
Dynamic installation and automatic
update of Bluetooth low energy devices
in PalCom

Mia Månsson

MASTER’S THESIS | LUND UNIVERSITY 2015

Department of Computer Science
Faculty of Engineering LTH

ISSN 1650-2884
LU-CS-EX 2015-15

Dynamic installation and automatic update
of Bluetooth low energy devices in

PalCom

Mia Månsson
ada09mma@student.lu.se

June 8, 2015

Master’s thesis work carried out at
the Department of Computer Science, Lund University.

Supervisor: Boris Magnusson, Boris.Magnusson@cs.lth.se

Examiner: Görel Hedin, Gorel.Hedin@cs.lth.se

mailto:ada09mma@student.lu.se
mailto:boris.magnusson@cs.lth.se
mailto:Gorel.Hedin@cs.lth.se

Abstract

Chronic kidney disease is becoming an increasingly common illness. The
medical background for this thesis comes from the prediction that frequent
monitoring of body parameters may help prevent progression of the disease.
For other chronic diseases other parameters are interesting to monitor and the
need is typically dynamic. This thesis presents a solution for dynamic installa-
tion of Bluetooth low energy-enabled health care devices and automatic update
of such services in the PalCommiddleware. PalCom is aspiring to be a helpful
tool in the pursuit of improving the quality of health care and provides func-
tionality for taking measurements at home for remote monitoring. However,
as most similar systems, PalCom only allows deployment of predefined BLE
devices. The contribution of this work is a solution to install BLE-enabled
health care devices in PalCom on demand, as well as a solution for automatic
update of these services.

Keywords: PalCom, Internet of Things, automatic update, dynamic installation, Blue-
tooh low energy

2

Acknowledgements

I would first of all like to thank my supervisor professor Boris Magnusson for guidance
throughout the project and for the invaluable support in writing this report.

I would also like to thank Björn A. Johnsson, Mattias Nordahl, Tommy Alatalo, Knut
Mårtensson and Fredrik Nilsask for their input and for answering any questions I have had.

3

4

Contents

1 Introduction 7
1.1 Report structure . 7
1.2 Medical background . 8

1.2.1 Chronic kidney disease . 8
1.2.2 Kidney function and blood pressure 8
1.2.3 Taking measurements from home 9

1.3 Problem statement . 9

2 Technical background 11
2.1 PalCom . 11

2.1.1 Services . 13
2.1.2 Assemblies . 13
2.1.3 Dynamic class loading . 13

2.2 Bluetooth low energy . 13
2.2.1 Bluetooth low energy on Android 14

2.3 The setup . 15
2.4 Related work . 15

3 Approach 17
3.1 Analysis . 17

3.1.1 Dynamic installation . 18
3.1.2 Coordinating versions . 18

3.2 Implementation . 20
3.2.1 Architecture of the proposed solution 20
3.2.2 Remote services . 21
3.2.3 The hub . 22

3.3 Using the solution in practice . 23
3.3.1 Installation of the Beurer scale 23
3.3.2 Updating the Beurer scale service 25

5

CONTENTS

4 Evaluation 29
4.1 Dynamic installation . 29
4.2 Automatic update . 30
4.3 Installation- and update preparations . 30
4.4 Installation time . 31

5 Conclusions 33
5.1 Future work . 33

Appendix A Assembly 37

Appendix B Equipment 39

Appendix C Administrator guide 41
C.1 Implementing BLE-services . 41
C.2 RemoteUpdateService . 42

C.2.1 In-commands . 42
C.2.2 Out-commands . 43

C.3 RemoteBLEAssemblyService . 43
C.3.1 In-commands . 43
C.3.2 Out-commands . 44

C.4 UpdateManagerService . 44
C.4.1 In-commands . 44
C.4.2 Out-commands . 44

C.5 BLEManagerService . 44
C.5.1 In-commands . 45
C.5.2 Out-commands . 45

Bibliography 47

6

Chapter 1
Introduction

The work described in this report emerged from the idea of letting patients, who suffer
from chronic kidney disease (CKD), have connected devices at the home, taking measure-
ments and continuously presenting those measurements for medical personnel. A careful
monitoring may help detect abnormalities sooner and prevent progression of the disease,
and consequently enhance life quality of the patients.

The concept of Internet of Things (IoT), which refers to the idea of having various type
of devices identifying themselves and communicate with other devices, is becoming an im-
portant tool in healthcare. Such devices should blend ubiquitously in the background, but
still be ready to assist and making life easier for humans. A closely related term is ubiq-
uitous computing, which was coined already back in year 1991 by the computer scientist
Mark Weiser [20]. While ubiquitous computing refers to having computers everywhere,
always present in the background, does ubiquitous communication similarly mean "en-
abling anytime, anywhere communication of anything with anything else"[10]. This work
aims at utilize this concepts.

This work is a part of the itACiH (IT support for Advanced Care in home) project.
The original focus of the itACiH project was to develop support for home-based medical
care for terminally ill cancer patients, but have expanded to include other illnesses, such
as support for home-based care for patients with chronic diseases.

1.1 Report structure
The first chapter of this report gives an explanation to the background which leads to the
problem statement. In the second chapter I will give an introduction to the PalCom mid-
dleware, playing a big role throughout this work. I will also explain the current setup for
remote monitoring that is used together with PalCom, as well as some previous work that
been giving helpful insights in this work. In the following chapter I’ll describe a solution
serving as a proof of concept for dynamic installation of BLE devices and automatic up-

7

1. Introduction

date in PalCom. In the fourth chapter I will evaluate the solution. Lastly I will conclude
this project and mention some future work.

1.2 Medical background
Medical staff spend a lot of time on paperwork and much of the documentation, for exam-
ple equipment readings, are first done by pen and paper for later registration in an electronic
health record (EHR) system. Readings that are not done by pen and paper usually require
the use of software from the manufacturer of the device [19]. This force medical person-
nel to switch between numerous different systems, making it difficult to get an overview
of all data belonging to one patient. Having wireless measurement devices connected to a
coherent interface, will result in less time spent on paperwork for medical staff, and hence
saved resources.

Chronic diseases are becoming increasingly common and also a challenge for health
care to manage the increasing number of patients. One example of a chronic disease is
Chronic kidney disease (CKD).

1.2.1 Chronic kidney disease
CKD is an irreversible disease and is estimated to be found on 8-16% of the population
worldwide [12].

The main task of the kidneys is to filter blood, but they also play an important part in
regulating blood pressure levels, red blood cells and concentration of salts and minerals in
the body. Without properly functioning kidneys death is only a few days away. [8]

The blood filtration capacity of the kidneys naturally decrease with age, but usually
not so rapidly to cause problems. The risk of CKD increases when strain is put on the
kidneys, for example diabetes, poor diet or lack of exercise. Treatment is usually focused
on slowing down the ever-decaying function of the kidneys. Early identification of CKD
can help delay, and hopefully avoid, dialysis and transplantation. [12]

CKD progresses for a long time, not uncommonly for 10-20 years. A progressed stage
of CKD may lead to dialysis and kidney transplantation.

1.2.2 Kidney function and blood pressure
Blood pressure levels are closely connected to the function of the kidneys. High blood
pressure may indicate low kidney function, which can cause build up of fluid and therefore
weight gain. It is essential to maintain low blood pressure as high blood pressure levels
will not only further injure the blood filtration in the kidneys, but also lead to a greater
risk of cardiovascular disease. [8] Having a frequent monitoring of bodyweight and blood
pressure may help to be more proactive in detecting changes in the patients condition. The
expectation is that this will prevent, or at least delay, other a lot more intrusive and resource
demanding treatments like dialysis and kidney transplantation.

The blood pressure levels vary due to many factors. A measurement taken at one
particular point in time may therefore not be representative for the average everyday blood
pressure of the patient, for example being in a hospital can be stressful for some patients

8

1.3 Problem statement

and temporarily raise blood pressure levels. This is also known as the white coat effect.
[15]

1.2.3 Taking measurements from home
Patients suffering from CKD or other patients that are at risk or developing it, usually re-
quire regular checkups at the hospital in order for medical personnel to take measurements
and from the results decide if treatment and medication needs to be adjusted. Between
those visits, big changes might occur and the samples made at the hospital may not even
be representative of the patient’s current condition.

Figure 1.1: Connected devices at home ready to send measure-
ments to medical personnel.

In order to let patients take measurements more frequently, it’s not feasible to simply
increase the number of visits to the hospital. It would be ideal to have measurements taken
regularly every day, and have the measurement instantly available for medical personnel.
Putting the equipment in the home of the patients save time both for patients and medical
personnel. Such devices may need to be at the patients home for a few weeks or in other
cases for months and years. In contrast to manually register measurements, the measure-
ments are sent from the devices at home to a monitoring central. From the monitoring
central the data is easily accessible for medical personnel. The system alerts the personnel
if there is big changes in the collected values - since this might indicate changed condi-
tion and thus the need of medical attention. For patients showing early signs of CKD, it
may be enough to measure blood pressure and weight, additional devices at home may be
necessary if the disease progresses aggressively.

In the itACiH project, a system for medical personnel at hospitals as well as for mobile
care teams is developed. Among other things, the system allows medical personnel to view
and write patient data from tablets.

1.3 Problem statement
In order to carry out the idea described above, a solution for installing devices for remote
monitoring is needed. When medical personnel brings for example a scale or a blood
pressure monitor to the home environment of the patient, the device should "just work".
This means that it should be fast and easy to deploy the device to send measurements to a

9

1. Introduction

monitoring central. As the number of patients increase, updates and configuration can not
be made manually on every single device, instead this needs to happen autonomously.

It is not always known before-hand which kind of device will be used, and this will
also most likely change over time. For example as the condition of the patient changes, it
may be necessary to measure other body parameters, thus also the need of installing new
types of devices.

The primary goal is to investigate how to build a mechanism to dynamically deploy
medical devices and perform automatic updates in the context described above.

The main questions to be answered in this report are the following:

• How can Bluetooth low energy devices be dynamically deployed in PalCom?

• How can such services be updated without user interaction?

Security is important in medical care and PalCom support secure tunnels through SSL
for confidentiality and integrity of data. However, this was not a part of this thesis.

10

Chapter 2
Technical background

2.1 PalCom
The infrastructure in figure 2.1 is realized using a middleware called PalCom, the name
originates from palpable computing, which refers to a tangible system that should be easy
for users to understand and use. The system provides communication in the form of ser-
vices from various devices in a comprehensible way for the user. The aim of PalCom is
to allow users, also without previous programming experience, to combine services from
devices that originally were not intended to communicate with each other. PalCom is used
in the ongoing itACiH-project. The itACiH system is being developed in cooperation with
LTH and the university hospital in Lund and includes support for communication between
medical personnel at hospital, mobile care teams andmedical devices at home. [2] PalCom
is implemented in java and was started as an EU project in 2004.

There are a few important concepts in the PalCom system:

Device corresponds to physical hardware that can provide and execute one or more ser-
vices. A PalCom device can for instance be an android device or a PC, but it could
also be a simulated device which corresponds to a smaller resource constrained de-
vice such as a blood pressure monitor. Each device has a unique deviceID in order
to identify itself on the PalCom network. The deviceID will stay the same indepen-
dently on the addressing of the underlying network technology.

Service has got in commands and out commands which the user can interact with through
a PalCom browser or through an assembly. A service can for instance be used to
extract and distribute equipment readings from various measurement devices.

Assembly is a user defined set of rules that dictates which services should be used and
how they should behave together. In this way services on the same or on different
devices can exchange data.

11

2. Technical background

Figure 2.1: The hubs running at the patients’ home are connected
through PalCom tunnels to a TheThing on a monitoring central.
Each hub can then send measurements to a receiver service on the
monitoring central for storage (cylinders), these serivces (circles)
are connected though assemblies (triangles). An itACiH applica-
tion retrives and presents themeasurements for medical personnel.

TheThing is a java application working as a PalCom device, it can load and run assem-
blies and services. TheAndroidThing is an equivalent for android, and in this work
TheAndroidThing is used as connection point for measurement devices at the pa-
tients’ home.

PalCom browser is also a java application which is used to explore devices and the ser-
vices they provide. From the PalCom browser services can be used manually and in
our case it can be used by administrators to release new updates. It also serves as a
tool for building new assemblies.

The discovery of the devices is based on a heartbeat mechanism, in which a smaller
message (i.e. a heartbeat) is regularly sent between devices currently available. To con-
nect devices on different networks, for example over network address translation (NAT),
a PalCom tunnel can be created. A remote device can then be connected just as any other
device on the local network. PalCom also supports routing, which connects groups of de-
vices. Any device that is connected to more than one network may act as a router and then
it connects also the other devices on the different networks. [9]

12

2.2 Bluetooth low energy

2.1.1 Services
PalCom services reside on PalCom devices and can thus communicate independently of
the network technology at hand. [18]. To implement a new service the new java class
usually extends the abstract class AbstractSimpleService [14].

A service can either be bound or unbound, which means the service is bound to a
particular type of device or it can execute on any device and does not depend on a particular
hardware.

Services are self-describing thanks to service description, which explain to other de-
vices on the network how to use this particular service. The service description is sent
over the network and contains information about available commands, parameters and its
serviceID. The serviceID identifies the service and also contains version information. [9]

2.1.2 Assemblies
Different PalCom services can work together through an assembly. An assembly is similar
to a script and defines how PalCom services should interact. It takes care of configuration
and coordination, in other words, it states which services on which devices that should
communicate and how they should communicate. [9]

The feature called self can be assigned to a device that is used in a assembly. Instead of
pointing to a particular deviceID, self denotes the device that the assembly is running on.
In this way the assembly is more flexible and can be moved to work on different devices as
long as this device provides the same services that the assembly originally was built for.
An example of such an assembly can be seen in appendix A. In PalCom assemblies can
be loaded into TheThing using an AssemblyManager.

2.1.3 Dynamic class loading
A service typically consists of a number of java-classes. Dynamic class loading is a way of
loading new classes to a running program during execution. In java, classes can be loaded
using a classloader. The classloaders are arranged into a hierarchy which dictates in which
order to search for a class. If there are two classes with the same name, the class found
first will be used. [3]

In PalCom services can be loaded dynamically through jar- and .class-files using a so
called ServiceManager. In my solution, this functionality is used both during installation
of a new device and during update.

2.2 Bluetooth low energy
In this work, scales and blood pressure monitors communicate through Bluetooth low
energy (BLE), which also is known as Bluetooth Smart. BLE is a low power technology
released in 2010 and designed for small data transfers, in contrast to the classic Bluetooth
which is more suitable for continuous data transfering. [11] BLE is therefore suitable for
devices where low power consumption is important and when data transfers are kept short.

A BLE device can play four different roles:

13

2. Technical background

Central role initiates connections to peripherals.

Peripheral role advertises itself and can connect to a central device.

Broadcaster sends non connectable advertising messages.

Observer receives broadcasted advertising messages.

Scales and blood pressure monitors are acting as peripheral devices, while an android
device (the hub), is acting as a central device.

The structure is a star topology with a central device and one or many peripheral de-
vices. The central device can be connected to several peripheral devices, while a peripheral
device can be connected to only one central device.

BLE is built around the generic attribute profile (GATT), which defines how devices
exchange data. To identify what kind of functionality a device can provide, the following
categories are defined:

Profile is a set of services.

Service contains characteristics.

Characteristics describe what data that can be sent and received.

Descriptor contains additional information about a characteristic, for example the unit of
a measurement.

In order to extract data from for instance a scale, the extractor, in our case a PalCom service,
must know in beforehand which GATT-services and characteristics that will be present on
that particular scale.

The BLE standard allows for communication in unpaired mode as well as paired mode.
The paired mode does provide encryption and authentication. In Bluetooth version 4.1 the
key exchange protocol is flawed and susceptible to passive eavesdropping and man-in-the-
middle attacks, unless an out-of-band method is used. [16] In December 2014 version
4.2 was released and should now provide better protection against such attacks. [17] In
the prototype used in this work, Bluetooth version 4.1 is used and connections between
periopherals and hubs are made in an unpaired mode. In future versions, it would of course
be preferred to use Bluetooth version 4.2 in a paired mode.

2.2.1 Bluetooth low energy on Android
Android 4.3 (Jelly Bean) provides an API for BLE that allow applications to communi-
cate with BLE devices. The API does not support abstractions on GATT profile level,
instead services and characteristics are explored using callbacks from the API. Jelly Bean
only provides API for implementing central- and observer-devices. Since android version
5.0 (Lollipop) there is also support for implementing broadcaster devices and peripheral
devices.

14

2.3 The setup

Figure 2.2: Simplified architecture of the setup of the hub in the
kidney project. Each BLE peripheral is connecting to PalCom
through a intepreter service (circles), which in turn is used by as-
semblies (triangles) to send data to a monitoring centeral.

2.3 The setup
Through the itACiH-project a pilot study was conducted, letting patients have a BLE scale
and blood pressure monitor at home using PalCom. A few patients were selected to test
the system at home, an overview of this setup can be seen in figure 2.2. On an android
tablet - the hub, runs TheAndroidThing which detects BLE peripherals, in our case various
measurement devices. The peripherals are typically not a PalCom device, thus in order to
communicate with a peripheral, a dedicated PalCom service has to act as an interpretor.
Apart from services, the hub also needs assemblies to connect each service with a receiver
service on a TheThing at the monitoring central (fig. 2.1). In the pilot study, BLE-services
and assemblies on the hub were hard coded in a branch of the TheAndroidThing. If a
new type of peripheral is to be connected, a new version of TheAndroidThing has to be
installed.

2.4 Related work
Companies such as Withings and Beurer, provide wireless solutions for health monitoring
at home, but their solutions normally support feedback for private use and gives feedback
to the user only, in contrast to transmitting and presenting measurements to medical per-
sonnel. Such solutions typically have predefined devices that can be connected, thus no
support for dynamic installation of devices.

Continua [1] defines standardizations and guidelines for personal health systems. They
also certify devices, for example sender and receiver devices, but at this point only few

15

2. Technical background

types BLE devices, such as a blood pressure monitor, but not yet a BLE scale. In june
2015 new guidelines will be released about how to reduce pre-configuration on a device
in order to obtain plug-and-play interoperability.

There exists some well-known systems that provide automatic updating, for example
browsers like Chrome and Firefox. Google for example, argues that it is not the user’s
responsibility to keep software up to date. In this work we take a similar approach - neither
patients nor medical personnel should be involved in software updates. Since Android 2.3
applications have the possibility to automatically receive updates through Google Play.
With their solution the entire application has to updated, in this work we only want to
update a small portion of the application.

When updating only certain components of a system, dependency conflicts may arise.
S Eisenbach et al. [7] and R. Andersson [4] discusses DLL (Dynamic link libraries) hell
in Windows, but the more general term dependency hell arises in other situations as well.
The problem occurs when a configuration needs a new version of a shared module, in
our case a PalCom service, while other configurations still require the old version. This
cause the configuraions using the old version to fail. Solutions to this problem includes
maintaining a versioning system, protecting the module from being overwritten or using
two versions side-by-side

U. Asklund et al. [5] presents a solution to this problem using the unified extensional
version model, which is utilized in this work. The model maintains a versioning number
both for entities and the configurations using the entities. The article explains how versions
can form an directed acyclic graph of modules and configurations, and how changes in
entities propagate through the configurations. A key feature of this model is that it is
possible to have different versions of components coexisting at the same time.

R. Bialek et al. [6] have evaluated the functionality and the steps needed to perform
dynamic updates. According to their study, components should preferably be updated
when they are not operational, but in some cases, with very long execution times, it may
be necessary to perform a hot swap. In such cases it is required for the programmer of the
component to denote where in the execution it is safe to perform the update. This concept
have been utilized in this work in order to decide when to switch to a new version of a
PalCom service.

16

Chapter 3
Approach

This work was carried out using an evolutionary approach, where an initial idea is dis-
cussed and analyzed. Through an iterative process the work was improved and refined,
and at the end of each iteration the project was evaluated in order to decide how to take the
next step. As a first step I implemented a prototype to get a grasp on PalCom and to get
a fundamental understanding of how to identify, store and load services in PalCom. As a
second step I implemented my idea on actual BLE devices and BLE services originating
from the pilot study (section 2.3), where only preinstalled BLE devices was used. In this
chapter I will analyze the problem in greater detail, describe the result and some of the
design choices that where made during the implementation.

3.1 Analysis
The data sent from a peripheral, in our case a measurement device, may either be in-
terpreted remotely or interpreted locally. If the interpretation takes place remotely, the
hub would act like a mediator between the peripheral and the remote interpretor. The hub
would be able to communicate with any peripheral as long as the remote interpretor knows
how to communicate with this particular type of peripheral. This solution is however not
suitable for our problem, because the hub and the peripheral will be located at the patients
home, and constant Internet connectivity can not be guaranteed. In offline mode it is not
always enough to simply store the received data from a peripheral and send it to the inter-
pretor when online again, because whenever the hub is expected to send messages to the
peripheral the communication may fail. For instance, the Beurer BF800-B scale used in
this thesis expects to receive certain protocol specific data in order to continue transmitting
measurements to a central device. For this reason, the interpretation has to take place lo-
cally, which leads us to having a solution where services are distributed on demand. With
this solution, the hub would of course still need access to Internet when it detects a new
type of peripheral, but there after it would not depend on Internet connection in order to

17

3. Approach

receive measurements. Instead, when the hub is offline, measurements can be stored and
sent to the monitoring central later.

In order to install a BLE peripheral on the hub, we need a PalCom service which acts
as an interpreter maintaining the connection to the peripheral, and an assembly connecting
the interpreter to a receiver service on the monitoring central. When a new version of a
BLE service is to be deployed, also a new assembly is necessary.

In the following two sections, I will analyze different scenarios of how installation and
update can happen.

3.1.1 Dynamic installation
Dynamic installation of services and assemblies can happen in a few different ways. An
assembly is in our case mapped to a group of hubs and a particular BLE peripheral. An
other point to note is that each assembly uniquely specifies the services it is using. When-
ever an assembly is deployed on a device, the services it needs may already be present, not
present or partially present. In case a service is missing, a copy of that service needs to
be installed on the device, in our case this is typically bound services that need to execute
locally.

3.1.2 Coordinating versions
When updating assemblies and services, the most natural procedure would be to release a
new service, and later build the assembly where the new service is used. Lastly the new
assembly will be released and distributed to the hubs. Using this approach, the hubs will
first load the new version of the service and then receive the assembly.

Three approaches that may be used are:

1. Deploy the new version and stop the old
If we immediately stop the old version and deploy the new version of a service,
assemblies using the old version will stop working, and the application will not
work as expected until all the assemblies for the new version arrive.

2. Wait to deploy the new version Let the old version of a service run until all as-
semblies for the new version have arrived, see figure 3.1. When all assemblies for
the new service are present, we switch to the new version and stop the old. This
approach may cause delay until a new version of a service can be deployed, as it can
not be assumed that all assemblies using a specific service will be updated at the
same time.

3. Have different versions running simultaneously In this way different service ver-
sions may be used simultaneously, which allows for a gradual update where different
assemblies may use the two versions, see figure 3.2. However, for some bound ser-
vices i.e. services depending on a certain kind of hardware, it is not always possible
to have more than one service at the time using the hardware.

Having several versions running at the same time does not completely solve the prob-
lem for BLE services. Although PalCom allows different versions of the same service to

18

3.1 Analysis

Figure 3.1: Switching to version two of service S when all assem-
blies (A and B) have been updated and assemblies and services in
version one are stopped (dark grey).

Figure 3.2: Switching to new versions when two versions are exe-
cuting simultaneously. Notice in step three, where A2 uses the new
version of S while B1 still use the old version. Having two versions
running simultaneously is not always meaningful for some bound
services such as BLE services, where only one of the two versions
can be connected to the BLE peripheral.

19

3. Approach

run simultaneously, for BLE services only one of them can be connected to the BLE pe-
ripheral. In our case a BLE service is mapped to one assembly, and we can use the rather
straight forward approach depicted in figure 3.3. Service T is depicting a service running
on a remote device, while an assembly (A1) and a service (S1) are running locally.

Figure 3.3: Procedure when updating a service (S). In this case
only one assembly is using the services.

A BLE service should not disconnect itself from its peripheral until it is safe to do
so, i.e. when no assembly is using the service. On the other hand, a BLE service should
not connect to a peripheral until there is an assembly using it, which means a PalCom
connection have been opened to the service.

3.2 Implementation
In this section follows a presentation of an implementation for dynamic installation and
update of BLE services in PalCom. This implementation serves as a proof of concept to
the problem statement.

3.2.1 Architecture of the proposed solution
An overview of the implemented solution is depicted in figure 3.4. I implemented two
PalCom services RemoteUpdateService and RemoteBLEAssemblyService,
which can run on a PalCom device and supply other PalCom devices, in this case the
hub, with services and assemblies. The commands belonging to these services are listed
in appendix C.

On the the hub I implemented functionality for managing installation and update of
services and assemblies; a BLEManager and UpdateManager, both also consist of a Pal-
Com service. The BLEManager existed already in the pilot study described in section 2.3,
but have been modified in this implementation.

This solution is utilizing the AssemblyManager and ServiceManager in PalCom and
listen to resources from the PalCom network through the DiscoveryManager.

In order to install a new BLE peripheral in PalCom and configure it to send measure-
ments to a given receiver, two PalCom components are needed; an assembly and a service.
The required service is the BLE service that manages communication with the BLE pe-
ripheral. The assembly script contains instructions about where to send measurements
collected from a peripheral.

20

3.2 Implementation

Figure 3.4: An overview of the main components of the imple-
mentation. Where assemblies (triangles) and services (circles) are
distributed on demand.

3.2.2 Remote services
A storage and distribution mechanism is needed to distribute services and assemblies to
the hubs. For this the PalCom services RemoteUpdateService and BLEAssem-
blyService was implemented. These two services may run on the same device or on
different devices. The reason why these two functionalities are kept separate is that each
assembly already uniquely specifies which services it needs (in contrast to a service which
provides functionality, independently of where it is used).

Both services store all their data in the PalCom file-system, which allow them to run
on any TheThing or TheAndroidThing.

Service distribution
RemoteUpdateService has got commands for administrators to store, test and release
services, as well as commands for invoking service requests and receive jar-files. The
service is taking advantage of the discovery mechanism in PalCom, similar to how the
PalCom browser detects devices and explore their services. RemoteUpdateService
can then determine which services are running on which device, and will thus only send
push-notifications to those devices affected of an update.

A new version of a service should be stored within an instance of RemoteUpdate-
Service. It can then be tested by some selected users, and later be released. Update
notifications are sent in the following scenarios:

1. A new version of a service is released - notifications are sent to all devices using an
old version of the service.

2. A device connects - a notification sent to this newly connected device if an old ver-
sion of a service is executing on the device.

3. A service becomes available on a already connected device - a notification is sent
to the device the detected service is executing on, if there is a newer version of the
service available.

21

3. Approach

In PalCom we want to maintain the distinction between the functionality a service
provides, and configuration and coordination in assemblies, which is why RemoteUp-
dateService is only allowed to send updates to devices that are already connected to
this service through an assembly.

Assembly distribution
RemoteBLEAssemblyService has got commands for administrators to store assem-
blies and commands to provide devices with assemblies. A device which detects an new
BLE peripheral should send an assembly request containing the name of the peripheral
and its hub name. If the service has got a matching assembly stored, it sends this assembly
to the device.

3.2.3 The hub
BLEManagerService is a service running on TheAndroidThing on the hub, and is
working as a gateway for BLE communication. It scans for BLE peripherals and if it finds
an unknown peripheral, it initiates the installation by sending an assembly request for the
found peripheral. When the assembly arrives, it is loaded using the AssemblyManager.
If the BLEManager discovers an already installed BLE peripheral, it redirects it to the
corresponding BLE service, which then initiates a connection to the peripheral.

An UpdateManager with a corresponding PalCom service is also implemented on the
hub in order to provide functionality for managing services. It is responsible for the second
step in the installation; ensure that all services needed are present. The UpdateManager
is notified whenever an assembly is started on the device, and by parsing the assembly, it
can list which services are missing on the device. It then sends requests for services not
yet present, and when a service arrive, it will load it using the ServiceManager in PalCom.
The UpdateManager listens to events from the discovery manager in PalCom in order to
gather information about services executing locally.

Performing updates
In PalCommultiple versions of services can execute simultaneously, which then allows for
gradual updates, as explained in [5]. This does not solve the problem for bounded services,
such as BLE services. Even though it is possible to have two versions of a BLE service
executing, only one at a time can communicate with the peripheral. In this implementa-
tion, the services themselves take care of synchronizing the start and stop with their BLE
peripheral, depending on whether there is something using it, that is if there is an assembly
connected to the service or not.

A BLE service therefore terminates the communication with its BLE peripheral when
there is no PalCom connection to it. The different operating states of an BLE service is
depicted in figure 3.5. The BLEManager stops the old version of an BLE-assembly when
a new version arrives. This cause the old BLE service to stop, and allow the new service
version to initiate a connection to the peripheral.

In order to minimize the functionality in each subclass of BLEService to only in-
clude communication and interpretation with a specific type of BLE peripheral, I imple-

22

3.3 Using the solution in practice

Figure 3.5: The different operating states of a BLE service.

mented the synchronizing of start and stop of the BLE connection in the super class BLE-
Service. This class in turn extends the AbstractSimpleService. A BLE service
should therefore extend this class instead of the AbstractSimpleService, which
normally is the class to extend when implementing a service in PalCom.

3.3 Using the solution in practice
In this chapter I will show a concrete example of an installation and update of a BLE scale
(Beurer BF800-B) in PalCom.

The setup is depicted in figure 3.6. Both RemoteBLEAssemblyService, Remo-
teUpdateService are running on a remote device acting as a server, and a PalCom
tunnel is set up between this server and the hub. The BLEManager and UpdateManager
and their corresponding services are running on TheAndroidThing on the hub.

A PalCom tunnel is also prepared between the hub and a monitoring central, which is
where measurements from BLE peripherals should be sent.

3.3.1 Installation of the Beurer scale
Figure 3.7 illustrate the service view in TheAndroidThing on the hub, and also the cor-
responding state seen from the PalCom browser. Here we can see the two assemblies
that are preloaded on the device. One assembly is connecting UpdateManagerSer-
vice to RemoteUpdateService and the other is connecting BLEManagerSer-
vice to RemoteBLEAssemblyService. BLEManagerService and UpdateM-
anagerService are loaded internally as a part of TheAndroidThing, such services are
not displayed in this view, but if we look from the PalCom browser, we find those services
under the android section.

In picture 3.8 the Beurer scale has been detected by the BLEManager, which then sent
an assembly request to RemoteBLEAssemblyService in order to receive and load
the assembly for the Beurer scale.

23

3. Approach

Figure 3.6: The setup prepared for automatic installation and up-
date of BLE services. The two triangles indicate assemblies con-
necting the services on the hub to their corresponding service on
the server.

Figure 3.7: Inital view when no BLE service is installed. Two
assemblies have been loaded to connect to the remote services. To
the left is the view from TheAndroidThing on the hub, and to the
right is the corresponding view from the PalCom browser.

Next, the UpdateManager checks the received assembly for missing services that need
to run locally. In this case, a service called BeurerScaleService will be missing.
The UpdateManagerService sends a request for this service to the RemoteUp-
dateService. In figure 3.9 the service has arrived and by the color of it (orange) we
can see that it is currently only partially operational - it have not yet initiated communi-
cation to the scale, but there is an assembly connected to this service, in this case from
the "BeurerScaleToServer" assembly. A short moment later the service has established a
connection to the BLE peripheral, and in the view the color of the service has switched
from orange to green and is now fully operational.

24

3.3 Using the solution in practice

Figure 3.8: An assembly has arrived for the Beurer scale (Beur-
erScaleToServer).

Figure 3.9: The BLE service for the scale has arrived. Since the
BeurerScaleToServer assembly uses this service, the state of the
service goes from not operational (red) to partially operational
(orange), and after the connection is setup up to the scale, fully
operational (green).

3.3.2 Updating the Beurer scale service
When we want to update the Beurer scale service, we store the new version in the Re-
moteUpdateService on the server device. When releasing the service, RemoteUp-
dateService will send update notifications to connected devices that are using older
versions of the service. The hub in our example will receive such a notification, which
will cause it to reply with a service request in order to receive a jar file containing the

25

3. Approach

new version. In figure 3.10, the new version has arrived, but is not yet in a operational
state, since there is no assembly connected to it. The old version is still maintaining the
connection to the scale.

Figure 3.10: A new version of BeurerScaleService is
loaded and currently in a non-operational state, because no assem-
bly is connected. The prevous version is still fully operational and
thus connected to the scale. To the right we see the same hub from
the PalCom browser.

When administrators have built the assembly for the new service version, the new as-
sembly will be stored and available on the RemoteBLEAssemblyService. The BLE-
Manager on the hub receives a notification that a new assembly for the Beurer scale is
released. It then compares its current version of the Beurer scale assembly and send an
request for the new version. When the new assembly version arrives, the BLEManager
stops the previous version of the assembly and start the new.

The new assembly will connect to the new version of the service which then goes into
the partially operational state. Remember that the BLEManager stopped the old assembly,
so our old service does no longer have any assembly using it. This forces it to close the
connection to the scale and go into a non operational state, thus letting the new version
connect to the scale.

26

3.3 Using the solution in practice

Figure 3.11: The update of the Beurer scale service is now com-
pleted. Version 1.10 is in a non-operational state (red) while ver-
sion 1.20 is fully operational (green) and has taken over the com-
munication with the scale.

27

3. Approach

28

Chapter 4
Evaluation of the implementation

In this chapter I will evaluate the implementation described in the previous chapter. First
I will discuss how my solution solved the problem statement. I will evaluate changes
from administrator perspective as well as from user perspective. I will also measure the
installation time of a BLE peripheral and mention some scalability aspects.

The questions to be answered was:

• How can bluetooth low energy devices be dynamically installed in PalCom?

• How can such services be updated without user interaction?

4.1 Dynamic installation
The BLE peripherals are dynamically installed using the two remote services described
in the previous chapter. When a hub detects a new type of BLE peripheral, it requests
the remote assembly service in order to receive the assembly that is associated with the
BLE peripeheral in question. From the assembly, the device determines which service and
version is required. If some service is missing, the device can ask other connected Pal-
Com devices whether they have the required service or not. In the current implementation
there is not yet support for connecting two identical peripherals, i.e. peripherals using an
instance each of the same PalCom service.

RemoteUpdateService will provide the requested services including the BLE
service acting as a intepretator between PalCom and the BLE peripheral. From here on
the BLE peripheral is ready for use together with the hub.

The paring procedure from the users perspective is no different fromwhen the BLE pe-
ripherals were pre-installed, apart from some delay when receiving the necessary services
and assembly from the remote services. The magnitude of this delay will be evaluated in
a following section.

29

4. Evaluation

From an administrators perspective it will not anymore be required to update the entire
TheAndroidThing in order to deploy a new BLE peripheral. Instead all BLE services and
assemblies are stored once within the remote services. This enables the non pre-planned
deployment of BLE peripherals, where services and assemblies are retrieved on demand.

4.2 Automatic update
Whenever an update is ready for release, the new version of the service and the assemblies
using it can preferably be stored in one central server executing RemoteAssembly-
Service and RemoteUpdateService. The server distributes the new versions to
all connected devices that are using older versions of the service.

The BLE services are used by one assembly, this together with the explicit version
numbering of assemblies helps the hub to manage different versions in a consistent way.

One can argue that it is a weakness that this solution only consider one assembly per
peripheral. The decision to only have one assembly connecting was originally something
that was implied by the user case in the pilot study, since there was only one assembly
per peripheral. In hindsight the system would be more versatile if it was prepared for
managing several assemblies. But as long as only one version of a service can be used
at a time, the new version of the service can’t be deployed until also all assemblies are
updated. One possible solution could be to have several BLE services communicate with
the same peripheral as if they where connected to the same peripheral, when in fact only
one of them is. The other services will instead communicate with the BLE-peripheral
through the BLE service that is connected to the peripheral. Then several versions of a
BLE service can run simultaneously, and updates then can happen gradually instead of
waiting until the old service is not anymore in use.

4.3 Installation- and update preparations
The two servicesRemoteUpdateService and RemoteBLEAssemblyServicewill
have to be deployed on a PalCom device and all other PalCom devices interested in receiv-
ing updates should have an connection, i.e an assembly, to those services. When a new
service is to be released, the programmer may first want to test the service among some
selected users. This is possible when the new service is added to the RemoteUpdate-
Service. It will then only distribute the service to selected devices, see the manual in
appendix C.

When adding a new service to the RemoteUpdateService, the serviceID has to
be manually added. A chain is only as strong as its weakest link, and a better solution
would be to not leave this task to humans, but perhaps let the service deduce the serviceID
in some other way from the jar-file.

Administrators will also have to supply the name of the BLE peripheral together with
the assembly in order to store the assembly in RemoteBLEAssemblyService.

Before the hubs are ready for use , TheAndroidThing needs to be installed and in addi-
tion, assemblies to connect to the remote assembly- and service- storage must be loaded.
Loading assemblies during installation cause some slight extra work. Those assemblies

30

4.4 Installation time

only need to be loaded once, and the same assembly can preferably be used by all hubs that
should be accessing the same storage. An other possibility is to attach such assemblies in
the assets directory in the apk-file.

4.4 Installation time
To get an indication of the deployment time when a BLE device is brought home to a pa-
tient, I measured the installation time of a BLE peripheral. I let the hub use a 4G network
to connect to the remote storage services and then I measured the installation phase from
when a BLE peripheral is detected, until it is installed in PalCom. For this experiment I
used the same Beurer scale as in the using scenario in section 3.3. Note that these mea-
surements are meant as an indication of the delay when deploying services dynamically at
the patients home, and not as an exhaustive evaluation of the efficiency.

I divided and measured the installation in four different steps:

Step 1 Duration from when the assembly is requested, until the assembly arrives.

Step 2 Duration for loading the assembly, including sending request for one missing BLE
service.

Step 3 Duration from when the BLE service is requested, until it arrives.

Step 4 Duration for loading the BLE service.

In five tries the installation time was on average 3.3 seconds, see table 4.1. The size of
the assembly that was transmitted was 5.7 KB and the jar file containing the service was
7.3 KB.

Run number Step 1 (ms) Step 2 (ms) Step 3 (ms) Step 4 (ms) Total (s)
1 404 88 243 3093 3.8
2 587 130 863 1776 3.4
3 893 123 185 1895 3.1
4 296 179 394 2391 3.3
5 290 155 513 1999 3.0

Table 4.1: Installation time of five different tries over a 2.5/1.5
Mbit/s connection.

From the result in table 4.1, we can conclude that loading the service is the bottleneck.
If we wanted a faster installation, it may help to request the service as a first step and while
loading the service, sending request for the assembly. For this to work, the structure of
both the remote services and the hub would have to be slightly different from my imple-
mentation, since the installation steps would be reversed. However, seen from the users
perspective the measured installation times is fast enough.

31

4. Evaluation

32

Chapter 5
Conclusions

Improving health care is an important topic and there is still many concepts of the IoT that
may be utilized in health care. In this work we investigated how to simplify the installation-
and update process of BLE devices to be used in the patients home, and how it can be done
in a fairly straightforward way using PalCom. Using the solution presented in this report
enables non-preplanned deployment of medical devices at the patients home through an
automatic installation process. The installation time was measured and in five tries the
installation took on average 3.3 seconds.

The automatic update solution allows for a more convenient usage of the installation,
where both services and assemblies can be automatically updated. The solution updates
services and assemblies using the unified extensional version model [5]. To overcome the
limitation that only one version of the same BLE service can be connected to the same
peripheral, I used the concept described in R. Bialek et al. [6] where the programmer
of the component is responsible for denoting where in the execution the update should
be performed. In this solution, the components translates to PalCom services. For BLE
services this was solved by letting the service itself close the connection with its peripheral
when there is no PalCom connection to the service, since this means that it is not used,
and should thus allow the new version to execute.

5.1 Future work
This work focused on BLE devices and installation and update of BLE services in PalCom.

Integrating my solution with the PalCom kernel is left for future work, but there is
still work to be made in the area of automatic updates of assemblies and services. For
instance, update several assemblies and not only consider one assembly per peripheral.
Assemblies may also be used by other assemblies, and this leads to updating tree structures
of assemblies, where the PalCom services can be seen as leaf nodes. For this a general
naming convention for assemblies, similar to serviceID for services, would be beneficial.

33

5. Conclusions

To use my solution on a larger scale it could be helpful to have tools for the configura-
tion management process, for example some kind of serviceID generation tool.

The BLE services in PalCom implemented this far have used no pairing, thus no au-
thentication of BLE peripherals, and little integrity and confidentiality of data. In future
versions of BLE services, a pairing mechanism, such as Near field communication (NFC)
may be necessary. This could be a way of providing better security, but still demand little
user interaction.

34

Appendices

35

Appendix A
Assembly

Figure A.1: An example of an assembly seen from the PalCom
browser. This assembly is connecting the Beurer scale BLE ser-
vice with a reciever service (M.T.D.B) running on a remote Pal-
Com device.

37

A. Assembly

38

Appendix B
Equipment

The following equipment was used in this thesis.

Hub Sony Xperia Z2 tablet (KitKat)

Scale Beurer BF800-B

Blood pressure monitor Beurer BM 85

39

B. Equipment

40

Appendix C
Administrator guide

When setting up the servers for storing assemblies and services, the RemoteBLEAssem-
blyService and RemoteUpdateService should be loaded on a PalCom device, for
instance TheThing, see TheThing users manual [13]. Through a PalCom browser, you can
invoke the commands described in the following sections.

C.1 Implementing BLE-services
By extending the class BLEService, new BLE services can be created. They can be im-
plemented as any other PalCom services, and by following the usual ServiceID naming
convention of PalCom:

A serviceID consists of the following space separated parts, where each part contains
a device-ID, an unique running number and initials of the developer:

1. Creation-ID: this is assigned in the first version of a service and is never changed for
future versions.

2. Update-ID: is also assigned in the first version, but will be changed for for each new
version.

3. Previous-ID: in every new version, this reflects the previous version. For the first
version this is set to null.

4. Merged-ID: is used if a new version is amerge from two previous versions, otherwise
null.

All start and stop coordination with the BLEManager in PalCom are implemented in
the super class and does not need to be handled in the new class.

If you want to deploy the service using either my solution or manually through the
service manager in PalCom, the constructor of the new service must follow usual pattern
for services in PalCom:

41

C. Administrator guide

public BeurerScaleService(AbstractDevice device, String instance){
super(device, SERVICE_ID, PROTOCOL, VERSION, TAG, instance,

HELP_TEXT, PERIPHERAL_NAME);

The peripheral name that is handed over to the super class should be the name that the
peripheral present itself with during advertisement, this is also the name that is used by
the RemoteBLEAssemblyService to map a BLE peripheral to the correct assembly.
Callbacks for handling characteristic reads and write etc. should be overridden from the
super class BLEService.

C.2 RemoteUpdateService
This service store and distributes PalCom services. The following commands are avail-
able:

C.2.1 In-commands
Store service (creationID, updateID, previousID, mergeID, versionName, jar file) This

command takes a jar file containing a service and store it with the associated servi-
ceID and versionName.

ServiceID consists of creationID, updateID, previousID and mergeID.
creationID and updateID are obligatory while previousID and mergeID
may be left empty depending of the version history of the service. versionName
should be entered in digits in format X.XX (major, minor). The version having the
highest number is interpreted as the latest version. The service will response with
a Store response. If the service was successfully stored, it will be possible to
test the service. The service may be replaced as long as it is not released, thereafter
can no changes be made to this particular version of the service. After the service
is tested, the service can be released with the command Release service.

Release service (creationID, updateID, previousID, mergeID) This command can be
called for any service that is stored with the serviceID consisting of creationID,
updateID, previousID and mergeID. The command results in a New ver-
sion(serviceID) being sent to all connected devices that are using an older service,
as well as a status message sent to the invoker.

Get service (serviceID, isTesting) Respondswith Service(jar file, service ID) orNoSer-
vice if the requested serviceID could not be found. To receive non-released services,
give the "isTesting" parameter any value 6= 0, otherwise leave empty or set to 0. This
command is typically used in assemblies for automating the installation of services.
For simplicity when building assemblies, should therefore the full serviceID
used, with space separated versionparts i.e. creationID updateID prevousID
mergedID.

42

C.3 RemoteBLEAssemblyService

C.2.2 Out-commands
The out-commands that the service send in reply to the incoming commands are the fol-
lowing:

Store response(Status message) This a reply to the incoming Store service command.
The parameter contains information if it was possible to store the service - and if
not a message explaining what went wrong.

New service version (ServiceID, version) This is a update notification sent when a ser-
vice is released with Release service. The parameter contains the serviceID and
version name of the new version. serviceID is sent in with space separated ver-
sionparts i.e. creationID updateID prevousID mergedID.

Status (Message) Status message sent to the invoker of Release service to let the user
know if the release was successful or not.

Service(ServiceID, version, jar-file) The response to Get service if the requested ser-
vice was found.

No service The response to Get service if the service was not found.

C.3 RemoteBLEAssemblyService
This service store and distribute assemblies. Each assembly is connected to a BLE name,
typically the product name. The service is keeping a version number for each combination
of hub - bleName.

C.3.1 In-commands
Store service(BLE name, hub type, file) This command is invoked to store an assem-

bly. The BLE name is the name that the BLE peripheral present itself with during
advertisement. The hub type is a name that can be used to allow the use of different
assemblies depending on which context the hub is used.

Get assembly(BLE name, hub type) When invoking this command the service will re-
ply with the command Assembly if an assembly was found for corresponding hub
type and BLE name.

Get latest assembly version (BLE name, hub type) Results in a Latest assembly ver-
sion if an assembly was found for the specified combination of BLE name and hub
type.

Remove assembly (BLE name, hub type) Remove the assembly associated with the hub
name and BLE name.

List assemblies Listing the stored assemblies and their corresponding device- and hub
names.

43

C. Administrator guide

C.3.2 Out-commands
Store response(Message) Response to command store service. Includes amessageweather

it the assembly was successfully stored or not.

Assembly(Assembly file, BLE name, version number) Reply to the invoker of getAssem-
bly if the assembly was found.

No assembly Reply to the invoker of getAssembly if the requested assembly was not
found.

New assembly version(BLE name, hub type, version number) This is sent to all con-
nected devices after an assembly is stored trough the command Store service.

Latest assembly version(BLE name, hub type, version number) The reply to the Get
latest assembly command. Includes the version number of the assembly corre-
sponding to the BLE name and hub type supplied for the incoming command.

Connection opened Is sent to a newly connected service.

C.4 UpdateManagerService
This is a service running on TheAndroidThing and is responsible for requesting and load-
ing services that need to run locally. It detects if a service is missing when a new assembly
is loaded on the device. The following commands are available:

C.4.1 In-commands
Service(ServiceID, version name, jar file) The incoming service is loaded on this de-

vice if it was previously requested and is still not loaded on the device.

New version(ServiceID, verson) Notification that there is a new version of a service that
is running on this device available. Results in getService(ServiceID) message if the
is not already present and there is not a newer version running.

C.4.2 Out-commands
Get service(ServiceID) Requesting all connected devices for a service with the specified

serviceID. Is invoked by this service when an assembly with a serviceID marked
"self" is loaded on this device, or when it receives a New version-command.

C.5 BLEManagerService
This is a service running on TheAndroidThing and is responsible for fetching and up-
date a assembly associated with a detected BLE peripheral. The following commands are
available:

44

C.5 BLEManagerService

C.5.1 In-commands
Assembly(BLE name, assembly, assembly version) The assembly connected to the spec-

ified BLE peripheral, from the parameter BLE name is loaded on this device if it
was previously requested.

New assembly version(BLE name, hub name, version) Notifies the service that there
is a new assembly version available. The hub name can be set as a parameter on
TheAndroidThing (see the user manual for TheThing), If there is no parameter set,
the name of the hub is "default". If hub name is the name of this hub and is has
an older version of the assembly, a getAssembly(BLE name, hub name) is sent.

Latest assembly(BLE name, version) Expected as a response afterGet latest assembly
version has been sent. If hub name is the name of this hub and it has an older
version of the assembly, a getAssembly(BLE name, hub name) is sent.

Connection opened Indication that a remote service has connected to this service, which
cause this service to ask for the latest versions of its installed assemblies.

C.5.2 Out-commands
Get assembly(BLE name, hub name) Requesting all connected devices for a servicewith

the specified serviceID. The command is invoked when a new BLE peripheral is de-
tected.

Get latest assembly version(BLE name, hub name This command is invoked when a
new connection is opened to this service.

45

C. Administrator guide

46

Bibliography

[1] Continua alliance. http://www.continuaalliance.org/products/
design-guidelines. Accessed: March 13, 2015.

[2] itacih, it support for advanced care of cancer patients at home. http://itacih.
cs.lth.se. Accessed: September 22, 2014.

[3] Java documentation, secure class loading. http://docs.oracle.
com/javase/7/docs/technotes/guides/security/spec/
security-spec.doc5.html. Accessed: Januari 23, 2015.

[4] Rick Anderson. The end of dll hell. MSDN Magazine, 2000.

[5] Ulf Asklund, Lars Bendix, Henrik B Christensen, and Boris Magnusson. The unified
extensional versioning model. In System Configuration Management, pages 100–
122. Springer, 1999.

[6] Robert Bialek and Eric Jul. A framework for evolutionary, dynamically updatable,
component-based systems. In Distributed Computing Systems Workshops, 2004.
Proceedings. 24th International Conference on, pages 326–331. IEEE, 2004.

[7] Susan Eisenbach, Vladimir Jurisic, and Chris Sadler. Feeling the way through dll
hell. In Proceedings of the First Workshop on Unanticipated Software Evolution
(USE 2002), Malaga, Spain, 2002.

[8] C Elinder et al. Skattning av njurfunktion. Statens beredning för medicinsk utvärder-
ing, 2013.

[9] David Svensson Fors. Assemblies of Pervasive Services. PhD thesis, Department of
Computer Science, Lund University, 2009.

[10] Pervasive Healthcare. Guest editorial introduction to the special section on pervasive
healthcare. IEEE transactions on information technology in biomedicine, 8(3):229,
2004.

47

http://www.continuaalliance.org/products/design-guidelines
http://www.continuaalliance.org/products/design-guidelines
http://itacih.cs.lth.se
http://itacih.cs.lth.se
http://docs.oracle.com/javase/7/docs/technotes/guides/security/spec/security-spec.doc5.html
http://docs.oracle.com/javase/7/docs/technotes/guides/security/spec/security-spec.doc5.html
http://docs.oracle.com/javase/7/docs/technotes/guides/security/spec/security-spec.doc5.html

BIBLIOGRAPHY

[11] Antonio J Jara, David Fernandez, Pablo Lopez, Miguel A Zamora, Antonio F
Gómez-Skarmeta, and Leandro Marin. Evaluation of bluetooth low energy capa-
bilities for tele-mobile monitoring in home-care. J. UCS, 19(9):1219–1241, 2013.

[12] Vivekanand Jha, Guillermo Garcia-Garcia, Kunitoshi Iseki, Zuo Li, Saraladevi
Naicker, Brett Plattner, Rajiv Saran, Angela Yee-Moon Wang, and Chih-Wei
Yang. Chronic kidney disease: global dimension and perspectives. The Lancet,
382(9888):260–272, 2013.

[13] Boris Magnusson and Jon Lindholm. Thething users manual. http:
//palcom.cs.lth.se/Palcom/Users_Manuals_files/
theThing-users-manual-3.1.12.pdf, 2014. Accessed: June 8,
2015.

[14] Boris Magnusson and Jon Sturk. Implementing services in palcom.
http://palcom.cs.lth.se/Palcom/Download/Poster/2014/
5/21_Version_3.1.12.html, 2013. Accessed: June 8, 2015.

[15] GiuseppeMancia and Alberto Zanchetti. White-coat hypertension: misnomers, mis-
conceptions and misunderstandings. what should we do next? Journal of hyperten-
sion, 14(9):1049–1052, 1996.

[16] Mike Ryan. Bluetooth: With low energy comes low security. InWOOT, 2013.

[17] Bluetooth SIG. BLUETOOTH SPECIFICATION Version 4.2.
https://www.bluetooth.org/en-us/specification/adopted-specifications, 2014. Ac-
cessed: May 25, 2015.

[18] David Svensson Fors, Boris Magnusson, Sven Gestegård Robertz, Görel Hedin, and
Emma Nilsson-Nyman. Ad-hoc composition of pervasive services in the palcom
architecture. In Proceedings of the 2009 international conference on Pervasive ser-
vices, pages 83–92. ACM, 2009.

[19] Upkar Varshney. Pervasive healthcare. Computer, 36(12):138–140, 2003.

[20] MarkWeiser. The computer for the 21st century. Scientific american, 265(3):94–104,
1991.

48

http://palcom.cs.lth.se/Palcom/Users_Manuals_files/theThing-users-manual-3.1.12.pdf
http://palcom.cs.lth.se/Palcom/Users_Manuals_files/theThing-users-manual-3.1.12.pdf
http://palcom.cs.lth.se/Palcom/Users_Manuals_files/theThing-users-manual-3.1.12.pdf
http://palcom.cs.lth.se/Palcom/Download/Poster/2014/5/21_Version_3.1.12.html
http://palcom.cs.lth.se/Palcom/Download/Poster/2014/5/21_Version_3.1.12.html

87% av alla dödsfall i EU orsakas av kroniska sjukdomar. För att ge kroniskt sjuka
bättre vård gör ”Internet of Things” sitt intåg i sjukvården och flyttar samtidigt
hem sjukvården till patientens vardagsrum.

Trådlösa mätinstrument som “bara fungerar”
Genom att sätta upp mätinstrument hemma hos patien-
ten hoppas man kunna ge kroniskt sjuka patienter bättre
vård. Den traditionella lösningen för att använda sådan
utrustning kräver att utrustningen är förinstallerad. Inom
sjukvården skapar detta en stor begränsning, eftersom
olika typer av utrustning behövs efterhand som patien-
tens behov förändras. Att försinstallera all tänkbar utrust-
ning kan jämföras med att ha en gigantisk ordbok för
alla världens språk, fast man bara behöver översätta ord
mellan svenska och engelska. Inte heller vill man byta ut
hela ordboken bara för ett ord blivit tillagt i något språk.
  I mitt examensarbete har jag utvecklat en lösning
för att installera trådlösa mätinstrument först när det
visar sig att de behövs. Installationen sker automatiskt
när ett mätinstrument, till exempel en blodtrycksmätare
eller våg, har tagits hem till patienten. Ett sådant in-
stallationsförfarande visar sig ta cirka tre sekunder över
en 4G- uppkoppling. Dessutom kan uppdateringar av
installationen ske automatiskt. Mätinstrumenten kom-
municerar med Bluetooth low energy, som är en mer
energisnål variant av vanlig Bluetooth.

Kronisk njursvikt
Patienter med kronisk njursvikt är ett exempel på pa-
tienter som skulle kunna bli hjälpta av att utföra mät-
ningar hemifrån. Njurarna är kroppens reningsverk och
för att inte slita ut dem i förtid är det viktigt att blod-
trycket inte är för högt. Men att gå till en läkare en gång
i halvåret, eller ens en gång i veckan, för att mäta blod-
trycket säger inte mycket om hur blodtrycket faktiskt är
i vardagen. Ett annat varningstecken på att njurarna inte
fungerar som de ska är plötslig viktuppgång. Därför kan

man behöva mäta blodtryck och vikt varje dag i patien-
tens hemmiljö, för att få ett så tillförlitligt resultat som
möjligt och upptäcka förändringar tidigare.

Installera mätinstrument i PalCom
Lösningen för att använda mätinstrument hemifrån är
byggd utifrån Internet of Things–lösningen PalCom,
som är en programvara som knyter ihop olika apparater
för att få dem att kunna kommunicera med varandra. Pal-
Com har sedan tidigare stöd för kommunikation mellan
sjukhus och förinstallerade Bluetooth low energy instru-
ment. Inom vården finns ett stort antal olika instrument,
många gånger av olika fabrikat och med sitt eget sätt att
överföra data. Den “ordbok” som krävs för att installera
till exempel en blodtrycksmätare, kan i PalComvärlden
översättas till en service och en assembly. Min lösning
går ut på att låta PalComenheter själva starta installa-
tionen genom att fråga efter en viss service och assembly.
Andra PalComenheter får i sin tur agera bibliotek och
ansvarar för att dela ut dem. På liknande sätt kan också
uppdateringar av services och assemblies skickas vidare
till de PalComenheter som är berörda av uppdateringen.
Det enda som krävs hemma hos patienten är en android-
enhet, t.ex. en surfplatta, där PalCom finns installerat.

EXAMENSARBETE Dynamic installation and automatic update of Bluetooth low energy devices in

the Internet of Things

STUDENT Mia Månsson

HANDLEDARE Björn A Johnsson (LTH), Boris Magnusson (LTH)

EXAMINATOR Görel Hedin (LTH)

Smidigare sjukvård på tre sekunder
POPULÄRVETENSKAPLIG SAMMANFATTNING Mia Månsson

INSTITUTIONEN FÖR DATAVETENSKAP | LUNDS TEKNISKA HÖGSKOLA | PRESENTATIONSDAG 2015-06-04

Mätinstrument installeras i PalCom för att kunna utföra mätningar hemifrån.

	2015-15 Framsida
	Tom sida
	2015-15 Rapport
	2015-15 Rapport
	Introduction
	Report structure
	Medical background
	Chronic kidney disease
	Kidney function and blood pressure
	Taking measurements from home

	Problem statement

	Technical background
	PalCom
	Services
	Assemblies
	Dynamic class loading

	Bluetooth low energy
	Bluetooth low energy on Android

	The setup
	Related work

	Approach
	Analysis
	Dynamic installation
	Coordinating versions

	Implementation
	Architecture of the proposed solution
	Remote services
	The hub

	Using the solution in practice
	Installation of the Beurer scale
	Updating the Beurer scale service

	Evaluation
	Dynamic installation
	Automatic update
	Installation- and update preparations
	Installation time

	Conclusions
	Future work

	Appendix Assembly
	Appendix Equipment
	Appendix Administrator guide
	Implementing BLE-services
	RemoteUpdateService
	In-commands
	Out-commands

	RemoteBLEAssemblyService
	In-commands
	Out-commands

	UpdateManagerService
	In-commands
	Out-commands

	BLEManagerService
	In-commands
	Out-commands

	Bibliography

	Tom sida
	2015-15 Popvet

