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2. Mechanical system as an object for modeling  
In this part common definitions necessary for a successful operating with UM are given. 

More detailed and complicated information about the object – a mechanical system and the ma-
thematical technique applied to analyze it – the reader can find in the scientific introduction. 

2.1. Modeling mechanical systems 

Consider a physical pendulum i.e. a rigid body, which has a horizontal rotational axis not 
passing through its center of mass. It is a simple example of a mechanical system. Anybody 
could imagine the motion of the pendulum and suppose that the pendulum would swing if initial-
ly it were not in equilibrium. However, far not everyone can write down ‘off-hand’ the equation 
of motion and solve it. Anyway, even junior students of university natural faculties can do it. If 
the air resistance force is to be taken into account, the analysis can only be carried out by senior 
students. Moreover, if we attach a second body to the first one, even a professional mathemati-
cian cannot obtain the exact analytical solution (because it does not exist!). What then can be 
said about systems containing dozens, hundreds, and thousands of bodies? 

In such cases, applying the following numerical methods for modeling is most effective: 
· automatic generation of equations of motion; 
· numerical analysis of equations of motion; 
· treatment of the results of the equations analysis and their representation in a convenient 

form. 
There are a lot of concepts for the equations analysis. So choosing one or another is, by 

far, determined by the nature of the analyzed system. This might be the numerical integration of 
the equations of an object in a complex spatial motion (e.g., for a robot manipulator). For a mul-
tibody system (MBS) whose bodies move slightly about a fixed in space position the determina-
tion of the natural frequencies and modes is often necessary. A considerable amount of informa-
tion one could obtain through solving the problem of motion stability in the neighborhood of the 
equilibrium position or a steady motion. 

The representation of the equation analysis results is most convenient when using com-
puter graphics. So it is possible to simulate motion and to display time-varying charts. 

In the course of the system analysis, the designer often has to change its configuration 
and parameters (for example, the sizes of the bodies or any coefficients in the expressions for 
forces). These changes must be organized by the software as simply as possible. Once the confi-
guration is changed, the equations of motion usually change as well. If the two-body physical 
pendulum is to be transformed into a three-body one, the equations will change totally. Here it 
matters how fast the equations are generated. The operational changing of parameters of an MBS 
is  possible  without  generating  the  equations  anew if  they  are  derived  in  a  fully  symbolic  form 
and the corresponding parameters take part in them as identifiers (data parameterizing). 

The program package UM has been designed for solving such and many other problems. 
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2.2.  Rigid body systems 

 
Belt conveyor 

 

    
 

Double wishbone suspension of a vehicle (left); truck suspension with hydraulic actuators (right) 

 
Mooring platform and its anchor system 
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Expander 

 
 

 
 

Caterpillar transporter 
 
 

Щебеночный балласт как система тел Ballast as a multibody system  
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Freight railway vehicles 

 

 
Electric locomotive EP200 

 
Train model 
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Coach 

Fig.2.1. Multibody systems 
The objects to be dealt with by UM can only be rigid body systems. The bodies of a sys-

tem may or may not be connected with each other by joints and force elements. In particular, bo-
dies may be mass points (Fig.2.1). 

The motion of an MBS is studied with respect to the basic body, by which an inertial sys-
tem of coordinates (SC) is meant. Often such a system can with enough accuracy be identified 
with the surface of the Earth. The basic body is considered fixed and therefore is not included in 
the analyzed MBS, although takes an active part in the description of the system. The basic SC is 
denoted SC0. Usually, dividing a compound object into bodies is no problem. For example, a 
two-body physical pendulum consists of two bodies, whereas the Puma manipulator - of four. 
Sometimes, a deformable body, e.g., an elastic beam, can be represented as an MBS. For this re-
presentation to be valid the beam has to be divided into several rigid bodies. The separate bodies 
are connected with each other by massless elastic elements. 

To describe the motion of an 
MBS in terms of mathematics the right 
Cartesian system of coordinates is as-
sociated with each body. Its origin is 
placed in any point of the body and the 
axes are fixed to it. Generally speak-
ing,  the  orientation  of  the  axes  of  the  
body-fixed SC may be chosen arbitra-
rily, but the equations of motion will 
be easier if the axes are the principal 
axes of inertia. Here and below such 
systems  of  coordinates  are  referred  to  
as the body-fixed systems of coordi-
nates and denote them as SC [the in-
dex of the body], e.g., SC1 is the sys-
tem of coordinates fixed to body 1. In 
a particular case, when a body has axes 
of  symmetry,  the  axes  of  the  body-
fixed SC are usually directed along the 
axes of symmetry. 

For example, consider a model 
of the two-body pendulum, which has two homogenous rods connected by a rotational joint and 
attached by a joint to the immovable support. The axes of the joints are parallel and the motion 
of  the  MBS  therefore  is  2D,  however  in  UM  all  coordinate  systems  are assumed to be three-
dimensional. The basic SC0 Ox0y0z0 has the origin in О, which coincides with the center of the 
joint. The body-fixed systems of coordinate 1111 zyxO  and 2222 zyxO  originate in the centers of 
mass of the corresponding bodies, whereas the axes are directed along their axes of symmetry. 

 

 x0 

 y0 

 z0 

 O 

 x1 

 y1 

 z1 

 x2 

 y2 
 z2 

 O2 

 O1 

Fig.2.2 
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2.3.  Joints 

2.3.1. Connectivity of systems and definition of a joint  

It is assumed that the modeled MBS satisfies a connectivity condition, i.e. each body of 
the system is connected by a joint at least with one other body or the basic body (SC0), and there 
exists a path from each body to SC0. This condition is very important and is automatically 
checked by UM. By what joint and with what body is an unrestrained body moving in space 
connected?  And  does  it  make  sense  at  all  to  introduce  joints  for  free  bodies?  It  appears  to  be  
clear that to describe the position of a body in space it is sufficient to know the position of the 
body-fixed SC relative to the basic SC0. In terms of mathematics, for that it is sufficient to set 
the position of the origin and the orientation of the body-fixed SC with respect to the basic SC0, 
expressing them through certain variables called coordinates. For this purpose, UM uses the de-
pendencies between, on the one hand, coordinates and, on the other, the radius vector of the 
body-fixed SC origin and the directional cosine matrix (the matrix of rotation). The term ‘joint’ 
is intended to describe the position of one body relative to another. To say ‘describe the position 
of a body relative to the basic SC0 in terms of coordinates’ means in UM ‘introduce a joint be-
tween the given body and the basic one’.  

Joints making it possible to describe the position of one body relative to another by 
means of introducing the joint coordinates are below denoted as generalized¸ rotational, transla-
tional, quaternion and 6 d.o.f. joints.  UM  uses  another  type  of  joints  constraining  the  relative  
motion of bodies and which have certain problems in introducing the joint coordinates. In many 
systems the constraint represented by a massless rigid rod with joints at the ends is not a genera-
lized joint either although it is also available with UM. 

Certainly, generalized, quaternion and 6 d.o.f. joints can be introduced for any pair of bo-
dies both kinematically connected and not. If any two bodies are connected by a joint in the 
usual sense - e.g., rotational or prismatic - its representation in UM assumes that the position of 
one body will be described relative to the other, namely the position of one body-fixed SC will 
be described relative to the other body-fixed SC. The joint coordinates, i.e. the variables setting 
this position, are introduced. The complete set of coordinates for the object as a whole is the re-
sult of unification of the local joint coordinates. Such a description takes place in the data input 
programs and is greatly automated. However, joints to connect each body with the basic one may 
not exist, although it is sufficient that there exists for each body a chain of bodies from this one 
to the basic. It is the urgent condition of connectivity of the modeled MBS 

According to the condition of connectivity, it is also required that joints in the chain be 
not arbitrary but of certain types. Currently the following generalized types of joints are availa-
ble: 

· rotational; 
· translation; 
· six d.o.f. joint; 
· generalized; 
· internal body joint, based on 6 d.o.g. 
· quaternion; 
· massless rigid rod constraint; 
· mates; 
· convel (constant velocity) joint. 

Rotational, translation, six degree of freedom and generalized joint belong to a certain 
group. They have identical internal representation and describe kinematical pairs with various 
translation and rotational d.o.f. (from zero to six). Rotational, translation and six degree of free-
dom joint can be described with the help of generalized joint. 
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Quaternion joint is often used for introduction of coordinates for a free body and for de-
scription spherical joint. 

Massless rod, mates and convel joint do not introduce new coordinates. They are just ki-
nematical constraints. 

 
Joints of types  

1. rotational; 
2. translational; 
3. 6 degrees of freedom 

have internal UM representation as generalized joints. Conversion of joints to generalized type is 
available in the UM Input. This tool can be used to create additional degrees of freedom, to de-
scribe joint forces, to parameterize inclination of axis and so on. See Chapt. 3 of user’s manual 
for additional information. 
Example. User’s manual, Chapt. 7, Sect. Joint type conversion. Parameterization of axis incli-
nation. 
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2.3.2. Description of joints 

2.3.2.1. Translational and rotational joints 

 
Fig.2.3. Joint with 1 d.o.f. 

Translational and rotational joints allows describing one d.o.f. joints. Every joint of this 
type introduces one local coordinate (linear or angular). A sketch of such joints is given in 
Fig.2.3. There are following parameters: 

· joint vector e, described by its projections on SC1 and SC2 ( ) ( )222111 ,,,,, zyxzyx eeeeee . Vector 
cannot be zero. 

· coordinates of two joint points (connected with body 1 and body 2) situated on joint axis 
( ) ( )2

2
2
2

2
2

1
1

1
1

1
1 ,,, zyxzyx rrrrrr . 

· Some additional parameters, shift along the joint axis ax and/or turning around the joint 
axis aj . 
Vector ( )111 ,, zyx eee  and point A ( )1

1
1
1

1
1 , zyx rrr  describe the joint axis position relative body 

1, and vector ( )222 ,, zyx eee  and point B ( )2
2

2
2

2
2 , zyx rrr  describe the joint axis position relative body 2. 

If 0=ax  then points A and B are coincide (have the same coordinate in SC0). 
The ax  parameter in the case of a translational joint and the aj  parameter in the case of 

a rotational joint are used for describing the relative positions of the bodies when the coordinate 
is zero. 

Positive rotation corresponds to the right-hand screw rule. 
There might be introduced joint force in a translational joint and joint torque in a rota-

tional joint. 
Local coordinates for both joint types might be described as explicit time functions. In 

that case joint coordinates is not included to the list of coordinates of object. For example, angle 
of rotation might be describes as ( ) tt w=j , where w is the angular velocity. 
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Examples 

   
 

Fig.2.4. Rotational and translational joints 

Here the rotational joint (Fig.2.4 left) is described by the following parameters:  
( ) ( ) ( ) ( ),0,0,1,,   ,0,0,1,, 222111 == zyxzyx eeeeee  

( ) ( ) ( )0,,0,  ),0,,0(, 2
2

2
2

2
2

1
1

1
1

1
1 ba zyxzyx -=rrr=rrr , 

0=j= aax , 
And here the translational joint (Fig.2.4 right) is described by the following parameters:  

( ) ( ) ( ) ( ),0,0,1,,   ,0,0,1,, 222111 == zyxzyx eeeeee  

( ) ( ) ( )0,0,0, , 2
2

2
2

2
2

1
1

1
1

1
1 =rrr=rrr zyxzyx , 

0=j= aax . 
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2.3.2.2. Six d.o.f. joint 

Joints of such a type are often used to introduce kinematical pairs with various numbers 
of rotational and translation d.o.f. Consider two bodies: 1 and 2 (see Fig.2.5). Origins of body-
fixed SC are located in points O1 and O2. Introduce two additional SC: SC1A and SC2B with its 
origins in some points A and B correspondently. The joint introduces coordinates, which de-
scribe the position of SC2B relative to SC1A.  

 
Fig.2.5 

By default the joint has six d.o.f.: three shifts SC2B relative to SC1A (x, y, z) and three an-
gles of SC2B orientation relative to SC1A ( 321 ,, aaa ). In this case body 2 moves freely and joint 
does not introduce any constraints on relative movement. 

There are 12 ways of introduction of orientation angles accordingly sequence of rotations 
around axes (x-1, y-2, z-3): 

· Euler (3,1,3); 
· (3,2,3); 
· (2,1,2); 
· (2,3,2); 
· (1,2,1); 
· (1,3,1); 
· Cardan (1,2,3); 
· (1,3,2); 
· (2,1,3); 
· (2,3,1); 
· (3,1,2); 
· (3,2,1). 

Any of these six d.o.f. might be turned off. It means that the d.o.f. will not be introduced 
in a model. A lot of various kinematical pairs might be described in that way. 

 
The following parameters are necessary for description the six d.o.f. joint:  
- coordinates of points A in SC1 and  B  in  SC2 ( ) ( )2

2
2
2

2
2

1
1

1
1

1
1 ,,, zyxzyx rrrrrr  as well as 

orientation of SC1A and SC2B relative to SC1 and SC2; 
- type of angle orientation; 
- enabled/disabled d.o.f. 
 
Consider some examples. 

· Spherical joint (see Fig.2.56). Vectors 21,rr  describe the position of the center of the 
joint in SC1 and SC2, all translation d.o.f. are disabled. Here the spherical joint (Fig.2.6) 

O1 O1 
A 

B 
r1 r2 
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is described by the following parameters: 01 =r , ),0,0(2 a-=r , type of orientation an-
gles is (3,1,3). 

 

 

 

Fig.2.6. Spherical joint  Fig.2.7. Hooke (universal) joint 
 

 
· Hook joint with two d.o.f. (see Fig. 2.7). All translations and one of rotational coordinate 

are disabled. Vectors 21,rr  describe  the  position  of  the  center  of  the  joint  in  SC1 and 
SC2. For the joint in fig. 2.7: )0,,0(1 a=r , )0,,0(2 b-=r ,  type  of  orientation  angles  is  
(1,2,3), the angle 2a  is turned off (or the type is (1,3,2) and 3a  is turned off).  

 
· One d.o.f. joints. Let us consider examples in Fig.2.4. For a rotational joint we have 

( )  ),0,,0(, 1
1

1
1

1
1 azyx =rrr  ( ) ( )0,,0, 2

2
2
2

2
2 bzyx -=rrr ,  

all  translations  are  disabled  and  two  rotational  ones,  too.  For  example,  these  are  angles  
32 ,aa  for the orientation angles of type (1,2,3). For a translational joint 021 =r=r , all the 

angles are disabled and translations x, z, too. 
Remark. It is well known, that there are singular orientations of SC2 relative to SC1 for 

any type of three orientation angles. In the singular orientations, the numerical values of the 
orientation angles cannot be found uniquely, which results in failure of the simulation of motion. 
The first six types (axes of the first and the last rotations have the same indices) are singular at 

p=a ,02 .  The rest  six types have singularities when 22 p±=a . This fact must be taken into 
account for spherical joints, if SC2 can have an arbitrary orientation in respect to SC1 while simu-
lation of motion. For example, do not use orientation angles being singular at p=a ,02 , if axes 
of SC2 are parallel to those of SC1 at begin of simulation (when t=0). Generally, in case when a 
free body can have an arbitrary spatial orientation at run-time, use the quaternion joint instead of 
six d.o.f. one. 
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2.3.2.3. Generalized joint 

Most of kinematical pair can be modeled with the help of joints described above. Howev-
er, there are a variety of kinematical pairs, which cannot be described with the help of those 
joints. Here is a list of examples, which is far from being complete: 

· a Cardan joint, whose rotation axes are not perpendicular; or whose first axis is not paral-
lel to some of axes of SC1; or whose second axis is not parallel to some of axes of SC2; 

· joints with more than one d.o.f. having joint forces and/or torques, corresponding some of 
d.o.f.; 

· joints  with  more  than  one  d.o.f.  realizing  predefined  motion  (some  or  all  of  d.o.f.  are  
time-dependent functions). 
All these examples, and also all the types of joints above, can be implemented using the 

generalized joint. Mathematical model of the joint is discussed in the scientific manual. 
So, the generalized joint, by definition, is a constraint having an arbitrary number of both 

translational and rotational degrees of freedom (from 0 to 6). The transition from SC1, connected 
with  the  first  body,  to  SC2, connected with the second one, can be described as a sequence of 
elementary transformations (ET) at an arbitrary relative position of the bodies. Each ET is either 
a translation along or a rotation about a certain direction. Let us introduce concepts of a vector e 
and a parameter s of an ET. The unit vector e defines the direction of the translation or rotation 
(depending on type of the ET). The parameter s (i.e.  the value of the translation or rotation) is  
either a constant value or a certain time-dependent function, or a variable value, which must be 
calculated at simulation time. In the latter case, the parameter s is a local generalized joint coor-
dinate. 

Thus, there are six types of ET: 
· tc - translation with a constant parameter; 
· tv - translation with a variable parameter; 
· tt - translation whose parameter is a known time function; 
· rc - rotation with a constant parameter; 
· rv - rotation with a variable parameter; 
· rt - rotation whose parameter is a known time function. 

                      
Let us consider some examples of generalized joints. 
a) A rotational kinematic pair (Fig. 2.4 left). It is described by three ETs: 
 

{ }aetcT y ,,1 = , { }j,,2 xervT = , { }betcT y ,,3 = , [ ]j=
ij

q . 

 
Before starting the explanation of the expressions, it seems appropriate to make clear the 

introduced designations. T1,  T2,  T3 stand for the consecutive ETs. Then in brackets, the type of 
ET, the vector e and the parameter s are given. For all the types of ETs, except constant transla-
tion tc, the vector e must be unit. For tc there are no parameters since the value of translation is 
directly included in the vector of transformation. The column qij contains the list of local joint 
coordinates. 

The first ET translates SC1 by a along axis y. The second ET corresponds to the rotation 
by j  about x. The final ET (transition along axis y) makes SC1 coincide with SC2.  

b)  A prismatic  joint  (Fig.  2.4  right)  in  a  simplest  case  can  be  described  by  a  single  ET 
{ }setvT y ,,1 = , [ ]sq

ij
= ; s is the coordinate which determines the translation of body 2 with re-

spect to body 1. 
c) A Cardan joint (Fig. 2.7) is a kinematical pair having two rotational d.o.f. In the case 

sketched in the figure it is set by four ETs: 
{ }T tc e a1 0 0= =, ( , , ) ,  
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{ }T rv e s2 11 0 0= = =, ( , , ), a ,  

{ }T rv e s3 20 0 1= = =, ( , , ), a ,  

{ }T tc e b4 0 0= =, ( , , ) ,  

[ ]q
ij

T= a a1 2, . 

T1 translates SC1 by a along the axis y and the axis x occupies the position of the first axis 
of rotation. The second ET (the rotation by a1 about x) brings the axis z into coincidence with the 
axis of the second rotation. These are followed by the rotation by a2, which makes the axes of 
the SC parallel to those of SC2. The final ET - the translation along y - results in the coincidence 
with SC2. 

Notice that every next ET is done relative to the new position of SC, in which the preced-
ing ETs resulted. As a rule, ETs cannot be exchanged, thus, in other words, ETs are not com-
mutative.  

  
a)                                                                              b) 

Fig.2.8. Two joints with the same set of ETs but with different their sequence 

 
E.g., if, in the case of the Cardan joint shown in Fig.2.7, one exchanges the second and 

third ETs, it will result in a Cardan joint with a totally different kinematic structure (Fig.2.8a). If 
one exchanges the first and second ETs, the resulting pair will not be a Cardan joint at all but a 
joint with two d.o.f. (Fig.2.8b). This pair is also available with UM, although it by no means cor-
responds to Fig.1.3с. These examples show that the concept of common joint is far not trivial 
and while describing it there may appear serious and hardly detectable errors. 

d) A spherical joint. Bodies connected by spherical joints may have arbitrary relative 
orientation. In the example of a Lagrange top shown in Fig.2.6 (a symmetrical body connected 
with  the  support  by  a  spherical  joint  whose  center  lies  on  the  axis  of  symmetry),  the  transfer  
from SCI to SCJ is carried out in two stages. First, rotate SCI so that its orientation coincide with 
SCJ and then make a translation along the axis z. Bringing the two systems of coordinates into 
coincidence might be obtained by rotating about three axes. So three angles of orientation are 
introduced. To introduce the three angles one can use any of the twelve allowable combinations 
of the axes of rotation. However, in the case of a Lagrange top Euler angles are conventional. 
Thus, here the spherical joint is described by the following four ETs: 

{ }y=== servT ),1,0,0(,1 ,  
{ }J=== servT ),0,0,1(,2 ,  
{ }j=== servT ),1,0,0(,3 ,  
{ }),0,0(,4 aetcT == , 

qij
T= [ , , ]y J j . 
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And the  final  example  is  a  free  body in  space.  It  is  a  joint  with  six  d.o.f.  and  six  ETs:  
three variable translations along the axes x,y,z and three variable rotations about the axes z,x,z - 
Euler angles, or x,y,z - Cardan angles, or, at last, any series of rotations about three arbitrary axes 
(one has to bear in mind, however, that the axes of two consecutive rotations must not be paral-
lel). For instance, for Cardan angles: 

{ }
{ }
{ }
{ }
{ }
{ }

T tv e s x

T tv e s y

T tv e s z

T rv e s

T rv e s
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When solving various problems of kinematics and inverse problems of control ETs 
whose parameters are explicit time functions are frequently used. It means that how the angle of 
rotation or the parameter of translation changes with time is known a priori. E.g., while solving 
the kinematic problem of the crank-and-slide mechanism the motion of the input link - the crank 
-  is  given.  Here  the  angle  of  rotation  in  the  joint  connecting  the  crank  with  the  fixed  support  
changes in a known manner, for example, it can be linear with respect to time. 

 
Remark.  The generalized joint  with three rotational d.o.f.  can be singular at  some rela-

tive orientations of the bodies in pair (see remark in Sect. 2.3.2.2). In case if the bodies can be 
arbitrary oriented while moving, values of the orientation angles may become (almost) singular. 
This results in a strong deceleration or a total break of simulation of motion due to automatic de-
creasing the integration step. Because of this reason, in this case it is recommended to use the 
quaternion joint, which does not have any singularities. 
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2.3.2.4. Quaternion joint 

The quaternion joint is similar to that with 6 d.o.f. The most significant difference con-
sists in coordinates,  which define the orientation of SC2B relatively to SC1A. In the case of a 
quaternion joint we have four coordinates (a quaternion) 3210 ,,, qqqq . As it is known, the qua-
ternion cannot be singular, but it satisfies the identity 

12
3

2
2

2
1

2
0 =+++ qqqq  

at any moment. 
Translational degrees of freedom can be turned off similar to the 6 d.o.f. joint, but rota-

tional degrees of freedom are always presented. 
The quaternion joint is mainly used for introducing coordinates of freely moved bodies, 

as well as for introduction of spherical joints. 
 
Remark. If a spherical joint is cut (Sect.2.3.3), its description by a quaternion joint is the 

most effective way from the numerical point of view. 
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2.3.2.5. Internal body joint 

Internal body joint is often used by introducing 6 degrees of freedom to a body, which 
can move freely. Orientation angles in these case correspond to the sequence of rotations 1,2,3 
(Cardan angle).  

A large weight is automatically assigned to the internal body be the program. Due to this 
fact, if a joint or a chain of joints setting position of the given body relative to the Base0 is intro-
duced, the internal joint is cut and automatically removed. This property of internal joints is fre-
quently used in subsystems in particularly in specialized UM modules such as UM Caterpillar 
and UM Train3D. 

Consider an example. In the UM Caterpillar module the model of a track is automatically 
generated as an included subsystem. All elements in the subsystem, which must be connected 
with the hull, are connected with a fictitious body. The fictitious body has six d.o.f. introduced 
by an internal joint. In the model of a tracked vehicle, the model includes a hull with 6 d.o.f. and 
two subsystems – tracks. Fictitious bodies from each of the subsystems are rigidly fixed relative 
to the hull by special zero d.o.f. joints. In this case the internal joints of fictitious bodies are cut 
and automatically removed. 
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2.3.2.6. Weightless rod constraint 

This  type  of  constraint  corresponds  to  a  weightless  rod  with  spherical  joints  at  the  end  
points connecting two bodies. There is no friction in the joints. To describe the constraint it is 
enough to set the coordinates of the attachment points of the rod in the body-fixed SC of both 
bodies and a nonzero length of the rod. The length of the rod may be either constant or an expli-
cit time function, which greatly expands the area of its application to analyze controlled systems. 
E.g., an actuator may be considered a massless rod with the length varying somehow in a number 
of problems where its inertial parameters are insignificant. 
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2.3.2.7. Mates 

Mates are constraints, which limit relative position and motion of pairs of bodies. The no-
tion ‘mate’ is introduced in CAD programs and appears in UM in connection with development 
in UM40 interfaces to CAD programs such as SolidWorks, Autodesk Inventor, KOMPAS. As a 
rule, mates appear in UM models as a result of converting CAD assemblies into UM objects 
when some constraint cannot be converted automatically in joints described above. 

Mates realized in UM a described by the following data. 
1. Type of mate 

· Coincident 
· Concentric 
· Parallel 
· Distance 
· Angle 

2. Type and parameters of manifolds connected with each of the in the pair of bodies 
· Point. Described by coordinates in the body-fixed SC. 
· Line. Described by coordinates of one point on the line and a unit vector along it in the 

body-fixed SC. 
· Plane. Described by coordinates of one point on the plane and a normal to the plane in 

the body-fixed SC. 
3. Parameters, which depend on the mate type. 

· Distance. Distance between the manifolds should be specified. 
· Angle. Value of angle between the manifold must be set. 
 
There exist limitations on type of manifolds for some types of mates. For instance, manifolds 

cannot be points for mates “coincident”, “parallel” и “angle”. 
 
Example. Mate of the “coincident” type with points as manifolds for both of the bodies, i.e. 

the coincidence of a point of the first body with another point of the second body, introduces the 
same constraints on relative motion of the bodies like a spherical joint. The main difference con-
sists in the fact that if the spherical joint is not cut, it introduced 3 angular degree of freedom de-
fining orientation of the second body relative to the first one. The mate always adds constraint 
equations, 3 equations in the considered case: 

02
2022

1
1011 =--+ rr ArAr  

Here 21, rr  are the radius-vectors of body-fixed system of coordinates, 0201, AA  are the direct 

cosine matrices of body-fixed SC, 2
2

1
1 , rr  are the radius-vectors of coinciding points, which are 

specified in the body-fixed SC. 
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Number of constrain equations for all possible types of mates is specified in the table. 
 

Type of mate Types of manifolds Number of constraint 
equations 

Coincident point-point 3 
point-line 2 

point-plane 1 
line-line 4 

line-plane 2 
plane-plane 3 

Concentric line-line 4 
Parallel line-line 2 

line-plane 1 
plane-plane 2 

Distance point-point 1 
point-line 1 
line-line 3 

line-plane 2 
plane-plane 3 

Angle line-lineя 1 
line-plane 1 

plane-plane 1 
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2.3.2.8. Convel joint 

 
Fig. 2.9. Scheme of ConVel joint 

 
A ConVel (constant velocity, CV) joint provide equal angular velocities of a pair of in-

clined shafts. This constraint corresponds to a point-point coincidence mate as well as to equal 
shaft angles of rotation. 

The joint is specified by the coordinates of the joint center A in SC of each of the bodies 
as well as by two unit vectors e1, e2 for shaft axes, Fig. 2.9. 

The joint adds four constraint equations. Three of them correspond to coincidence of two 
points A of shafts. The fourth equation provides the equality except for sign of angle of rotation 
of body 2 about vector e2 and the angle of rotation of body 1 about the vector e1. 
 
Remark. In fact, the joint does not provide constant angular velocities of shafts. The name of the 
joint reflects its property to keep (nearly) constant velocity of the second shaft by the constant 
angular velocity of the first one, unlike the Hook joint. Besides, angular velocities of shafts are 
(nearly) equal. 

 
To make the CV joint model correctly, the user should create a correct kinematic scheme 

of shafts by proper choice of joints and/or force elements.  

 
Fig. 2.10. Model configuration with additional rotational joint 

 
At the beginning consider a model, which does not correct with respect to the CV joint. 

In this model the first shaft is connected with the base by a rotation joint S, Fig. 2.10, and 6 d.o.f. 
are introduced for the second shaft relative to SC0. In this model a CV joint reduces the degrees 
of freedom of the second shaft to two rotational d.o.f. relative to shaft 1. In such the model, the 
second shaft does not keep it orientation along the axis e2, and the shaft motion is not correct. 

S 

O1 

O2 

A e1 

e2 
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Fig. 2.11. Model with two additional rotational joints 

 
 The first variant of the possible models is shown in Fig. 2.11. In this model each of two 
shafts is connected with the base by rotational joints S1 and S2. If the joint axes lie exactly on 
straight lines specified by CV joint vectors e1, e2, Fig. 2.10, the mechanism works properly. At 
the same time, the second shaft without CV joint has 1 d.o.f. only, and adding the CV joint intro-
duces four constraints. This means, the model has redundant constraint and statically uncertain. 
Reaction joints cannot be computed properly. There are other reasons why this model cannot be 
recommended. For example, if joint axes do not coincide exactly with CV axes e1, e2, the me-
chanism cannot move at all. Most likely, the user gets a message about non-consistent equations 
of motion by the start of simulation. As a rule, this scheme is incorrect if the shafts are connected 
with different bodies, which can move relative to each other. 

 
Fig. 2.12. Model with one rotational joint and with one bushing 

  
 The model shown in Fig. 2.12 is better than the previous one in many cases. Here we see 
a bushing for the second shaft instead of a joint. The bushing limits shifts of the body in direc-
tions perpendicular to the shaft axis. A special force of the ‘bushing’ type as well as a genera-
lized linear force element can be used for the bushing model. In an alternative model the bush-
ings are introduced for both shafts instead of rotational joints. The user must take care of the di-
rections in which the bushings are blocks shaft displacements. 
 
EXAMPLE. See the User’s Manual, Chapter 7, Sect. Convel joint.  

S1 

S1 

S2 
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2.3.3. System graph. Closed kinematical loops 

An important stage in dealing with complex mechanical systems is the analysis of their 
structure, which can be carried out with the help of the system graph. Its vertices correspond to 
the bodies including the basic one; its ribs correspond to the joints. The above conditions of con-
nectivity being met, the graph of the system is connected, i.e. there is at least one path between 
any two of its vertices. That the graph satisfies the connectivity condition is the corollary of the 
condition that there is a chain for each body that connects it with body 0 (base, SC0). If there is 
but one path between any pair of vertices, the graph is a tree, and in this case the corresponding 
mechanical system has a tree structure. If at least one pair of bodies between which there exists 
more than one path can be found, the graph of the system has cycles and the MBS contains 
closed  kinematical  loops.  Then  it  is  clear  that  there  are  bodies  in  the  systems,  which  are  con-
nected with body 0 by more than one chain. 

A majority of mechanisms has closed loops. To analyze systems with closed loops is 
more difficult than if the system is a tree. The most effective strategy here consists in cutting a 
few joints so that a tree could be obtained. The number of cut joints equals that of independent 
cycles  in  the  graph.  It  is  easy  to  see  that  almost  always  to  choose  which  joints  to  cut  is  ambi-
guous and there is a chance of picking them out best or optimally considering this or that crite-
rion, e.g., to facilitate the equations of motion, reduce their size, decrease the number of arith-
metic  operations  in  the  numerical  modeling  of  motion,  etc.  In  UM the  choice  of  such  joints  is  
made automatically through the analysis of the graph. The optimal cutting is based on the 
Dijkstra algorithm for obtaining paths of minimal weight from the root of the graph to each ver-
tex. 

As was noted in the section devoted to system connectivity (Sect.1.3.1), to generate the 
equations in a symbolic form requires that the joints in the chain between the basic body and any 
body of the system must introduce coordinates. Thus, a rod joints must be cut. The condition of 
connectivity, for this reason, requires sometimes the introduction of additional joints with six 
d.o.f. for a spatial problem and three d.o.f. for a 2D one. 

 
Remark 1. The user can have an influence on the choice of joints to be cut by means of 

large weight coefficient for the corresponding joint in the closed loop. 
Remark 2. Cut joints with 6 degrees of freedom are conditionally removed, i.e. the cor-

responding coordinates are not included in the set of object coordinates. 
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2.4. Equations of motion 

Equations of motion of a multibody system have the following form of differential-
algebraic equations:  

( ) ( ) ( ) ( )
( ) ,0,

,,,,,,
=

l+=+
pqh

qGtqqQtqqkqtqM T&&&&  
(2.1) 

where q is  the column of basic coordinates of the system, p is the column of auxiliary coordi-
nates (local joint coordinates in cut joints; M is the mass matrix, k,Q columns of generalized in-
ertia and applied forces; l  are Lagrange multipliers corresponding to reactions in cut joints; the 
second equation in Eq. (2.1) is the algebraic constraint equation corresponding closure condi-
tions of cut joints. Matrix G is the Jacobian matrix of the constraint equations after elimination of 
auxiliary coordinates. 

UM generates the equations of motion in a symbolic form. This approach proved to be 
more efficient in comparison with a purely numerical one.  

Consider expressions generated by UM for each simple object. Let { }ijqq =  be the set of 
coordinates of the object. It contains the local joint co-ordinates for normal and fictitious joints 
(except the cut normal joints. UM generates in a symbolic form the following kinematic rela-
tions: 

· The radius-vectors of mass centers and rotation matrices for each body, 
),,(00 tqrr ii =      ),,(00 tqAA ii =  

· The velocities of mass centers and angular velocities for each body, 
,'000

iii vqDv += &       ,'ii
i
i

i
i qB w+=w &  

· Note that all quantities relating to body rotations are given in the body-fixed SC, whereas 
all translational quantities are set in the SC0; 

· The matrices 0
iD  and i

iB  included in the expressions for the velocity of the center mass 
and angular velocities (Jacobean matrices); 

· The vectors 0'ia  and i
i'e  of the terms of accelerations and angular accelerations not de-

pending on q&& , 

,'000
iii aqDa += &&      i

i
i
i

i
i qB 'e+=e && ; 

· Constraint equations for the cut joints 
( ) 0, =kk pqh . 

· Elements of the matrices QkM ,,  of the motion equations (2.1) 
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2.5. Theoretical foundations for solving constraint equations 

Theory of numerical solving differential-algebraic equations asserts that the numeric 
solvers are sensitive to errors in initial conditions. This means that the initial values of coordi-
nates and their first time derivative should satisfy the constraint equations as exactly as it is poss-
ible. To clarify the problem it is good to consider the procedure of forming and solving the con-
straint equations. 

Let q0 ,  p0  be the current values of generalized (coordinates in joints, which belongs to 
the object tree, i.e. they are not cut) and auxiliary coordinates, respectively. These values, as a 
rule, do not satisfy the constraint equation 

h(q,p)=0, 
which corresponds to the closure conditions for the cut joints. The corrections Dq, Dp must be set 
so that new coordinate values satisfies the equation 

h(q0+Dq, p0+Dp)=0. (2.2) 
The Newton-Raphson iterations are used by UM for solving the nonlinear Eq.(2.2). The follow-
ing equations are solved at every the iteration: 

Hq(qk, pk)Dqk+1 + Hp(qk, pk)Dpk+1 = -h(qk, pk), 
qk+1= qk + Dqk+1, pk+1= pk + Dpk+1, k=0,1... 

q0= q0 , p0= p0. 
Here Hq, Hp  are the Jacobian matrices of the vector h. The k-th iteration is done according to the 
following pattern. The constraint equations  

Hq,i(qk, pk
i)Dqk+1 + Hp,i(qk, pk

i)Dpk+1
i = -h(qk, pk

i), (2.3) 
are generated for each cut joint j. This equation is in the generalized coordinates and local aux-
iliary variables (i.e. the local coordinates in the cut joint). The auxiliary variables Dpk+1

i are elim-
inated from Eq.(2.3) with the help of the Gauss elimination procedure and the following two eq-
uations are obtained:  

Dpk+1
i = PiDqk+1 +d pk

i , (2.4) 
Gi

kDqk+1 = -gi
k . (2.5) 

Then Eqs. (2.5) for separate cut joints are added to the matrix equation  
GkDqk+1 = -gk, (2.6) 

whose solution are obtained using the Gauss elimination procedure based on the row pivoting. 
The correction values for the pivotal elements (independent variables) are set to zero and nonze-
ro values of the dependent variables are calculated according to Eq.(2.6). The obtained solution 
Dqk+1 is substituted into Eqs.(2.4) for evaluations of the auxiliary variables. If the norm of the 
calculated correction vector is less that the prescribed small tolerance e, the iteration is stopped 
and the program exits from the procedure otherwise the next iteration is executed. 

Note that according to this algorithm, an arbitrary solution to the equations is obtained in 
agreement with the constraint equations. Fixing coordinates (e.g., when it is necessary to obtain 
the configuration of a four bar mechanism for a certain angle of crank rotation, Fig. 2.13), can be 
done by the user but only for generalized coordinates (not auxiliary!). The fixed coordinate re-
mains unchanged during the above iterations. 

The process of automatically solving the constraint equations can fail. If it does not con-
verge after 20 iterations, you receive the corresponding message and can either continue the 
process or quit.  

Consider some situations when iterations do not converge. 
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· The constraint equations have no solution 
That means the mechanism has not been assembled correctly. For instance, consider a 

planar mechanism shown in Fig. 2.13. If one sets the lengths of bodies 1, 2 and 3 so that their 
sum is less than the distance between the hinges con-
necting body 1 and 3 to the support, the mechanism 
cannot  be  assembled.  This  occurs,  too,  when the  axes  
of rotation of the joints are not parallel.  

UM cannot see if your mechanism can or can-
not be assembled. Although it sends a message notify-
ing that iterations do not converge. Of course, you 
have to find out the reason why this happened and 
make changes in the object description using the Input 
Module or correcting the values of some identifiers. 

 
· Constraint equations have no solution for the given values of the fixed coordinates. 

If you have fixed some coordinates (see previous sections) so that their values cannot be 
changed during iterations, sometimes the solution cannot be found. It can be for two reasons. 
First, the set of fixed coordinates contains dependent coordinates. For example, if you have fixed 
any two coordinates for the mechanism shown in Fig. 2.13, the solution cannot be found because 
the mechanism has one d.o.f. and any two coordinates are dependent. Second, if the current val-
ue of a fixed coordinate is outside of its interval. This occurs (for the case of mechanism in Fig. 
2.13) if you have fixed the angle j1 and the distance between points A and B is greater than the 
sum of the lengths of bodies 2 and 3. 

 
· Bad starting approximation 

It is well known that the Newton-Raphson procedure requires a good starting approxima-
tion q0, p0  for successfully solving non-linear equations. If your current coordinate values are far 
from the desirable solution, the following variants may take place: 

à Iterations do not converge. Try to continue iterations for several times. If the solution 
is not found jet, try to set the start values of coordinates manually. 

à UM obtains an undesirable solution. This 
problem arises due to lack of uniqueness of 
nonlinear constraint equations. One example 
is given in Fig. 2.14 (the dashed line). Use a 
manual choice of coordinates to improve the 
approximation. 

à For the given values of coordinates q0 , p0  the 
Jacobian matrix of the constraint equations 
(2.6) is singular. For the mechanism in Fig. 
2.14,  a  singularity  of  the  given  kind  is  en-
countered if the joint between bodies 1 and 2 

is cut and the angles in joints satisfy j3=0,p, j4=j1+j3. Use a manual choice of coor-
dinates to avoid the singular position. 

à The Jacobian matrix Hp,i in Eq. (2.4) is singular for the given values of q0 , p0. Use a 
manual choice of coordinates to avoid the singular position. 

 

Fig. 2.13. Four bar mechanism 

 

Fig. 2.14. 
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2.6. Force elements 

Forces acting between bodies are generally divided into applied and constraint reactive 
forces. In their turn, reaction forces are represented by two components: the tangential compo-
nent performing mechanical work during motion (as a rule, these are friction forces) and an ideal 
- or normal - component. If all the constraints in the MBS are ideal, the first component is ab-
sent. In terms of data input applied forces and the reaction force non-ideal components have the 
following in common: they should be expressed through the variables and parameters of the sys-
tem. However the ideal components of reaction forces are determined by the type of constraint 
and their computation is carried out automatically. 

In UM the following active forces varying in the patterns of their description in the data 
input module, are available: 

· gravity forces; 
· joint forces (for translation, rotational and generalized joints); 
· bipolar forces; 
· generalized linear force elements; 
· contact forces; 
· gearing; 
· T-forces; 
· externally formulated forces. 

An applied force may be a function of time, coordinates and their first time derivatives. 
In simpler cases, (e.g., for gravity and generalized linear force element) these functions are au-
tomatically generated by the program. However, they are so often quite complicated and the user 
has to write his/her own procedures in a control file or use external libraries. Such forces are re-
ferred to as externally formulated forces. 
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2.6.1.  Gravity 

In UM the gravitation field is assumed homogenous. Thus it is only necessary to specify 
the unit vector of the gravity direction. The gravity acceleration is assumed 9.81 m/s2. However, 
the user can leave gravitation out of account. The generalized forces corresponding to gravity are 
generated automatically. 



Universal Mechanism 5.0 Part 2. Mechanical system 2-30

2.6.2. Joint forces and torques 

One way to set an active force or torque is to introduce these for the corresponding de-
gree of freedom. Thus,  one models an engine,  actuator (transmission) and other systems where 
dynamic effects are insignificant. E.g., in a robot manipulator model the designer has the right 
not to take into account inertial properties of the transmission members and therefore not to solve 
the dynamic problem. So the model is idealized, and the designer assumes that the influence of 
the transmission on the object is reduced to the appearance of driving forces or torques in the ki-
nematic pairs. Such force (torque) is directed along the axis of the pair. 

To model such forces in the program the definition of a joint force (torque) for genera-
lized, rotational and translational joints is introduced. In the case of a generalized joint, a force (a 
torque) can be introduced for any ET with a variable parameter (i.e. tv or rv, see Sect. 2.3.2.3). 
The force (torque) vector is directed along the axis of ET according to the increase of the para-
meter values. It is assumed that the force is only a function of time, the corresponding ET para-
meter and its time derivative (that is velocity). This limitation is removed if the user applies the 
external description of the force, in other words, if the force computation is done while the mod-
eling of motion with the help of a procedure written by the user in a control file. 

For a joint with several d.o.f. it is possible to introduce a force for each d.o.f., or for some 
of them. 
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2.6.3. Bipolar forces 

 

Oi 

Oj 

B 
A 

ri rj 

r 

F -F 

 
Fig.2.15 

 
A bipolar force element connects two chosen fixed points of a pair of bodies (attachment points 

Oi, Oj in  
Fig.2.15). The force acts along the straight line between the points and may depend on 

time t, the distance r between the points and its time derivative ×r , 
),,( .rrtFF = . 

The force is positive in the repulsion case, for example, it is positive in the case shown in  
Fig.2.15.  

In the UM input module some of the most often met types of the dependencies between 
the bipolar force and the variables are available: a linear function, an analytical expression, a set 
of points etc. Mathematical models for this dependence are described in Sect. Types of scalar 
forces. 

If the distance r equals zero, the degeneration of the force element occurs (due to the un-
certainty of the force direction). Here, the force is assumed to be zero. 

Example. Consider a bipolar force, which models a linear viscoelastic force element with 
c and d parameters as stiffness and damping coefficients. Let the force equals F0 when the length 
of the element is x0 and the velocities vanish. The analytic expression for the force looks like 

F=F0-c(x-x0)-dv. 
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2.6.1. Scalar torque 

 
Fig. 2.16. To the notion of scalar torque 

 
This type of force element describes torque acting on the second body from the first one/ 

To clarify the model of the torque consider interacting bodies 1 and 2, Fig. 2.16. Points O1 and 
O2 are the origins of the body-fixed SC1 and SC2. Let us introduce additional local system of 
coordinates SCA1 and SCB2, rigidly connected with bodies 1 and 2 respectively. Arbitrary 
points A and B are origins of local SC. A scalar torque m depends on orientation of SCB2 rela-
tive to SCA1 and does not depend on their origin positions. Moreover, it is supposed that Z axes 
of SCB2 and SCB1 are nearly parallel, i.e. the angle between these axes is small during mo-
tions of bodies and does not exceed 10 degrees. By these assumptions, let us shift axes of SCB2 
to the origin A. 

 
Fig. 2.17. Angle of rotation of the second body relative to the first one 

 Let us introduce angle α of rotation of the second body relative to the first one about Z 
axis as an angle between the X-axes of SCB2 and SCA1, Fig. 2.17. For simplicity directions of Z 
axes on this figure coincide.  

Scalar  torque  acting  on  the  second  body  from  the  first  one  is  directed  along  Z  axis  of  
SCA1. Value of the torque depends on the angle α, its time derivative a& , and time t 

( )tmm ,, aa= &  
Mathematical models for this dependence are described in Sect. Types of scalar forces. 
 
Remark. If the second body is connected with the first one by a rotational joint, which 

axis coincides with the Z-axis of SCA1, and Z-axes of SCA1 and SCB2 coincides so that the an-
gle α is equal to the joint coordinate, the scalar torque can be equivalently described by a joint 
torque, see Sect. Joint forces and torques. 

 

B 

α 

Z1,2 

X1 X2 

O1 O2 
A 

B r1 r2 
m 



Universal Mechanism 5.0 Part 2. Mechanical system 2-33

2.6.2. Types of scalar forces 

Definition of a bipolar/joint/axle force includes its mathematical model as a scalar func-
tion ),,( tvxff = . In the case of a joint force the arguments x,v a the joint coordinate and its 
time derivative, for a bipolar force element they are the element length and its time derivative. 
Anyway, t is the current time value. The following types of description of the force model are 
foreseen in UM. 

 

2.6.2.1. Linear force  

The model corresponds to a linear viscoelastic interaction with a harmonic excitation: 
)sin()( 00 a+w+---= tQdvxxcFf  

Here 0F  is the constant component of the force, c, d are the stiffness and damping constants, x0 

is the value of the coordinate x for zero value of the elastic component, aw,,Q  are the ampli-
tude, the frequency and the initial phase of the harmonic excitation. 

The element is used for description of linear springs, damping elements, harmonic excita-
tions and their combinations 

Adding a new element of this type to a model see in Chapt.3, Sect. Input of bipolar force 
elements | Linear force element. 

2.6.2.2. Friction force 

This type of force is mainly used for modeling frictional dampers. The force description 
includes two modes: sliding and sticking. In the sliding mode the force satisfies the formula 

( )vFf sign-=  
analogously to the Coulomb friction with a constant friction force F, and v as a the sliding veloc-
ity. In the sticking mode, the force model looks like 

( ) vdxxcff ×---= 00 , 
i.e. presents a linear viscoelastic force with the c and d parameters as stiffness and damping coef-
ficients. 

The sliding-sticking transition occurs at the moment when the velocity v changes its sign. 
At this moment the force f and the coordinate x values are stored (the f0 and x0 parameters in the 
formula for the force in the sticking mode). 

The sticking-sliding transition occurs when the force reaches its maximal value 
0Ff ³ , 

where 0F  is the maximal value of static friction force. 
The user should specify the parameters of the model 0,,, FdcF   

 
Adding a new element of this type to a model see in Chapt.3, Sect. Input of bipolar force 

elements | Friction and elastic-friction elements. 
 

2.6.2.3. Elastic-frictional force 

This is one of well-known models of friction, which consists of a dry friction with a li-
near spring in series. An additional damper is usually set in parallel with the spring (Fig. 2.18). 
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Fig. 2.18 

The mathematical model of the element requires the introduction of an auxiliary variable 
*x in addition to x, v variables. In a sliding mode the mathematical model includes the following 

differential equations relative to the *x  variable: 
( ) ( ) Fxxxcxvd ×=---- *** && sgn  

Fxf ×= *&sgn . 

(2.7) 

Here c, d are the stiffness and damping coefficients, F is the constant friction force. The 
equation corresponds to a condition that the friction force is equal to the sum of the elastic and 
damping forces. 

In a sticking the *x  variable is constant, and the force is equal to 
( )xxcdvf -+-= *  

Stick-slip transition occurs when  
Ff d³ , 

where 1/0 ³mm=d  if the static/dynamic coefficient of friction ratio.  
Slip-stick transition occurs when 

0<-**xx && , 
where -*x&  b the value of the velocity *x&  at the previous step of integration process. This condi-
tion corresponds to changing the sliding direction. 
 

Consider a new variable 
*-= xxy , 

which corresponds to an elastic deflection of the spring. In a sliding this variable satisfies 
the eqation 

( ) Fyv
d

y
d
cy ×--=+ && sgn1 , 

(2.8) 

and the force value produced by the element is ( ) Fyvf ×-= &sgn . In a sticking the equations is 

,
,

cydvf
vy

--=
=&

 

and the slip-stick transition occurs when 
( )( ) 0<-- -- yvyv && . 

Note that in this formulation the model of the friction element corresponds to the compliant con-
tact model [1]. 

Consider some properties of the variable y. At a sticking its behavior quite analogous to 
that of the variable x, so the most interesting is its value at slipping according to Eq. (2.8). Covert 
this equation to the following form 

D±=l+ yy& , 
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where ( )bl 2k= , mck =  is the frequency of a body with the mass m on a spring with the 
stiffness c; b  is the damping ratio of critical, cF=D  is the deflection of the spring by the fric-
tion force F. Usually the frequency k is large, and for a reasonable damping ( 1<b ) the value of 
l  is large< and the differential equation is stiff. For example, if 628=k  rad/s (100 Hz) and 

1.0=b  then 3140=l . 
If D  is constant, the solution of the equation is  

( )
l
D

±=-+= l-
F

t
F yeyyy ,10 . 

with ( ) 00 yy =  as  an  initial  condition.  If  D  is variable by virtue of variability of the friction 
force F, it can be shown by the singular perturbation method that the solution in the first approx-
imation  is  analogous  to  the  above  one.  It  is  a  sum of  the  slow term Fy  and a boundary layer 
function, which tents to zero very fast. The typical behavior of the variable y is shown in Fig. 
2.19. The left figure is obtained for 10 =y . In fact, we see here a fast tending the variable to ze-
ro. The right figure shows the ( )ty  dependence for, 00 =y  for a process when sliding changes 
its direction several times. The variable is nearly constant at sliding and changes rapidly at stick-
ing. Figures were obtained for the friction ratio 2,1=d . 

 
Fig. 2.19. Variable y (elastic deflection) versus time for different initial condition 

Note  1.  ‘Friction’  and  ‘elastic-friction’  force  show  in  simulations  similar  results.  The  
‘elastic-friction’ force introduces an additional variable and makes equation of motion stiff. So, 
we recommend using the ‘friction’ force. 

Note 2. Model of the force contains a first order differential equation, but its internal re-
presentation is replaced by an equivalent second order differential equation  

( ) zyFzv
d

z
d
cz &&&&&& =×--=+ ,sgn1  

This replacement serves the unification of numerical methods. 
 

Adding a new element of this type to a model see in Chapt.3, Sect. Input of bipolar force 
elements | Friction and elastic-friction elements. 

2.6.2.4. Elastic-frictional force 2 

 
The force element is a spring ( 1c )  in  series  with  a  parallel  combination  of  the  second  

spring ( 2c )  and a Coulomb friction element.  In contrary to the previous two model of the fric-



Universal Mechanism 5.0 Part 2. Mechanical system 2-36

tional  element,  here  the  friction  force  is  not  constant.  Its  value  depends  on  a  deflection  of  the  
spring in parallel 2c . 

Consider mathematical model of the element. Let 21, xx  be the length of the springs, and 
( ) ( ) ( )00,00 12 xxx ==  be initial values of these variables. This means that at start of simulation 

the second spring 2c  has zero length and this position corresponds to its undeformed state. 
Let 0L  be the length of the spring 1c  in an undeformed state. Then the forces produced by the 
springs can be computed from the expressions 

( ) ( ) ( )
.

,

22222

21201011111
xcxcf

xxcxLxcLxcxcf
-=D-=

-D-=---=--=D-=
 

Here 0Lxx -=D . 
As usual, the friction has two models. At sticking we accept a proportionality of the fric-

tion force to the force produced by the spring 2c  
( ) ( ) ( ) ( ) 222222222 sgnsgnsgnsgn xcxxxcxfxF fr &&& m-=m-=m-= . 

where m  is the dynamic coefficient of friction. The 2x  deflection can be computed from equality 
of two forces: the force in the spring 1c  and the sum of friction force and the force produced by 
the spring 2c  

frFfff +== 21 , 
i.e. 

( ) ( ) ( ) 22222221 sgnsgn xcxxxcxxc &m--=-D- , 
and finally 

( ) ( )( ) ( )
.

,
1sgnsgn1

21

21

1

2221

1
2

xxx
cc

xc
xxcc

xcx

-=D
m±+

D
=

m++
D

=
&  

From the expression for 2x  we obtain that at sliding the variables xD  and 2x  have equal signs at 
least for 1<m . The force value is 

( )
( )m

m
±+
±D

=
1
1

21
21

cc
xccf . 

The estimation 21 cc >>  often takes place, which yields 
( )m±D» 12 xcf . 

In such cases the friction coefficient is a good approximation for the “relative (effective) friction 
coefficient” according to the estimate 

mj »
+
-

=
sc
sc

ff
ff , 

where ( ) ( )mm -D»+D» 1,1 22 xcfxcf cc  are forces at compression and stretching. 
 

At sticking the deflection 2x  is  a  constant  and  the  resultant  force  produced  by  the  ele-
ment is computed from the formula 

( )221 xxcff -D== , 
Finally, slip-stick transition occurs when the velocity 2x&  changes its sign. The sign of the veloci-

ty is estimated on the difference -- 22 xx , where -
2x  is the value of the coordinate at the previous 

integration step. Stick-slip transition occurs when 

220221 xcxcfF fr m>-= , 

where 0m  is the static coefficient of friction. 
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List of parameter of the model: 

21, cc  - stiffness, 

0,mm  - static and dynamic coefficients of friction, 

0L  - length of element in an undeformed state. 
 
A typical hysteresis (force versus coordinate) as well as coordinate x versus time are 

shown in Fig. 2.20. The amplitude of vibrations decreases exponentially like a viscous damper, 
but the element realizes a frequency independent damping like rubber. 

 

 
Fig. 2.20. Force versus coordinate x; coordinate x versus time 

 
Note 1. Force element of this type can by used for modeling leaf springs, internal friction 

in rubber elements etc.  
Note 2. Element is automatically switched of if at least on of the parameters 1c  or 2c  is 

zero. 
Note 3. When friction is zero, the element corresponds to two springs in series. 
Note 4. Bipolar force element degenerates at zero length. If it pass through zero length, 

the simulation results are incorrect.  
Note 5. Do not set coefficient of friction more that 1. 
Note 6. Static and dynamic coefficients of friction are usually equal for elements of this 

type. 
Note 7. At sticking the element has no dissipates. If necessary, add dissipation in parallel 

(Sect. List of forces). 
 
Adding a new element of this type to a model see in Chapt.3, Sect. Input of bipolar force 

elements | Elastic-friction element 2. 
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2.6.2.5. Stiffness and damping in series and parallel 

      
Fig. 2.21. Scheme of the force element 

 
The scheme of the element includes linear spring and in series linear spring damping in 

parallel (Fig. 2.21, left). This element is used, e.g. in the Nishimura model of an air spring. In a 
particular case 01 =c  (Fig. 2.21, right) the element is a linear spring and damper in series, and 
such elements are used for modeling of dampers, as a part of models of rubber, elastomer, etc.  

Mathematical model of the element is obtained from equality of elastic and viscoelastic 
forces and includes the following differential equation 

( ) ( )110111 xxcxxxcxcx -D=--=+n& , 

where 0x  is the length of the unloaded element (ignored if 01 =c ). 
Thus, the element adds a new variable 1x  to the model and the corresponding differential 

equation. If the time constant 

c
T n

=  

is small, the differential equation is stiff. In such cases the Park solver with computation of Jaco-
bian matrices is recommended. It is worth to note that if T is small, and the analyzed object mo-
tion is slow, the element is equivalent to a simple linear damping with the same damping ratio. 
 

Note 1. Model of the force contains a first order differential equation, but its internal re-
presentation is replaced by an equivalent second order differential equation  

xcz
cc

z
n

=
n

+
+ &&& 1  

This replacement serves the unification of numerical methods. 
Note 2. Usually the initial value of 1x  variable (more accurately, initial for z and z& ) is 

zero. 
Adding a new element of this type to a model see in Chapt.3, Sect. Input of bipolar force 

elements | Viscoelastic element. 

2.6.2.6. Points model 

This type of the force requires the description of the ( )xf , ( )vf  or ( )tf  functions in a as 
a set of points. Coordinates of points can be both numbers and expressions. UM uses linear in-
terpolation and extrapolation for calculation of force values in an arbitrary point. The figures be-
low show some force models, which can be easily realized with the help of this method. 
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All three models require four points for description. 

 
Adding a new element of this type to a model see in Chapt.3, Sect. Input of bipolar force 

elements | Points (numbers), Input of bipolar force elements | Points (expressions) 

2.6.2.7. Expression 

The force model is an expression including standard elementary functions. For instance, 
( )tavdxxcff **+*--*-= 15sin)( 00  

Adding a new element of this type to a model see in Chapt.3, Sect. Data types | Expres-
sion – explicit function. 

2.6.2.8. Fancher leaf spring 

This type of force is used for simulation of leaf massless springs. The mathematical mod-
el of the force is the following: 

.
,

},{sign
,)(

0

1,

1,1,
1

xxx
xfcF

xxFxcF
eFFFF

ifr

iifriienv

xx
ienviienvi

ii

-=D

D=

D-D-D-=

-+=

-

D-D-
--

- b

 

Here i is the number of the integration step, f is the friction coefficient, c is the stiffness 
of the spring, frF  is friction force, b  is the exponential suspension parameter, 0x  is the height of 
the spring in the undeformed state. Parameters c and f may depend on the spring state: stretched 
( 0<dx ) or compressed ( 0>dx ).  

The plot in the figure below shows an example of free vertical vibration of a body con-
nected with the base by the Fancher leaf spring element, 002.0=b m. 
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Fig. 2.22. Typical behavior of the Fancher model  

 
Note. The model is unstable for big b. If 0®b , the model is similar to the force of kind 

elastic – frictional 2, see Sect. 2.6.2.4, with equal static and dynamic coefficients of friction. 
Adding a new element of this type to a model see in Chapt.3, Sect. Input of bipolar force 

elements | Fancher leaf spring. 

2.6.2.9. External function 

The function should be written by the user with the help of programming in the UM envi-
ronment. 

Adding a new element of this type to a model see in Chapt.3, Sect. Data types | External 
functions. 
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2.6.2.10. Hysteresis 

Preloading 

Start loading 

Loading 

Unloading 

Start 
unloading 

Stop 

x 

F 

 
Fig. 2.23. Scheme of hysteresis curve 

 
 Notions and definitions 
 Force of this type is used for modeling force elements, which mathematical model con-
tains a hysteresis like cushioning device in a train.  

The scheme of the force description curves is shown in Fig. 2.23 (force versus element 
length or coordinate value). The force description includes definition of four curves: 

- preloading, which is a nonlinear elastic curve including possible clearance; 
- loading curve, containing two parts: the start loading and loading; 
- unloading curve, containing two parts: the start unloading and unloading; 
- stop is a nonlinear elastic curve. 
The start loading/unloading curves are used in particularly for computation of the curve 

of intermediate loading/unloading shown in the figure by the dashed curve. The transition of the 
force law to the intermediate curve occurs in the following two cases. First, when the force is on 
the loading curve and the coordinate starts decreasing. Second, when the force is on the unload-
ing curve and the coordinate starts increasing. After transition to the intermediate curve, the 
force follows it up and/or down until the loading or unloading curves are reached. 

 
Details of curve descriptions 
1. The user should enter a set of points, which lie on the curves. 
2. Each of the curves is described by numbers of points; abscissas of the points must be in 

ascending order. The curves must be single-valued functions. 
3. Points connecting different curves must be the same. For instance, the first points on 

unloading and start loading curves or the first point on the loading curve and the last point on the 
start loading must coincide. 

4.  A  curve  can  be  a  polyline  (set  of  straight  sections)  or  an  interpolation  polynomial,  
which order should be set by the user. Note that the number of points setting a line must be 
greater than the order of polynomial. 
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Formulas for evaluation of intermediate loading-unloading curve 
 

Start loading 

Loading 

Unloading 

Start 
unloading 

x 

F 

A 

B 

C 

D 

a 

a 

U 

V 

s s s 

a 
u 

b 

 
Fig. 2.24. Definition of intermediate loading-unloading curve 

 
Suppose that the transition to the intermediate curve occurs from the loading curve at 

point V (Fig. 2.24). The unitless parameter ]1,0[Îa  is comuped as 

CD

CV
xx
xx

-

-
=a  

Point U on the unloading curve is defined by the same value of the parameter a. Abscissa of 
point U is 
 ( )aa -+= 1BAV xxx  
The intermediate curve passes trough points U, V. Let us compute its arbitrary point u, which 
abscissa corresponds to the unitless parameter [ ]1,0Îs  

UV

uV
xx
xxs

-
-

= . 

Points a, b on the start loading and start unloading curves for the given values of s have the fol-
lowing abscissa values: 
 ( ) ( )sxsxxsxsxx DBbCAa -+=-+= 1,1 . 
Then abscissa and ordinate of point u are computed according to the formulas 

( )( )( ) ( )( ) ( )
( )( )( ) ( )( ) ( )aaaaaa

aaaaaa
-++---+----=

-++---+----=

1111
,1111

abCDVABUu

abCDVABUu
FFsFFFsFFFF

xxsxxxsxxxx
 

The intermediate curve defined by these formulas has the following properties: 
- by 0=a  it coincides with the start loading curve; 
- by 1=a  it coincides with the start unloading curve; 
- for other values of a it passes through points U, V. 

Thus, the intermediate loading/unloading curve is a combination of start loading/unloading 
curves. 
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Fig. 2.25. Example of hysteresis model with a soft characteristic  

 
 An example of a hysteresis force is shown in Fig. 2.25. The preloading curve is a polyline 
passing through three points; it specifies the 10 mm clearance. The loading, unloading and start 
unloading curves are set by 3 points each; the second order interpolation polynomials are used. 
The start loading curve is specified by two closed points; it is invisible on the plot. Three inter-
mediate curves and the stop curve (straight section) are presented in the figure as well. 

 
Fig. 2.26. Example of friction hysteresis model 

 
Elastic-frictional force with load dependent friction is shown in Fig. 2.26. All curves are 

polylines. 
 
Input of the element parameters see in Chapt.3, Sect. Data Input / Input of force elements 

/ Input of bipolar force elements / Hysteresis. 
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Remarks 
1. Hysteretic elements can work at compression, stretching, and symmetrically in both di-

rections.  
2. It is recommended to add a linear dissipative element in parallel with the hysteretic one 

because the intermediate curve does not dissipate energy. 

2.6.2.11. Impact (bump stop) 

Forces of this kind works as bump stops and use the following mathematical model: 

vdstepcF
lx

d
b ),0,,0,( DD-D-=

-=D
, where 

x is the current length of the force elements for bipolar forces or the current value of joint 
coordinate for joint forces; 

l is the length of the element at zero clearance when force element starts to work; 
c is the stiffness coefficient in a contact; 
b is the force curve exponent, is not used in the current version of UM software, assumed 

to be 1; 
dD  is the contact deflection where damping coefficient reaches its maximal value d; 

d is a damping coefficient in a contact, 
step is a special function, see below for details. 
 
Due to using step function effective damping coefficient changes smoothly from zero at 

zero deflection to maximal damping coefficient d at dD  deflection.  
 
Description of step function 
 
Step function smoothes switching between two levels of a function Y (Y1,  Y2) within 

some (X1, X2) interval. 
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Fig. 2.27. STEP function 
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2.6.2.12. Library (DLL) 

Forces of this kind are calculated in an external Dynamic-Linked Library (DLL). It helps 
the user to describe any mathematical model of force to include in a considered mechanical sys-
tem. To develop your own external library the user can use any software environment and any 
program language that supports creating Dynamic-Linked Libraries (DLL). Ready-to-use DLLs 
for scalar forces of the Library (DLL) type should be placed in the <um_root>\bin\lib\bfrc fold-
er. 

Please turn to the Chapt.  5 of UM User’s Manual,  Sect.  Creating and using external li-
braries, for detailed guide into developing and using external libraries in UM models. 

 

2.6.2.13. List of forces 

List of forces is a set of force elements of above types in parallel. The total force is the 
sum of forces produces by separate elements in the list/ The element allows creating useful com-
binations of forces such as nonlinear damper in parallel with nonlinear spring, rubber-metal ele-
ments etc. 

Adding a new element of this type to a model see in Chapt.3, Sect. Input of bipolar force 
elements | List of forces. 



Universal Mechanism 5.0 Part 2. Mechanical system 2-46

2.6.3. Generalized linear force element  

When modeling various technical systems, especially those used in transport, force ele-
ments linearly depending on the relative displacements of bodies and the velocities of their rela-
tive motion are so often to be obtained whereas the influence of their dynamics is insignificant. 
A spring and a damper belong to this type of elements. To model such forces automatically UM 
uses the generalized linear and damping force elements. An element of this type connects two 
different bodies (one of which may be the basic one). One body is considered the first, the other - 
the second.  

Let us consider the model of a linear elastic force 
element in more details (see the figure). Two bodies are 
shown. The A and B2 points of the bodies are connected 
by the linear elastic force element. The body-fixed sys-
tems of coordinates SC1 and SC2 have O1 and O2 as ori-
gins. The element attachment points are set by two vec-
tors 2

2
1
1,rr ,  each  of  them should  be  set  in  the  SC of  the  

corresponding body. 
And additional body1-fixed system of coordinates 

(SC of the element)  has  point  A  as  the  origin.  Axes  of  
SCA are arbitrary oriented relative to SC1, in a simples 
case they are parallel to the axes of SC1. 

An  additional  point  B1 is assigned to the first 
body. The 1

12r  vector specifies its position in SC1. Point 
B1 is the origin of a system of coordinate (SCB1), which 
axes are parallel to  SCA.  Another  additional  SCB2  is  

fixed in body 2, its axes are arbitrary oriented relatively to SC2. Point B1 corresponds to the posi-
tion of the second end of the force element (i.e. it coincides with B2) when dr vanishes (dr=0). 
The relative rotation pd  is equal to zero when the axes of SCB1 and SCB2 are parallel. 

Thus, the force is equal to the stationary value F0, and the moment vanishes when SCB1 
and SCB2 coincide. Displacement of B2 relatively to B1 sets the dr  vector, whereas the rotation 
of SCВ2 relatively to SCВ1 (SCA) sets the pd  vector. Both dr  and pd  are assumed to be small 
and define the force and the moment values. 

Now consider the mathematical model of the force element. The force F and the moment 
applied to the second body at B2 and resolved in SCB1 (SCA) are: 

w--p--=

w--p---

aa
T
araaar

rarrrarr

DvDdCdrCM

DvDdCdrCFF ,= 0
 

for an viscoelastic, and 

w--=

w--

aa
T
ar

rarr

DvDM

DvDF ,=
 

for a damping element. Here w= ,rdv &  is the angular velocity of the second body relative to the 
first one. 

The formulas can be rewritten as: 

,

,0
DVG

DVCdRGG

-=

--=
 

with С and D as the 66 ´  stiffness and damping matrices, and 
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Here is the list of parameters describing the element: 
- 2121 ,, rrr  -  the  coordinates of points A, B1,  B2;  points A, B1 should be defined in 

SC1, whereas point B2 should be defined in SC2; 
- orientations of  SCA (SCB1) relative to SC1, and SCB2 relative to SC2; in the UM In-

put Module the oriented connection point are used to define both the point and the orientation of 
system of coordinates; 

- stiffness C and/or damping D matrices as well as the stationary force F0 (optionally); 
these data are defined in SCA (SCB1). 

  
Force element can be also used for modeling a bilinear spring, i.e. a set of two springs 

where the internal spring is lower than the external one.  The internal springs works when the 
longitudinal deflection of the external spring is greater that the difference between the spring 
heights. A bilinear element is described by two stiffness matrices and by the height difference. 

 
Generalized linear force element can be only used if relative displacements of interacting 

bodies are small.  
See Sect. 2.6.6.5. Spring. 
Examples of description and/or usage: 
- Chapt.7. Sect. Models of Springs; 
- \samples\Manchester benchmarks\Vehicle1; 
- \samples\wedgetest. 
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2.6.4. Contact forces 

2.6.4.1. Points-Plane and Points-Z-surface types 

 
Fig. 2.28. Point-Plane contact model 

 
UM uses the Points-Plane contact force element for modeling the simplest contact inte-

ractions between two bodies (Fig. 2.28). A set of body-fixed points is assigned to the first body 
(body 1, a single point C is shown in Fig. 2.28). A body-fixed plane is assigned to the second 
body (body 2).  The  plane  is  specified  by  a  body fixed  point  (A)  and  by  an  external  normal  n.  
The contact points, point A and normal n should be given in SC of the corresponding bodies. 
Number of contact points is unlimited.  

 
Fig. 2.29. 

 
If the distance D between the contact point and the plane is positive and the contact is a 

unilateral  one,  the  contact  force  is  equal  to  zero  (no  contact,  Fig.  2.29  left).  If  D<0 (Fig. 
2.29 right) the force appears. The contact force has two components: the normal force N directed 
along the normal n, and the friction force fF  situated in the contact plane.  
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Fig. 2.30. 

 
A linear viscoelastic model is used for the normal force 

×D-D-= dcN , 
If this value is negative and the contact is a unilateral one, the force is equal to zero (no adhe-
sion). Parameters c, d are constant stiffness and damping coefficients. 

There exist two modes for the Coulomb friction low: sliding and sticking. The force 
model in the sliding mode is 

 ,ssf fN vvF -=  

where sv  is the sliding velocity (projection on the contact plane of velocity of point C relative to 
body 2), f  is the dynamic friction coefficient. The sliding-sticking transition occurs when the 
sliding velocity changes its direction on an opposite one. The program realization compares the 
scalar  product  of  the  velocity  on  the  current  integration  step  and  the  velocity  on  the  previous  
step. If the product is negative, the sticking occurs, and the friction force on the previous step 

gF and the 0gr =AD vector are stored, where D is the projection of point C on the contact plane 
(Fig. 2.29).  

The friction force model in the sticking mode looks like this: 
( ) sgggf dc vrrFF ---= 0  

where gr  is the current value of the vector AD. Thus, the point D is connected with the contact 
plane by a linear viscoelastic element at the sticking mode. The force gF in the formula ensures 
the continuity of the friction force at the sliding-sticking transition. 

The sticking mode is over when the friction force exceeds its maximal value 
Nff 0>F , 

where 0f  is the static friction coefficient, ff >0 . 
The following parameters specify the Points-Plate force element: 

· Coordinates of contact points in SC of the first body; 
· Coordinates of a point and an external normal to the contact plane in SC of the second 

body; 
· Parameters characterizing contact forces: dynamic and static friction coefficients, contact 

stiffness and damping coefficients dc, . 
 
An additional mode of the contact description is implemented in UM, a so-called mode of 

close contact. In this mode, the normal n and/or the point A are determined automatically. The 
mode is enabled by the following conditions: 

- Number of contact points is greater than 2 (for the normal detection only); 
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- Contact points lie in a plane (for the normal detection only); 
- At the moment the simulation starts, the contact point plane (belongs to the first 

body) and the contact plane (the second body) are close, i.e. a small clearance d be-
tween the planes is allowed. A small deviation of the normal to the planes is allowed 
as well. 

The close contact description requires specifying the clearance and the normal deviation 
nD . The following actions are made by UM to define the contact plane (the second body): 

· The external normal 2n  to the plane is computed as  
nnn D+-= 12 , 

where 1n  is the normal to the points plane (the first body), nD  is the normal deviation. The 1n  
vector is determined by three first contact points, entered by the user, according to right-hand 
screw rule, the points cannot lie on a line.  The normal 1n  should be external for the first body 
contact (the opposite vector 1n-  is assumed to be external to the contact plane of the second 
body). 

Point A on the contact plane (the second body) is computed according to the formula 
d+r= 11 nrA  

where d is the clearance, 1r  is the vector to the first contact point specified by the user. 
Before the simulation of the object starts, the contact plane position is calculated anew 

according to initial positions of the bodies. 
The contact can be a bilateral one (the contact forces appears independent on the direc-

tion or penetration of the point). In this case the clearance can be introduced even if the option of 
a close contact is not applied. 

 
Note. Points- Z-surface contact element is mathematically similar to the above one. In 

the case of this element, the contact plane is replaced by a surface, which is described by the 
functional relation ( )yxfz ,= . No close contact mode is available for this contact. 
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2.6.4.2. Point-Curve contact 

 
Fig. 2.31. Point-curve contact 

 
This type of contact interaction realizes sliding with a small deviation of a point belong-

ing to the first body on a curve, which is fixed relative to the second body, Fig. 2.31. 
Position of the contact point relative to SC1 is set by a constant vector 1r . 
In general the curve in SC2 is specified by a dependence of coordinates of points on the 

curve on a scalar parameter p (the upper index in the equation corresponds to the number of SC) 
( ) [ ]maxmin

22 ,, pppp Îr=r , 

where 2r  is the radius vector of a point on the curve in SC2. The equivalent scalar form of the 
curve equation is 

( ) ( ) ( )
( )Tzyx

pzzpyypxx

222
2

222222

,,

,,,

=r

===
 

The following classification of curves is used: 
· open curve, which end points differ, ( ) ( )max

2
min

2 pp r¹r ; 

· closed curve, end points are equal, ( ) ( )max
2

min
2 pp r=r ; 

· periodic curve is a closed curve, which have smooth derivative at the end points (tangents 
coincide) ( ) ( )max

2
min

2 pp r¢=r¢ ; the stroke here corresponds to derivative with respect 
to the parameter p. 
 

     
 

a     b     c 
Fig. 2.32. Examples of different curves 

 
 Fig. 2.32 shows an open (a), closed (b) and periodic (c) curves. 

O1 O2 
r1 

r(p) 
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 Each of the two end points of an open curve can be either locking or unlocking. 
The locking end point keeps the contact point on the curve while by passing through the unlock-
ing point the contact disappears. 

 
Singular points are locking end points of an open curve as well as points on it where he 

derivative discontinues (jump in the tangent or edge points, see Fig. 2.32 b). 

 
 

Fig. 2.33. To model of contact forces in non-singular points 
 

In case of a contact in non-singular points, two contact forces appear: a normal force N 
perpendicular to the curve and a tangent friction force F. The normal force vector applied to the 
contact point C, Fig. 2.33, is computed by the formula 

rrcN &Dn-D-=  
where rD  is the vector of the minimal deviation of the point from the curve; c and n are the con-
tact stiffness and damping constants.  

The friction force supports both sliding and modes similar to the point-plane contact 
model. 

 
Fig. 2.34. To model of contact forces in singular point 

 
In case of contact in a singular point, Fig. 2.34, the friction force vanishes, and the nor-

mal force depends on the vector of deviation rD  of the contact point C from the singular point 
according to the above equation. 

Remark. If the contact stiffness is big enough, the deviation of the contact point from the 
curve is small. Values of contact stiffness and damping constants should be chose according to 
recommendations in Sect. 2.7. Methodology of choice of contact parameters, page 2-66. 

r1 

С N 

Dr 

r1 

С N 
F 

Dr 
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2.6.4.3. Other types of contact forces 

UM allows other types of contact: 
· Sphere-Plane; 
· Circle-Plane; 
· Sphere - Sphere;  
· Circle - Z surface  
· Sphere - Z surface. 
 
All of these contacts describe rolling one body on a surface of another one.  
Consider mathematical models of the contacts. First of all, the minimal distance between 

the surfaces is determined. If the distance is positive, contact forces are zero, if not, the normal 
force N is computed (Sect.2.6.4.1). The friction force model differs from that in Sect.2.6.4.1: 

 
,      ,

,   ,

ïî

ï
í
ì

£-

>-
=

**

*

ssss

ssss
f

vvfN

vfN

vv

vvv
F  

where f  is the dynamic friction coefficient, N is the normal force, sv  is the sliding velocity, *
sv  

is the empirical (small enough) value of sliding velocity. If the sliding velocity as not small, the 
classical model of friction is used, else the viscous damping is considered. The *

sv  value is equal 
to 0,01R, where R is the characteristic size (radius) of contacting bodies. 
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2.6.5. 3D contact 

The common approach for simulation of contact between rigid bodies based on its con-
tact manifolds defined through graphical objects is implemented in UM 5.0. This approach treats 
nondeformable 3D objects with small overlaps at the contact. The presented approach consists of 
two parts: a collision detection for arbitrary polyhedrons and then a contact force calculation. 
Collision detection deals with generalized three-dimensional clipping algorithm by Cyrus and 
Beck [2]. Contact force calculation is based on a point-plane model and computed as a sum of 
normal viscous-elastic and tangential dry friction forces. Several examples of application of this 
approach for simulation of multibody system dynamics are given. 

 
Collision Detection for Polyhedrons 

To accelerate computational processes the collision detection is typically divided into so-
called far and near collision detection problems. Far collision detection is usually a fast algo-
rithm that should select polyhedrons for the following, usually more time-consuming, near colli-
sion detection. On the first stage of the far collision detection circumscribed spheres around po-
lyhedrons are created and its intersection is checked. The polyhedrons that passed through the far 
collision detection are treated by a near collision detection algorithm.  

The well-known in computer graphics generalized three-dimensional clipping algorithm 
by Cyrus and Beck is used as the near collision detection algorithm. The algorithm deals with 
two convex polyhedrons and gives as a result clipped edges of one polyhedron that lie within 
another one and vice-versa, see Figure below. For example, the algorithm gives the set of edges 
{E1, E2, E3} of Body2 and the empty set of edges for Body1 in Fig. 2.35a and {E1} of Body1 and 
{E2} of Body2 in Fig. 2.35b. 

 

 

 
a) b) 

Fig. 2.35. Vertex-face and edge-edge penetration 
 

Contact force calculation 
After all collisions between the neighboring polyhedron pairs have been detected, the 

contact forces have to be determined. Let us consider a pair of polyhedrons. Having a set of 
clipped edges that belong to each polyhedron the algorithm of calculation of contact forces ar-
ranges contact points on each edge, see Fig. 2.36a. The step size between neighboring contact 
points is a parameter of the mathematical model that depends on a characteristic dimension of 
polyhedrons. Then for each contact point the nearest face on another polyhedron from the pair is 
determined. As soon as pairs of points and planes (faces) are obtained the contact force R can be 
calculated as a superposition of normal viscous-elastic force N , depending on penetration Δ and 
its derivative, and tangential dry friction force fF , see Fig. 2.36b, [2]. 

Special control procedure keeps position of contact points on an edge during a contacting 
phase even the length of clipped part of the edge is changed. Such strategy provides smooth 
changing a resultant vector of contact force between two bodies with time.    
 

Body1 

 

 

Body2 Body1 
Body2 
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a) b) 

Fig. 2.36. Contact points and forces 
 

The presented approach perfectly manages both basic contact situations: vertex-face and 
edge-edge penetrations, Fig. 2.35. Since the Cyrus and Beck algorithm deals with convex poly-
hedrons, the presented approach for contact force simulation is also applicable for a case of con-
vex polyhedrons only. However the suggested algorithms can be enlarged for non-convex case if 
non-convex polyhedrons would be preliminarily divided into convex ones. In practice this strate-
gy works well when a convex decomposition is available with a moderate number of pieces, it 
breaks down for utterly non-convex objects. 
 

2.6.6. Special forces 

The following types of force elements are implemented in UM as special forces: 
· Gearing; 
· Combined friction; 
· Cam; 
· Spring. 

2.6.6.1. Gearing 

The gearing is realized in UM as a simplified model of contact iterations of gears. The 
force model can be used for simulation of plane gear (internal and external) and bevel gearing 
taking into account possible clearance between teeth as well as a compliance reduced to the con-
tact point. 

The gearing is specified by the following parameters (Fig. 2.37): 
· two  points  A  and  B  on  the  gear  axes  coinciding  with  the  gear  centers  (coordinates  

should be given in body-fixed frames); 
· two unit axle vectors (in body-fixed frames); 
· gearing ratio (radius of the first gear R1 divided by the radius of the second one R2); 
· clearance d; 
· gearing stiffness coefficient reduced to the contact point c (N/m); 
· gearing damping coefficient reduced to the contact point d (Ns/m); 
· type of gearing internal or external, for plane gearing only. 
Gear radii are calculated by UM automatically. 

 
Fig. 2.37. 

 
 Body2 

Body1 
 

 

 

 

Body2 

Body1 
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The gearing is modeled by a tangential force at the contact as 
( )

( )
ï
î

ï
í

ì

d<D
d-<DD-d+D-

d>DD-d-D-
=

2  ,0
2  ,2

2  ,2
&

&

dc
dc

F , 

1122 j±j=D RR . 
Here the force acts on the second body (the opposite force acts on the first one). 21,jj  are the 
angles of gear rotations. The minus sign in D corresponds to an external gearing. 

Remarks.  
1. The gear axes must lie in a plane. 
2. Use the Initial conditions tab of the Object simulation inspector to compute initial ve-

locities before the simulation starts (Chapt.4). 
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2.6.6.2. Rack and pinion 

Rack and pinion force element is a special case of gearing described above (see in 
Sect. 2.6.6.1). The only difference is that the second body (rack) moves translational. 
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2.6.6.3. Combined friction 

The force is a combination of a normal force N directed along the axis of the element and 
a perpendicular friction force, which in the sliding mode is NF m= .  The  normal  force  is  a  
function of the element length x, its time derivative v ant t, types of function are described in 
Sect. Types of scalar forces. The friction force has both sticking and sliding modes. In 2D model 
of  the  element  the  friction  force  directed  along  a  line  fixed  to  body  1,  in  3D  case  the  friction  
force lies in a plane. 

 
Body2 

D 

Body1 

Massless body 

N 

F 

 
Fig. 2.38. Scheme of the combined friction 

In the 2D case the force model can include a fictitious massless third body and a clear-
ance D, Fig. 2.38. 

 

2.6.6.4. Cam 

 
Fig. 2.39. Types of cam models 

The special case of contact interaction is an interaction of a cam and a piston or a link. 
The mathematical model of this interaction is similar to one described above (Sect. Points-Plane 



Universal Mechanism 5.0 Part 2. Mechanical system 2-59

and Points-Z-surface types). Types of cam-piston (cam-link) couples and examples of their using 
are shown in the Fig. 2.39. 

 
Three types of cam pairs are implemented in UM depending on the contact type: 
· point (the first figure); 
· roller (2nd and 5th figure); 
· plane (3rd and 4th figure). 
 
The Coulomb (dry) friction is taken into account for the plane and point contact types, 

whereas the roller contact is considered as an ideal one (without friction). 
 
Note. There is only one contact point at each moment of time. In the multipoint case ac-

tually the point with the maximal penetration is considered. 
The examples of the description and/or usage: 
- Chapt.3. Sect. Cam 
- \Samples\cams 

 



Universal Mechanism 5.0 Part 2. Mechanical system 2-60

2.6.6.5. Spring 

Special force element Spring is a special case of a general linear force element 
(Sect.2.6.3), which is used for modeling linear helical springs with equal shear stiffness in any 
direction perpendicular to the spring axis and with the symmetric rigid fixing of ends. It is sup-
posed  also  that  the  spring  axis  is  parallel  to  one  of  the  axes  of  the  first  body-fixed  system  of  
coordinates.  

Stiffness matrix, which is introduced in Sect. 2.6.3, for a spring parallel to Z-axis of the 
body1-fixed SC, has the following form: 
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Here als cccc ,,, j  are shear, longitudinal, bending and torsion stiffnesses of the spring, H  is the 
length of the spring. As a rule the length H  for vertical springs takes into account the static load. 

 x 
 y 

 z 

dy 

H 

F m 

m 
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 Body1 

 Body2 

 
Fig. 2.40. Spring forces 

 
Let us consider how we can get the values for non-diagonal elements of this matrix. Let 

the  second  body  be  over  the  first  one.  Shift  body  2  along  Y-axis  on  dy, Fig. 2.40. The force 
dycF sy -=  appears. An opposite force acts on the upper end of the spring and the same force 

acts on the lower end. Equilibrium of the spring requires a balancing pair of forces with the mo-
ment dyHcs . This pair must be realized by two equal (due to symmetry) pairs 2/dyHcs  in the 
upper and lower ends. Thus, the moment with the X-projection 2/dyHcs-  acts on the second 
body, which results in the non-diagonal element of the stiffness matrix 

2/42 HcC s=  
as well as in the element 24C which is equal to 42C  due to symmetry of the matrix. Elements 

2552 CC =  can be obtained analogously. 
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If the spring is parallel to the Y-axis, its stiffness matrix is 
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This matrix is obtained from the previous one permutations .,, yzxyzx ®®®  Finally, here 
is the matrix for a X-parallel element. 
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Coefficients of stiffness jccc ls ,,  for this type of force elements can be computed auto-

matically according to spring height, radius, number of coils etc. 
 

Note. If it is necessary to describe a spring, which is not parallel to one of the body1-
fixed axis, a special fictitious body should be introduced. This body must be fixed to body1 one 
of its coordinate axis must have the desirable direction. Joint fixing the fictitious body and body1 
can be a generalized joint, which allows constant rotations as elementary transformations 
(Sect.2.3.2.3), and can provide any orientation of the fictitious body relative to body1. 

 
Examples of description and/or usage: 
- Chapt.7. Sect. Models of Springs 
- \samples\rail vehicles\ac4 
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2.6.6.6. Bushings 

Element of this type is used for modeling linear and nonlinear compliant joints (bush-
ings). 

r1 

r2 r1 

r2 

B 
A 

Body1 
Body2 

 
Fig. 2.41. Systens of coordinates of a bushing 

 
Consider the mathematical model of a bushing. Let us introduce two systems of coordi-

nates. The first system SCB1 is fixed relative to body 1, the second one SCB2 is fixed relative to 
body 2. Vectors 21,rr  and constant rotation matrices 21, BB AA  determine  the  positions  of  
SCB1 and SCB2 relative to the bodies.  

It is supposed that deviation of SCB2 relative to SCB1 is small. 
In general the mathematical model of the bushing as a force element is expressed in terms 

of the displacement of point B relative to SCB1 
1122 rr --+=D rrr  

and the direct cosine matrix, which sets the orientation of SCB2 relative to SCb1 
20210121 B

T
BBB AAAAA =  

This matrix is nearly the identity one for small deviations of SCB2 from SCB1. In this 
case a vector of small rotation of SCB2 relative to SCB1 can be introduced as 
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Components of this vector correspond to small rotation angles of SCB2 about axis of SCB1. 
The skew-symmetric matrix corresponding to the rotation vector depends on the direct 

cosine matrix according to the formula 
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This expression is used for evaluation of the rotation vector by the simulation. 
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Linear model of bushing 
In case of a linear bushing its mathematical model is: 
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Here 11, BB MF  are the force and the torque produced by the element expressed in SCb1 and 
reduced to point B. The following constant parameters specifying the bushing model must be set 
by the user (all vectors are resolved in SCB1): 

- C and D are the constant diagonal matrices, which specify stiffness and damping con-
stants by movement/rotation along/about axes of SCB1; 

- the vectors 00 , pDDr  set small offset, i.e. a ‘constant’ deviation of CSB2, for instance 
in stationary position of the model; 

rv &D=12  is re velocity of the SCB2 origin relative to the second body; 

1212 w-w=w  is the relative angular velocity; 

00 , MF  are constant values of force and torque for zero relative velocities and 

00 , pD=pDD=D rr ; these vectors are usually used for setting the stationary or static values of 
forces, often by 0,0 00 =pD=Dr . 

 
Nonlinear model of bushing 
In case of a nonlinear bushing its mathematical model is: 
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Nonlinear part of the model is concentrated in dependence of the force and torque ee MF ,  on the 
corresponding components of vectors 00 , pD-pDD-D rr  
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Nonlinear dependencies of these components on displacements must be set by the user as plots.  
In particular, a nonlinear bushing is often used for modeling or contacts with gaps on 

translational and rotational degrees of freedom. 
 
Input of the element parameters see in Chapt.3, Sect. Data Input / Input of force elements / Spe-
cial forces / Bushings. 
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2.6.7. T-forces 

The element defines a force and a moment, which components are either explicit func-
tions of time or functions of time stored in columns of a text file (the first column contains time). 

 
Remark. The user can introduce additional applied forces acting on bodies in the control 

file without describing the forces in the Input module. 
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2.6.8. Force element response in the frequency domain 

Force element response in the frequency domain is a useful utility for a scalar force (a bi-
polar force element or a joint force). Consider a scalar force element, which dependence on a 
scalar variable x and its time derivative v is the following (Sect. Types of scalar forces): 

),( vxFF = . 
Consider a harmonic excitation of the force 

( ) ( )
( ) ( )ftfatv

ftaxtx
pp=

p+=
2sin2

2sin0 , 

where fax ,,0  are the center of excitation, its amplitude and frequency in Hz, t is the time varia-
ble. The response is the periodic function 

( ) ( ) ( )( )tvtxFtF ,= . 
Expand this function into Fourier series keeping zero and first order terms 

( ) ( ) ( ) ( ) ( )
( ) ( )( ).2sin

2cos2sin
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0
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d-p+=
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Main characteristics of the force in the frequency domain are introduced according to this expan-
sion: 

- Dynamic stiffness ( ) ( ) afFfK K=  
- Equivalent damping ( ) ( ) ( )fafFfC C p= 2  
- Phase or damping angle ( )fd  
- Amplitude of the response ( )fF1 . 
- Dependence of the response function on the coordinate ( )( )xvxF ,  and veloci-

ty ( )( )vvxF ,  for a fixed excitation frequency. 
 
For description of a tool for force element analysis in the frequency domain see Chapt.4, 

Sect. Force element response in the frequency domain. 
An example for a force element analysis can be found in Chapt.7, Sect. Elastic-friction 

element 2. 
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2.7. Methodology of choice of contact parameters 

Contact stiffness c and damping m  parameters  are  used  in  description  of  a  number  of  
force elements (Sect. Contact forces, Friction force, Elastic-frictional force, Cam). Let us consid-
er some methods for estimation their numeric values. 

The real contact stiffness due to elastic deformations in contacts is usually very high (say, 
1110 N/m). It is clear, that for reasonable values of contacting body masses such stiffness intro-

duces a very high frequency in the model (about mc , where c is the stiffness, and a m is the 
mass). This makes the model oscillatory stiff and increases CPU expenses considerably due to 
decreasing the integration step size. In practice much less values the stiffness can be set in the 
model. Consider the main reasons for that. 

Applied  theory  of  ordinary  differential  equations  states  (a  strict  proof  can  be  obtained  
with the help of theory of singular degenerate equations) that if a system has two groups of fre-
quencies of different order, e.g. 1–10Hz in the first group and 200–1000Hz in the second one, 
the high frequency processes does not affect practically the low frequency processes. Moreover, 
changing parameters, which determine high frequency processes, does not lead to considerable 
changes of the low frequency processes. That means, if the stiffness c is ‘large enough’, its fur-
ther  increase  does  not  affect  analyzed  processes,  if  they  are  ‘slow’.  The  stiffness  is  ‘large  
enough’ if the introduced local frequencies are at least by order of magnitude greater than the 
frequencies of analyzed object. The frequency k introduced by the contact stiffness may be esti-
mated by the formula mck = , where m is the lower mass of interacting bodies. Thus, if the 
user choose a ‘large enough’ local contact frequency ( )p= 2kf Hz, the corresponding contact 
stiffness can be computed according to the formula 

mfc 224p= . (2.9) 

 
Consider an example. Let 20=m kg, 200=f Hz (i.e. the main frequencies of the object 

are 1–10 Hz). Then 71016.3 ´=c N/m. 
A stiffness coefficient computed according to this methodology should be verified and 

corrected by the user. To do this, run simulations for different values of the stiffness and plots of 
object performance variables should be compared. If 2÷10 times increasing the coefficient does 
not affect the results, the stiffness is ‘large enough’. In this case it is recommended to try de-
creasing its value. This may reduce CPU expenses. The boundary of the parameter is its value 
when the plots of performances are changed. 

 
Let us discuss now methodology for choosing a dissipation coefficient m . If this coeffi-

cient is ‘too small’, high frequency undamped oscillations may appear in the model, which intro-
duce large accelerations. Moreover, frequencies of these oscillations according to the methodol-
ogy above have nothing in common with the reality. If the damping is ‘too large’, the equations 
of motion become stiff, and CPU expenses increase. A correct choice of the damping coefficient 
is especially important for systems with unilateral constraints, i.e. for systems with gaps and im-
pacts,  because  the  damping  is  responsible  for  a  value  of  coefficient  of  restitution.  Finally,  the  
value of the damping must correlate with the value of the contact stiffness. 

To get a justified value of the contact damping, a very important notion of damping ratio 
of critical b  and a damping factor *b  is used. To clarify this notion consider the equation of free 
linear damped oscillations 

0=+m+ cxxxm &&& , (2.10) 
As  it  is  well  known,  the  solution  of  this  equation  depends  on  ratio  of  two parameters:  the  fre-
quency of free undamped oscillations mck =  and the damping coefficient ( )mn 2m= . If 
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kn < , the motion is damped oscillations with the frequency 22 nkk -=* . If kn ³ , an aperi-
odic solution takes place. The boundary value kn =  corresponds to a critical damping. The 
damping ratio and the damping factor satisfy the following relations 

],,0[

,

22
¥Î

-
==b

=b

*
*

nk

n
k
n

k
n

 

(2.11) 

Oscillations are undamped if 0=b=b * , and by 1=b  ( ¥=b* ) the damping is critical. The pa-
rameters can be expressed in terms of each other, 

22 1
,

1 *

*
*

b+

b
=bb>

b-

b
=b  

If 1<b , a decrement factor is computed as 

21 b-

pb
-

pb- ==
*

eeD . 
The decrement factor determines an amplitude fall on a half of the period of oscillations. If the 
damping is small, *b»b  and 

pb-» eD . 
Values of the decrement factor for different degrees of damping are presented in Table1. 
 

Table 1 
Decrement factor versus damping ratio 

b  0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 
D 1 0.729 0.527 0.372 0.254 0.163 0.095 0.046 0.015 0.0015 0 

 
Fig. 2.42. shows solutions for different b . 

 
Fig. 2.42. Damped vibrations for various damping ratios 

If 1.0£b , the damping is often considered as a small one. The value 1,0=b  can be rec-
ommended for an approximate in rubber-metal elements. The value 3,0=b  is recommended for 
dampers of transport vehicles. If 1³b , the system is strongly overdamped.  
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The  above  analysis  clarifies  the  notions  ‘too  small’  or  ‘too  large’  damping  coefficient.  
We recommend the damping 4,01,0 ¸=b  for the contact forces. Thus, if you choose some val-
ues for stiffness and damping ratio, the coefficient of damping is computed according to the fol-
lowing formula 

mcb=m 2 . (2.12) 

For the above example 71016.3 ´=c N/m with the damping ratio 2,0=b  we get 410»m Ns/m. 
 

The next important problem is, how collisions may be likely modeled? If we answer this 
question, we could find a more proved value of damping ratio b  in cases of unilateral contacts.  

Is it is known, one of the most simple and frequently used model of a collision of bodies 
is based on the Newton’s coefficient of restitution e, which can be illustrated by the following 
example. Consider a mass point, which strikes against a fixed plane. The point velocity before 
the collision be -v , and after the collision - +v . The coefficient of restitution is 

-

+
=

v
ve . 

 
Fig. 2.43. Collision process 

Consider the model of viscoelastic interaction of the point with the plane (Sect. 2.6.4.1). 
The coordinate x  in Fig. 2.43. is the penetration, which determines the normal contact force 

xcxN x &m--= . 
During the process of the contact the point motion is described by the differential equation (2.10) 
with the following initial conditions: ( ) ( ) -== vvx 0,00 .  At the compression stage of the colli-
sion the normal force increases, and at the relaxation phase it decreases. At some moment t  the 
normal reaction vanishes and the impact process is over. This, ( ) +=t vv .  

To get the velocity after the impact, consider the solution of Eq. (2.10) 
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At the end of the collision we have 
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so the collision duration t  satisfies the equation 
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The result can be simplified is we find that 
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or finally 
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Now the velocity after the collision is: 

( ) ( ) ( ) .sin
22

22 +*jb--*t-
*

-
+ =t=t=t= evke

nk
kvx

n
kvv n  

Here a lifting off phase ( )**+ bb=t=j 22arcsink  is introduced. This phase depends of the ratio 

b  (or *b ) only. 
So, we have obtained the following fine formula for the coefficient of restitution: 

+*jb-= ee  
Illustration of dependance of the coefficient of restitution on the damping ratio is given in Ta-
ble 2 and Fig. 2.44. 

 
Table 2 

Coefficient of restitution versus damping ratio 
b  0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 

e 1 0.859 0.744 0.65 0.572 0.506 0.451 0.404 0.364 0.329 0.298 

b  0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1  

e 0.272 0.249 0.228 0.21 0.194 0.18 0.167 0.155 0.145 0.135  
 

0

0.2

0.4

0.6

0.8

1

1.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 
Fig. 2.44. Coefficient of restitution versus damping ratio 
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If the user knows the coefficient of restitution, he can estimate the damping ration b  and, 
respectively, the damping coefficient m . 
 

2.8. Subsystems 

2.8.1.  Subsystem technique 

If a mechanical system containing hundreds or thousands of bodies is modeled, the equa-
tions of motion are so huge that problems with their compilation might arise. For such a system 
the subsystem technique is convenient. In this case, the MBS is preliminarily (conditionally) di-
vided into a few parts - subsystems - and is called a compound object. Separate subsystems may 
or may not be connected with each other by joints or force elements. 

The subsystem technique is especially effective when several subsystems are kinemati-
cally identical or, in other words, have the same kinematical scheme. Here is a rigorous defini-
tion of kinematic identity. 

Two subsystems are kinematically identical if, their configuration being arbitrary, it is 
possible to bring them into spatial coincidence in the basic SC by means of the following trans-
formations:  

· translation (the vector is constant); 
· rotation about any axis by a constant angle; 
· changing of the parameters of the kinematic pairs (e.g., changing the lengths of the mem-

bers); 
· changing the values of the local joint coordinates. 

 
For the equations of motion of the kinematically identical subsystems to be the same the 

following conditions should be satisfied: all the constant parameters (masses, lengths of the 
structural elements, etc.), which may vary numerically must be represented in a symbolic form 
(i.e. by identifiers). While modeling motion, different values may be attributed to the parameters 
of different subsystems. 

UM model of an object can be structured as a tree of external and included subsystems. 
An External subsystem is generated by any preliminarily created UM object - ancestor. 

All modifications made in description of the ancestor are automatically taken by all external sub-
systems – descendants. Moreover, modification in an external subsystem can be made exclusive-

Compound object  

External SS Included SS Bodies, joints... 

External SS 

Included SS 

Bodies,joints.... 

External SS 

Included SS 

Bodies,joints.... 

... ...
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ly through modification of the corresponding ancestor. A compound object, which contains ex-
ternal subsystems, does own neither structure, nor parameters of external subsystems, but refers 
to them. At the same time, the compound object can add joints and force elements connecting 
bodies from different subsystems. Thus, in the case of kinematically identical subsystems, the 
user can create an ancestor, generate the equation library for it (dll), and add the ancestor to the 
object as many times as it is necessary. 

Included subsystems, unlike the external ones, belong to the compound object. The ob-
ject owns their structures (bodies, joints, forces, etc.) and parameters. Several included subsys-
tems generated by one ancestor can be arbitrary modified. Equations of motion for included sub-
systems are generated as a part of the object equations. 

Subsystems have a tree structure. An object can contain any number of subsystems (both 
external and included). Each of the subsystem, in its turn, may be a compound object containing 
subsystems. 

The subsystem technique is the foundation for development data basis for modeling dif-
ferent technical systems (such as rail vehicles). 

2.8.2. Standard subsystems 

Standard subsystems are automatically generated subsystems, which are basis for crea-
tion of models of technical systems taking their features. Standard subsystems are used in the 
main um modules UM: simulation of rail vehicles, automotive vehicles, caterpillar models, and 
ballast. 

2.8.2.1. Wheelset as standard subsystem 

 
A standard subsystem wheelset is  the  base  of  the  UM  Loco  module  for  simulation  of  

railway vehicles. Simultaneously to an automatic adding wheelsets to vehicle models, UM com-
putes rail-wheel contact forces as well as special interface abilities are available with this mod-
ule. 

2.8.2.2. Vehicle suspensions 

       
UM-automotive module is based on a number of vehicle suspensions. 
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2.8.2.3. Caterpillar 

  
The UM/Caterpillar module is based on a standard subsystem “caterpillar”, which allows 

the user to get a model with any number of tracks, supporting wheels, etc. 

2.8.2.4.  Ballast 

 

 
Generated subsystem ‘ballast’. Simulation of the ballast backfilling process 

 
The ‘ballast’ subsystem is developed for analysis of dynamic properties of broken stone 

ballast. The UM ballast model can include thousands of bodies of different shape. 

2.8.3.  Examples of compound objects 

2.8.3.1. Dynamically independent subsystems 

If it is necessary to compare in one time scale the behaviors of the same object in differ-
ent situations or various objects, the method of subsystems is also useful. In this case, the com-
pound object containing several subsystems generated by one or many UM objects is formed. 
For instance, two Puma robots or one Puma robot and a Stanford manipulator can be dealt with 
as compound objects (see the \Samples\Robots example). Here, the subsystems are not dynami-
cally connected. However, the integration of equations of motion is done for both subsystems 
simultaneously, and the results are displayed out in the same time scale. 
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The number of dynamically independent subsystems in a compound object is limited on-
ly by the resources of the user’s PC. 

2.8.3.2. Dynamic platform as a compound object 

 

                      
      
 

a)                                            b)                                       c) 

Fig. 2.45. Subsystem technique 
Consider a technical system - a six d.o.f. platform for dynamic tests (Fig. 2.45a, see the 

\samples\mechanisms\platform example as well).  Modeling its  dynamics is  no problem without 
using the method of subsystems. This example, however, can easily show some distinctive fea-
tures of the method.  

Separate the mechanism into seven subsystems by cutting the joints connecting the six 
control mechanisms with the platform. The control mechanisms are kinematically identical and 
are generated by the only UM object (Fig. 2.45b). The second simple object is the platform (Fig. 
2.45c). The simple object of the control mechanism has one external joint. In Fig. 2.45a the 
shown SC is the basic global one of the compound object, whereas in Fig. 2.45b and Fig. 2.45c 
the shown systems correspond to the local basic systems of coordinates. When assembling sepa-
rate subsystems into a compound object the local coordinate systems of the control mechanisms 
must be translated and rotated so that the joints connecting the structure elements with the fixed 
member could occupy the necessary position. The local SC of the platform is brought into coin-
cidence with the basic SC of the compound object. 



Universal Mechanism 5.0 Part 2. Mechanical system 2-74

 

2.8.3.3. Locomotive as a compound object 

 

 

 

    
 
The model of the TE116 locomotive as a compound object consists of a body and two in-

cluded subsystems – bogies. A bogie contains three included subsystems – wheel-motor blocks, 
one body (a bogie frame), and elements of the secondary suspension (springs and dampers). A 
wheel-motor block consists of one included subsystem (a wheelset is the standard UM subsys-
tem), a motor, elements of the primary suspension (springs, dampers, propulsion rods), gearing. 

The subsystem tree has four levels. 
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The model description has three stages. 
Stage 1. Creation of an object-ancestor: wheel-motor block, which contains a wheelset as 

an included subsystem. 
Stage 2. Creation of an object-ancestor: a bogie, which includes three wheel-motor block 

subsystems. 
Stage 3. Creation of the locomotive object, which includes two bogie subsystems.  
 
Each of the included subsystems is available for separate modification. 

2.8.3.4. Multibody physical pendulum 

Consider a chain of similar bodies connected by joints with one rotational d.o.f. The 
chain is attached to the immovable support and can move in the vertical plane owing to gravity. 
If the number of bodies does not exceed three or four dozens, modeling such a system is easy. If 
the number of bodies is greater, the symbolic equations of motion grow huge and this might 
cause problems with their compilation. 

Apart from the growth of the equation size there exists also the problem of the object de-
scription. If to tackle it traditionally, one has to introduce the inertial parameters for each body 
and  describe  all  the  joints,  which  is  very  time-consuming.  How then  can  the  motion  of,  say,  a  
100-body pendulum be modeled? Cut the chain into ten similar 10-body pendulums, in other 
words, into ten subsystems. All of them are kinematically identical, since they are generated by 
one ancestor - a 10-body pendulum. The given ancestor has ten bodies and eleven joints: one ex-
ternal and ten internal. The external joint serves as a means to connect the subsystems with one 
another in a chain. Nine internal joints connect the bodies of the pendulum, whereas the tenth has 
three d.o.f. and is used for the description of the position of one body of the ancestor (e.g. the 
fifth one) relative to the SC0. 

Since the compound object - the 100-body pendulum - is generated by only one ancestor, 
data input and the equations synthesis are carried out only for a 10-body pendulum, which is 
easy. The compound object is built then by ten subsystems generated by one ancestor. 

TE116 

First bogie
  

Second bo-
gie 

1st w/m 
block 

2nd w/m 
block 
блок 

3rd w/m 
block 
блок 

4th w/m 
block 
блок 

5th w/m 
block 
блок 

6th w/m 
block 
блок 

Wset1   Wset2 Wset3 Wset4 Wset5 Wset6 
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2.9. Linearization of equations and equilibrium positions 

2.9.1. Equilibrium equations and their solving 

Consider equations of motion for a multibody system with stationary constraints. If the 
system has closed loops, its equations of motion are (2.1): 

( ) ( ) ( ) ( )l+=+ qGqqQqqkqqM T&&&& ,, , 
( ) 0=qg  

At equilibrium by 0,0 == qq &&& , the following equations take place: 

( ) ( ) 00, =l+ TqGqQ ,   0)( =qg  (2.13) 

Here we have nonlinear algebraic equations relative to unknown values of coordinates q=q0 and 
Lagrange multipliers 0l=l . The Newton-Raphson method is used for solving the equations. 
The following linear equations are solved at each the iterations: 

( ) 0)(),()0,( 1
00

1
0000 =l+DlF+ ++ kTkkkkk

q qGqqqQ ,   0)()( 0
1

00 =-=D + kkk qgqqG , 
1

00
1

0
++ D+= kkk qRqq  

Here qQ  is the Jacobian matrix T
q qQQ ¶¶= , the matrix F  is defined by the relation  

TT qG ¶l¶=F )( , 
1£R  is the relaxation factor, which is usually equal to 1. 

The iterations are considered as successfully converged if the discrepancies in Eqs.(2.13) 
satisfy the condition 

å e<di , 
with an error tolerance e . 

User’s set initials 00
0 qq =  are used as a starting approximation. The Jacobian matrices 

),(),0,( 000
kkk

q qqQ lF  are evaluated by finite differences as 

( ) d-d+= TkT
i

kk
qi qQqqQqQ )0,()0,()0,( 000 , 

( ) dl-d+=lF kTkT
i

kkk
i qGqqGq 00000 )()(),( . 

Here qiQ , iF  are the columns i of the corresponding matrices, d is a small real number; the col-

umn iqd  has one nonzero value at position i, which equals to d. 

2.9.2. Natural frequencies, modes, eigenvalues and eigenvectors 

QR algorithm is used for computing both natural frequencies and eigenvalues. Reverse 
iterations are applied to get modes and eigenforms of linearized equations. 

 

2.10. Units of measure 

In UM all the calculations are carried out in the International System of Units: kg, m, s. 
While solving dynamic problems using other units is not recommended (cm, kN, etc.). In the da-
ta input unit angles are usually introduced in degrees (when describing initial conditions and lim-
its), whereas when modeling motion their numerical values are obtained in radians. 
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2.11. Generation and analysis of equations of motion 

Kinematical expressions and the motion equation generation of an object are done in a 
symbolic form with the help of a built-in specialized computer-algebra system. This decreases 
the number of operations for calculating their terms when numerically modeling motion. To de-
crease the number of operations more significantly fracturing and substituting procedures are 
used. The equations are generated either in a non-linear form or are linearized near the stationary 
motion. 

The equations of motion of a system are generated according to the Newton-Euler for-
malism  and  are  differential-algebraic.  The  equations  analysis  is  carried  out  by  means  of  the  
ABM, BDF numerical multistep methods with the automatic choice of the step size and the order 
of the method, as well as the Park and Gear methods for stiff equations. While integrating the 
equations computing kinematical characteristics and constraint reaction forces is possible. 

The Park and Gear methods with computing of Jacobian matrices are recommended for 
solving stiff differential-algebraic equations of motion. 

The obtaining of equilibrium positions of non-linear objects and the linearization of the 
equations of motion in the neighborhood of the equilibrium position can also be performed. For 
linear systems, there are standard analysis procedures: the obtaining of natural frequencies and 
vibration modes, root locus and so forth. 

2.12. The innovative capacity of the program and programming 
in its environment 

To raise its universality, UM has been left open for changes in anything concerning mo-
tion modeling. The user may include his modules and influence the process of modeling by 
means of the program messages. Programming in the environment of UM assumes using some 
internal procedures and data types, described in the current manual. 

Developing special modules to be linked to the program makes it possible to take into ac-
count the features of various technical system types. 
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