Long-range UHF RFID Demo Kit for IDIC TAGIDU ATA5590

.....

User Manual

Table of Contents

Section 1 Reader Dem	no Kit Description	1-1
2.1 Bu 2.2 Dr 2.3 St	ted iilt-up Hardware iver Installation arting the Demo Software for the First Time e First Communication Between the Tag and the Reader	2-1 2-2 2-4
<i>Section 3</i> Hardware D	escription	3-1
	scription	
5.1 Re	eader Configuration	5-1
5.1.1 5.1.2 5.1.3	Read/Write Mode Tags Trigger Mode	5-2
5.1.4 5.1.5	Output Control Buzzer	5-3
5.1.6 5.1.7 5.1.8	Tag Options Temperature Sensor HF Settings	5-3
5.1.8 5.1.9 5.1.10	Listen Before Talk Options	5-3
5.1.11 5.1.12	Get Configuration	
	Reset to Factory Settings	5-5
5.2.1 5.2.2 5.2.3	Rules Start Address (hex) Anticollision Start Address (hex)	5-6

i

5.2.4	Mask Length (dec)	5-6
5.2.5	Selection Mask	5-6

Memory	Orga	anization	6-1
6.1	Ove	erview	6-1
6.2	Sur	mmary	6-2
6.2	2.1	ATA5590: Readable and Writable Transponder	6-2
6.2	2.2	ATA5590 with UID: Readable and Writable Transponder	6-2

Section 7

D: Atmel Secure Locked Programmed ID	7-1
7.1 UID Organization	7-1
7.1.1 Traceability Data	7-1
7.2 UID Arbitration	7-2
7.3 CRC5 Calculation	7-3

Section 8

Using the	Re	ader	8-1
8.1	Intr	oduction	8-1
8.2	Pol	ling Mode	8-1
8.2	.1	Read	8-1
8.2	.2	Write	8-2
8.2	.3	Inventory	8-3
8.2	.4	LOCK Block	8-3
8.3	Rep	port Mode	8-4
8.4	ID I	Page Programming (System Memory – Page 0)	8-5
8.4	.1	Polling Mode	8-5
8.4	.2	Report Mode: Reader -> Configuration	8-7

Section 9

Arbitration	
9.1 Arbitration in Polling Mod	de9-1
	de9-1
9.2.1 Anticollision	9-1
9.2.2 Single Shot	
9.2.3 Tag Options	9-1
9.2.4 Read Cycles	

ii

Section 10 Additional Information				
Section 11				
Error Handling/FAQ				
11.1 Problem				
11.1.1 Actions	11-1			
Section 12				
Appendix				

iii

Reader Demo Kit Description

This UHF reader demo kit supports wireless data transmission of Atmel's passive RFID IDIC[®] ATA5590, operating in the ISM frequency bands. Typical applications for this passive transponder device are supply chain, asset control, toll collection, or pallet tracking.

The kit contains a UDL500 long-range UHF reader from deister electronic GmbH, an interface converter, a power supply, and all other necessary components such as cables, a label set with different antennas (30 antennas in all) and the software required to build up a working UHF reader system. The reader system is available for the European ISM frequency band (ETSI compliant) and for the North American ISM frequency band (FCC compliant).

Order code for the European ISM-band-compatible reader (ETSI): ATAK559001-8

Order code for the American ISM-band-compatible reader (FCC): ATAK559001-9

Figure 1-1. Reader Demo Kit

Demo Kit Content:

- 1 UHF reader with 2 integrated antennas
- Label and tag set with TAGIDU[™] ATA5590 (~30 parts)
- 1 SNG3 (interface converter: USB to RS485)
- 1 power supply 12V DC/240V AC (FCC version: 12V DC/110-240V AC)
- 1 USB cable
- 1 CD-ROM, Demo Software
- I Floppy disk containing drivers

Getting Started

2.1 Built-up Hardware

Figure 2-1 shows the correct assembly of the SNG3 USB converter.

The TX LED indicates that the PC is sending command frames to the reader, and the RX LED shows that the reader is answering or sending the status back to the PC.

2.2	Driver Installation	Before getting started, two hardware drivers, the USB-RS485 Converter and the USB Serial Port, have to be installed. The following steps describe the installation.
		1. Plug the USB cable into the PC.
		 Normally, the USB-RS485 converter is automatically detected by the system. If this doesn't happen, the search for hardware can be started manually by clicking: Start -> Settings -> Control Panel -> System -> Hardware -> Device Manager. Select USB Serial Port (which is marked by a yellow question mark, indicating that the hardware is not correctly installed).
		 A message window will pop up indicating the beginning of the installation of the driver for the USB-RS485 converter. To continue the installation, click <i>Next</i>.
		4. To have the installer search for a suitable hardware driver, choose Search for a suitable driver for my device (recommended).
		 Insert the floppy disk into the floppy drive and in the Optional search locations menu select the item Floppy disk drives. The system will now search for the driver in the root directory of the floppy. The first installation will be the USB-RS485 Converter, see Figure 2-2.
		Figure 2-2. Driver File Search Result for the USB-RS485 Converter

Found New Hardware Wizard	
Driver Files Search Results The wizard has finished searching	g for driver files for your hardware device.
The wizard found a driver for the f	ollowing device:
SNG3: USB-RS485 Cor	werter
Windows found a driver for this de	evice. To install the driver Windows found, click Next.
a:\ftdibus.inf	
	< Back Next > Cancel

When the installation is finished, a message will appear stating that the installation of the USB serial converter was successful.

 A second driver is needed for successful communication between the reader and PC, the USB Serial Port (see Figure 2-3). The procedure for the USB serial port installation is the same as for the USB-RS485 converter.

Figure 2-3. Driver Search Result for the USB Serial Port Installation

When the installation is finished, a message will appear stating that the installation of the USB serial port was successful.

7. After installing the drivers, the PC has to be rebooted.

2.3 Starting the Demo Software for the First Time The first time the demo software is started, settings such as port selection, baud rate, reader address, etc. have to be set. Port selection:

Select the port being used to communicate with the reader in the *Port* menu. If the port is unknown, choose *Special functions -> Search for serial ports* to scan all active COM ports on the host computer. Another possibility is to use the information provided by the OS, by selecting *Start -> Settings -> Control Panel -> System -> Hardware -> Interface* to determine which USB COM port the SNG3 adapter is attached to.

The first indication of proper communication between the reader and the host is a message from the reader. This can be observed in the *Monitor* window. Messages displayed in green are from the host to the reader, and red messages are from the reader to the host.

Baud rate:

The baud rate can be changed by browsing *View -> deBus Polling* and selecting *scan settings*. The *baud rate* setting can be changed as required by the reader device.

Note: If communication between the reader and host fails even though the correct COM port has been selected, it could be that the reader and the host have different baud rate settings, preventing communication. It is possible to run a scan to discover the baud rate being used by the reader device by selecting *View -> deBus Polling -> scan settings -> baudrate -> all* (no specific baud rate is selected), and clicking the button *detect reader(s)*. If the host finds a baud rate where communication with the reader device is possible, the result of the scan is displayed under *detected readers*.

Now there are two options:

1. Confirm that this reader and the settings detected (especially the baud rate) should be used by clicking the button *set as current reader*.

2. Change the baud rate of the reader device by clicking the button configure.

These are the primary settings for communication between the reader device and the host PC. If, during or after power on, communication is not or is no longer possible, check these settings in the demo software and follow the steps above.

2.4 The First Communication Between the Tag and the Reader This section outlines the capabilities of the system, and how to establish communication between the tag and host via the reader device. Browsing to the menu Reader -> Configuration opens a new window, reader configura tion. In this new window it is possible to set the main settings for the RF link, such as tag

Here is an example to get you started:

Arbitration on the UID of the ATA5590 (see Section 7).

Tags (Protocol Selection) Select the menu item Reader -> Configuration, then under the option tags choose the protocol TAGIDU/ATA5590 with UID
 Trigger Mode Select no trigger mode (default setting)
 Output Control Select none (default setting)
 Select none (default setting)
 Select either off (default setting) or the read setting, which causes the buzzer to sound when reading is successful
 Tag Options Set Tag timeout to 10 ms

protocol selection, RF power, read/write mode, arbitration mode, trigger mode, etc.

- (for this example it doesn't matter)
- 6. *Temperature Sensor* Select 80°C (default setting)
- 7. *RF Settings* The RF power is adjustable in 10 steps (from 4W EIRP to 0.10W ERP) (for this example it doesn't matter, any RF setting can be selected)
- 8. *Options* Select options *arbitration* and *report mode*
 - Confirm this configuration by clicking the button *Set* configuration

The RF power of the reader device can be controlled via the menu *RF Interface*. The option *RF ON* switches on the RF power of the reader, making it possible to communicate with the tag. Verification that the tag is reading, writing or arbitrating can also be observed on the reader itself; the yellow and green LEDs will light if there is communication, see Section 3.

9. Set Configuration

10. RF ON

Getting Started

The result of the arbitration or read is displayed in the *Transponder data* window, here is an example:

IDProtocolRead counter98FF00A70BF1[TAGIDU/ATA5590 with UID] (2)UID from the tagATA5590 with arbitration on Indication of how often the tag
the UIDhas been read

Hardware Description

The reader has three LEDs and one alarm that can be used to show if the reader is ready to receive and if a tag has been read.

Reader Status

LEDs

Yellow: on Red and green: off

Yellow and red: on Green: off

Yellow and green: on Red: off

Green and red: on Yellow: off Reader is active, no read or write currently occuring, RF on

Reader is active but RF is off; therefore, no communication is possible between the tag and reader

Reader is active and RF is on; there is ongoing communication between the tag and reader (read, write or arbitration)

Reader reset or powered up, RF off; system not ready for communication

Red: blinking and alarm sounding Malfunction Green and yellow: off

Software Description

Figure 4-1 shows the standard window after successful installation of the reader demo software. The window consists of a menu, a shortcut list, a status bar, and a work space.

Figure 4-1. Graphical User Interface (GUI) of the Demo Software

4.1 Menu Options This section gives an introduction to the demo software, the menu bar, and the submenus.

Figure 4-2. Menu Bar

1	2	3	4	5	6	7	8						
Т	Γ	Τ -	Τ.	Т	Т	Т	Т						
RDe	no 1	.53.0001											_ 17 ×
File P	ort F	Reader Trans	ponder RF in	nterface Speci	al functions	Option:	s View						
trigger		trigger off	? version	configuration	debus		RF on	RF off	read	write	字 poll		
Trans	pond	er data											
11													
11													

1. <i>File</i>	
Exit	Exit the demo software
2. Port	
COM X	Select the port to be used for communication; all available and installed ports are displayed
TCP/UDP	
Disconnect	Connects or disconnects the communication link between the PC and reader
deBus	Standard settings for the deister reader
use BCC	When activated, a block check character (BCC) is transmitted for data validation; these settings are ignored if deBus is selected
show ASCII	When activated, the transponder's data is displayed in ASCII format
3. Reader	
Soft trigger ON	Active a software trigger on command
Soft trigger OFF	Deactivates the trigger if the reader is in trigger mode and the software trigger is activated
Version request	Get the current reader firmware version information
Configuration	Menu options for the operation settings of the reader (see also Section 5.1)
Diagnostics	Activates the diagnosis function and displays all relevant reader data:
	 Temperature at the power amplifier
	 The current configuration for the power setting
	 Current configuration for the modulation depth
	 The minimum, the average, and the maximum noise level measured by the reader

Software Description

Output ON	Activates the switching output from the reader
Output OFF	Deactivates the switching output from the reader
Poll command	Queries new messages from the reader devices in bus mode
Mode	- Polling mode: The reader has to ask the host to transmit data
	 Report mode: The reader works independently, meaning the reader does not have to ask the host to transmit data to the tags
Send reset	This command restarts the reader, equivalent to a power-on reset

4. Transponder

Read	Setting of the read address and length of the data to be read out
Write	Setting of the write address and the storage information, see Section 6
Inventory	This command queries the serial numbers of all transponders within antenna range and reports those numbers
Lock block	This command is used to change the lock status of a transponder
Write AFI	The application family identifier (AFI) content can be written or modified (disabled for the ATA5590)
EPC read	Disabled for the ATA5590
EPC write	Disabled for the ATA5590
Tag functions	Disabled for the ATA5590

5. RF Interface

RF ON	RF power on
RF OFF	RF power off
RF reset	The RF field will be switched off for 100 ms

6. Special Function

Special functions Provides a command line to send commands to the reader device in the protocol frame

Note: On the command line, the commands must be entered as hex values. The deBus protocol automatically adds the initial sequence "FFFF" and the end sequence "FE" to the data entered, and sends the command to the reader device.

clear list of Clears all detected serial numbers in the demo software *transponders' serial numbers*

Search for
serial portsScans all available serial ports on the host, and displays the result in
a list when finished

7. Options

Block Data	<i>Display hex</i> – Data representation in hex format
Representation	<i>Display ASCII</i> – Data representation in ASCII format
EPC Representation	<i>Display decimal numbers</i> – Display the transponder data in decimal format

8. View Setting

o. view Setting	
Toolbar	Frequently used functions can be provide by icons in the tool bar. To customize the application, you can add shortcuts to the toolbar. Also, a <i>Monitor</i> work space can be add to the default work spaces
Large Icons	Large or normal icon representation
Toolbar Align	Тор
	Bottom
	Left
	Right
Buttons	Inventory
	RF ON
	RF OFF
	RF reset
	Security
	Read
	Write
	Diagnostics
	Noise monitor
	deBus
	Poll command
	Read EPC
	Write EPC
Show buttons captions	Button captions on/off
Clear all windows	Clears the information in the following windows: <i>Transponder data reader status</i> and <i>Monitor</i>
Arrange windows	All displayed monitors are uniformly aligned in the work space
Show monitor	The protocol transferred between PC and the reader can also be observed by activating the <i>Monitor</i> window. Clicking this makes the <i>Monitor</i> window appear

deBus polling	Configuration menu for the deBus polling mode
Show routing panel	Displays the <i>routing panel</i> in the menu bar
Show reader diagnostic window	Displays the reader diagnostic window in the work space
Noise Monitor	Displays the RMS value of the receiver sensitivity for information about the noise affecting the RX input
FFT window	Displays an FFT window, to show the spectrum of the ISM band

Operation

This section provides general information regarding the operation of the UDL500 long-range reader.

5.1 Reader Configuration

To configure the reader's main settings, select the configuration window (*Reader -> configuration*), see Figure 5-1.

PRDemo : reader configuration*	x
File	
read/write mode read address SNR blocks 1 prog data portal mode on read attempts 15	options anticollsion singleshot fast mode
tags C EPC class1 GEN 2 C EM4022/4222 C ISO18000-6 B C EPC class1 GEN 1 C UCODE EPC 1.19 C TAGIDU / ATA 5590 gptions C TAGIDU / ATA 5590 with UID	 skip Gen1 crc check report mode reverse data bytes selftest
trigger mode	SET configuration
output control	RESET to factory settings
buzzer off Image: hf settings off Image: hf settings Image: hf settings tag options Image: hf settings Image: hf settings tag timeout [100ms] Image: hf settings Image: hf settings temperature sensor Image: hf settings Image: hf settings shut off temp. [*C] 80 Image: hf settings Image: hf settings Image: hf settings Image: hf settings Image: hf settings Image: hf settings Image: hf settings Image: hf settings Image: hf settings Image: hf settings Image: hf settings Image: hf settings Image: hf settings Image: hf settings Image: hf settings Image: hf settings Image: hf settings Image: hf settings Image: hf settings Image: hf settings Image: hf settings Image: hf settings Image: hf settings Image: hf settings Image: hf settings Image: hf settings Image: h	<u>advanced>></u>

Figure 5-1. Reader Configuration Menu

- 5.1.1 Read/Write Mode Select between *read* or *write* mode, see Section 8-3.
- 5.1.2 Tags Select the protocol from the list (the TAGIDU protocol is the default selection).
- **5.1.3 Trigger Mode** If trigger mode is activated, the reader only becomes active after being triggered by a hardware or software trigger. When the reader is not active, the UHF carrier is switched off and the reader waits for the next trigger. After becoming active, the reader first carries out LBT or frequency hopping before starting to read.
 - Note: A software trigger can only be reset by software or, in EN300220 mode, by the defined active time.

Four different hardware trigger events are possible:

- read while high level applied
- read for a defined period of time after rising edge
- read for a defined period of time after falling edge
- anticollision trigger (same as *inventory*, see the protocol specification)

If the reader is operated as a stand-alone reader, select no trigger.

- **5.1.4 Output Control** If output mode is activated, the reader sets or resets its digital output in four different ways:
 - set output low after tag read
 - set output low after no read
 - set output high after tag read
 - set output low after no read

Output mode is only available when trigger mode is activated.

The length of time the output is set to high or low level can be modified. The value is a multiple of 6.5 ms and has a tolerance of 6.5 ms.

If the reader is operated as a stand-alone reader, select none.

- 5.1.5 Buzzer Disabled, or only by reading a tag.
- **5.1.6 Tag Options** *Tag timeout* defines the number of anticollision commands before a reset is sent. If this value is "0" the reader will never send a reset command to the tags.
- **5.1.7 Temperature Sensor** The threshold level for temperature can be adjusted. The temperature has a precision of 0.25°C per step.
- 5.1.8 HF Settings *RF-Power*: 10 different steps to adjust the output power of the reader, see Table 5-1.

Read cycles: Defines how many anticollision commands are sent before the next select command is sent.

- 5.1.9Listen Before Talk
OptionsInt LBT / hopping: The time interval between the LBT measurements can be configured
in steps of 1 ms. The inactive time is always at least 100 ms.
 - Channels: see Table 5-1.
- 5.1.10 **Options** Under *option*, the arbitration options can be set.
 - *anticollision*: Activate the anticollision function.
 - Note: *SNR* (page0 in the control memory) in the address selection bar indicates the serial number of the transponder.
 - singleshot: If single shot mode is selected and a transponder stays in the read range for a longer time, the serial number of this transponder will be transmitted again after the time specified in tag time-out. The value is a multiple of 100 ms. If tag time-out is set to 0, the serial number will not be transmitted again.
 - Note: Single shot mode is not available in anticollision or portal mode!
 - *fast mode*: ETSI compliant reader, fast mode shall be disabled for FCC compliant reader it is vice verse, see Table 5-2.
 - report mode: by activation of the report mode the reader device send self-dependent telegram to the host system. If this option is deactivated, the reader is in the "OnLine mode" and answers on each request from the host system (bus operation mode).
 - selftest: To test the reader for proper operation there is an integrated self test. This self test is done every time the reader is reset. During the self test the reader checks the functionality of its components. If there is a problem the reader's red LED will start start blinking, and the alarm will sound.
 - Note: Not every component can be checked by the self test.

Operation

5.1.11 Get Configuration

Settings

- **5.1.12** Set Configuration Confirm the setting configuration of the reader.
- 5.1.13 Reset to Factory Reset all reader settings to the factory settings.

Table 5-1. HF Setting and Channel Selection

Get the current status of the reader.

RF Power	Output Power	Listen Before Talk Options – Channel Selection Versus European Radio Regulations	Frequency Hopping – North American Radio Regulation (FCC part 15)		
	4W EIRP (US)	Channel 0 to 9	FCC part 15 with 50 available channels		
	2W ERP	Channel 0 to 9 – (compliant with EN 302 208)			
	1.75W ERP	Channel 0 to 9 – (compliant with EN 302 208)			
	1.5W ERP	Channel 0 to 9 – (compliant with EN 302 208)			
	1.25W ERP	Channel 0 to 9 – (compliant with EN 302 208)			
	1W ERP	Channel 0 to 9 – (compliant with EN 302 208)			
	0.75W ERP	Channel 0 to 9 – (compliant with EN 302 208)			
	0.5W ERP	Only channel 10 and 11 – (compliant with EN 300 220) or channel 0 to 11 – (compliant with EN 302 208)			
	0.25W ERP	Only channel 10 and 11 – (compliant with EN 300 220) or channel 0 to 11 – (compliant with EN 302 208)			
	0.1W ERP	Only channel 10 and 11 – (compliant with EN 300 220) or channel 0 to 11 – (compliant with EN 302 208)			
	Supported regula	ations:			
	 ETSI EN 302 208: 10 available channels (865.6 to 867.6) with a maximum output power of 2W ERP, and 12 channels at a maximum output power of 500 mW ERP. Channel bandwidth: 200 kHz 				
	2. ETSI EN 30	0 220: With one available channel power of 500 mW ERP. Channel			
	3. FCC part 15	z to 928 MHz) with a maxi- idwidth: 500 kHz			
Note: For t	-	io regulations the internal chan			

Note: For the European radio regulations the internal channel step is 100 kHz and for the North American regulation the internal channel step is 125 kHz; therefore, for the FCC part, every 4th channel is used (the FCC part has 200 internal channels and the ETSI part has 24 internal channels).

Table 5-2. Fast Mode

Tag	Data Rate Fast Mode	Data Rate Slow Mode
ATA5590	32 Kbit/s (US only – FCC 915 MHz)	16 Kbit/s (Europe only – ETSI 868 MHZ)

Long-range UHF RFID Demo Kit User Manual

5.2 Reader Configuration Options (Tags)

This section provides general information to arbitrate the ATA5590 with the UDL 500 reader.

The ATA5590 allows using a memory area other than the ID page for anticollision arbitration.

The length of the arbitration is always 16 bytes. The arbitration decrements from the selected start address. For example, if you choose block 6 as start address, the arbitration will be made over block 6 and block 5. The start address is the same as the address for read and write accesses.

Note: This function is not available if the tag type *ATA5590 with UID* is selected. That type always does an arbitration over the lower six bytes of block 20, which contain the UID.

Start address (hex)	00		Cano
	00	•	
ollsion start address (hex) (00	•	
Mask Jength (dec)	00	•	

Figure 5-2. Arbitration Option Menu

Operation

5.2.1	Rules	There are four different rules for selection:
		■ 0: equal (EQ): Selection Mask must be equal to the transponder memory
		1: lower than or equal to (LTE): Selection Mask must be lower than or equal to the value in the transponder memory
		■ 2: equal (EQ): Selection Mask must be equal to the transponder memory
		3: greater than or equal to (GTE): Selection Mask must be greater than or equal to the value in the transponder memory
5.2.2	Start Address (hex)	Defines the memory start address for the selection. If "0" is chosen, the selection is made over the 12 lower bytes of the ID page. The start address is the same address as used for read or write accesses. Block size is eight bytes.
5.2.3	Anticollision Start Address (hex)	It is also possible to arbitrate over a memory area other than the ID page. <i>Anticollision start address</i> defines the start address for arbitration as a block address with block size of 8 bytes. This is the same address format as for the read block and write block commands. The length of the arbitration is always 16 bytes. Note: If the tag type <i>ATA5590 with UID</i> is selected, it is not possible to make the arbitration over a memory area other than the UID.
5.2.4	Mask Length (dec)	If the value of the selection mask length is "0", no selection command is sent by the reader.
5.2.5	Selection Mask	This mask defines which of the 16 bytes in the selection mask is used for comparison. A "1" in the byte mask will activate the comparison for the corresponding selection mask byte. Bit number 7 of the byte mask corresponds to the first byte of the selection mask and bit number 0 corresponds to the last byte of the selection mask.

Memory Organization

6.1 Overview

Table 6-1 shows the memory addresses of the ATA5590 which can be addressed by the reader.

Memory Organization						
Address	Blocks	Memory Size	Lock Block	Comment	User Memory	System Memory
0	1	64 bits/8 bytes		Page 0 (bit 64 to bit 1)	Х	
1	1	64 bits/8 bytes	Lock bit (MSB)	Page 0 (bit 128 to bit 65)	Х	
2	1	64 bits/8 bytes		Page 1 (bit 64 to bit 1)	Х	
3	1	64 bits/8 bytes	Lock bit (MSB)	Page 1 (bit 128 to bit 65)	Х	
4	1	64 bits/8 bytes		Page 2 (bit 64 to bit 1)	Х	
5	1	64 bits/8 bytes	Lock bit (MSB)	Page 2 (bit 128 to bit 65)	Х	
6	1	64 bits/8 bytes		Page 3 (bit 64 to bit 1)	Х	
7	1	64 bits/8 bytes	Lock bit (MSB)	Page 3 (bit 128 to bit 65)	Х	
8	1	64 bits/8 bytes		Page 4 (bit 64 to bit 1)	Х	
9	1	64 bits/8 bytes	Lock bit (MSB)	Page 4 (bit 128 to bit 65)	Х	
10	1	64 bits/8 bytes		Page 5 (bit 64 to bit 1)	Х	
11	1	64 bits/8 bytes	Lock bit (MSB)	Page 5 (bit 128 to bit 65)	Х	
12	1	64 bits/8 bytes		Page 6 (bit 64 to bit 1)	Х	
13	1	64 bits/8 bytes	Lock bit (MSB)	Page 6 (bit 128 to bit 65)	Х	
14	1	64 bits/8 bytes		Page 7 (bit 64 to bit 1)	Х	
15	1	64 bits/8 bytes	Lock bit (MSB)	Page 7 (bit 128 to bit 65)	Х	
16	1	64 bits/8 bytes		Page 0 (ID page: bit 64 to bit 1)		Х
17	1	64 bits/8 bytes	Lock bit (MSB)	Page 0 (ID page: bit 128 to bit 65)		Х
18	1	64 bits/8 bytes		Page 1 (User system info: bit 64 to bit 1)		Х
19	1	64 bits/8 bytes	Lock bit (MSB)	Page 1 (User system info: bit 128 to bit 65)		Х

Note: Most significant bit (MSB) always indicates the upper bit

Long-range UHF RFID Demo Kit User Manual

6.2 Summary

6.2.1	ATA5590: Readable and Writable	Memory	128 bytes user memory + 40 bytes system memory including 16 bytes tag id
	Transponder	Length of serial numbe	r 128 bits = 16 bytes
		Length of serial numbe for block write and block read commands	r 16 bytes
		Block size read	8 bytes
		Block size write	4 or 8 bytes
		Block size lock and query lock	8 bytes
		Note: Although the blo 16 bytes.	ck size is 8 bytes, the lock and query-lock operation is performed across
		Serial number	Stored in Blocks 16 and 17, see Table 6-1.
6.2.2	ATA5590 with UID:	Memory	128 bytes user memory + 40 bytes system memory
	Readable and Writable	Length of serial numbe	r 48 bits = 6 bytes
	Transponder	Length of serial numbe for block-write and block-read commands	r 6 bytes
		Block size read	8 bytes
		Block size write	4 or 8 bytes
		Block size lock and query lock	8 bytes
		Note: Although the blo 16 bytes.	ck size is 8 bytes, the lock and query-lock operation is performed across
		Serial number	Stored in Blocks 16 and 17, see Table 6-1.

UID: Atmel Secure Locked Programmed ID

The traceability data is an ID, or number, provided by Atmel which can be used be the user as a unique ID (UID). The traceability data blocks are programmed and locked by Atmel during the production test. After sawing, the data content can't be changed. This process is irreversible!

7.1 UID Organization

31	32	30			24	23	22	21	20	19	18			14	13		0
E	AS			RFU			ag De	RFU	IC ı num		LO	TID cha	aract	er		LOTID number	
R	FU	TUNE		CRC5			OTII umb		v	Vafer	nun	nber	Die number				
31	32	30	29		24	23		21	20			16	15				0

Table 7-1. UID Page in the Control Memory (Page 2)

The UID page (see Table 7-1 and also Table 12-1), consists of 48 bits of manufacturer data reporting the production lot, and 16 status bits. The manufacturer data includes a lot ID character and a 5-digit lot number.

7.1.1	Traceability Data	LOTID character:	Lot character. Example: Z
		LOTID number:	5-digit lot number. Example: 13711
		Wafer number:	2-digit wafer number. Example: 12
		Die number:	Die per wafer. Example: 3512
		CRC5:	Cyclic redundancy check (CRC5) – 5 bits to check the data content after programming the UID in the EEPROM

7.2	UID Arbitration	The ATA5590 has the capability of arbitrating over memory areas other than the ID
		page. The arbitration length is always 16 bytes.

It is also possible to arbitrate on the UID page of the ATA5590. This has some advantages for the end user; first, this ID can be used by the user – it is not necessary to program a new ID in page 0 in the control memory. Second, it is possible in the field to program virgin tags which have no ID stored in page 0 in the control memory. Therefore it is possible to select each tag, no matter how it is necessary to program an ID.

Note: If the tag type *ATA5590 with UID* is selected, it is not possible to arbitrate over a memory area other than the UID.

The UID arbitration can be selected via the menu Reader -> Configuration, see Section 5-1 and Figure 7-1.

ead/write mode	ddress SNR 💌 blocks 1 💌	options
piou uala	on read attempts 15	fast mode
ags C EPC class1 GEN 2 C ISO18000-6 B	© EM4022/4222 © EPC class1 GEN 1	skip Gen1 crc check
C UCODE EPC 1.19	C TAGIDU / ATA 5590 (TAGIDU / ATA 5590 with UID	<u>GET configuration</u>

UID Arbitration for the ATA5590

Table 7-2. Example Using ArbitrationTAGIDU/ATA5590 with UID, UID Number Shown (Transponder Data Window): 98EE001810AA

Hex value				0	0							C	6							9	8							E	Ε			
Binary value	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	1	0	0	1	1	0	0	0	1	1	1	0	1	1	1	0
Description	EA	AS			RI	=U				ag pe	TUNE		C ev.			OTI arac								LOT	ΓID	nur	nbe	r				

Hex value	00			18								10								AA													
Binary value	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	1	0	0	0	0	1	0) 1	1	0	1	0	1	0
Description	RFU RFU CRC5			LOTID number Wafer number						Die number																							

UID summary (overall):

LOTID character: Z (hex value: 1A; binary value: 11010)

LOTID number: 51056 (hex value: C770; binary value: 01100011101110000)

Wafer number: 24 (hex value: 18; binary value: 11000)

Die number: 4266 (hex value: 10AA; binary value: 0001000010101010)

The compete UID page in the control memory can be read out using a read command.

Long-range UHF RFID Demo Kit User Manual

7.3 CRC5 Calculation

CRC5 is a security feature for checking the data contents after programming the UID in the EEPROM. The CRC5 value is stored non-inverted in the memory. The calculation of the CRC5 value includes the LOTID character, LOTID number, wafer number, and die number, see Figure 7-2.

Figure 7-2. CRC5 Calculation

Using the Reader

8.1 Introduction

The reader can be operated in two different modes:

- Polling mode
- Report mode

The mode can be changed via the menu *Reader -> Mode*. When *Report mode* is selected, if the reader is in arbitration mode it continuously reads (or scans) tags which are in the reader's range. *Polling mode* allows the host to fully control the reader. This means that the reader is told by the host which command or information to transmit.

8.2 Polling Mode

Polling Mode While in polling mode there are four commands in the *Transponder* menu for communication with the tags: *Read*, *Write*, *Inventory*, and *Lock Block*.

8.2.1 Read The *Read* command enables the interrogator to read out all memory areas of the ATA5590 and the traceability data or UID of the tag (this option is only enabled in polling mode). A shortcut item can be created under the menu item *View -> Buttons -> Read*.

Figure 8-1. Read Command, Polling Mode

READ command	×
block No	r <u>o</u> f blocks
Iso 1000-6 B	
EPC class 1 GEN 2 EPC class 1 GEN 1 EM4x22 UCODE EPC 1.19 TAGIDU/ATA5590 TAGIDU/ATA5590 with UID cancel	1
Tadiotra Association	<u>\</u>

8.2.2

Write

Table 8-1.							
Block Number	Number of Blocks	Comment					
0 to 20	Min. 1	21×64 bits = 1344 bits					
0 to 3	Max. 18	$(4 \times 64 \text{ bits}) + (17 \times 64 \text{ bits}) = 1344 \text{ bits}$					
tag type Pr	rotocol selection						
	All detected tags are listed here with their unique ID. To interro transponder, the serial number must first be known.						
Note: Clears al	I detected serial numbers in th	ne demo software					
		ogator to read out all memory areas of or UID of the tag (only enabled in Pollir					

the ATA5590, plus the traceability data or UID of the tag (only enabled in Polling mode). A shortcut item can be created under the menu item *View* -> *Buttons* -> *Write*.

Figure 8-2. Write Command, Polling Mode

📓 WRITE command	×
block No number of blocks 1 Image: second condition of blocks 1 Image: second conditio	
Data Image: AutoFill to fit blocksize C off C leading 0s	
send command cancel	<u>%</u>

Table 8-2.

Block Number	Number of Blocks	Block Size [Byte]	Comment
0 to 39	Min. 1	Min. 4	40×32 bits = 1280 bits
0 to 22	Max. 18	Min. 4	$(23 \times 32 \text{ bits}) + (17 \times 32 \text{ bits}) = 1280 \text{ bits}$
0 to 19	Min. 1	Max. 8	20 × 64 bits = 1280 bits
0 to 2	Max. 18	Max. 8	$(3 \times 64 \text{ bits}) + (17 \times 64 \text{ bits}) = 1280 \text{ bits}$
tag type	Protocol selectio	n	

serial No All detected tags are listed here with their unique ID. To interrogate a transponder, the serial number must first be known.

Note: Clears all detected serial numbers in the demo software

- 8.2.2.1 Data AutoFill to fit block size:
 - Off: turn off the automatic function to fill with zeros (the data size must be exactly the same as the desired block size)
 - *leading 0s*: fill with zeros before the provided data (if the data size is not the desired block size)
 - trailing 0s: fill with zeros after the provided data (if the data size is not the desired block size)
- **8.2.3 Inventory** The command *Inventory* tries to detect the serial numbers of all transponders within the range of the reader as the tags transmit their serial numbers. A shortcut item can be created under the menu item *View -> Buttons -> Inventory*.
- **8.2.4** LOCK Block *LOCK command* is used to lock or read out the security status to get write permission for specified blocks. The action *LOCK block* is irreversible. A shortcut item can be created under the menu item *View –> Buttons –> Security.*

Figure 8-3. Lock Command, Polling Mode

ි LOCK command	×
rode © GET security status	LOCK block
Lag type	Serial No
send command cancel	

GET security status Determines the actual block security status.

LOCK block Note: This action is i	Sets the lock bit of a page. rreversible.					
block No	Block/page selection for locking, see Table 6-1.					
tag type	Protocol selection					
serial No	All detected tags are listed here with their unique ID. interrogate a transponder, the serial number must firs be known.					
Note: Clears all dete	cted serial numbers in the demo software					

8.3 **Report Mode** Report mode can either be activated via the menu *Reader -> Mode -> Switching to report mode* or *Reader -> configuration -> options (*by selecting *report mode)*. In this mode the reader works independently from the host, meaning that the reader works continuously (read; anticollision in write mode; if there is a successful write, the reader stops the transmission).

In 1 block, 64 bits can be written or read out of the EEPROM, see Table 8-3 and Table 8-4.

Command: READ									
Address Range	Blocks	Comment							
SNR – 20	Min. 1	21×64 bits = 1344 bits							
SNR – 12	Max. 9	$(13 \times 64 \text{ bits}) + (8 \times 64 \text{ bits}) = 1344 \text{ bits}$							

Table 8-3. Reader Configuration Setting, Read Command

The maximum number of bits which can be read out is 576 bits (64 bits \times 9 blocks = 576 bits). The upper address range when reading 9 blocks is 13. The minimum number of bits that can transferred are 64 bits (1 block), the upper address range is thus 21.

Command: WRITE										
Address Range	Blocks	Comment								
0 - 19	Min. 1	20×64 bits = 1280 bits								
0 - 16	Max. 4	$(17 \times 64 \text{ bits}) + (3 \times 64 \text{ bits}) = 1280 \text{ bits}$								

In write mode, the maximum number of bits which can be transferred is 256 bits (64 bits \times 4 blocks = 256 bits, see Figure 8-4), the upper address range is 16. The minimum number of transferred bits and also the address range is the same as in read mode.

Table 8-5 shows the write or programming possibilities for the control memory.

	Write to System Memory									
Option 1										
Address	dress Blocks Memory Size Comment									
16	2	128 bits/16 bytes	Page 0 (ID page) – System memory							
16	4	256 bits/32 bytes	Page 0 and 1 (ID page + User system info) – System memory							
		Ор	tion 2							
Address	Blocks	Memory Size	Comment							
16	1	64 bits/8 bytes	Page 0 (ID page) – System memory							
17	1	64 bits/8 bytes	Page 0 (ID page) – System memory							
18	1	64 bits/8 bytes	Page 1 (User system info) – System memory							
19	1	64 bits/8 bytes	Page 1 (User system info) – System memory							

Table 8-5. Reader Configuration, Programming Possibilities

8.4 ID Page Programming (System Memory – Page 0)

8.4.1 Polling Mode Figure 8-5 shows an example of the *WRITE command* in polling mode programming an ID in page 0 of the control memory, see Table 8-6 and Table 8-7 on page 6.

Figure 8-5. Example of Programming an ID in Polling Mode

🕼 WRITE command	x
block No number of blocks Blocksize 16 2 2 tag type serial No TAGIDU/ATA5590 I	
Data 12345678ABCDEF12000000012345678	
send command cancel	R

	Comments								
Number of blocks	-	1	1	1	Reader setting (ID can be programmed in 2 steps)				
Block size [bytes]	8	3	8	3	Reader setting				
Block number	1	6	1	7	Reader setting				
Number of blocks		Reader setting (ID can be programmed in 1 step)							
Block size		8	3		Reader setting				
Block number	1	6		-	Reader setting				
Page address ⁽¹⁾		0 (ID page: Co	ontrol memory)		Physical address				
Block address ⁽²⁾	1	0	3	2	Physical address				
	12345678	ABCDEF12	0000000 ⁽³⁾	12345678	Data format in hex				

Table 8-6. ID-programming Example, Polling Mode; Block Size = 8

1. For the page address, see Table 12-1

2. For the block address, see Table 12-1

3. A description of the block configuration can be found in Table 12-1

Table 8-7.	ID-programming	Example, Polling	Mode; Block Size = 4
	ib programming	Example, I oming	10000, D1000, 0120 = 4

		Data			Comments				
Number of blocks	1	1	1	1	Reader setting (ID can be programmed in 4 steps)				
Block size [bytes]	4	4	4	4	Reader setting				
Block number	16	16	17	17	Reader setting				
Number of blocks	2		2		Reader setting (ID can be programmed in 2 steps)				
Block size [bytes]	4		4		Reader setting				
Block number	16		17		Reader setting				
Number of blocks	4				Reader setting (ID can be programmed in 1 step)				
Block size [bytes]	4				Reader setting				
Block number	16				Reader setting				
Page address ⁽¹⁾	0 (ID page: C	ontrol memory	/)		Physical address				
Block address ⁽²⁾	1	0	3	2	Physical address				
	12345678	ABCDEF12	0000000 ⁽³⁾	12345678	Data format in hex				

Notes: 1. For the page address, see Table 12-1

2. For the block address, see Table 12-1

3. A description of the block configuration can be found in Table 12-1

Note: The memory contents can be protected with a lock bit – this operation is irreversible! The lock bit is located at the most significant bit (MSB) in Page 0 of the control memory (see Table 8-7). Therefore, the lock bit should be set in an additional step or as the last command during the programming of a page (applies to all pages in the system and user memory).

8.4.2 Report Mode: Reader -> Configuration

Figure 8-6 shows the setting in the *ProgData* menu for programming an ID in Page 0 of the control memory.

The same settings as shown in Table 8-6 and Table 8-7 are also valid for Report mode.

Arbitration

The ATA5590 supports anticollision arbitration over memory areas other than the ID page. The length of the arbitration is always 16 bytes. The search algorithm used is deterministic (binary tree) arbitration (advantage: faster then Aloha). In Polling mode, up to 135 transponder serial numbers can be stored in the UDL reader device. If there is no polling command before the reader runs out of memory, new serial numbers will be lost. These serial numbers are filtered to avoid having the same serial number stored twice. Only one serial number will be transmitted in a message.

Note: If the tag type ATA5590 with UID is selected, it is not possible to make the arbitration over another memory area than the UID!

9.1	Arbitration in Polling Mode	The <i>Inventory</i> command (<i>Transponder -> Inventory</i>) tries to detect the serial numbers of all transponders within the range of the reader as the tags transmit their serial numbers (see Section 8.2.3).								
9.2	Arbitration in	Arbitration in report mode can be adjusted via the menu item <i>Reader -> Configuration</i> , (see Section 5-1).								
	Report Mode	Arbitration options are in the <i>Configuration</i> menu (see the explanation in Section 5-2).								
		Selection: Reader -> Configuration (see also Section 5-1)								
9.2.1	Anticollision	Activate the anticollision function. The arbitration algorithm used is based on the binary tree or deterministic arbitration concept.								
		Note: <i>SNR</i> (page 0 of the control memory) in the address selection bar indicates the serial number of the transponder.								
9.2.2	Single Shot	If single shot mode is selected and a transponder stays in the read range for a longer time, the serial number of this transponder will be transmitted again after the time specified in <i>tag timeout</i> . The <i>Value</i> is a multiple of 100 ms. If <i>tag timeout</i> is "0", the serial number will not be transmitted again.								
		Note: Single shot mode is not available in anticollision or portal mode!								
9.2.3	Tag Options	<i>Tag timeout</i> defines the number of anticollision commands before a reset is sent. If this value is "0", the reader will never send a reset command to the tags.								

Arbitration

9.2.4 Read Cycles This option defines how many anticollision commands are sent before the next *select* command is sent.

Selection: Reader -> Configuration -> Options (see Section 5-2)

This menu item is an extension to the normal arbitration. The ATA5590 can arbitrate on memory areas other than the ID page and with different selection rules.

Additional Information

Detailed information is available in the introductory document Einfuehrung_UDL500_em.pdf, on the CD from deister and included in the application kit. Some application notes from deister are also available on the CD.

Reader information is in the Deister directory on the CD under the following paths.

Reader Description:

Product/13.56 MHz to 868 MHz LogIdent/868 MHz passive transpondertechnology/UDL500

Product/13.56--868 MHz LogIdent/868 MHz passive transponder technology/UHF_portal

Protocol Description:

Protocol/PROTOCOL_UDxxx_deBus_v1_10_GB.pdf

Application Notes:

Software /RDemo software for configuration the readers/application_note

Software/RDemo software for configuration the readers/RDemo discription

Software Update:

Software/update software for readers

Error Handling/FAQ

11.1 Problem

11.1.1 Actions

No communication between PC and UDL 500 reader.

- Verify that the correct port is selected. If the correct port is selected and no communication is possible, check the current reader address. The current reader address can be adjusted in the demo software. (In the menu bar under the item *View -> deBus Polling.*)
- Check the scan settings: Verify that the correct baud rate is chosen. If the correct baud rate and address is unknown, set the baud rate setting to *all*. This setting tells the reader to scan all possible baud rates and addresses.
- All identified readers are displayed in the *detected reader* window. Choose the appropriate entry, and confirm with *set as current reader*.

Appendix

Table 12-1. Physical Address Description of the ATA5590 Control Memory

Physical	Block	Byte3								Byte2							Byte1								Byte0							
address	address	31	30	-	_		-	25	24	23 2	2 2	1) 19	1	17	16	15	5 14	T		11		9	8	7	6	5	4	3	2	1	0
		Manufacturer System I					Info	-									- Traceability Data Structure -							Traceability Data Structure -								
		т	ш		8th			ת	D				byte	Î.							byte	Î.		E.					byte			
1	1	EAS_en	EAS(0)	RFU	RFU	RFU	RFU	RFU	RFU	FAG TYPE	TUNE	IC Rev. Nr.	IC Rev. Nr.	_otID Character	_otID Character	otID Character	otID Character	otID Character	LotID Number	_otID Number	LotID Number	_otID Number	_otID Number	otID Number	otID Number	otID Number	LotID Number	_otID Number	LotID Number	LotID Number	_otID Number	otID Number
2										0h	0		Oh		LC			C#		_	Lot	_					_	Lot	_	_		
		Tr	acea					cture	9 –	Trac	eabi				ctur	е –	Ti	race					ctur	е —	Tr	race	abili				cture	-
		R	R		4th Ω			Ω	Ω		5		l byte I ≲		٤	٤	Die				byte			D	D				byte	_		5
	0	RFU	RFU	TUNE	CRC5	CRC5	CRC5	CRC5	CRC5	otID Number	_otID Number	Wafer Number	Wafer Number	Vafer Number	Vafer Number	Nafer Number	ie Number	Die Number	Die Number	Die Number	Die Number	Die Number	Die Number	Die Number	ie Number	Die Number	Die Number	Die Number	Die Number	Die Number	Die Number	> Number
		0	h	0		С	rc5	#		Lotl	D #		W	afe	r #				die	on	waf	er #	ŧ			(die	on \	vafe	er #		
		ι	Jser	Sys	tem	Info	5 - A	dmi	n		Us	er S	/ster	n Int	o			1	Usei	r Sy	sten	n Inf	o				Use	r Sy	sterr	n Info)	
	3	Lock Bit (User sys.)																														
1	0		ι	Jser	Sys	sten	n Inf	0		User System				er System Info				User System Info							Use	r Sy	sterr	n Info)			
	2									Т	Т						Γ	Γ							Γ							
	,			Jser	Sys	sten	n Inf	0			Us	er Sy	/ster	n Int	o	•	Г		Usei	r Sy	sten	n Inf	о		Г		Use	r Sy	sterr	n Info)	٦
	1									Т	Т	Т	Γ	Γ				Г				Γ									Т	
	0		ι	Jser	Sys	sten	n Inf	0			Us	er S	/ster	n Ini	o		Г		Usei	r Sy	sten	n Inf	o		Г		Use	r Sy	sterr	n Info)	٦
	0									Т	Т	Т																				
					AD	MIN						F	RFU					AF	I (IS	SO/I	EC1	596	i2) ₁			DS	FID	(ISC)/IE0	C159	962)	
0 —	3	LOCK ID PAGE	PRIVATE		DSFID_ISO	AFI	DSFID	LID	CRC								ApplicationFamily	ApplicationFamily	ApplicationFamily	ApplicationFamily	ApplicationFamily	ApplicationFamily	ApplicationFamily	ApplicationFamily	AccessMethod	AccessMethod	RFU	DataFormat	DataFormat	DataFormat	DataFormat	DataDormat
	0			Up	per	Byte ID																									٦	
	2	Đ	Đ	ē	D	Đ	D	Đ	ē	5 0	Ð	Đ	Đ	Đ	ō	Đ	ō	Ð	ō	ō	ō	Ð	D	Ð	ē	Đ	Đ	Ð	D	ē	Ð	5
	1	Ð	Ð	Ð	D	Ð	D	ē	ē	5 0	ē	ō	ō	ō	ō	ō	ō	ē	ō	ō	ō	ō	D	ē	ō	ō	ō	ō	Ð	ē	ō	5
	0																										Lo	wer	Byte	ID		٦
	0	D	D	D	D	D	D	D	ē	5 0	D	D	D	D	D	D	Ð	D	D	D	D	D	D	Đ	D	D	D	D	D	D	D	ō

ProgNbyte (tag must be selected) Blocked after sawing Can be locked (when locked it can't be reprogrammed) - OTP mechanism

1: List of Application Family Identifiers are defined in ISO/IEC 15961.

Table 12-2. Description of Various Memory Areas in the Control Memory

Tag Type (1:0) 0h: backscatter RF-powered tag 1h: backscatter battery-powered tag 2h: active tag, AM RSSI 3h: active receiver	
IC Rev. Nr. (3:5) 0h: V2.1 1h: V2.1	

	Lock ID Page: Private:	Locks the whole page. No change of the page possible after setting to "1" If set to "1", the user is using custom structure and flags. If set to "0", the user is using the
	DSFID_nAC:	following flags. If set to "1", a DSFID info is stored at byte 0 of block 3. If set to "0", the Allocation Class info is stored at byte 0 of block 3.
ADMIN 16th Byte, Page 0	DSFID_ISO: DSFID:	If set to "1", the DSFID coding structure is not compliant with ISO15962 regulations. Indicates whether the DSFID information is stored in the Tag ID page. The content is stored at byte 0 or byte 2 depending on DSFID nAC.
Tour Dyte, Tage 0	AFI:	Indicates that the AFI is stored in the Tag ID page. The construction of AFI corresponds with ISO 18000-6 FDIS.
	LID:	Indicates that a Tag ID has a size larger than 96 bits. The other bits can be stored from page 7 down to page 0 of the user memory
	CRC:	Indicates that a CRC value is supported. The CRC value can be stored after the administration part (byte 2), if the location is not used for storing the DSFID value.

DSFID 13th Byte, Page 0	Access Method (1:0) -> ISO/IEC15691 defined in 7.1.2.4 Oh: no directory 1h: directory 2h: selfMappingTag 3h: RFU Data Format (4:0) -> ISO/IEC 15691 defined in 7.1.2.5 OOh: noFormatted 01h: fulFeatured 02h: rootOidEncoded 03h: iso15434 O4h: iso6523 05h: iso15459 06h: reserved 07h: reserved 07h: reserved 08h: iso15961Combined 09h: ean-ucc OAh: di 0Bh: upu 0Ch: iata 0Dh to 1Fh: reserved
----------------------------	--

Appendix

	AFI (7:4)	AFI (3:0)	Meaning
	0	0	All families and sub-families
	x	0	All sub-families of family X
	x	У	Only the Yth sub-families of family X
	0	у	Proprietary sub-family only
	1	0, y	Transport
	2	0, y	Financial
	3	0, y	Identification
	4	0, y	Telecommunication
AFI	5	0, y	Medical
14th Byte, Page 0	6	0, y	Multimedia
	7	0, y	Gaming
	8	0, y	Data storage
	9	0, y	Item management
	А	0, y	Express parcels
	В	0, y	Postal services
	С	0, y	Airline bags
	D	0, y	RFU
	E	0, y	RFU
	F	0, y	RFU

Note: x and y each represent any single-digit hexadecimal value between 1 and F

Table 12-3. Physical Address Description of the Control Memory of the ATA5590

Physical Block address address			Byte3									By	te2	2			Byte1									Byte0								
address	address address	31	30	29	28	27	26	25	24	23	22				17	16	15	14					9	8	7	6			3		1	0		
	3	Lock Bit																																
7	2																																	
	1																																	
	0																																	
	3	Lock Bit																																
0	2																																	
	1																																	
	0																																	

Page can be locked (when locked it can't be reprogrammed) - OTP mechanism

Note: Whole page usable for expanded ID

Atmel Corporation

2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 487-2600

Regional Headquarters

Europe

Atmel Sarl Route des Arsenaux 41 Case Postale 80 CH-1705 Fribourg Switzerland Tel: (41) 26-426-5555 Fax: (41) 26-426-5500

Asia

Room 1219 Chinachem Golden Plaza 77 Mody Road Tsimshatsui East Kowloon Hong Kong Tel: (852) 2721-9778 Fax: (852) 2722-1369

Japan

9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan Tel: (81) 3-3523-3551 Fax: (81) 3-3523-7581

Atmel Operations

Memory 2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 436-4314

Microcontrollers

2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 436-4314

La Chantrerie BP 70602 44306 Nantes Cedex 3. France Tel: (33) 2-40-18-18-18 Fax: (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards Zone Industrielle 13106 Rousset Cedex, France Tel: (33) 4-42-53-60-00 Fax: (33) 4-42-53-60-01

1150 East Chevenne Mtn. Blvd. Colorado Springs, CO 80906, USA Tel: 1(719) 576-3300 Fax: 1(719) 540-1759

Scottish Enterprise Technology Park Maxwell Building East Kilbride G75 0QR, Scotland Tel: (44) 1355-803-000 Fax: (44) 1355-242-743

RF/Automotive Theresienstrasse 2 Postfach 3535 74025 Heilbronn, Germany Tel: (49) 71-31-67-0 Fax: (49) 71-31-67-2340

1150 East Chevenne Mtn. Blvd. Colorado Springs, CO 80906, USA Tel: 1(719) 576-3300 Fax: 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/

High Speed Converters/RF Datacom Avenue de Rochepleine BP 123 38521 Saint-Egreve Cedex, France Tel: (33) 4-76-58-30-00 Fax: (33) 4-76-58-34-80

Literature Requests www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL'S TERMS AND CONDI-TIONS OF SALE LOCATED ON ATMEL'S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDEN-TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel's products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

© 2006, Atmel Corporation. All rights reserved. Atmel®, logo and combinations thereof, Everywhere You Are®, IDIC®, and others, are registered trademarks, TAGIDU[™] and others are trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.

/xM