
Specification-led design
for interface simulation, collecting use-data, interactive
help, writing manuals, analysis, comparing alternative
designs, etc.

Wednesday, September 30, 1998

Harold Thimbleby
Middlesex University
LONDON
N11 2NQ

URL: http://www.cs.mdx.ac.uk/harold

Abstract
This paper shows how to combine a substantial part of the product development cycle of interactive

devices into a single, co-ordinated approach. Much can be derived automatically from a suitable

specification of the interactive device, and it can be derived automatically. Normal product

development has a device specified and built, then has its manuals written, then it is used and tested. At

this late stage design problems may be identified, but it is now too late: usability studies become

academic in so far as the particular product is concerned, since it is already effectively in production. It

would be better if the testing and manual writing could rapidly be obtained from the initial

specification, before any investment has been made in fabrication. This paper offers a design approach

that achieves this, and it shows how the various views of the design can be used help improve each

other — for instance, the automatically generated user manual can be fed back to suggest improvements

in the design.

A microwave cooker is used as a real example. However, this paper provides full and unabridged

details of everything it discusses by using Mathematica as a rapid prototyping environment. Any similar

device can be analysed in the same way, directly from the paper.

Introduction

This paper shows that the definition of a device, its simulation, its usability analysis, and its user

manuals in any language (and interactive help, if required), can all be worked on directly and efficiently

in a suitable design environment. If part of the design process suggests improvements, say that the user

manual has an obscurity, then it can be changed directly by modifying the specification; and the new

specification will update all other parts of the product, the analysis, the simulation, and so on.

Importantly, the approach only has one definition of the device; thus changes — as occur during

iterative design and product revision — immediately and automatically affect all parts of the

development process: the analysis, the simulation, the help (and even the hardware). Specification-led

design is so efficient that it is effectively concurrent engineering.

Specification-led design 1

The importance of the approach is that many components of a product are derived efficiently and

automatically, almost at once. In normal design methods, there is a sequential (and costly) progression

from specification, through fabrication, to manual writing, and finally usage. Only at later stages, then,

will many usability problems be identified — but by then, the product is already fabricated, and many

of the usability insights would be very hard to take back to the specification, even it was still available.

For this paper, to illustrate our approach we have used the symbolic mathematical system, Mathematica

(Wolfram, 1996). Mathematica is sufficiently powerful that everything described in this paper is

completely and fully specified here. Many popular system development environments, especially those

aimed at providing visual realism, would have been inappropriate because they never explicitly 'know'

what the device specification is, and none of the automatic benefits discussed here could have been be

obtained. This paper was developed and printed entirely within Mathematica: all the examples are

genuine, and have not been re-keyed or fudged in any way. Stylistically, this does have the

disadvantage for this paper that explaining the method is interleaved with potentially distracting

explanation of the Mathematica code. If desired, the approach could be packaged (e.g., in Java) in such a

way that none of the technical details would be visible to a designer. However, we felt that for the

purposes of this paper, being able to see that the method works, and giving completely open details was

more important. Not only does this paper claim that specification-led design is a useful approach, but it

provides complete details for anyone to copy the approach.

As a running example, we shall use the definition of a microwave cooker, as given in Jonathan Sharp's

PhD thesis (Sharp, 1998). As a deliberate decision, we used Sharp's exact definition, to try and emphasise

the generality of the approach (we didn't choose this definition to fit the needs of the paper).

Preliminaries

Since this paper is the Mathematica definition of everything the paper talks about, it has to start with

some Mathematica preliminaries. This section can be skipped, as they say, on first reading — though it

also provides some examples of Mathematica being used, to explain the formatting conventions this

paper uses. A stylistic consequence of this paper also being a Mathematica document is the rather

frequent use of backward references in the text to earlier definitions — they have to be earlier, else they

wouldn't work where they are needed!

We start by loading the standard Mathematica package for combinatorics (to load a shortest path

function, which we will need for calculating the designer's optimal transition matrix), and a basic utility

routine.

<< DiscreteMath`Combinatorica`;

vector_ ' element_ := Position vector, element 1, 1

The function ' (pronounced 'such that,' defined above) gives the numerical index into a vector such that

the element would be selected. (It uses the built-in function Position, which produces a general result,

which in turn requires the 1,1 subscript.) Here is how it is used:

exampleVector = firstElement, secondElement, thirdElement ;

exampleVector ' secondElement

2

2 Specification-led design

Here we see an example of Mathematica output: secondElement is to be found at position 2 in the

example vector. And, working the other way round, the 2 can be used to select the second element of the

vector:

exampleVector 2

secondElement

In all cases in this paper, Mathematica code precedes the output from running the code. The cases where

no output is shown are either straight-forward definitions, or are stated in the text as not being run (for

example, to save space, we did not run the Mathematica code to generate the entire user manual).

Device definition

Mathematica shows how easy reusable development is to do. By making minor changes to the definitions

here, other devices can be developed in the same way.

Here is Jonathan Sharp's definition of his microwave cooker. Because we decided to use exactly his

definition (for reasons given above), the function ' (defined above) is used frequently to convert

between names and numbers; had Sharp defined his device directly in terms of state numbers this

would not have been necessary. (Instead, we might have defined each button and state as a numerical

constant; but the approach we have used makes the device definition easier to read and less error-prone.)

device =
clock, clock, clock, clock, clock, clock ,
quickDefrost, quickDefrost, quickDefrost,
quickDefrost, quickDefrost, quickDefrost ,
timer1, timer1, timer2, timer1, timer2, timer1 ,
clock, clock, clock, clock, clock, clock ,
clock, quickDefrost, power1, power2, power1, power2

;

buttonNames = clock, quickDefrost, time, clear, power ;
stateNames =
clock, quickDefrost, timer1, timer2, power1, power2 ;

numberOfStates = LengthûstateNames;
numberOfButtons = LengthûbuttonNames;

The five parts of the device specification, here represented by five variables (buttonNames,

numberOfButtons, etc.), can be encapsulated into a single structure, and for actual development work

this would have been preferable, rather than proliferating five variables per design. Mathematica

provides various ways to do this (packages, object-oriented programming, etc.), but for such a brief

paper as this, to do so would introduce unnecessary technical detail.

Sharp didn't write his specification in Mathematica! Mathematica can, however, print the specification

above quite closely to the style that Sharp used; in fact, Mathematica provides an extensible user interface

to make the entry of tabular data as easy as using a spreadsheet.

We define a function neatTable to make a reasonably neat tabular presentation of any device. It is

probably clear from the intricacy of this code that almost any typographical details can be

accommodated.

Specification-led design 3

neatTable title_, device_, stateNames_, buttonNames_ :=
With heading = StyleBox #, FontFamily Æ "Helvetica",

FontSize Æ 10, FontWeight Æ "Bold" &,
subHeading = StyleBox #, FontWeight Æ "Bold" & ,
StyleBox GridBox FrameBoxûGridBox

GridBox Transposeû Join heading "Buttons" , "" ,
subHeading ûbuttonNames ,

ColumnAlignments Æ Right ,
GridBox heading "— States —" ,

GridBox Join subHeading ûstateNames ,
device , ColumnLines Æ True,
RowLines Æ True, False ,

ColumnLines Æ True ,
heading title ,

FontFamily Æ "Palatino",
FontSize Æ 9, FontWeight Æ "Plain" DisplayForm ;

neatTable
"Sharp's Microwave cooker", device, stateNames, buttonNames

Buttons

clock

quickDefrost

time

clear

power

— States —
clock quickDefrost timer1 timer2 power1 power2

clock clock clock clock clock clock

quickDefrost quickDefrost quickDefrost quickDefrost quickDefrost quickDefrost

timer1 timer1 timer2 timer1 timer2 timer1

clock clock clock clock clock clock

clock quickDefrost power1 power2 power1 power2

Sharp' s Microwavecooker

The table is read as follows: choose the column according to the current state of the device, then read off

the next state of the device from the row corresponding to the button pressed.

If we hadn't wanted all the typographical details just so, Mathematica could have printed the

specification in a basic form, just with TableForm[device].

Simulating the user interface

To simulate the device, we use a global variable to keep track of the changing state of the device as

buttons are pressed. We will start the device in state 1, which happens to be clock. Arguably, a device

definition should specify its initial state — the state a device is in as soon as it is used: for many devices,

this state will be its being off.

state = stateNames 1

clock

The definitions given in this section merely show the name of the current state in the display. It is

possible to display anything, not just plain text, but to do so would take us beyond the scope of this

paper.

4 Specification-led design

When a button on the simulation is pressed, Mathematica will arrange for the function press to be

called, with the button as a parameter.

press theButton_ := Module nb = ButtonNotebook ,
collectStatistics theButton, state ;
state = device buttonNames ' theButton, stateNames ' state ;
NotebookFind nb, "display", All, CellTags ;
SelectionMove nb, All, CellContents ;
NotebookWrite nb, Cell ToStringûstate

After collecting any useful statistics, this function uses the device specification to determine the next

state. The next few lines of the function locate the device's display cell in the current Mathematica

notebook (Mathematica can have several notebooks — that is, windows — running together, which is

why the variable nb is required); the text displayed in that cell is selected and replaced with the name of

the new state.

By defining collectStatistics, we make press collect empirical statistics as the simulation is used.

For simplicity, we will just collect state transition counts:

statistics = Table 0, numberOfButtons , numberOfStates ;

collectStatistics theButton_, state_ :=
++statistics buttonNames ' theButton, stateNames ' state

 The following code is the definition of a row of buttons to control the device.

 Cell[BoxData[
 RowBox[{
 ButtonBox["Clock",
 ButtonFunction:>press[clock],
 ButtonEvaluator->Automatic],
 ButtonBox["Quick defrost",
 ButtonFunction:>press[quickDefrost],
 ButtonEvaluator->Automatic],
 ButtonBox["Time",
 ButtonFunction:>press[time],
 ButtonEvaluator->Automatic],
 ButtonBox["Clear",
 ButtonFunction:>press[clear],
 ButtonEvaluator->Automatic],
 ButtonBox["Power",
 ButtonFunction:>press[power],
 ButtonEvaluator->Automatic]}]],
 Active->True]

To use the buttons, Mathematica would change the display mode of the definition, and show a row (by

default) of actual buttons:

Specification-led design 5

Clock Quick defrost Time Clear Power

The device's simulated display is a simple Mathematica 'cell' (shown below) with an appropriate name so

that the press function can locate it. In its simplest form it could be just Cell["", CellTags Æ
"display"].

If desired, Mathematica allows cells and buttons to contain further 'typographical' details, such as their

font, size and colour. For example, the device's display can easily be made to look more like a typical

LED display of green text on a black background, by providing options (such as, FontFamily Æ
"Courier", FontColor Æ RGBColor[0, 1, 0], Background Æ GrayLevel[0], and its

correct dimensions) in the definition of the cell:

clock
In a running Mathematica session, pressing the buttons makes this display work, as well as collect data

on the users' behaviour with the simulation.

Mathematica can itself generate button definitions from any device specification, and one can extend the

definition to include explicit sizes, positions and so forth. (We will give an example below.) Thus, the

user interface itself can be defined by the same device specification. This is very important to make the

analysis — both mathematical and empirical — use consistent specifications; they can be edited easily

and only in one place.

Analysis and graph drawing

For illustrative purposes, we now do a Markov analysis of the device, which is a good way of estimating

how a user, making random errors, would perform using the device. It should be noted that this

approach is a 'keystroke level model' but which allows for errors. In particular, we will be able to draw a

graph of a user's task performance against how accurately (how error-free) or how well they know how

to do the task perfectly.

A working paper, available from the author, is available to describe the particular benefits, and many

further details, of the approach (Cairns, Jones & Thimbleby, 1998). Published papers further explaining

the motivation for such analyses are Thimbleby & Witten (1993) and Thimbleby (1994).

We will analyse the user task of getting from state power1 to state power2. To consider a particular

task, we do need to know the appropriate state names. Alternatively, it is possible to analyse all pairs of

states (hence, all tasks the device supports) and obtain statistics, which would typically be weighted by

the relevance or importance of the tasks to users. However, for the purposes of this paper, analysing just

one task is sufficient.

start = stateNames ' power1;
goal = stateNames ' power2;

We now convert Sharp's definition into a stochastic matrix:

6 Specification-led design

randomUser = Table 0, numberOfStates , numberOfStates ;

Do
randomUser i, stateNames ' device b, i += 1 numberOfButtons,
b, numberOfButtons , i, numberOfStates ;

Here is the matrix displayed in traditional mathematical notation:

randomUser TraditionalForm

3
5

1
5

1
5

0 0 0

2
5

2
5

1
5

0 0 0

2
5

1
5

0 1
5

1
5

0

2
5

1
5

1
5

0 0 1
5

2
5

1
5

0 1
5

1
5

0

2
5

1
5

1
5

0 0 1
5

Each row gives the probability that the user will change the state; thus, if the device is in state 1, the user

will change it to state 2 with probability 1/5 (i.e., first row, second column).

This matrix will be used for the analysis. The assumption is that each button on the device is pressed

with equal probability. (There are five buttons, so all the probabilities are so-many fifths.) The user

interface simulation can give empirically-based probabilities, and we will analyse them below.

Here we give the definition of the mean first passage time in its most direct form (our associated paper

gives a full derivation of the relevant formula). The mean first passage time represents a user's difficulty

with performing a task.

ZeroRowCol matrix_, rc_ :=
Table If i == rc j == rc, 0, matrix i, j ,
i, Lengthûmatrix , j, Lengthûmatrix ;

One = Table 1, numberOfStates ;
Id = IdentityMatrix numberOfStates ;

meanFirstPassage matrix_, start_, goal_ :=
Inverse Id - ZeroRowCol matrix, goal . One start ;

Here is how the function can be used:

meanFirstPassage randomUser, start, goal

120

Thus, the expected time to perform the task, to get from the start state (power1) to the goal state

(power2), is 120 button presses. Of course, the Markov model doesn't "know" how to use the

microwave, which is why the number seems so high. But the designers of devices should know how to

use them! We now create a designer's matrix, which represents optimal use for any task, based on the

optimal route from the start to the goal states. (The random user matrix is converted to a Graph type to

Specification-led design 7

find shortest paths; it can be done conveniently — and correctly! — from the randomUser matrix, since

exactly its non-zero elements are device transitions.)

designer = Table 0, numberOfStates , numberOfStates ;

Do Module p = ShortestPath Graph randomUser, , i, goal ,
designer i, If Length p > 1, p 2 , i = 1 ,
i, numberOfStates ;

We should check that this designer knows how to do the task!

meanFirstPassage designer, start, goal

2

Evidently, the more knowledge the easier the device is to use. A graph of difficulty of use against

knowledge can be plotted:

Plot
meanFirstPassage x designer + 1 - x randomUser, start, goal ,
x, 0, 1 , AxesLabel Æ "Knowledge", "Cost" ;

0.2 0.4 0.6 0.8 1
Knowledge

20

40

60

80

100

120

Cost

This shows that as a user learns more about the device (the larger x), until they know as much about it

as the designer (x=1), their performance improves. In particular, if the user doesn't know much (where

the graph is steep), then even a little help can have a dramatic improvement on their performance. We

don't have enough space to do this sort of graph justice, except to point out different device designs

(which can easily be explored) have different shaped curves, and hence this approach gives useful

insight into design trade-offs.

Many other sorts of analysis are possible. See Thimbleby (1994), a general approach, and Thimbleby

(1997), the analysis of a particular device, for further examples. Below, we shall show that it is possible

to generate user manuals from specifications: the structure of manuals can be analysed (without anyone

ever having to see them) — for example, to identify the hardest (e.g., most lengthy) parts of them, and

8 Specification-led design

then to redesign the device so that awkward parts are simplified. Thimbleby & Addison (1994) show

how to use flow analysis, arguing that user manual design should follow program design best practice.

Looking at empirical statistics of use

The statistics of use collected could be used directly in link analysis and with other conventional design

techniques (Stanton, 1998), but we shall continue with the Markov analysis. We could use the function

neatTable, defined above, to print out the statistics in a neat form.

The actual statistics data used to calculate the information in this section is shown below. (In fact, the

numbers here were originally printed by asking Mathematica for the value of statistics during a

session.) The Mathematica code below can be run to initialised the variable statistics (e.g., during a

live demonstration of this paper).

statistics = 2, 4, 1, 1, 0, 0 , 5, 2, 1, 2, 1, 0 ,
8, 3, 6, 0, 0, 1 , 4, 2, 2, 2, 1, 0 , 6, 1, 2, 1, 0, 0 ;

neatTable "Button presses in each state", statistics,
stateNames, buttonNames

Buttons

clock

quickDefrost

time

clear

power

— States —
clock quickDefrost timer1 timer2 power1 power2

2 4 1 1 0 0

5 2 1 2 1 0

8 3 6 0 0 1

4 2 2 2 1 0

6 1 2 1 0 0

Button presses in each state

Which is the most popular button?

With b = Map Apply Plus, # &, statistics ,
buttonNames Position b, Max b 1, 1

time

We will explore alternative designs below, and in particular we shall look at the significance of the time

button to usability.

We can ask how well the users of the simulation performed the task. The statistics matrix counts

button presses in each state; we now convert it to a transition matrix; each row of it has to be divided by

the total number of transitions out of the corresponding state, to convert the matrix to a stochastic

matrix (each row adds to a probability of 1):

Specification-led design 9

statsMatrix = Table 0, numberOfStates , numberOfStates ;

Do
statsMatrix i, stateNames ' device b, i += statistics b, i ,
b, numberOfButtons , i, numberOfStates ;

N statsMatrix =
statsMatrix Map Apply Plus, # &, statsMatrix , 2

TraditionalForm

0.48 0.2 0.32 0 0 0
0.5 0.25 0.25 0 0 0

0.25 0.083 0 0.5 0.17 0
0.5 0.33 0 0 0 0.17
0.5 0.5 0 0 0 0

0 0 1. 0 0 0

N meanFirstPassage statsMatrix, start, goal , 2

61.

Since this is better than ignorance (120 steps), but worse than the designer's optimal, it is likely that this

user (or collection of users) sometimes did the required task, or almost did it, but whatever they did was

not as random as knowing nothing!

We can determine how thoroughly the user interface simulation has been tested; perhaps some

transitions have not been tried out by any user so far? We could use Mathematica to summarise the as-yet

untested transitions. It may be that by getting users to try these transitions out that we discover some

obscure behaviour in the device. Perhaps some of the transitions the device supports are

counter-intuitive? The following simplistic code tells us what buttons users have not yet been tried (it

doesn't try to produce good English!).

Do If statistics b, s == 0, Print "Nobody tried to press ",
buttonNames b , " when in state ", stateNames s ,
b, numberOfButtons , s, numberOfStates

Nobody tried to press clock when in state power1

Nobody tried to press clock when in state power2

Nobody tried to press quickDefrost when in state power2

Nobody tried to press time when in state timer2

Nobody tried to press time when in state power1

Nobody tried to press clear when in state power2

Nobody tried to press power when in state power1

Nobody tried to press power when in state power2

What transitions did the users try, but which the device isn't designed to support?

10 Specification-led design

Do If statistics b, s π 0 && device b, s === stateNames s ,
Print buttonNames b , " was pressed in state ",
stateNames s , " but did nothing" ,
b, numberOfButtons , s, numberOfStates

clock was pressed in state clock but did nothing

quickDefrost was pressed in state quickDefrost
but did nothing

clear was pressed in state clock but did nothing

power was pressed in state clock but did nothing

power was pressed in state quickDefrost but did nothing

More sophisticated analysis would likely use a log of the users' button presses, whereas the statistics

collected in the function press only counted state changes — this throws away the information about

which button is pressed, and it also loses information relating to tasks that take more than one button

press.

Exploring alternative designs

Specification-led design is ideal to explore trade-offs for alternative designs. Obvious alternatives for

Jonathan Sharp's device would be to explore designs that have one button per state (so buttons change

the state of the device predictably), or to have a single button that cycles through all states. Both of these

alternative designs are simple, but are only appropriate for a device with a small number of states. This

section of the paper shows how we can explore some alternative design ideas that would also be

appropriate for devices with much larger number of states. For clarity, we will not introduce new device

specifications, just different ways of interacting with the original device.

The mean first passage time says how many button presses a user takes. From the graph, it is clear that

an ignorant user, one behaving quite randomly, is very inefficient, taking 120 button presses — to do a

task that a knowledgeable user can do in just 2 presses. Can we modify the design so that 'ignorant'

users are more efficient? Much of their inefficiency comes about because they press buttons that do

nothing. Let us modify the design so that users are discouraged from pressing pointless buttons. We

could imagine that each button can be lit up, perhaps so that its name is only visible when its light is on.

(If the device was like a video recorder, it would most often be used in the dark anyway, so lights on

buttons would have a dramatic effect on users' behaviour.)

To analyse this new design, we construct a new matrix, litButton, that represents the (random)

behaviour of users who only press buttons that do something. The matrix can be calculated from the

random pressing matrix (used above), by zeroing the diagonal (presses that do not change state) and

renormalising:

Specification-led design 11

litButton = Table If i π j, randomUser i, j , 0 ,
i, numberOfStates , j, numberOfStates ;

litButton =
Table litButton i PlusûûlitButton i , i, numberOfStates ;

NûmeanFirstPassage litButton, start, goal

70.8

This is an improvement on 120, which suggests we should do some empirical experiments with users.

To do so, we can revise the Mathematica simulation and arrange for buttons to change colour depending

on whether they actually do anything in the current state.

We define newInterface to be an expression that Mathematica can render as a row of coloured

buttons, but for the time being we don't choose any particular colours. Instead, RGBPlaces records the

'slots' where the colour specifications are needed, so the colours can be updated every time a button is

pressed.

newInterface = Cell BoxData RowBox
Map ButtonBox ToStringû#,

ButtonFunction ¶ newPress # ,
ButtonEvaluator Æ Automatic,
Background Æ RGBColor _ &,

buttonNames
, Active Æ True, TextAlignment Æ Center,

FontFamily Æ "Courier", FontSize Æ 20, FontWeight Æ "Bold",
CellTags Æ "newButtons" ;

RGBPlaces = Position newInterface, RGBColor _ ;

The new buttons use a new press function (otherwise they'd control the user interface simulation shown

earlier in this paper!). The code is much as before, except that a loop assigns colours to each button: red

for buttons that change state, and light gray if they do not change state.

newPress theButton_ := Module nb = ButtonNotebook ,
state = device buttonNames ' theButton, stateNames ' state ;
NotebookFind nb, "newButtons", All, CellTags ;
Do newInterface = ReplacePart newInterface,

If state === device i, stateNames ' state ,
RGBColor 0.9, 0.9, 0.9 , RGBColor 1, 0, 0
, RGBPlaces i , i, numberOfButtons ;

NotebookWrite nb, newInterface ;
NotebookFind nb, "newDisplay", All, CellTags ;
SelectionMove nb, All, CellContents ;
NotebookWrite nb, Cell ToStringûstate

It is possible that the user interface simulation described above has been used (which can only happen if

this paper is run in a Mathematica session, rather than just being read on paper), so at this point we don't

know what the actual state of the device should be, and so we don't know what colour the buttons

should be. The easiest thing is to press any button manually, so the code will update the state and set the

button colours correctly.

12 Specification-led design

clock quickDefrost time clear power

quickDefrost
We hope that the highlighting of a button affects whether a button is pressed; a button should be

pressed only if it is highlighted. More generally, changing the physical design of the user interface will

affect how likely a button is pressed. For example, if a button is made bigger and has a more attractive

appearance it would be used more. The question is, how would this affect the user's ability to perform

tasks? To help answer this design question, we can use the mean first passage function to work out the

expected time of performing a task as a function of the proportion of time a button is used.

As an example, we construct two matrices: nonTime (which represents a user who never presses the

time button) and onlyTime (which represents a user who only presses the time button).

onlyTime =
nonTime = Table 0, numberOfStates , numberOfStates ;

Do If buttonNames b =!= time, nonTime i,
stateNames ' device b, i += 1 numberOfButtons - 1 ,

b, numberOfButtons , i, numberOfStates ;

Do If buttonNames b == time,
onlyTime i, stateNames ' device b, i += 1 ,
b, numberOfButtons , i, numberOfStates ;

The nonTime matrix has zeros where a state transition can only happen by pressing the time button,

whereas the onlyTime matrix has ones where the time button works. Where the onlyTime matrix is

1, the nonTime matrix must be zero. Printing the two matrices (below) makes things clearer!

Print NûnonTime TraditionalForm, " ",
onlyTime TraditionalForm

0.75 0.25 0 0 0 0

0.5 0.5 0 0 0 0

0.5 0.25 0 0 0.25 0

0.5 0.25 0 0 0 0.25

0.5 0.25 0 0 0.25 0

0.5 0.25 0 0 0 0.25

0 0 1 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 1 0 0 0

We can then plot the performance of a user whose behaviour is represented by a linear combination of

these two matrices.

Specification-led design 13

Plot
meanFirstPassage 1 - k nonTime + k onlyTime, start, goal ,
k, .001, .999 ;

0.2 0.4 0.6 0.8 1

2000

4000

6000

8000

We will skip the details, but by plotting the graph on a decreasing interval, we can find a narrower

range of k that gives the best user performance:

Plot
meanFirstPassage 1 - k nonTime + k onlyTime, start, goal ,
k, .592, .595 ;

0.5925 0.593 0.5935 0.594 0.5945 0.595

39.9915

39.9916

39.9917

39.9918

39.9919

This is saying that, for the given task and other things being equal, making the time button be used 60%

of the time (three times more likely than a 'fair' use of 20%) will make the device easier to use. In actual

design, we should consider all possible tasks the device is intended to support, and we should attach

weights to each task (e.g., quick defrost is less important, or done less often, than cooking at power level

1); then, we could calculate the optimal 'size' (relative frequency of use) for each button.

14 Specification-led design

Automatic (and hence correct) help

There is a legal requirement that descriptions of products correspond with the products themselves:

under the Sale of Goods Act 1979 (as amended by the Sale and Supply of Goods Act 1994 and the Sale of

Goods (Amendment) Act 1994) products should be 'fit for purpose' and should correspond with the

description of them. Thus it is the (UK) law that user manuals are correct — or, if we take a weaker

view, that the manufacturer at least knows what the correct description is, so that some appropriate

description, but truthful, can be written for the user.

Although our device definition is very basic, it can be used to generate quite useful help for the user or

for technical authors. We now define a function help that explains the shortest path (the least number

of button presses) to get from any state to any state. The definitions given below can be adapted

straight-forwardly to provide clearer help if 'buttons' aren't actually pressed (maybe they are knobs that

have to be twisted).

whichButton s_, f_ :=
Do If device i, s === stateNames f ,
Print " Press ", buttonNames i ,
i, LengthûbuttonNames ;

help s_, s_ :=
Print "Nothing to do." ;

help s_, f_ :=
Module p = ShortestPath Graph randomUser, , s, f ,
Do whichButton p i , p i + 1 , i, Lengthûp - 1

The device might have an interactive feature, so pressing a button gives help, perhaps showing it in a

display panel. If so, it might be defined partly as follows — making use of the current state:

help doWhat_ := help state, doWhat

Users may wish to ask (and get answered!) questions such as, "I pressed something, but I expected

such-and-such; what should I have done?" Thimbleby & Addison (1996) discuss how to supply answers

to such "intelligent help" questions.

We can use the help function to generate an entire user manual. A short function tells us how to get

from one state to another:

explain i_, j_ := Print "To get from the device showing ",
stateNames i , " to showing ", stateNames j , ":" ;
help i, j

And here is a small part of the manual:

Specification-led design 15

explain start, goal

To get from the device showing power1 to showing power2:

Press time

Press power

Ideally one would write more sophisticated routines to generate better natural language, rather than the

simplistic ones demonstrated here. In particular, straight-forward parametrisation of the routines would

allow equivalent manuals to be generated in any appropriate language.

If we developed a typographical style for user manuals, then all devices processed would be able to use

that style (compare this idea with the tabular typesetting of the device specification shown earlier). Also,

one can generate HTML manuals for the World Wide Web, and then the user can also follow hypertext

links to help understand the workings of the device.

The entire manual can be printed with the following Mathematica code:

Do If i π j, explain i, j , i, LengthûstateNames ,
j, LengthûstateNames ;

This doesn't provide a particularly easy read (certainly not all of it!), but it is a complete and correct

manual that a technical author could work from. However, for many devices, including this microwave

cooker, a user's tasks won't be so-much to get from a known state to another state, but simply to get to

the desired state, regardless of the initial state. We will now generate a manual for this sort of use.

To represent a device in an unknown state, we represent its possible states as a set, and we define a

function to find out what set of states the device will be in after a given sequence of button presses:

StateSet initialStates_, presses_ :=
If presses == , initialStates,
StateSet Union Map

stateNames ' device First presses , # &, initialStates ,
Rest presses

A breadth-first search can then be used to look for unique states:

16 Specification-led design

NewManual explain_ :=
Module allStates = Range numberOfStates , goals, queue ,
goals = allStates;
Search seq_ :=
Do Module p = Append seq, b , g ,
g = StateSet allStates, p ;
If Length g == 1 && MemberQ goals, g 1 ,
explain g 1 , p ;
goals = DeleteCases goals, g 1 ;
AppendTo queue, p ,
b, numberOfButtons ;

Search queue = ;
While goals != ,
Search First queue ;
queue = Rest queue

Then, by defining some routines to explain things in (for instance!) English, we can print out the

sequences of button presses to get to each state. We now have the user manual that tells a user how to

do anything regardless of what the device is doing to start with. Notice how short it is; perhaps because

of its brevity, as we shall soon see, we can get some interesting design insights straight from it.

Print
"Whatever the device is doing, you can always get it to" ;

SayList s_ := s<>".";
SayList s_, t_ := s<>", then "<>SayList t ;
SayList s_, t__ := s<>", "<>SayList t ;

English state_, actions_ := Print " ", stateNames state ,
" by pressing ", SayList ToString ûbuttonNames actions ;

NewManual English

Whatever the device is doing, you can always get it to

clock by pressing clock.

quickDefrost by pressing quickDefrost.

timer1 by pressing clock, then time.

timer2 by pressing clock, time, then time.

power1 by pressing clock, time, then power.

power2 by pressing clock, time, time, then power.

Looking at these instructions, it looks like the clock button ought to have been called reset. If so, note

that you can still get to state quickDefrost by pressing reset (i.e., clock) first, then the

quickDefrost button. Also, we might think that if such a manual is 'good,' what would a device look

like that this manual was the complete explanation for? To find out, all we need to do is change the

English routine to one that goes back to the device specification and sees what parts of it are used, and

which are not.

Specification-led design 17

d = device;

checkUsed s_, actions_ :=
Module i, states = Range numberOfStates ,
For
i = 1, s π states, states = StateSet states, actions i++ ,
Scan d actions i , # = "—" &, states ;

NewManual checkUsed ;
neatTable "Actions that weren't needed for the manual",
d, stateNames, buttonNames

Buttons

clock

quickDefrost

time

clear

power

— States —
clock quickDefrost timer1 timer2 power1 power2

— — — — — —

— — — — — —

— timer1 — timer1 timer2 timer1

clock clock clock clock clock clock

clock quickDefrost — — power1 power2

Actions that weren' t needed for the manual

We can look closely at the non-blank entries in this table: these are the parts of the specification that the

user manual did not require. Amongst other comments: the clear button doesn't seem to be helping

much! (Probably Sharp's specification does not say what clear really does: it probably clears a

numerical timer setting that he wasn't interested in.) Nevertheless, our generating a manual and then

automatically going back to the specification has exposed some potential bad design. If this sort of

manual is a good idea, then the clear button as presently defined is a design feature that needs better

justification.

Many other sorts of manuals can be generated too, and by creating them using Mathematica or some

other such system systematically we can guarantee their correctness. We can also use the technique of

going back from a good manual to reappraise the specification. After all, if we have a good user manual,

then the bits in the specification that aren't apparently needed are immediately suspicious features!

Elsewhere we discuss how the technical author's editing (starting from a correct manual) can be

effectively managed, even as the device specification changes (Thimbleby & Ladkin, 1995). It is possible

(but requires rather a lot of technical detail beyond the scope of this paper) to do something similar in

Mathematica: the output of the manual generation can be written to a notebook, where the technical

author can freely edit it (as a normal Mathematica document) and so make the user manual as readable

as desired.

Mathematica allows 'cells' (i.e., manual paragraphs) to be tagged; using the tags, each paragraph can be

uniquely identified, even though the technical author has edited them. Now, if the device specification

changes, the notebook can be re-read, and a report automatically made of any cells whose original

generated text has changed (or is new or has been deleted). This report can be automatically interleaved

back into the manual, so that the technical author could more easily associate the comments with the

affected parts of the manual.

The technical author can also point out peculiar features, or ones that are hard to explain: Mathematica

could then track these suitably-flagged comments back to the offending parts of the specification, much

like we did above (for instance, the technical author's comments would end up in the specification table,

instead of the '—' dashes).

18 Specification-led design

Conclusions

The development method described in this paper is very powerful, and with a system such as

Mathematica it is also very easy to do. With Mathematica or with bespoke design packages, all the code

could be concealed from designers: this paper — because it is explicit — gives an unnecessarily technical

feel to the approach. The method is not limited to finite state machines (as might be supposed);

Thimbleby & Ladkin (1997) discuss generating user manuals for quite complex systems, such as parts of

the A320 fly-by-wire airplane, where we use a logic-based approach.

The Mathematica code shown in this paper will work with other devices, by making only the appropriate

changes to the device specification. This paper, then, is itself a complete gadget-design package —

everything discussed in this paper is explicitly and fully defined — and one is surprised that more

devices are not designed in this way, rather than by using superficial tools that emphasise looks against

specification.

Mathematica could be accused of being esoteric (it does have complexities this paper avoided); our

further work is using Java to allow the user interface of the development environment to be put on the

World Wide Web, and for designers anywhere in the world to write Java applets that can be analysed

and simulated on the site. With world-wide use of simulations, one would be able to obtain global

empirical statistics of device use. We also hope to promote good practice in user interface design.

References

P. Cairns, M. Jones & H. W. Thimbleby, 1998, "Reusable Usability Analysis with Markov Models,"

working paper (available from the authors).

J. Sharp, 1998, Interaction Design for Electronic Products using Virtual Simulations, PhD thesis, Brunel

University.

N. Stanton, ed., 1998, Human Factors in Consumer Products, Taylor & Francis.

H. W. Thimbleby & M. A. Addison, 1994, "Manuals as Structured Programs," in G. Cockton, S. W.

Draper and G. R. S. Weir eds., BCS Conference HCI'94, People and Computers, IX, pp67–79, Cambridge

University Press.

H. W. Thimbleby & M. A. Addison, 1996, "Intelligent Adaptive Assistance and Its Automatic

Generation," Interacting with Computers, 8(1), pp51–68.

H. W. Thimbleby & P. B. Ladkin, 1995, "A Proper Explanation When You Need One," in M. A. R. Kirby,

A. J. Dix & J. E. Finlay eds., BCS Conference HCI'95, People and Computers, X, pp107–118, Cambridge

University Press.

H. W. Thimbleby & P. B. Ladkin, 1997, "From Logic to Manuals Again," IEE Proceedings Software

Engineering, 144(3), pp185–192.

H. W. Thimbleby & I. H. Witten, 1993, "User Modelling as Machine Identification: New Design Methods

for HCI," in D. Hix & R. Hartson eds., Advances in Human Computer Interaction, IV, pp58–86, Ablex.

H. W. Thimbleby, 1994, "Formulating Usability," ACM SIGCHI Bulletin, 26(2), pp59–64.

H. W. Thimbleby, 1997, "Design for a Fax," Personal Technologies, 1(2), pp101–117.

S. Wolfram, 1996, The Mathematica Book, 3rd. ed., Addison-Wesley.

Specification-led design 19

Acknowledgements

This paper is a summary of collaborative effort. The author is grateful to Ann Blandford, Paul Cairns,

Matt Jones, Peter Ladkin, Gary Marsden and Ian Witten. A preliminary version of this paper was

presented at the Institution of Electrical Engineers seminar, Living life to the full with personal technologies,

London, 3 June 1998; and was published in the seminar digest (IEE Digest 98/268, pp4/1–4/9).

20 Specification-led design

