
µPAC-5001D-CAN series (C Language Based) User Manual, Version 1.0.0 Page: 1

Copyright © 2013 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

μPAC-5001D-CAN1 User Manual

μPAC-5001D-CAN2 User Manual

(C Language Based)

Version 1.0.0, Jan. 2013

Service and usage information for

μPAC-5001D-CAN1 / μPAC-5001D-CAN2

Warranty

All products manufactured by ICP DAS are under warranty regarding defective

materials for a period of one year, beginning from the date of delivery to the

original purchaser.

µPAC-5001D-CAN series (C Language Based) User Manual, Version 1.0.0 Page: 2

Copyright © 2013 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

Warning

ICP DAS assumes no liability for any damage resulting from the use of this

product.ICP DAS reserves the right to change this manual at any time without

notice. The information furnished by ICP DAS is believed to be accurate and

reliable. However, no responsibility is assumed by ICP DAS for its use, not for

any infringements of patents or other rights of third parties resulting from its use.

Copyright

Copyright @ 2013 by ICP DAS Co., Ltd. All rights are reserved.

Trademark

The names used for identification only may be registered trademarks of their

respective companies.

Contact US

If you have any problem, please feel free to contact us.

You can count on us for quick response.

 Email: service@icpdas.com

mailto:service@icpdas.com

µPAC-5001D-CAN series (C Language Based) User Manual, Version 1.0.0 Page: 3

Copyright © 2013 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

Table of Contents

Table of Contents ---3

1. Introduction ---6

1.1. μPAC-5001D-CAN series (C Language Based) -- 7

1.1.1. μPAC-5001D-CAN series Module Naming Convention --- 7

1.1.2. μPAC-5001D-CAN series Comparison List --- 8

1.2. Features --- 9

1.3. µPAC-5001D-CAN Series Specifications -- 12

1.3.1. μPAC-5001D-CAN1/μPAC-5001D-CAN2 -- 12

1.4. Overview --- 13

1.5. Dimensions -- 18

1.6. Companion CD --- 19

2. Getting Started --- 20

2.1. Hardware Installation --- 21

2.2. Software Installation -- 23

2.3. Boot Configuration -- 25

2.4. Uploading μPAC-5001D-CAN Programs -- 26

2.4.1. Establishing a connection between PC and µPAC-5001D-CAN series --------------------------- 27

(a) RS-232 connection --- 28

(b) Ethernet Connection --- 31

2.4.2. Uploading and executing µPAC-5001D-CAN series programs ------------------------------------- 36

2.4.3. Making programs start automatically --- 37

2.5. Updating μPAC-5001D-CAN series OS Image --- 39

3. “Hello World” - Your First Program -- 42

3.1. C Compiler Installation --- 43

µPAC-5001D-CAN series (C Language Based) User Manual, Version 1.0.0 Page: 4

Copyright © 2013 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

3.1.1. Installing the C compiler--- 44

3.1.2. Setting up the environment variables --- 48

3.2. μPAC-5001D-CAN series’s APIs --- 51

3.3. First Program in μPAC-5001D-CAN series -- 52

4. APIs and Demo References --- 62

4.1. API for COM Port -- 67

4.1.1. Types of COM port functions --- 68

4.1.2. API for MiniOS7 COM port -- 69

4.1.3. API for standard COM port --- 72

4.1.4. Port functions Comparison -- 74

4.1.5. Request/Response protocol define on COM port -- 75

4.2. API for I/O Modules --- 76

4.3. API for EEPROM -- 78

4.4. API for Flash Memory -- 80

4.5. API for NVRAM --- 82

4.6. API for 5-Digital LED -- 84

4.7. API for Timer --- 85

4.8. API for WatchDog Timer (WDT)--- 87

4.9. API for microSD --- 88

4.10. API for CAN bus --- 92

4.10.1. API for CAN Initialization --- 93

4.10.2. API for CAN Interrupt -- 98

4.10.3. API for Transmitting CAN Messages --- 101

4.10.4. API for Receiving CAN Messages --- 105

4.10.5. API for LED Indicator -- 110

4.10.6. API for User-Defined Interrupt --- 112

4.10.7. API for Detecting CAN Bus Baud Rate -- 115

4.10.8. Return Code --- 118

µPAC-5001D-CAN series (C Language Based) User Manual, Version 1.0.0 Page: 5

Copyright © 2013 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

Appendix A. What is MiniOS7? --- 119

Appendix B. What is MiniOS7 Utility? --- 120

Appendix C. More C Compiler Settings -- 121

C.1. Turbo C 2.01 --- 122

C.2. Borland C++ 3.1 -- 125

C.3. MSC 6.00 --- 129

C.4. MSVC 1.50 -- 131

Appendix D. Core’s application and wiring -- 135

µPAC-5001D-CAN series (C Language Based) User Manual, Version 1.0.0 Page: 6

Copyright © 2013 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

1. Introduction

The μPAC-5001D-CAN series is palm size PACs (Programmable Automation Controller), including

μPAC-5001D-CAN1 and μPAC-5001D-CAN2. With abundant and various peripherals and

communication ports, the μPAC-5001D-CAN series can integrate different communication interface,

like CAN bus, RS-232, RS-485, Ethernet and so on. In order to increase the modules openness and

applications flexibility, the μPAC-5001D-CAN series provides DOS-like real-time single-task operation

system for adapting to all kinds of needs. Users can develop application programs via C/C++ compiler.

In respect of application development, the μPAC-5001D-CAN series provides various libraries and

demo programs about the peripheral components. Users may be confused how to use those abundant

libraries. For that purpose, they also provide demo programs about libraries. When users need to use

various peripheral like communication ports, watch dog, real-time clock (RTC), seven-segment display,

reading/accessing into flash, EEPROM, MircoSD, even using 64-bit hardware unique series number to

protect the development of application software, they can be completed easily and quickly to meet all

kinds of needs for application program development by revising and combining these sample programs.

In order to work under harsh environment, the μPAC-5001D-CAN series was designed with low power

consumption and fanless products. Besides, they add all manner of anti-jamming protection components

on circuit design and meet requirements of the wide operating temperature and wide operating voltage.

Basis of all features which are described previously, the μPAC-5001D-CAN series are ideal for data

collection applied to integrate all kinds of communication interface or as a data processing center. They

are also designed to convert different protocol network such as gateway or bridge devices.

µPAC-5001D-CAN series (C Language Based) User Manual, Version 1.0.0 Page: 7

Copyright © 2013 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

1.1. μPAC-5001D-CAN series (C Language Based)

1.1.1. μPAC-5001D-CAN series Module Naming Convention

As you examine this manual, you’ll notice there are many different products available. Sometimes it is

difficult to remember the specifications for any given product. However, if you take a few minutes to

understand the module naming conventions, it may save you some time and solve your confusion. The

figure below shows how the module naming conventions work for each μPAC-5001D-CAN series

products.

µPAC-5001D-CAN series (C Language Based) User Manual, Version 1.0.0 Page: 8

Copyright © 2013 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

1.1.2. μPAC-5001D-CAN series Comparison List

The following table provides a comparison of μPAC-5001D-CAN series specifications:

Model CPU Flash SRAM
Memory

Expansion
PoE

5-digit 7- Segnment

Display

CAN Port

Num

μPAC-5001D-CAN1 80

MHz
512 KB 512 KB microSD

-
Y

1

μPAC-5001D-CAN2 - 2

µPAC-5001D-CAN series (C Language Based) User Manual, Version 1.0.0 Page: 9

Copyright © 2013 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

1.2. Features

 Various CPU and OS for Choosing

MiniOS7

80186 CPU

μPAC-5000 Series

 DOS-like OS

 Boot up in 0.4 ~ 0.8 second

 Build-in hardware diagnostic

 Standard version for C language programming

 Remote I/O Module and Expansion Unit

With the built-in CAN, RS-232/485 and Ethernet port,

the μPAC-5001D-CAN series can connect

CAN/RS-485/Ethernet remote I/O Units

(CAN-8x23/CAN-8x24/RU-87Pn/ET-87Pn) or

modules (CAN-2000D/CAN-2000C/I-7000/

M-7000/ET-7000).

 Multi-Communication Interface

There are several communication interfaces to expand I/O and connect external devices:

 Ethernet

 RS-232/485

 CAN bus

µPAC-5001D-CAN series (C Language Based) User Manual, Version 1.0.0 Page: 10

Copyright © 2013 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

 Various Memory Expansions

μPAC-5001D-CAN series provides various memory storage options,

such as EEPROM, Flash, battery-backup SRAM or microSD. Users

can choose the memory based on their characteristics.

 16 KB EEPROM: to store not frequently changed

parameters.

 microSD: to implement portable data logging applications.

 max. of 2 GB on the MiniOS7 platform

 max. of 2 GB on the Linux and WinCE platform

 Unique 64-bit Hardware Serial Number to Protect Your Program

A unique 64-bit serial number is assigned to each hardware device to protect

your software against piracy.

 Small and Easy Installation

μPAC-5001D-CAN series have a slender shape (91

mm x 132 mm x 52 mm) to be installing in a narrow

space with DIN-Rail.

 Plastic and Metal Housing

The default case is plastic material. Metal casing is

also offered to provide extra security.

 Redundant Power Inputs

To prevent the μPAC-5001D-CAN series from failing by the power loss, the power module is designed

with two input connectors. Once a power input fails, the power module switches to the other power

input. And there is a relay output for informing the power failure.

µPAC-5001D-CAN series (C Language Based) User Manual, Version 1.0.0 Page: 11

Copyright © 2013 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

 Highly Reliable Under Harsh Environment

The μPAC-5001D-CAN series operate in a wide range of temperature and humidity.

 Operating Temperature:

-25°C ~ +75 °C

 Storage Temperature:

-30°C ~ +80 °C

 Humidity:

10 ~ 95% RH (non-condensing)

µPAC-5001D-CAN series (C Language Based) User Manual, Version 1.0.0 Page: 12

Copyright © 2013 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

1.3. µPAC-5001D-CAN Series Specifications

1.3.1. μPAC-5001D-CAN1/μPAC-5001D-CAN2

Models μPAC-5001D-CAN1 μPAC-5001F-CAN2

System Software

OS MiniOS7 (DOS-like embedded operating system)

Program Upload Interface RS-232 (COM1) or Ethernet

Programming Language C language

Compilers to Create .exe Files TC++ 1.01,TC2.01,BC++3.1 ~ 5.2x,MSC 6.0,MSVC++ (Prior to version 1.5.2)

CPU Module

CPU 80186 or compatible (16-bit and 80MHz)

SRAM 512 KB

Flash 512 KB; erase unit is on sector (64K bytes); 100,000 erase/write cycles

microSD Expansion Yes, can support 1 or 2 GB microSD

EEPROM 16 KB

NVRAM 31 Bytes (battery backup, data valid up to 5 year)

RTC (Real Time Clock) Provide second, minute, hour, date of week, month and year, valid from 1980 to 2079

64-bit Hardware Serial Number Yes, for Software Copy Protection

Watchdog Timers Yes (0.8 second)

Ethernet Interface

Controller 10/100 Base-TX (Auto-negotiating, Auto MDI/MDI-X, LED indicators)

UART Interface

COM1 RS-232

COM2 RS-485 (D2+, D2-), self-tuner ASIC inside,.

LED Indicator

Programmable LED 5

LED Display 5-digit 7-segnment LED display

CAN Interface

Controller NXP SJA1000T with 16MHz clock Frequency

Transceiver NXP TJA1042

Channel Number 1 2

Connector 18-pin screwed terminal block (CAN_GND, CAN_L, CAN_GND)

Transmission Speed(bps) 5 k ~ 1 M selected by user defined

Terminator Resistor Jumper for the 120 Ω terminator resistor

Specification ISO 11898-2, CAN 2.0A and CAN 2.0B

Mechanical

Dimension (W x H x D) 91 mm x 123 mm x 52 mm

Installation DIN-Rail

Environmental

Operating Temperature -25 ~ + 75 ˚C

Storage Temperature -30 ~ +80 ˚C

Ambient Relative Humidity 10 ~ 90 % RH (non-condensing)

Power

Protection Power reverse polarity protection

Frame Ground Yes (for ESD protection)

Input Range +12 ~ +48 VDC

Isolation -

Redundant Power Inputs Yes

Power Consumption 3 W

µPAC-5001D-CAN series (C Language Based) User Manual, Version 1.0.0 Page: 13

Copyright © 2013 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

1.4. Overview

Here is a brief overview of the components and its descriptions for module status.

Front Panel

The LED indicators and 5-digit

7-Segnment LED display are on the

front panel that provides a very

convenient way of displaying

information for faster, easier

diagnostics.

 LED Indicators

LED indicators are on the front panel of the μPAC-5001D-CAN series, their functions are

summarized in the table below.

Indicator State Meaning

L1 Flashing User programmable LED

L2 OFF User programmable LED

Link (G) Permanently on Ethernet link detected

Permanently off No Ethernet link detected

Flashing green Ethernet packet received

CL1 OFF User programmable LED

CL2 OFF User programmable LED

CL3 OFF User programmable LED

µPAC-5001D-CAN series (C Language Based) User Manual, Version 1.0.0 Page: 14

Copyright © 2013 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

 5-Digit 7-SEG LED display (for display version only)

μPAC-5001D-CAN series display series equip 5-digital 7-SEG LED display that can be used

to display decimal numbers from 0 to 9 and provide a very convenient way of displaying

digital data in the form of Numbers.

Top Panel

The microSD memory socket is on the top panel that provides a simple way of expanding capacity.

 microSD Memory Socket

μPAC-5001D-CAN equips a microSD slot and it can support up to 2 GB microSD card.

µPAC-5001D-CAN series (C Language Based) User Manual, Version 1.0.0 Page: 15

Copyright © 2013 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

Bottom Panel

The switches and interface are on the bottom panel that provides a simple way of adjusting the system

and wiring the connection.

 Init Switch: Operating Mode Selector Switch

ON: Init mode (MiniOS7 configuration mode)

OFF: Normal mode (Firmware running mode)

In the μPAC-5001D-CAN series, the switch is always in the OFF position. Only when updating

the μPAC-5001D-CAN series firmware or OS, the switch can be moved from the OFF position to

the ON position.

Move the switch to the OFF position after the update is complete.

 Lock Switch: Flash Memory Write Protection Switch

ON: Enable Write Protection

OFF: Disable Write Protection

μPAC-5001D-CAN series Flash memory with Write Protection can physically lock that prevents

modification or erasure of valuable data onμPAC-5001D-CAN series.

Rotary Switch

Lock and Init* Switch

Pin Assignment LAN

µPAC-5001D-CAN series (C Language Based) User Manual, Version 1.0.0 Page: 16

Copyright © 2013 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

 LAN

μPAC-5001D-CAN includes an Ethernet port for network equipment use, and it supports RJ-45

connectors.

An Ethernet port is an opening on μPAC-5001D-CAN series network equipment that Ethernet

cables plug into. Ethernet ports accept cables with RJ-45 connectors.

 Pin Assignment

The pin assignments of the connector is as follows:

Pin Signal Description

1 N/A Unassigned

2 GND Ground

3 CTS

4 RTS

5 RxD COM1 (RS-232)

6 TxD

7 GND

8 D+ COM2 (RS-485)

9 D-

10 PWR2 Power Input 2

11 P.GND

12 PWR1 Power Input 1

13 P.GND

14 F.G. Frame Ground

µPAC-5001D-CAN series (C Language Based) User Manual, Version 1.0.0 Page: 17

Copyright © 2013 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

 CAN BUS Pin Assignment

 Terminal Resistor Jumper Selection

Apply the termination

resistor(120Ω)

Don’t apply the

termination resistor

µPAC-5001D-CAN series (C Language Based) User Manual, Version 1.0.0 Page: 18

Copyright © 2013 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

1.5. Dimensions

All dimensions are in millimeters.

Front View Back View

Bottom View Top View

µPAC-5001D-CAN series (C Language Based) User Manual, Version 1.0.0 Page: 19

Copyright © 2013 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

1.6. Companion CD

This package comes with two CDs. One of them provides standard drivers, software utility and the basic

documentations. The other provides CAN bus demo and documentations.All of the CD content is listed

below.

CD:\Napdos

CD:\fieldbus_cd

µPAC-5001D-CAN series (C Language Based) User Manual, Version 1.0.0 Page: 20

Copyright © 2013 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

2. Getting Started

If you are a new user, please begin with this chapter. It includes a guided tour that provides a basic

overview of installing, configuring and using for the μPAC-5001D-CAN series.

Before beginning any installation, please check the package contents. If any items are damaged or

missing, please contact us.

In addition to Quick Start Guide, the package includes the following items:

μPAC-5001D-CAN Software Utility CD RS-232 cable (CA-0910)

Screw Driver (1C016)

µPAC-5001D-CAN series (C Language Based) User Manual, Version 1.0.0 Page: 21

Copyright © 2013 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

2.1. Hardware Installation

Before installing the hardware, you should have a basic understanding of hardware specification, such as

the hard disc units, the usable input-voltage range of the power supply, and the type of communication

interfaces.

For complete hardware details, please refer to section “1.3. Specifications”

Below are step-by-step instructions for deploying the basic μPAC-5001D-CAN series system.

Step 1: Mount the hardware

The μPAC-5001D-CAN series can be mounted with the bottom of the chassis on the DIN rail or

piggyback.

 DIN Rail mounting

The μPAC-5001D-CAN series has simple rail

clips for mounting reliably on a

standard 35 mm DIN rail.

Mounting on DIN rail Removing from DIN rail

µPAC-5001D-CAN series (C Language Based) User Manual, Version 1.0.0 Page: 22

Copyright © 2013 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

 Piggyback mounting

The μPAC-5001D-CAN series has two holes on both sides for piggyback mounting.

Step 2: Connect the μPAC-5001D-CAN series to PC and setting up the power supply

The μPAC-5001D-CAN series equips an RJ-45 Ethernet port for connection to an Ethernet hub/switch

and PC, and powered by a standard 12 VDC power supply .

 External power supply via a standard 12 VDC power supply

i. Connect PC to LAN port of μPAC-5001D-CAN series.

ii. Connect the power supply (12 ~ 48 V) to PWR1 and GND

terminals of μPAC-5001D-CAN series.

µPAC-5001D-CAN series (C Language Based) User Manual, Version 1.0.0 Page: 23

Copyright © 2013 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

2.2. Software Installation

The Companion CDs includes APIs, demo programs and other tools for μPAC-5001D-CAN series.

Below is a step-by-step instruction for installing the APIs, demo programs and tools.

Step 1: Copy the “Demo” folder from the companion CD to PC

The folder is an essential resource for users developing your own applications which contains libraries,

header files, demo programs and more information as shown below.

µPAC-5001D-CAN series (C Language Based) User Manual, Version 1.0.0 Page: 24

Copyright © 2013 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

Step 2: Installing the MiniOS7 Utility

MiniOS7 Utility is a suite of tool for managing MiniOS7 devices (μPAC-5001D-CAN series). It

comprises four components – System monitor, communication manager, file manager and OS loader.

You can obtain the MiniOS7 Utility from companion CD or our FTP site:

CD:\Napdos\minios7\utility\minios7_utility\

http://ftp.icpdas.com/pub/cd/8000cd/napdos/minios7/utility/minios7_utility/

http://ftp.icpdas.com/pub/cd/8000cd/napdos/minios7/utility/minios7_utility/

µPAC-5001D-CAN series (C Language Based) User Manual, Version 1.0.0 Page: 25

Copyright © 2013 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

2.3. Boot Configuration

Before you upload some programs to μPAC-5001D-CAN series, you need to enter the Init mode and

disable the Write Protection.

Make sure the switch of the Lock placed in the “OFF” position, and the switch of the Init placed in the

“ON” position.

µPAC-5001D-CAN series (C Language Based) User Manual, Version 1.0.0 Page: 26

Copyright © 2013 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

2.4. Uploading μPAC-5001D-CAN Programs

MiniOS7 Utility is a suite of tool for managing MiniOS7 devices (μPAC-5001D-CAN). It comprises

four components – System monitor, communication manager, file manager and OS loader.

Before you begin using the MiniOS7 Utility to upload programs, please check that μPAC-5001D-CAN

is connected to PC.

The upload process has the following main steps:

1. Establishing a connection between PC and μPAC-5001D-CAN series

2. Uploading and executing programs on μPAC-5001D-CAN series

3. Making programs start automatically

All of these main steps will be described in detail later.

µPAC-5001D-CAN series (C Language Based) User Manual, Version 1.0.0 Page: 27

Copyright © 2013 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

2.4.1. Establishing a connection between PC and µPAC-5001D-CAN series

There are two ways to establish a connection between PC and μPAC-5001D-CAN series.

1. RS-232 connection

2. Ethernet connection

Each of the connection types will be described in detail later.

RS-232

Ethernet

µPAC-5001D-CAN series (C Language Based) User Manual, Version 1.0.0 Page: 28

Copyright © 2013 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

(a) RS-232 connection

Below are step-by-step instructions on how to connect to PC using a RS-232 connection.

Step 1: Ensure the switch of the Lock is in the “OFF” position, and the switch of Init is “ON”

position. Then reboot the μPAC-5001D-CAN.

Step 2: Use the RS-232 Cable (CA-0910) to connect to PC

RS-232

µPAC-5001D-CAN series (C Language Based) User Manual, Version 1.0.0 Page: 29

Copyright © 2013 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

Step 3: Run the MiniOS7 Utility

Step 4: Click the “New connection” function from the “Connection” menu

Step 5: On the “Connection” tab of the “Connection” dialog box, choose the COM port that your

μPAC-5001D-CAN is connecting to, and then click “OK”

µPAC-5001D-CAN series (C Language Based) User Manual, Version 1.0.0 Page: 30

Copyright © 2013 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

Step 6: The connection has already established

 Connection Status

µPAC-5001D-CAN series (C Language Based) User Manual, Version 1.0.0 Page: 31

Copyright © 2013 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

(b) Ethernet Connection

Below are step-by-step instructions on how to connect to PC using an Ethernet connection.

Step 1: Ensure the switch of the Lock is in the “OFF” position, and the switch of Init is “ON”

position. Then reboot the μPAC-5001D-CAN series.

Step 2: Use an Ethernet cable to connect to PC

Ethernet

µPAC-5001D-CAN series (C Language Based) User Manual, Version 1.0.0 Page: 32

Copyright © 2013 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

Step 3: Run the MiniOS7 Utility

Step 4: Click the “Search” function from the “Connection” menu

Step 5: On the “MiniOS7 Scan” dialog box, choose the module name from the list and then choose

“IP setting” from the toolbar

µPAC-5001D-CAN series (C Language Based) User Manual, Version 1.0.0 Page: 33

Copyright © 2013 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

Step 6: On the “IP Setting” dialog, configure the “IP” settings and then click the “Set” button

Step 7: On the “Confirm” dialog box, click “Yes”

µPAC-5001D-CAN series (C Language Based) User Manual, Version 1.0.0 Page: 34

Copyright © 2013 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

Step 8: Click the “New connection” function from the “Connection” menu

Step 9: On the “Connection” tab of the “Connection” dialog box, select “UDP” from the drop down

list, type the IP address which you are assigned, and then click “OK”

µPAC-5001D-CAN series (C Language Based) User Manual, Version 1.0.0 Page: 35

Copyright © 2013 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

Step 10: The connection has already established

 Connection Status

µPAC-5001D-CAN series (C Language Based) User Manual, Version 1.0.0 Page: 36

Copyright © 2013 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

2.4.2. Uploading and executing µPAC-5001D-CAN series programs

Before uploading and executing μPAC-5001D-CAN series programs, you must firstly establish a

connection between PC and μPAC-5001D-CAN series, for more detailed information about this process,

please refer to section “2.4.1. Establishing a connection between PC and μPAC-5001D-CAN series”

Step 1: On PC side, right click the file name that you wish to upload and then select the “Upload”

Step 2: On the module side, right click the file name that you wish to execute and then select the

“Run”

PC side module side

µPAC-5001D-CAN series (C Language Based) User Manual, Version 1.0.0 Page: 37

Copyright © 2013 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

2.4.3. Making programs start automatically

After upload programs on the μPAC-5001D-CAN series, if you need programs to start automatically

after the μPAC-5001D-CAN series start-up, it is easy to achieve it to create a batch file called

autoexec.bat and then upload it to the μPAC-5001D-CAN series, the program will start automatically in

the next start-up.

For example, to make the program “hello” run on start-up.

Step 1: Create an autoexec.bat file

i. Open the “Notepad”

ii. Type the command

The command can be either the file name “HELLO.exe” (run the specified file) or “runexe” (run the

last exe file)

iii. Save the file as autoexec.bat

The file name:

Run the specified file.

Runexe:

Run the last execuntion file (.exe).

µPAC-5001D-CAN series (C Language Based) User Manual, Version 1.0.0 Page: 38

Copyright © 2013 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

Step 2: Upload programs to μPAC-5001D-CAN series using MiniOS7 Utility

For more detailed information about this process, please refer to section “2.4.1. Establishing a

connection between PC and μPAC-5001D-CAN series”

Tips & Warnings

Before rebooting the module for settings to

take effect, you must firstly turn the switch

of Init to “OFF” position.

One is the “Hello”
application file, and the

other is the
“autoexec.bat” batch file

µPAC-5001D-CAN series (C Language Based) User Manual, Version 1.0.0 Page: 39

Copyright © 2013 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

2.5. Updating μPAC-5001D-CAN series OS Image

ICP DAS will continue to add additional features to μPAC-5001D-CAN series in the future, we advise

you periodically check the ICP DAS web site for the latest update to μPAC-5001D-CAN series.

Step 1: Obtain the latest version of the μPAC-5001D-CAN series OS image

The latest version of the μPAC-5001D-CAN series OS image can be obtained from:

CD:\NAPDOS\upac-5000\OS_image\

http://ftp.Icpdas.com/pub/cd/8000cd/napdos/upac-5000/os_image/

Step 2: Establish a connection

For more detailed information about this process, refer to section “2.4.1. Establishing a connection

between PC and µPAC-5001D-CAN series”

http://ftp.icpdas.com/pub/cd/8000cd/napdos/upac-5000/os_image/

µPAC-5001D-CAN series (C Language Based) User Manual, Version 1.0.0 Page: 40

Copyright © 2013 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

Step 3: Click the “Update MiniOS7 Image …” from the “File” menu

Step 4: Select the latest version of the MiniOS7 OS image

µPAC-5001D-CAN series (C Language Based) User Manual, Version 1.0.0 Page: 41

Copyright © 2013 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

Step 5: Click the “OK”

Step 6: Click the “Info” from the “Command” menu to check the version of the OS image

µPAC-5001D-CAN series (C Language Based) User Manual, Version 1.0.0 Page: 42

Copyright © 2013 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

3. “Hello World” - Your First Program

When you learn every computer programming language you may realize that the first program to

demonstrate is "Hello World", it provides a cursory introduction to the language's syntax and output.

Below are step-by-step instructions on how to write your first μPAC-5001D-CAN series’s program.

µPAC-5001D-CAN series (C Language Based) User Manual, Version 1.0.0 Page: 43

Copyright © 2013 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

3.1. C Compiler Installation

C is prized for its efficiency, and is the most popular programming language for writing applications.

Before writing your first μPAC-5001D-CAN series’s program, ensure that you have the necessary

C/C++ compiler and the corresponding functions library on your system.

The following is a list of the C compilers that are commonly used in the application development

services.

 Turbo C++ Version 1.01

 Turbo C Version 2.01

 Borland C++ Versions 3.1 - 5.2.x

 MSC

 MSVC++ (Prior to version 1.52)

We recommend that you use Borland C++ compiler as the libraries have been created on the companion

CD.

Tips & Warnings

Before compiling an application, you need to take care of the following matters.

Generate a standard DOS executable program

Set the CPU option to 80188/80186

Set the floating point option to EMULATION if floating point computation is

required. (Be sure not to choose 8087)

Cancel the Debug Information function as this helps to reduce program size.

(MiniOS7 supports this feature.).

µPAC-5001D-CAN series (C Language Based) User Manual, Version 1.0.0 Page: 44

Copyright © 2013 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

3.1.1. Installing the C compiler

If there is no compiler currently installed on your system, installation of the compiler should be the first

step.

Below are step-by-step instructions for guiding you to install Turbo C++ Version 1.01 on your system.

Step 1: Double click the Turbo C++ executable file to start setup wizard

Step 2: Press “Enter” to continue

µPAC-5001D-CAN series (C Language Based) User Manual, Version 1.0.0 Page: 45

Copyright © 2013 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

Step 3: Enter the letter of the hard drive you wish to install the software

Step 4: Enter the path to the directory you wish to install files to

µPAC-5001D-CAN series (C Language Based) User Manual, Version 1.0.0 Page: 46

Copyright © 2013 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

Step 5: Select “Start Installation” to begin the install process

Step 6: Press any key to continue

µPAC-5001D-CAN series (C Language Based) User Manual, Version 1.0.0 Page: 47

Copyright © 2013 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

Step 7: Press any key to continue

Step 8: Installation is complete

µPAC-5001D-CAN series (C Language Based) User Manual, Version 1.0.0 Page: 48

Copyright © 2013 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

3.1.2. Setting up the environment variables

After installing the compiler, several compilers will be available from the Windows Command line. You

can set the path environment variable so that you can execute this compiler on the command line by

entering simple names, rather than by using their full path names.

Step 1: Right click on the “My Computer” icon on your desktop and select the “Properties” menu

option

Right-click “My

Computer” and then

select “Properties”

µPAC-5001D-CAN series (C Language Based) User Manual, Version 1.0.0 Page: 49

Copyright © 2013 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

Step 2: On the “System Properties” dialog box, click the “Environment Variables” button located

under the “Advanced” sheet

Step 3: On the “Environment Variables” dialog box, click the “Edit” button located in the “System

variables” option

1

2

3

4

µPAC-5001D-CAN series (C Language Based) User Manual, Version 1.0.0 Page: 50

Copyright © 2013 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

Step 4: Add the target directory to the end of the variable value field

A semi-colon (;) is used as the separator between variable values.

For example, ”;c:\TC\BIN\;c:\TC\INCLUDE\”

Step 5: Restart the computer to allow your changes to take effect

µPAC-5001D-CAN series (C Language Based) User Manual, Version 1.0.0 Page: 51

Copyright © 2013 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

3.2. μPAC-5001D-CAN series’s APIs

There are several APIs (standard and CAN bus) for customizing the standard features and integrating

with other applications, devices and services.

For more detailed information regarding μPAC-5000 series standard APIs, please refer to following path

about updating history files

CD:\NAPDOS\upac-5000\Demo\basic\Lib\

http://ftp.icpdas.com/pub/cd/8000cd/napdos/upac-5000/demo/basic/lib/

For more detailed information regarding μPAC-5001D-CAN series CAN bus APIs, please refer to

CD:\ fieldbus_cd\can\pac\upac-5001D-CAN\demo\bc_tc\lib\

ftp://ftp.icpdas.com/pub/cd/fieldbus_cd/can/pac/upac-5001D-CAN/demo/bc_tc \lib\

Before creating the application, ensure them that you have installed. If they are not installed, please refer

to “section 2.2. Software Installation”.

http://ftp.icpdas.com/pub/cd/8000cd/napdos/upac-5000/demo/basic/lib/
ftp://ftp.icpdas.com/pub/cd/fieldbus_cd/can/pac/upac-5001D-CAN/demo/bc_tc /lib/

µPAC-5001D-CAN series (C Language Based) User Manual, Version 1.0.0 Page: 52

Copyright © 2013 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

3.3. First Program in μPAC-5001D-CAN series

Here we assume you have installed the Turbo C++ 1.01 (as the section “3.1. C Compiler Installation”)

and the μPAC-5001D-CAN series's APIs (as the section “2.3. Software Installation”) under the C driver

root folder.

Below are step-by-step instructions for writing your first program.

Step 1: Open a MS-DOS command prompt

i. Select “Run” from the “Start” menu

ii. On the “Run” dialog box, type “cmd”

iii. Click the “OK” button

1

2. Type “cmd”

3

µPAC-5001D-CAN series (C Language Based) User Manual, Version 1.0.0 Page: 53

Copyright © 2013 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

Step 2: At the command prompt, type “TC” and then press “Enter”

Step 3: Select “New” from the “File” menu to create a new source file

µPAC-5001D-CAN series (C Language Based) User Manual, Version 1.0.0 Page: 54

Copyright © 2013 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

Step 4: Type the following code. Note that the code is case-sensitive

#include "..\..\demo\basic\lib\upac5000.h"

/* Include the header file that allows uPAC5000.lib functions to be used */

void main(void)

{

InitLib(); /* Initiate the upac5000 library */

Print("Hello world\r\n"); /* Print the message on the screen */

}

Step 5: Save the source file

i. Select “Save” from the “File” menu

ii. Type the file name “Hello”

iii. Select “OK”

µPAC-5001D-CAN series (C Language Based) User Manual, Version 1.0.0 Page: 55

Copyright © 2013 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

Tips & Warnings

You can write the code as shown below with your familiar text editor or other

tools; please note that you must save the source code under a filename that

terminates with the extension “C”.

Step 6: Create a project (*.prj)

i. Select “Open project…” from the "Project" menu

ii. Type the project name “Hello.prj”

iii. Select “OK”

µPAC-5001D-CAN series (C Language Based) User Manual, Version 1.0.0 Page: 56

Copyright © 2013 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

Step 7: Add the necessary function libraries (*.lib) to the project

i. Select ”Add item...” from the ”Project” menu

ii. Type ”*.lib” to display a list of all necessary function libraries

iii. Choose the function libraries you require

iv. Select ”Add”

v. Slelect “Done” to exit

Step 8: Add the source file (*.c) to the project

i. Select ”Add item...” from the ”Project” menu

ii. Type ”*.c” to display a list of source files

iii. Choose the source file you require

iv. Select ”Add”

v. Slelect “Done” to exit

µPAC-5001D-CAN series (C Language Based) User Manual, Version 1.0.0 Page: 57

Copyright © 2013 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

Step 9: Set the memory model to large

i. Select “Compiler” from the “Options” menu and then select “Code generation…”

ii. On “Model” option, select “Large”

iii. Select “OK”

µPAC-5001D-CAN series (C Language Based) User Manual, Version 1.0.0 Page: 58

Copyright © 2013 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

Step 10: Set the “Floating Point” to Emulation and the “Instruction Set” to 80186

i. Select “Compiler” from the “Options” menu and then select “Advanced code generation…”

ii. On “Floating Point” option, select “Emulation”

iii. On “Instruction Set” option, select “80186”

iv. Select “OK”

µPAC-5001D-CAN series (C Language Based) User Manual, Version 1.0.0 Page: 59

Copyright © 2013 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

Step 11: Specify the include directories where the compiler can search for header file and libraries

i. Select “Directories…” from the “Options” menu

ii. On “Include Directories” option, specify the header file directory

iii. On “Library Directories” option, specify the function library directory

iv. Select “OK”

µPAC-5001D-CAN series (C Language Based) User Manual, Version 1.0.0 Page: 60

Copyright © 2013 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

Step 12: Select “Build all” from the “Compile” menu to build the project

Step 13: Configure the operating mode

Make sure the switch of the Lock placed is in the “OFF” position, and the switch of the Init placed is in

the “ON” position.

µPAC-5001D-CAN series (C Language Based) User Manual, Version 1.0.0 Page: 61

Copyright © 2013 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

Step 14: Create an autoexec.bat file

i. Open the “Notepad”

ii. Type the “HELLO.exe”

iii. Save the file as autoexec.bat

Step 15: Upload programs to µPAC-5001D-CAN series using MiniOS7 Utility

For more detailed information about this process, please refer to section “2.4.1. Establishing a

connection between PC and µPAC-5001D-CAN”

One is the “Hello”
application file, and the

other is the
“autoexec.bat” batch file

µPAC-5001D-CAN series (C Language Based) User Manual, Version 1.0.0 Page: 62

Copyright © 2013 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

4. APIs and Demo References

There are several APIs and demo programs that have been designed for µPAC-5001D-CAN series.

You can examine the APIs and demo source code, which includes numerous functions and comments, to

familiarize yourself with the MiniOS7 APIs and develop your own applications quickly by modifying

these demo programs.

The following table lists the APIs grouped by functional category.

API Description Header File Library

CPU driver uPAC5000.h uPAC5000.lib

New version of COM port driver OS7_COM.h OS7_COM.lib

Ethernet driver TCPIP32.h Tcp_dm32.Lib

microSD driver microSD.h sd_V102.lib

Xserver VxComm.h Vcom3225.Lib

Modbus driver MBTCP.h MBT7_171.lib

Xboard Driver for CAN BUS XWCAN.h XWCAN.lib

For more detailed information regarding μPAC-5000 standard APIs, please refer to following path about

updating history file:

CD:\NAPDOS\upac-5000\Demo\basic\Lib\

http://ftp.icpdas.com/pub/cd/8000cd/napdos/upac-5000/demo/basic/lib/

For more detailed information regarding μPAC-5001D-CAN series CAN bus APIs, please refer to:

CD:\fieldbus_cd\can\pac\upac-5001D-CAN\demo\bc_tc\lib\

ftp://ftp.icpdas.com/pub/cd/fieldbus_cd/can/pac/upac-5001-CAN/demo/bc_tc/lib/

http://ftp.icpdas.com/pub/cd/8000cd/napdos/upac-5000/demo/basic/lib/
ftp://ftp.icpdas.com/pub/cd/fieldbus_cd/can/pac/upac-5001-CAN/demo/bc_tc/lib/

µPAC-5001D-CAN series (C Language Based) User Manual, Version 1.0.0 Page: 63

Copyright © 2013 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

The following introduces the core API, MiniOS7 API, which is integrated into the μPAC-5001D-CAN

series API set.

Functions Library ─ uPAC5000.lib

This file contains the MiniOS7 API (Application Programming Interface) and has hundreds of

pre-defined functions related to μPAC-5000

Header File ─ uPAC5000.h

This file contains the forward declarations of subroutines, variables, and other identifiers used for the

MiniOS7 API.

µPAC-5001D-CAN series (C Language Based) User Manual, Version 1.0.0 Page: 64

Copyright © 2013 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

For full usage information regarding the description, prototype and the arguments of the functions,

please refer to the “MiniOS7 API Functions User Manual” located at:

CD:\Napdos\MiniOS7\Document

http://ftp.Icpdas.com/pub/cd/8000cd/napdos/minios7/document/

http://ftp.icpdas.com/pub/cd/8000cd/napdos/minios7/document/

µPAC-5001D-CAN series (C Language Based) User Manual, Version 1.0.0 Page: 65

Copyright © 2013 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

The following table lists the demo programs grouped standard demos by functional category.

Folder Demo Explanation

LED LED Shows how to control the LED display.

 Seg7led Shows how to control the 5-digit 7-segment LED

display.

MISC Rotary_Switch Shows how to read the position of the switch.

Memory EEPROM Shows how to read/write EEPROM.

 Flash Shows how to access Flash

 Nvram-r,Nvram-w Shows how to read/write Nvram.

microSD sd_qa Shows how to connect and control the microSD

 sd_read

 sd_util

 sd_write

Timer Demo90,demo91,…,demo99 Shows how to use timer function.

7k87k_Module 7k87k_ai_for_com,

7k87k_demo_for_com,

…

Ao_24_for_com

Shows how to control 7k and 87k module.

For more detailed information regarding μPAC-5000 APIs, please refer to:

CD:\NAPDOS\upac-5000\Demo\basic\

http://ftp.Icpdas.com/pub/cd/8000cd/napdos/upac-5000/demo/basic/

http://ftp.icpdas.com/pub/cd/8000cd/napdos/upac-5000/demo/basic/

µPAC-5001D-CAN series (C Language Based) User Manual, Version 1.0.0 Page: 66

Copyright © 2013 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

The following table lists the demo programs grouped CAN bus demos by functional category.

Folder Demo Explanation

Demo AC_AM Use the AccCode and AccMask

 Dual_Filter Use the AccCode and AccMask to set dual

filter

 All_Demo Demo the total functions provided by the

XWCAN.lib.

 L1_L2_L3 Use the CL1, CL2, and CL3 LEDs.

 RxInt Receive the CAN messages by interrupt mode.

 RxPoll Receive the CAN messages by polling mode.

 TxInt Send the CAN messages to the CAN network

by interrupt mode.

 TxPoll Send the CAN messages to the CAN network

by polling mode.

 UserInt Use the UserCANInt function to apply the

users' CAN interrupt service routine.

 SCH_Baud Demo for search the CAN bus baud rate.

For more detailed information regarding μPAC-5001D-CAN series CAN bus APIs, please refer to:

CD:\fieldbus_cd\can\pac\upac-5001D-CAN\demo\bc_tc\lib\

ftp://ftp.icpdas.com/pub/cd/fieldbus_cd/can/pac/upac-5001D-CAN/demo/bc_tc/lib/

ftp://ftp.icpdas.com/pub/cd/fieldbus_cd/can/pac/upac-5001D-CAN/demo/bc_tc/lib/

µPAC-5001D-CAN series (C Language Based) User Manual, Version 1.0.0 Page: 67

Copyright © 2013 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

4.1. API for COM Port

The μPAC-5001D-CAN series provides two built-in COM ports, COM1 and COM2.

 COM1 – A RS-232 port can use to connect to PC.

 COM2 – A RS-485 port in a point to point connection.

COM1

COM2

µPAC-5001D-CAN series (C Language Based) User Manual, Version 1.0.0 Page: 68

Copyright © 2013 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

4.1.1. Types of COM port functions

There are two types of functions below for using COM port.

1. MiniOS7 COM port functions

2. (C style) Standard COM port functions

Tips & Warnings

(C style) Standard COM port functions only can be used with the COM1, if you

use the COM1 port, you’ll have the alternative of MiniOS7 COM ports functions

or (C style) Standard COM port functions. If you choose the ones, then another

cannot be used.

Summarize the results of the comparison between MiniOS7 COM port functions and (C style) Standard

COM port functions:

Types of Functions COM Port Buffer Functions

MiniOS7

COM port
1, 2, etc. 1 KB 1 KB IsCom() ToCom() ReadCom() printCom()

(C style)

Standard COM

port

1 512 Bytes 256 Bytes Kbhit()
Puts()

Putch()
Getch() Print()

µPAC-5001D-CAN series (C Language Based) User Manual, Version 1.0.0 Page: 69

Copyright © 2013 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

4.1.2. API for MiniOS7 COM port

The software driver for the uPAC-5001D-CAN is an interrupt driven library that provides a 1K QUEUE

buffer for each COM port. The software is well designed and easy to use. The MiniOS7 provides the

same interface for all COM ports, so each port can be used in the same way without any difficulty.

API for using COM ports

1. InstallCom()

Before using the COM port, the COM port driver must be installed by calling InstallCom().

2. RestoreCom()

If the program calls InstallCom(), the RestoreCom() must be called to uninstall the COM port

driver.

API for checking if there is any data in the COM port input buffer

3. IsCom()

Before reading data from COM port, the IsCom() must be called to check whether there is any

data currently in the COM port input buffer.

API for reading data from COM port

4. ReadCom()

After IsCom() confirms that the input buffer contains data, the ReadCom() must be called to read

the data from the COM port input buffer.

API for sending data to COM ports

5. ToCom()

Before sending data to COM ports, the ToCom() must be called to send data to COM ports.

µPAC-5001D-CAN series (C Language Based) User Manual, Version 1.0.0 Page: 70

Copyright © 2013 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

For example, reading and receiving data through the COM1.

#include <stdio.h>

#include "upac5000.h"

void main(void)

{

int quit=0, data;

InitLib(); /* Initiate the upac5000 library */

InstallCom(1, 115200L, 8, 0, 1); /* Install the COM1 driver */

while(!quit)

{

if(IsCom(1)) /* Check if there is any data in the COM port input buffer */

{

data=ReadCom(1); /* Read data from COM1 port */

ToCom(1, data); /* Send data via COM1 port */

if(data=='q') quit=1; /* If ‘q’ is received, exit the program */

}

}

RestoreCom(1); /* Release the COM1 */

}

µPAC-5001D-CAN series (C Language Based) User Manual, Version 1.0.0 Page: 71

Copyright © 2013 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

API for showing data from COM ports

6. printCom()

Functions such as printf() in the C library allow data to be output from COM ports.

For example, showing data from the COM1 port.

#include <stdio.h>

#include "upac5000.h"

void main(void)

{

int i;

InitLib(); /* Initiate the upac5000 library */

InstallCom(1, 115200L, 8, 0, 1); /* Install the COM1 driver */

for(i=0; i<10; i++)

{

printCom(1, "Test %d\r\n", i);

}

Delay(10); /* Wait for all data are transmitted to COM port */

RestoreCom(1);

}

µPAC-5001D-CAN series (C Language Based) User Manual, Version 1.0.0 Page: 72

Copyright © 2013 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

4.1.3. API for standard COM port

The standard COM port is used to upload program from PC to the µPAC-5001D-CAN series.

Tips & Warnings

(C style) Standard COM port functions only can be used with the COM1 port, the

following configurations of the COM1 port are fixed:

Baud rate = 115200 bps, Data format = 8 bits

Parity check = none, Start bit = 1, Stop bit = 1

API for checking if there is any data in the input buffer

1. Kbhit()

Before reading data from standard I/O port, the Kbhit() must be called to check whether there is

any data currently in the input buffer.

API for reading data from standard I/O port

2. Getch()

After Kbhit() confirms that the input buffer contains data, the Getch() must be called to read data

from the input buffer.

API for sending data to standard I/O port

3. Puts() – For sending a string

Outputs a string to the COM1 (and appends a newline character).

4. Putch() – For sending one character

Outputs a character to the COM1.

µPAC-5001D-CAN series (C Language Based) User Manual, Version 1.0.0 Page: 73

Copyright © 2013 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

API for showing data from standard I/O port

5. Print()

Functions such as printf() in the C library allow data to be output from the COM1.

For example, reading and receiving data through COM1.

#include <stdio.h>

#include "upac5000.h"

void main(void)

{

int quit=0, data;

InitLib(); /* Initiate the upac5000 library */

while(!quit)

{

if(Kbhit()) /* Check if any data is in the input buffer */

{

data=Getch(); /* Read data from COM1 */

Putch(data); /* Send data to COM1 */

if(data=='q') quit=1; /* If ‘q’ is received, exit the program */

}

}

}

For example, showing data through COM1.

#include <stdio.h>

#include "upac5000.h"

void main(void)

{

int i;

InitLib(); /* Initiate the upac5000 library */

for(i=0; i<10; i++)

{

Print("Test %d\r\n", i);

}

}

µPAC-5001D-CAN series (C Language Based) User Manual, Version 1.0.0 Page: 74

Copyright © 2013 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

4.1.4. Port functions Comparison

For example, learning to show the ASCII code.

MiniOS7 COM port functions Standard COM port functions

#include <stdio.h>

#include "upac5000.h"

void main(void)

{

unsigned char item;

InitLib();

InstallCom(1,115200,8,0,1);

printCom(1,"Press any key.\n");

printCom(1,"Press the ESC to exit!\n");

for(;;){

if(IsCom(1)){

item=ReadCom(1);

if(item=='q') return;

else{

printCom(1,"----------\r\n");

printCom(1,"char: ");

ToCom(1,item);

printCom(1,"\r\nASCII(%c)\r\n",item);

printCom(1,"Hex(%02X)\r\n",item);

}

}

}

Delay(10);

RestoreCom(1);

}

#include <stdio.h>

#include "upac5000.h"

void main(void)

{

unsigned char item;

InitLib();

Print("Press any key.\n");

Print("Press the ESC to exit!\n");

for(;;){

if(Kbhit()){

item=Getch();

if(item=='q') return;

else{

Print("----------\r\n");

Print("char: ");

Putch(item);

Print("\r\nASCII(%c)\r\n",item);

Print("Hex(%02X)\r\n",item);

}

}

}

}

µPAC-5001D-CAN series (C Language Based) User Manual, Version 1.0.0 Page: 75

Copyright © 2013 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

4.1.5. Request/Response protocol define on COM port

Request/Response communication is very typical protocol architecture. If you want to design a

command set of communication protocol as table below, you can refer to “slave_com” demo.

Request Response

c1
Debug information: Command1

Command1

c2
Debug information: Command2

Command2

Q Debug information: Quick program

Other command Debug information: Unknown command

For a request/response application,

please refer to “slave_com” demo

Request

Response

µPAC-5001D-CAN series (C Language Based) User Manual, Version 1.0.0 Page: 76

Copyright © 2013 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

4.2. API for I/O Modules

The µPAC-5001D-CAN series equip a RS-485 communication interface, COM2, to access

I-7000 series I/O modules for a wide range of RS-485 network application, as shown below.

Steps to communicate with i-7000 series I/O modules:

Step 1: Use Installcom() to install the COM port driver.

Step 2: Use SendCmdTo7000(2,…) to send commands

Step 3: Use ReceiveResponseFrom7000_ms() to get the response.

Step 4: Use RestoreCom() to uninstall the COM port driver

RS-485

µPAC-5001D-CAN series (C Language Based) User Manual, Version 1.0.0 Page: 77

Copyright © 2013 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

For example, to send a command ‘$01M’ to I-7000 I/O module for getting the module name.

#include <stdio.h>

#include "upac5000.h"

void main(void)

{

unsigned char InBuf0[60];

InitLib(); /* Initiate the upac5000 library */

InstallCom(1, 115200L, 8, 0, 1); /* Install the COM1 driver */

InstallCom(2, 115200L, 8, 0, 1); /* Install the COM2 driver */

SendCmdTo7000(2, "$01M", 0); /* Send DCON command via COM2 */

/* Timeout=50ms, check sum disabled */

ReceiveResponseFrom7000_ms(2, InBuf0, 50, 0);

printCom(1, "Module Name = %s", InBuf0);

Delay(10); /* Wait for all data are transmitted to COM port */

RestoreCom(1); /* Release the COM1 */

RestoreCom(2); /* Release the COM2 */

}

µPAC-5001D-CAN series (C Language Based) User Manual, Version 1.0.0 Page: 78

Copyright © 2013 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

For user

Reserved for

system use

System

OS

4.3. API for EEPROM

 The EEPROM contains 64 blocks (block 0 ~ 63), and each block has 256 bytes (address 0 ~ 255), with

a total size of 16,384 bytes (16K) capacity.

 The default mode for EEPROM is write-protected mode.

 The system program and OS are stored in EEPROM that are allocated as shown below.

API for writing data to the EEPROM

1. EE_WriteEnable()

Before writing data to the EEPROM, the

EE_WriteEnable() must be called to write-enable the

EEPROM.

2. EE_WriteProtect()

After the data has finished being written to the

EEPROM, the EE_WriteProtect() must be called to in

order to write-protect the EEPROM.

3. EE_MultiWrite()

After using the EE_WriteEnable() to write-enable

EEPROM, the EE_MultiWrite()must be called to write

the data.

API for reading data from the EEPROM

4. EE_MultiRead()

Read data from the EEPROM no matter what the current mode is.

Block 0 ~ 6

Block 7

Block 8 ~ 31

Block 32 ~ 64

Block 0 ~ 6

Block 32 ~ 63

µPAC-5001D-CAN series (C Language Based) User Manual, Version 1.0.0 Page: 79

Copyright © 2013 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

For example, to write data to block1, address 10 of the EEPROM:

#include <stdio.h>

#include "upac5000.h"

void main(void)

{

int data=0x55, data2;

InitLib(); /* Initiate the upac5000 library */

EE_WriteEnable();

EE_MultiWrite(1, 10, 1, &data);

EE_WriteProtect();

EE_MultiRead(1, 10, 1, &data2); /* Now data2=data=0x55 */

}

µPAC-5001D-CAN series (C Language Based) User Manual, Version 1.0.0 Page: 80

Copyright © 2013 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

4.4. API for Flash Memory

 The µPAC-5001D-CAN series module contains 512K bytes of Flash memory.

 MiniOS7 uses the last 64K bytes; the other parts of the memory are used to store user programs or

data.

 Each bit of the Flash memory only can be written from 1 to 0 and cannot be written from 0 to 1.

Before any data can be written to the Flash memory, the flash must be erased, first which returns all

data to 0xFF, meaning that all data bits are set to “1”. Once there is completed, new data can be

written.

API for erasing data from the Flash Memory

1. EraseFlash()

The only way to change the data from 0 to 1 is to call the EraseFlash() function to erase a block

from the Flash memory.

Free

Free

Free

Free

Free

Free

Free

MiniOS7

0 x 8000

0 x 9000

0 x A000

0 x B000

0 x C000

0 x D000

0 x E000

0 x F000

Free: 448K bytes

MiniOS7: 64K bytes

Total Size: 512K bytes

µPAC-5001D-CAN series (C Language Based) User Manual, Version 1.0.0 Page: 81

Copyright © 2013 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

API for writing data to the Flash Memory

2. FlashWrite()

The FlashWrite() must be called to write data to the Flash Memory.

API for reading data from the Flash Memory

3. FlashRead()

The FlashRead() must be called to read data from the Flash Memory.

For example, to write an integer to segnment 0xD000, offset 0x1234 of the Flash memory.

#include <stdio.h>

#include "upac5000.h"

void main(void)

{

int data=0xAA55, data2;

char *dataptr;

int *dataptr2;

InitLib(); /* Initiate the upac5000 library */

EraseFlash(0xd000); /* Erase a block from the Flash memory */

dataptr=(char *) &data;

FlashWrite(0xd000, 0x1234, *dataptr++);

FlashWrite(0xd000, 0x1235, *dataptr);

/* Read data from the Flash Memory (method 1) */

dataprt=(char *) &data2;

*dataptr=FlashRead(0xd000, 0x1234);

*(dataptr+1)=FlashRead(0xd000, 0x1235);

/* Read data from the Flash Memory (method 2) */

dataptr2=(int far *) _MK_FP(0xd000, 0x1234);

data=*data;

}

µPAC-5001D-CAN series (C Language Based) User Manual, Version 1.0.0 Page: 82

Copyright © 2013 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

4.5. API for NVRAM

 The µPAC-5001D-CAN series equips an RTC (Real Time Clock), 31 bytes of NVRAM can be used

to store data.

 NVRAM is SRAM, but it uses battery to keep the data, so the data in NVRAM does not lost its

information when the module is power off.

 NVRAM has no limit on the number of the re-write times. (Flash and EEPROM both have the limit on

re-write times) If the leakage current is not happened, the battery can be used 10 years.

API for writing data to the NVRAM

1. WriteNVRAM()

The WriteNVRAM() must be called in order to write data to the NVRAM.

API for reading data from the NVRAM

2. ReadNVRAM()

The ReadNVRAM() must be called in order to write data to the NVRAM.

For example, use the following code to write data to the NVRAM address 0.

#include <stdio.h>

#include "upac5000.h"

void main(void)

{

int data=0x55, data2;

InitLib(); /* Initiate the upac5000 library */

WriteNVRAM(0, data);

data2=ReadNVRAM(0); /* Now data2=data=0x55 */

}

µPAC-5001D-CAN series (C Language Based) User Manual, Version 1.0.0 Page: 83

Copyright © 2013 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

For example, the following can be used to write an integer (two bytes) to NVRAM.

#include <stdio.h>

#include "upac5000.h"

void main(void)

{

int data=0xAA55, data2;

char *dataptr=(char *) &data;

InitLib(); /* Initiate the upac5000 library */

WriteNVRAM(0, *dataptr); /* Write the low byte */

WriteNVRAM(1, *dataptr+1); /* Write the high byte */

dataptr=(char *) &data2;

dataptr=ReadNVRAM(0); / Read the low byte */

(*dataptr+1)=ReadNVRAM(1); /* Read the high byte */

}

µPAC-5001D-CAN series (C Language Based) User Manual, Version 1.0.0 Page: 84

Copyright © 2013 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

4.6. API for 5-Digital LED

The µPAC-5001D-CAN series contains a 5-Digit 7-SEG LED with a decimal point on the right-hand

side of each digit, which be used to display numbers, IP addresses, time, and so on.

API for starting the 5-Digit 7-SEG LED

1. Init5DigitLed()

Before using any LED functions, the Init5DigitLed() must be called to initialize the 5-Digit

7-SEG LED.

API for displaying a message on the 5-Digit 7-SEG LED

2. Show5DigitLed()

After the Init5DigitLed() is used to initialize the 5-Digit 7-SEG LED, the Show5DigitLed() must

be called to display information on the 5-Digits 7-SEG LED.

For example, use the following code to display “8000E” on the 5-Digit 7-SEG LED.

#include <stdio.h>

#include "upac5000.h"

void main(void)

{

InitLib(); /* Initiate the upac5000 library */

Init5DigitLed();

Show5DigitLed(1,8);

Show5DigitLed(2,0);

Show5DigitLed(3,0);

Show5DigitLed(4,0);

Show5DigitLed(5,14); /* The ASCII code for the letter ‘E’ is 14 */

}

µPAC-5001D-CAN series (C Language Based) User Manual, Version 1.0.0 Page: 85

Copyright © 2013 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

4.7. API for Timer

 The μPAC-5001D-CAN series can support a single main time tick, 8 stop watch timers and 8 counts

down timers.

 The µPAC-5001D-CAN series use a single 16-bit timer to perform these timer functions, with a timer

accuracy of 1 ms.

API for starting the Timer

1. TimerOpen()

Before using the Timer functions, the TimerOpen() must be called at the beginning of the

program.

API for reading the Timer

2. TimerResetValue()

Before reading the Timer, the TimerResetValue() must be called to reset the main time ticks to

zero.

3. TimerReadValue()

After the TimerResetValue() has reset the main time ticks to 0, the TimerReadValue() must be

called to read the main time tick.

API for stopping the Timer

4. TimerClose()

Before ending the program, the TimerClose() must be called to stop the Timer.

µPAC-5001D-CAN series (C Language Based) User Manual, Version 1.0.0 Page: 86

Copyright © 2013 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

For example, the following code can be used to read the main time ticks from 0

#include <stdio.h>

#include "upac5000.h"

void main(void)

{

Unsigned long time iTime;

InitLib(); /* Initiate the upac5000 library */

TimerOpen();

While(!quit)

{

If(Kbhit())

TimerResetValue(); /* Reset the main time ticks to 0 */

iTime=TimerReadValue(); /* Read the main time ticks from 0 */

}

TimerClose(); /* Stop using the uPAC5000 timer function */

}

µPAC-5001D-CAN series (C Language Based) User Manual, Version 1.0.0 Page: 87

Copyright © 2013 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

4.8. API for WatchDog Timer (WDT)

 The µPAC-5001D-CAN series equips the MiniOS7, the small-cored operating system. MiniOS7 uses

the Timer 2 (A CPU internal timer) as system Timer. It is 16-bits Timer, and generate interrupt every

1 ms. So the accuracy of system is 1 ms.

 The Watch Dog Timer is always enabled, and the system Timer ISR (Interrupt Service Routine)

refreshes it.

 The system is reset by WatchDog. The timeout period of WatchDog is 0.8 seconds.

API for refreshing WDT

1. EnableWDT()

The WDT is always enabled, before user’s programming to refresh it, the EnableWDT() must be

called to stop refreshing WDT.

2. RefreshWDT()

After EnableWDT() stop refreshing WDT, the RefreshWDT() must be called to refresh the WDT.

3. DisableWDT()

After user’s programming to refresh WDT, the DisableWDT() should be called to automatically

refresh the WDT.

For example, to refresh the Watchdog Timer.

#include <stdio.h>

#include "upac5000.h"

void main(void)

{

Unsigned long time iTime;

InitLib(); /* Initiate the upac5000 library */

Enable WDT();

While(!quit) {

RefreshWDT();

User_function();

}

DisableWDT();

}

µPAC-5001D-CAN series (C Language Based) User Manual, Version 1.0.0 Page: 88

Copyright © 2013 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

4.9. API for microSD

Required library and header files:

SD_Vnnn.LIB and microSD.h

The µPAC-5001D-CAN series can support one microSD card and

the size can be 1GB or 2 GB.

Summarize of the microSD functions:

Function Description

pc_init Initializes the microSD socket library

pc_open
1. Open an existing file and return a file handle

2. Creates a new file.

pc_close Closes a file and release a file handle.

pc_read Reads the specified file

pc_write Writes the specified file

pc_seek Moves the file pointer to relative offset from the current offset

pc_tell Gets current offset of the file pointer

pc_eof Checks whether the end-of-file is reached

pc_format Formats the microSD card as FAT (FAT16)

pc_mkdir Creates a directory or subdirectory

pc_rmdir Removes an existing directory

pc_move Renames an existing file or a directory, including the subdirectory

pc_del Deletes the specified file

pc_deltree Deletes the specified directory or subdirectory

pc_isdir Checks whether the file is a directory

pc_isvol Checks if is a volume

pc_size Gets the size of the specified file

pc_set_cwd Sets the current working directory

pc_get_cwd Gets the pathname of the current working directory

pc_gfirst Moves the pointer to the first element

pc_gnext Moves the pointer to the next element

pc_gdone Moves the pointer to the last element

pc_get_freeSize_KB Gets the free space of the SD memory card

pc_get_usedSize_KB Gets the used space of the SD memory card

pc_get_totalSize_KB Gets the total size of the SD memory card

µPAC-5001D-CAN series (C Language Based) User Manual, Version 1.0.0 Page: 89

Copyright © 2013 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

Function Description

pc_get_attributes Gets the file attributes

pc_set_attributes Sets the file attributes

pc_get_errno Gets the error number

API for starting microSD

1. pc_ Init()

Before using any miscroSD functions, PC_Init() must be called to initialize the microSD.

API for enabling/disabling microSD

2. pc_open()

Before writing/reading data to/from the microSD card, PC_open() must be called to open the file.

3. pc_close()

After the data has finished being written/read to/from the microSD, PC_close() must be called to

close the file with a file handle.

API for writing data to the microSD

4. pc_write()

After using PC_open() to open the file, PC_write() must be called to read data from the microSD.

µPAC-5001D-CAN series (C Language Based) User Manual, Version 1.0.0 Page: 90

Copyright © 2013 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

For example, writing data to the microSD

#include <string.h>

#include <stdio.h>

#include "upac5000.h"

#include "microSD.h"

void main(void)

{

int fd, iRet;

InitLib();

if(pc_init())

Print(“Init microSD ok\r\n”);

else

{

Print(“Init microSD failed\r\n”);

iRet=pc_get_errno();

switch(iRet)

{

case PCERR_BAD_FORMAT: //1

Print("Error 01: format is not FAT\r\n");

break;

case PCERR_NO_CARD: //2

Print("Error 02: no microSD card\r\n");

break;

default:

Print("Error %02d: unknow error\r\n", iRet);

break;

}

}

fd=pc_open("test.txt", (word) (PO_WRONLY|PO_CREAT|PO_APPEND),

(word) (PS_IWRITE|PS_IREAD));

if(fd>=0)

{

pc_write(fd, "1234567890", 10); /* write 10 bytes */

pc_close(fd);

}

}

API for reading data from the microSD

5. pc_read()

After using PC_open() to open the file, PC_read() must be called to read data from the microSD.

For example, reading data from the microSD:

µPAC-5001D-CAN series (C Language Based) User Manual, Version 1.0.0 Page: 91

Copyright © 2013 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

#include <string.h>

#include <stdio.h>

#include "upac5000.h"

#include "microSD.h"

void main(void)

{

int fd, iRet;

unsigned char Buffer[80];

InitLib();

if(pc_init())

Print("Init microSD ok\r\n");

else

{

Print("Init microSD failed\r\n");

iRet=pc_get_errno();

switch(iRet)

{

case PCERR_BAD_FORMAT: //1

Print("Error 01: format is not FAT\r\n");

break;

case PCERR_NO_CARD: //2

Print("Error 02: no microSD card\r\n");

break;

default:

Print("Error %02d: unknow error\r\n", iRet);

break;

}

}

fd=pc_open("test.txt", (word) (PO_RDONLY), (word) (PS_IWRITE|PS_IREAD));

if(fd>=0)

{

iRet=pc_read(fd, Buffer, 10); /* reads 10 bytes */

Buffer[10]=0; /* adds zero end to the end of the string */

pc_close(fd);

Print("%s", Buffer);

}

}

For more demo program about the microSD, please refer to:

CD:\NAPDOS\uPAC-5000\Demo\Basic\microSD\

http://ftp.Icpdas.com/pub/cd/8000cd/napdos/upac-5000/demo/basic/microsd/

http://ftp.icpdas.com/pub/cd/8000cd/napdos/upac-5000/demo/basic/microsd/

µPAC-5001D-CAN series (C Language Based) User Manual, Version 1.0.0 Page: 92

Copyright © 2013 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

4.10. API for CAN bus

Function Description

CAN_Reset CAN controller hardware reset

XWCANInit Initialize the CAN hardware

SetCANBaud Change CAN baud

SetCANMask Change CAN message filter

CAN_InstallIrq Enable the embedded controller interrupt

CAN_RemoveIrq Disable the embedded controller interrupt

CAN_Restore Release the resource and disable the embed controller interrupt

CAN_CreateBuffer Change the reception and transmission buffer sizes

SendCANMsg Send a CAN message to the CAN network

GetCANMsg Receive a CAN message

GetStatus
Obtain the CAN controller status and reception/transmission buffer

status

ClearStatus Reset the reception and transmission buffer status

CL1Off Turn LED (CL1) off

CL2Off Turn LED (CL2) off

CL3Off Turn LED (CL3) off

CL1On Turn LED (CL1) on

CL2On Turn LED (CL2) on

CL3On Turn LED (CL3) on

UserCANInt Design user-defined interrupt routine

CAN_SearchBaud Search the necessary CAN Bus baud rate

µPAC-5001D-CAN series (C Language Based) User Manual, Version 1.0.0 Page: 93

Copyright © 2013 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

4.10.1. API for CAN Initialization

API for CAN Reset

1. CAN_Reset(int CANPort)

Reset the CAN controller by hardware circuit. After running this function, the CAN controller

will be set to initial state. For more information about this, please refer to the SJA1000 data sheet

on the web site.

http://www.semiconductors.philips.com/pip/SJA1000.html#datasheet

Parameter:

CANPort：Selected CAN Port.

value CAN Port

0 For CAN Port 1

1 For CAN Port 2

 Note: For μPAC-5001D-CAN1, the pararmeter of “CANPort” is always equal to zero.

API for CAN Initialization

2. XWCANInit(int CANPort,char IntMode,unsigned long CANBaud,

 char BT0, char BT1,unsigned long AccCode,unsigned long AccMask)

Initialize the software buffer and XW-CAN 100/200 hardware, which includes CAN controller,

LED1, LED2 and LED3.

Parameter:

CANPort：Selected CAN Port.

value CAN Port

0 For CAN Port 1

1 For CAN Port 2

 Note: For μPAC-5001D-CAN1, the pararmeter of “CANPort” is always equal to zero.

IntMode: CAN controller interrupt mode. Each bit of IntMode parameter indicates different

function shown as follows.

Interrupt Type Value of IntMode

Receive Interrupt Enable 0x01

Transmit Interrupt Enable 0x02

Error Warning Interrupt Enable 0x04

Data Overrun Interrupt Enable 0x08

Wake-up Interrupt Enable 0x10

Error Passive Interrupt Enable 0x20

Arbitration Lost Interrupt Enable 0x40

Bus Error Interrupt Enable 0x80

http://www.semiconductors.philips.com/pip/SJA1000.html#datasheet

µPAC-5001D-CAN series (C Language Based) User Manual, Version 1.0.0 Page: 94

Copyright © 2013 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

Interrupt Type Meaning

Receive Interrupt When a message has been received without errors, the

receive interrupt will be triggered.

Transmit Interrupt When a message has been successfully transmitted or

the transmit buffer is accessible again, the transmit

interrupt will be triggered.

Error Warning Interrupt If the error or bus status is set or clear, the error

interrupt will be triggered.

Data Overrun Interrupt
If a message was lost because there was not enough

space for that message in the FIFO (FIFO has 64

bytes), the overrun interrupt will be triggered.

Wake-up Interrupt
When the CAN controller is sleeping and bus activity is

detected. The Wake-up interrupt will be triggered.

Error Passive Interrupt If CAN controller has at least one error counter exceeds

the protocol-defined level of 127 or if the CAN

controller is in the error passive status, the Error

Passive Interrupt will be triggered.

Arbitration Lost Interrupt When the CAN controller lost the arbitration and

becomes a receiver. The Arbitration Lost Interrupt will

be triggered.

Bus Error Interrupt When the CAN controller detects an error on the CAN

bus, the Bus Error Interrupt will be triggered.

Use one-byte value to implement the interrupt. For example, if receive and overrun interrupt are

needed in the BasicCAN(CAN 2.0A) mode. Set the IntMode value to 0x09(That is 0x01+0x08.).

CANBaud: Use a long int to set this parameter. For example, if users want to set CAN baud to

125K bps. Use the value 125000UL.

BT0, BT1: Set the special user-defined baud rate. Users can set arbitrary baud with these

parameters. But users need to have the background of SJA1000 CAN controller and

TJA1042 CAN transceiver, and calculate the values of BT0 and BT1 by themselves

(The clock frequency of CAN controller is 16MHz.).

AccCode, AccMask: The AccCode is used for deciding what kind of ID the CAN controller will

be accepted. The AccMask is used for deciding which bit of ID will need

to check with AccCode. If the bit of AccMask is set to 0, it means that the

bit in the same position of ID need to be checked, and the bit value ID

need to match the bit of AccCode in the same position.

For 11-bit ID Message:

Register bits of register Filter Target

AccCode[0] and AccMask[0] bit7~bit0 bit10 ~ bit3 of ID

AccCode[1] and AccMask[1] bit7~bit5 bit2 ~ bit0 of ID

AccCode[1] and AccMask[1] bit4 RTR

AccCode[1] and AccMask[1] bit3~bit0 no use

µPAC-5001D-CAN series (C Language Based) User Manual, Version 1.0.0 Page: 95

Copyright © 2013 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

AccCode[2] and AccMask[2] bit7~bit0 bit7 ~ bit0 of 1st byte data

AccCode[3] and AccMask[3] bit7~bit0 bit7 ~ bit0 of 2nd byte data

For 29-bit ID Message:

Register bits of register Filter Target

AccCode[0] and AccMask[0] bit7~bit0 bit28 ~ bit21 of ID

AccCode[1] and AccMask[1] bit7~bit0 bit20 ~ bit13 of ID

AccCode[2] and AccMask[2] bit7~bit0 bit12 ~ bit5 of ID

AccCode[3] and AccMask[3] bit7~bit3 bit4 ~ bit0 of ID

AccCode[3] and AccMask[3] bit2 RTR

AccCode[3] and AccMask[3] bit1~bit0 no use

Note: 1. AccCode[0] means the most significant byte of AccCode and

AccCode[3] means the least significant byte of AccCode.

2. AccMask[0] means the most significant byte of AccMask and

AccMask[3] means the least significant byte of AccMask.

3. Bit10 is most significant bit and Bit0 is least significant bit

For example (In 29 bit ID message):

AccCode : 00h 00h 00h A0h

AccMask : FFh FFh FFh 1Fh

ID Value : ?? ?? ?? Ah and Bh will be accepted. (??: don't care)

(Note: The mark “h” behind the value means hex format.)

Tip change Baud Rate and change Filter

 After calling XWCANInit, users can change Buad Rate via API SetCANBaud().

SetCANBaud (int CANPort,unsigned long CANBaud, char BT0, char BT1)

Parameter:

 CANPort：Selected CAN Port.

value CAN Port

0 For CAN Port 1

1 For CAN Port 2

 Note: For μPAC-5001D-CAN1, the pararmeter of “CANPort” is always equal to zero.

CANBaud, BT0, BT1: Please refer to the parameters description in the XWCANInit

function.

After calling XWCANInit, users can change CAN message Filter via API SetCANFilter().

SetCANFilter (int CANPort,unsigned long AccCode, unsigned long AccMask)

Parameter:

 CANPort：Selected CAN Port.

value CAN Port

0 For CAN Port 1

1 For CAN Port 2

µPAC-5001D-CAN series (C Language Based) User Manual, Version 1.0.0 Page: 96

Copyright © 2013 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

 Note: For μPAC-5001D-CAN1, the pararmeter of “CANPort” is always equal to zero.

AccCode, AccMask: Please refer to the parameters description in the XWCANInit function.

API for CAN Restore

3. CAN_Restore(int CANPort)

Set the interrupt function disable, release all software buffer, and reset CAN chip. This function

must be called to release resource before the program is terminated.

Parameter:

CANPort：Selected CAN Port.

value CAN Port

0 For CAN Port 1

1 For CAN Port 2

 Note: For μPAC-5001D-CAN1, the pararmeter of “CANPort” is always equal to

zero.

For example, CAN Initilization setting.

#include <stdlib.h>

#include "..\lib\UPAC5000.h"

#include "..\lib\XWCAN.h"

/*If the UserCANInt() function is not used, please don't remove it.*/

void UserCANInt(int CANPort,char CANInt)

{

 ...

}

void main(void)

{

 int ret;

 InitLib(); //Initial uPAC-5000 LIB

 /***/

 /* initialize and configure the CAN controller */

 /***/

 ret=XWCANInit(0,0,125000UL,0,0,0x00000000UL,0xffffffffUL);

 /*

µPAC-5001D-CAN series (C Language Based) User Manual, Version 1.0.0 Page: 97

Copyright © 2013 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

XCANInit function Parameter descriptions

 0 : for CAN Port 1

 0 : for IntMode useless

 125000UL : for CAN baud

 0 : for BT0 of user defined baud

 0 : for BT1 of user defined baud

 0x00000000UL : for AccCode of CAN message filter

 0xffffffffUL : for AccMask of CAN message filter

 */

 switch (ret)

{

/*Return Code,Check if configuration is OK*/

 case CAN_ResetError:

 Print("Reset Error!\n\r");

 return;

 case CAN_SetACRError:

 Print("\n\rSet ACR Error!");

 return;

 case CAN_SetAMRError:

 Print("\n\rSet AMR Error!");

 return;

 case CAN_SetBaudRateError:

 Print("\n\rSet Baud Rate Error!");

 return;

 case CAN_BaudNotSupport:

 Print("\n\rBaud Rate Not Support!");

 return;

 case CAN_ConfigError:

 Print("\n\rConfiguration Failure!");

 return;

 case CAN_SetPortError:

 Print("\n\rSet CAN Port Failure!");

 return;

 }

 CAN_Restore(0); //release resource

 /*CAN_Restore function parameter descirptions:

 0 :for CAN Port 1

 */

 }

µPAC-5001D-CAN series (C Language Based) User Manual, Version 1.0.0 Page: 98

Copyright © 2013 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

4.10.2. API for CAN Interrupt

API for installing CAN Interrupt

1. CAN_InstallIrq(int CANPort)

Set the interrupt function enable. Afterwards, the CPU of μPAC-5001D-CAN series can receive

the interrupt signal from CAN controller.

Parameter:

CANPort：Selected CAN Port.

value CAN Port

0 For CAN Port 1

1 For CAN Port 2

Note: For μPAC-5001D-CAN1, the pararmeter of “CANPort” is always equal to zero.

API for removing CAN Interrupt

2. CAN_RemoveIrq(int CANPort)

Disable the interrupt function. Afterwards, the CPU of µPAC-5001D-CAN series can't receive

the interrupt signal from CAN controller.

Parameter:

CANPort：Selected CAN Port.

value CAN Port

0 For CAN Port 1

1 For CAN Port 2

Note: For μPAC-5001D-CAN1, the pararmeter of “CANPort” is always equal to zero.

API for creating CAN transmission/reception Interrupt buffer

3. CAN_CreateBuffer(int CANPort, int BufMode, unsigned int BufferSize)

Call this function for changing the reception and transmission software buffer sizes.

Parameter:

CANPort：Selected CAN Port.

value CAN Port

0 For CAN Port 1

1 For CAN Port 2

Note: For μPAC-5001D-CAN1, the pararmeter of “CANPort” is always equal to zero.

 BufMode: 0 for changing reception software buffer size.

 Others for changing transmission software buffer size.

BufferSize: the new buffer sizes for software buffer. (maimum 3120 CAN messages)

µPAC-5001D-CAN series (C Language Based) User Manual, Version 1.0.0 Page: 99

Copyright © 2013 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

Note: If users don't use this function after enabling CAN interrupt, the default reception/transmission

software buffer sizes will be created and its size is 256 records.

For example, CAN interrupt setting.

#include <stdlib.h>

#include "..\lib\UPAC5000.h"

#include "..\lib\XWCAN.h"

/*If the UserCANInt() function is not used, please don't remove it.*/

void UserCANInt(int CANPort,char CANInt)

{

 ...

}

void main(void)

{

 int ret;

 InitLib(); //Initial uPAC-5000 LIB

 /***/

 /* initialize and configure the CAN controller */

 /***/

 ret=XWCANInit(0,1,125000UL,0,0,0x00000000UL,0xffffffffUL);

 /*

XCANInit function Parameter descriptions

 0 : for CAN Port 1

 1 : for reception interrupt

 125000UL : for CAN baud

 0 : for BT0 of user defined baud

 0 : for BT1 of user defined baud

 0x00000000UL : for AccCode of CAN message filter

 0xffffffffUL : for AccMask of CAN message filter

 */

 switch (ret)

{

/*Return Code,Check if configuration is OK*/

 case CAN_ResetError:

 Print("Reset Error!\n\r");

 return;

 …

…

 }

µPAC-5001D-CAN series (C Language Based) User Manual, Version 1.0.0 Page: 100

Copyright © 2013 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

 CAN_CreateBuffer(0,0,1000);

/*CAN_CreateBuffer function parameter descirptions:

 0 :for CAN Port 1

 0 :for CAN reception buffer

 1000 :for 1000 CAN messages

 */

 CAN_InstallIrq(0); //Install Port0 IRQ

/*CAN_InstallIrq function parameter descirptions:

0 :for CAN Port 1

*/

 CAN_Restore(0);

 }

µPAC-5001D-CAN series (C Language Based) User Manual, Version 1.0.0 Page: 101

Copyright © 2013 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

4.10.3. API for Transmitting CAN Messages

API for Transmitting CAN Messages

1. SendCANMsg(int CANPort,unsigned char Mode,unsigned long MsgID, unsigned char

 RTR, unsigned char DataLen, unsigned char *Data)

If the transmit buffer is disable, this function will send a message to the CAN network.

However, if the transmit buffer is enable, this function will send all the messages stored in the

transmit buffer to the CAN network.

Parameter:

CANPort：Selected CAN Port.

value CAN Port

0 For CAN Port 1

1 For CAN Port 2

Note: For μPAC-5001D-CAN1, the pararmeter of “CANPort” is always equal to zero.

Mode: This parameter is used for CAN ID type.

Mode value Meaning

0 Send a 11-bit ID CAN message

others Send a 29-bit ID CAN message

MsgID: The ID of this CAN message. The ID may be a 11-bit value or 29-bit value.

RTR: Remote transmits request byte.

RTR value Meaning

0
This CAN message is not a remote

transmit request message.

1
This CAN message is a remote transmit

request message.

DataLen: The pure data length of a CAN messages. The range of this value is 0~8.

*Data: Store the data of CAN message. The numbers of data bytes need to match with

the "DataLen".

For example, CAN data transmitssion.

#include <stdlib.h>

#include "..\..\lib\UPAC5000.h"

#include "..\..\lib\XWCAN.h"

/*If the UserCANInt() function is not used, please don't remove it.*/

µPAC-5001D-CAN series (C Language Based) User Manual, Version 1.0.0 Page: 102

Copyright © 2013 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

void UserCANInt(int CANPort,char CANInt)

{

 ...

}

void main(void)

{

 int ret;

unsigned char MsgMode,MsgRTR,MsgDataLen,MsgData[8];

 unsigned long MsgID,MsgUpperTimeStamp,MsgLowerTimeStamp;

 InitLib(); //Initial uPAC-5000 LIB

 /***/

 /* initialize and configure the CAN controller */

 /***/

 ret=XWCANInit(0,0,125000UL,0,0,0x00000000UL,0xffffffffUL);

 /*

XCANInit function Parameter descriptions

 0 : for CAN Port 1

 0 : for IntMode useless

 125000UL : for CAN baud

 0 : for BT0 of user defined baud

 0 : for BT1 of user defined baud

 0x00000000UL : for AccCode of CAN message filter

 0xffffffffUL : for AccMask of CAN message filter

 */

 switch (ret)

{

/*Return Code,Check if configuration is OK*/

 case CAN_ResetError:

 Print("Reset Error!\n\r");

 return;

 …

…

 }

while(1){

 /**/

 /* Send CAN messages to CAN bus */

 /**/

µPAC-5001D-CAN series (C Language Based) User Manual, Version 1.0.0 Page: 103

Copyright © 2013 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

 ret=SendCANMsg(0,1,0x12345678UL,0,8,MsgData);

 /* SendCANMsg function parameter descirptions:

 0 : for CAN Port 1

 1 : for Send message with 29-bit ID

 0x12345678UL : for CAN message ID

 0 : for CAN message RTR

 8 : for CAN message data length

 MsgData : for CAN message output data

 */

 if (ret)

{

 switch(ret)

{ /*Return Code,Check if configuration is OK*/

 case CAN_DataLengthError:

 Print("Transmission Data Length Error!\n");

 break;

 case CAN_TransmitIncomplete:

 Print("Transmission is incomplete!\n");

 break;

 case CAN_TransmitBufferLocked:

 Print("CAN controller transmit Buffer is locked!\n");

 break;

 }

 break;

 }

 DelayMs(500);

 ret=SendCANMsg(0,0,0x123UL,0,8,MsgData);

 /* SendCANMsg function parameter descirptions:

0 : for CAN Port 1

0 : for Send message with 11-bit ID

0x123UL : for CAN message ID

0 : for CAN message RTR

8 : for CAN message data length

MsgData : for CAN message output data

 */

 if (ret)

{

switch(ret)

{ /*Return Code,Check if configuration is OK*/

µPAC-5001D-CAN series (C Language Based) User Manual, Version 1.0.0 Page: 104

Copyright © 2013 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

 case CAN_DataLengthError:

 Print("Transmission Data Length Error!\n");

 break;

 case CAN_TransmitIncomplete:

 Print("Transmission is incomplete!\n");

 break;

 case CAN_TransmitBufferLocked:

 Print("CAN controller transmit Buffer is locked!\n");

 break;

}

break;

 }

 DelayMs(500);

 if (Kbhit()){ /*if press any key, exit the program*/

 Print("Exit this program!\n");

 break;

 }

 }

 CAN_Restore(0);

 }

µPAC-5001D-CAN series (C Language Based) User Manual, Version 1.0.0 Page: 105

Copyright © 2013 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

4.10.4. API for Receiving CAN Messages

API for Transmitting CAN Messages

 1. GetCANMsg(int CANPort,unsigned char *Mode, unsigned long *MsgID

 , unsigned char *RTR, unsigned char *DataLen, unsigned char *Data

 , unsigned long *UpperTime , unsigned long *LowerTime)

Receive CAN messages from receive buffer or from CAN bus directly. If the receive interrupt is

set to enable in IntMode parameter of XWCANInit function. This function will read back the CAN

message stored in the software receive buffer. If the receive interrupt is disable, this function uses

the polling method to check if there is any CAN message in CAN chip buffer. If yes, return the

CAN message.

Parameter:

CANPort：Selected CAN Port.

value CAN Port

0 For CAN Port 1

1 For CAN Port 2

Note: For μPAC-5001D-CAN1, the pararmeter of “CANPort” is always equal to zero.

*Mode: This parameter is used for get the ID type (11-bit or 29-bit ID) of a CAN message.

*MsgID: This is for obtaining the ID of a CAN message.

*RTR: This is for obtaining the RTR of a CAN message.

*DataLen: This is for obtaining the data length of a CAN message.

*Data: This is for obtaining the Data of a CAN message. The Data buffer size must be 8 bytes.

*UpperTime: Get the time stamp of a CAN message. The time stamp unit is us (micro second),

This parameter only show the upper part of time stamp.

 Real time stamp = upper part * 0x1000000UL+lower part

*LowerTime: Get the lower part of time stamp of a CAN message.

RTR value Meaning

0 This CAN message is not a remote
transmit request message.

1 This CAN message is a remote
transmit request message.

µPAC-5001D-CAN series (C Language Based) User Manual, Version 1.0.0 Page: 106

Copyright © 2013 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

Tip get CAN message status

Users can Read the CAN controller status and software buffer overflow flag message

via API GetStatus().

GetStatus (int CANPort,unsigned char *CANReg, unsigned char *OverflowFlag)

Parameter:

CANPort：Selected CAN Port.

value CAN Port

0 For CAN Port 1

1 For CAN Port 2

Note: For μPAC-5001D-CAN1, the pararmeter of “CANPort” is always equal to zero.

*CANReg: CAN controller status. Please refer to the following table.

Bit NO. Description

7 (MSB) Bus status. 1 for bus off, 0 for bus on.

6 Error status. 1 for at least one error, 0 for OK.

5 Transmit status. 1 for transmitting, 0 for idle.

4 Receive status. 1 for receiving, 0 for idle.

3 Transmit complete status. 1 for complete, 0 for incomplete.

2 Transmit buffer status. 1 for released, 0 for locked

1 Data overrun status. 1 for reception buffer overrun, 0 for OK.

0 (LSB) Receive buffer status. 1 for at least one message stored in the

reception buffer, 0 for empty.

*OverflowFlag: CAN reception and transmission buffer overflow flag. Please refer to the

following table.

Bit NO. Description

Others Reserved

1 1 for reception software buffer overflow. 0 for normal.

0 (LSB) 1 for transmission software buffer overflow. 0 for normal.

Users can clean the CAN reception or transmission software buffer overflow flag via API

ClearStatus().

ClearStatus(int CANPort)

Parameter:

CANPort：Selected CAN Port.

value CAN Port

0 For CAN Port 1

1 For CAN Port 2

Note: For μPAC-5001D-CAN1, the pararmeter of “CANPort” is always equal to zero.

µPAC-5001D-CAN series (C Language Based) User Manual, Version 1.0.0 Page: 107

Copyright © 2013 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

When one of these two buffers is full, the corresponding overflow flag will be set to 1.

In this case, users need to use this function to clear the overflow flag to acknowledge the error

information.

For example, CAN data reception.

#include <stdlib.h>

#include "..\lib\UPAC5000.h"

#include "..\lib\XWCAN.h"

/*If the UserCANInt() function is not used, please don't remove it.*/

void UserCANInt(int CANPort,char CANInt)

{

 ...

}

void main(void)

{

 int ret;

unsigned char MsgMode,MsgRTR,MsgDataLen,MsgData[8];

 unsigned long MsgID,MsgUpperTimeStamp,MsgLowerTimeStamp;

 InitLib(); //Initial uPAC-5000 LIB

 /***/

 /* initialize and configure the CAN controller */

 /***/

 ret=XWCANInit(0,0,125000UL,0,0,0x00000000UL,0xffffffffUL);

 /*

XCANInit function Parameter descriptions

 0 : for CAN Port 1

 0 : for IntMode useless

 125000UL : for CAN baud

 0 : for BT0 of user defined baud

 0 : for BT1 of user defined baud

 0x00000000UL : for AccCode of CAN message filter

 0xffffffffUL : for AccMask of CAN message filter

 */

 switch (ret)

{

/*Return Code,Check if configuration is OK*/

µPAC-5001D-CAN series (C Language Based) User Manual, Version 1.0.0 Page: 108

Copyright © 2013 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

 case CAN_ResetError:

 Print("Reset Error!\n\r");

 return;

 …

…

 }

while(1)

{

/**/

/* Receive CAN messages from CAN bus */

/**/

ret=GetCANMsg(0,&MsgMode,&MsgID,&MsgRTR,&MsgDataLen,

MsgData,&MsgUpperTimeStamp,&MsgLowerTimeStamp);

/* GetCANMsg function Parameter descriptions

0 : CAN Port 1

&Mode : Get CAN ID is 2.0A or 2.0B

&MsgID : Get CAN Message ID

&RTR : Get CAN Message RTR

&DataLen : Get CAN Message Data Length

&Data : Get CAN Message Data

&UpperTime : Get the time stamp of a CAN message

&LowerTime : Get the lower part of time stamp of a CAN message

*/

if (!ret)

{

Print("%lu(%lus-%luus):Mode=%d,ID=%lx,RTR=%d,Len=%d",MsgCnt,MsgUpperTimeStamp,

MsgLowerTimeStamp,MsgMode,MsgID,MsgRTR,MsgDataLen);

 if (MsgDataLen && !MsgRTR)

{

 Print(",Data=");

 for (i=0;i<MsgDataLen;i++){

 Print("%x,",MsgData[i]);

 }

Print("\n\r");

 }

 else

{

switch(ret)

µPAC-5001D-CAN series (C Language Based) User Manual, Version 1.0.0 Page: 109

Copyright © 2013 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

{

 case CAN_DataLengthError:

 Print("Reception Data Length Error!\n");

 break;

 case CAN_DataOverrun:

 Print("Software Reception Data Buffer Overrun!\n");

 break;

 case CAN_ReceiveError:

 Print("Receive data Error!\n");

 break;

 case CAN_ReceiveBufferEmpty:

/*No message in receive buffer*/

 break;

 }

}

}

 }

 CAN_Restore(0);

 }

µPAC-5001D-CAN series (C Language Based) User Manual, Version 1.0.0 Page: 110

Copyright © 2013 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

4.10.5. API for LED Indicator

API for LED Indicator

1. CL1Off(), CL2Off(), CL3Off()

Turn CL1, CL2, CL3 off.

2. CL1On(), CL2On(), CL3On()

Turn CL1, CL2, CL3 on.

For example. Control LED indicator.

#include <stdlib.h>

#include "..\..\lib\UPAC5000.h"

#include "..\..\lib\XWCAN.h"

/*If the UserCANInt() function is not used, please don't remove it.*/

void UserCANInt(int CANPort,char CANInt)

{

 ...

}

void main(void)

{

 int ret,i=0;

 InitLib();

 /***/

 /* initialize and configure the CAN controller */

 /***/

 ret=XWCANInit(0,0,125000UL,0,0,0x00000000UL,0xffffffffUL);

 switch (ret)

{

/*Return Code,Check if configuration is OK*/

 case CAN_ResetError:

 Print("Reset Error!\n\r");

 return;

 …

 }

 /**/

µPAC-5001D-CAN series (C Language Based) User Manual, Version 1.0.0 Page: 111

Copyright © 2013 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

 /* Initial all LEDs */

 /**/

 Print("Press any key to exit the program.\n\r");

 while(1){

 switch(i)

{

 case 0:

 CL1On();

 CL2Off();

 CL3Off();

 break;

case 1:

 CL1Off();

 CL2On();

 CL3Off();

 break;

case 2:

 CL1Off();

 CL2Off();

 CL3On();

 }

 if (++i==3) i=0;

 DelayMs(500);

 }

 CL1Off();

 CL2Off();

 CL3Off();

 CAN_Restore(0);

 }

µPAC-5001D-CAN series (C Language Based) User Manual, Version 1.0.0 Page: 112

Copyright © 2013 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

4.10.6. API for User-Defined Interrupt

API for User-Defined Interrupt

1. UserCANInt(int CANPort,char CANInt)

This function is created by users and is used to program the CAN interrupt service routine by

users. The parameter CANINT is passed automatically when the interrupt functions are

triggered. It indicates what kinds of CAN controller interrupt are active. Therefore, users only

need to design their interrupt routine according to dealing with different interrupt functions. If

it is not used, please reverse this function in the users’ .C file for avoiding the complier error.

The following figure is the general concept of the function UserCANInt.

 ...

 UserCANInt(CANInt);

 ...

interrupt routine

 ...

 CAN_Config(&ConfigInfo);

 ...

 ...

 CAN_Restore();

main program

When interrupts are

triggered, the interrupt

routine will be inplemented

The types of interrupt

function are passed into the

function UserInterrupt

void UserCANInt(char CANInt)

{

 ...

 switch (CANInt)

 {

 ...

 }

 ...

}

Use switch function or other

methods to design the action

based on different types of

interrupt.

user-defined function

program runni ng

sequence

Parameter:

CANPort：Selected CAN Port.

value CAN Port

0 For CAN Port 1

1 For CAN Port 2

Note: For μPAC-5001D-CAN1, the pararmeter of “CANPort” is always equal to zero.

CANInt: The interrupt service routine will bypass the CANInt parameter to users to indicate

 what interrupt is triggered. For the meanings of CANInt parameters, please refer to the

 following table.

CANIntMode Value (Hex) Meaning

0x01 Receive a message successfully

µPAC-5001D-CAN series (C Language Based) User Manual, Version 1.0.0 Page: 113

Copyright © 2013 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

0x02 Transmit a message successfully

0x04 Error warring

0x08 Data Overrun

0x10 CAN controller wake-up

0x20 Bus Passive

0x40 Arbitration Lost

0x80 Bus Error

For example, user-defined interrupt.

#include <stdlib.h>

#include "..\lib\UPAC5000.h"

#include "..\lib\XWCAN.h"

unsigned long MsgCount=0; //Create a global variable to check the number of RX Interrupt

/*If the UserCANInt() function is not used, please don't remove it.*/

void UserCANInt(int CANPort,char CANInt)

{ /*check CAN Port 1 receive interrupt*/

if(CANPort ==0x0)

{

 if (CANInt==0x01)

{

 MsgCount++;

}

}

}

void main(void)

{

int ret,i=0;

unsigned long tmpMsgCount=0;

 InitLib();

 /***/

 /* initialize and configure the CAN controller */

 /***/

 ret=XWCANInit(0,1,125000UL,0,0,0x00000000UL,0xffffffffUL);

/*

XCANInit function Parameter descriptions

 0 : for CAN Port 1

 1 : for reception interrupt

 125000UL : for CAN baud

µPAC-5001D-CAN series (C Language Based) User Manual, Version 1.0.0 Page: 114

Copyright © 2013 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

 0 : for BT0 of user defined baud

 0 : for BT1 of user defined baud

 0x00000000UL : for AccCode of CAN message filter

 0xffffffffUL : for AccMask of CAN message filter

 */

 switch (ret)

{

/*Return Code,Check if configuration is OK*/

 case CAN_ResetError:

 Print("Reset Error!\n\r");

 return;

 …

 }

/**/

 /* Enable Irq */

 /**/

 CAN_CreateBuffer(0,0,1000);

/* CAN_CreateBuffer function parameter descirptions:

 0 :for CAN Port 1

 0 :for CAN reception buffer

 1000 :for 1000 CAN messages

 */

 CAN_InstallIrq(0); //Install Port0 IRQ

/* CAN_InstallIrq function parameter descirptions:

1 :for CAN Port 1

*/

 while(1)

{

if(MsgCount != tmpMsgCount)

{

Print("%lu CAN message%c %s received.\n\r",

MsgCount,(MsgCount<2)?' ':'s',(MsgCount<2)?"is":"are");

}

}

 CAN_Restore(0);

}

µPAC-5001D-CAN series (C Language Based) User Manual, Version 1.0.0 Page: 115

Copyright © 2013 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

4.10.7. API for Detecting CAN Bus Baud Rate

API for detecting CAN bus baud rate

1. CAN_SearchBaud(int CANPort,unsigned long CANBaud, char BT0, char BT1, unsigned

int Timeout)

Enter “Listen Only Mode” and enable receive and error interrupt to detect the right bit-rate of the

CAN bus. Upon successful reception of a message, the “CAN_NoError” message will be return.

Otherwise, the “CAN_AutoBaudTimeout” message will be return.

Parameter:

CANPort：Selected CAN Port.

value CAN Port

0 For CAN Port 1

1 For CAN Port 2

Note: For μPAC-5001D-CAN1, the pararmeter of “CANPort” is always equal to zero.

CANBaud: Use a long int to set this parameter. For example, if users want to set CAN baud to

125K bps. Use the value 125000UL.

BT0, BT1: Set the special user-defined baud rate. Users can set arbitrary baud with these

parameters. But users need to have the background of SJA1000 CAN controller and

TJA1042 CAN transceiver, and calculate the values of BT0 and BT1 by themselves

(The clock frequency of CAN controller is 16MHz.)

Timeout: Set the timer for search a necessary CAN bus baud rate.

For example, detecting CAN bus baud rate and send/receive CAN message via the detected baud rate .

#include <stdlib.h>

#include "..\lib\UPAC5000.h"

#include "..\lib\XWCAN.h"

/*If the UserCANInt() function is not used, please don't remove it.*/

void UserCANInt(int CANPort,char CANInt)

{

 ...

}

void main(void)

{

 int ret,i;

 unsigned char MsgMode,MsgRTR,MsgDataLen,MsgData[8];

 unsigned long MsgID,MsgUpperTimeStamp,MsgLowerTimeStamp;

µPAC-5001D-CAN series (C Language Based) User Manual, Version 1.0.0 Page: 116

Copyright © 2013 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

 unsigned long CANBaud[]={1000000UL,800000UL,500000UL,250000UL,

200000UL,125000UL,100000UL,50000UL,

25000UL,20000UL,10000UL,5000UL};

 int FoundBaud=0;

 InitLib();

 //

 /**/

 /* Start to detect CAN bus baudrate */

 /**/

 Print("Start to detect CAN bus baudrate\r\n");

 for(i=0;i<=11;i++)

 {

 FoundBaud=CAN_SearchBaud(0,CANBaud[i],0,0,500);

 if((FoundBaud == 0) || (FoundBaud != CAN_AutoBaudTimeout))

 break;

 }

 if(FoundBaud == CAN_NoError)

Print("Find CAN Baudrate: %lu\r\n",CANBaud[i]);

 else if(FoundBaud == CAN_AutoBaudTimeout)

Print("Timeout, CAN Baudrate Not Find, use default setting.\r\n");

 else Print("CAN_SearchBaud Error, %d\r\n",FoundBaud);

/***/

 /* initialize and configure the CAN controller */

 /***/

 if(FoundBaud == CAN_NoError)

 ret=XWCANInit(0,3,CANBaud[i],0,0,0x00000000UL,0xffffffffUL);

 else

 ret=XWCANInit(0,3,125000UL,0,0,0x00000000UL,0xffffffffUL);

/* XCANInit function Parameter descriptions

 0 : for CAN port selection

 3 : for Receive and transmission interrupt

 125000UL : for CAN baud

 0 : for BT0 of user defined baud

 0 : for BT1 of user defined baud

 0x00000000UL : for AccCode of CAN message filter

 0xffffffffUL : for AccMask of CAN message filter

*/

 switch (ret){ /*Check if configuration is OK*/

 case CAN_ResetError:

µPAC-5001D-CAN series (C Language Based) User Manual, Version 1.0.0 Page: 117

Copyright © 2013 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

 Print("Reset Error!\n\r");

 return;

 case CAN_SetACRError:

 Print("\n\rSet ACR Error!");

 return;

 case CAN_SetAMRError:

 Print("\n\rSet AMR Error!");

 return;

 case CAN_SetBaudRateError:

 Print("\n\rSet Baud Rate Error!");

 return;

 case CAN_BaudNotSupport:

 Print("\n\rBaud Rate Not Support!");

 return;

 case CAN_ConfigError:

 Print("\n\rConfiguration Failure!");

 return;

 }

 }

while(1)

{

 /**/

 /* Receive CAN messages from CAN bus */

 /**/

 …

 …

 /**/

 /* Send CAN messages to CAN bus */

 /**/

 …

 DelayMs(100);

 if (Kbhit()){ /*if press any key, exit the program*/

 Print("Exit this program!\n");

 break;

 }

 }

 CAN_Restore(0);

 }

µPAC-5001D-CAN series (C Language Based) User Manual, Version 1.0.0 Page: 118

Copyright © 2013 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

4.10.8. Return Code

Return Code Error ID Comment

0 CAN_NoError OK

5 CAN_ResetError Enter reset mode error

8 CAN_ConfigError CAN chip configure error

9 CAN_SetACRError Set to Acceptance Code Register error

10 CAN_SetAMRError Set to Acceptance Mask Register error

11 CAN_SetBaudRateError Set Baud Rate error

14 CAN_InstallIrqFailure Enable interrupt functions failure

15 CAN_RemoveIrqFailure Disable interrupt functions failure

16 CAN_TransmitIncomplete Data can’t be transmitted successfully

17 CAN_TransmitBufferLocked Previously transmission is not completed yet

18 CAN_ReceiveBufferEmpty No message is stored in the receive buffer now

19 CAN_DataOverrun
Data was lost because there was not enough space

in software receive buffer

20 CAN_ReceiveError Receive data is not completed

21 CAN_SoftBufferIsFull Software transmit buffer is full

22 CAN_SoftBufferIsEmpty
There is no message stored in the user-declared

software buffer

23 CAN_BaudNotSupport This Baud Rate is not supported

24 CAN_DataLengthError Data length doesn’t match the total data bytes

25 CAN_NotEnoughMemory There is not enough memory space to create the

reception or transmission software buffer.

26 CAN_TypeOf7188Error The type of 7188 is not defined by this library

50 CAN_AutoBaudTimeout CAN bus baud rate not found

51 CAN_SendParamError Set “CANport” parameter on SendCANMsg() API

error

52 CAN_ReceiveParamError Set “CANport” parameter on GetCANMsg () API

error

µPAC-5001D-CAN series (C Language Based) User Manual, Version 1.0.0 Page: 119

Copyright © 2013 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

Appendix A. What is MiniOS7?

MiniOS7 is an embedded ROM-DOS operating system design by ICP DAS. It is functionally equivalent

to other brands of DOS, and can run programs that are executable under a standard DOS.

DOS (whether PC-DOS, MS-DOS or ROMDOS) is a set of commands or code

that tells the computer how to process information. DOS runs programs, manages

files, controls information processing, directs input and output, and performs

many other related functions.

The following table compares the features between MiniOS7 and ROM-DOS:

Feature MiniOS7 ROM-DOS

Power-up time 0.1 sec 4 ~ 5 sec

More compact size < 64 K bytes 64 K bytes

Support for I/O expansion bus Yes No

Support for ASIC key Yes No

Flash ROM management Yes No

OS update (Upload) Yes No

Built-in hardware diagnostic functions Yes No

Direct control of 7000 series modules Yes No

Customer ODM functions Yes No

Free of charge Yes No

µPAC-5001D-CAN series (C Language Based) User Manual, Version 1.0.0 Page: 120

Copyright © 2013 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

Appendix B. What is MiniOS7 Utility?

MiniOS7 Utility is a tool for configuring, uploading files to

all products embedded with ICP DAS MiniOS7.

Since version 3.1.1, the Utility can allow users remotely

access the controllers (7188E, 8000E..., etc) through the

Ethernet.

Functions

 Supported connection ways

1. COM port connection (RS-232)

2. Ethernet connection (TCP and UDP)

(Supported since version 3.1.1)

 Maintenance

1. Upload file(s)

2. Delete file(s)

3. Update MiniOS7 image

 Configuration

1. Date and Time

2. IP address

3. COM port

4. Disk size (Disk A, Disk B)

 Check product information

1. CPU type

2. Flash Size

3. SRAM Size

4. COM port number

…, etc.

Including frequently used tools

a. 7188XW

b. 7188EU

c. 7188E

d. Send232

Upload location:

http://ftp.Icpdas.com/pub/cd/8000cd/napdos/minios7/utility/minios7_utility/

http://ftp.icpdas.com/pub/cd/8000cd/napdos/minios7/utility/minios7_utility/

µPAC-5001D-CAN series (C Language Based) User Manual, Version 1.0.0 Page: 121

Copyright © 2013 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

Appendix C. More C Compiler Settings

This section describes the setting of the following compilers:

 Turbo C 2.01

 Borland C++ 3.1

 MSC 6.00

 MSVC 1.50 (Prior to version 1.52)

µPAC-5001D-CAN series (C Language Based) User Manual, Version 1.0.0 Page: 122

Copyright © 2013 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

C.1. Turbo C 2.01

You have a couple of choices here, you can:

1: Using a command line

For more information, please refer to

CD:\8000\NAPDOS\8000\841x881x\Demo\hello\Hello_C\gotc.bat

tcc -Ic:\tc\include -Lc:\tc\lib hello1.c ..\..\Demo\basic\Lib\uPAC5000.lib

2: Using the TC Integrated Environment

Step 1: Executing the TC 2.01

Step 2: Editing the Project file

Adding the necessary library and file to the project

µPAC-5001D-CAN series (C Language Based) User Manual, Version 1.0.0 Page: 123

Copyright © 2013 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

Step 3: Save the project and entering a name, such as LED.prj

Step 4: Load the Project

Step 5: Change the Memory model (Large for uPAC5000.lib) and set the Code Generation to

80186/80286

µPAC-5001D-CAN series (C Language Based) User Manual, Version 1.0.0 Page: 124

Copyright © 2013 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

Step 6: Building the project

µPAC-5001D-CAN series (C Language Based) User Manual, Version 1.0.0 Page: 125

Copyright © 2013 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

C.2. Borland C++ 3.1

Step 1: Executing the Borland C++ 3.1

Step 2: Creating a new project file (*.prj)

Step 3: Add all the necessary files to the project

µPAC-5001D-CAN series (C Language Based) User Manual, Version 1.0.0 Page: 126

Copyright © 2013 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

Step 4: Change the Memory model (Large for uPAC5000.lib)

Step 5: Set the Advanced code generation options and Set the Floating Point to Emulation and the

Instruction Set to 80186

µPAC-5001D-CAN series (C Language Based) User Manual, Version 1.0.0 Page: 127

Copyright © 2013 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

Step 6: Set the Entry/Exit Code Generation option and setting the DOS standard

Step 7: Choosing the Debugger…and set the Source Debugging to None

µPAC-5001D-CAN series (C Language Based) User Manual, Version 1.0.0 Page: 128

Copyright © 2013 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

Step 8: Make the project

µPAC-5001D-CAN series (C Language Based) User Manual, Version 1.0.0 Page: 129

Copyright © 2013 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

C.3. MSC 6.00

Step 1: In the source file folder, create a batch file called Gomsc.bat using the text editor

Tip & Warnings

/C: Don't strip comments /GS: No stack checking

/Fpa: Calls with altmath /Fm: [map file]

/G1: 186 instructions /AL: Large model

Step 2: Run the Gomsc.bat file

µPAC-5001D-CAN series (C Language Based) User Manual, Version 1.0.0 Page: 130

Copyright © 2013 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

Step 3: A new executable file will be created if it is successfully compiled

µPAC-5001D-CAN series (C Language Based) User Manual, Version 1.0.0 Page: 131

Copyright © 2013 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

C.4. MSVC 1.50

Step 1: Run MSVC.exe

Step 2: Create a new project (*.mak) by entering the name of the project in the Project Name field

and then select MS-DOS application (EXE) as the Project type

µPAC-5001D-CAN series (C Language Based) User Manual, Version 1.0.0 Page: 132

Copyright © 2013 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

Step 3: Add the user's program and the necessary library files to the project

Step 4: Set the Code Generation on the Compiler.

µPAC-5001D-CAN series (C Language Based) User Manual, Version 1.0.0 Page: 133

Copyright © 2013 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

Step 5: Change the Memory model (large for uPAC5000.lib)

Step 6: Remove the xcr, afxcr library from the Input Category

µPAC-5001D-CAN series (C Language Based) User Manual, Version 1.0.0 Page: 134

Copyright © 2013 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

Step 7: Remove the OLOGO option from the miscellancous Category.

Step 8: Rebuild the project

µPAC-5001D-CAN series (C Language Based) User Manual, Version 1.0.0 Page: 135

Copyright © 2013 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

Appendix D. Core’s application and wiring

Core(Ferrite) is useful to reduce ElectroMagnetic Interference(EMI) and anti-noise, it mainly uses for

communication interface like RS-232, RS-422, RS-485, CAN Bus, FRNET, PROFIBUS, Ethernet,etc.

And it also uses for the cable of power supply side.

The below photo will illustrate how to reduce noise.

The below photos is the wiring of the core on CAN Bus side.

Note: When the communication works normally, using many cores will make the communication error.

1 2 3

