordered_store

This column specifies whether or not the samples associated with a DataWriter identified by a
virtual GUID 'x' (see Chapter 11, Mechanisms for Achieving Information Durability and Persistence,
in the RTI Core Libraries and Utilities User’s Manual) must be stored in the database in order. The
field only applies when filter_duplicates (Section 4.5.2.1.11) is set to 1.

Ordered storage means that given a DataWriter with virtual GUID 'x', a sample with virtual
sequence number 'sn+1' will be stored after a virtual sample with virtual sequence number 'sn'.
If there is only one DataWriter with virtual GUID 'x' in the system (for example, if there are no
RTI Persistence Services) the value of this column does not affect behavior.

Note: Real-Time Connect stores samples in the database as soon as they are received by the Real-
Time Connect subscriptions (Connext DataReaders). If ordered_store is set to 1 and there are mul-
tiple DataWriters with the same virtual GUID in the system, old samples will not be stored in
the database. A sample with sequence number 'sn' will be ignored if a sample with sequence
number 'sn+1' for the same virtual writer has been already stored in the database.

4.5.2.1.13 persist_state

This column specifies whether or not the state of a Real-Time Connect subscription must be per-
sisted into the database. The field only applies when filter_duplicates (Section 4.5.2.1.11) is set
to 1. The subscription state is used on restore by Real-Time Connect in order to avoid receiving
duplicate samples.
4-46

Meta-Tables
4.5.2.1.14 sub.present.access_scope, sub.present.ordered_access

These two columns map directly to the DDS_PresentationQosPolicy of the DDS_SubscriberQos
used by the Subscriber that is created with the DataReader for storing received data in the table.
The DDS_PresentationQosPolicy specifies how the data instances sent by a publishing applica-
tion are ordered before they are received.

The values of these columns must be coordinated with the values of the
DDS_PresentationQosPolicy used by the Publisher in the sending application or else published
data may not be received by the DataReader.

The possible values for the <sub.present.access_scope> column are:

❏ “INSTANCE_PRESENTATION_QOS”

This also the default value if the column is NULL.

❏ “TOPIC_PRESENTATION_QOS”

❏ “GROUP_PRESENTATION_QOS”

The possible values for the <sub.present.ordered_access> column are:

❏ 0 (default value if the column is NULL)

❏ 1

For the best performance of the Real-Time Connect Daemon, you should set <sub.pres-
ent.access_scope> to “TOPIC_PRESENTATION_QOS” and <sub.present.ordered_access> to 1.
This will require that the corresponding values in the DDS_PresentationQosPolicy of the Pub-
lisher in the sending applications to be changed to those values as well.

See the Connext documentation for more details on how this QoS policy may be used. See also
pub.present.access_scope, pub.present.ordered_access (Section 4.5.1.1.12).

4.5.2.1.15 sub.partition.name

For capturing data in a table, Real-Time Connect creates a DataReader per Topic. The sub.parti-
tion.name column maps directly to the DDS_PartitionQosPolicy of the DDS_SubscriberQos used
by the Subscriber that is created with the DataReader. The DDS_PartitionQosPolicy introduces a
logical partition concept inside the ‘physical’ partition concept introduced by the domain ID. A
Subscriber can communicate with a Publisher only if they have some partition in common. The
value of the sub.partition.name column specifies a list of partitions separated by commas to
which the Subscriber belongs.

See the Connext documentation for more details on how this QoS policy may be used. See also
pub.partition.name (Section 4.5.1.1.13)

4.5.2.1.16 dr.durability.kind

This column maps directly to the DDS_DurabilityQosPolicy of the DataReader created to sub-
scribe to Topic data that is stored in the table. By changing this policy, the DataReader can be
configured to request for past values published for the Topic to be sent by existing applications
soon as their matching DataWriters are discovered.

The DataWriter’s DDS_DurabilityQosPolicy most also be set appropriately to permit the send-
ing of historic, or past, published data. In addition, the column <dr.realiability.kind> for the
entry must be set to “RELIABLE_RELIABILITY_QOS” for historic data to be received.
4-47

Meta-Tables
The possible values for the <dr.durability.kind> column are:

❏ “VOLATILE_DURABILITY_QOS” (default value if the column is NULL)

This value means that the DataReader does not request past data to be sent.

❏ “TRANSIENT_LOCAL_DURABILITY_QOS”

This value requests that existing DataWriters of the Topic send past data that they are
storing to the DataReader.

See the Connext documentation for more details on how this QoS policy may be used. See also
dw.durability.kind (Section 4.5.1.1.14) and dr.reliability.kind (Section 4.5.2.1.17).

4.5.2.1.17 dr.reliability.kind

This column sets the DDSReliabilityQosPolicy for the DataReader created to subscribe to Topic
data that is stored in the table. The value in this column determines whether or not DataWriters
will send their data reliably to the DataReader.

If the value for <dr.durability.kind> is “TRANSIENT_LOCAL_DURABILITY_QOS”, then the
value for this column must be set to “RELIABLE_RELIABILITY_QOS”.

The possible values for the <dr.reliability.kind> column are:

❏ “BEST_EFFORT_RELIABILITY_QOS” (default value if the column is NULL)

This value means that the DataWriters will send their data to the DataReader using best
efforts. Data may be lost if the system is too busy.

❏ “RELIABLE_RELIABILITY_QOS”

This value means that the DataWriters will send their data to the DataReader using a reli-
able protocol. The exact semantics of the reliable connection is controlled by the
DDS_HistoryQosPolicy of both the DataWriter and DataReader.

See the Connext documentation for more details on how this QoS policy may be used. See also
dw.durability.kind (Section 4.5.1.1.14), dw.history.kind, dw.history.depth (Section 4.5.1.1.17), and
dr.history.kind, dr.history.depth (Section 4.5.2.1.21).

4.5.2.1.18 dr.destination_order.kind

This column sets the DestinationOrderQosPolicy for the DataReader created to subscribe to
Topic data that is stored in the table. The value in this column determines how the DataReader
treats data received for the same instance of the Topic from different DataWriters.

When a data instance is received, a timestamp associated with the data is compared to the time-
stamp of the last value of the data instance. If the time of the new data is older than the time of
the last data received (for that instance), then the new data is dropped.

What this column does is to set which timestamp (the one associated with the source of the data
when it was sent or the one associated with the data when it was received) the DataReader will
use.

This column has no practical effect unless the value of the <dr.ownership.kind> column is
“SHARED_OWNERSHIP_QOS”.

The possible values for the <dr.destinaton_order.kind> column are:

❏ “BY_RECEPTION_TIMESTAMP_DESTINATIONORDER_QOS”
(default value if the column is NULL)
4-48

Meta-Tables
This configures the DataReader to use the timestamp of when the data was received to
determine whether or not to drop the data. In practice, this setting means all data
received from all DataWriters will be accepted since the timestamp will always be newer
for the new data.

❏ “BY_SOURCE_TIMESTAMP_DESTINATIONORDER_QOS”

This value means that the DataReader will use the timestamp that was sent with the data
in determining whether or not to accept the data. This timestamp was added by the
DataWriter when the data was published. Because different DataWriters may run in
applications on different machines, it is likely that the clocks on the different machines
are only synchronized to a certain resolution or not synchronized at all.

Thus the DataReader may receive data with timestamps older than the last data that
received and thus drop those data. However if all DataReaders of the same Topic used
the source timestamp to filter the data, then all DataReaders will end up with the same
final value for a data instance.

If DataReaders used the reception timestamp, the DataReaders may end up with differ-
ent final values because data from different DataWriters may be received in a different
order by different DataReaders.

See the Connext documentation for more details on how this QoS policy may be used. See also
resolution_column (Section 4.5.1.1.9).

4.5.2.1.19 dr.liveliness.lease_dur

These columns specify the lease duration for the DDS_LivelinessQosPolicy for the DataReader
created to subscribe to Topic data that is stored in the table. This value is useful when there are
redundant DataWriters that publish values for the same data instance for the Topic and the
value set for the <dr.ownership.kind> column is “EXCLUSIVE_OWNERSHIP_QOS”.

The liveliness of a DataWriter is monitored by the DataReader. These columns control how
quickly the DataReader can determine that the DataWriter with the highest ownership strength
has lost liveliness because heartbeat packets or data were not received within the liveliness lease
duration. When liveliness is lost, the DataReader will then receive the data instance from the
DataWriter with the next highest ownership strength that is still alive.

The possible values of the <dr.liveliness.lease_dur.sec> (seconds) and <dr.liveli-
ness.lease_dur.nsec> (nanoseconds) columns are:

❏ An infinite lease duration is specified if both columns are NULL or contain the value
2147483647 (231 - 1). This is the DDS default value.

❏ A non-zero value representing the number of seconds and nanoseconds for the lease
duration.

Note: The DDS_LivelinessQosPolicy.kind is always set to
DDS_AUTOMATIC_LIVELINESS_QOS.

See the Connext documentation for more details on how this QoS policy may be used. See also
dw.liveliness.lease_dur (Section 4.5.1.1.15), dr.ownership.kind (Section 4.5.2.1.22), and dw.own-
ership.kind, dw.ownership_strength.value (Section 4.5.1.1.18).

4.5.2.1.20 dr.deadline.period

These columns specify the deadline period for the DDS_DeadlineQosPolicy for the DataReader
created to subscribe to Topic data that is stored in the table. By setting the values in this column,
the user is setting an expectation that DataWriters will publish new values for data instances at
least as fast as the deadline period.
4-49

Meta-Tables
The possible values of the <dr.deadline.period.sec> (seconds) and <dr.deadline.period.nsec>
(nanoseconds) columns are:

❏ An infinite deadline period is specified if both columns are NULL or contain the value
2147483647 (231 - 1). This is the DDS default value.

❏ A non-zero value representing the number of seconds and nanoseconds for the deadline
period.

See the Connext documentation for more details on how this QoS policy may be used. See also
dw.deadline.period (Section 4.5.1.1.16).

4.5.2.1.21 dr.history.kind, dr.history.depth

These columns directly map to the DDS_HistoryQosPolicy for the DataReader created to sub-
scribe to Topic data that is stored in the table. The values set for this QosPolicy affect the
DDS_ReliabilityQosPolicy.

Using a “KEEP_ALL_HISTORY_QOS” will ensure that reliable DataReaders will receive every
change to the table reliably. With a “KEEP_LAST_HISTORY_QOS”, the Real-Time Connect Dae-
mon will only guarantee that the last <dr.history.depth> changes for each data instance are
received reliably.

The possible values of the <dr.history.kind> and <dr.history.depth> columns are:

❏ “KEEP_LAST_HISTORY_QOS”

For this setting, the column <dr.history.depth> determines the maximum number of val-
ues for each data instance that be buffered in the DataReader before the Real-Time Connect
Daemon stores the received values into the table.

<dr.history.depth> should be set to an integer greater than 0. The default value for his-
tory depth is 1 if this column is NULL.

❏ “KEEP_ALL_HISTORY_QOS” (default value if the column is NULL)

This setting implies that the DataReader created to subscribe to Topic data has an unlim-
ited queue in which to save received data before the data is stored in the table. The actual
size of the queue is limited by the value in <dr.res_limits.max_samples> column.

For this setting, the value in <dr.history.depth> is ignored.

See the Connext documentation for more details on how this QoS policy may be used. See also
dr.res_limits.max_samples, dr.res_limits.max_instances (Section 4.5.2.1.24).

4.5.2.1.22 dr.ownership.kind

These columns directly map to the DDS_OwnershipQosPolicy and DDS_Ownership-Strength-
QosPolicy for the DataReader created to subscribe to Topic data that is stored in the table. These
policies control whether or not the DataReader is allowed to receive changes to an instance of a
Topic from multiple DataWriters simultaneously.

The possible values of the <dr.ownership.kind> column are:

❏ “SHARED_OWNERSHIP_QOS” (default value if the column is NULL)

This setting allows the DataReader to receive updates for an instance of a Topic from
multiple DataWriters at the same time.

❏ “EXCLUSIVE_OWNERSHIP_QOS”

This setting prevents the DataReader from receiving changes from more than a single
DataWriter for an instance of a Topic at the same time.
4-50

Meta-Tables
The DataReader will receive changes for a topic instance from the DataWriter with the
greatest value of ownership strength. If the liveliness of the DataWriter fails or if the
DataWriter fails to write within a deadline period, then the DataReader will receive pub-
lished changes to the topic instance from the DataWriter with the next highest ownership
strength.

See the Connext documentation for more details on how this QoS policy may be used. See also
dr.liveliness.lease_dur (Section 4.5.2.1.19), dr.deadline.period (Section 4.5.2.1.20), and dw.owner-
ship.kind, dw.ownership_strength.value (Section 4.5.1.1.18).

4.5.2.1.23 dr.time_filter.min_sep

This column specifies the minimum separation duration between subsequent samples for the
DDS_TimeBasedFilterQosPolicy for the DataReader created to subscribe to Topic data that is
stored in the table. By setting the values in these columns, the user configures the DataReader to
see at most one change every the minimum_separation period.

The possible values of the <dr.time_filter.min_sep.sec> (seconds) and
<dr.time_filter.min_sep.nsec> (nanoseconds) columns are:

❏ A 0 minimum separation duration is specified if both columns are NULL or contain the
value 0. This is the DDS default value. With this value, the DataReader is potentially
interested in all the samples.

❏ A non-zero value representing the number of seconds and nanoseconds for the mini-
mum separation duration. That value must be smaller than the deadline period and con-
tained in the interval [0, 1 year].

See the Connext documentation for more details on how this QoS policy may be used.

4.5.2.1.24 dr.res_limits.max_samples, dr.res_limits.max_instances

These columns set some parameters for the DDS_ResourceLimits QosPolicy for the DataReader
created to subscribe to Topic data that is stored in the table. In particular, they control the
amount of memory that the system is allowed to allocate for storing published data values as
well as the total number of data instances (different primary keys) that can be handled by the
DataReader.

A value of -1 for either of these columns means infinite. This is also the default value for these
columns if they are NULL. An infinite setting means that the DataReader is allowed to allocate
memory as needed to store received table changes and manage new keys.

The number of keys that the DataReader is allowed to manage places an upper limit on the
number of rows that the related table in the database can have.

See the Connext documentation for more details on how this QoS policy may be used.

4.5.2.1.25 dr.unicast.receive_port

This column is used to configure the unicast port on which the DataReader will receive data.
When the default value (NULL or 0) is used, the actual port number is determined by a formula
as a function of the domain ID.

4.5.2.1.26 dr.multicast.receive_address

This column is used to set a multicast address for the DataReader to receive values for the Topic.
The column maps to the DDS_TransportMulticastQosPolicy of the DataReader.
4-51

Meta-Tables
The possible values for the <dr.multicast.receive_address> column are:

❏ NULL

A NULL column means that the DataReader will receive Topic data using unicast.

❏ A string that contains a valid multicast address in the form "xxx.xxx.xxx.xxx".

The DataReader for the table will subscribe to the Topic on the multicast address pro-
vided.

See the Connext documentation for more details on how this QoS policy may be used.

4.5.2.1.27 dr.multicast.receive_port

This column configures the multicast port on which the DataReader will receive data. When the
default value (NULL or 0) is used, the actual port number is determined by a formula as a func-
tion of the domain ID.

Note that the value of this field is ignored when dr.multicast.receive_address is NULL

4.5.2.1.28 RTIRTC_SCN

The System Change Number (SCN) column is available only for connections to a MySQL data-
base. The value of this column is automatically maintained by Real-Time Connect and is usually
of no interest to the application. For more information about the RTIRTC_SCN column see
Section 4.6.

4.5.3 Table Info

The meta-table RTIRTC_TBL_INFO stores meta information associated with the user tables.

When a table is automatically created by the Real-Time Connect Daemon (see Section 4.6), its
TypeCode is stored in RTIRTC_TBL_INFO as a sequence of octets. When the Real-Time Connect
Daemon is restarted, the persisted TypeCodes corresponding to existing publications and sub-
scriptions will be made available to other Connext applications.

4.5.3.1 Table Info Schema

The RTIRTC_TBL_INFO table is created with the following SQL statement:

Oracle TimesTen (with command-line option -typeMode 1):

Create Table RTIRTC_TBL_INFO (
table_owner VARCHAR(128) NOT NULL,
table_name VARCHAR(128) NOT NULL,
type_code VARBINARY(65000),
PRIMARY KEY(table_owner,table_name)

)

Oracle TimesTen (with command-line option -typeMode 0):

Create Table RTIRTC_TBL_INFO (
table_owner TT_VARCHAR(128) NOT NULL,
table_name TT_VARCHAR(128) NOT NULL,
type_code VARBINARY(65000),
PRIMARY KEY(table_owner,table_name)

)

4-52

Meta-Tables
Oracle:

Create Table RTIRTC_TBL_INFO (
table_owner VARCHAR(128) NOT NULL,
table_name VARCHAR(128) NOT NULL,
type_code BLOB,
PRIMARY KEY(table_owner,table_name)

)

MySQL:

Create Table RTIRTC_TBL_INFO (
table_owner VARCHAR(128) NOT NULL,
table_name VARCHAR(128) NOT NULL,
type_code VARBINARY(65000),
RTIRTC_SCN BIGINT DEFAULT 0,
PRIMARY KEY(table_owner,table_name)

)

Table 4.19 describes the meta-table columns.

4.5.3.1.1 table_owner, table_name

These columns specify the user table associated with the meta information described in the
other columns.

Because a DBMS uses a combination of <table_owner>.<table_name> to identify a table, both
of these columns must have valid values.

Note: In MySQL, the value of the table_owner column corresponds to the table schema or data-
base name.

4.5.3.1.2 type_code

This column contains the TypeCode information associated to the user table identified by
<table_owner>.<table_name>.

The TypeCode information stored in this table is used when publications and subscriptions are
created after the Real-Time Connect Daemon is restarted.

4.5.4 Log Table

A meta-table named RTIRTC_LOG is used to store log messages generated by the daemon.
Whether or not this table is created and used depends on the -loglevel option (see Section 4.2)
and the LOGTODB and LOGHISTORY Real-Time Connect Daemon connection attributes (see
Section 4.4.4.2).

Users should treat the contents of this table as read-only. There is no reason for users to modify
this table. The number of rows in the Log table is controlled by the LOGHISTORY connection
attribute. If set to -1, the table will hold as many log messages as generated by the Real-Time Con-
nect Daemon. Otherwise, the daemon will only store the last n log messages as specified by
LOGHISTORY, using the table as a circular buffer.

Table 4.19 RTIRTC_TBL_INFO Table Schema

Column Name SQL Type Nullable Default if NULL Described In

table_owner VARCHAR(128) No N/A
Section 4.5.3.1.1

table_name VARCHAR(128) No N/A

type_code VARCHAR(65000) Yes NULL Section 4.5.3.1.2
4-53

Meta-Tables
Users may use the “id” column to determine the last log message that was generated by the dae-
mon (see Section 4.5.4.1.1).

4.5.4.1 Log Table Schema

The RTIRTC_LOG table is created with the following SQL statement.

Oracle TimesTen (with command-line option -typeMode 1):

Create Table RTIRTC_LOG (
 id INTEGER NOT NULL,
 ts TIMESTAMP NOT NULL,
 type VARCHAR(7) NOT NULL,
 function VARCHAR(64) NOT NULL,
 line INTEGER,
 code INTEGER,
 native_code INTEGER,
 message VARCHAR(2048) NOT NULL)

Oracle TimesTen (with command-line option -typeMode 0):

Create Table RTIRTC_LOG (
 id TT_INTEGER NOT NULL,
 ts TT_TIMESTAMP NOT NULL,
 type TT_VARCHAR(7) NOT NULL,
 function TT_VARCHAR(64) NOT NULL,
 line TT_INTEGER,
 code TT_INTEGER,
 native_code TT_INTEGER,
 message TT_VARCHAR(2048) NOT NULL)

Oracle:

Create Table RTIRTC_LOG (
 id NUMBER(10) NOT NULL,
 ts TIMESTAMP NOT NULL,
 type VARCHAR(7) NOT NULL,
 function VARCHAR(64) NOT NULL,
 line NUMBER(10),
 code NUMBER(10),
 native_code NUMBER(10),
 message VARCHAR(2048) NOT NULL)

MySQL:

Create Table RTIRTC_LOG (
 id INTEGER NOT NULL,
 ts TIMESTAMP NOT NULL,
 type VARCHAR(7) NOT NULL,
 function VARCHAR(64) NOT NULL,
 line INTEGER,
 code INTEGER,
 native_code INTEGER,
 message VARCHAR(2048) NOT NULL)

Each column of the Log meta-table stores a different portion of a log message generated by the
Real-Time Connect Daemon. Table 4.20 describes these columns.

Table 4.20 RTIRTC_LOG Table Schema

Column Name SQL Type Nullable Default if NULL Described in...

id INTEGER NO N/A Section 4.5.4.1.1
4-54

User-Table Creation
4.5.4.1.1 id

This column stores a strictly incrementing integer for each log message that is generated by the
daemon. The largest value in the id column is the last message that was produced.

4.5.4.1.2 ts

This column stores the system timestamp of when the log message was generated.

4.5.4.1.3 type

This column stores the kind of log message. Possible values are: “ERROR”, “WARNING”, “STA-
TUS”, and “SPECIAL”. “SPECIAL” messages are ones that are always printed independently of
the log level.

4.5.4.1.4 function, line

These two columns contain the function name and line number of the Real-Time Connect Dae-
mon code where the message was generated. It is useful only to support engineers at RTI.

4.5.4.1.5 code, native_code, message

The code column contains the Real-Time Connect error code that correspond to the message. This
column will have NULL entries for messages of type “STATUS”.

The native_code column will contain the error code of any external APIs, e.g., ODBC, OS, Con-
next, that the daemon has called and returned an error. This column may have NULL entries.

Finally, the message column will contain a statement with details on why the message was gen-
erated.

For a complete list of possible error codes and messages that can be generated by the Real-Time
Connect Daemon, please see Appendix A.

4.6 User-Table Creation
The Real-Time Connect Daemon may create tables automatically for user applications in the data-
base when entries are made in the RTIDDS_PUBLICATIONS or RTIDDS_SUBSCRIPTIONS
meta-tables (see Sections 4.5.1 and 4.5.2). The daemon will create the table with the table owner
and table name specified in an entry in one of those tables if:

ts TIMESTAMP NO N/A Section 4.5.4.1.2

type VARCHAR(7) NO N/A Section 4.5.4.1.3

function VARCHAR(64) NO N/A Section 4.5.4.1.4

line INTEGER NO None Section 4.5.4.1.4

code INTEGER YES None Section 4.5.4.1.5

native_code INTEGER YES None Section 4.5.4.1.5

message VARCHAR(1024) NO N/A Section 4.5.4.1.5

Table 4.20 RTIRTC_LOG Table Schema

Column Name SQL Type Nullable Default if NULL Described in...
4-55

User-Table Creation
1. There is no existing table in the database with the same <table_owner>.<table_name>
identifier.

and

2. A type corresponding to the <type_name> column for the entry has been defined in the
XML configuration file (see Section 4.4.3).

or

A typecode corresponding to the <topic_name> column for the entry has been discov-
ered.

If either condition above is not satisfied, then the daemon will not create the user table. If the
user table already exists, then the daemon will attempt to use that table when publishing or sub-
scribing to Topics. It is up to the user to create the table with a schema that maps to the Topic
IDL type. See Data Representation Mapping (Section 5.2) for details on how SQL table schemas
and IDL types are mapped to each other.

If the table does not exist and there is no XML definition for the type and the typecode for the
IDL type specified by the entry is unknown, the Real-Time Connect Daemon will defer creation of
the table until the typecode has been discovered from other applications on the network that are
using Connext. See Typecodes (Section 4.1.4) for more details on how the daemon uses type-
codes.

If the table is created by the Real-Time Connect Daemon, the daemon may add up to 5 additional
columns (6 in MySQL) that store meta-data used by the daemon when storing data received via
Connext or sending table changes via Connext. Although optional, there are specific operating
scenarios where these meta-columns are required for the proper operation of the daemon. We
suggest that the user understands the purpose of the meta-columns, and if the user applications
create the tables used by the Real-Time Connect Daemon, the user code itself should add the
meta-columns to the table schema when appropriate. (There is no specific order required for the
new columns.)

The meta-columns that may be created are:

❏ RTIDDS_DOMAIN_ID and RTIRTC_REMOTE

These two SQL INTEGER columns are always added to the tables created by the dae-
mon. These additional columns are used by the daemon when user has created entries in
both the RTIDDS_PUBLICATIONS and RTIDDS_SUBSCRIPTIONS meta-tables for
the same user table. In that situation, changes to the table made by local user applications
will be published via Connext at the same time that the daemon itself may store data into
the table received via Connext.

Real-Time Connect Daemon uses these meta-columns in order to prevent the republishing
of tables values that were changed because they were received via Connext. User applica-
tions that create the table do not need to add these columns if the daemon is configured
only to publish data from the table or to store data into the table.

However, it is essential that these columns do exist for the situation where both publica-
tions and subscriptions are tied to the same table. If the meta-columns are omitted, then
when Real-Time Connect Daemon receives data via Connext, it will be echoed (repub-
lished) as a change to the table.

❏ RTIRTC_KEY

This SQL INTEGER column is added by the daemon if the IDL type that is used to create
the table does not contain any fields marked as a topic key (i.e., non-keyed IDL types). In
such cases, the <RTIRTC_KEY> column will be added to the table as the primary key
column. The value in that column will always be 0. Thus, there is only a single instance of
4-56

Support for Extensible Types
the Topic which means the table will only ever have a single row (subject to whether or
not the user wants the table to store historical value of data instances, see the details for
the <RTIRTC_-HISTORY_SLOT> and <RTIRTC_HISTORY_ORDER> meta-columns
below).

If the IDL type does have key fields, then the fields will be mapped into columns that are
marked as primary keys. This meta-column is not added, and the table can contain as
many rows as there are different instance keys (primary keys).

❏ RTIRTC_HISTORY_SLOT and RTIRTC_HISTORY_ORDER

These SQL INTEGER columns are used to implement the ability of the Real-Time Connect
Daemon to store multiple values (historical) of the same data instance into a table. Usu-
ally, a single data instance maps to a single row of a table. As new values for the instance
is received by the daemon, the value of the same row is changed.

However, users may use the <table_history_depth> columns (see Sections 4.5.1.1.8 and
4.5.2.1.5) of the RTIDDS_PUBLICATIONS and RTIDDS_SUBSCRIPTIONS meta-
tables to direct the daemon to store multiple past values of a data instance. These values
are be stored in multiple rows of a table. To support table history, the daemon must add
the meta-columns <RTIRTC_HISTORY_SLOT> and <RTIRTC_HISTORY_ORDER> to a
table. They will only be added if the <table_history_depth> column for an entry is non-
NULL and has a non-0 value.

The <RTIRTC_HISTORY_SLOT> is an auto-increment column that will also be added as a
primary key column of the table.

The <RTIRTC_HISTORY_ORDER> is a column that will contain a number that is incre-
mented as data is stored into the table. The oldest row of an instance will have the lowest
value for this column whereas the most recent row of an instance will have the highest
value.

❏ RTIRTC_SCN

The System Change Number (SCN) meta-column (SQL_BIGINT) is only required for
connections to a MySQL database. The SCN meta-column is used to detect committed
changes in a table. Its value is automatically assigned by the MySQL server.

Each time there is a change in a table row or a new row is inserted, the MySQL server
assigns a new SCN value to the column RTIRTC_SCN. The assignment is done during
the execution of the BEFORE UPDATE/INSERT trigger installed by the Real-Time Con-
nect Daemon.

4.7 Support for Extensible Types
Real-Time Connect includes partial support for the "Extensible and Dynamic Topic Types for
DDS" specification from the Object Management Group (OMG)1. This section assumes that you
are familiar with Extensible Types and you have read the Core Libraries and Utilities Getting
Started Guide Addendum for Extensible Types.

❏ The Real-Time Connect Daemon can publish and subscribe to topics associated with final
and extensible types.

1. The OMG specification is available here: http://www.omg.org/spec/DDS- XTypes/.
4-57

Enabling RTI Distributed Logger in Real-Time Connect
❏ The Real-Time Connect Daemon can publish and/or subscribe to only one version of the
types associated with a topic within a domain.

❏ The DataReaders created when a new entry is inserted in the RTIDDS_SUBSCRIPTIONS
table are configured with the TypeConsistencyEnforcementQosPolicy’s kind set to
DISALLOW_TYPE_COERCION. You cannot overwrite this setting.

❏ You can select the type version for a given topic within a domain in two different ways:

• By providing the type description via XML and then referring to that description
using the column type_name in the RTIDDS_SUBSCRIPTIONS and/or
RTIDDS_PUBLICATIONS tables.

• By pre-creating the database table used to store/publish the data with the right
schema.

Since the DataReaders created by the Real-Time Connect Daemon have their TypeConsistencyEn-
forcementQosPolicy’s kind set to DISALLOW_TYPE_COERCION, they will not match with
DataWriters whose types are not equal to the DataReader’s type. If you have the Connext Core
Libraries and Utilities, you can learn more in the Core Libraries and Utilities Getting Started Guide
Addendum for Extensible Types1 (see the section on Rules for Type-Consistency Enforcement).

4.8 Enabling RTI Distributed Logger in Real-Time Connect
Real-Time Connect provides integrated support for RTI Distributed Logger.

When you enable Distributed Logger, Real-Time Connect will publish its log messages to Connext.
Then you can use RTI Monitor2 to visualize the log message data. Since the data is provided in a
Connext topic, you can also use rtiddsspy or even write your own visualization tool.

To enable Distributed Logger, modify the Real-Time Connect XML configuration file. In the
<general_options><administration> section, add the <distributed_logger> tag as shown in the
example below.

<real_time_connect name="default">
 <general_options>
 <administration>
 <domain_id>0</domain_id>
 <distributed_logger>
 <enabled>true</enabled>
 </distributed_logger>
 </administration>
 </general_options>
 ...
</real_time_connect>

Replace the value of <domain_id> with the domain ID that Real-Time Connect will use to send
log messages when Distributed Logger is enabled.

There are more configuration tags that you can use to control Distributed Logger’s behavior. For
example, you can specify a filter so that only certain types of log messages are published. For
details, see the RTI Distributed Logger Getting Started Guide.

1. <Connext installation directory>/ndds.<version>/doc/pdf/
RTI_CoreLibrariesAndUtilities_GettingStarted_ExtensibleTypesAddendum.pdf)

2. RTI Monitor is a separate GUI application that can run on the same host as your application or on a different host.
4-58

Enabling RTI Monitoring Library in Real-Time Connect
4.9 Enabling RTI Monitoring Library in Real-Time Connect
To enable monitoring of the Entities that are created by Real-Time Connect, you must specify the
property rti.monitor.library in the QoS of the participants that you want to monitor. For exam-
ple:

<participant_qos>
 <property>
 <value>
 <element>
 <name>rti.monitor.library</name>
 <value>rtimonitoring</value>
 <propagate>false</propagate>
 </element>
 </value>
 </property>
</participant_qos>

The QoS associated with the DomainParticipants that are created by Real-Time Connect can be
configured in three different ways:

❏ By setting the attribute is_default_qos in the tag <qos_profile> containing the
<participant_qos> to true. In this case, that profile is the default configuration for all the
Entities created by the Real-Time Connect Daemon.

For a list of XML files where you can declare the QoS Profile, see Section 4.4.1

❏ By referring to a profile using the XML tag <profile_name> within <publication> and
<subscription> (see Section 4.4.4.4).

❏ By referring to a profile in the profile_name column of the tables
RTIDDS_PUBLICATIONS or RTIDDS_SUBSCRIPTIONS (see Section 4.5.1 and
Section 4.5.2).

Notice that since Real-Time Connect is statically linked with RTI Monitoring Library, you do not
need to have it in your Path (on Windows systems) or LD_LIBRARY_PATH (on UNIX-based
systems).

For details on how to configure the monitoring process, see the RTI Monitoring Library Getting
Started Guide.
4-59

Chapter 5 IDL/SQL Semantic and Data Mapping

This chapter describes the semantic and data representation mapping that RTI Real-Time Connect
uses to connect DDS-based applications such as Connext to MySQL, Oracle, and Oracle
TimesTen In-Memory databases.

Connext provides an API to send and receive data between networked applications following a
publish/subscribe paradigm. Oracle provides both file-based and in-memory products that
allow applications to store and retrieve data following a relational database paradigm. The cor-
responding standard API in the database world is SQL. Both the Connext and SQL APIs have
various language bindings in C/C++ and Java.

How Real-Time Connect maps actions (semantics) and data types (data representation) from Con-
next to SQL and vice versa is described in the following sections.

❏ Semantic Mapping (Section 5.1)

❏ Data Representation Mapping (Section 5.2)

5.1 Semantic Mapping
Connext applications publish and subscribe to topics which are named data structures using
functions like DDSDataWriter::write() and DDSDataReader::read(). Relational databases con-
tain tables that applications access data using SQL operations such as INSERT, UPDATE,
DELETE and SELECT. Table 5.1 describes the mapping between Connext and relational data-
base semantic models.

Table 5.1 Connext-DBMS Semantic Models

Connext Relational Database Details

Accessed via Connext API

Various language bindings
(e.g. C/C++, Java)

Accessed via SQL

Various language bind-
ings (e.g. C/C++ and
ODBC, Java and JDBC)

Data structures

Defined by IDL (Interface
Description Language).

Tables

Defined by table schema.

Fields in data structures are mapped to columns
of a table. Each row of a table represents a differ-
ent value for a data structure. The exact mapping
of IDL data structures to table schemas is
described in Data Representation Mapping (Sec-
tion 5.2).
5-1

Semantic Mapping
Topic

Identified by a name
string.

DataWriter can publish
values for Topics and
DataReaders can subscribe

Table

Identified by a name
string.

Applications can write
values or read values
from tables using SQL.

Topic names and table names do not have to be
the same when making a correspondence
between a Topic and a database table.

Data values

Rows in table

No history: A single row
in a table.

History: Multiple rows in
a table.

When the Real-Time Connect Daemon table history
option is turned OFF (see Sections 4.5.1.1.8 and
4.5.2.1.5), only the last value of a topic instance is
stored in the table. So a non-keyed topic will be
stored in a single row whereas for keyed topics,
there will be as many rows as there are topic
instances.

When the Real-Time Connect Daemon table history
option is turned ON, each instance will occupy
up to a user-settable maximum number of rows
so that the last N values received for the Topic are
stored in the table. When N values have been
stored, the N rows are used as a circular buffer so
that new values received will overwrite the oldest
values stored.

Key

IDL data types may con-
tain one or more fields that
are used to distinguish dif-
ferent instances of the
Topic.

Primary key

Most relational data-
bases require table
schemes to identify one
or more columns to act as
the primary key for the
table.

Keys are mapped to the primary keys of a table.
When a table is created by the Real-Time Connect
Daemon, the columns corresponding to the IDL
key fields will be created as primary key col-
umns.

For tables created by user code, the correspon-
dence of IDL key fields to table primary key col-
umns must be set correctly.

DDSDataWriter::write()
SQL INSERT or
UPDATE

Values published for Topics will be stored into a
database table by the Real-Time Connect Daemon.

Table rows modified by SQL INSERT or
UPDATE commands will be published by the
Real-Time Connect Daemon as values of Topics.

DDSDataReader::take()
DDSDataReader::read()

SQL SELECT

DDSDataWriter::dispose() SQL DELETE

When SQL DELETE is used to delete a row from
a table, the Real-Time Connect Daemon will call
DDSDataWriter::dispose() to dispose the
instance corresponding to the row.

If a user application calls DDSDataWriter::dis-
pose() to dispose an instance, the Real-Time Con-
nect Daemon may be configured to delete or keep
the corresponding rows.

Table 5.1 Connext-DBMS Semantic Models

Connext Relational Database Details
5-2

Data Representation Mapping
5.2 Data Representation Mapping
In Connext, data is stored in data structures or classes defined using the Interface Definition Lan-
guage (IDL). In relational databases, data is stored in tables defined using SQL table schemas.
While there is a good correspondence of IDL primitive data types to SQL data types, this map-
ping is not one-to-one. Both IDL and SQL have data types that the other does not define nor has
an unambiguous mapping. In addition, many complex data structures in IDL such as unions
and data structures that contain embedded data structures do not have equivalents in SQL.

This section describes the mapping used by the Real-Time Connect Daemon when taking data
received with DDS and storing it in tables, or taking data from tables and publishing it with Con-
next.

❏ IDL to SQL Mapping (Section 5.2.1) on Page 5-3

❏ Primitive Types Mapping (Section 5.2.2) on Page 5-6

❏ Oracle In-Memory Database Cache Mapping (Section 5.2.3) on Page 5-8

❏ Enum Types Mapping (Section 5.2.5) on Page 5-10

❏ Simple IDL Structures (Section 5.2.6) on Page 5-10

❏ Complex IDL Structures (Section 5.2.7) on Page 5-10

❏ Array Fields (Section 5.2.8) on Page 5-12

❏ Sequence Fields (Section 5.2.9) on Page 5-12

❏ NULL Values (Section 5.2.10) on Page 5-13

❏ Sparse Data Types (Section 5.2.11) on Page 5-13

5.2.1 IDL to SQL Mapping

Identifiers are used for the names of table columns in SQL and names of fields within an IDL
structure. SQL identifiers are a superset of IDL identifiers. Because of that, an IDL identifier can
always be used as a SQL identifier. However, there are some SQL identifiers that cannot be used
as IDL identifiers. For example, SQL allows special characters like ‘#’ to be part of an identifier,
whereas IDL does not.

There are two kind of SQL identifiers: quoted identifiers and basic identifiers. The quoted identifi-
ers can use any combination of characters. Those identifiers need to be surrounded by double
quotes when referenced. The definition of a basic identifier changes depending on the database
vendor.

In Oracle TimesTen, a basic identifier can consist of any of letters (A to Z), decimal digits (0 to 9),
$, #, @, or underscore (_). The first character must be a letter.

In Oracle, a basic identifier can consist of any of letters (A to Z), decimal digits (0 to 9), $, #, or
underscore (_). The first character must be a letter.

In MySQL, a basic identifier can consist of any letters (A to Z), decimal digits (0 to 9), $, or
underscore (_).

If the daemon creates the user table, it will use quoted strings for the identifiers of the table and
column names only if they cannot be considered as basic identifiers according to the previous
definitions. Thus, user applications should also use quoted strings when referring to those col-
umn and table names in their SQL statements.
5-3

Data Representation Mapping
Ordinarily, the name of a field in an IDL data structure can just be used as the name of a column
in a table. In fact, for those data types with clear and obvious mappings, the column name can
be independent of the field name used in the IDL type. However, because there is no one-to-one
mapping of all IDL data types to all SQL data types, for certain types, the column names used in
SQL table schemas must follow certain conventions that tie them to the names of the fields of
IDL types from which they are mapped. This is true for only the small subset of primitive IDL
data types and for the complex IDL data types that would otherwise have ambiguous map-
pings, i.e., multiple ways to map IDL to SQL or vice versa.

The Real-Time Connect Daemon scans for, identifies and uses special mappings of column names
when serializing and deserializing IDL data to and from a table in a database. There are two
types of special mappings, hierarchical naming and suffixes.

Hierarchical Naming

Complex IDL types may have fields that are actually embedded structures, so a field may actu-
ally contain multiple values. In SQL, columns usually contain a single value for each column
element, although there are a few types like BINARY(x) CHAR(x), VARBINARY(x) and VAR-
CHAR(x) that can store multiple values of the same type in a single column element. To map
complex IDL types to SQL table schemas, embedded data structures are unfolded so that ele-
ments of an embedded structure are stored individually in separate columns.

When the Real-Time Connect Daemon creates a table schema from a Topic, it will automatically
flatten hierarchical data structures into tables. In doing so, the names of columns that store the
fields of embedded structures will have hierarchical names. For example, given this IDL defini-
tion:

struct bar { struct foo {
 long one; bar element;
 long two; };
};

The table constructed from a Topic which uses the foo type would have the following schema
by default:

CREATE table foo (INTEGER element.one, INTEGER element.two)

The Real-Time Connect Daemon allows the configuration of the separator character (‘.’) using the
attribute IdentifierSeparatorChar defined in the general options of the configuration file
(described in Section 4.4.4.1).

While for most embedded structures, the hierarchical naming of columns is not needed for the
Real-Time Connect Daemon to handle type translation correctly, the proper hierarchical naming
of columns is essential for the daemon to serialize and deserialize IDL unions and sequences.
These types are variable in length, however the table must have enough columns to hold the
maximum size of the IDL data type. Hierarchical naming allows the Real-Time Connect Daemon
to identify columns that form a embedded, complex element.

For variable-length types (other than sequences of “char”, “wchar” or “octet”), an extra column
with the suffix “#length” is also added to the table to hold the current length of the type. Also,
each column that represents a field in an element of the variable-length type must have a suffix
“[x]” in its name that identifies the index of the element, where

 x = 0 to (max_length - 1)

During the serialization and deserialization process, the daemon will usually be working with
less than the maximum length of data, and thus, will need to use the hierarchical naming along
with the suffix to determine which columns belong to unused elements that should be skipped.
5-4

Data Representation Mapping
This hierarchical flattening operation of member names may lead to very long column names in
the generated table and can easily exceed the maximum number of characters supported by the
database (some databases limit the column names to 30 characters).

To reduce the length of the generated names, you can instruct Real-Time Connect to consider only
the first n and the last m characters of the flattened name, and eventually resolve any conflict by
using a progressive number between the prefix and the suffix. The two tags
<idl_member_prefix_max_length> and <idl_member_suffix_max_length> (see page 4-18),
defined in the configuration file (described in Section 4.4) and the columns
idl_member_prefix_max_length and idl_member_suffix_max_length in the meta-tables
(described in Section 4.5.1.1.10) tell the daemon the values to use. (The values defined in the
meta-table have precedence over the values defined in the configuration file.)

Suffixes

Suffixes are also needed for column names when multiple IDL primitive types map into the
same SQL type. Because there are more IDL primitive types than SQL primitive types, a full
mapping will result in the use of the same SQL type to hold more than one IDL type. For exam-
ple, an IDL “long double” has no equivalent in SQL. Thus, a SQL BINARY(16) does double duty
and is used to store both an IDL “long double” as well as an IDL “octet[16]”.

If a “long double” could be treated the same as an “octet[16]” by the Real-Time Connect Daemon,
then there would be no issue and no special name mapping would be needed. However,
because the representation of a “long double” is Endianess-dependent while an “octet[16]” is
not, the Real-Time Connect Daemon must use the column name to decide whether or not a SQL
BINARY(16) value needs to be byte swapped or not when converting to an IDL data type. Since
“long double” has no equivalent SQL type, a “.ld” must be appended to the name of a SQL
BINARY(16) column that is used to store one.

Similarly, a suffix of “.str” is used to indicate that a SQL VARCHAR(x) stores IDL “string”,
which is a NULL-terminated sequence of the primitive type “char”. Without the suffix in the col-
umn name, a SQL VARCHAR(x) naturally stores a sequence of chars-the IDL type “sequence
<char,x>.

For the Oracle database, but not the Oracle TimesTen In-Memory database, the IDL “octet”,
“octet[x]” and “sequence<octet,x>” are all stored in the Oracle type RAW. A suffix of “.bin” is
used to distinguish between using RAW to store “octet” and “octet[x]” which can be treated the
same, and “sequence<octet,x>” which must be treated differently by the Real-Time Connect Dae-
mon.

NOTE: Because of the use of suffixes in the mapping of identifiers of certain IDL datatypes, the
identifiers “str”, “ld“, and “bin” are reserved keywords that should not be used as the name of
fields in IDL structures. For example, the following IDL definitions have the same SQL mapping
which would in result in the incorrect treatment of the type “Foo2” by the daemon. Each would
result in a table schema that would have the ten columns named “my_field[0].str”,
“my_field[1].str”, ..., “my_field[2].str”.

struct Foo1 { struct Bar {
 string<10> my_field; and sequence<char,10> str;
}; };

 struct Foo2 {
 struct Bar my_field;
 }
5-5

Data Representation Mapping
5.2.2 Primitive Types Mapping

The following tables show the mapping between basic types in IDL and SQL:

❏ Table 5.2, “Basic Types in IDL and SQL (TimesTen),” on page 5-6

❏ Table 5.3, “Basic Types in IDL and SQL (Oracle),” on page 5-7

❏ Table 5.4, “Basic Types in IDL and SQL (MySQL),” on page 5-8

Table 5.2 Basic Types in IDL and SQL (TimesTen)

IDL Type
IDL

Field Name
SQL Type

(TypeMode 0)
SQL Type

(TypeMode 1)
Table

Column Name

char a my_field TT_CHAR(1)

or

CHAR(1)

CHAR(1) “my_field”

char[x] a my_field TT_CHAR(x)

or

CHAR(x)

CHAR(x) “my_field”

sequence<char,x> my_field TT_VARCHAR(x)

or

VARCHAR2(x)

VARCHAR(x) “my_field”

wchar b my_field TT_NCHAR(x)

or

NCHAR(1)

NCHAR(1) “my_field”

wchar[x] b my_field TT_NCHAR(x) or

NCHAR(x)

NCHAR(x) “my_field”

sequence<wchar,x> my_field TT_NVARCHAR(x)

or

NVARCHAR2(x)

NVARCHAR(x) “my_field”

octet c my_field BINARY(1) BINARY(1) “my_field”

octet[x]c my_field BINARY(x) BINARY(x) “my_field”

sequence<octet,x>c my_field VARBINARY(x) VARBINARY(x) “my_field”

boolean my_field TT_TINYINT TINYINT “my_field”

short my_field TT_SMALLINT SMALLINT “my_field”

unsigned short my_field TT_SMALLINT SMALLINT “my_field”

unsigned my_field TT_INTEGER INTEGER “my_field”

unsigned long my_field TT_INTEGER INTEGER “my_field”

double my_field BINARY_DOUBLE DOUBLE “my_field”

float my_field BINARY_FLOAT REAL “my_field”

string<x> my_field TT_VARCHAR(x) or

VARCHAR2(x)

VARCHAR(x) “my_field.str” d

wstring<x> my_field TT_NVARCHAR(x)

or

NVARCHAR2(x)

NVARCHAR(x) “my_field.str” d

long long my_field TT_BIGINT BIGINT “my_field”

unsigned long long my_field TT_BIGINT BIGINT “my_field”
5-6

Data Representation Mapping
long double my_field BINARY(16) BINARY(16) “my_field.ld” e

unsigned long long my_field TT_TIMESTAMP TIMESTAMP “my_field”

a. The format on the wire of “char” and “char[x]” is the same.
b. The format on the wire of “wchar” and “wchar[x]” is the same.
c. The format on the wire of “octet”and “octet[x]” is the same.
d. The “.str” suffix is used to distinguish between “(w)string<x>” and “sequence<(w)char,x>”.
e. The “.ld” suffix is used to distinguish between “octet[x]” and “long double”.

Table 5.3 Basic Types in IDL and SQL (Oracle)

IDL Type
IDL Field

Name SQL Type
Table Column

Name

char a my_field CHAR(1) “my_field”

char[x] a my_field CHAR(x) “my_field”

sequence<char,x> my_field VARCHAR2(x) if x <=4000; otherwise CLOB “my_field”

wchar b my_field NCHAR(1) “my_field”

wchar[x] b my_field NCHAR(x) “my_field”

sequence<wchar,x> my_field NVARCHAR2(x) if x<=4000; otherwise NCLOB “my_field”

octet c my_field RAW(1) “my_field.bin” d

octet[x] c my_field RAW(x) “my_field.bin” d

sequence<octet,x> c my_field RAW(x) if x <= 2000; otherwise BLOB “my_field”

boolean my_field NUMBER(3) “my_field”

short my_field NUMBER(5) “my_field”

unsigned short my_field NUMBER(5) “my_field”

unsigned my_field NUMBER(10) “my_field”

unsigned long my_field NUMBER(10) “my_field”

double my_field BINARY_DOUBLE “my_field”

float my_field BINARY_FLOAT “my_field”

string<x> my_field VARCHAR2(x) if x<= 4000; otherwise CLOB “my_field.str” e

wstring<x> my_field NVARCHAR2(x) if x<=4000; otherwise NCLOB “my_field.str” d

long long my_field NUMBER(20) “my_field”

unsigned long long my_field NUMBER(20) “my_field”

long double my_field RAW(16) “my_field.ld” f

unsigned long long my_field TIMESTAMP “my_field”

a. The format on the wire of “char” and “char[x]” is the same.
b. The format on the wire of “wchar” and “wchar[x]” is the same.
c. The format on the wire of “octet” and “octet[x]” is the same.
d. The “.bin” suffix is only used for Oracle databases (not Oracle TimesTen). The reason is that Oracle doesn't support

SQL BINARY(x) or VARBINARY(x). Binary data must be always stored as variable-length raw data using the Ora-
cle type RAW. Thus, Oracle RAW can be used to store IDL “octet”, “octet[x]” and “sequence<octet,x>”. The “.bin”
suffix allows the daemon to determine which is actually stored for Oracle databases only.

e. The “.str” suffix is used to distinguish between “(w)string<x>” and “sequence<(w)char,x>”.
f. The “.ld” suffix is used to distinguish between “octet[x]” and “long double”.

Table 5.2 Basic Types in IDL and SQL (TimesTen) (Continued)

IDL Type
IDL

Field Name
SQL Type

(TypeMode 0)
SQL Type

(TypeMode 1)
Table

Column Name
5-7

Data Representation Mapping
5.2.3 Oracle In-Memory Database Cache Mapping

When Real-Time Connect to TimesTen is used with Oracle In-Memory Database Cache, the defini-
tion of cache groups requires mapping the Oracle SQL types to TimesTen SQL types. Table 5.5
describes the mapping supported by Real-Time Connect.

Table 5.4 Basic Types in IDL and SQL (MySQL)

IDL Type IDL Field Name SQL Type Table Column Name

char a my_field CHAR(1) “my_field”

char[x] a my_field CHAR(x) “my_field”

sequence<char,x> my_field VARCHAR(x) “my_field”

wchar b my_field NCHAR(1) “my_field”

wchar[x] b my_field NCHAR(x) “my_field”

sequence<wchar,x> my_field NVARCHAR(x) “my_field”

octet c my_field BINARY(1) “my_field”

octet[x]c my_field BINARY(x) “my_field”

sequence<octet,x>c my_field VARBINARY(x) “my_field”

boolean my_field TINYINT “my_field”

short my_field SMALLINT “my_field”

unsigned short my_field SMALLINT “my_field”

unsigned my_field INTEGER “my_field”

unsigned long my_field INTEGER “my_field”

double my_field DOUBLE “my_field”

float my_field FLOAT “my_field”

string<x> my_field VARCHAR(x) “my_field.str” d

wstring<x> my_field NVARCHAR(x) “my_field.str” d

long long my_field BIGINT “my_field”

unsigned long long my_field BIGINT “my_field”

long double my_field BINARY(16) “my_field.ld” e

unsigned long long my_field DATETIME “my_field”

a. The format on the wire of “char” and “char[x]” is the same.
b. The format on the wire of “wchar” and “wchar[x]” is the same.
c. The format on the wire of “octet”and “octet[x]” is the same.
d. The “.str” suffix is used to distinguish between “(w)string<x>” and “sequence<(w)char,x>”.
e. The “.ld” suffix is used to distinguish between “octet[x]” and “long double”.

Table 5.5 MappingBetween Oracle and TimesTen types

Oracle Type TimesTen Type (TypeMode 0)

CHAR(x) CHAR(x)

VARCHAR2(x) VARCHAR2(x)

NCHAR(x) NCHAR(x)

NVARCHAR2(x) NVARCHAR2(x)

RAW(x) VARBINARY(x)

NUMBER(3) TT_TINYINT
5-8

Data Representation Mapping
5.2.4 Bit Field Mapping

IDL bit-field type is an RTI extension that maps directly to C/C++ bit fields but are stored in
primitive types in Java with only the specified number of bits being significant. When mapped
to SQL, a full primitive SQL type is used to store the value, but only a subset of the bits are sig-
nificant. A suffix must be added to the column name to indicate to the Real-Time Connect Dae-
mon which bits to serialize when translating the table data into an IDL structure.

The following tables show the mapping of bit fields between IDL and SQL:

❏ Table 5.6, “Bit Fields in IDL and SQL (TimesTen)”

❏ Table 5.7, “Bit Fields in IDL and SQL (Oracle)”

❏ Table 5.8, “Bit Fields in IDL and SQL (MySQL)”

NUMBER(5) TT_SMALLINT

NUMBER(10) TT_INTEGER

BINARY_DOUBLE BINARY_DOUBLE

BINARY_FLOAT BINARY_FLOAT

NUMBER(20) TT_BIGINT

TIMESTAMP This mapping is not supported

Table 5.5 MappingBetween Oracle and TimesTen types

Oracle Type TimesTen Type (TypeMode 0)

Table 5.6 Bit Fields in IDL and SQL (TimesTen)

IDL Type
IDL

Field Name
SQL Type

(TypeMode 0)
SQL Type

(TypeMode 1)
Table Column

Namea

char my_field:x

TT_CHAR(1)

or

CHAR(1)

CHAR(1) “my_field:x”

wchar my_field:x

TT_NCHAR(1)

or

NCHAR(1)

NCHAR(1) “my_field:x”

octet my_field:x BINARY(1) BINARY(1) “my_field:x”

short my_field:x TT_SMALLINT SMALLINT “my_field:x”

unsigned short my_field:x TT_SMALLINT SMALLINT “my_field:x”

long my_field:x TT_INTEGER INTEGER “my_field:x”

unsigned long my_field:x TT_INTEGER INTEGER “my_field:x”

a. The column storing the last bit field in a set of bits will use name of “my_field:!x”.

Table 5.7 Bit Fields in IDL and SQL (Oracle)

IDL Type IDL Field Name SQL Type Table Column Namea

char my_field:x CHAR(1) “my_field:x”

wchar my_field:x NCHAR(1) “my_field:x”

octet my_field:x BINARY(1) “my_field:x”

short my_field:x NUMBER(5) “my_field:x”
5-9

Data Representation Mapping
5.2.5 Enum Types Mapping

IDL enumeration fields are mapped to columns of type SQL INTEGER. No special naming is
required.

5.2.6 Simple IDL Structures

Simple IDL structures containing only basic or primitive types directly map to SQL schemas
with fields in the structure becoming columns in the table. Table 5.9 shows the mapping of a
simple structure between IDL and SQL

5.2.7 Complex IDL Structures

IDL structures that contain more complex fields, fields that are structures, unions, or sequences
and arrays of types other than “octet”, “char” or “wchar” are mapped to SQL tables by flatten-
ing the embedded structures so that their fields are all at the top (and only) level.

Structure fields

Elements of embedded structures map into individual table columns with names that are hierar-
chically composed from the name of the field in the embedded structure and the name of the

unsigned short my_field:x NUMBER(5) “my_field:x”

long my_field:x NUMBER(10) “my_field:x”

unsigned long my_field:x NUMBER(10) “my_field:x”

a. The column storing the last bit field in a set of bits will use name of “my_field:!x”.

Table 5.8 Bit Fields in IDL and SQL (MySQL)

IDL Type IDL Field Name SQL Type Table Column Namea

char my_field:x CHAR(1) “my_field:x”

wchar my_field:x NCHAR(1) “my_field:x”

octet my_field:x BINARY(1) “my_field:x”

short my_field:x SMALLINT “my_field:x”

unsigned short my_field:x SMALLINT “my_field:x”

long my_field:x INTEGER “my_field:x”

unsigned long my_field:x INTEGER “my_field:x”

a. The column storing the last bit field in a set of bits will use name of “my_field:!x”.

Table 5.7 Bit Fields in IDL and SQL (Oracle) (Continued)

IDL Type IDL Field Name SQL Type Table Column Namea

Table 5.9 Simple Structures in IDL and SQL

IDL Types SQL Table Schema

struct MyStruct {
 long my_key_field; //@keya

 short my_short_field;
};

CREATE TABLE “MyStructContainer” (
 “my_key_field” INTEGER NOT NULL,
 “my_short_field” SMALLINT NOT NULL,
 PRIMARY KEY(my_key_field)
);

a. IDL fields marked as keys are mapped to the primary keys of SQL tables.
5-10

Data Representation Mapping
embedded structure field itself. This naming convention is not required for serialization to work
properly. Just as long as the column types map to the types of the embedded structure, then the
Real-Time Connect Daemon will properly handle the data irrelevant of the actual column name.

Table 5.10 shows the mapping of a complex structure between IDL and SQL.

Union fields

IDL unions are mapped by adding an extra column with the name “_d” to represent the discrim-
inator that is used to indicate which type is actually stored by the union. These unions are also
known as “switched unions”. All of the individual union fields are mapped to corresponding
columns in a table. However, only one of these columns will contain valid data as indicated by
the discriminator column, “_d”.

If the Real-Time Connect Daemon creates the table from an IDL containing an union, it will gener-
ate the data columns with hierarchical names from the name of the union field and the name of
the union itself. In addition, the values of the switch/case statement in the IDL union are
encoded into the names of the data columns as well, e.g., “.c(0,1).”, “.c(2).”, “.(def).”.

This naming convention is required for the proper serialization and deserialization of unions.
The Real-Time Connect Daemon uses the name of the fields when processing an IDL union to
know which column(s) correspond to the value of the discriminator.

Table 5.11 shows the mapping of an union between IDL and SQL.

Table 5.10 Nested Structures in IDL and SQL

IDL Type SQL Table Schema

struct MyStruct {
 short my_short_field;
 long my_long_field;
};

struct MyStructContainer {
 long my_key_field; //@key
 MyStruct my_struct_field;
};

CREATE TABLE “MyStructContainer” (
 “my_key_field” INTEGER NOT NULL,
 “my_struct_field.my_short_field” SMALLINT NOT NULL,
 “my_struct_field.my_long_field” INTEGER NOT NULL,
 PRIMARY KEY(my_key_field)
);

Table 5.11 Union Fields in IDL and SQL

IDL Type SQL Table Schema

union MyUnion switch(long) {
 case 0:
 case 1:
 long my_long_field;
 case 2:
 double my_double_field;
 default:
 short my_short_field;
};

struct MyUnionContainer {
 long my_key_field; //@key
 MyUnion my_union_field;
};

CREATE TABLE “MyUnionContainer” (
 “my_key_field” INTEGER NOT NULL,
 “my_union_field._d” INTEGER NOT NULL,
 “my_union_field.c(0,1).my_long_field” INTEGER,
 “my_union_field.c(2).my_double_field” DOUBLE,
 “my_union_field.c(def).my_short_field” SMALLINT,
 PRIMARY KEY(my_key_field)
);
5-11

Data Representation Mapping
5.2.8 Array Fields

For array fields where the array type is different from “octet”, “char” and “wchar”, an IDL array
type is stored as consecutive columns of the same type in a SQL table. If the Real-Time Connect
Daemon creates a table from an IDL type that contains an array, it will create the column names
using a naming convention that prevents name collisions. By default, the daemon simply adds
the suffix “[i]”, where “i” is the array index of that element (beginning at 0 for the first index).
The open bracket and close bracket characters can be configured using the tags in the configura-
tion file <open_bracket_char> and <close_bracket_char> (see page 4-18). Note, this naming
convention is not required for the Real-Time Connect Daemon to serialize/deserialize IDL array
fields.

Note that array fields of type “octet”, “char” and “wchar” are mapped into a single column ele-
ment of the corresponding SQL types BINARY(x), CHAR(x) and WCHAR(x), respectively.
Table 5.12 shows a mapping of an array field between IDL and SQL.

5.2.9 Sequence Fields

Sequences are basically variable-sized arrays that have a maximum length and carry an addi-
tional integer that indicates the current size. The mapping of IDL sequences to a table schema is
similar to the array mapping, with the following differences:

❏ An extra column is added with the suffix “#length”, used to store the current length of
the sequence.

❏ The total number of columns created is equal to the maximum number of elements that
the sequence can hold, although the number of columns containing valid data at a given
time is stored in the “#length” column.

❏ The naming convention of adding the suffix “[i]” to each column is required for the Real-
Time Connect Daemon to handle the mapping between IDL and SQL correctly. The open
bracket and close bracket characters can be configured using the tags
<open_bracket_char> and <close_bracket_char> (see page 4-18).

❏ Sequence elements can contain the NULL value since not all elements may be used at a
given time.

Note: Sequences of the IDL types “char”, “wchar” or “octet” map directly into the variable-
length SQL types VARCHAR, VARWCHAR, and VARBINARY, respectively. Table 5.13 shows
the mapping of a sequence field between IDL and SQL.

Table 5.12 Array Fields in IDL and SQL

IDL Type SQL Table Schema

struct MyArrayContainer {
 long my_key_field; //@key
 short my_arr_field[2];
};

CREATE TABLE “MyArrayContainer” (
 “my_key_field” INTEGER NOT NULL,
 “my_arr_field[0]” SMALLINT NOT NULL,
 “my_arr_field[1]” SMALLINT NOT NULL,
 PRIMARY KEY(“my_key_field”)
);
5-12

Data Representation Mapping
5.2.10 NULL Values

Null values exist in SQL databases but do not have an equivalent in IDL. The Real-Time Connect
daemon converts NULL values into ‘0’-values when publishing from a SQL table, in the follow-
ing way:

❏ numerical types: 0

❏ fixed-length string types (CHAR, NCHAR): ""

❏ variable-length types (VARCHAR, NVARCHAR, VARBINARY): length 0

❏ binary: every byte is set to 0

❏ timestamp: 0

5.2.11 Sparse Data Types

Sparse Data Types follow the same mapping as structures (see Section 5.2.6 and Section 5.2.7).
The fields that are not required or primary keys are created with the nullable attribute.

Table 5.13 Sequence Fields in IDL and SQL

IDL Type SQL Table Schema

struct MySequenceContainer {
 long my_key_field; //@key
 sequence<short,4> my_seq_field;
};

CREATE TABLE “MySequenceContainer” (
 “my_key_field” INTEGER NOT NULL,
 “my_seq_field#length” INTEGER NOT NULL,
 “my_seq_field[0]” SMALLINT,
 “my_seq_field[1]” SMALLINT,
 “my_seq_field[2]” SMALLINT,
 “my_seq_field[3]” SMALLINT,
 PRIMARY KEY(“my_key_field”)
);

Table 5.14 Simple Sparse Type

Type in Pseudo Language SQL Table Schema

sparse MySparse a {
 long my_key_field; //@key
 short my_short_field;
 long my_long_field; //@required
};

Create Table "MySparseContainer" (
 "my_key_field" INTEGER NOT NULL,
 "my_short_field" SMALLINT,
 "my_long_field" INTEGER NOT NULL,
 PRIMARY_KEY("my_key_field")
);

a. Sparse types must be built dynamically. There is no IDL construct sparse.
5-13

Appendix A Error Codes

Table A.1 lists the native error and warning messages that may be logged by the Real-Time Con-
nect Daemon. While some of these messages may actually provide enough information by them-
selves to help users fix the problem, many have to be used along with other data to help with
debugging the issue.

Often several of these messages will be logged for a single problem. A failure at a lower layer
will cause log messages to be printed at various levels of the Real-Time Connect Daemon logic.
These messages will be valuable to you and to RTI support engineers in debugging issues with
Real-Time Connect.

Table A.1 Real-Time Connect Errors and Warnings

Code Message Details

0 - 1023 Real-Time Connect Daemon errors
These messages are produced by the logic of the Real-Time Connect Daemon itself.

0 Unexpected error
Should never occur.

Contact support@rti.com if seen.

1 <message> General error.

2 Error storing RTI DDS sample in table '<table>'
There was an error when storing value
received with Connext into the database.

3 Error creating <entity>

4
Error creating <entity> associated to the table
'<table>'

5 Error getting <entity>

6 <meta-table> entry not valid
There was an entry in a meta-table
(RTIDDS_PUBLICATIONS or RTIRTCSUB-
SCRIPTIONS) that was not valid.

7 Error creating '<type>' SQL statement
There was an error when creating or pre-
paring a SQL statement.

8 Error creating table '<table>'

9 Error opening RTI DDS connection There was a problem initializing Connext.
A-1

10 The type of the column '<column>' is not valid

The meta-columns RTIDDS_DOMAIN_ID
and RTIRTC_REMOTE must be added to
tables that the user creates and wished to
connect to via Real-Time Connect. They will
be automatically if the Real-Time Connect
Daemon creates the table.

If the user creates the table and adds the
two columns, they must be of type INTE-
GER.

This message is produced if these columns
exist and are of the wrong type.

11 Error publishing record/instance
The Real-Time Connect Daemon had a prob-
lem publishing a table change as a Topic.

12 Error disposing record/instance
The Real-Time Connect Daemon had a prob-
lem disposing of an instance of Topic when
the user deleted a row in a table.

13 Error initializing <module> module
The Real-Time Connect Daemon had prob-
lems initializing an internal code module.

14
The definition of environment variable '%s' is
required

15
Error opening the database connection associated to
the DSN '<DSN>'

16 Error enabling database log

17 <string> too long (maximum length: <length>)

18 Error creating connection to database log

19
The value of the column 'column' in the table
'<meta-table>' is not valid

20
Error generating '<type>' SQL statement string

Error generating SQL statement string

The Real-Time Connect Daemon had a prob-
lem in generating the string for preparing
or executing a SQL statement.

21 Error skipping parameter for the field '<column>'

22
Error binding parameter for the column '<column>'

Error binding parameters

23
The column '<column>' has an unexpected SQL
Type

Supported SQL types are:
SQL_CHAR
SQL_WCHAR
SQL_VARCHAR
SQL_WVARCHAR
SQL_BINARY
SQL_VARBINARY
SQL_INTEGER
SQL_SMALLINT
SQL_TINYINT
SQL_BIGINT
SQL_REAL
SQL_FLOAT
SQL_DOUBLE
SQL_TIMESTAMP

24 Error opening configuration file ’filename’

Table A.1 Real-Time Connect Errors and Warnings

Code Message Details
A-2

25 Error reading configuration file ’filename’

26 Error parsing configuration file ’filename’

27 The maximum length for a <type> field is <length>

28 Error serializing record
A problem occurred when serializing a
table row for publishing as a Topic.

29 Error deserializing RTI DDS sample
A problem occurred when deserializing
data received via Connext for storing into a
table.

30 Error creating key cache
Could not create cache of known instance
keys see cache_maximum_size,
cache_initial_size (Section 4.5.2.1.7).

31 Error inserting key in cache
Problem occurred while storing instance
key in cache see cache_maximum_size,
cache_initial_size (Section 4.5.2.1.7).

32 Null pointer argument
A precondition failed in which a NULL
pointer was passed to an internal daemon
function.

33 Error reading table '<table>'

34
The resolution column '<column>' does not exist in
the table '<table>'

The RTIDDS_PUBLICATIONS table con-
tained an entry in the ’resolution_column’
which does not match the name of an exist-
ing column in the corresponding table. See
resolution_column (Section 4.5.1.1.9).

35

The type of the resolution column '<column>' in the
table '<table>' is not valid. The type of the resolu-
tion column can be: SQL_INTEGER,
SQL_SMALLINT, SQL_BIGINT and
SQL_TIMESTAMP

A column specified in the column
’resolution_column’ in the
RTIDDS_PUBLICATIONS table is not of an
acceptable type. See resolution_column
(Section 4.5.1.1.9).

36 Error gathering instance information
Error gathering Connext instance informa-
tion through the execution of the associated
SELECT statement

37 Invalid metatable schema
The schema of the metatables is not valid.
It is possible that those tables were created
with a previous version of RTI RTC.

38 Error deleting key from cache

39 Error deleting a row from '<table>'
There was a problem deleting a row from a
user data table.

41
Error creating publication/subscription for the
'<table>' without primary key.

The user tried to create a publication/sub-
scription for a table without a primary key.

Real-Time Connect to Oracle does not sup-
port tables without primary keys.

Table A.1 Real-Time Connect Errors and Warnings

Code Message Details
A-3

43 Key not supported

Non-primitive IDL keys are not supported.
When Real-Time Connect tries to create a
table with complex keys, it will report this
error message.

Example with supported keys:

struct SupportedKeysSt {
 string id_str; //@key
 long id_long; //@key
 short id_short; //@key
};
Example with unsupported keys:

struct KeySt {
 long id_long;
}
struct NonSupportedKeysSt {
 KeySt id_st; //@key
}

44 Error creating subscriber state queue

45 Error updating subscription state

46 Error creating '<object>'

47 Path too long
The path to the configuration file is too
long.

48 Error creating database publication cache
The Real-Time Connect Daemon had a prob-
lem creating the publication database
cache.

49 Error adding record to publication cache
The Real-Time Connect Daemon had a prob-
lem adding a new record to the publication
database cache.

50 Column name length exceeds maximum length

The maximum length of a column name in
Real-Time Connect is 30 characters.

To control the length of a column name, use
the configuration tags
<idl_member_prefix_max_length> and
<idl_member_suffix_max_length> under
<database_mapping_options>. See
Section 4.4.4.2 for additional details.

1024 - 2047 Connext-related errors
These messages are produced through the interaction of the Real-Time Connect Daemon with Connext. More
information on each error can be found by examining the native Connext errors codes that will be logged
with these messages.

1024 <message> General Connext error message.

1025 Error getting <entity> default QoS

1026 Error getting <entity> QoS

1027 Error setting <entity> QoS

1028 Error creating <entity>

1029 Error getting <entity>

1030 Error enabling <entity>

1031 Error cloning type code

Table A.1 Real-Time Connect Errors and Warnings

Code Message Details
A-4

1032 Error reading RTI DDS samples

1033 Error setting <entity> user data

1034 Error disposing RTI DDS instance

1035 Error unregistering RTI DDS instance

1036 Error writing RTI DDS sample

1037 Error ignoring <entity>

1038 Error creating <waitset type> waitset

1039 Error waiting in <waitset type> waitset

1040 Error getting builtin transport property

1041 Error setting builtin transport property

1042 Error creating <waitset type> guard condition

1043 Error attaching condition

1044 Error registering type '<type>'

1045 Error taking REDA buffer

1046 Error creating mutex

1047 Error creating <thread> thread

1048 Error creating REDA fast buffer

1049 Error taking semaphore

1050 Error giving semaphore

1051 Error creating worker factory

1052 Error creating worker

1053 Error creating clock

1054 Error creating event manager

1055 Error creating timer

1056 Error posting event

1057 Error getting time

1058 Error creating semaphore

1059 Error loading DDS XML Profile

1060 Error getting TypeCode

1061 Error cloning TypeCode

1062 Error parsing TypeCode

1063 Error creating TypeCode

2048 - 4095 ODBC-related errors
These message are produced through the interaction of the Real-Time Connect Daemon with the database
through the ODBC driver. More information on each error can be found by examining the native ODBC
errors codes that will be logged with these messages.

2048
<message>

<message>: <ODBC driver error message>
General ODBC error message.

Table A.1 Real-Time Connect Errors and Warnings

Code Message Details
A-5

4096 - 8191 DBMS Log Connection-related errors
These messages are produced through the interaction of the Real-Time Connect Daemon with the Connext.
More information on each error can be found by examining the native Connext errors codes that will be
logged with these messages.

4096 <message>
General DBMS log connection error mes-
sage.

8192 - 16383 OS-related errors
These messages are produced through the interaction of the Real-Time Connect Daemon with the operating
system. More information on each error can be found by examining the native OS errors codes that will be
logged with these messages.

8192 <message> General OS error message.

8193 Error handling OS signals

8194 Unable to set signal handler for <signal>

8195 Error getting the host name

8196 Error allocating memory for <object>

From 16384 Warning messages
These are warning messages that may be logged by the Real-Time Connect Daemon.

16384

Timestamps prior to '1970-01-01 00:00:00.00' cannot
be used for conflict resolution.

The RTC daemon will always use '1970-01-01
00:00:00,00' as the timestamp for those cases

16385

The Timestamp value of the resolution column is
NULL.

The RTC daemon will use the value '1970-01-01
00:00:00,00'.

16386 Diskless log buffer overflow
This warning appears only with Oracle
TimesTen databases.

16387 IDL member identifier collision

The prefix/suffix-based name associated
with member A in IDL type T collides with
the name of another member inside the
same type. Real-Time Connect will resolve
the conflict using an index.

16388 Invalid configuration parameter

16389 Ignored QoS value
A QoS value has been ignored by Real-Time
Connect.

16392
Dynamic loading of monitoring library is not sup-
ported

RTI Monitoring Library is statically linked.

In Real-Time Connect there is no need to
load this library dynamically.

32769 Requested incompatible QoS

The QoS of a Real-Time Connect subscrip-
tion is incompatible with the QoS of a Con-
next publication.

The name of the policy that is incompatible
is shown in this warning message.

Table A.1 Real-Time Connect Errors and Warnings

Code Message Details
A-6

32770 Offered incompatible QoS

The QoS of a Real-Time Connect publication
is incompatible with the QoS of a Connext
subscription.

The name of the policy that is incompatible
is shown in this warning message.

32771 Sample lost message
A Real-Time Connect subscription lost a
sample.

32772 Sample rejected message
A Real-Time Connect subscription rejected a
sample.

Table A.1 Real-Time Connect Errors and Warnings

Code Message Details
A-7

Appendix B Database Limits

The maximum number of columns is limited by the underlying database product. The maxi-
mum length of a column is independent of the database and it is limited to 30 characters.
Table B.1 notes the database limits of Real-Time Connect.

B.1 Maximum Columns for Oracle 11g
For Real-Time Connect subscriptions, the maximum number of columns is 1000. This limit is
imposed by the maximum number of columns in an Oracle 11g table.

For Real-Time Connect publications, the maximum number of columns is limited by the maxi-
mum size of the PL/SQL programs that Real-Time Connect installs in the Oracle 11g server. The

Table B.1 Real-Time Connect Database Limits

Oracle 11g Oracle
TimesTen 11.2.1 MySQL 5.1

Maximum number of columns

For subscriptions: 1000

For publications: 625 - 650

See Section B.1

1,000

4096, although the
effective maximum
may be considerably
smaller, see
Section B.2.

Maximum column-name
length (characters)

30 30 30a

CLOB/BLOB support YES
Not supported by
database

Not supported by
RTC (Maximum
record size is 65535
bytes)

CHAR maximum size (bytes) 2000 8300 255b

VARCHAR maximum size
(bytes)

4000 4194304 65535b

BINARY maximum size
(bytes)

2000 8300 255b

VARBINARY maximum size
(bytes)

2000 4194304 65535b

a. This limit is imposed by Real-Time Connect (not MySQL, which allows column names of up to 64 characters).
b. The maximum size of a row in MySQL 5.1 is limited to 65535. For example, you cannot have two fields of type VAR-
CHAR(40000) because the total width of the columns would exceed 65535 bytes. For additional information on this
restriction, see http://dev.mysql.com/doc/refman/5.1/en/column-count-limit.html.
B-1

http://dev.mysql.com/doc/refman/5.0/en/column-count-limit.html

Maximum Columns for MySQL
size of the PL/SQL programs depends on the column data types. For tables in which all the col-
umns are numbers, RTI has been able to publish with approximately 625 columns. For tables in
which all the columns are of type VARCHAR2, RTI has been able to publish with approximately
650 columns.

If the maximum number of columns is exceeded for Real-Time Connect publications, you will see
an error message similar to:

[DDSQLDaemonCore_onUpdateMetaTableEntry,line 3126:ERROR:4096:5009]
[CNA:CNAMonitorTable] ODBC call failed: ORA-24344: success with
compilation error

B.2 Maximum Columns for MySQL
The exact limit for the number of columns is driven by two factors:

❏ The maximum row size for a table, not counting BLOBs, is 65535.

❏ The maximum size of the meta information (schema) associated with a table is 64 KB.
The meta information includes the column names. The longer the column names, the
smaller the maximum number of columns.

Table B.2 provides information about the maximum number of columns that RTI was able to use
for different column-name lengths and column types.

For more information about MySQL restrictions on the number of columns, see
 http://dev.mysql.com/doc/refman/5.1/en/column-count-limit.html.

Table B.2 Max. Number of Columns Use by RTI for Different Column Types and Name Lengths

Column Type Column-Name Length (characters) Maximum Number of Columns

INTEGER

30 1283aDOUBLE

CHAR (50)

VARCHAR (50)

INTEGER
15 1823a

DOUBLE

CHAR (50) 15 1308b

VARCHAR (50) 15 1283b

a. Limited by schema size
b. Limited by row size.
B-2

http://dev.mysql.com/doc/refman/5.0/en/column-count-limit.html

	Available Documentation
	Chapter 1 Welcome to RTI Real-Time Connect
	1.1 Intended Readers
	1.2 Background Reading

	Chapter 2 Introduction
	2.1 The Edge to Enterprise Integration Solution
	2.2 Real-Time Connect’s Unique Features
	2.2.1 Interconnecting Standards
	2.2.2 Connectivity To Edge Devices
	2.2.3 Flexibility and Scalability
	2.2.4 Matching Real-Time Performance
	2.2.5 High Availability
	2.2.6 Additional Benefits of Real-Time Connect

	Chapter 3 Architecture
	3.1 Real-Time Connect Architecture
	3.1.1 Real-Time Connect Daemon
	3.1.2 Real-Time Connect’s Unique Features

	3.2 Capturing Real-Time Data in a DBMS
	3.3 Remote Real-Time Notification of Table Changes
	3.4 Bidirectional Integration
	3.5 Bridging between Domains
	3.6 High-Rate Data Streams Cached before Storage
	3.7 Real-Time Database Replication

	Chapter 4 Using Real-Time Connect
	4.1 Introduction to the Real-Time Connect Daemon
	4.1.1 How to Run the Real-Time Connect Daemon with Oracle
	4.1.1.1 Installing and Configuring the Oracle Server to Access (lib)rtirti_oracleq[.so,.dll]
	4.1.1.2 Installing (lib)nddsc[.so,.dll) and (lib)nddscore(.so,.dll) on the Oracle Server

	4.1.2 How to Run the Real-Time Connect Daemon with MySQL
	4.1.2.1 Installing MySQL ODBC 5.1.6 driver
	4.1.2.2 Installing and Configuring the MySQL Server to Access (lib)rtirti_mysqlq[.so,.dll]
	4.1.2.3 Installing libnddsc[.so,.dll) and libnddscore(.so,.dll) on the MySQL Server
	4.1.2.4 Starting the MySQL Server in ANSI_QUOTES mode

	4.1.3 How to Run the Real-Time Connect Daemons as Windows Services
	4.1.4 Typecodes

	4.2 Command-Line Parameters
	4.3 Environment Variables
	4.4 Configuration File
	4.4.1 How to Load the XML Configuration
	4.4.2 XML Syntax and Validation
	4.4.3 Top-Level XML Tags
	4.4.4 Database Configuration Using the Real-Time Connect XML Tag
	4.4.4.1 General Options
	4.4.4.2 Database Mapping Options
	4.4.4.3 Database Connection Options
	4.4.4.4 Initial Subscriptions and Publications
	4.4.4.5 Setting the XLA Staging Buffer Size for Diskless Connnections

	4.5 Meta-Tables
	4.5.1 Publications Table
	4.5.1.1 Publications Table Schema

	4.5.2 Subscriptions Table
	4.5.2.1 Subscriptions Table Schema

	4.5.3 Table Info
	4.5.3.1 Table Info Schema

	4.5.4 Log Table
	4.5.4.1 Log Table Schema

	4.6 User-Table Creation
	4.7 Support for Extensible Types
	4.8 Enabling RTI Distributed Logger in Real-Time Connect
	4.9 Enabling RTI Monitoring Library in Real-Time Connect

	Chapter 5 IDL/SQL Semantic and Data Mapping
	5.1 Semantic Mapping
	5.2 Data Representation Mapping
	5.2.1 IDL to SQL Mapping
	5.2.2 Primitive Types Mapping
	5.2.3 Oracle In-Memory Database Cache Mapping
	5.2.4 Bit Field Mapping
	5.2.5 Enum Types Mapping
	5.2.6 Simple IDL Structures
	5.2.7 Complex IDL Structures
	5.2.8 Array Fields
	5.2.9 Sequence Fields
	5.2.10 NULL Values
	5.2.11 Sparse Data Types

	Appendix A Error Codes
	Appendix B Database Limits
	B.1 Maximum Columns for Oracle 11g
	B.2 Maximum Columns for MySQL

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

