
 Eidgenössische Technische Hochschule Zürich
Swiss Federal Institute of Technology Zurich

Diploma Thesis

TopsySMP
A Small Multi-Threaded Microkernel

for Symmetrical Multiprocessing Hardware Architectures

Dominik Moser

November 1998 – March 1999

Tutor: George Fankhauser
Supervisor: Prof. Dr. Bernhard Plattner

Institut für Technische Informatik und Kommunikationsnetze
Computer Engineering and Networks Laboratory

This thesis has been written using LATEX 2ε and the KOMA-SCRIPT styles.

To Janine

Abstract

A symmetric multiprocessor (SMP) is the most commonly used type of multiprocessor system. All
CPUs and I/O devices are tightly coupled over a common bus, sharing a global main memory to
which they have symmetric and equal access. Compared to a uniprocessor system, an SMP system
imposes a high demand for memory bus bandwidth. The maximum number of CPUs that can be used
for practical work is limited by this bandwidth, being proportional to the number of processors con-
nected to the memory bus. To reduce memory bus bandwidth limitations, an SMP implementation
should use a secondary cache and a cache-consistency protocol.

Since the need to synchronize access to shared memory locations is so common on SMP systems,
most implementations provide the basic hardware support for this through atomicread-modify-write
operations. However, since the sequential memory model does not guarantee a deterministic order-
ing of simultaneous reads and writes to the same memory location from more than one CPU, any
shared data structure can cause a race condition to occur. Such nondeterministic behavior can be
catastrophic to the integrity of the OS kernel’s data structures and must be prevented.

The operating system for a multiprocessor must be designed to coordinate simultaneous activity by
all CPUs and maintain system integrity. To simplify their design, many uniprocessor kernel systems
have relied on the fact that there is never more than one process executing in the kernel at the same
time. However, this policy fails on SMP systems when kernel code can be executed simultaneously
on more than one processor. Therefore, a uniprocessor kernel cannot be run on an SMP system
without modification.

The easiest way to maintain system integrity within an SMP kernel is withspin locks. Spin locks
work correctly for any number of processors but are only efficient if the associated critical section
is short. Overall system performance will be lowered if the processors spend too much time waiting
to acquire locks or if too many processors frequently contend for the same lock. To reduce lock
contention, the kernel has to use different spin locks for different critical sections.

Overall system performance can be significantly improved by allowing parallel kernel activity on
multiple processors. The amount of concurrent kernel activity that is possible across all the pro-
cessors is partially determined by the degree of multithreading. Acoarse-grainedimplementation
uses few locks, whereas afine-grainedimplementation protects different data structures with differ-
ent locks. The goal is to ensure that unrelated processes can perform their kernel activities without
contention.

This thesis presentsTopsySMP, a small multithreaded microkernel for an SMP architecture. It is
based on Topsy which has been designed for teaching purpose at the Department of Electrical Engi-
neering at ETH Z¨urich. It consists of at least three independent kernel modules each represented by
a control thread: the thread manager, the memory manager, and the I/O manager. Besides, there are
a number of device driver threads, and a simple command-line shell. TopsySMP provides parallel
thread scheduling, and allows threads to be pinned to specific processors. The number of available
CPUs is determined upon startup which leads to a dynamic configuration of the kernel. The unipro-
cessor system call API is preserved, therefore all applications written for the original Topsy can run
on the SMP port.

This thesis shows that the implementation of an SMP kernel based on a multithreaded uniprocessor
kernel is straightforward and results in a well structured and clear design. The amount of concurrent
kernel activity is determined by the degree of multithreading and leads to a coarse-grained imple-
mentation using only a few spin locks. The spin lock times for a small-scale system with up to eight
processors are reasonably short compared to a context switch; no other synchronization primitives
are used within the kernel. The overhead caused by the integration of SMP functionality was kept to
a minimum, resulting in a small and efficient kernel implementation.

Furthermore, a suggestion is made on how to improve system performance by multiplicating the
control thread of a kernel module, allowing the throughput of module specific kernel activity to be
ideally multiplied.

6

Zusammenfassung

Der symmetrische Multiprozessor (SMP) ist die bekannteste Multiprozessor-Architektur. Alle CPUs
und I/O Geräte sind lokal ¨uber einen gemeinsamen Bus verbunden und teilen sich einen globalen
Hauptspeicher, zu dem sie symmetrischen, gleichberechtigten Zugang haben. Verglichen mit einem
Einprozessorsystem stellt eine SMP-Architektur viel h¨ohere Anforderungen an die Busbandbreite.
Die maximale Anzahl CPUs, die f¨ur eine gegebene Architektur verwendet werden kann, ist durch
die Busbandbreite limitiert, welche proportional zur Anzahl vorhandener Prozessoren ist. Um die
Buszugriffe zu verringern, sollte eine SMP-Architektur sowohl 2nd-level Cache-Speicher als auch
Cache-Konsistenz Protokolle verwenden.

Da beim Zugriff auf einen globalen Hauptspeicher fast immer Synchronisationsmechanismen be-
nötigt werden, stellen viele SMP-Architekturen hardwarem¨assig eine read-modify-write Operation
zur Verfügung. Diese Operation erlaubt es einem Prozessor einen Wert aus dem Speicher zu lesen,
diesen zu ver¨andern und innerhalb der gleichen Bus-Operation wieder in den Speicher zu schreiben.
Das verwendete Speichermodell garantiert jedoch keine Ordnung beim gleichzeitigen Zugriffen auf
identische Speicheradressen. Somit kann es zu Wettbewerbssituationen (race conditions) kommen,
die die Integrität der Datenstrukturen des Kernels verletzen.

Ein Betriebssystem f¨ur eine Multiprozessor-Architektur muss so geschaffen sein, dass es die gleich-
zeitigen Aktivitäten aller Prozessoren koordiniert und die Integrit¨at des Systems gew¨ahrleistet. Die
Entwickler der meisten herk¨ommlichen Betriebssysteme haben sich die Sache dadurch vereinfacht,
dass sie davon ausgingen, dass sich jeweils nur ein Prozess gleichzeitig im Kernel-Modus befinden
kann. Diese Annahme kann jedoch nicht ohne weiteres auf ein Multiprozessor-System ¨ubertragen
werden.

Die einfachste Art, um den Kernel vor gleichzeitigem, unkontrollierten Zugriff zu sch¨utzen, stellt
die Verwendung von Spin-Locks dar. Spin-Locks funktionieren mit einer beliebigen Anzahl Pro-
zessoren, sind jedoch nur dann effizient, wenn die gesch¨utzten Programmabschnitte kurz sind. Die
Gesamtleistung des Systems wird massiv abnehmen, wenn Prozessoren zuviel Zeit beim Warten auf
Spin-Locks verbrauchen bzw. wenn zuviele Prozessoren sich um den gleichen Spin-Lock streiten.
Um das zu vermeiden, sollte der Kernel ¨uber mehrere Spin-Locks f¨ur verschiedene kritische Ab-
schnitte verf¨ugen. Der Gesamtdurchsatz des Systems kann nur dann erh¨oht werden, wenn der Ker-
nel parallelen Zugriff von verschiedenen Prozessoren zul¨asst. Der maximale Grad der Parallelit¨at ist
dabei durch die Aufteilung des Kernels in unabh¨angige Threads gegeben.

In Laufe dieses Berichts wirdTopsySMPvorgestellt, ein kleiner Mikrokernel f¨ur eine SMP-Archi-
tektur. Entstanden ist er aus Topsy, einem Betriebssystem, dass an der ETH Z¨urich für Unterrichts-
zwecke entwickelt wurde. Der Kernel besteht aus drei unabh¨angigen Modulen mit je einem dazu-
gehörigen Thread: Thread-Manager, Memory-Manager und I/O-Manager. Daneben gibt es einen
Idle-Thread pro Prozessor, eine Anzahl Ger¨atetreiber und eine einfach Kommandozeilen-Shell. To-
psySMP unterst¨utzt paralleles Thread-Scheduling und erlaubt es, Threads zur Laufzeit an Prozesso-
ren zu binden. Die Anzahl der vorhandenen Prozessoren wird w¨ahrend der Startphase bestimmt und
führt zu einer dynamischen Konfiguration des Kernels. Das Systemcall-API von Topsy wurde un-
verändertübernommen. Somit laufen alle Programme, die f¨ur das urspr¨ungliche Topsy geschrieben
wurden ohnëAnderung auch auf TopsySMP.

Diese Diplomarbeit zeigt, dass die Implementierung eines SMP-Kernels basierend auf einem be-
stehenden Einprozessor-Kernel einfach m¨oglich ist und zu einem klaren, strukturierten Design f¨uhrt.
Der Grad an Kernel-Parallelit¨at ist durch die Strukturierung des Kernels in einzelne Threads gegeben.
Die Beibehaltung der Strukturierung von Topsy f¨uhrte dazu, dass nur wenige Spin-Locks ben¨otigt
werden. Die Spinlock-Zeiten – gemessen auf einem SMP-System mit bis zu acht Prozessoren – sind
verglichen mit der Zeit f¨ur einen Kontextwechsel kurz. Daher werden keine zus¨atzlichen Synchroni-
sationsmechanismen ben¨otigt. Der zusätzliche Verwaltungsaufwand f¨ur die SMP-Version h¨alt sich
dabei in Grenzen und hat keine messbaren Auswirkungen auf die Gesamtleistung des Systems.

8

Contents

Preface xi

I GENERAL CONCEPTS OF MULTIPROCESSING 1

1 Introduction to Multiprocessing 3

1.1 Project Goals . 5

1.2 Development Environment . 5

2 Review of Kernel Internals 7

2.1 Introduction . 7

2.2 Processes, Programs, and Threads. 8

2.2.1 Context Switch . 9

2.3 Summary . 10

3 Multiprocessor Hardware Architectures 11

3.1 Single vs. Multiple Instruction Stream 11

3.2 Message-Passing vs. Shared-Memory Architectures 12

3.3 Cache Coherence . 15

3.3.1 Uniprocessor Caches . .. 15

3.3.2 Multiprocessor Caches .. 15

3.4 Scalability . 17

3.4.1 Scalable Interconnection Networks . 18

3.4.2 Scalability of Parallel Software . .. 18

3.5 Performance Considerations . 19

3.6 Summary . 20

i

Contents

4 Multiprocessor Kernel Architectures 21

4.1 MP Operating System . 21

4.2 The Tightly Coupled, Shared Memory, Symmetric Multiprocessor 22

4.3 The MP Memory Model . 23

4.3.1 The Sequential Memory Model . 23

4.3.2 Atomic Reads and Writes . .. 23

4.3.3 Atomic Read-Modify-Write Operations 23

4.4 Mutual Exclusion . 24

4.5 Review of Mutual Exclusion on Uniprocessor UNIX Systems. 25

4.5.1 Short-Term Mutual Exclusion. 25

4.5.2 Mutual Exclusion with Interrupt Handlers 25

4.5.3 Long-Term Mutual Exclusion. 26

4.6 Problems Using UP Mutual Exclusion Policies on MPs 27

4.7 Summary . 28

5 Multiprocessor Kernel Implementations 29

5.1 Master-Slave Kernels . 29

5.1.1 Spin Locks . 30

5.1.2 Master-Slave Kernel Implementation . 31

5.1.3 Performance Considerations . 32

5.2 Spin-Locked Kernels . 32

5.2.1 Giant Locking . 33

5.2.2 Coarse-Grained Locking . 33

5.2.3 Fine-Grained Locking . 33

5.2.4 Kernel Preemption . 34

5.2.5 Performance Considerations . 34

5.3 Semaphored Kernels. 34

5.3.1 Mutual Exclusion with Semaphores 35

5.3.2 Synchronization with Semaphores. 35

5.3.3 Resource Allocation with Semaphores 35

5.3.4 Implementing Semaphores . .. 36

5.4 Summary . 36

ii

Contents

II REVIEW OF EXISTING MP SYSTEMS 39

6 SMP Hardware 41

6.1 SPARC Multiprocessor System Architecture. 41

6.1.1 Multi-level Bus Architecture. 42

6.1.2 MBus Multiprocessor System Design. 42

6.1.3 Multiprocessor System Implementation 42

6.2 Intel Multiprocessor Specification. 43

6.2.1 System Overview . 43

6.2.2 Hardware Overview . 43

6.2.3 BIOS Overview . 44

6.2.4 MP Configuration Table . 45

6.2.5 Default Configurations . 45

7 SMP Operating Systems 47

7.1 Solaris . 47

7.1.1 System Overview . 47

7.1.2 SunOS Kernel Architecture . 48

7.2 Mach . 50

7.2.1 The Mach Microkernel . 50

7.2.2 Process Management . .. 51

7.3 Linux . 53

7.3.1 Evolution of Linux SMP . 54

7.3.2 Changes to the Kernel Components. 54

7.3.3 Architecture Specific Code for the Intel MP Port 55

III TOPSY SMP 57

8 The Topsy Operating System 59

8.1 System Overview . 59

8.2 Thread Management . 60

8.3 Memory Management . 61

8.4 I/O . 62

8.5 User Programs . 62

iii

Contents

9 An SMP Machine for Topsy 63

9.1 Choosing SimOS as a Simulation Environment 63

9.2 Porting Topsy to MIPS R4000. 64

9.2.1 Memory Management . 64

9.2.2 Exception Handling . 66

9.2.3 MIPS R4000 Synchronization Primitives. 67

9.3 Porting Device Drivers to SimOS 70

9.3.1 Console Device Driver . 70

9.3.2 Clock Device Driver . 72

9.4 Adding additional Devices to SimOS . 73

9.4.1 Definition of the Device Register Set 73

10 Design of TopsySMP 77

10.1 Principal Design Goals of TopsySMP . 77

10.2 SMP Operating System Design Issues . 77

10.2.1 Simplicity . 78

10.2.2 Multithreading 78

10.2.3 Kernel Design . 78

10.2.4 High degree of parallel Kernel Activity . 79

10.2.5 Parallel Thread Scheduling . 81

10.2.6 Efficient Synchronization Primitives . 81

10.2.7 Uniprocessor API . .. 83

10.2.8 Scalability . 83

11 Implementation of TopsySMP 85

11.1 Implementation Steps . 85

11.1.1 SMP System Configuration . 85

11.1.2 Data Structures . 86

11.1.3 Bootstrapping . 87

11.1.4 Scheduler . 89

11.1.5 System call API . 90

11.1.6 User Thread Exit . 90

11.1.7 Exception Handler . 92

11.1.8 Synchronization Primitives . 92

11.1.9 Enhancement of Parallel Kernel Activity 98

iv

Contents

12 Performance Analysis of TopsySMP 101

12.1 Introduction. 101

12.2 Simulation Environment . 101

12.3 Benchmarks . 102

12.3.1 Sum . 102

12.3.2 Reserve. 102

12.3.3 Syscall . 103

12.4 Benchmark Results . 103

12.5 Kernel Locking . 104

12.5.1 Spinlock Times vs. Context Switch . 104

12.5.2 Complex locking strategies . 105

12.5.3 Detailed Spin Lock Times . 105

12.6 Internal Kernel Operations . 105

12.6.1 Exception Handling . 105

12.6.2 System Call . 105

12.6.3 SMP Management Overhead . 106

13 Conclusions 109

13.1 Future work . 110

IV APPENDIX 111

A MIPS R4000 Architecture 113

A.1 Introduction . 113

A.2 Processor General Features 113

A.3 Memory Management . 114

A.3.1 System Control Coprocessor, CP0 .. 114

A.3.2 Format of a TLB Entry . 114

A.3.3 CP0 Registers . 117

A.4 Exception Handling . 119

A.4.1 Exception Processing Registers . .. 120

A.4.2 Exception Vector Location . 123

v

Contents

A.5 Instructions Set Details . 123

A.5.1 ERET – Exception Return . 124

A.5.2 LL – Load Linked . 124

A.5.3 SC – Store Conditional . 124

B SimOS 125

B.1 Introduction 125

B.2 The SimOS Environment . 126

B.2.1 Interchangeable Simulation Models . 126

B.3 Data Collection Mechanisms . 128

C Project Description 131

C.1 Einleitung . 131

C.2 Mehrprozessorsysteme mit gemeinsamem Speicher. 131

C.3 Aufgabenstellung . 132

C.3.1 Verwandte Arbeiten . 132

C.3.2 Plattform . 132

C.3.3 Der SMP-Kernel . 132

C.3.4 Testen . 133

C.3.5 Messungen. 133

C.3.6 Dokumentation 133

C.4 Bemerkungen . .. 133

C.5 Ergebnisse der Arbeit . 134

Glossary 135

Bibliography 136

vi

List of Figures

2.1 Logical layering of the UNIX system. 7

3.1 Single Instruction Multiple Data (SIMD) . .. 12

3.2 Multiple Instruction Multiple Data (MIMD). 12

3.3 Programmer’s View of (a) Message-Passing and (b) Shared-Memory Architectures . 13

3.4 (a) Distributed-Memory and (b) Shared-Memory Architectures 14

3.5 Example of an invalidation protocol . 16

3.6 Bus-Based MP with a simple Snoopy Cache Structure. 16

4.1 Example SMP block diagram. 22

4.2 Test-and-set implementation using swap-atomic. 24

4.3 Code to lock an object. 26

4.4 Code to unlock an object. 27

5.1 Initializing a spin lock. 30

5.2 Atomically locking a spin lock. 30

5.3 Unlocking a spin lock. 30

5.4 Critical region protected by a semaphore. .. 35

5.5 Resource reservation with semaphores. 36

6.1 SPARC/MBus Multiprocessing Architecture. 41

6.2 Intel MP System Architecture . 43

6.3 MP Configuration Data Structures . 45

7.1 Abstract Model for UNIX Emulation using Mach 51

8.1 Modular structure of Topsy 59

8.2 User and Kernel Address Space . 61

vii

List of Figures

8.3 Virtual to Physical Address Mapping of the MIPS R3000A. 61

9.1 Format of a R3k TLB Entry . 64

9.2 Test-and-Set using LL and SC . 68

9.3 lock function in Topsy . 69

9.4 testAndSet function in TopsySMP . 69

9.5 unlock function in Topsy . 70

9.6 Device Driver Service Routine . 71

9.7 Handling Clock Reset. 72

9.8 Macro Definition for a SimOS Device. 74

9.9 Service Routine for the IPIC Device . 75

9.10 Interprocessor Communication using the IPIC Device 75

10.1 Inner Loop of the Scheduler in Topsy. 78

10.2 Modified System Call Interface. 80

11.1 Starting idle thread(s) in tmMain(). . .. 86

11.2 Function smpBootCPUs. 88

11.3 Inner Scheduler Loop of TopsySMP . 89

11.4 Function schedulerRemove . 91

11.5 Function schedulerRemoveExit . 91

11.6 Exception Handler Code . 92

11.7 Function semInit . 93

11.8 Function semP . 93

11.9 Function semV . 94

11.10Function mrlockInit . 95

11.11Function mrEnterReader . 95

11.12Function mrExitReader . 96

11.13Function mrEnterWriter 96

11.14Function mrExitWriter 97

12.1 Benchmark Results . 103

A.1 Block Diagram of the MIPS R4000 . .. 114

viii

List of Figures

A.2 CP0 Registers and the TLB . 115

A.3 Format of a TLB Entry . 115

A.4 Fields of the PageMask and EntryHi Registers . 116

A.5 Fields of the EntryLo0 and EntryLo1 Registers . 116

A.6 Wired Register Boundary. 118

A.7 Wired Register . 118

A.8 Processor Revision Identifier Register Format. 119

A.9 Status Register . 120

A.10 Cause Register Format . 122

B.1 The SimOS Environment . 126

B.2 Speed vs. Details . 127

B.3 Annotation Script for SimOS . .. 129

B.4 Processor Mode Breakdown . .. 130

ix

List of Tables

6.1 MP Configuration Entry Types . 46

9.1 Differences between R3k and R4k . 64

9.2 TLB entries for Topsy on R3k. 65

9.3 TLB entries for Topsy on R4k. 65

9.4 Mapping of the Interrupt Ids between SimOS and IDT-Board 72

12.1 UP vs. MP with one Processor. 106

A.1 TLB Page Coherency Bit Values . 117

A.2 Wired Register Field Descriptions . 118

A.3 PRId Register Field Descriptions . 119

A.4 Status Register Fields . 121

A.5 Cause Register Fields . 122

A.6 Cause Register ExcCode Field . 122

A.7 Exception Vector Base Addresses . .. 123

A.8 Exception Vector Offsets . 123

x

Preface

For much of the history of computer system development, the desire to build faster overall systems
has focused on making the three main components of a system — the central processing unit (CPU),
the memory subsystem, and the I/O subsystem — all faster. Faster CPUs are built by increasing
the clock speed or using instruction pipelines. Faster memory subsystems are built by reducing
the access time. Faster I/O subsystems are built by increasing the data transfer rate and replicating
buses. As clock speeds and transfer rates increase, however, it becomes increasingly more difficult,
and therefore expensive, to design and build such systems. Propagation delays, signal rise time,
clock synchronization and distribution, and so forth all become more critical as speeds increase. The
increased cost of designing for such high speeds makes it more difficult to achieve an effective price-
performance ratio. Because of this and other factors, system designers have widened their focus to
find other ways to increase overall system performance and thus frequently look to multiprocessors
as an alternative.

This report concentrates on one of the many aspects of multiprocessing: The design and implemen-
tation of a small multithreaded microkernel for a shared-memory architecture. Is is the result of a
Diploma Thesis written at the Computer Engineering and Networks Laboratory at ETH Z¨urich.

Structure of the Thesis

Although this thesis can be read in sequence from cover to cover, it can also serve as a reference
guide to specific design components and procedures.

Part I, “General Concepts of Multiprocessing”, deals with the basic concepts behind multiproces-
sor implementations, both from the hardware and the software point of view.

Chapter 1, “Introduction to Multiprocessing” , gives a short introduction to multiprocessor sys-
tems, and names the basic goals of this project. Furthermore, it takes a look at the development
environment used throughout this thesis.

Chapter 2, “Review of Kernel Internals” , reviews kernel internals to provide context and back-
ground for the operating system portion of this thesis. UNIX was chosen as an example because
most of todays operating systems are based somehow on the original UNIX design.

Chapter 3, “Multiprocessor Hardware Architecture” , introduces various multiprocessor archi-
tectures and focuses on system scalability.

Chapter 4, “Multiprocessor Kernel Architectures” , introduces the tightly coupled, shared mem-
ory multiprocessor and describes its organization in preparation for subsequent chapters that examine
how the UNIX operating system can be adapted to run on this type of hardware.

xi

Preface

Chapter 5, “Multiprocessor Kernel Implementations” , takes the reader deeper into the multipro-
cessor environment by introducing three techniques for modifying a uniprocessor kernel implemen-
tation to run on an SMP system without race conditions: themaster-slavekernel, thespin-locked
kernel, and thesemaphoredkernel.

Part II, “Review of Existing MP Systems”, examines existing multiprocessor hardware and oper-
ating systems.

Chapter 6, “SMP Hardware” , reviews two existing multiprocessor hardware architectures: The
SPARC Multiprocessor System Architecturefrom Sun, and theMultiprocessor Specificationfrom
Intel.

Chapter 7, “SMP Operating Systems”, focuses on the software aspect of multiprocessor systems
by providing a study on the kernel implementations of Solaris (SunOS), Mach, and Linux.

Part III, “TopsySMP” , covers the main result of this thesis, an SMP port of the Topsy operating
system, calledTopsySMP.

Chapter 8, “The Topsy Operating System”, reviews the design and implementation of the Topsy
operating system on which this thesis is based.

Chapter 9, “An SMP Machine for Topsy” , covers the porting of the existing Topsy kernel to
the MIPS R4000 processor family and the computer simulation environment SimOS from Stanford
University.

Chapter 10, “Design of TopsySMP”, details the design goals of an SMP operating system in gen-
eral, and of TopsySMP in particular.

Chapter 11, “Implementation of TopsySMP”, presents the implementation details of TopsySMP.

Chapter 12, “Performance Analysis of TopsySMP”, presents the results of the performance mea-
surements using different benchmarks.

Chapter 13, “Conclusions”, concludes this thesis and offers a glimpse of future work based on this
work.

Appendix A, “MIPS R4000 Architecture” , conveys the information needed to understand the hard-
ware abstraction layer (HAL) of the TopsySMP operating system.

Appendix B, “SimOS” , examines some details of the SimOS computer simulation environment
from Stanford University.

Appendix C, “Project Description” , includes the project description (in German) of this thesis.

TheGlossarydefines unfamiliar terms.

TheBibliography provides a list of references used for writing this thesis.

xii

Acknowledgments

I’d like to express my gratitude to the many people who helped making this thesis possible. First
and foremost to my supervisor, George Fankhauser, whose support, encouragement, and enthusi-
asm were instrumental in realizing this work. Thanks to Prof. Dr. Bernhard Plattner, head of the
Communication Systems group at TIK, allowing me to perform this thesis at his research group.

Some of this work was furthered by e-mail exchange with researchers from the SimOS group at
Stanford University. I’d like to thank Edouard Bugnion for his patience and for explaining me some
of the internals of SimOS. Special thanks to Ben Gamsa from the Department of Computer Science
at the University of Toronto. His tips on how to port an operating system to SimOS were of great
help.

Finally, I’d like to thank my parents for making this all possible.

Zürich, March 10, 1999

xiii

xiv

Part I

GENERAL CONCEPTS OF
MULTIPROCESSING

1

1 Introduction to Multiprocessing

A multiprocessor (MP)consists of two or more CPUs combined to form a single computer system.
With the multiprocessor approach, the designer alleviates the need to build higher speed CPUs by
instead making multiple CPUs available. The workload can then be distributed across all available
CPUs. If we compare a uniprocessor (UP) system and a multiprocessor system designed with the
same CPU, the multiprocessor will typically not perform any task faster than the uniprocessor, since
the CPU speeds are the same, but it can perform more tasks in parallel per unit time. This is the
primary appeal of a multiprocessor: more tasks performed per unit time using more economical
CPU technology than if one tried to build a uniprocessor capable of processing the same task load in
the same amount of time. In addition, some applications can be rewritten to make use of the inherent
parallelism of an MP system. The application can be divided into a set of cooperating subprograms,
each of which executes on different processors. In this case, the time required to run the application
can be reduced.

Multiprocessing provides advantages from a marketing standpoint as well. Multiprocessor systems
can be scaled by adjusting the number of CPUs to fit the application environment. This is appealing
to end users and customers who can start out with a one- or two-processor system, for example, and
upgrade it by adding CPUs as their computing needs expand. In addition, there is the possibility of
increased system availability. If one CPU were to fail, the remaining CPUs may be able to continue
functioning, maintaining system availability but at reduced performance. This provides a degree of
fault tolerance.

The idea of multiprocessors dates back to the first electronic computers. As early as the 1950s,
MPs were advanced as a technique both to increase reliability and to improve performance. In
the early 1980s, the first commercially successful multiprocessors became available. Almost all
of these designs were bus-based, shared-memory machines. Their development was enabled by two
key factors: the incredible price-performance advantages of microprocessors and the extensive use of
caches in multiprocessor-based systems. These technological factors made it possible to put multiple
processors on a bus with a single memory.

Multiprocessor systems have long held the promise of substantially higher performance than tradi-
tional uniprocessor systems. Because of a number of difficult problems, however, the potential of
these machines has been difficult to realize. One of the primary problems is that the absolute per-
formance of many early parallel machines was not significantly better than uniprocessors — both
because of the tremendous rate of increase in the performance of uniprocessors and also because
multiprocessor architectures are more complex and take longer to develop. Another problem is that
programming a parallel machine is more difficult than a sequential one, and it takes much more
effort to port an existing sequential program to a parallel architecture than to new a uniprocessor
architecture.

3

1 Introduction to Multiprocessing

Recently, there has been increased interest in large-scale or massive parallel processing systems
incorporating hundreds or even thousands of processors. This interest stems from the very high
aggregate performance of these machines and other developments that make such systems more
tenable, such as the advent of high-performance microprocessors and the widespread use of small-
scale multiprocessors.

Improvements in integrated circuit technology now allow microprocessors to approach the perfor-
mance of the fastest supercomputers. This development has implications for both uniprocessor and
multiprocessor systems. For uniprocessors, the pace of performance gains because of further inte-
gration is likely to slow. In the past, microprocessor designs had to scarify performance in order to
fit on a single die. Today, virtually all the performance features found in the most complex proces-
sors can be implemented on a single chip. RISC technology has reduced the number of clocks per
instruction to approximately one, and many studies indicate that more advanced superscalar designs
may not offer more than a factor of two to four in improvement for general applications. On-chip
multiprocessors with two to four CPUs per die, may be the most effective way to utilize the increased
silicon area available in next-generation technology.

The widespread use of small-scale multiprocessors has also contributed to improved parallel pro-
cessing technology. Multiprocessing has even come to the desktop in the form of multiprocessor
workstations and high-end multiprocessor PCs. On the hardware side, almost all high-end micro-
processors directly support small-scale multiprocessing. Likewise, modern bus standards include
mechanisms for keeping the processor caches consistent with one another and with main memory.
Because standard components can be used, both the cost and development time of parallel machines
have been reduced.

On the software side, improvements have been made in the usability of parallel machines. Standard
multiprocessor operating systems such as Mach, Solaris, IRIX, Linux, and Windows NT are widely
available. These operating systems provide the basis for the management of multiprocessor resources
and create standard parallel processing environments. Parallel languages and tools have also greatly
improved. Parallelizing compilers and performance debugging tools that help automate porting se-
quential code to parallel machines have become commercially available. Likewise, parallel language
extension, such as Linda, and the Parallel Virtual Machine (PVM) package, make it possible to write
portable parallel programs.

Of course, many challenges must still be overcome to achieve the potential of large-scale multipro-
cessors. Two of the most difficult problems are scalability and ease of programming.Scalability
refers to maintaining the cost-performance of a uniprocessor while linearly increasing overall per-
formance as processors are added. Programming a parallel machine is inherently more difficult than
a uniprocessor, where there is a single thread of control.

4

1.1 Project Goals

1.1 Project Goals

Topsy is a small multithreaded operating system which has been designed for teaching purpose at
the Department of Electrical Engineering at ETH Z¨urich. Goal of this thesis was the design and
implementation of an SMP port of Topsy. Furthermore, an SMP environment had to be developed or
evaluated, respectively, in order to simulate the SMP hardware. Finally, the performance gain of an
SMP kernel should be measured with suitable benchmarks.

The design of a multiprocessor OS is complicated because it must fulfill the following requirements:
A multiprocessor OS must be able to support concurrent task execution, and it should be able to
exploit the power of multiple processors. The principal design goals of the SMP port were defined
as follows:

� Simplicity. The simple structure of the Topsy OS should not be complicated by an over-sized
SMP mechanism.

� High degree of parallel Kernel Activity. The kernel should scale well running applications
with a realistic job mix.

� Uniprocessor API.The system call API of Topsy should not be changed, allowing any Topsy
application to be run without modification.

� Scalability. Scalability means, that additional CPUs can be added to (or removed from) the
system without recompiling or even reconfiguring the kernel.

1.2 Development Environment

Topsy was developed initially to run on a IDT 7RS385 evaluation board with a 25 MHz MIPS R3000
processor and 1 MByte RAM. Besides, an R3000 simulator (theMipsSimulatorwritten in Java) was
developed to simplify the development process of Topsy [Fan]. The GNU tools gcc and binutils were
used for code generation, both configured for cross-development with the MIPS platform as target.

As theMipsSimulatorwas not sufficient to develop and run a multiprocessor kernel, SimOS from
Stanford University was chosen as a simulation environment (refer to Chapter 9). This environment
consists of a simulator (written in C) running on a Sun Ultra-30 workstation. The GNU tools were
used further on for code generation and debugging. However, the output format of the linker was
changed from ecoff/srec to ELF32, because SimOS does not support the SREC format formerly
used.

5

1 Introduction to Multiprocessing

6

2 Review of Kernel Internals

This chapter provides a review of the relevant OS kernel internals that are referenced in later chapters.
It is not a complete discussion of the topic but is meant instead as a summary of fundamental concepts
and terminology. This chapter covers uniprocessor UNIX systems because most of todays operating
systems are based somehow on the original UNIX design. Multiprocessor system implementation
are the subject of later chapter in this thesis.

2.1 Introduction

The UNIX system is a multiuser, multitasking operating system that provides a high degree of pro-
gram portability and a rich set of development tools. Part of the reason for the success of the UNIX
system is the portable set of application interfaces that it provides. Another part of the success of
UNIX is that the operating system, commands, and libraries are themselves written to be easily
ported to different machines.

The UNIX system is logically layered and divided into two main portions: the kernel and user
programs. This is shown in Figure 2.1.

Hardware

UNIX Kernel

System Call Interface

Applications
Written
User

and Libraries
Commands

UNIX

Hardware Level

Kernel Level

User Level

Figure 2.1: Logical layering of the UNIX system.

7

2 Review of Kernel Internals

The purpose of the kernel is to interface with and control the hardware. The kernel also provides
user programs with a set of abstract system services, calledsystem calls, that are accessed using
portable interfaces. The kernel runs atkernel level, where it can execute privileged operations. This
allows the kernel to have full control over the hardware and user-level programs, as well as provide
an environment where all programs share the underlying hardware in a coordinated fashion.

User applications, UNIX commands, and libraries coexist atuser level. User level refers to the
unprivileged execution state of hardware. User-level programs therefore execute in a restricted envi-
ronment, controlled by the kernel, that prevents simultaneously executing programs from interfering
with one another (either unintentionally or maliciously). When user programs request services by
executing a system call, the system call will cause a transition into the kernel where it acts on behalf
of the requesting user program to perform a service. Permission checks may be made to ensure that
the program has permission to access the requested service.

Figure 2.1 depicts how the UNIX system, and most other operating systems, has traditionally been
implemented: as a monolithic program. Over time, this implementation has been migrating toward
a structured approach, where the kernel services are partitioned into independent modules. This
increases the flexibility of the implementation and makes it easier to add, change, and port system
services. It also makes it possible to migrate some services outside of the kernel and run them at user
level in special server processes. This reduces the services the kernel itself must provide, allowing it
to be reduces to amicrokernel.

2.2 Processes, Programs, and Threads

A program is defined to be a set of instructions and data needed to perform some task. Aprocess
is a combination of a program plus the current state of its execution, which minimally includes the
values of all variables, the hardware (e.g., the program counter, registers, condition code, etc.), and
the contents of the address space. In short, a process is a program in execution.

When a user requests a program to be run, a new process is created to encompass its execution. The
process exists within the system until it terminates, either by itself voluntarily, by the kernel, or by
request of the user. The process itself is an abstraction the kernel provides to manage the program
while it is executing.

Through the process abstraction, the kernel gives the program the illusion that it is executing on
the hardware by itself. User programs need not concern themselves with interactions with other
programs on the system unless they explicitly wish to communicate with them in some way. Each
process is given its own virtual address space and is time-sliced (on most implementations) so that
many processes may share the hardware. The existence of other processes on the system is transpar-
ent to the user program.

Many modern UNIX systems provide a mechanism known asthreads. A thread holds the state of
a single flow of execution within a process. The state of a thread consists at a minimum of the
hardware state and a stack. All UNIX processes have at least one thread of control within them,
which represents the execution of the program. This is true for all UNIX systems, past and present.
Systems that support threads allow multiple threads of control within a process at the same time.

8

2.2 Processes, Programs, and Threads

In this case, each has its own hardware state, but all execute within the same address space. On a
uniprocessor, only one thread may execute at a time. On a multiprocessor, different threads within
one process may execute simultaneously on different processors. One of the advantages of threads is
that thread creation involves less overhead within one process than process creation, making it more
efficient to implement a set of cooperating threads within one process than to implement a set of
separate cooperating processes.

With few exceptions, all program execution, both user and kernel level, takes place within the context
of some process. (This is true of most traditional UNIX kernel implementations.) All user programs
execute within the context of their own processes. When these user processes request kernel services
through system calls, the execution of the kernel code that implements the system call continues
within the requestors process context. This conveniently gives the kernel access to all of the pro-
cess’s state and its address space. If execution of a system call needs to be suspended to await I/O
completion, for example, the kernel’s state regarding the processing of the system call is saved in the
process data structure.

The UNIX kernel schedules only processes for execution since all system activity, whether at user
or kernel level, occurs within the context of some process. When using the traditional time-sharing
scheduling policies, processes executing at user level may be time-sliced at any time in order to share
the CPU fairly among all processes. Process executing at kernel level are exempt from time-slicing.
A switch to a different process while executing at kernel level is done only when the current kernel
process explicitly allows it to occur.

One of the exceptions to the rule that all system activity occurs within processes is the execution
of interrupt handlers. Interrupts are asynchronous to the execution of processes in that they can
occur without warning at any time. When they occur, the UNIX kernel allows them to interrupt the
execution of the current process. The system then executes the interrupt handler until it completes
or until it is interrupted by a higher priority interrupt. Kernel-level processes have the privilege of
blocking interrupts if they wish. This is done only to protect the integrity of data structures shared
by the process level and interrupt handler code.

2.2.1 Context Switch

The act of the kernel changing from executing one process to another is called acontext switch.
This involves saving the state of the current process so that it may be resumed later, selecting a new
process for execution, and loading the saved state of the new process into the hardware. The minimal
state of the process that must be saved and restored at context switch time is the content of the CPU’s
registers, the PC, the stack pointer, the condition code, and the mapping of the virtual address space.

The acting of switching from one thread to another within the same process is called athread switch.
Since the process is not changed, there is no need to alter the address space mapping. Only the
registers and other items listed above need to be saved and restored. The reduced overhead of a
thread switch compared to a process context switch in another advantage of using threads.

9

2 Review of Kernel Internals

2.3 Summary

This chapter has reviewed the basic internals of the UNIX kernel. The UNIX system is a multiuser,
multitasking operation system that provides a high degree of program portability between UNIX im-
plementations by presenting the process with machine-independent abstract services. The execution
of programs is contained within processes that maintain the current state of the program, including
the virtual address space, the values of its variables, and the hardware state. The kernel provides
each process with an environment that makes it appear as though is were the only process executing
on the system. This is done primarily by giving each process its own virtual address space. User
programs request services of the kernel by executing system calls.

10

3 Multiprocessor Hardware Architectures

The architecture of a multiprocessor defines the relationship between the processors, memory, and
I/O devices within the system. There are two major dimensions to multiprocessor architectures. The
first dimension is based on whether all processors executes a single instruction stream in parallel
(single instruction multiple data — SIMD), or whether each processor executes instructions inde-
pendently (multiple instructions multiple data — MIMD). The second dimension is bases on the
mechanism by which the processors communicate. Communication can either be through explicit
messages sent directly from one processor to another, or through access to a shared-memory address
space.

3.1 Single vs. Multiple Instruction Stream

As originally defined by Flynn [Fly66], SIMD refers to an architecture with a single instruction
stream that is capable of operating on multiple data items concurrently. In an SIMD machine, all
processors do the same work on separate data elements. The only variance between processor execu-
tion is based on local condition codes, which can temporarily enable or disable individual processing
steps. Conversely, in an MIMD architecture, each processor executes its own instruction stream
independently.

Simplified block diagrams of each of these system types are shown in Figures 3.1 and 3.2. The SIMD
structure consists of multiple data processing elements that operate on data in the local registers and
memory. Each data processing element receives instructions over a common instruction bus from a
central control processor. The control processor is a complete computer that runs the main thread of
the program. The MIMD structure consists of a set of independent processors with local memory, in
which each processor executes its own instruction stream. Like the SIMD machine, the processor-
memory pairs are connected by an interconnection network. While each MIMD processor may
execute the same program, each processor executes only the instructions relevant to its data items
and can make progress independently.

An SIMD machine has two primary advantages over an MIMD machine. First, each SIMD data
processing element is simpler than its MIMD counterpart, since it has only a data path and shares
its instruction sequencer with the other processing elements. Many of the early large-scale parallel
machines were SIMD machines because of this reduced hardware requirement. For a given fixed
amount of hardware, an SIMD machine can have more processors, and thus a higher peak perfor-
mance rate, than an MIMD machine. The second advantage of an SIMD architecture is that there is
no performance penalty for synchronizing processors since all processors operate in lockstep, which
reduces the overhead of coordinating the processors.

11

3 Multiprocessor Hardware Architectures

Memory

Control Signals

Instructions
Data Data Data Data

Results Results Results Results

Controller ALU ALU ALU ALU

Figure 3.1: Single Instruction Multiple Data (SIMD)

Memory

Instructions
Data Data

Results Results

Controller ALU ALUController...

Control Signals Control Signals

Instructions

Figure 3.2: Multiple Instruction Multiple Data (MIMD)

Conversely, there are significant advantages of MIMD over SIMD. First, since each processor exe-
cutes its own instruction stream, only instructions useful to each data item need to be executed. Thus,
while an SIMD machine may have more processors, the utilization of these processors is lower than
in an MIMD machine. Independent processors also make MIMD machines more flexible to program
that their SIMD counterparts. Another important practical advantage of MIMD machines is that
they can utilize commodity microprocessors while SIMD machines are based on custom parts whose
performance lags behind that of the latest microprocessors. Overall, the trend has been away from
SIMD and toward MIMD architectures.

3.2 Message-Passing vs. Shared-Memory Architectures

Message-passing and shared memory architectures are distinguished by the way processors com-
municate with one another and with memory. In message-passing systems, also calleddistributed-
memory systems, the programmer sees a collection of separate computers that communicate only
by sending explicit messages to one another. In a shared-memory system, the processors are more
tightly coupled. Memory is accessible to all processors, and communication is through shared vari-
ables or messages deposited in shared memory buffers. This logical difference is illustrated in Fig-
ure 3.3 and has profound effects on the ease of programming these systems. In a shared-memory
machine, processes can distinguish communication destination, type, and values through shared-
memory addresses. There is no requirement for the programmer to manage the movement of data.
In contrast, on a message-passing machine, the user must explicitly communicate all information

12

3.2 Message-Passing vs. Shared-Memory Architectures

passed between processes. Unless communication pattern are very regular, the management of this
data movement is difficult.

Processor ProcessorMemory Memory

Processor ProcessorProcessor

Processors communicate indirectly through shared variables
stored in main memory

...

(b)

Processors communicate explicitely by sending
messages to another

...

(a)

Figure 3.3: Programmer’s View of (a) Message-Passing and (b) Shared-Memory Architectures

Interprocessor communication is also critical in comparing the performance of message-passing and
shared-memory machines. Communication in a message-passing system benefits from its directness
and its initiation by the producer of the data. In shared-memory systems, communication is indirect,
and the producer typically moves the data no further than memory. The consumer must then fetch
the data from memory, which can decrease the efficiency of the receiving processor. However, in a
shared-memory system, communication requires no intervention on the part of a run-time library or
operating system. In a message-passing system, access to the network port is typically managed by
system software. This overhead at the sending and receiving processors make the start-up cost of
communication much higher on a message-passing machine.

It is also possible to build a shared-memory machine with a distributed-memory architecture. Such
a machine has the same structure as the message-passing system shown in Figure 3.4(a), but instead
of sending messages to other processors, every processor can directly address both its local memory
and remote memories of every other processor. This architecture is referred to asdistributed shared-
memory (DSM)or nonuniform memory access (NUMA)architecture. The latter term is in contrast
to theuniform memory access (UMA)structure shown in Figure 3.4(b). The UMA architecture is
easier to program because there is no need to worry about where to allocate memory — all memory
is equally close to all processors. Since most shared-memory machines only support a small number
of processors, where there is minimal benefit from the local memory of the NUMA structure, UMA
is more popular for those machines.

There are many trade-offs between message-passing and the two form of shared-memory architec-
tures. One of the biggest advantages of message-passing systems is that they minimize the hardware
overhead relative to a collection of uniprocessor systems. Even a group of workstations can be
treated as a single message-passing system with appropriate cluster software. The primary advan-
tage of a shared-memory over a message-passing system is its simple programming model, which
is an extension of the uniprocessor model. In this model, the data is directly accessible to every
processor, and explicit communication code in only needed to coordinate access to shared variables.

13

3 Multiprocessor Hardware Architectures

Processor ProcessorMemory Memory

Network
Interface

Network
Interface

Memory Memory Memory

Processor Processor Processor

Interconnection Network

...

...

...

Interconnection Network
(a)

(b)

Figure 3.4: (a) Distributed-Memory and (b) Shared-Memory Architectures

In a message-passing system, the user is responsible for explicitly partitioning all shared data and
managing communication of any updates to that data.

Overall, the shared-memory paradigm is preferred since it is simpler to use and more flexible. In
addition, a shared-memory system can efficiently emulate a message-passing system, while the con-
verse is not possible without a significant performance degradation. Unfortunately, a shared-memory
system has two major disadvantages relative to a message-passing system. First, processor perfor-
mance can suffer if communication is frequent and not overlapped with computation. Second, the
interconnection network between the processors and memory usually requires higher bandwidth and
more sophistication that the network in a message-passing system, which can increase overhead costs
to the point that the system does not scale well.

Solving the latency problem through memory caching and hardware cache coherence is the key to a
shared-memory multiprocessor that provides both high processor utilization and high communication
performance. While the coherence mechanism adds cost to the shared-memory machine, careful
design can limit overhead. Furthermore, the growing complexity of microprocessors allows for a
more sophisticated memory system without drastically altering the cost-performance of the overall
system.

14

3.3 Cache Coherence

3.3 Cache Coherence

Caching of memory has become a key element in achieving high performance. In the last 10 years,
microprocessors cycle times have shrunk from 100–200 ns to less than 4 ns, a factor of more than
25 times. In the same time frame, DRAM access times have only improved from 150–180 ns to 60–
80 ns, a factor of about three. This gap has been bridged only with a memory hierarchy consisting
of varying levels of high-speed cache memories that reduce average memory latency and provide the
additional bandwidth required by today’s processors.

3.3.1 Uniprocessor Caches

Caches consist of high-speed memory components that hold portions of the memory space address-
able by the processor. Access to cache memory is much faster than main memory because the cache
consists of a small number of very fast memory parts located close to the processor (often on the
processor chip). In a cache-based system, the average memory access time (Tavg) is given by

Tavg= Tcache+FmissTmem:

Fmiss is the fraction of references that are not found in the cache andTcacheandTmemare the access
times to the cache and memory, respectively. Cache access time is typically one or two processor
cycles, while main memory access times range from 30 to 60, or more, processor cycles. Thus, if
a high percentage of accesses are satisfied by the cache, average memory latency can be drastically
reduces.

Caching memory is effective because programs exhibit temporal and spatial locality in their memory
access pattern.Temporal localityis the propensity of a program to access a location that it has
just accessed. Access to loop indices and the stack are examples of data that exhibit a high degree
of temporal locality. A cache can exploit temporal locality by allocating locations in the cache
whenever an access misses the cache.Spatial localityis the tendency of a program to access variables
at locations near those that have just been accessed. Examples of spatial locality include accessing
a one-dimensional array in different loop iterations and the sequential fetching of instructions. A
cache captures spatial locality by fetching locations surrounding the one that actually caused the
cache miss.

3.3.2 Multiprocessor Caches

Just as in uniprocessor systems, caching is also vital to reducing memory latency in multiprocessor
systems. In fact, caching offers even more benefit in a multiprocessor because memory latencies
are usually higher. Unfortunately, multiprocessor caches are more complex because they introduce
coherence problems between independent processor caches.

Caches introduce two major coherence problems. First, when multiple processors read the same
location they createsharedcopies of memory in their respective caches. By itself, this is not a
problem. However, if the location is written, some action must be taken to insure that the other
processor caches do not supply stale data. These cached copies can either be updated or simply

15

3 Multiprocessor Hardware Architectures

eliminated throughinvalidation (Figure 3.5). After completing its write, the writing processor has an
exclusive copy of the cache line (i.e., it holds the linedirty in its cache). This allows it to subsequently
write the location byupdatingits cached copy only; further accesses to main memory or the other
processor caches are not needed. After a write invalidation, other processors that reread the location
get an updated copy from memory or the writing processor’s cache.

Contents of Contents of Contents of
CPU activity Bus activity CPU A’s cache CPU B’s cache memory location X
A reads X Cache miss for X 0 0
B reads X Cache miss for X 0 0 0
A writes 1 to X Invalidation for X 1 0
B reads X Cache miss for X 1 1 1

Figure 3.5: Example of an invalidation protocol

The second coherence problem arises when a processor holds an item dirty in its cache. When
lines are dirty, simply reading a location may return a stale value from memory. To eliminate this
problem, reads also require interaction with the other processor caches. If a cache holds the requested
line dirty, it must override memory’s response with its copy of the cache line. If memory is updated
when the dirty copy is provided, then both the dirty and requesting cache enter a shared state. This
state is equivalent to the initial state after multiple processors have read the location. Thus three
cache states — invalid (after a write by another processor), shared (after a read), and dirty (after a
write by this processor) — provide the basis for a simple multiprocessor coherence scheme.

Most small-scale multiprocessors maintain cache coherence withsnoopy caches. The structure of a
typical snoopy cache-coherence system is shown in Figure 3.6. Snoopy coherence protocols rely on
every processor monitoring all requests to memory. The monitoring, or snooping, allows each cache
to independently determine whether access made by another processor require it to update its cache
state. Because snooping relies on broadcasting every memory reference to each processor cache,
snoopy systems are usually built around a central bus.

Memory Bank

Cache
Data

Addr

T
ag

Sn
oo

py
 T

ag

Cache
Data

Addr

T
ag

Sn
oo

py
 T

ag

Memory Bank
1

Dirty

Data Bus

Addr Bus

P1 P2

2

Figure 3.6: Bus-Based MP with a simple Snoopy Cache Structure

16

3.4 Scalability

3.4 Scalability

Having established the basis of shared-memory multiprocessing and cache coherence, we now turn
to the issue of extending the SMP model to a larger number of processors. Intuitively, ascalable
systemis a system whose performance varies linearly with the cost of the system. What is more
meaningful is the degree to which a system scales. Scalability can be measured on three dimensions:

1. How does the performance vary with added processors? That is, what is the speedup (S(N))
over a uniprocessor whenN processors are used to solve a problem in parallel?

2. How does the cost of the system vary with the number of processors in the system?

3. What range of processors (N) does the system support, or provide useful speedup over?

The most complex issue with scaling is how performance scales as processors are added. If speedup
is defined as the ratio of the execution time of a program on one processor versusN processors, then
speedup can be expressed as

S(N) =
Texec(1)
Texec(N)

Ideally, speedup would be linear withN such thatS(N) =N. If Texec(N) is broken down into the time
that the application spends computing and the time spent communicating, thenS(N) is given as

S(N) =
Tcomp(1)+Tcomm(1)
Tcomp(N)+Tcomm(N)

whereTcomm(1) represents the time that the UP accessed global memory, whileTcomm(N) represents
the time forN processors to access global memory, synchronize, and communicate with one another
through global memory. If one assumes that the total amount of communication is independent of
N, then perfect speedup will only be achieved if

Tcomp(N) = Tcomp(1)=N

Tcomm(N) = Tcomm(1)=N

From a hardware architecture perspective, the requirement of scalingTcomp is easily met withN
processors working independently. Unfortunately, this requires the software algorithm to be perfectly
split between theN processors.

Overall, we see that no system can be ideally scalable since the cost of communication can not be
ideally scaled because of increases in the latency of individual communication. Thus, linear per-
formance growth cannot be maintained for large systems. Furthermore, communication bandwidth
cannot grow linearly with system size unless costs grow more than linearly. Although these archi-
tecture limits are important to understand, practical considerations make the goal of ideal scalability
itself dubious. In particular, ideal scalability requires software algorithms that are perfectly paral-
lel and have a constant amount of communication independent of the number of processors. All
algorithms break these rules to some degree, and thus limit useful system sizes.

17

3 Multiprocessor Hardware Architectures

3.4.1 Scalable Interconnection Networks

As shown in the previous section, the interconnection network is a key element of system scalability.
To summarize, an ideal scalable network should have

1. a low cost that grows linearly with the number of processorsN,

2. minimal latency independent ofN, and

3. bandwidth that grows linearly withN.

The most widespread interconnection network used in multiprocessors is a simple bus in which the
processors and memory are connected by a common set of wires. The advantages of this structure
are that it has constant latency between all nodes and a linear cost with the number of processors.
The big disadvantage, however, is that the amount of bandwidth is fixed and does not grow with
the number of processors, which puts an obvious limit on the scalability of bus-based systems. It
also forces a difficult trade-off to be made as to the width and speed of the bus. Increasing both
of these permits a larger maximum system size. Unfortunately, increasing width increases costs,
especially due to degradation in the electrical performance as system size increases. Some bus-based
systems get around the fixed bandwidth problem by supporting multiple buses and interleaving them
on low-order address bits. For example, the Sun SparcCenter 1000 uses one 64-bit bus to support
8 processors, the SparcCenter 2000 replicates this bus to support up to 20 processors, and the Cray
SuperServer 6400 utilizes four copies of the same bus to support up to 64 processors. Electrical
constraints on the bus put a limit on how well this technique can be scaled, and also imply increased
cost with system size.

3.4.2 Scalability of Parallel Software

Consider the simple problem of forming the sum ofM numbers whereM is much larger that the
number of processorsN. In this case,N partial sums can be formed in parallel by breaking the list
into N lists, each withM=N numbers in it. Combining theN partial sums, however, can not utilize
all of the processors. At best, the sum can be formed in logN steps usingN=(2i) processors at theith
step. For 100 processors to sum 10 000 numbers, it would take the order of 100 time steps to from
the partial sums, and then at least another 7 steps to add the partial sums. Thus, for this size input
the speedup is 10000=107 or 93:4 times. The amount of communication also grows with the number
of processors since the number of partial sums is equal to the number of processors. Further, when
adding the partial sums, communication delays dominate. In many cases, using a single processor to
add the partial sums may be just as fast as using a tree of processors. If a single processor is used in
the final phase, then speedup is limited to 10000=200= 50.

The execution pattern of the above example is typical of many parallel programs. Parallel programs
typically exhibit alternating phases of limited and full parallelism: limited parallelism while the
computation is initialized or the results are summarized, and full parallelism while the computation
is done across the data by all the processors. If we approximate the phases of execution as a strictly

18

3.5 Performance Considerations

serial portion followed by a full parallel section, then the time to do a computation onN processors
can be written in terms of the percentage of serial code (s) as

Tcomp(N) = Tcomp(1)(s+(1�s)=N)

Likewise, if we ignore the logN factor in parallel communication time from increased hardware
latency, and assume that the total amount of communication does not increase, then communication,
Tcomm(N), is given by

Tcomm(N) = Tcomm(1)(s+(1�s)=N)

resulting in an overall speedup equation of

S(N) =
Tcomp(1)+Tcomm(1)

(Tcomp(1)+Tcomm(1))(s+(1�s)=N
=

1
s+(1�s)=N

This formula was originally derived by Gene Amdahl in 1967 and is known asAmdahl’s Law. An
important implication of Amdahl’s Law is that the maximum speedup of an application (on an infinite
number of processors) is given by

S(N)�
1
s

For the simple summation example, the final partial sum takes either 7 or 100 cycles compared
with the approximately 10 000 cycles that can be parallelized to form the partial sums. Thus,s=
7=10000= 0:07% for the parallel partial sum addition ands= 100=10000= 1% for the serial
addition, and the resulting maximum speedup given by Amdahl’s Law is 1:429 and 100 respectively.

3.5 Performance Considerations

Ideally, the overall system throughput of an SMP system will increase linearly as more processors
are added and will equal the product of the number of processors and the throughput of a single
processor. Thus a two-processor system should be able to handle twice the throughput of an UP. How
close an MP implementation can approach this ideal depends on three main factors: the hardware
architecture, the application job mix, and the kernel implementation.

If the hardware design is not suitable for an SMP system, then no amount of software tuning will
allow an implementation to approach the ideal goal of linear performance increase as additional
processors are added. For example, if the memory subsystem does not provide sufficient bandwidth
for all processors, then the extra processor will not be fully utilized.

The application job mix refers to the number and type of applications that are run on the system. By
using the same application mix on different kernel implementation, a benchmark can be formed by
which system performance can be measured and compared with other kernel implementations. Is is
important to understand the application job mix of any benchmark in order to interpret the results
correctly.

19

3 Multiprocessor Hardware Architectures

3.6 Summary

Microprocessor-based multiprocessors are becoming an increasingly viable way to achieve high per-
formance because of the narrowing gap between microprocessors and the fastest supercomputers,
and the tremendous cost-performance advantage of microprocessor-based systems. Programming
a parallel machine remains a challenge, however. Of the alternative parallel architectures, a mul-
tiple instruction, multiple data (MIMD) architecture supporting global shared-memory is preferred
because of its flexibility and ease for programming.

The biggest problems with shared-memory multiprocessors are keeping their performance per pro-
cessor high, allowing scalability to large processor counts, and dealing with their hardware complex-
ity.

20

4 Multiprocessor Kernel Architectures

This chapter introduces the tightly coupled, shared memory multiprocessor. It is the type of mul-
tiprocessor most commonly used with UNIX systems, since it parallels the execution environment
assumed by standard uniprocessor UNIX kernel implementations. The following sections describe
its organization in preparation for subsequent chapters that examine how the UNIX operating system
can be adapted to run on this type of hardware. All multiprocessor systems presented in this chap-
ter operate without caches, to illustrate better the fundamental issues that multiprocessor operating
systems must solve.

4.1 MP Operating System

Recall from Chapter 1 that a multiprocessor consists of two or more CPUs combined to form a
single computer system. The operating system for a multiprocessor must be designed to coordinate
simultaneous activity by all CPUs. This is a more complex task than managing a uniprocessor
system.

All MP kernel implementations must maintainsystem integrity. This means that the CPUs’ parallel
activity is properly coordinated so that the kernel’s data structures are not compromised. This ensures
the correct functioning of the system under all possible situations, regardless of the timing of external
events and activities by the CPUs in the system.

Once integrity is achieved, the implementation can be modified and tuned to maximizeperformance.
The third factor, theexternal programming model, determines how the presence of multiple CPUs
affects the system call interface. The operating system designer for an MP system has to choose
whether or not to “disguise” the MP system to appear as UP system. If the system call interface is
compatible with that of an UP system, then existing uniprocessor application programs can be run
on the MP without change. If, on the other hand, the system call interface is not compatible, the
programs will have to be written with explicit knowledge of the multiple CPUs in the system and
may be required to use special system calls to communicate with, or pass data to, processes running
on other processors.

Because of the high cost of rewriting programs to conform to a new system call interface, most
implementations choose to maintain the uniprocessor system call interface so the presence of the
multiple CPUs is entirely transparent. This is not to say that the operating system is forbidden from
offering new interfaces that allow programmers to make use of the inherent parallelism in an MP; it
means that the kernel must provide all the uniprocessor system call interfaces and facilities.

21

4 Multiprocessor Kernel Architectures

4.2 The Tightly Coupled, Shared Memory, Symmetric
Multiprocessor

The multiprocessor architecture of interest for the remainder of the thesis is thetightly coupled,
shared memory, symmetric multiprocessor, frequently abbreviated asSMP. This is the most com-
monly used type of MP since it readily supports the implementation of an operating system that
retains the uniprocessor external programming model. A high-level view of such a system with four
CPUs appear in Figure 4.1.

CPU CPU CPU CPU

I/O Memory

Bus

Figure 4.1: Example SMP block diagram.

There are several important factors to understand about this type of multiprocessor architecture.
First, all CPUs, memory and I/O aretightly coupled. There are several ways to achieve this, but the
simplest and most commonly used method is for all units to be directly interconnected by a common
high-speed bus. Another meaning of tightly coupled refers to the fact that all components are located
within a short distance of one another (usually within the same physical cabinet).

Theshared memoryaspect is easy to see in Figure 4.1: there is a single, globally accessible memory
module used by all CPUs and I/O devices. The CPUs themselves have no local memory (except
possibly for caches) and store all their program instructions and data in the global shared memory.
The important factor here is that data stored by one CPU into memory is immediately accessible to
all other CPUs.

The final aspect of importance in the SMP architecture is that memory access issymmetric. This
means that all CPUs and I/O devices have equal access to the global shared memory. They use the
same physical address whenever referring to the same piece of data. Access to the bus and memory
is arbitrated, so that all CPUs and devices are guaranteed fair access. In addition, their accesses do
not interfere with one another.

The maximum number of CPUs that can be used for practical work in an SMP is limited by the
bandwidth of the shared bus and main memory. The bandwidth must be sufficient to supply the
needs of all CPUs and I/O devices in the system, or the overall performance of the system will suffer.

22

4.3 The MP Memory Model

4.3 The MP Memory Model

The memory modelfor an MP system defines how the CPUs, and hence the programs running on
them, access main memory, and how they are affected by simultaneous accesses by other CPUs.
Since main memory is accessed with physical addresses, the effects of virtual address translation
are not considered as part of the memory model. The memory model is instead concerned with the
transfer of physical addresses and data between the CPUs and main memory.

The memory model for an SMP includes those characteristics mentioned in the previous section:
memory is globally accessible, tightly coupled, and symmetric. The memory model then goes on to
define load-store ordering and the effects of simultaneous access to memory by multiple CPUs.

4.3.1 The Sequential Memory Model

The simplest and most commonly used memory model is thesequential memory model(also known
asstrong ordering). In this model, all load and store instructions are executed inprogram order, the
order in which they appear in the program’s sequential instruction stream, by each CPU. This model
is used by the MIPS RISC processor line, the Motorola MC68000 and MC88000 processor lines, as
well as the Intel 80x86 family.

4.3.2 Atomic Reads and Writes

The sequential memory model defines an individual read or write operation from a CPU or I/O
device (through DMA) to main memory to beatomic. Once begun, such an operation cannot be
interrupted or interfered with by any other memory operation, from any CPU or I/O device, on the
system. The atomicity of memory operations is easily guaranteed by virtue of the single shared bus
that must be used to access main memory. The bus can be used by only one CPU (or I/O device) at a
time. If multiple CPUs wish to access memory simultaneously, special hardware in the busarbitrates
between the multiple requestors to determine which will be allowed to use the bus next. When one is
chosen, the bus isgrantedto it, and that CPU is allowed to complete a single read or write operation
atomically involving one or more physically contiguous words in main memory. During this single
operation, all other CPUs and I/O devices are inhibited from performing any of their own read or
write operations. After the completion of each operation, the cycle repeats: the bus is rearbitrated
and granted to a different CPU. The choice of which CPU gets the next turn on the bus may be done
usingfirst-in-first-out, round-robin, or whatever other type of scheduling is implemented in the bus
hardware. I/O devices arbitrate for the bus in the same manner as CPUs.

The amount of data that can be transferred in a single operation is limited to prevent one processor
from hogging the bus. While the typical transfer size in actual machines is usually equal to the cache
line or subline size, the transfer size is not directly visible to the operating system.

4.3.3 Atomic Read-Modify-Write Operations

Since the need to synchronize access to shared memory locations is so common on SMP systems,
most implementations provide the basic hardware support for this through atomicread-modify-write

23

4 Multiprocessor Kernel Architectures

operations. Such operations allow a CPU to read a value from main memory, modify it, and store the
modified value back into the same memory location as a single atomic bus operation.

The type of modification that may be done to the data during a read-modify-write operation is imple-
mentation specific, but the most common is thetest-and-setinstruction. The Motorola MC68040 and
the IBM 370 architecture are examples of processors that use this operation. This instruction reads
a value from main memory (usually a byte or word), compares it to 0 (setting the condition code in
the processor accordingly), and unconditionally stores a 1 into the memory location, all as a single
atomic operation. It is not possible for any other CPU or I/O device to access main memory once a
test-and-set instruction begins its bus cycle. With this one basic operation, the operation system can
build higher level synchronization operations.

While more complex operations, such as an atomic increment or decrement operation, are possible,
modern RISC systems tend to offer simpler operations. For example, probably the most basic single
atomic read-modify-write instruction is theswap-atomicoperation. This type of operation is used
in the Sun SPARC processor and in the Motorola MC88100 RISC processor. Such an instruction
merely swaps a value stored in a register with a value in memory. One can then construct a test-
and-set operation by setting the value in the register to 1, performing the atomic swap, and then
comparing the value in the register (the old contents of the memory location) to 0 afterwards. Figure
4.2 illustrates this in C.

int test_and_set(int *addr) {
int old_value = swap_atomic(addr, 1);
if (old_value == 0) {

return 0;
}
return 1;

}

Figure 4.2: Test-and-set implementation using swap-atomic.

Some RISC architectures simplify this a step further and provide a pair of instructions that together
can be used to perform an atomic read-modify-write operation. The pair is theload-linkedandstore-
conditional instructions. This is the approach taken by the MIPS R4000 RISC processor. (Refer
to Section 9.2.3 for an implementation of an atomic read-modify-write based on the MIPS R4000
instructions.) Synchronization is still achievable without any atomic read-modify-write operations at
all using a software technique known asDekker’s Algorithm.

4.4 Mutual Exclusion

Since the sequential memory model does not guarantee a deterministic ordering of simultaneous
reads and writes to the same memory location from more than one CPU, any shared data structure
cannot be simultaneously updated by more than one CPU without the risk of corrupting the data. The
lack of deterministic ordering causes arace conditionto occur. This happens whenever the outcome
of a set of operations in an SMP depends on the relative ordering or timing of the operations between
two or more processors. Such nondeterministic behavior can be catastrophic to the integrity of the
kernel’s data structures and must be prevented.

24

4.5 Review of Mutual Exclusion on Uniprocessor UNIX Systems

Any sequence of instructions that update variables or data structures shared between two or more
processors can lead to a race condition. The sequence of instructions themselves it referred to as
critical section, and the data they operate on is thecritical resource. In order to eliminate the race
condition caused by multiple processors simultaneously executing the critical section, at most one
processor may be executing within the critical section at one time. This is referred to asmutual
exclusionand can be implemented in a variety of ways.

Before going to show how mutual exclusion can be implemented in MP systems, it is useful to review
how it was achieved in uniprocessor UNIX systems and why these techniques fail on MPs.

4.5 Review of Mutual Exclusion on Uniprocessor UNIX
Systems

It is possible to have race conditions even in uniprocessor operating systems. Any system that permits
multiple threads of control, such as multiple processes, needs to consider mutual exclusion between
the threads. It is also possible for the instructions executed by interrupt handlers to race with the
code they interrupt.

4.5.1 Short-Term Mutual Exclusion

Short-term mutual exclusionrefers to preventing race conditions in short critical sections. These
critical sections occur when the kernel is in the midst of updating one of its data structures. Since the
kernel data structures are shared among all executing processes, a race condition would be possible if
two or more processes executing in kernel mode were to update the same structure at the same time.
Since a uniprocessor can only execute one process at a time, these race conditions are only possible
if one process executing in the kernel can be preempted by another. This is why the designers of the
UNIX kernel chose to make the kernel nonpreemptable while executing in kernel mode. Recall that
processes executing in kernel mode are not time-sliced and cannot be preempted. A context switch
to another process occurs only when a kernel mode process allows it.

The nonpreemptability rule for processes executing in kernel mode greatly reduces the complexity
of uniprocessor UNIX kernel implementations. Since only one process is allowed to execute in the
kernel at a time and is never preempted, race conditions while examining and updating kernel data
structure cannot occur. Therefore, nothing more need be done to maintain data structure integrity.

4.5.2 Mutual Exclusion with Interrupt Handlers

If the code executed by an interrupt handler accesses or updates the same data structures used by
non-interrupt code, then a race condition can occur. Fortunately, processes executing in kernel mode
are permitted to disable interrupts temporarily. Therefore, whenever a process is about to update a
data structure that is shared with an interrupt handler, it first disables interrupts, executes the critical
section, and then reenables interrupts. The act of disabling and reenabling interrupts implements
mutual exclusion.

25

4 Multiprocessor Kernel Architectures

It is important to understand how this implementation of mutual exclusion differs from that of short-
term mutual exclusion. With short-term mutual exclusion, implementing the general policy of non-
preemptability of kernel mode processes solved the problem without having to code it into the kernel
explicitly. With interrupts, mutual exclusion had to be explicitly coded into the algorithms.

4.5.3 Long-Term Mutual Exclusion

Most of the UNIX system calls provide services that are guaranteed to be atomic operations from the
viewpoint of the user program. For example, once awrite system call to a regular file begins, it is
guaranteed by the operating system that any otherread or write system calls to the same file will
be held until the current one completes. Uniprocessor UNIX kernels implement this type of mutual
exclusion with thesleep andwakeup functions.

Thesleep function is an internal kernel routine that causes the process calling it to be suspended
until a specified event occurs. This is the primary means by which a process executing in kernel
mode voluntarily relinquishes control and allows itself to be preempted. Thewakeup function is
used to signal that a particular event has occurred, and it causes all processes waiting for that event
to be awakened and placed back on the run queue. The event is represented by an arbitrary integer
value, which is usually the address of a kernel data structure associated with the event.

Each object within the kernel that requires long-term mutual exclusion is represented by an instance
of a data structure. To implement atomic operations on the object, the object is “locked” so that only
one process can access it at a time. This is done by adding a flag to the data structure that is set
if the object is presently locked. For simplicity, assume the flag is stored in a byte in the object’s
data structure, so that each has a unique flag. One possible way to implement mutual exclusion on
an arbitrary object is shown in Figure 4.3 (the actual details vary in different versions of the UNIX
system and are not relevant to the discussion here).

void lock_object(char *flag_ptr) {
while (*flag_ptr) {

sleep(flag_ptr);
}
*flag_ptr = 1;

}

Figure 4.3: Code to lock an object.

In this example, the flag is set to 1 to indicate that a process currently has the object locked. At a
beginning of an atomic operation, thelock object function is called to lock the object by passing
a pointer to the flag byte associated with it. If the object is not presently locked, the condition in the
while statement will fail and the process will lock the object by setting the flag. Any other process
that attempts to access the same object will use the same data structure and attempt to lock it by
calling thelock object function with the address of the same flag byte. This time, however, the
condition in thewhile statement will be true, and the process will execute thesleep call, which
will suspend the process.

It is important to understand that the operation of testing the flag, finding it clear, and setting it form
a critical section and must be done with mutual exclusion. Otherwise a race condition would be

26

4.6 Problems Using UP Mutual Exclusion Policies on MPs

possible, resulting in cases where two or more processes would think they had the object locked.
Fortunately, this race condition is prevented by the uniprocessor nonpreemptability policy.

When the process holding a lock has completed its atomic operation on the object, it would call the
function shown in Figure 4.4.

void unlock_object(char *flag_ptr) {
*flag_ptr = 0;
wakeup(flag_ptr);

}

Figure 4.4: Code to unlock an object.

Here the flag is cleared and all processes that were waiting for the lock are awakened using the
wakeup function. An important aspect of thewakeup function is that there is no “memory” of the
event saved. This allows theunlock object function to call it without having to know whether
or not any processes are actually sleeping on the event.

4.6 Problems Using UP Mutual Exclusion Policies on MPs

To achieve a high-performance MP system, it is desirable to allow system calls and other kernel
activity to occur in parallel on any processor. This way, the kernel’s workload can be distributed
throughout the system. Unfortunately, the techniques presented in the previous section, which enable
a uniprocessor kernel implementation to avoid race conditions, fail to work properly when more that
one processor on an MP system can execute kernel code at the same time.

The primary difficulty that prevents a uniprocessor kernel from running properly on an MP system is
that multiple processors executing in the kernel simultaneously violates the assumptions that support
short-term mutual exclusion. Once more than one processor begins executing in the kernel, the kernel
data structures can be corrupted unless additional steps are taken to prevent races.

Mutual exclusion with interrupt handlers may not function properly on an MP system either. Rais-
ing the interrupt level only affects the processor priority on the current processor and do not affect
interrupts delivered to other processors. Depending on the design of the hardware, interrupts may
be delivered to any CPU in the system, or they may always be directed to one CPU. In either case,
a process executing on one processor that is raising the interrupt level to implement mutual exclu-
sion on data structures shared with interrupt handlers will not be properly protecting the data if the
interrupt handler begins executing on a different processor.

Finally, the coding technique used to implement long-term mutual exclusion with thesleep and
wakeup functions will not work correctly on MP systems. Recall from Section 4.5.3 that the im-
plementation oflock object relies on short-term mutual exclusion to prevent race conditions
between the time the flag is tested and the process goes to sleep or sets the flag itself. Since the
short-term mutual exclusion policy is no longer effective on MPs, these code sequences now contain
races.

27

4 Multiprocessor Kernel Architectures

4.7 Summary

SMP is the most commonly used type of multiprocessor system since it parallels the execution en-
vironment of uniprocessor systems. All CPUs and I/O devices are tightly coupled, share a common
global main memory, and have symmetric and equal access to memory. Most MP kernel implemen-
tations preserve the external uniprocessor programming model so that application programs do not
have to be modified to run on an MP.

The memory model for an MP describes the ordering of load-store instructions within a program and
how simultaneous access to main memory by multiple CPUs results. Thesequential memory model
provides for atomic read and write operations that are executed according to program order on each
CPU, but it does not specify the relative ordering of simultaneous operations to the same memory
location from different CPUs. Because of this, the sequential memory model usually provides some
type of atomic read-modify-write operation that CPUs can use for synchronization purposes.

Any multiple instruction operation to a shared memory location or data structure is subject to race
conditions since multiple processors could be attempting the operation at the same time. To prevent
races, the kernel must implement mutual exclusion to sequentialize access to shared data and prevent
it from being corrupted.

To simplify their design, uniprocessor UNIX kernel systems have relied on the fact that processes
executing in kernel mode are nonpreemptable. This eliminates most race conditions since no other
process can access any kernel data until the currently executing process voluntarily relinquishes the
CPU.Long-term mutual exclusion, needed to support atomic file operations, for instance, is done
using explicit locks and calls to thesleep andwakeup functions. Mutual exclusion with interrupt
handling code is implemented by explicitly blocking and unblocking interrupts for the duration of
the critical regions in the kernel code. However, these policies fail to provide mutual exclusion on
MP systems when kernel code can be executed simultaneously on more than one processor.

28

5 Multiprocessor Kernel Implementations

This chapter presents three techniques for modifying a uniprocessor kernel implementation to run
on an SMP system without race conditions: themaster-slavekernel, thespin-lockedkernel, and the
semaphoredkernel.

5.1 Master-Slave Kernels

The short-term mutual exclusion implementation technique presented in Section 4.5.1 relies on the
fact that there is never more than one process executing in the kernel at the same time. A simple
technique for doing this on an MP system is to require that all kernel execution occur on one physical
processor, referred as themaster. All other processors in the system, calledslaves, may execute user
code only. A process executing in user mode may execute on any processor in the system. However,
when the process executes a system call, it is switched to the master processor. Any traps generated
by a user-mode process running on a slave also cause a context switch to the master, so that the
mutual exclusion requirements of the kernel trap handlers are also maintained. Finally, all device
drivers and device interrupt handlers run only on the master processor.

The master-slave arrangement preserves the uniprocessor execution environment to the kernel’s point
of view. This allows a uniprocessor kernel implementation to run on an MP system with a few
modifications and works for any number of processors. One of the main areas of modifications is
in how processes are assigned to individual processors. A simple technique for this is to have two
separate run queues, one containing kernel-mode processes that must be run on the master, and one
containing user-mode processes for the slaves. At each context switch, each slave selects the highest
priority process on the slave run queue, while the master processor selects the highest priority process
on the kernel process queue. A process running on a slave that executes a system call or generates
a trap is placed on the run queue for the master processor. When the master processor performs a
context switch, the old process it was executing is placed on the slave queue if it was executing in
user mode; otherwise, it goes back on the master queue.

Since there could be multiple processors enqueuing, dequeuing, and searching the run queues at the
same time, a way to prevent race conditions is needed. The run queues are the only data structure
that require an explicit MP short-term mutual exclusion technique, since all other data structures
are protected by running all kernel code on the master. The easiest way to provide such short-term
mutual exclusion is with spin locks.

29

5 Multiprocessor Kernel Implementations

5.1.1 Spin Locks

A spin lockis an MP short-term mutual exclusion mechanism that can be used to prevent race con-
ditions during short critical sections of code. A spin lock is acquired prior to entering the critical
section and released upon completion. Spin locks derive their name from the fact that a processor
will busy-wait (spinning in a loop) when waiting for a lock that is in use by another processor. Spin
locks are the only MP primitive operation needed to implement a master-slave kernel.

Spin locks are implemented using a single word in memory that reflects the current status of the lock.
A lock is acquired for exclusive use by a particular processor when that processor is able to change
the status of the spin lock from the unlocked to the locked state atomically. This must be done as an
atomic operation to ensure that only one processor can acquire the lock at a time. For the examples
that follow, a value of zero will be used to represent the unlocked state of a spin lock. All routines
take a pointer to the spin lock status word to be acted upon. A spin lock can be initialized with the
routine shown in Figure 5.1.

typedef int lock_t;

void initlock(lock_t *lock_status) {
*lock_status = 0;

}

Figure 5.1: Initializing a spin lock.

Using the test-and-set instruction presented in section 4.3.3, the function in Figure 5.2 can be used to
lock a spin lock atomically. Recall that thetest and set function returns 1 if the previous state
was nonzero, and 0 otherwise.

void lock(lock_t *lock_status) {
while (test_and_set(lock_status) == 1)

;
}

Figure 5.2: Atomically locking a spin lock.

The function in Figure 5.2 locks a spin lock by atomically changing its state from 0 to 1. If the
lock status is already 1 (meaning the lock is in use by another processor), then thetest and set
function returns 1, and the processor spins in the loop until the lock is released. A spin lock is
released by simply setting the lock status to 0, as the code in Figure 5.3 shows.

void unlock(lock_t *lock_status) {
*lock_status = 0;

}

Figure 5.3: Unlocking a spin lock.

Spin locks work correctly for systems with any number of processors. If multiple processors try to
acquire the same lock at exactly the same time, the atomic nature of thetest and set function
allows only one processor at a time to change the lock status from 0 to 1. The other processors will

30

5.1 Master-Slave Kernels

see the lock is already set and spin until the processor owning the lock releases it. The kernel can
now form a critical section by surrounding it withlock andunlock function calls:

lock(&spin_lock);
/* perform critical section */
...
unlock(&spin_lock);

Spin locks work well if the critical section is short (usually no more than a few hundred machine
instructions). They should not be used as a long-term mutual exclusion technique, because processors
waiting for the lock do not perform any useful work while spinning. Overall system performance
will be lowered if the processors spend too much time waiting to acquire locks. This can also happen
if too many processors frequently contend for the same lock.

Two things can be done to reduce lock contention. First, the kernel can use different spin locks for
different critical resources. This prevents processors from being held up by other processors when
there is no threat of a race condition. Second, thelock andunlock functions should be enhanced
to block interrupts while the lock is held. Otherwise, an interrupt occurring while the processor holds
a spin lock will further delay other processors waiting for that lock and might result in a deadlock if
the interrupt handler tries to acquire the same lock.

5.1.2 Master-Slave Kernel Implementation

With a master-slave kernel implementation, the only critical resources are the two run queues. The
operation of enqueuing and dequeuing processes from them must be done with mutual exclusion to
prevent the queues from being corrupted. This is easily accomplished by protecting each queue with
a spin lock.

The slave processor can only execute processes that are on the slave run queue. If there are no pro-
cesses on the queue, the slave simply busy-waits in the loop until one becomes available. When a
process running on a slave executes a system call or generates a trap, it is simply switched over to
the master processor and placed on the master run queue. Since the master processor can run either
kernel- or user-mode processes, it can select processes from either queue. The process selection al-
gorithm should give preferences to choosing a process off the master run queue since those processes
can only be run on the master.

Each processor in a master-slave implementation receives and handles its own clock interrupts. To
keep the uniprocessor short-term mutual exclusion policy in place, all the usual kernel activity as-
sociated with a clock interrupt is handled by the master processor. The clock interrupt handler on
the slave simply has to check for situations where a context switch should be performed. This can
happen in three instances: when the current process’s time quantum expires, when a higher priority
process is added to the slave run queue, or when a signal has been posted to the process. In the first
two cases, the executing process is put back on the slave run queue. In the third case, the process
must be switched to the master processor so that the kernel code required to handle the signal can
run without the risk of race conditions.

31

5 Multiprocessor Kernel Implementations

5.1.3 Performance Considerations

Consider two different benchmarks run on a master-slave MP implementation. The first benchmark
consists of a group of processes that are completely compute bound. Once started, they generate
no page faults, traps, nor system calls, and perform no I/O. Such a benchmark will show a nearly
ideal linear increase in system throughput as additional processors are added to the system. Since
the benchmark spends all his time in user mode, all the slave processors can be fully utilized. On
the other hand, a second benchmark that consists of the same number of processes, except that the
processes are system call bound, will show the opposite result. If each process merely executes a
trivial system call continuously in a tight loop, with as little user-level processing as possible, this
benchmark will showno performance improvement over an UP system, regardless of the number
of processors present in the MP system. In this scenario, all processes in the benchmark require
continuous service by the kernel. Since only the master processor can provide this service, the slaves
will sit idle throughout the benchmark.

It can be concluded from this that a master-slave implementation is a poor choice for highly inter-
active (or otherwise I/O intensive) application environments because of the high system call and I/O
activity of these applications. It would be a good choice for compute bound scientific application
environments.

Application mixes that lie between the extremes of compute bound or system call bound may still
be able to benefit from additional slave processors. If an application mix is run on a UP and found
to spend 50 percent of its time executing in kernel, 40 percent executing at user-level, and 10 per-
cent waiting for I/O to complete, for example, then the 40 percent executing at user-level can be
distributed to the slave in a two-processor master-slave MP system. This will result in, at most, a
40-percent performance improvement. This assumes that all the user-level work can be done in par-
allel with the kernel and I/O activities. If it turns out that only half of the user work can be done
in parallel with the kernel and I/O work, then a 20-percent performance improvement will be seen.
Adding additional processors will not increase performance any further because they can do noth-
ing to reduce the 50 percent of the time the application mix spends running on the master, nor can
they reduce the time spent waiting for I/O. This is primary problem with master-slave kernels when
used in non-compute bound environments: the master quickly becomes a bottleneck and prevents
throughput from increasing when additional processors are added. It may not be economical to add
a second processor for only a 20-percent performance improvement. Anything beyond a two-CPU
master-slave MP system is almost always uneconomical for situations such as these.

5.2 Spin-Locked Kernels

To make SMP systems cost effective for highly interactive applications, the kernel must be made to
support simultaneous system calls from different processes running on different processors. Such
a kernel implementation allows multiple threads of kernel activity to be in progress at once and is
referred to as amultithreadedkernel. To multithread an operating system, all critical regions must
be identified and protected in some way. Spin locks are one such mechanism that can provide this
protection.

32

5.2 Spin-Locked Kernels

When spin locks are used, thegranularityof the locks must be decided. This refers to how many spin
locks are used and to how much data is protected by any one lock. Acoarse-grainedimplementation
uses few locks, each of which protects a large amount of the kernel, perhaps an entire subsystem.
A fine-grained implementation uses many locks, some of which may protect only a single data
structure element. The choice of using a coarse- or fine-grained implementation is both a space and
time trade-off. If each lock requires one word, then an extremely fine-grained implementation will
probably add one word to every instance of every data structure in the system. At the other extreme,
a very coarse-grained implementation uses little extra space but may hold locks for long periods of
time, causing other processors to spin excessively while waiting for the locks to free.

5.2.1 Giant Locking

The use of only a handful of spin locks throughout the kernel is referred to asgiant locking. The
easiest giant-locked kernel to implement is one that uses only a single lock. At this extreme, the lock
protects all kernel data and prevents more that one process from executing in kernel mode at a time.
The lock is acquired on any entry to the kernel, such as system call or trap, and released only when
the process context-switches or returns to user mode. Interrupt handlers must also acquire the kernel
giant lock, since they represent an entry point into the kernel as well.

The giant-locking technique is similar to master-slave kernels. The difference is that with a giant-
locked kernel any processor can execute kernel code, making context switching to the master un-
necessary. This may seem like an advantage at first, but a giant-locked kernel may perform worse
than a master-slave kernel. If a process executes a system call while another processor is holding the
kernel lock, then the processor will sit idle while spinning for the lock. In a master-slave kernel, the
processor could have selected another user-mode process to run instead of simply sitting idle.

5.2.2 Coarse-Grained Locking

The giant-locking technique that employs only a single lock can be expanded to allow some ad-
ditional parallelism by adding more locks. By using separate locks for each subsystem within the
kernel, for example, processes on different processors can be simultaneously performing system
calls if they affect only different kernel subsystems. While a coarse-grained MP kernel implemen-
tation begins to allow parallel kernel activity on more than one processor, it is still too restrictive
for system-call-intensive workloads. It will not generally provide much performance increase over
master-slave kernels to those application job mixes that require large amounts of kernel services.

5.2.3 Fine-Grained Locking

The goal of fine-grained locking is to increase the amount of parallel kernel activity by different
processors. While many processes may want to use the same kernel subsystem, it is frequently the
case that they will be using separate portions of the associated data structure. Each subsystem can
be divided into separate critical resources, each with its own lock. This requires an analysis of all
data structures that were protected by the uniprocessor short-term mutual exclusion technique, and
adding the appropriate spin locks.

33

5 Multiprocessor Kernel Implementations

5.2.4 Kernel Preemption

The original uniprocessor UNIX kernel was nonpreemptable by design to simplify the implementa-
tion of short-term mutual exclusion. As seen, all cases where short-term mutual exclusion is required
must be explicitly protected by a spin lock in order for a multithreaded kernel implementation to
function correctly on an MP system. Since short-term mutual exclusion has now been made explicit,
the old UP approach of not preempting processes executing in kernel mode can be relaxed. Anytime
a process is not holding a spin lock and has not blocked any interrupts, then it is not executing in a
critical region and can be preempted. When a kernel process is preempted under these circumstances,
it is guaranteed that it is only accessing private data. This observation is useful on real-time systems,
for example, as it can reduce the dispatch latency when a higher priority process becomes runnable.

5.2.5 Performance Considerations

As before, compute bound jobs can run in parallel on all processors without contention. Not surpris-
ingly, a mutithreaded kernel will neither help nor hinder the performance of such applications. The
difference lies in the performance of the system when running system-call-intensive applications. If
the processes in the application job mix uses separate kernel resources, each of whose data structures
are protected by separate locks, then these processes will not contend for the same lock and will be
able to run simultaneously on different CPUs, whether they are in user or kernel mode.

5.3 Semaphored Kernels

Operating system designers have turned to other primitives to replacesleep andwakeup in mul-
tiprocessor UNIX systems. As with spin locks, these primitives are designed to function correctly
in an MP environment regardless of the number of processors in the system. They differ from spin
locks in that they allow a process to be suspended if certain criteria cannot be immediately satisfied.
While a variety of such primitives has been invented, one of the simplest is the Dijkstrasemaphore
[Dij65].

The state of a semaphore is represented by a signed integer value upon which two atomic operations
are defined. TheP(s) operation decrements the integer value associated with semaphores by 1 and
blocks the process if the new value is less than zero. If the new value is greater than or equal zero,
the process is allowed to continue execution. The converse is theV(s) operation, which increments
the semaphore value by one and, if the new value is less than or equal to zero, unblocks one process
that was suspended during aP operation on that semaphore. The process executing theV operation
is never blocked. A queue of processes blocked on the semaphore is maintained as part of the
semaphore state, in addition to the integer value. When the value of the semaphore is negative, the
absolute value indicates the number of processes on the queue.

The distinguishing factor betweenP andV and the uniprocessorsleep and wakeup functions
is that semaphores are higher level operations that make both the decision to block and the act of
blocking the process an atomic operation. In addition, theV operation has the desired effect of
unblocking only a single process at a time. Since semaphores have a state associated with them, it is

34

5.3 Semaphored Kernels

unnecessary to keep external flags to record the state of the lock. Furthermore, this state information
means that semaphores retain a “memory” of past operations.

5.3.1 Mutual Exclusion with Semaphores

By initializing the semaphore value to 1, long-term mutual exclusion locks can be implemented.
A critical section is then protected by using aP operation before entering it, and usingV upon
exiting (see Figure 5.4). This will allow only one process in the critical region at a time. Once the
first process enters the critical region, it will decrement the semaphore value to zero. The process
will be allowed to proceed, but any other processes following will block when they execute theP
operation. When the first process exits the critical region, theV operation will allow another to enter
by unblocking a waiting process if there is one.

P(s)
perform critical section
V(s)

Figure 5.4: Critical region protected by a semaphore.

Semaphores used for mutual exclusion in this fashion are calledbinary semaphores. This refers to the
fact that the binary semaphore logically has only two states: locked and unlocked. The semaphore
value for a binary semaphore is never greater than 1, as this would allow more than one process to
be in the critical section at a time.

5.3.2 Synchronization with Semaphores

Semaphores can be used for process synchronization by initializing the value to zero. This allows one
process to wait for an event to occur by using theP operation. Since the semaphore value is initially
zero, the process will block immediately. Completion of the event can be signaled by another process
using aV operation. TheV operation causes a process waiting for the event to be awakened and run.
Because the semaphore is incremented by aV operation even if no processes are blocked on the
semaphore, an event that is signaled before the first process can perform theP operation causes that
process to continue without waiting.

5.3.3 Resource Allocation with Semaphores

Finally, semaphores can be used to control the allocation of resources from a finite pool. For exam-
ple, assume there is a pool a special-purpose buffers in the system that processes must periodically
allocate. If no buffers are presently available, a process requesting one will wait until one becomes
available. By initializing a semaphore to the number of buffers in the pool, aP operation can be
done to reserve a buffer. As long as the semaphore value remains greater then zero, each process
reserving a buffer will be allowed to proceed without blocking. AV operation is done when a buffer
is released. Once all buffers are in use, new processes reserving a buffer are blocked. When a buffer
is released, a process waiting for a buffer is awakened and allowed to continue (see Figure 5.5).

35

5 Multiprocessor Kernel Implementations

P(s)
allocate and use buffer
...
return buffer to pool
V(s)

Figure 5.5: Resource reservation with semaphores.

5.3.4 Implementing Semaphores

The advent of RISC processors means that operations like semaphores, which require multiple mem-
ory accesses to be done atomically, are rarely implemented in hardware. Instead, semaphores must be
built on top of the basic hardware atomic operations by software. An example of an implementation
of semaphores will be shown in Section 11.1.8 as part of the TopsySMP project.

In some cases, critical sections can be parallelized by allowing multiple processes that need merely
to read various data structures to do so concurrently. As long as none of the processes modify any
of the data structures, no races can occur. When a process does need to make a modification, it can
do so by waiting for the reader processes to finish and then make its modifications with mutually
exclusive access from all other readers and writers. Such a locking scheme is termed amultireader,
single writerlock (or simply a multireader lock for short). An implementation of a multireader lock
based on semaphores is shown in Section 11.1.8 as part of the TopsySMP project.

5.4 Summary

A uniprocessor kernel cannot be run on an SMP system without modification. The short-term mutual
exclusion technique used by UP kernels relies on the fact that there is never more that one process
executing in the kernel at the same time. One way an MP system can keep this policy in effect is to
restrict all kernel activity to one processor in the system. Themasterprocessor services all system
calls, interrupts, and many other kernel activity. The other processors in the system, theslaves, can
execute processes only while they are running in user mode. Once a process running on a slave
begins a system call or generates a trap, it must be switched to the master.

In such an implementation, the only critical resource is the run queue. A technique is needed to
serialize access to the run queues by multiple processors so that race conditions are prevented.Spin
lockscan be used for this. Spin locks can be implemented by atomically updating a memory location
so that only one processor can successfully acquire the lock at any time. Once a processor acquires
a spin lock, all other processors attempting to acquire the lock will busy-wait until it is released.

In a master-slave kernel, the master tends to be the limiting factor in the overall performance of the
system. Once the master processor is saturated, adding additional slaves will not improve perfor-
mance since they cannot share the kernel load in the general case. A number of simple system calls
can be run on the slaves, but since these are not the system calls that consume most of the time on the
master, running them on the slaves will not improve performance. Performance can be significantly
improved only by allowing parallel kernel activity on multiple processors.

36

5.4 Summary

The amount of concurrent kernel activity that is possible across all the processors is partially deter-
mined by the degree of multithreading. Acoarse-grainedimplementation uses few locks, but can
suffer the same drawbacks as a master-slave kernel when the applications require frequent kernel ser-
vice. A fine-grainedimplementation attempts to overcome these drawbacks by protecting different
data structures with different locks. The goal is to ensure that unrelated processes can perform their
kernel activities without contention.

An advantage of a multithreaded kernel is that all critical sections are protected either by a long-term
lock or spin lock, or by raising the interrupt priority level. This makes it possible to preempt kernel
processes that are not holding any spin locks and that do not have any interrupt blocked.

Semaphoresprovide a useful MP primitive that can replace all uses of the uniprocessorsleep /
wakeup mechanism. A semaphore can implement either mutual exclusion or process synchro-
nization and works correctly for any number of processors in the system, including the uniproces-
sor case. The advantage of semaphores over thesleep/wakeup mechanism is that they update
the status of the semaphore and block or unblock a process, all as an atomic operation. Second,
semaphores awaken only a single process at a time, which eliminates unnecessary trashing. Conse-
quently, semaphores are good for implementing long-term mutual exclusion. They are also superior
to spin locks when implementing giant locks in coarse-grained kernels. Semaphores should not,
however, be used as a complete replacement for spin locks. Spin locks are still preferable for im-
plementing mutual exclusion in short critical sections. Attempting to use semaphores in these cases
introduces unnecessary context switching overhead, which can be greater than the time that would
have been spent spinning.

37

5 Multiprocessor Kernel Implementations

38

Part II

REVIEW OF EXISTING MP
SYSTEMS

39

6 SMP Hardware

This chapter gives a short overview over two existing MP hardware architectures. The first one is
theSPARC Multiprocessor System Architecturefrom Sun, and the second one is theMultiprocessor
Specificationfrom Intel.

6.1 SPARC Multiprocessor System Architecture

The Sun MP implementation is based on a tightly coupled, shared memory architecture. At the
processor core level, processors are tightly coupled by a high-speed module interconnection bus,
MBus, and share the same image of memory, although each processor has a cache where recently
accessed data and instructions are stored (see Figure 6.1). All CPUs have equal access to system
services, such as I/O.

SPARC IU
FPU and Cache

SPARC IU
FPU and Cache

SPARC IU
FPU and Cache

Plug-in modules

MBus - SPARC Module Interconnect

I/O Subsystem
Physical

Memory

I/O and memory can be
plug-in modules

Figure 6.1: SPARC/MBus Multiprocessing Architecture

Providing a standard interface between CPUs and the rest of the system allows modular upgrade to
future processor implementations. The interface also provides a convenient way to add more proces-
sors to a basic system. Adding or changing processors is accomplished by installing a SPARC mod-
ule, which attaches to the MBus connectors on the system board. A module’s processor core consists
of a CPU, a floating-point unit (FPU), a memory management unit/cache controller (MMU/CC), and
local cache. In its first multiprocessor implementation, SPARC modules contained two processor
cores (each with a 64 Kbyte cache). A single system board supports one or two modules for two- or
four-way multiprocessing.

41

6 SMP Hardware

6.1.1 Multi-level Bus Architecture

The SPARC MBus is a high-speed interface bus that connects SPARC compute modules to physical
memory modules and special purpose I/O modules. It is a fully synchronous 64-bit, multiplexed
address and data bus that supports multiple masters at 40 MHz. It supports data transfer of up to
128 bytes and can support up to 64 Gbytes of physical address space. Data transfer larger that 8
bytes occur as burst transfer, allowing MBus to achieve a peak bandwidth of 320 Mbytes/sec. Bus
arbitration among masters is defined to be handled by a central bus arbiter. Requests from MBus
modules are sent to the arbiter, and ownership is granted to the module with the highest priority. The
MBus can accommodate up to 16 modules on a single printed circuit board.

6.1.2 MBus Multiprocessor System Design

The MBus Interface Specification defines two levels of compliance, Level 1 and Level 2. Level
1 allows for the operations of read and write of sizes ranging from 1–128 bytes. Level 2 adds
the additional signals and transaction needed to design a fully symmetric, cache-coherent, shared-
memory multiprocessor system.

The system performance bottleneck in designing a shared memory MP system tends to be bus band-
width. MBus modules include a private cache in order to reduce memory bus traffic. Either write-
back or write-through caches are supported, but in order to be cache-consistent in Level 2, the caches
in MBus systems must be write-back. MBus caches must also have a write-allocate policy where the
contents of the cache line are updated on a write miss.

While a write-back cache reduces bus traffic, it also introduces a problem, since a cache can have a
modified line that is inconsistent with memory. When another module requests that line, the most
up-to-date copy must be provided. This problem is solved by MBus implementing a write-invalidate,
ownership-based protocol modeled after that used by the IEEE Futurebus.

6.1.3 Multiprocessor System Implementation

The following table gives a survey of three system implementations of a generation of symmet-
ric, high-performance, highly configurable SPARC multiprocessor systems available from Sun Mi-
crosystems.

SPARCserver SPARCserver SPARCcenter
600MP 1000 2000

Number of CPUs 1–4 1–8 2–20
Number of System Boards 1 1–4 1–10
Processor SuperSPARC
Cache Size 1 MB per CPU
Clock Speed 40–45 MHz 50 MHz 40 MHz
Main Memory 64 MB–1 GB 32 MB–2 GB 64 MB–5 GB

42

6.2 Intel Multiprocessor Specification

6.2 Intel Multiprocessor Specification

The Multi-Processor Specification from Intel (referred to as the MP specification), defines an en-
hancement to the standard to which PC manufacturers design DOS-compatible systems. MP-capable
operating systems will be able to run without special customization on multiprocessor systems that
comply with the MP specification. Details about the Intel MP specification can be found in [Int97].

HIGH-BANDWIDTH MEMORY BUS

APIC ADVANCED PROGRAMMABLE
INTERRUPT CONTROLLER

ICC INTERRUPT CONTROLLER
COMMUNICATIONS

CPU CPU CPU

SHARED
MEMORY
MODULE

GRAPHICS
FRAME
BUFFER I/O

INTERFACE

APIC

I/O
INTERFACE

APIC

ICC BUS

I/O EXPANSION BUSI/O EXPANSION BUS

Figure 6.2: Intel MP System Architecture

6.2.1 System Overview

Figure 6.2 shows the general structure of a design based on the MP specification. The MP specifi-
cation’s model of multiprocessor system incorporates a tightly-coupled, shared-memory architecture
with a distributed interprocessor and I/O interrupt capability. It is fully symmetric; that is, all proces-
sors are functionally identical and of equal status, and each processor can communicate with every
other processor. There is no hierarchy, no master-slave relationship, no geometry that limits commu-
nication only to “neighboring” processors. The model is symmetric in two important respects:

� Memory symmetry. Memory is symmetric when all processors share the same memory space
and access that space by the same addresses.

� I/O symmetry. I/O symmetry is when all processors share access to the same I/O subsystem
and any processor can receive interrupts from any source.

6.2.2 Hardware Overview

The MP specification defines a system architecture based on the following hardware components:

43

6 SMP Hardware

� One or more processors that are Intel architecture instruction set compatible

� One or more Advanced Programmable Interrupt Controller (APIC)

� Software-transparent cache and shared memory subsystem

� Software-visible components of the PC/AT platform

System Processors
To maintain compatibility with existing PC/AT software products, the MP specification is based on
the Intel486 and the Pentium processor family. While all processors in a compliant system are func-
tionally identical, the MP specification classifies them into two types: thebootstrap processor (BSP)
and theapplication processors (AP). Which processor is the BSP is determined by the hardware or
by the hardware in conjunction with the BIOS. This differentiation is for convenience and is in ef-
fect only during the initialization and shutdown process. The BSP is responsible for initializing the
system and for booting the operating system; APs are activated only after the operating system is up
and running.

APIC
Multiple local and I/O APIC units operate together as a single entity, communicating with one an-
other over theInterrupt Controller Communications (ICC)bus. The APIC units are collectively
responsible for delivering interrupts from interrupt sources to interrupt destinations throughout the
multiprocessor system. In a compliant system, all APICs must be implemented as memory-mapped
I/O devices.

System Memory
Compared to a uniprocessor system, a symmetric multiprocessor system imposes a high demand
for memory bus bandwidth. The demand is proportional to the number of processors on the memory
bus. To reduce memory bus bandwidth limitations, an implementation of the MP specification should
use a secondary cache that has high-performance features, such as write-back update policy and a
snooping cache-consistency protocol.

6.2.3 BIOS Overview

A BIOS functions as an insulator between the hardware on one hand, and the operating system and
application software on the other. For a MP system, the BIOS may perform the following functions:

� Pass configuration information to the operating system that identifies all processors and other
multiprocessing components of the system.

� Initialize all processors and the rest of the multiprocessing components to a known state.

44

6.2 Intel Multiprocessor Specification

6.2.4 MP Configuration Table

The operating system must have access to some information about the multiprocessor configuration.
The MP specification provides two methods for passing this information to the operating system: a
minimal method for configurations that conform to one of a set of common hardware defaults, and
a maximal method that provides the utmost flexibility in hardware design. Figure 6.3 shows the
general layout on the MP configuration data structures.

00H

PHYSICAL ADDRESS POINTER

FIXED-LENGTH
HEADER

31 0

ENTRY TYPE

ENTRY TYPE

ENTRY LENGTH DEPENDS ON ENTRY TYPE

ENTRY LENGTH DEPENDS ON ENTRY TYPE

VARIABLE NUMBER OF
VARIABLE-LENGTH

ENTRIES

31 07815162324

31 07815162324

02CH

FLOATING
POINTER

STRUCTURE

MP
CONFIGURATION

TABLE

Figure 6.3: MP Configuration Data Structures

The following two data structures are used:

1. TheMP Floating Point Structure. This structure contains a physical address pointer to the
MP configuration table and other MP feature information bytes. When present, this structure
indicates that the system conforms to the MP specification.

2. TheMP Configuration Table. The MP configuration table contains explicit configuration in-
formation about APICs, processors, buses, and interrupts.

A variable number of variable length entries follow the header of the MP configuration table. The
first byte of each entry identifies the entry type. Each entry has a known, fixed length. Table 6.1
gives the meaning of each entry type.

6.2.5 Default Configurations

The MP specification defines several default MP system configurations. The purpose of these de-
faults is to simplify BIOS design. If a system conforms to one of the default configurations, the

45

6 SMP Hardware

Entry Description Comments
Processor One entry per processor.
Bus One entry per bus.
I/O APIC One entry per I/O APIC.
I/O Interrupt Assignment One entry per bus interrupt source.
Local Interrupt Assignment One entry per system interrupt source.
System Address Space MappingEntry to declare system visible memory or I/O space

on a bus.
Bus Hierarchy Descriptor Entry to describe I/O bus interconnection.

Table 6.1: MP Configuration Entry Types

BIOS will not need to provide the MP configuration table.

To use the default configuration, a system must meet the following basic criteria:

1. The system supports two processors.

2. Both processors must execute the common Intel architecture instruction set.

3. The system uses discrete or integrated APICs at fixed base memory addresses.

The following table specifies two of the most commonly used default configurations:

Config Code Number of CPUs Bus Type APIC Type
1 2 ISA 82489DX
5 2 ISA + PCI Integrated

46

7 SMP Operating Systems

This chapter covers a review of existing SMP operating systems. Among the many existing operating
systems, three were selected to study their implementation of an SMP kernel. First, as a represen-
tative of commercial operating systems, Solaris was chosen. Second, the Mach kernel as a member
of the academic world. And third, the Intel i386 version of Linux was picked to represent a freely
distributable OS developed by a variety of programmers all over the world. Besides, Linux is an
example of an operating system running on implementations of the MP specification by Intel.

7.1 Solaris

AT&T’s UNIX System V Release 4 (SVR4) was the result of evolution and conformance in the
industry. Efforts began in the mid-1980s to unify the variants into a single UNIX operating system
that would serve as an open computing platform for the 1990s. In 1987, Sun and AT&T formally
announced a joint effort to develop this platform. In 1988, UNIX International was formed to provide
industry-wide representation to the process of creating an evolving SVR4. As a result of these efforts,
SVR4 complies with most existing industry standards and contains important functionality from the
main variants of UNIX: SVR3, BSD 4.2/4.3, SunOS, and Xenix.

In addition to having all the functionality and interfaces provided by SVR4, the Solaris operating
environment also has several value-added features above and below the standard interfaces. The
most important feature is the SunOS multithreaded architecture.

7.1.1 System Overview

SunOS 5.x contains some core modules and other modules, such as device drivers, file systems,
and individual system calls which are dynamically loaded into the kernel as needed. The core of
SunOS 5.x is a real-time nucleus that supports kernel threads of control. Kernel threads are also used
to support multiple threads of control, calledlightweight processes (LWP)within a single process.
Kernel threads are dispatched in priority order on the pool of available processors. The kernel also
provides preemptive scheduling with very few nonpreemptive points.

SunOS 5.x is intended to run on uniprocessor systems and tightly coupled shared-memory multipro-
cessors. The kernel assumes all processors are equivalent. Processors select kernel threads from the
queue of runnable threads. The shared memory is assumed to be symmetrical.

SimOS 5.x provides a relatively fine-grained locking strategy to take advantage of as many pro-
cessors as possible. Each kernel subsystem has a locking strategy designed to allow a high degree

47

7 SMP Operating Systems

of concurrency for frequent operations. In general, access to data items are protected by locks as
opposed to entire routines. Infrequent operations are usually coarsely locked with simple mutual
exclusions. Overall, SunOS 5.x has several hundred distinct synchronization objects statically, and
can have many thousands of synchronization objects dynamically. In order to protect and arbitrate to
critical data structures, synchronization locks use the invisible test-and-set instructions (swap and
ldstub), provided by the SPARC architecture. Unlike traditional UNIX implementations, interrupt
levels are not used to provide mutual exclusion.

7.1.2 SunOS Kernel Architecture

Each kernel thread is a single flow of control within the kernel’s address space. The kernel threads
are fully preemptible and can be scheduled by any of the scheduling classes in the system. Since all
other execution entities are built by using kernel threads, they represent a fully preemptive, real-time
“nucleus” within the kernel.

Interrupts are also handled by kernel threads. The kernel synchronizes with interrupt handlers via
normal thread synchronization primitives. For example, if an interrupt thread encounters a locked
mutex, it blocks until the mutex is unlocked. In SunOS, synchronization variables, rather than pro-
cessor priority levels are used to control access to all shared kernel data.

Data Structures
In the traditional UNIX kernel, the user and proc structures contained all kernel data for the process.
Processor data was held in global variables and data structures. The per-process data was divided
among non-swappable data in the proc structure and swappable data in the user structure. The kernel
stack of the process, which is also swappable, was allocated with the user structure in the user area,
usually one or two pages long.

The SunOS kernel separates this data into data associated with each LWP and its kernel thread, the
data associated with each process, and the data associated with each processor. The per-process data
is contained in the proc structure. To speed access to the thread, LWP, process, and CPU structures,
the SPARC implementation uses a global register to point to the current thread structure.

Scheduling
SunOS 5.x provides several scheduling classes. Every kernel thread is associated with a scheduling
class, which determines how kernel-level threads are dispatched with respect to each other. The
scheduling classes currently supported aresys(system),timesharing, andrealtime (fixed-priority).
The scheduler chooses the thread with the greatest global priority to run on the CPU. If more than
one thread has the same priority, they are dispatched in round-robin order.

SunOS 5.x is fully preemptible, which enables the implementation of a real-time scheduling class
and support for interrupt threads. Preemption is disabled only in a few places for short period of
time; that is, a runnable thread runs as soon as possible after its priority becomes high enough.

Synchronization Architecture
The kernel implements the same synchronization objects for internal use as are provided by the user-
level libraries for use in multithreaded application programs. These objects are mutual exclusion
locks, conditional variables, semaphores, and multiple readers, single writer locks.

48

7.1 Solaris

Synchronization objects are all implemented such that the behavior of the synchronization object is
specified when it is initialized. Synchronization operations, such as acquiring a mutex lock, take
a pointer to the object as an argument and may behave somewhat differently, depending on the
type and optional type-specific argument specified when the object was initialized. Most of the
synchronization objects have types that enable collecting statistics, such as blocking counts or timers.
A patchable kernel variable can also set the default types to enable statistics gathering. This technique
allows the selection of statistics gathering on particular synchronization objects or on the kernel as a
whole.

The semantics of most of the synchronization primitives cause the calling thread to be prevented from
processing past the primitive until some condition is satisfied. The way in which further progress is
impeded (e.g., sleep, spin, or other) is a function of the initialization. By default, the kernel thread
synchronization primitives that can logically block, can potentially sleep.

A variant of the conditional variable wait primitive and the semaphore inherent primitive are pro-
vided for situations where a kernel thread may block for long or indeterminate periods, but still be
interruptible when signaled. There is no nonlocal jump to the head of the system call, as a traditional
sleep routine might contain. When a signal is pending, the primitive returns with a value indicating
that the blocking was interrupted by a signal and the caller must release any resource and return.

Implementing Interrupts as Threads
Since interrupts in SunOS are kernel threads, the kernel synchronizes with interrupt handlers via
normal thread synchronization primitives. Most other implementations use processor priority levels.

Interrupts must be efficient, so a full thread creation for each interrupt is impractical. Instead, SunOS
5.x preallocates interrupt threads, already partly initialized. When an interrupt occurs, a minimum
amount of work is needed to move onto the stack of an interrupt thread and set it as the current
thread.

Interrupt Thread Cost
The additional overhead in taking an interrupt is about 40 SPARC instructions. The savings in the
mutex acquire/release path is about 12 instructions. However, mutex operations are much more
frequent than interrupts, so there is a net gain in time cost, as long as interrupts do not block too
frequently.

There is a cost in terms of memory usage also. Currently, an interrupt thread is preallocated for each
potential active interrupt level below the thread level for each CPU. Nine interrupt levels on the Sun
SPARC implementation can potentially use threads. An additional interrupt thread is preallocated
for the clock (one per system). Each kernel thread requires at least 8 Kbytes of memory for a stack.
The memory cost can be higher if there are many interrupt threads.

Clock Interrupt
The clock interrupt is worth noting because it is handled specially. A clock interrupt occurs every 10
ms, or 100 times a second. There is only one clock interrupt thread in the system (not one per CPU);
the clock interrupt handler invokes the clock thread only if it is not already active.

49

7 SMP Operating Systems

7.2 Mach

Mach’s earliest roots go back to a system calledRIG (Rochester Intelligent Gateway)which began
at the University of Rochester in 1975. Its main research goal was to demonstrate that operating
systems could be structured in a modular way, as a collection of processes that communicated by
message passing. When one of its designers, Richard Rashid, left the University of Rochester and
moved to Carnegie-Mellon University (CMU) in 1979, he wanted to continue developing message
passing operating systems.

By 1984 Rashid began a third generation operating system project calledMach. By making Mach
compatible with UNIX, he hoped to be able to use the large volume of UNIX software becoming
available. Around this time, DARPA, the U.S. Department of Defense’s Advanced Research Projects
Agency was looking for an operating system that supported multiprocessors as a part of its Strategic
Computing Initiative. CMU was selected, and with DARPA funding, Mach was developed further.
It was decided to make the system compatible with 4.2BSD by combining Mach and 4.2BSD into a
single kernel.

The first version of Mach was released in 1986 for the VAX 11/784, a four-CPU multiprocessor.
Shortly thereafter, ports to IBM PC/AT and Sun 3 were done. As of 1988, the Mach 2.5 kernel
was large and monolithic due to the presence of a large amount of Berkley UNIX code in the ker-
nel. In 1989, CMU removed all the Berkley code from the kernel and put it in user space. What
remained was a microkernel consisting of pure Mach. In this chapter, we will focus on the Mach 3.0
microkernel and one user-level operating system emulator, for BSD UNIX.

7.2.1 The Mach Microkernel

The Mach microkernel has been built as a base upon which UNIX and other operating systems can
be emulated. This emulation is done by a software layer that runs outside the kernel, in user space,
as shown in Figure 7.1.

The Mach kernel, like other microkernels, provides process management, memory management,
communication, and I/O services. Files, directories, and other traditional operating system functions
are handled in user space. The idea behind the Mach kernel is to provide the necessary mechanisms
for making the system work, but leaving the policy to user-level processes.

The kernel manages five principal abstractions: Processes, threads, memory objects, ports, and mes-
sages. Aprocessis basically an environment in which execution can take place. It has an address
space holding the program text and data, and usually one or more stacks. The process is the basic
unit for resource allocation. Athread in Mach is an executable entity. Is has a program counter
and a set of registers associated with it. Each thread is part of exactly one process. A process with
one thread is similar to a traditional (e.g. UNIX) process. A concept that is unique to Mach is the
memory object, a data structure that can be mapped into a process’ address space. Memory objects
occupy one or more pages, and form the basis of the Mach virtual memory system. Interprocess
communication in Mach is based on message passing. To receive messages, a user process asks the
kernel to create a kind of protected mailbox, called aport, for it. The port is stored inside the kernel,
and has the ability to queue an ordered list on messages.

50

7.2 Mach

Microkernel

4.3 BSD

Emulator

System V

Emulator

HP/UX

Emulator

Other

Emulator

User processors

User space

Kernel space

Software
Emulator
Layer

Figure 7.1: Abstract Model for UNIX Emulation using Mach

7.2.2 Process Management

Process management in Mach deals with processes, threads, and scheduling.

Processes
A process in Mach consists primarily of an address space and a collection of threads that execute in
that address space. Processes are passive. Execution is associated with the thread. Processes are used
for collecting all the resources related to a group of cooperating threads into convenient containers.

A process can be runnable or blocked, independent of the state of its threads. If a process is runnable,
then those threads that are also runnable can be scheduled and run. If a process is blocked, its threads
may not run, no matter what state they are in. The scheduling parameters include the ability to specify
which processors the process’ threads can run on. For example, the process can use this power to
force each thread to run on a different processor, or to force them all to run on the same processor, or
anything in between. In addition, each process has a default priority that is settable. CPU scheduling
is done using this priority, so the programmer has a fine-grain control over which threads are the
most important and which are the least important.

Threads
The active entities in Mach are the threads. They execute instructions and manipulate their registers
and address space. Each thread belongs to exactly one process. A process cannot do anything unless
it has one or more threads.

All the threads in a process share the address space and all the process-wide resources. Nevertheless,
threads also have private per-thread resources. One of these is thethread-port, which is used to
invoke thread-specific kernel services, such as exiting when the thread is finished. Since ports are
process-wide resources, each thread has access to its siblings’ ports, so each thread can control the
others.

On a single CPU system, threads are timeshared. On a multiprocessor, several threads can be active
at the same time. This parallelism makes mutual exclusion, synchronization, and scheduling more

51

7 SMP Operating Systems

important then they normally are, because performance now becomes a major issue, among with
correctness. Since Mach is intended to run on multiprocessors, these issues have received special
attention. Synchronization is done using mutexes and conditional variables. The mutex primitives
arelock , trylock , andunlock . Primitives are also provided to allocate and free mutexes. The
operations on condition variables aresignal , wait , andbroadcast .

Scheduling
Mach scheduling has been heavily influenced by its goal of running on multiprocessors. The CPUs
in a multiprocessor can be assigned toprocessor setsby software. Each CPU belongs to exactly one
processor set. Threads can also be assigned to processor sets by software. The job of the scheduling
algorithm is to assign threads to CPUs in a fair and effective way. For purpose of scheduling, each
processor set is a closed world, with its own resources and its own customers, independent of all the
other processor sets.

This mechanism gives processes a large amount of control over their threads. A process can assign an
important thread to a processor set with one CPU and no other threads, thus insuring that the thread
runs all the time. It can also dynamically reassign threads to processor sets as the work proceeds,
keeping the load balanced.

Thread scheduling in Mach is based on priorities. Priorities are integers from 0 to 31, with 0 being
the highest priority and 31 being the lowest priority. Each thread competes for CPU cycles with all
other threads, without regard to which thread is in which process. Associated with each processor
set is an array of 32 run queues, corresponding to threads currently at priorities 0 through 31. When
a thread at priorityn becomes runnable, it is put at the end of queuen. A thread that is not runnable
is not present on any queue. Each run queue has three variables attached to it. The first one is a
mutex that is used to lock the data structure. It is used to make sure that only one CPU at a time
is manipulating the queues. The second one is the count of the number of threads on all the queues
combined. If this count becomes 0, there is no work to do. The third variable is a hint as to where to
find the highest priority thread. It is guaranteed that no thread is at a higher priority, but the highest
one may be at a lower priority. This hint allows the search for the highest priority thread to avoid the
empty queues at the top.

In addition to the global run queue, each CPU has its own local run queue. Each local run queue
holds those threads that are permanently bound to that CPU, for example, because they are device
drivers for I/O devices attached to that CPU. These threads can only run on one CPU, so putting
them on the global run queue is incorrect.

We can now describe the basic scheduling algorithm. When a thread blocks, exists, or uses up its
time quantum, the CPU it is running on first looks on its local run queue to see if there are any
active threads. This check merely requires inspecting the count variable associated with the local run
queue. If it is nonzero, the CPU begins searching the queue for the highest priority thread, starting
at the queue specified by the hint. If the local run queue is empty, the same algorithm is applied to
the global queue, the only difference being that the global run queue must be locked before it can be
searched. If there are no threads to run on either queue, a special idle thread is run until some thread
becomes ready.

If a runnable thread is found, it is scheduled and run for one quantum. At the end of the quantum,
both the local and global run queues are checked to see if any other threads at its priority or higher

52

7.3 Linux

are runnable. If a suitable candidate is found, a thread switch occurs. If not, the thread is run for
another quantum. Threads may also be preempted. On multiprocessors, the length of the quantum
is variable, depending on the number of threads that are runnable. The more runnable threads and
the fewer CPUs there are, the shorter the quantum. This algorithm gives good response time to short
requests, even on heavily loaded system, but provides high efficiency on lightly loaded systems.

For some applications, a large number of threads may be working together to solve a single problem,
and it may be important to control the scheduling in detail. Mach provides a hook to give threads
some additional control over their scheduling. The hook is a system call that allows a thread to lower
its priority to the absolute minimum for a specified number of seconds. Doing so gives other threads
a chance to run. When the time interval is over, the priority is restored to its previous value. This
system call has another interesting property: it can name its successor if it wants to. For example,
after sending a message to another thread, the sending thread can give up the CPU and request that
the receiving thread be allowed to run next. This mechanism, calledhandoff scheduling, bypasses
the run queues entirely. If used wisely, it can enhance performance. The kernel also uses it in some
circumstances, as an optimization.

Mach can be configured to do affinity scheduling, but generally this option is off. When it is on, the
kernel schedules a thread on the CPU it last run on, hoping that part of its address space is still in
that CPU’s cache. Affinity scheduling is only applicable to multiprocessors.

7.3 Linux

Linux is a freely distributable version of UNIX developed primarily by Linus Torvalds at the Uni-
versity of Helsinki in Finland. Linux was developed with the help of many UNIX programmers and
wizards across the Internet, allowing anyone with enough know-how and gumption the ability to
develop and change the system. The Linux kernel uses no code from AT&T or any other proprietary
source, and much of the software available for Linux is developed by the GNU project at the Free
Software Foundation in Cambridge, Massachusetts. However, programmers all over the world have
contributed to the growing pool of Linux software.

Linux was originally developed as a hobby project by Linus Torvalds. It was inspired byMinix, a
small UNIX system developed by Andy Tanenbaum, and the first discussions about Linux were on
the USENET newsgroupcomp.os.minix . These discussions were concerned mostly with the
development of a small, academic UNIX system for Minix users who wanted more.

On 5 October 1991, Linus announced the first “official” version of Linux, version 0.02. At this point,
Linus was able to run bash (the GNU Bourne Again Shell) and gcc (the GNU C compiler), but not
very much else was working. Again, this was intended as a hacker’s system. The primary focus was
kernel development – none of the issues of user support, documentation, distribution, and so on had
even been addressed. The last official stable kernel release is 2.0.36; the following section are based
on version 2.2 which will be released soon.

Today, Linux is a complete UNIX clone. Almost all of the major free software packages have been
ported to Linux, and commercial software is becoming available. Much more hardware is supported
than in original versions of the kernel. Linux was first developed for 386/486-based PCs. These days

53

7 SMP Operating Systems

it also runs on ARMs, DEC Alphas, SUN Sparcs, M68000 machines, MIPS and PowerPC, and oth-
ers. Many people have executed benchmarks on 80486 Linux systems and found them comparable
with mid-range workstations from Sun Microsystems and Digital Equipment Corporation.

Linux 2.0 includes basic SMP support for Intel and Sun hardware. The current 80x86 kernel supports
Intel MP v1.1 and Intel MP v1.4 compliant motherboards with between 1 and 16 Intel processors
(486/Pentium/Pentium Pro).

7.3.1 Evolution of Linux SMP

Linux 2.0 started with a single lock, maintained across all processors. This lock is required to access
the kernel space. Any processor may hold it and once it is held may also re-enter the kernel for
interrupts and other services whenever it likes until the lock is relinquished. This lock ensures that
a kernel mode process will not be pre-empted and ensures that blocking interrupts in kernel mode
behaves correctly. This is guarantees because only the processor holding the lock can be in kernel
mode, only kernel mode processes can disable interrupts and only the processor holding the lock
may handle an interrupt.

Such a choice is however poor for performance. It was necessary to move to finer grained parallelism
in order to get the best performance. This was done hierarchically by gradually refining the locks to
cover smaller areas.

7.3.2 Changes to the Kernel Components

The kernel changes are split into generic SMP support changes and architecture specific changes
necessary to accommodate each different processor type Linux is ported to.

Initialization
Linux/SMP defines that only a single processor enters the kernel entry pointstart kernel() .
Other processors are assumed not to be started or to have been captures elsewhere. The first pro-
cessor begins the normal Linux initialization sequences and sets up paging, interrupts and trap han-
dlers. After it has obtained the processor information about the boot CPU, the architecture specific
function smp store cpu info() is called to store any information about the processor into a
per processor array. Having completed the kernel initialization the architecture specific function
smp boot cpus() is called and is expected to start up each other processor and cause it to enter
start kernel() with its paging registers and other control information correctly loaded. Each
other processor skips the setup except for calling the trap and irq initialization functions that are
needed on some processors to set each CPU up correctly. Each additional CPU then calls the archi-
tecture specific functionsmp callin() which does any final setup and then spins the processor
while the boot up processor forks off enough idle threads for each processor. This is necessary be-
cause the scheduler assumes there is always something to run. Having generated these threads and
forked init, the architecture specificsmp commence() function is invoked. This does any final
setup and indicates to the system that multiprocessor mode is now active. All the processors spin-
ning in thesmp callin() function are now released to run the idle processes, which they will run
when they have no real work to process.

54

7.3 Linux

Scheduling
The kernel scheduler implements a simple but very effective task scheduler. The basic structure of
this scheduler is unchanged in the multiprocessor kernel. A processor field is added to each task,
and this maintains the number of the processor executing a given task, or a constant (NOPROCID)
indicating the job is not allocated to a processor.

Each processor executes the scheduler itself and will select the next task to run from all runnable
processes not allocated to a different processor. The algorithm used by the selection is otherwise
unchanged. This is actually inadequate for the final system because there are advantages to keeping
a process on the same CPU, especially on processor boards with per processor second level cache.

Throughout the uniprocessor kernel the variablecurrent is used as a global pointer for the current
process. In Linux/SMP this becomes a macro which expands to

current_set[smp_processor_id()].

This enables almost the entire kernel to be unaware of the array of running processors, but still allows
the SMP aware kernel modules to see all of the running processes.

The fork() system call is modified to generate multiple processes with a process id of zero until
the SMP kernel starts up properly. This is necessary because process number 1 must beinit , and
it is desirable that all the system threads are process 0.

The final area within the scheduler of processes that does cause problems is the fact the uniprocessor
kernel hard codes tests for the idle threads astask[0] and the init process astask[1] . Because
there are multiple idle threads it is necessary to replace these with tests that the process id is 0 and a
search for process id 1, respectively.

Memory Management
The memory management core of the existing Linux system functions adequately within the multi-
processor framework providing the locking is used. Certain processor specific areas do need chang-
ing, in particularinvalidate() must invalidate the TLBs of all processors before it returns.

Miscellaneous Functions
The portable SMP code rests on a small set of functions and variables that are provided by the pro-
cessor specification functionality. These aresmp processor id() which returns the identity of
the processor the call is executed upon. This call is assumed to be valid at all times. This may
mean additional tests are needed during initialization. The variablesmp num cpus holds the num-
ber of processors in the system. The functionsmp message pass() passes messages between
processors.

7.3.3 Architecture Specific Code for the Intel MP Port

The architecture specific code for the Intel MP Port splits fairly cleanly into three sections. Firstly
the initialization code used to boot the system, secondly the message handling and support code, and
finally the extension to standard kernel facilities to cope with multiple processors.

55

7 SMP Operating Systems

Initialization
The Intel MP architecture captures all the processors except for a single processor known as the
boot processorin the BIOS at boot time. This single processor enters the kernel bootup code. The
first processor executes the bootstrap code, load and uncompresses the kernel. Having unpacked the
kernel it sets up the paging and control registers then enters the C kernel startup.

Further processors are started up insmp boot cpus() by programming the APIC controller reg-
isters and sending an inter-processor interrupt (IPI) to the processor. This message causes the tar-
get processor to begin executing code at the start of any page of memory within the lowest 1MB,
in 16-bit real mode. The kernel uses the single page it allocated for each processor to use as a
stack. On entering the kernel the processor initializes its trap and interrupt handlers before entering
smp callin() , where it reports its status and sets a flag that causes the boot processor to continue
and look for further processors. The processor then spins untilsmp commence() is invoked.

Having started each processor up thesmp commence() function flips a flag. Each processor spin-
ning in smp callin() then loads the task register with the task state segment (TSS) of its idle
thread as is needed for task switching.

Message Handling and Support Code
The architecture specific code implements thesmp processor id() function by querying the
APIC logical identity register. Message passing is accomplished using a pair of IPIs on interrupt 13
(unused by the 80486 FPUs in SMP mode) and interrupt 16. IRQ 13 is a fast IRQ handler that does
not obtain the locks, and cannot cause a reschedule, while IRQ 16 is a slow IRQ that must acquire
the kernel spin locks and can cause a reschedule. This interrupt is used for passing on slave timer
messages from the processor that receives the timer interrupt to the rest of the processors, so that
they can reschedule running tasks.

Extension to Standard Facilities
The kernel maintains a set of per processor control information such as the speed of the processor
for delay loops. reloads.

The highly useful atomic bit operations are prefixed with the ‘lock’ prefix in the SMP kernel to
maintain their atomic properties when used outside of (and by) the spinlock and message code.

The/proc file system support is changed so that the/proc/cpuinfo file contains a column for
each processor present. This information is extracted from the data structure saved by the function
smp store cpu infor() .

56

Part III

TOPSY SMP

57

8 The Topsy Operating System

Topsy is a small operating system which has been designed for teaching purpose at the Department of
Electrical Engineering at ETH Z¨urich. It constitutes the framework for the practical exercises related
to the course Computer Engineering II. This chapter briefly describes the design and implementation
of Topsy [FCZP97].

8.1 System Overview

Topsy has a strict modular structure. The kernel contains three main modules reflecting the basic
OS tasks; the memory manager, the thread manager and the I/O subsystem. All kernel modules are
independently implemented as threads and therefore preemptable (i.e. they can be interrupted like
user threads.) The module structure is depicted in Figure 8.1. Big boxes represent the main modules,
inner boxes stand for submodules (or subsubmodules). The dotted lines indicate three different
layers: the hardware abstraction layer (HAL), the hardware independent kernel components and at
the top the modules running in user space.

user

kernel

HAL

User

Topsy Memor y Threads IO

Startup
Startup

mips
start

Error
HashList
Lock
List
Suppor t
Syscall

MMerror

MMHeapMemor y
MMInit
MMMain
MMVirtualMemory

TMInit
TMIPC
TMMain
TMScheduler
TMThread

IODevice
IOConsole
Dr ivers

SCN2681_DUART

mips
tlb
MMMapping

mips

TMClock
TMHal

mips
IOHal

Cr ashme

Shell Syscall

UserProc1

UserProcN

mips
Suppor tAsm
SyscallMsg

TMError

IOMain

Figure 8.1: Modular structure of Topsy

The hardware abstraction layer is an important element of a portable design. Processor specific parts
of the code like exception handling or context switching are embedded in this layer. Consequently,
HAL contains a few lines of assembler code. The two upper layers are completely written in C.

59

8 The Topsy Operating System

8.2 Thread Management

Topsy is a multi-threaded operating system, i.e. multiple threads are able to run quasi-parallel. In
Topsy, there exist exactly two processes: the user process and the kernel process (operating system).
Threads, however, share their resources, in particular they run in the same address space. Synchro-
nization of shared memory is accomplished viamessages. The private area of a thread is its stack
which is not protected against (faulty) accesses from other threads. However, a simple stack checking
mechanism has been incorporated to terminate threads on returning from their main function (stack
underflow).

System Calls
In Topsy all system calls are based on the exchange of messages between kernel and user threads.
For most of them, a reply is expected from the kernel. Each system call causes a message to be
created and sent to the kernel via a software interrupt mechanism. Each system call is recognized via
an identifier in the message structure.

IPC
There is a single IPC mechanism in Topsy, namely the sending/receiving of messages. Messages
can be sent either between user and kernel threads, between kernel threads, or between user threads.
Both kernel and user threads have a unique fixed sized queue for storing incoming messages. A mix
of FIFO and priority queuing was implemented; a thread has the possibility to request a particular
message of a given type coming from a specific thread.

Scheduler
The Topsy scheduler uses a multilevel queuing system with three levels, corresponding to kernel,
user, and idle threads. Within each level, a round-robin policy is used. The highest priority is
devoted to kernel threads, i.e. no user thread may be scheduled if there is a single runnable kernel
thread. Idle threads have lowest priority. Each thread may be in one of the following states:

� RUNNING: the thread is currently running (at any time, only a single thread may be in the
RUNNING state).

� READY: the thread is ready to be scheduled and then dispatched.

� BLOCKED: the thread is blocked, e.g., waiting to receive a message.

Both kernel and user threads are preemptive. A new scheduling decision (schedule and dispatch of a
new thread) may be performed in the following cases:

� Time quantum elapsed for the thread (if time-sharing mode).

� An exception is processed in the kernel.

� A running thread is put to sleep waiting for a message.

� After sending a message.

60

8.3 Memory Management

8.3 Memory Management

Topsy divides the memory into two address spaces: one for user threads and the other for the OS
kernel (separation of user and kernel process). This has the advantage of better fault recognition
facilities, and a stable and consistent behavior of the kernel (user threads are not able to crash the
system by modifying kernel memory). The memory is organized in paged manner, i.e. the whole
address space is split up into blocks of predefined size. Furthermore, the two address spaces are
embedded in one virtual address space, although no swapping of pages to secondary memory is
supported (see Figure 8.2).

0
x0

0
0

0
0

0
0

0
xf

ff
ff

ff
fUSER SPACE KERNEL SPACE

Figure 8.2: User and Kernel Address Space

To understand the mechanism how virtual and physical addresses are connected, let us have a look at
Figure 8.3. The picture represents the address mapping supported by the MIPS R3000A processor.
The virtual address space consists of four segments: three segments can only be accessed in kernel
mode (kseg0, kseg1, kseg2), one is accessible in user and kernel mode (kuseg). The segments kseg0
and kseg1 are directly mapped to the first 512 Mbytes in physical memory. The segments kuseg and
kseg2, on the other hand, can be mapped anywhere in the physical address space.

Kernel Mapped
Cacheable

(kseg2)

Kernel Uncached

(kseg1)

Kernel Cached

(kseg0)

Kernel/User
Mapped

Cacheable

(kuseg)

Physical
Memory

Memory

0xffffffff

0xc0000000

0xa0000000

0x80000000

0x00000000

3548 MB

512 MB

Any

Any

VIRTUAL PHYSICAL

Figure 8.3: Virtual to Physical Address Mapping of the MIPS R3000A

Topsy itself comes with a small footprint. It is able to run with a few 10 Kbytes of memory which
is managed in a dynamic fashion. This ensures good utilization of memory. Threads can allocate

61

8 The Topsy Operating System

memory by reserving a certain, connected piece of the virtual address space calledvirtual memory
regions. Every virtual memory region is assigned an appropriate number of physical pages.

The memory manager is responsible to execute the memory demands of kernel or user threads:
allocating and deallocating virtual memory regions.

8.4 I/O

The input/output (I/O) subsystem of Topsy is divided into a management part and the actual drivers.
These units are running separately as independent threads, i.e. there is one thread (I/O thread) respon-
sible for driver independent functions and further threads (driver threads) implementing the interface
to specific hardware devices. User or kernel threads may ask the I/O thread for a certain device to
be non-exclusive opened which returns the thread id of the driver thread (if it exists). This thread id
allows another thread to communicate with the specific driver.

8.5 User Programs

Topsy comes with a small command line shell enabling the user to start threads, kill threads and get
information about threads. The commands available at present arestart , exit , ps andkill .

62

9 An SMP Machine for Topsy

This chapter describes what underlying simulation environment was chosen and what consequences
this decision had on the existing Topsy kernel.

9.1 Choosing SimOS as a Simulation Environment

Recall from Section 1.1 that one of the goals of this thesis was the development resp. evaluation of a
suitable simulation environment. The existing MipsSimulator written in Java provided only a single
CPU, therefore a considerable amount of work would have been necessary to change the uniprocessor
MipsSimulator into a multiprocessor simulation environment. Besides, the Java interpreter was much
too slow even when using a just-in-time compiler. Therefore, the decision was taken to use the
SimOS simulation environment from Stanford University1. The following list gives an overview
over the advantages of the SimOS environment:

� Fast cycle-accurate simulation environment written in C

� Support for the MIPS R4000 processor family

� Build-in multiprocessor support

� Configurable hardware models (CPU, Memory, Bus, Cache)

� Runtime data collection through flexible scripts

Porting Topsy to SimOS required two separate phases. First, the hardware dependent parts of Topsy
(which are coded in assembler) had to be ported from the MIPS R3000 (R3k) processor family to
the MIPS R4000 (R4k) processor family. Second, the device drivers provided by Topsy had to be
adjusted to the device drivers supported by the SimOS environment. The following sections cover
the porting phases without mainly focusing on a specific kernel. This should help to use this chapter
as an overall guide to port any kernel from MIPS R3k to a combination of R4k and SimOS. However,
whenever you see this sign TOPSY at the border, you should be aware that the information you are
reading is related especially to the Topsy or TopsySMP kernel.

1http://simos.stanford.edu

63

9 An SMP Machine for Topsy

9.2 Porting Topsy to MIPS R4000

The SimOS environment currently supports the MIPS R4000 and R10000 processor family. Since
Topsy was originally written for the MIPS R3000 processor family, the hardware dependent parts
of Topsy — mainly the hardware abstraction layer (HAL) — had to be rewritten to operate on the
new target processor. Fortunately, the R4k processor family is backward compatible with the R3k
architecture and differs only in minor implementation details, namely in memory management and
exception handling. In addition to that, the instruction set was subject to a few changes and now
offers facilities not available with the R3k. We assume that the reader is familiar with the MIPS
R3000 processor family architecture. More information about the MIPS R4000 processor family can
be found in Appendix A.

9.2.1 Memory Management

Recall from Appendix A that the MIPS R4000 processor has an on-chip TLB with 48 entries, each
of which maps a pair of variable-sized pages ranging from 4 Kbytes to 16 Mbytes, in multiples of
four. This differs from the R3000, which had a fixed page size of 4 Kbytes. Therefore, the virtual
page number (VPN) and the physical frame number (PFN) are fixed to 20 bit. The R3k TLB consists
of 64 entries (each 64 bits wide) to provide a mapping of 64 pages. Figure 9.1 illustrates the format
of a R3k TLB entry.

63 0

VPN PID 0 PFN N D V G 0

81111206620

Figure 9.1: Format of a R3k TLB Entry

Like the R4k, the R3k has a set of coprocessor registers to provide the data path for operations which
read, write or probe the TLB. The format of these registers is the same as the format of a TLB entry.
The obvious differences between the TLBs and the relevant CP0 register sets provided by the two
MIPS processor families are summarized in Table 9.1.

MIPS R3k MIPS R4k
TLB:
Total number of entries 64 48
Number of fixed entries 8 � 48
Size of entry 64 bit 128 bit
CP0 Register Set:
VPN size 20 bit 19 bit
PFN size 20 bit 24 bit

Table 9.1: Differences between R3k and R4k

From the perspective of an kernel designer this has two immediate consequences: First, the defini-
tions (position, length, meaning) of the CP0 register fields have to be changed. Second, the routines
which read, write or probe the TLB file have to be rewritten.

64

9.2 Porting Topsy to MIPS R4000

CP0 Register Field Definitions
The definitions of the MIPS R4k CP0 register fields can be found in the filecpu.h . Note that the TOPSY

MIPS R4k has additional registers that are not present in the R3k.

TLB Initialization
Recall from Appendix A that each R4k TLB entry maps a pair of pages, rather than a single page.
Therefore, the R4k makes distinction between anEntryLo0and anEntryLo1register, which contain
the page frame numbers of pages with even and odd addresses. To adopt a given R3k TLB mapping,
the EntryLo0, EntryLo1, and EntryHi registers have to be filled appropriately to build a pair of
corresponding pages. To illustrate this, the TLB file from Topsy will be shown next.

Topsy maps the user space by initializing the TLB with a fixed mapping. A contiguous region of 256 TOPSY

kBytes at the beginning (address 0x1000) of the segment kuseg is mapped to physical memory. The
reason to start the user address space at 4k and not at address zero is to catch null pointer exceptions.
Thus, the TLB entries using a MIPS R3k are shown in Table 9.2 (note that all entries have the
appropriate bitsD, V, andG set to 1).

Entry EntryHi VPN EntryLo PFN
0 0x00001000 0x01 0x000c0700 0xc0

1 0x00002000 0x02 0x000c1700 0xc1

2 0x00003000 0x03 0x000c2700 0xc2

3 0x00004000 0x04 0x000c3700 0xc3
...

...
...

...
...

60 0x0003d000 0x3d 0x000fc700 0xfc

61 0x0003e000 0x3e 0x000fd700 0xfd

62 0x0003f000 0x3f 0x000fe700 0xfe

63 0x00040000 0x40 0x000ff700 0xff

Table 9.2: TLB entries for Topsy on R3k

Translating this to the TLB scheme of the MIPS R4k results in the entries shown in Table 9.3.

Entry EntryHi VPN EntryLo0 PFN EntryLo1 PFN
0 0x00001000 0x00 0x00000001 0x00 0x0000302f 0xc0

1 0x00003000 0x01 0x0000306f 0xc1 0x000030af 0xc2
...

...
...

...
...

...
...

31 0x0003f000 0x1f 0x00003f6f 0xfd 0x00003faf 0xfe

32 0x00041000 0x20 0x00003f3f 0xff 0x00000001 0x00

Table 9.3: TLB entries for Topsy on R4k

Because the user address space of Topsy starts at address 0x1000, the first PFN of entry 0 in Table
9.3 (corresponding to the page with addresses starting at 0x0000) has to be set invalid. The same
applies to the second PFN of entry 32. Recall, that Topsy maps a region of 256 kBytes and therefore,
the first PFN of entry 32 (R4k) corresponds to entry 63 of the R3k and the second PFN is unused.

65

9 An SMP Machine for Topsy

The initialization of the TLB takes place in the functionmmInitMemoryMapping() (file MMDi-TOPSY

rectMapping.c). Because of the extended CP0 register set used for TLB operations, the function
to write a TLB entry had to be replaced bysetR4kTLBEntry (file tlb.S):

void setR4kTLBEntry(Register TLBEntryLow0,
Register TLBEntryLo1,
Register TLBEntryHigh,
Register Index);

Additionally, the range of wired TLB entries is set using the functionsetTLBWired (file tlb.S):

void setTLBWired(Register TLBWired);

All the above initialization steps were combined into a function calledmmInitTLB() (file MMDi-
rectMapping.c) which is also called by the additional CPUs during the SMP boot phase.

9.2.2 Exception Handling

Whenever a common exception occurs, the MIPS processor jumps to a predefined address according
to the kind of exception. If a Reset happens, it jumps to the address stored in0xbfc00000 . An
UTLBMiss exception causes a branch to the address specified in address0x80000000 . All other
exceptions are treated by one handler (generalExceptionHandler). The latter address has
changed from the MIPS R3k to the MIPS R4k and is now located at0x80000180 . The steps
performed ingeneralExceptionHandler are:

1. Save registers to be modified by the exception handler.

2. Set stack pointer and frame pointer on the exception stack.

3. Save context of the current thread.

4. Lookup the exception handler table to get the address of the specific exception handler.

5. Call the specific exception handler.

6. Restore context of the current thread.

Two files in Topsy are affected by the displacement of the general exception handler base address:TOPSY

cpu.h andTMHal.c . Latter contains the functiontmInstallExceptionCode which installs
the exception handler in memory.

A basic instruction used in the context switching part of every exception handler routine — the return
from exception (RFE) instruction — has been replaced in the MIPS R4k instruction set byERET.
They slightly differ in thatERETdoesn’t allow any instruction to be placed in its branch delay slot.

The only function affected by theERETinstruction isrestoreContext (file TMHalAsm.S).TOPSY

66

9.2 Porting Topsy to MIPS R4000

9.2.3 MIPS R4000 Synchronization Primitives

Recall from Chapter 5 that it is essential in an MP system to have a way in which two or more
processors working on a common task can execute programs without corrupting the other’s sub-
task. Synchronization, an operation that guarantees an orderly access to shared memory, must be
implemented for a properly functioning MP system.

The so called MIPS III1 Load Linked(LL) andStore Conditional(SC) in conjunction with the cache
coherency mechanism and protocol, provide synchronization support for R4000 processors. The
two instructions work very much like their simple counterpart load and store. TheLL instruction, in
addition to doing a simple load, has the side effect of setting a user transparent bit called theload
link bit (LLbit). The LLbit forms a breakable line between theLL instruction and a subsequentSC
instruction. TheSCperforms a simple store if and only if the LLbit is set when the store is executed.
If the LLbit is not set, then the store will fail to execute. The success or failure of theSCis indicated
in the target register of the store after the execution of the instruction. The target register is loaded
with 1 in case of a successful store or it is loaded with 0 if the store was unsuccessful. The LLbit
is reset upon occurrence of any event that even has potential to modify the lock variable while the
sequence of code betweenLL andSC is executed. The most obvious case where the link will be
broken is when an invalidate occurs to the cache line which was the subject of the load. In this case,
some other processor successfully completed a store to that shared line. In general, the link will be
broken if following events occur while the sequence of code betweenLL andSCis being executed:

1. External update to the cache line containing the lock variable.

2. External invalidate to the cache line containing the lock variable.

3. Intervention or snoop invalidating the cache line containing the lock variable.

4. Upon completion of anERET(return from exception).

The most important features of theLL andSCprimitives are:

� They provide a mechanism for generating all of the common synchronization primitives in-
cluding test-and-set, counters, sequencers, etc. with no additional overhead.

� They operate in a fashion so that bus traffic is generated only when the state of the cache line
changes; locked words stay in the cache until another processor takes ownership of that cache
line.

Figure 9.2 shows how theLL andSC instructions can be used to implement a simple test-and-set
function. The flowchart show general methodology and an example of implementation code is listed
next to the corresponding flow symbol, with comments next to the code line. The lock variable is
located in the cache at addressr1 . If unlocked the least significant bit (LSB) is zero, if locked the
LSB is 1.

1MIPS III is the instruction set architecture (ISA) implemented in the R4000 processor family. It includes the MIPS I
ISA implemented in the R3000.

67

9 An SMP Machine for Topsy

No

Yes

No

Yes

LL r2, (r1)Loop:

ORI r3, r2, 1
BEQ r3, r2, Loop
NOP

Unlocked?

Successful?

Execute critical
section

Try locking

BEQ r3, 0, Loop
NOP

ORI r3, r2, 1
SW r3, (r1)

SC r3, (r1)

Critical section

Unlock lock variable

Load lock variable

lock variable

Figure 9.2: Test-and-Set using LL and SC

68

9.2 Porting Topsy to MIPS R4000

For this synchronization mechanism to work properly, the cache line which contains the word ad-
dresses by (r1) in theLL instruction, must not be uncached or noncoherent. For additional informa-
tion regardingLL andSCinstructions, cache-coherency mechanism and protocols, refer to Appendix
A or [Hei94].

The TopsySMP lock and unlock functions
In contrast to the test-and-set mechanism shown in Figure 9.2, the locking mechanism used in TOPSY

Topsy and TopsySMP is divided into two separate functions calledlock() andunlock() . The
reason for this partitioning is that most of the critical sections in Topsy are written in C rather than
Assembler and the distinction makes them more flexible to use.

Figure 9.3 shows thelock() function used in Topsy and TopsySMP.

void lock(Lock lock)
{

testAndSet(&(lock->lockVariable));
}

Figure 9.3: lock function in Topsy

It uses an atomic test-and-set function based on the code shown in Figure 9.2, with the difference
that it only returns on successful locking. The functiontestAndSet() is written in Assembler
and uses the R4000LL andSCinstructions (see Figure 9.4).

1 mfc0 t0, c0_status
2 and t0, t0, SR_IE_MASK
3 mtc0 t0, c0_status
4 loop: ll t1, 0(a0)
5 ori t2, t1, 1
6 beq t2, t1, loop
7 nop
8 sc t2, 0(a0)
9 beq t2, 0, loop

10 nop

Figure 9.4: testAndSet function in TopsySMP

The lock() function first disables interrupts (lines 1–3) by clearing the IE bit in the status register.
It then loads the value of the lock variable (whose address is located in registera0). If the lock is
held by another processor (t1 = 1), the processor calling thelock() function spins until the lock
gets free (lines 4–7). At that moment, it tries to save the value of the lock variable (e.g., locking it)
with theSC instruction (line 8). The store was successful if and only if the value of the registert2
is 1. In that case the lock is successfully acquired and the function returns. Otherwise, the processor
goes back to theLL instruction and tries it again.

A short note on using the GNU C cross-compiler. TheLL , SCandERETinstructions are part of
the MIPS III instruction set architecture (ISA). In order to produce the correct opcodes, the complier
(actually the assembler) has to toggle between MIPS I and MIPS III mode. Thus, whenever a MIPS
III instruction is used it has to be embedded with assembler directives.

69

9 An SMP Machine for Topsy

The following example shows line 4 from Figure 9.4 embedded in assembler directives:

loop:
.set mips3
ll t1, 0(a0)
.set mips0

Note that the interrupts remain disabled until the subsequentunlock() (see Figure 9.5) reenables
them. This is done by setting the IE bit in the status register. The reason for disabling interrupts
while the lock is held, is that otherwise an interrupt will further delay other processors waiting for
that lock and might result in a deadlock.

void unlock(Lock lock)
{

lock->lockVariable = FALSE;
enableInterrupts();

}

Figure 9.5: unlock function in Topsy

9.3 Porting Device Drivers to SimOS

Two devices are vital to Topsy and most other operating systems: the clock and the console device.
The clock device is responsible of initiating clock interrupts in a periodical manner, allowing the
implementation of a time-sliced scheduling algorithm. The console device allows text to be written
on the screen and keyboard input to be collected. The console device is presented first because of its
simplicity. All other devices, including the ones added to SimOS, are similar to the console device,
which can therefore be viewed as an example device.

9.3.1 Console Device Driver

SimOS supports a very simple console device with a status and a data register. The definition of the
console device can be found in the filemachine defs.h :

#define DEV_CNSLE_TX_INTR 0x01 /* intr enable / state bits */
#define DEV_CNSLE_RX_INTR 0x02

typedef struct DevConsoleRegisters {
DevRegister intr_status; /* r: intr state / w: intr enable */
DevRegister data; /* r: current char / w: send char */

} DevConsoleRegisters;

These registers are mapped into virtual memory space depending on the number of additional devices
added to SimOS. Each register has a size of 4 kByte.

70

9.3 Porting Device Drivers to SimOS

In our case they were mapped from address0xa0e01000 to 0xa0e01008 . In order to use the TOPSY

console device SimOS together with the UART model of Topsy, these addresses were added to the
files IOHal.h andSCN2681 DUART.h:

#define UART_A_BASE 0xa0e01000
#define STATUS_REGISTER 0x0
#define TX_REGISTER 0x4
#define CONS_INT_TX 0x01
#define CONS_INT_RX 0x02

In addition to this, all register accesses in the UART routines had to be changed fromchar (UART)
to int (SimOS console).

The appropriate device driver in SimOS is located in the filesimmagic.c and consists of a ser-
vice routine (called ahandler in SimOS’ terminology) used to access the registers, and an interrupt
handler routine.

Register Service Routine
The service routineconsole handler handles all accesses to the memory-mapped device regis-
ters. The major task of the routine is to distinguish which register is about to be accessed and if the
operation on the register is a read or a write. The code section shown in Figure 9.6 illustrates this.

switch (offs) {
case offsetof(DevConsoleRegisters, intr_status):

if (BDOOR_IS_LOAD(type)) {
*datap = (DevRegister) sim_console_int_status(console);

} else {
sim_console_int_set(console, (int)*datap);

}
break ;

case offsetof(DevConsoleRegisters, data):
if (BDOOR_IS_LOAD(type)) {

*datap = (DevRegister) sim_console_in(console);
} else {

sim_console_out(console, (char)*datap);
}
break ;

}

Figure 9.6: Device Driver Service Routine

The parameteroffs specifies the register and the macroBDOORIS LOADreturns true if the op-
eration on the register is a read. In the case of the console device all further actions are handled by
internal SimOS functions.

Device Interrupt Handler
The interrupt handler routineconsole interrupt first specifies the CPU to which the interrupt
is delivered, and then raises the interrupt by calling the SimOS functionRaiseSlot with the CPU
number and the kind of interrupt as parameter. This function then callsRaiseIBit which sets the
appropriate interrupt bit in the status register of the CPU to which the interrupt is delivered.

71

9 An SMP Machine for Topsy

In order not to change the interrupt scheme used by Topsy, the functionRaiseIBit had to beTOPSY

extended to map the SimOS interrupt ids to the ones used in Topsy as shown in Table 9.4.

Interrupt Id used by
Interrupt SimOS IDT-Board
Console 0x10 0x05
Clock 0x18 0x00

Table 9.4: Mapping of the Interrupt Ids between SimOS and IDT-Board

9.3.2 Clock Device Driver

Strange enough, SimOS did not deliver clock interrupts by itself. Timers were installed and started
using the functionInstallTimers (file simmagic.c), but the correct value for the timer in-
terval was never set! In order to receive timer interrupts, the values had to be set somewhere in the
initialization routines of SimOS. We choose to set these values in the functionSimulatorEnter
(file simmisc.c) which is called in an early phase of the initialization:

SBase[cpu].clockStarted = 1;
SBase[cpu].clockInterval = 250000;
SBase[cpu].clockTimeLeft = 250000;

The values are interpreted as CPU cycles, those 250 000 cycles give a timer frequency of 100 Hz
using a clock speed of 25 MHz.

After this, the functionInstallTimers installed a timer using a so calledevent callback handler,
which is triggered by the cycle time of the next timer interrupt event. When the event occurs, the
functionTimerCallback is called which delivers the interrupt and enqueues the callback handler
for the next timer interrupt event.

In order to reset a timer interrupt, a specialresetregister was added to the clock device. Therefore,
the service routine of the clock handler had to be enlarged to cover access to the reset register, as
shown in Figure 9.7.

case offsetof(DevClockRegisters, reset):
if (BDOOR_IS_LOAD(type)) {

ClearIBit(cpuNum, DEV_IEC_CLOCK);
} else {

ASSERT(0); /* for debugging */
return 1; /* reset register not writable */

}
break ;

Figure 9.7: Handling Clock Reset

The reset register is a read-only register with the side effect of resetting the current clock interrupt
by clearing the appropriate bits in the status register.

72

9.4 Adding additional Devices to SimOS

The same clock device can be used as a very primitive CMOS clock. Thectime register contains
the time since January 1, 1970 (same as the Unixgettimeofday result).

In Topsy the clock device registers were mapped from address0xa0e00000 to 0xa0e00008 . In TOPSY

order to use the clock device from SimOS together with the clock model of Topsy, these addresses
were added to the fileTMClock.h :

#define TIMERBASE 0xa0e00000
#define COUNTER0 (TIMERBASE+0x0)
#define RESETCINT0 (TIMERBASE+0x4)

9.4 Adding additional Devices to SimOS

In order to support symmetric multiprocessing and interprocessor communication in Topsy, a simple
device calledInterProcessor Interrupt Controller (IPIC)has been added to the devices of SimOS.
This device can be used as an example to demonstrate how to add additional devices to SimOS, as
illustrated by the following sections.

9.4.1 Definition of the Device Register Set

First, the device register set has to be defined in the filemachine defs.h . In the case of the IPIC
device the following registers were defined:

typedef struct DevIpicRegisters {
DevRegister total_cpus; /* total number of CPUs */
DevRegister cpu; /* hw CPU number */
DevRegister ipi; /* inter processor interrupt */
DevRegister bootaddr; /* boot address for non-bootup CPUs */
DevRegister bootstack; /* boot stack for non-bootup CPUs */

} DevIpicRegisters;

The first register (total cpus) provides the total number of CPUs available in the system. The
second register (cpu) contains the hardware number of the current CPU, ranging from zero toto-
tal cpus � 1. The third register (ipi) is used for interprocessor interrupts and is explained later
in this chapter. The fourth register (bootaddr) contains the address of the kernel entry point rou-
tine called by each non-bootup CPU. The fifth register (bootstack) contains the address of the
boot stack needed by every non-bootup CPU.

The next thing to do is to reserve a memory region used by SimOS for the simulated devices. We
choose an offset between the memory block used by the ethernet device and the one used by the
disk device. The macro definition shown in Figure 9.8 is for internal use and needs to know only the
name of the register structure and the device offset.

73

9 An SMP Machine for Topsy

#define __MAGIC_BDOOR_IPIC_OFFS 0x00003000 /* ipic controller */
#define DEV_IPIC_REGISTERS(node, nbits) \

(((volatile DevIpicRegisters*) \
(__MAGIC_ZONE(node, nbits, MAGIC_ZONE_BDOOR_DEV) + \

__MAGIC_BDOOR_IPIC_OFFS)))

Figure 9.8: Macro Definition for a SimOS Device

After this is done, we move to filesimmagic.c and include the necessary lines to add our device
to the simulated devices of SimOS:

sprintf(name, "IPIC %d", n);
RegistryAddRange((VA)(__MAGIC_ZONE(n, 0, MAGIC_ZONE_BDOOR_DEV) +

__MAGIC_BDOOR_IPIC_OFFS), sizeof(DevIpicRegisters),
REG_FUNC, (void*)BDOOR_ipic_access, name);

and bind it to a service routine:

static int
BDOOR_ipic_access(int cpuNum, uint VA, int type, void * buff)
{

int n = VA_NODE(VA);
int offs = VA_OFFS(VA) - __MAGIC_BDOOR_IPIC_OFFS;

ASSERT(VA_ZONE(VA) == MAGIC_ZONE_BDOOR_DEV);
ASSERT(0 <= offs && offs < sizeof (DevIpicRegisters));

return ipic_handler(cpuNum, n, offs, type, buff);
}

The service routine has the same structure as the one used for the console and clock devices. Its main
task is to distinguish between the different registers and to perform the desired actions. Figure 9.9
shows the section of code which handles the access to theipi register. The remaining registers are
read-only or write-only, respectively, and therefore handled similar to the one shown in Figure 9.7.

Figure 9.10 shows the routineipic ipi called by the handler. The only function currently available
is used by the boot CPU to startup the additional CPUs in the system. This function is based on an
internal routine provided by SimOS calledLaunchSlave (file simmisc.c).

The only thing left to do now, is to port your specific OS to the new devices. . .

74

9.4 Adding additional Devices to SimOS

static int
ipic_handler(int cpuNum, int n, int offs, int type, void * buff)
{

DevRegister* datap = (DevRegister*)buff;
static VA boot_addr, boot_stack;

ASSERT (BDOOR_SIZE(type) == sizeof (DevRegister));

switch (offs) {
...
case offsetof(DevIpicRegisters, ipi):

if (BDOOR_IS_LOAD(type)) {
ASSERT(0); /* for debugging */
return 1; /* ipic register not readable */

} else {
ipic_ipi(cpuNum, (int)*datap, boot_addr, boot_stack);

}
break ;

...
}
return 0;

}

Figure 9.9: Service Routine for the IPIC Device

void
ipic_ipi(int cpuNum, int ipi_reg, VA boot_addr, VA boot_stack)
{

int i;
int target = (ipi_reg & IPIC_TARGET_MASK);
int type = (ipi_reg & IPIC_IPITYPE_MASK);

switch (type) {
case IPIC_STARTUP:

if (target == IPIC_TARGET_ALL) {
for (i=0; i<NUM_CPUS(0); i++) {

LaunchSlave(i, boot_addr, (Reg)boot_stack, 0, 0, 0);
}

}
else {

LaunchSlave(target, boot_addr, (Reg)boot_stack, 0, 0, 0);
}
break ;

default :
ASSERT(0); /* for debugging */
return ;

}
}

Figure 9.10: Interprocessor Communication using the IPIC Device

75

9 An SMP Machine for Topsy

76

10 Design of TopsySMP

This chapter covers the design of an SMP port of the Topsy operating system. It starts with the
principal design goals of TopsySMP, followed by a detailed discussion of relevant design issues.

10.1 Principal Design Goals of TopsySMP

The design of a multiprocessor OS is complicated because it must fulfill the following requirements:
A multiprocessor OS must be able to support concurrent task execution, it should be able to exploit
the power of multiple processors, it should fail gracefully, and it should work correctly despite physi-
cal concurrency in the execution of processes. The principal design goals of TopsySMP were defined
as follows:

� Simplicity. The simple structure of the Topsy OS should not be complicated by an over-sized
SMP mechanism.

� Multithreading. The multithreaded architecture of Topsy should not be changed.

� High degree of parallel Kernel Activity. The kernel should scale well running applications
with a realistic job mix.

� Parallel Thread Scheduling.Each CPU should run an instance of the thread scheduler.

� Efficient Synchronization Primitives. Spin lock times should be reasonably short in order to
prevent CPUs from spinning idle for too long.

� Uniprocessor API.The system call API of Topsy should not be changed.

� Scalability. Scalability means, that additional CPUs can be added to (or removed from) the
system without recompiling or even reconfiguring the kernel.

10.2 SMP Operating System Design Issues

This section discuses the principal design goals of TopsySMP as well as additional relevant design
issues of a multiprocessor operating system.

77

10 Design of TopsySMP

10.2.1 Simplicity

The original Topsy was designed for teaching purposes. Therefore, the main goal was to create
a small, easy to understand, well structures, but yet realistic system. These ideas did affect the
design and implementation of TopsySMP as well. The extension to Topsy should be simple but yet
efficient in order to be used as a lecture example of an SMP kernel. The changes to the original code
should be minimal while retaining the readability. Therefore, and because of other reasons explained
in subsequent sections, TopsySMP was designed primary as an operating system for small-scaled
multiprocessor systems with up to eight CPUs with a shared-memory architecture.

10.2.2 Multithreading

The effectiveness of parallel computing depends greatly on the primitives that are used to express and
control parallelism within an application. It has been recognized that traditional processes impose
too much overhead for context switching. Therefore, threads have been widely utilized in recent
systems to run applications concurrently on many processors.

Recall from Chapter 5 that one way to make SMP systems cost effective for highly interactive ap-
plications is to allow multiple threads of kernel activity to be in progress at once. This is referred to
as amultithreadedkernel. To multithread an operating system, all critical regions must be identified
and protected in some way.

As the original Topsy is already multithreaded, the current version of TopsySMP adopted the kernel
partitioning without changes.

10.2.3 Kernel Design

Recall from Chapter 5 that a master-slave kernel is a poor choice for highly interactive (or otherwise
I/O intensive) application environments because of the high system call and I/O activity of these
applications. Nevertheless, the uniprocessor Topsy could be easily modified to become a master-
slave kernel. Recall, that the slave processor may execute only user code. If we manage to schedule
only user threads on the slave processor (or the idle thread if there is nothing to do), were almost
done. The priority-based scheduling algorithm of Topsy is of great help to achieve this. Figure 10.1
shows that the inner loop of the scheduler always starts with the kernel priority run queue. If no
suitable thread is found, the scheduler moves on to the user priority run queue and finally to the idle
priority run queue.

for (priority = KERNEL_PRIORITY; priority < NBPRIORITYLEVELS; priority++) {
...
}

Figure 10.1: Inner Loop of the Scheduler in Topsy.

If the start value of the loop variablepriority is set toUSERPRIORITY instead, the scheduler
only picks user (or idle) threads and thus can be used as a scheduler for a slave processor. In order
not to provide two otherwise unchanged versions of the functionschedule() , a simple test can

78

10.2 SMP Operating System Design Issues

be put in front of the for-loop. If we assume that the functionisSlaveCPU() returns true on the
slave processor, then the modified master-slave scheduler could look like the one below:

ThreadPriority priority = KERNEL_PRIORITY;
...
if (isSlaveCPU()) start_priority = USER_PRIORITY;
for (priority = start_priority; priority < NBPRIORITYLEVELS; priority++) {
...
}

However, if the scheduler runs in parallel on both processors, some data structures have to be dupli-
cated as well. As this is true for every kernel with parallel thread scheduling, this topic is discussed
in a subsequent section.

Because of the multithreaded structure of the original Topsy kernel, the SMP kernel was chosen to
be either a spin-locked or a semaphored kernel.

10.2.4 High degree of parallel Kernel Activity

The amount of concurrent kernel activity that is possible across all the processors is partially deter-
mined by the degree of multithreading. Topsy used at least three kernel threads:tmThread (thread
manager),mmThread (memory manager),ioThread (I/O manager), an idle thread, and a number
of device driver threads. Quasi-parallel requests to the kernel threads get serialized by the system
call interface which maps system calls to messages sent to the appropriate kernel module. The kernel
threads reside in a loop waiting for a message to arrive. Upon reception, the corresponding system
call is performed, a response message is sent back to the originator of the message, and the kernel
thread goes back to sleep waiting for another message.

If the design of the kernel modules remain unchanged, the maximum parallelism of kernel activity
is limited by the number of kernel threads. Each kernel thread can run simultaneously on a separate
CPU, but one specific thread can only run on a single CPU at a time. Therefore, two system calls
provided by the same kernel module can never run in parallel, even if they operate of distinct data
structures.

In order to support simultaneous system calls from different threads running on different processors,
the design of the kernel modules has to be changed. One possible solution would be to duplicate the
control thread of the kernel module, allowing two system calls (provided by the duplicated module)
to be handled simultaneously. As a result, the interface of these system calls has to be changed,
otherwise all messages would be sent to the original control thread. The system call interface should
distribute the messages fairly upon the two message queues, e.g., using a round-robin policy.

The distribution of the messages among the multiple control threads could be performed at three
different places:

� Inside the system call library,

� by one of the control threads, or

� inside the kernel message dispatching routine.

79

10 Design of TopsySMP

Figure 10.2 shows a single function (vmAlloc) of the system call library. We assume that the thread
ids of the two control threads areMMTHREADID0andMMTHREADID1respectively. The receiver
of the message is swapped right before the message is sent, resulting in a round-robin policy. The
drawback of this simple approach is that the necessary changes affect every single system call, and
that the round-robin policy is on a per-system-call basis rather than affecting all system calls.

SyscallError vmAlloc(Address *addressPtr, unsigned long int size)
{

Message message, reply;
static ThreadId receiver = MMTHREADID0;

message.id = VM_ALLOC;
message.msg.vmAlloc.size = size;
reply.id = VM_ALLOCREPLY;
receiver = (receiver == MMTHREADID0) ? MMTHREADID1 : MMTHREADID0;

if (genericSyscall(receiver, &message, &reply) == TM_MSGSENDFAILED)
return VM_ALLOCFAILED;

*addressPtr = reply.msg.vmAllocReply.address;
return reply.msg.vmAllocReply.errorCode;

}

Figure 10.2: Modified System Call Interface.

Because the two message queues are distinct, they do not have be protected by synchronization
primitives. However, all data structures (belonging to the control thread) that can be accessed simul-
taneously have to be protected in order to guarantee system integrity.

A better solution would be to handle the message distribution inside a special server (e.g. one of
the control threads), or inside the kernel message dispatching routine. The modifications would be
restricted to one place in the kernel and the dispatching policy could affect all system calls.

Another solution to the problem of message distribution is the use of ananycastprotocol. Anycast
refers to communication between a single sender and the nearest of several receivers in a group. The
term “nearest” can be defined in a wider scope as the first receiver to respond or the first receiver
actually getting the message. If we consider the control threads of our example to be members of a
group representing the kernel module, anycast means, that the system call interface would address
the group rather than an individual thread. The first thread to whom the message could be delivered
will perform the system call. Anycast requires group addressing which could be easily added to the
Topsy kernel.

Section 11.1.9 shows a possible implementation of a duplicated kernel module control thread.

80

10.2 SMP Operating System Design Issues

10.2.5 Parallel Thread Scheduling

To ensure the efficient use of its hardware, a multiprocessor OS must be able to utilize the processors
effectively in executing the tasks.

In order to provide a parallel thread scheduling, all critical regions of the scheduler must be identified
and protected in some way. Since the scheduler manipulates the priority queues and the scheduler
specific data of the thread, these two structures need further considerations. The priority queues are
global to all schedulers and accessed and modified simultaneously. Thus, they have to be protected
in order to guarantee system integrity. The scheduler specific data (status of the thread) is private
to each thread and therefore not subject to race conditions. The locking strategy for the scheduler
can either consist of a single lock protecting the complete scheduling algorithm or a set of locks
protecting the priority queues.

Since the uniprocessor kernel only allows one running thread at any time, some data structures,
representing the context of the running thread, have to be replicated. This is subject to a discussion
in Section 11.1.2.

A multiprocessor system must be able to degrade gracefully in the event of failure. Thus, a multi-
processor OS must provide reconfiguration schemes to restructure the system in case of failures to
ensure graceful degradation. The parallel execution of the thread scheduler provides a degree of fault
tolerance as well. Consider a system with a central thread scheduler for all processors. If this CPU
fails, the entire system fails, because no more thread scheduling takes place. Contrarily, a system
with parallel thread scheduling would likely continue to work with a reduced number of CPUs.

10.2.6 Efficient Synchronization Primitives

In a multiprocessor operating system, disabling interrupts is not sufficient to synchronize concurrent
access to shared data. A more elaborate mechanism that is based on shared variables is needed.
Moreover, a synchronization mechanism must be carefully designed so that it is efficient, otherwise,
it could result in significant performance penalty.

Short critical sections can be protected by spin locks. They should not be used as a long-term mutual
exclusion technique, because processors waiting for the lock do not perform any useful work while
spinning. Overall system performance will be lowered if the processors spend too much time waiting
to acquire locks. This can also happen if too many processors frequently contend for the same lock.

Topsy uses three spin locks for the entire kernel:hmLock , threadLock , andschedLock . The
following list shows all modules and functions with critical sections:

� MMHeapMemory.c

– hmAlloc()

– hmFree()

� TMThread.c

– threadStart()

81

10 Design of TopsySMP

– threadDestroy()

� TMScheduler.c

– schedulerInsert()

– schedulerRemove()

– schedulerSetReady()

– schedulerSetBlocked()

– schedule()

The first two modules only use their corresponding spin lock, i.e.,hmAlloc() andhmFree()
usehmLock , and threadStart() and threadDestroy() usethreadLock respectively.
The third module is different, because the functionschedule() uses not only its corresponding
spin lockschedLock but alsothreadLock . This is important because the scheduler may be
called in a clock interrupt and interfere with the thread manager previously run. By checking the
threadLock , the scheduler makes sure that the thread manager was not holding the lock.

If we build a matrix showing which spin lock is used in which kernel thread, we get the following
picture:

hmLock threadLock schedLock
tmThread � �

mmThread �

ioThread �

Drivers � (�)
Exception Context � �

From this point of view, thehmLock should be object to the highest lock contention, although the
lock only protects two system calls. However, this highly depends on the workload.

For a complete analysis of the critical sections of Topsy, we have to take a look at the global data
structures protected by the locks. The following list shows all global data structures within the three
modules listed above:

� MMHeapMemory.c

– HmEntry start;

– HmEntry end;

� TMThread.c

– HashList threadHashList;

– List threadList;

� TMScheduler.c

– Scheduler scheduler;

82

10.2 SMP Operating System Design Issues

The two pointers to the start and end of the head memory list are only accessed through the functions
hmAlloc() andhmFree() . As both functions acquire the heap memory lock before modifying
the memory list (and releasing it afterwards), no further protection is necessary for the SMP version
of the kernel.

The threadHashList is accessed not only inTMThread.c but also inTMIPC.c , which han-
dles all interprocess (resp. inter-thread) communication. The same is true for thethreadList .
Because all Topsy system calls are mapped to messages, these two lists are accessed during each
system call. An SMP kernel has to make appropriate measures to protect these data structures in
order to allow multiple messages (from multiple threads running on multiple processors) to be dis-
patched simultaneously.

Thescheduler data structure is accessed only within the moduleTMScheduler.c . Put since
the scheduler of our SMP kernel should run in parallel on every CPU, the data structure is accessed
in parallel and has to be protected from corruption.

10.2.7 Uniprocessor API

Recall from Section 3.2 that a shared-memory architecture has the advantage of a simple program-
ming model, which is an extension of the uniprocessor model. In this model, the data is directly
accessible to every processor, and explicit communication code in only needed to coordinate access
to shared variables. Therefore, no additional system calls are needed to write multithreaded pro-
grams runnable on a shared-memory architecture. The uniprocessor system call API of Topsy can
be adopted without changes.

As a side effect, all programs written for the original (uniprocessor) Topsy will run under TopsySMP
without modification. The additional CPUs are totally transparent to kernel and user threads.

However, one system call should be added, in order to provide CPU-pinning of threads. CPU-pinning
means, that threads can be assigned to certain CPUs and are not allowed to run on other CPUs. This
is very useful for device drivers which normally receive interrupts only from the CPU to which the
device is attached.

10.2.8 Scalability

SimOS provides an elegant way to configure the simulated hardware, including the total number of
available CPUs. This is done by modifying an ASCII file which is processes whenever the SimOS
environment is started. In order to run the same multiprocessor kernel on top of a variety of hardware
configurations, the kernel should not have to be rebuild if the number of CPUs changes.

There are two ways to achieve this: First, the kernel could be statically configured so that the actual
number of CPUs must be less or equal to a given maximum number of CPUs. Second, the kernel
could be configured dynamically to the effective number of available CPUs. In the first case, memory
always has to be allocated for the maximum number of CPUs, even if they are not available. In the
second case, the kernel provides memory only for those CPUs actually present in the system.

Therefore, all kernel resources needed by each CPU should be allocated dynamically from the kernel
heap memory rather than statically. This limits the maximum number of processors since the original

83

10 Design of TopsySMP

memory layout of Topsy was preserved. However, the great advantage of dynamic memory allocation
is that the kernel remains small in size even for a multiprocessor system with up to 16 processors.

84

11 Implementation of TopsySMP

This chapter covers the implementation of an SMP port of the Topsy operating system discussed in
the previous chapter.

11.1 Implementation Steps

The following steps were performed in order to make Topsy runnable on an SMP system:

1. Make the SMP system configuration available to the kernel,

2. Replicate the essential data structures for additional CPUs,

3. Adapt the bootstrapping phase,

4. Adapt the scheduler and scheduling algorithm,

5. Adapt the exception handler routines.

The following sections give a detailed overview over the implementation phases.

11.1.1 SMP System Configuration

The hardware configuration of the SMP system can be determined by the kernel by reading a special
memory-mapped device similar to the combination of BIOS and APIC used in Intel’s MP specifica-
tion. This device called IPIC has been added to SimOS and is described in Section 9.4. Beside the
total number of available CPUs, the hardware number of each CPU can be read.

The total number of available CPUs in the system can be accessed within the kernel through the
global (constant) variablesmp ncpus , which is set during the bootstrapping phase. The hardware
number of each CPU can be accessed through the functionsmpGetCurrentCPU() . They all can
be found in the fileSMP.c and are declared in the corresponding header fileSMP.h:

unsigned int smp_ncpus;
unsigned int smpGetCurrentCPU();

In addition to these SMP-specific functions, the content of the processor revision identifier register
(PRId) can be read through the functiongetPRID which is located in the fileSupportAsm.S .
The structure of the PRId register is described in Section A.3.3 of Appendix A.

Register getPRID();

85

11 Implementation of TopsySMP

11.1.2 Data Structures

Running Thread
The uniprocessor version of Topsy contains a data structure which represent the currently running
thread. In a multiprocessor environment withn processors, these data structure has to be duplicated
by the number of processors. Thus, the pointer to the data structure of the currently running thread
Scheduler.running now becomes an array of pointers, indexed by the hardware number of the
CPU. To access the currently running thread, the functionsmpGetCurrentCPU() can be used as
shown in the SMP implementation of the functionschedulerRunning :

/* return the current thread */
Thread* schedulerRunning()
{

return scheduler.running[smpGetCurrentCPU()];
}

Idle Thread
If the scheduler of a uniprocessor kernel finds no ready-to-run threads, he spins idle in the context
of the last thread running until another thread becomes ready. Unfortunately, this is not possible in a
multiprocessor kernel, because the kernel runs simultaneously on every CPU. A spinning scheduler
would prevent every other CPU from selecting a ready-to-run thread. Therefore, a specialidle thread
is introduced, which is always ready-to-run and can be scheduled like any other thread. Thus, the
scheduler is guaranteed to always find a suitable thread.

TopsySMP creates an idle thread for every CPU in the system. Idle threads are user threads running
at lowest priority, consisting of a infinite loop. Figure 11.1 show how the idle threads are created and
started in the functiontmMain (file TMMain.c):

/* Starting idle thread(s) */
for (i=0; i<smp_ncpus; i++) {

if ((idleThreadId[i] = threadStart((ThreadMainFunction)tmIdleMain,
NULL, KERNEL, "idleThread", TMTHREADID, NO_CPU, TRUE))
== TM_THREADSTARTFAILED) {

PANIC("idleThread could not be started");
}

}

Figure 11.1: Starting idle thread(s) in tmMain().

Exception Context
On occurrence of an exception, the kernel has to save the context of the currently running thread
before calling the exception handling routine. Topsy uses an exception context data structure (ex-
ceptionContext) to pass parameters to the appropriate handlers. In TopsySMP, this data struc-
ture becomes an array indexed by the hardware number of the CPU on which the exception oc-
curs. The memory for the exception context is allocated dynamically in functiontmInit() (file
TMInit.c):

86

11.1 Implementation Steps

extern Register *exceptionContext;

/* Allocate memory for the exception context */
if (hmAlloc((Address*)&exceptionContext, smp_ncpus*4*sizeof(Register))

== HM_ALLOCFAILED) {
PANIC("couldn’t create exception context");

}

Boot Stack
During the bootstrapping phase every CPU uses a distinct boot stack, allowing them to boot simul-
taneously without mutual interference. After booting, the boot stack is used as an exception stack
needed during exception handling.

/** boot/exception stack(s) */
bsbottom = BOOTSTACKBOTTOM;
bstop = BOOTSTACKTOP;
for (i=0; i<smp_ncpus; i++) {

vmInitRegion(space->regionList, (Address)bsbottom, BOOTSTACKSIZE,
VM_ALLOCATED, READ_WRITE_REGION, 0);

bsbottom = bstop;
bstop = (bsbottom+BOOTSTACKSIZE-4);

}

All SMP data structures are allocated dynamically rather that statically. This has the advantage of
not wasting memory for CPUs not available to the system. Furthermore, no upper limit is coded into
the kernel, which leads to a scalable system. The kernel has not to be reconfigured or recompiled if
additional CPUs are added.

11.1.3 Bootstrapping

While all processors in an SMP system are functionally identical, there classified into two types: the
boot processor (BP) and the non-boot processors (NBP). Which processor is the BP is determined
by the hardware. This differentiation is for convenience and is in effect only during the initialization
process. The BP is responsible for initializing the system and booting the operating system; NBPs
are activated only after the operating system is up and running. CPU0 is designated as the BP. CPU1,
CPU2, and so on, are designated as the NBPs.

The bootstrapping phase of the BP is identical to the bootstrapping phase of a single processor in
the conventional Topsy OS, with one exception: the BP is responsible for initializing the additional
NBPs. The SimOS environment initializes all processors in the system to their reset state, meaning
that the registers are set to a default value. The NBPs are then halted and the BP starts its boot-
strapping phase by loading the kernel into memory. After initializing the kernel subsystems (thread
management, memory management and I/O devices) the BP starts the additional NBPs, by calling
smpBootCPUs (see Figure 11.2) in the fileTMMain.c after having started all idle threads.

This function calculates the address of the boot stack for each NBP and starts them through the
SimOS IPIC device. The address of the initial startup routine (SMPBOOTADDR, defined inSMP.h)
is passed to the IPIC device as an additional parameter.

87

11 Implementation of TopsySMP

void smpBootCPUs()
{

int i, cmd, bootstacktop, bootstackbottom;
int *boot_addr = (int *)((unsigned long)(IPIC_BASE) + BA_REGISTER);
int *boot_stack = (int *)((unsigned long)(IPIC_BASE) + BS_REGISTER);
int *ipi_reg = (int *)((unsigned long)(IPIC_BASE) + IPI_REGISTER);

bootstackbottom = BOOTSTACKTOP;
for (i=1; i<smp_ncpus; i++) {

*boot_addr = (int)SMP_BOOT_ADDR;
bootstacktop = (bootstackbottom+BOOTSTACKSIZE-4);
bootstackbottom = bootstacktop;
*boot_stack = bootstacktop;
cmd = i | IPIC_STARTUP;
*ipi_reg = cmd;
delayAtLeastCycles(1000);

}
}

Figure 11.2: Function smpBootCPUs.

Upon startup, NBPs are calling the initial startup routinestartSMP (file start.S) which takes
the address of the boot stack as a parameter and initializes stack and frame pointers:

la gp, 0x80000000 /*_gp, value of global pointer */
move sp, a0 /* prepare bootstack */
move fp, sp
subu sp, sp, 32
sw ra, 28(sp)
sw fp, 24(sp)
mtc0 zero, c0_status /* disable interrupts, kernel mode */
jal smpStartupCPU
nop

This function then calls the kernel entry pointsmpStartupCPU() (file SMP.c):

void smpStartupCPU()
{

mmInitTLB(); /* init TLB */
scheduleIdle(CPU); /* first thread is idleThread */

/* Restoring context of first thread to be activated */
restoreContext(scheduler.running[CPU]->contextPtr);

}

This function performs the processor specific initialization needed by every CPU. This includes
initializing the TLB and calling the scheduler, which picks an idle thread. This is necessary because
the BP first has to schedule the memory and io thread, which have to do basic initialization work
before the system is fully functional. The NBPs are therefore forced to schedule an idle thread
first. In order not to complicate the primary scheduler, a separate scheduler-like function called
scheduleIdle has been added to fileTMScheduler.c , which is called only once by every

88

11.1 Implementation Steps

NBP after initializing the TLB. After this, each NBP restores the context of his idle thread and keeps
spinning in the idle loop until the first thread becomes ready to run.

In the meantime, the BP has scheduled all kernel threads, initialized all kernel data structures, and
started the user shell.

11.1.4 Scheduler

Recall from previous sections that the scheduler in TopsySMP runs on every CPU. It searches the
ready queues from higher to lower priority to find the next thread that is allowed to run. In a multi-
processor environment withn processors there are alwaysn threads running concurrently, even if all
those threads are idle threads. The scheduler therefore has to search the entire ready queue instead
of picking the first one as in the uniprocessor version of Topsy. Furthermore, TopsySMP introduces
the possibility to pin certain threads to a specific CPU, e.g. device drivers which deliver interrupts
only to one CPU. Therefore, the scheduler has to check if a CPU is allowed to run a certain thread.
The inner loop of the scheduler is shown in Figure 11.3.

for (priority = KERNEL_PRIORITY; priority < NBPRIORITYLEVELS; priority++) {
listGetFirst(scheduler.prioList[priority].ready, (void **)&newRunning);
while (newRunning != NULL) {

if (newRunning->schedInfo.status == READY) {
if ((newRunning->schedInfo.pinnedTo == NO_CPU) ||

(newRunning->schedInfo.pinnedTo == cpu)) {
newRunning->schedInfo.status = RUNNING;
newRunning->schedInfo.cpu = cpu;
ipcResetPendingFlag(newRunning);
scheduler.running[cpu] = newRunning;
break ;

}
}
listGetNext(scheduler.prioList[priority].ready, (void **)&newRunning);

}
if (newRunning != NULL) break ;

}

Figure 11.3: Inner Scheduler Loop of TopsySMP

The inner loop starts by picking the first thread from the kernel priority ready list. After checking
that the thread is indeed ready — it could be running on an other CPU — the scheduler inspects
theschedInfo structure of the thread to see if this thread is pinned to a specific CPU. Therefore,
the schedInfo structure in TopsySMP was extended by a field calledpinnedTo which either
contains the number of a CPU or the valueUNBOUND. In the latter case, the thread can run on any
CPU.

If the thread is pinned to the CPU on which the scheduler is currently running, or the thread is allowed
run on any CPU, it is chosen to be the next thread to run and the inner loop is left. Otherwise, the
next thread on the current ready queue is picked. If the end of the ready queue was reached, the next
lower priority ready queue is selected and the loop starts again. Remember that the lowest priority
queue holds the idle threads which are always ready to run.

89

11 Implementation of TopsySMP

The locking strategy of the uniprocessor scheduler had to be changed in order to guarantee data
consistency in a multiprocessor environment. The scheduler in TopsySMP is protected by a spin
lock to grant mutual exclusion.

11.1.5 System call API

In order to allow threads to be pinned to specific CPUs the two system callsthreadStart()
andthreadBuild() (file TMThread.c) have been supplied with an additional parameter called
pinnedTo . The parameter either holds the hardware number of a specific CPU or the valueUN-
PINNED.

User programs can use the new system calltmStartBound() to pin user threads to a specific
CPU:

SyscallError tmStartBound(ThreadId* id,
ThreadMainFunction function,
ThreadArg parameter,
char *name,
CPUId pinnedTo);

In order to implement the new system call, thetmStart message was extended to hold the addi-
tional parameter. ThetmStart() system call, which uses the same message structure, sets this
value toUNPINNED.

11.1.6 User Thread Exit

User threads in Topsy exit by either explicitly callingtmExit() as the last statement in a user
program or by a implicit call toautomaticThreadExit() . These two function send an exit
message to the thread manager which then removes the thread from the run queues and frees all
memory hold by the thread.

This thread will never run again, although (theoretically speaking) he would be able to do so unless
the thread manager has finished handling thetmExit() system call. In a uniprocessor environment
this could never happen because after sending the exit message the user thread will be preempted.
The scheduler will probably pick the thread manager sometimes but certainly before the user thread
(which is still in the ready queue). This can be guaranteed by two things: First, the thread manager
has higher priority than any user thread, and second, threads are scheduled in a round-robin manner.

However, in a multiprocessor environment withn simultaneous threads running at a time, some mea-
sures have to be taken to prevent the user thread from being scheduled on any CPU before the thread
manager is scheduled. Therefore, the handling of an exit message had to be changed in the following
manner: The functionthreadDestory() (files TMThread.c), which is called bythread-
Exit() , first tries to remove the thread from the ready queue by callingschedulerRemove()
in Figure 11.4.

If the status of the thread is blocked or ready (i.e. not running), the thread is simply removed and the
function returnsTMOK. Otherwise (i.e. the thread is running on a different CPU), the status of the

90

11.1 Implementation Steps

Error schedulerRemove(Thread* threadPtr) {
ThreadPriority priority = threadPtr->schedInfo.priority;

lock(schedLock); {
if (threadPtr->schedInfo.status == BLOCKED) {

listRemove(scheduler.prioList[priority].blocked, threadPtr,
threadPtr->schedInfo.hint);

} else if ((threadPtr->schedInfo.status == READY) ||
(threadPtr->schedInfo.status == EXIT)) {

listRemove(scheduler.prioList[priority].ready, threadPtr,
threadPtr->schedInfo.hint);

} else {
if (threadPtr->schedInfo.cpu != CPU) {

threadPtr->schedInfo.status = EXIT;
unlock(schedLock);
return TM_FAILED;

}
}

}
unlock(schedLock);
return TM_OK;

}

Figure 11.4: Function schedulerRemove

thread is changed toEXIT and the function returnsTMFAILED . Back inthreadDestory() , the
return value decides whether the removal of the thread can continued or not. In the latter case, the
function exits immediately and the thread keeps running until the next timer interrupt. The scheduler
then recognizes the special exit status and prevents the thread from being scheduled again. The clock
interrupt handler periodically calls the functionschedulerRemoveExit() to remove all user
threads with statusEXIT (see Figure 11.5).

void schedulerRemoveExit() {
Thread* t = NULL;
listGetFirst(scheduler.prioList[USER_PRIORITY].ready, (void **)&t);
while (t != NULL) {

if ((t->schedInfo.status == EXIT) && (t->schedInfo.cpu = NO_CPU)) {
threadExit(t->id);

}
listGetNext(scheduler.prioList[USER_PRIORITY].ready, (void **)&t);

}
}

Figure 11.5: Function schedulerRemoveExit

This function can be optimized by a global counter variable holding the number of threads with status
EXIT . This counter is incremented inschedulerRemove() whenever a thread changes his state
to EXIT . The clock interrupt handler tests this counter and callsschedulerRemoveExit() only
if the value is greater than zero.

Recall from above that all threads currently not running can be safely remove from the ready queue.

91

11 Implementation of TopsySMP

This includes all threads with statusEXIT . After this, the allocated memory held by the thread can
be freed and the global counter is decremented.

11.1.7 Exception Handler

Recall from Section 11.1.2 that TopsySMP allocates an exception context for every CPU in the
system. In order to be able to handle exceptions concurrently, each handler routine has to select
the appropriate exception context of the CPU it is running on. This is done throughout all handler
routines by the lines of code shown in Figure 11.6.

la k0, exceptionContext /* exceptionContext -> k0 */
la k1, IPIC_BASE /* ipic register base -> k0 */
lw k1, CPU_OFFSET(k1) /* cpu number -> k0 */
beq k1, 0, no_adjust
nop
sll k1, k1, 4
addu k0, k0, k1

no_adjust:

Figure 11.6: Exception Handler Code

First, general registerk0 is loaded with the start address of the exception context array. Then,k1 is
loaded with the hardware number of the CPU. If this number is zero (i.e. the CPU is the boot CPU),
k0 already points to the right array entry and the handler can continue with the instruction at label
no adjust . Otherwise, the CPU number is shifted left by four (i.e. multiplied by 16) and added to
k0 to index the corresponding array entry. (Recall, that the exception context consists of four 4-byte
registers, making a total of 16 bytes.)

Two more SMP-specific things have to be done by an exception handler. First, the stack pointer
has to be loaded with the address of the exception stack belonging to the specific CPU. Second, the
context of the running thread has to be saved first and restored later. This is done by calling the
functionsaveContext andrestoreContext respectively, which takes a pointer to the thread
context as argument. Both, the address of the exception stack and the pointer to the thread context
are CPU-specific and can only be determined through the CPU number. The code is similar to the
one above and therefore not presented here.

11.1.8 Synchronization Primitives

The main synchronization primitive in TopsySMP is the spin lock. Critical sections can be protected
by enclosing then with the function pairlock and unlock . They are based upon the MP-safe
test-and-set function presented in Section 9.2.3. Beside the simple spin lock, two more powerful
synchronization primitives were implemented in TopsySMP:semaphoresandreader-writer locks.

Semaphores
Recall from Section 5.3 that a semaphore can implement either mutual exclusion or process synchro-
nization and works correctly for any number of processors in the system, including the uniprocessor
case.

92

11.1 Implementation Steps

Each semaphore requires a small data structure to maintain the current value and the queue of blocked
threads. A single linked list will be used for the queue. A thread that blocks on a semaphore is added
to the tail of the list, and threads unblocked by aV operation are removed from the head. A spin lock
is added to provide mutual exclusion while the data structure is being updated.

typedef struct SemDesc_t {
LockDesc lock;
int count;
List queue;

} SemDesc;
typedef SemDesc* Semaphore;

The semaphore data structure must be initialized before it is used. A semaphore can be initialized to
any given value with the functionsemInit shown in Figure 11.7.

void semInit(Semaphore sem, int initial_cnt)
{

lockInit(&sem->lock);
sem->queue = listNew();
sem->count = initial_cnt;

}

Figure 11.7: Function semInit

The semaphoreP operation can be implemented as shown in Figure 11.8.

void semP(Semaphore sem)
{

int CPU = smpGetCurrentCPU();
lock(&sem->lock);
sem->count--;

if (sem->count < 0) {
listAddAtEnd(sem->queue, scheduler.running[CPU], NULL);
schedulerSetBlocked(scheduler.running[CPU]);
unlock(&sem->lock);
tmYield();
return ;

}
unlock(&sem->lock);

}

Figure 11.8: Function semP

The semaphoreV operation can be implemented as shown in Figure 11.9. If a thread had blocked
during a previousP operation, theV operation removes the oldest thread from the queue and sets the
thread ready. As such, this implementation favors overall fairness by awakening processes in FIFO
order.

Multireader Locks
A multi-reader, single-writer lock (or simply a multireader lock for short) allows multiple processes

93

11 Implementation of TopsySMP

void semV(Semaphore sem)
{

Thread* threadPtr = NULL;

lock(&sem->lock);
sem->count++;

if (sem->count <= 0) {
listGetFirst(sem->queue, (void **)threadPtr);
listRemove(sem->queue, threadPtr, NULL);
unlock(&sem->lock);
schedulerSetReady(threadPtr);
return ;

}
unlock(&sem->lock);

}

Figure 11.9: Function semV

to access a shared data structure at once, as long as none of them needs to modify it. Writers are
granted mutually exclusive access so that the integrity of the data structures is maintained. Multi-
reader locks can be easily implemented with semaphores as follows.

The data structure shown next will be used to record the state of a multireader lock. A spin lock
is used to protect the counter fields. The data structure keeps track of both the number of threads
currently in the critical section, as well as the number of threads waiting to enter. These counts are
divided between readers and writers.

typedef struct MRLockDesc_t {
LockDesc lock;
int rdcnt; /* # of readers in critical section */
int wrcnt; /* # of writers in critical section */
int rdwcnt; /* # of waiting readers */
int wrwcnt; /* # of waiting writers */
SemDesc rdwait; /* sync semaphore where readers wait */
SemDesc wrwait; /* sync semaphore where writers wait */

} MRLockDesc;

typedef MRLockDesc* MRLock;

94

11.1 Implementation Steps

Before using the lock, it must be initialized by calling the routine shown in Figure 11.10.

void mrlockInit(MRLock lock)
{

lockInit(&lock->lock);
initSem(&lock->rdwait, 0);
initSem(&lock->wrwait, 0);
lock->rdcnt = 0;
lock->wrcnt = 0;
lock->rdwcnt = 0;
lock->wrwcnt = 0;

}

Figure 11.10: Function mrlockInit

The strategy for controlling access to the critical resource protected by the multireader lock is to
allow readers to enter the critical section at any time, as long as no writers are waiting or currently
in the critical section. Once a writer arrives, subsequent readers are blocked. This ensures that a
continuous stream of new readers arriving at the lock does not starve out the writers forever. Threads
that whish to acquire the multireader lock for reading use the routine shown in Figure 11.11.

void mrEnterReader(MRLock lock)
{

lock(&lock->lock);

/*
* if a writer has the lock presently or there are
* writers waiting, then we have to wait.
*/

if (lock->wrcnt || lock->wrwcnt) {
lock->rdwcnt++;
unlock(&lock->lock);
semP(&lock->rdwait);
return ;

}
lock->rdcnt++;
unlock(&lock->lock);

}

Figure 11.11: Function mrEnterReader

A reader leaving a critical section protected by a multireader lock calls the routine shown in Figure
11.12. Once all the readers have left the critical section, a single writer is awakened, if any is waiting.

When a writer wishes to acquire the lock, it must wait for all processes using the lock to leave the
critical section. If no processes are currently using it, the writer can acquire the lock immediately.
Note thewrcnt field can never be greater than 1 by definition of the multireader,single-writer lock.
(see Figure 11.13)

95

11 Implementation of TopsySMP

void mrExitReader(MRLock lock)
{

lock(&lock->lock);
lock->rdcnt--;

/*
* if we’re the last reader, and a writer is waiting,
* then let the writer go now.
*/

if (lock->wrwcnt && (lock->rdcnt == 0)) {
lock->wrcnt = 1;
lock->wrwcnt--;
unlock(&lock->lock);
semV(&lock->wrwait);
return ;

}
unlock(&lock->lock);

}

Figure 11.12: Function mrExitReader

void mrEnterWriter(MRLock lock)
{

lock(&lock->lock);

/*
* block if any threads are already using the lock.
*/

if (lock->wrcnt || lock->rdcnt) {
lock->wrwcnt++;
unlock(&lock->lock);
semP(&lock->wrwait);
return ;

}
lock->wrcnt = 1;
unlock(&lock->lock);

}

Figure 11.13: Function mrEnterWriter

96

11.1 Implementation Steps

Releasing a multireader lock that is held by a writer is the most complex operation (see Figure 11.14).
To ensure a degree of fairness, readers are awakened first when both readers and writers are waiting
for the lock. This prevents a continuous stream of writer processes from arriving at the lock and
starving out the readers. Since subsequent arriving readers are blocked when one or more writers
are waiting, it is guaranteed that writers will not be blocked indefinitely either. In this way, the lock
rotates between readers and writers when both types of threads are waiting. Since readers can use
the critical section in parallel, all readers are awakened whenever a writer leaves.

void mrExitWriter(MRLock lock)
{

int rdrs;

lock(&lock->lock);

/*
* let readers go first if any are waiting
*/

if (lock->rdwcnt) {
lock->wrcnt = 0;

/*
* awaken all readers that are presently waiting.
*/

rdrs = lock->rdwcnt;
lock->rdcnt = rdrs;
lock->rdwcnt = 0;
unlock(&lock->lock);

while (rdrs--)
semV(&lock->rdwait);

return ;
}

/*
* no readers waiting, let one writer go (if any).
*/

if (lock->wrwcnt) {
lock->wrwcnt--;
unlock(&lock->lock);
semV(&lock->wrwait);
return ;

}

/*
* nobody waiting - release lock.
*/

lock->wrcnt = 0;
unlock(&lock->lock);

}

Figure 11.14: Function mrExitWriter

97

11 Implementation of TopsySMP

It is possible to implement multireader locks with spin locks as well. These are useful for protecting
critical sections that are too short for semaphores. Together, spin locks, semaphores, and multireader
locks provide a useful base set of primitives for resolving contention in mutithreaded kernels.

11.1.9 Enhancement of Parallel Kernel Activity

Recall from previous design sections, that the amount of parallel kernel activity can be raised by
duplicating the control thread of a kernel module. This section shows an example implementation of
a kernel with dual thread manager modules.

First, the tmThread’s have to get distinct threads ids (fileTopsy.h):

#define MMTHREADID -1 /* Memory Manager Thread Id. */
#define TMTHREADID0 -2 /* Thread Manager 0 Thread Id. */
#define TMTHREADID1 -3 /* Thread Manager 1 Thread Id. */
#define IOTHREADID -4 /* Input/Output Manager Thread Id. */

Second, we need to have an additional thread structure and thread context (fileTMInit.c):

Thread tmThread0, tmThread1;
ProcContext tmContext0, tmContext1;

Then, both of them have to be started, added to the appropriate thread and hash lists, and put onto
the ready run queue (functiontmInit() in file TMInit.c):

threadBuild(TMTHREADID0, 0, "tmThread0", &tmContext0,
tmStack0, TM_DEFAULTTHREADSTACKSIZE,
tmMain, (ThreadArg)userInit, KERNEL, NO_CPU, FALSE, &tmThread0);

threadBuild(TMTHREADID1, 0, "tmThread1", &tmContext1,
tmStack1, TM_DEFAULTTHREADSTACKSIZE,
tmMain, (ThreadArg)userInit, KERNEL, NO_CPU, FALSE, &tmThread1);

hashListAdd(threadHashList, &tmThread0, tmThread0.id);
hashListAdd(threadHashList, &tmThread1, tmThread1.id);

listAddInFront(threadList, &tmThread0, NULL);
listAddInFront(threadList, &tmThread1, NULL);

schedulerSetReady(&tmThread0);
schedulerSetReady(&tmThread1);

Both threads need to have a distinct stack in order to execute independently. Therefore, the function
mmVmInit() (file MMVirtualMemory.c) has to allocate two stacks instead of just one:

/* tmStack */
loc += STACKSIZE;
vmInitRegion(space->regionList, (Address)loc, STACKSIZE,

VM_ALLOCATED, READ_WRITE_REGION, 0);
*tmStackPtr0 = (Address)loc;
loc += STACKSIZE;
vmInitRegion(space->regionList, (Address)loc, STACKSIZE,

VM_ALLOCATED, READ_WRITE_REGION, 0);
*tmStackPtr1 = (Address)loc;

98

11.1 Implementation Steps

Furthermore, the argument list of all functions handling with the initialization of thread manager data
structures have to be adopted to support the duality.

In order to distribute all thread management system calls among the two thread managers, the system
call interface has to implement a distribution policy. Our approach uses a simple round-robin policy,
i.e., the receiver of the corresponding syscall message is swapped after every system call. In the
original Topsy kernel, the constantTMTHREADIDis used in every thread management system call
as the receiver of the corresponding message. In order to retain the system call interface, the constant
was replaced by a macro which implements the round-robin policy:

#define TMTHREADID (ThreadId)((targetTmId+1)%2)

At this point, two system calls provided by the thread manager can be executed simultaneously on
two distinct processors. Therefore, the system calls have to be analyzed to identity critical section
and to protect them somehow.

Global Values
There are four global values of interest in the thread manager. The (linear) thread list and the hash
list of all threads are both protected by a spin lock and therefore not susceptible to race conditions.
The next two values represent the next valid kernel or user thread id respectively. They are used in
functiongetThreadId() which is analyzed next.

getThreadId()
The functiongetThreadId() returns an unique id for a new kernel or user thread. It does this by
reading the global variablenextKernelThreadId (nextUserThreadId) and checking the
hash list for an existing thread with this id. If no thread is found the id is returned and the global
variable is decremented (incremented) by one. The access to the global variables is not synchro-
nized and therefore susceptible to race conditions. However, because the function is only called in
threadStart() it can be protected by adding the function call to the critical section ofthread-
Start() .

threadStart()
The call to the functiongetThreadId() can be added to the critical section:

lock(threadLock); {
threadPtr->id = getThreadId(space);
if ((threadPtr->id == 0) ||
...

}

All other functions fromTMThread.c are not susceptible to race conditions.

99

11 Implementation of TopsySMP

100

12 Performance Analysis of TopsySMP

This chapter presents the simulation results for the symmetric multiprocessor version of Topsy run-
ning on top of the SimOS environment.

12.1 Introduction

Ideally, the overall system throughput of an SMP system will increase linearly as more processors
are added. Thus a two-processor system should be able to handle twice the throughput of an UP. How
close an MP implementation can approach this ideal depends on three main factors: the hardware
architecture, the application job mix, and the kernel implementation.

If the hardware design is not suitable for an SMP system, then no amount of software tuning will
allow an implementation to approach the ideal goal of linear performance increase as additional
processors are added. The application job mix refers to the number and type of applications that are
run on the system. Is is important to understand the application job mix of any benchmark in order
to interpret the results correctly.

We studied two aspects of the performance of TopsySMP: overall speedup for benchmark appli-
cations, and the time needed for internal kernel operations such as context switching or exception
handling.

12.2 Simulation Environment

All performance measurements were made running TopsySMP on top of the SimOS environment
configured as a small-scale multiprocessor system. The particular hardware configuration used in
our experiments consists of up to 64 MIPS R4000 CPUs running at 25 MHz and a variable sized
shared memory connected over a single bus. The memory model (BusUma) uses uniform memory
access time with bus contention, snoopy caches, and writeback buffers.

The system was running with 32 kBytes of first-level instruction and data cache and 1024 kBytes of
unified second-level cache. All caches are 2-way associative with a line size of 64 Bytes (1st-level)
and 128 Bytes (2nd-level) respectively. The time for a second-level cache hit was set to 50 ns. The
maximum bus bandwidth was limited (by configuration) to 1200 MB/s. The total time to fetch a
cache line from memory in an unloaded system was set to 500 ns. The time to get data out of another
CPU’s cache was set to 250 ns. And finally the total time to issue an upgrade in an unloaded system
was set to 400 ns.

101

12 Performance Analysis of TopsySMP

12.3 Benchmarks

In order to show how the overall performance vary with added processors we used three different
benchmark application:

� Sum. A compute bound benchmark forming the sum ofM numbers whereM is much larger
that the number of processorsN.

� Reserve. A I/O bound benchmark simulating a number of travel agency’s trying to reserve a
fixed number of seats in a airplane.

� Syscall. A synthetic syscall-bound benchmark based on a test program calledCrashmedis-
tributed with Topsy.

The following sections describe the benchmarks in more details.

12.3.1 Sum

Consider the simple problem of forming the sum ofM numbers whereM is much larger that the
number of processorsN. In this case,N partial sums can be formed in parallel by breaking the list
into N lists, each withM=N numbers in it.

The benchmark applicationSumusesN threads to form the partial sums in parallel but uses only a
single thread to add the partial sums. The range of numbers to add and the resulting partial sum are
exchanged among the threads using shared-memory. The parent threads waits for all child threads to
terminate before adding the partial sums.

On a single processor the benchmark spends 97% of its execution time in user mode and only 3% in
kernel mode.

12.3.2 Reserve

Consider the problem of several travel agency’s trying to reserve a given (fixed) number of seats in
an airplane.

The benchmarkReserveusesn threads to simulate the travel agency’s which concurrently try to
increase the number of reserved seats until a given maximum is reached. The access to the global
count of reserved seats is not synchronized. Therefore, it is possible that more seats are reserved
than are actually available. The parent thread waits for all child threads to terminate before adding
the number of seats reserved by every child.

On a single processor the benchmark spends 34% of its execution time in user mode and 66% in
kernel mode, mainly doing console output (half of the execution time).

102

12.4 Benchmark Results

12.3.3 Syscall

The benchmarkSyscalluses a mix of different system calls to stress the system. These system calls
include basic memory management and thread management functions.

This benchmark was chosen because his job mix can be easily adapted to lie in between the compute
boundSumand the I/O boundReserve. Furthermore, the system calls can be assorted to measure the
throughput of a specific kernel module.

The variant ofSyscallused to collect the results shown in Figure 12.1, the benchmark was configured
to spend 57% of its execution time in user mode and 43% in kernel mode. The kernel time was further
separated into 14% thread management, 69% memory management and 17% I/O.

12.4 Benchmark Results

Figure 12.1 shows the results of the overall speedup measurements using benchmark applications.

1 2 3 4 5 6 7 8
Number of CPUs

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

S
pe

ed
up

ideal
Sum
Syscall
Reserve

Figure 12.1: Benchmark Results

The results show that TopsySMP scales well for compute bound benchmarks likeSum. On the other
extreme lies the I/O bound benchmarkReservewhich shows no performance improvement over an
UP system, regardless of the number of processors present in the system. This is due to the fact,
that thettya device driver handling the console output is pinned to CPU 0. Thus, adding additional
CPUs will not increase performance any further because they can do nothing to reduce the 50% of the

103

12 Performance Analysis of TopsySMP

time the benchmark spends doing I/O. The results even show, that additional CPUs are obstructive
because of the increasing synchronization overhead.

In between lies the syntheticSyscallbenchmark, whose 57% of user mode execution can lead to
performance improvement. At the same time we see that the remaining 43% of kernel mode execu-
tion prevents a better speedup. This is the result of the fact, that the system calls provided by one
kernel module cannot be handled in parallel. So if the application spends almost 70% of its kernel
mode execution time within a single module, we have a great amount of serial code which cannot be
parallelized.

12.5 Kernel Locking

12.5.1 Spinlock Times vs. Context Switch

In order to make a statement on the effectiveness of the synchronization primitives used in Top-
sySMP, the average time of a spin lock acquirement has to be determined. This time is then com-
pared to the average context switch time. Both times were collected using the statistics mechanism
from SimOS.

The time needed to acquire a kernel lock varies from 21 cycles up to 2500 cycles. The lower bound is
the minimum time needed by the functiontestAndSet() without spinning. The function consists
of a dozen assembler instructions if we take thenop instructions into count. The upper bound results
from a lock contention in which the calling thread has to spin several times before acquiring the lock.
Despite the wide time range, the average time spend to acquire a lock is never more than 40 cycles,
normally it is about 25 cycles.

If we define the context switch time to be sum of the time needed calling the functionsaveCon-
text() , scheduling a suitable thread, and calling the functionrestoreContext() , then we
measure the following values (processor cycles):

Value Min Max Average
saveContext 58 147 69.6
schedule 116 1859 440.1
restoreContext 46 101 50.0

context switch 220 2107 559.7

AlthoughsaveContext andrestoreContext do a constant amount of work (the context has
a fixed size), the gap between the minimum and maximum cycle time is quite big. This results from
cache misses during the read/write operations.

So if we compare the two values measured above, we see, that the average time to acquire a spin
lock is more than a factor 10 smaller than the time for a context switch.

104

12.6 Internal Kernel Operations

12.5.2 Complex locking strategies

Our performance tests have clearly shown, that the time spent inside thelock system call is short
enough to allow the use of simple spin locks within the entire kernel instead of more complex syn-
chronization primitives.

12.5.3 Detailed Spin Lock Times

The spin lock times presented above were further separated into the times spent acquiring and hold-
ing the individual kernel locks. Recall, that TopsySMP uses three spin locks to guarantee system
integrity. All values in the following table are processor cycles.

acquire lock hold lock
Spin Lock Min Max Average Min Max Average
schedLock 21 2009 24.9 87 4491 149.4
hmLock 21 2503 51.2 76 5100 1561.4
threadLock 21 31 23.4 1104 8515 3737.9

Recall from Section 10.2.6 that thehmLock should be object to the highest lock contention. This is
confirmed by our measurements, as the average time to acquire thehmLock is more than twice as
much as the time of every other lock.

12.6 Internal Kernel Operations

12.6.1 Exception Handling

If we define the time to handle an exception as the time spent executing inside the general exception
handler, than the kernel spends between 200 and 2500 cycles handling exceptions. The average
values is 830 cycles.

12.6.2 System Call

Recall from Chapter 8 that all system calls in Topsy are based on the exchange of messages between
kernel and user threads. Therefore, the time needed to execute a system call is the sum of the
time needed to send a message and the time waiting for a reply (which of course includes the time
actually performing the desired action by the corresponding kernel module). These values vary from
2500 cycles up to 14 000 cycles. The lower bound results from the simplest system call which is
tmGetInfo with parameterSELF, returning the thread id of the calling thread. The average time
for a system call amounts to 6500–7000 cycles.

105

12 Performance Analysis of TopsySMP

12.6.3 SMP Management Overhead

In order to make a statement on how much system administration overhead is originated by the SMP
version, we compared the uniprocessor version of Topsy with the SMP version running on a single
CPU. Beside the overall performance, we measured spin lock times, context switching times, and
scheduling times. One would expect, that these times only differ in case of more complex algorithms
used in the SMP version.

If we compare the overall performance of the two systems, we find only irrelevant differences in
the execution times. If we take for example theSumbenchmark, the execution times vary less than
a hundredth percent. However, if we compare the spin lock times and the times used for context
switching, we find some differences illustrated in Table 12.1 (all values in processor cycles).

UP Version MP Version
Value Min Max Average Min Max Average
Generic Syscall 2933 12596 6323.6 3208 12965 6753.4
Exception Handling 254 802 564.7 230 1270 586.6
saveContext 52 65 52.1 58 72 58.2
schedule 108 206 133.4 116 232 150.2
restoreContext 46 61 46.1 46 71 46.3
schedLock acquire 23 25 23.1 21 23 21.1
schedLock hold 25 947 53.8 87 954 135.4
hmLock acquire 23 37 23.4 21 33 21.4
hmLock hold 78 844 483.1 76 867 481.7
threadLock acquire 23 23 23 21 21 21
threadLock hold 25 1831 36.1 1019 1842 1391.2

Table 12.1: UP vs. MP with one Processor

If we take a look at the scheduling times, for instance, we see that the simpler uniprocessor scheduler
needs less time to scheduler a suitable thread. The multiprocessor scheduler is more complex and
includes some overhead in the case of a single CPU, mainly from the additional tests needed to
implement CPU-pinning. However, with an average overhead of 20–30 cycles the MP scheduler is
still an efficient implementation.

The values for exception handling show the same characteristics. The exception handler of the
MP kernel is not much more complicated than its UP counterpart. However, this is only true for
a single CPU since for accessing the exception context of CPU0 no index calculation is necessary.
The overhead in the MP exception handling therefore merely comes from the additional compare
instructions.

Next thing to observe is the wide difference between the times the schedLock is hold. This results
from the fact, that the uniprocessorschedule() function does not actually hold the lock, but
merely checks its state using the following code:

if (!lockTry(schedLock)) return;
else unlock(schedLock);

106

12.6 Internal Kernel Operations

The same is true for the threadLock inside the scheduler. However, both locks are used in other
functions, therefore the hold time is always bigger than the time used to acquire it.

107

12 Performance Analysis of TopsySMP

108

13 Conclusions

In this thesis, we have presented a simple SMP kernel architecture for small-scaled shared-memory
multiprocessor systems. This architecture consists of a number of concurrent threads that together
provide high performance and scalability.

We have achieved the following goals:

� Simplicity. The simple structure of the Topsy OS has not been complicated by an over-sized
SMP mechanism. Instead, TopsySMP uses the same amount of locks and adds only a few
additional SMP data structures and functions to the kernel.

� High degree of parallel Kernel Activity. The kernel scales nearly linear on compute bound
application job mixes. Extreme I/O bound benchmarks have shown no performance improve-
ment because the I/O threads are pinned to a specific CPU and therefore become a system
performance bottleneck. The maximum amount of parallel kernel activity is given by the mul-
tithreading of the kernel. Thus, the more time an application spends doing system calls from
a specific kernel module, the more it gets delayed by the serial handling of the system calls
inside the kernel module.

� Uniprocessor API. The system call API of the original Topsy OS was adopted completely.
Therefore, all programs written for Topsy are can to run on the SMP port without modifica-
tions. A single system call has been added to the API, in order to provide CPU-pinning.

� Scalability. TopsySMP is scalable from a single CPU up to 64 CPUs (limited by SimOS).
This means, that additional CPUs can be added to (or removed from) the system without
recompiling or even reconfiguring the kernel. This was achieved by determining the number
of available CPUs in the system upon startup and dynamically allocating the necessary kernel
data structures from the heap memory. However, we found, that the efficiency of the kernel is
obtained on a small-scaled system with up to eight processors.

� Multithreading. The multithreaded architecture of the original Topsy kernel was adopted
unchanged. This led to a straight forward implementation of an SMP kernel using the same
locking strategy as Topsy. However, as mentioned above, the maximum amount of parallel
kernel activity is given by the multithreading of the kernel. Thus, to improve the parallel
kernel activity, the kernel threads have to be further parallelized.

� Parallel Thread Scheduling. Each CPU runs an instance of the scheduler. This provides a
degree of fault tolerance because the CPUs are not dependent of a central scheduler.

109

13 Conclusions

� Efficient Synchronization Primitives. A hybrid coarse-grained/fine-grained locking strategy
was used that has the low latency and space overhead of a coarse-grained locking, while having
the high concurrency of a fine-grained locking strategy. The coarse-grain locks protect entire
kernel threads and therefore large amounts of data, while the fine-grained locks protect single
kernel data structures. The results of our performance experiments clearly demonstrated the
effectiveness of our locking strategy, at least on the simulated hardware. The time spent inside
the lock system call is short enough (compared with the time of a context switch) to allow
the use of simple spin locks within the entire kernel instead of more complex synchronization
primitives.

� Powerful Simulation Environment. This thesis has shown that SimOS provides a powerful
simulation environment for running and profiling different kernel implementations. SimOS
simulates the hardware of a computer system in enough detail to boot an operating system
and run realistic workloads on top of it. Our experiences in porting Topsy to SimOS can
serve others in trying to develop a new operating system or port an existing one to the SimOS
environment.

Overall, we have found that the implementation of an SMP kernel based on a multithreaded unipro-
cessor kernel is straightforward and results in a well structured and clear design. The overhead
caused by the integration of SMP functionality was kept to a minimum, resulting in a small and
efficient implementation of a multithreaded microkernel for symmetrical multiprocessing hardware
architecture.

13.1 Future work

The hardware implementation of a small-scale SMP system with up to four CPUs and TopsySMP as
operating system would be an interesting and challenging task. A possible hardware target could be
based on multiple MIPS processors like, for example, a workstation from Silicon Graphics. Since
Topsy was already ported to the Intel processor architecture ([Ruf98]), another interesting target
hardware would consist of a dual Pentium board available from many vendors these days.

Section 11.1.9 has suggested a way to further improve the performance of a multithreaded SMP
kernel. The idea of using multiple instances of a kernel module control thread, could be further
investigated using TopsySMP as basic kernel design and SimOS as simulation environment.

Another multiprocessor system architecture which could be investigated with SimOS, would be that
of a distributed system consisting of multiple SMP clusters connected by a network.

110

Part IV

APPENDIX

111

A MIPS R4000 Architecture

This chapter describes the MIPS R4000 processor family (also referred to in this thesis by R4k).

A.1 Introduction

The MIPS R4000 processor provides complete application software compatibility with the MIPS
R2000, R3000, and R6000 processors. Although the MIPS processor architecture has evolved in
response to a compromise between software and hardware resources in the computer system, the
R4000 processor implements the MIPS ISA for user-mode programs. This guarantees that user
programs conforming to the ISA execute on any MIPS hardware implementation.

A.2 Processor General Features

This section briefly describes the programming model, the memory management unit (MMU), and
the caches in the R4000 processor. Figure A.1 shows a block diagram of the MIPS R4000 processor.

� Full 32-bit and 64-bit Operations. The R4000 processor contains 32 general purpose 64-
bit registers. (When operating as a 32-bit processor, the general purpose registers are 32-bits
wide.) All instructions are 32 bit wide.

� Efficient Pipeline. The superpipeline design of the processor results in an execution rate ap-
proaching one instruction per cycle. Pipeline stalls and exceptional event are handled precisely
and efficiently.

� MMU. The R4000 processor uses an on-chip TLB that provides rapid virtual-to-physical ad-
dress translation.

� Cache Control. The R4000 primary instruction and data caches reside on-chip, and can each
hold 8 Kbytes. All processor cache control logic, including the secondary cache control logic,
is on-chip.

� Floating-Point Unit. The FPU is located on-chip and implements the ANSI/IEEE standard
754-1985.

� Operating Modes. The R4000 processor has three operating modes: User mode, Supervisor
mode, and Kernel mode. The manner in which memory addresses are translated or mapped
depends on the operating mode of the CPU.

113

A MIPS R4000 Architecture

System
 Control

S-cache
 Control

Data Cache P-cache
 Control

Instruction
Cache

Exception/Control

Memory Management

Translation

CPU Registers

ALU

Load Aligner/Store Driver

Integer Multiplier/Divider

Address Unit

PC Incrementer

FPU Registers

Pipeline Bypass

FP Multiplier

FP Divider

FP Add, Convert

Registers

Registers

Lookaside
Buffers

Square Root

CP0 CPU FPU

Pipeline Control

64-bit System Bus

Figure A.1: Block Diagram of the MIPS R4000

The simulated MIPS R4000 processor in SimOS runs in 32-bit mode. Therefore, we will focus on
32-bit mode for the rest of this chapter.

A.3 Memory Management

The MIPS R4000 processor provides a full-featured memory management unit (MMU) which uses
an on-chip translation lookaside buffer (TLB) to translate virtual addresses into physical addresses.

A.3.1 System Control Coprocessor, CP0

The System Control Coprocessor (CP0) is implemented as an integral part of the CPU, and supports
memory management, address translation, exception handling, and other privileged operations. CP0
contains the registers shown in Figure A.2 plus a 48-entry TLB. The section that follow describe how
the processor uses the memory management-related registers. Each CP0 register has a unique number
that identifies it; this number is referred to as theregister number. For instance, thePageMaskregister
is register number 5.

A.3.2 Format of a TLB Entry

Figure A.3 shows the TLB entry formats for 32-bit mode. Each entry has a set of corresponding
fields in theEntryHi, EntryLo0, EntryLo1, or PageMaskregisters, as shown in Figures A.4 and A.5;
for example theMaskfield of the TLB entry is also held in thePageMaskregister.

114

A.3 Memory Management

EntryLo0
2*

EntryHi

Page Mask

Index

Random

Wired

Count

47

0

BadVAddr

TLB

(“Safe” entries)
(See Random Register,

PRId

0127

8*

15*

Compare
11*

Config
16*

LLAddr
17*

WatchLo
18*

WatchHi
19*

TagLo
28*

TagHi
29*

contents of TLB Wired)
ECC
26*

*Register number

EntryLo0
2*

3*
EntryLo1

EntryHi
10*

5*
Page Mask

Index
0*

Random
1*

Wired
6*

ErrorEPC
30*

Context

4*

Status
12*

Cause
13*

EPC
14*

CacheErr
27*

XContext

20*

9*

Figure A.2: CP0 Registers and the TLB

 12

127

13

96

MASK 0

95

VPN2 G

 19

64

1 4 8

ASID

7677

 24

63 32

PFN

31 0

7

0

121 120 109 108

75 72 71

62 61

2

C VD

3 1 1

3334353738

0

1

 24

PFN

30 29

2

C VD

3 1 1

12356

0

1

0

 0

0

32-bit Mode

128-bit TLB
entry in 32-
bit mode of
R4000
processor

Figure A.3: Format of a TLB Entry

115

A MIPS R4000 Architecture

The format of theEntryHi, EntryLo0, EntryLo1, andPageMaskregisters are nearly the same as the
TLB entry. The one exception is theGlobal field (G bit), which is used in the TLB, but is reserved
in theEntryHi register. Figures A.4 and A.5 describe the TLB entry fields shown in Figure A.3.

 12

31

13

0

MASK

31

VPN2
 19

0

5 8

ASID

1213

7

25 24 13 12

8 7

PageMask Register

EntryHi Register

0 0

0

VPN2 ... Virtual page number divided by two (maps to two pages).
ASID Address space ID field. An 8-bit field that lets multiple processes share the TLB;

each process has a distinct mapping of otherwise identical virtual page numbers.
R Region. (00 → user, 01 → supervisor, 11 → kernel) used to match vAddr63...62
Fill Reserved. 0 on read; ignored on write.
0........... Reserved. Must be written as zeroes, and returns zeroes when read.

63

VPN2
 27

0

5 8

ASID
1213 8 7

0
2

62 61 40 39

22

FILLR

32-bit
Mode

32-bit
Mode

64-bit
Mode

Mask.....Page comparison mask.
0Reserved. Must be written as zeroes, and returns zeroes when read.

Figure A.4: Fields of the PageMask and EntryHi Registers

G

D

 24

31

PFN

31 0

30 29

2 3 1 1 1

 24

PFN

30 29

2

C VD

3 1 1

12356

G

1

0

0

PFN...... Page frame number; the upper bits of the physical address.
C Specifies the TLB page coherency attribute; see Table 4-6.
D Dirty. If this bit is set, the page is marked as dirty and, therefore, writable. This bit is

actually a write-protect bit that software can use to prevent alteration of data.
V Valid. If this bit is set, it indicates that the TLB entry is valid; otherwise, a TLBL or TLBS

miss occurs.
G Global. If this bit is set in both Lo0 and Lo1, then the processor ignores the ASID during

TLB lookup.
0 Reserved. Must be written as zeroes, and returns zeroes when read.

 24

63

PFN

63 0
34

C VD

3 1 1 1

 24

PFN

30 29

34

C V

3 1 1

12356

G

1

0

0

EntryLo0 and EntryLo1 Registers

30 29 012356

GC VD

012356
32-bit
Mode

32-bit
Mode

64-bit
Mode

64-bit
Mode

Figure A.5: Fields of the EntryLo0 and EntryLo1 Registers

116

A.3 Memory Management

The TLB page coherence attribute (C) bits specify whether references to the page should be cached;
if cached, the algorithm selects between several coherency attributes. Table A.1 shows the coherency
attributes selected by theC bits.

C(5:3) Value Page Coherency Attribute
0 Reserved
1 Reserved
2 Uncached
3 Cacheable noncoherent (noncoherent)
4 Cacheable coherent exclusive (exclusive)
5 Cacheable coherent exclusive on write (sharable)
6 Cacheable coherent update on write (update)
7 Reserved

Table A.1: TLB Page Coherency Bit Values

A.3.3 CP0 Registers

The following sections describe the CP0 registers, shown in Figure A.2, that are assigned in Topsy
as a software interface with memory management (each register is followed by its register number
in parentheses).

� EntryLo0(2) andEntryLo1(3) registers

� PageMask(5) register

� Wired (6) register

� EntryHi (10) register

� PRId (15) register

EntryLo0 (2), and EntryLo1 (3) Registers
TheEntryLoregister consists of two registers that have identical formats:

� EntryLo0is used for even virtual pages.

� EntryLo1is used for odd virtual pages.

The EntryLo0andEntryLo1 registers are read/write registers. They hold the physical page frame
number (PFN) of the TLB entry for even and odd pages, respectively, when performing TLB read
and write operations. Figure A.5 shows the format of these registers.

117

A MIPS R4000 Architecture

PageMask Register (5)
ThePageMaskregister is a read/write register used for reading from or writing to the TLB; it holds a
comparison mask that sets the variable page size for each TLB entry. TLB read and write operations
use this register as either a source or a destination; when virtual addresses are presented for trans-
lation into physical addresses, the corresponding bits in the TLB identify which virtual address bits
among bits 24:13 are used in the comparison.

Wired Register (6)
TheWired register is a read/write register that specifies the boundary between thewired andrandom
entries of the TLB shown in Figure A.6. Wired entries are fixed, non-replaceable entries, which
cannot be overwritten by a TLB write operation. Random entries can be overwritten.

47

Wired

Range of Random entries

0

TLB

Register
Range of Wired entries

Figure A.6: Wired Register Boundary

TheWiredregister is set to 0 upon system reset. Writing this register also sets theRandomregister to
the value of its upper bound. Figure A.7 shows the format of theWired register; Table A.2 describes
the register fields.

Wired Register
31 6 5 0

26 6

 Wired0

Figure A.7: Wired Register

Field Description
Wired TLB Wired boundary
0 Reserved. Must be written as zeros, and returns zeros when read.

Table A.2: Wired Register Field Descriptions

EntryHi Register (10)
TheEntryHi holds the high-order bits of the TLB entry for TLB read and write operations. Figure
A.4 shows the format of this register.

118

A.4 Exception Handling

Processor Revision Identifier Register (15)
The 32-bit, read-onlyProcessor Revision Identifier (PRId)register contains information identifying
the implementation and revision level of the CPU and CP0. Figure A.8 shows the format of thePRId
register; Table A.3 describes the register fields.

16 15

PRId Register

31 0

16

Imp

8 8

0

8

Rev

7

Figure A.8: Processor Revision Identifier Register Format

Field Description
Imp Implementation number
Rev Revision number
0 Reserved. Must be written as zeros, and returns zeros when read.

Table A.3: PRId Register Field Descriptions

The low-order byte (bits 7:0) of thePRId register is interpreted as a revision number, and the high-
order byte (bits 15:8) is interpreted as an implementation number. The implementation number of
the R4000 processor is0x04 . The content of the high-order halfword (bits 31:16) of the register are
reserved.

The revision number is stored as a value in the formy:x, wherey is a major revision number in bits
7:4 andx is a minor revision number in bits 3:0.

A.4 Exception Handling

The processor receives exceptions from a number of sources, including TLB misses, arithmetic over-
flows, I/O interrupts, and system calls. When the CPU detects one of these exceptions, the normal
sequence of instruction execution is suspended and the processor enters kernel mode. The kernel
then disables interrupts and forces execution of a software exception processor (called ahandler)
located at a fixed address. The handler saves the context of the processor, including the contents
of the program counter, the current operating mode (user or supervisor), and the status of the inter-
rupts (enabled or disabled). This context is saved so it can be restored when the exception has been
serviced.

When an exception occurs, the CPU loads theException Program Counter (EPC)register with a
location where execution can restart after the exception has been serviced. The restart location in
the EPC register is the address of the instruction that caused the exception or, if the instruction was
executing in a branch delay slot, the address of the branch instruction immediately preceding the
delay slot.

119

A MIPS R4000 Architecture

A.4.1 Exception Processing Registers

This section describes only those CP0 registers that are used in exception processing, having changed
from the MIPS R3000 to the MIPS R4000 processor family, or have significant meanings for the
exception handling of Topsy. The complete list of CP0 registers can be found in [Hei94].

Status Register (12)
TheStatusregister (SR) is a read/write register that contains the operating mode, interrupt enabling,
and the diagnostic states of the processor. The following list describes the more importantStatus
register fields:

� The 8-bitInterrupt Mask (IM)field controls the enabling of eight interrupt conditions. Inter-
rupts must be enabled before they can be asserted, and the corresponding bits are set in both
theInterrupt Maskfield of theStatusregister and theInterrupt Pending (IP)field of theCause
register.

� TheReverse-Endian (RE)bit (bit 25) reverses the endianness of the machine. The processor
can be configured as either little-endian or big-endian at system reset.

Figure A.9 shows the format of theStatusregister. Table A.4 describes the significant register fields
used in Topsy.

Status Register

CU

 4

IM7 - IM0

31 1528 27 25 24 16

9

8 7 5 4 3 2 1 0

KSU ERL EXL IE

8 2 1 1 1

(Cu3:.Cu0)
RE

26

1

DS KX UX

6

SX

1 1 111

RP FR

Figure A.9: Status Register

120

A.4 Exception Handling

Field Description
RE Reverse-Endianbit, valid in User mode.
IM Interrupt Mask; controls the enabling of each external, internal,

and software interrupts. An interrupt is taken is interrupts are
enabled, and the corresponding bits are set in both theInterrupt
Maskfield of theStatusregister and theInterrupt Pendingfield
of theCauseregister.
0! disabled
1! enabled

KSU Mode bits
102! User
012! Supervisor
002! Kernel

ERL Error Level; set by processor when Reset, Soft Reset, NMI, or
Cache Error exception are taken.
0! normal
1! error

EXL Exception Level; set by the processor when any exception other
than Reset, Soft Reset, NMI, or Cache Error exception are taken.
0! normal
1! exception

IE Interrupt Enable
0! disable interrupts
1! enable interrupts

Table A.4: Status Register Fields

121

A MIPS R4000 Architecture

Cause Register (13)
The 32-bit read/writeCauseregister describes the cause of the most recent exception. Figure A.10
shows the fields of this register; Table A.5 describes the register fields used by Topsy. A 5-bit
exception code (ExcCode) indicates one of the causes, as listed in Table A.6. All bits in theCause
register, with the exception of theIP(1:0) bits, are read-only;IP(1:0) are used for software
interrupts.

Cause Register

 1

IP7

31 1527 16

2 12

8 7 6 2 0

8 1 251

0Exc
Code

1

00

282930

BD 0 CE IP0

Figure A.10: Cause Register Format

Field Description
BD Indicates whether the last exception taken occurred in a branch

delay slot.
1! delay slot
0! normal

IP Indicates an interrupt is pending.
1! interrupt pending
0! no interrupt

ExcCode Exception code field (see Table A.6)
0 Reserved. Must be written as zeros, and returns zeros when read.

Table A.5: Cause Register Fields

ExcCode Value Mnemonic Description
0 Int Interrupts
1 Mod TLB modification exception
2 TLBL TLB exception (load or instruction fetch)
8 Sys Syscall exception

16–22 - Reserved
24–30 - Reserved

31 VCED Virtual Coherency Exception data

Table A.6: Cause Register ExcCode Field

122

A.5 Instructions Set Details

Exception Program Counter Register (14)
The Exception Program Counter (EPC) is a 32-bit read/write register that contains the address at
which processing resumes after an exception has been serviced. For synchronous exceptions, the
EPCregister contains either:

� the virtual address of the instruction that was the direct cause of the exception, or

� the virtual address of the immediately preceding branch or jump instruction (when the instruc-
tion is in a branch delay slot, and theBranch Delaybit in theCauseregister is set).

The processor does not write the EPC register when theEXLbit in theStatusregister is set to a 1.

A.4.2 Exception Vector Location

The Reset, Soft Reset, and NMI exceptions are always vectored to the dedicated Reset exception
vector at an uncached and unmapped address. Address for all other exceptions are a combination of
a vector offsetand abase address. During normal operation the regular exceptions have vectors in
cached address space. Table A.7 shows the 32-bit-mode vector base address for all exceptions. Table
A.8 shows the vector offset added to the base address to create the exception address.

Exception Vector Base Address
Cache Error 0xA0000000
Others 0x80000000
Reset, NMI, Soft Reset 0xBFC00000

Table A.7: Exception Vector Base Addresses

Exception Vector Base Address
TLB refill, EXL = 0 0x000
Cache Error 0x100
Others 0x180
Reset, NMI, Soft Reset none

Table A.8: Exception Vector Offsets

A.5 Instructions Set Details

This section provides a detailed description of the operation of the new R4000 instructions used in
Topsy. The instructions are listed in alphabetic order. Details about all R4000 instructions can be
found in [Hei94].

123

A MIPS R4000 Architecture

A.5.1 ERET – Exception Return

0

6

6 531 25 2426

COP0

6

0

ERET

191

CO
0 1 0 0 0 0 0 1 1 0 0 01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Format : ERET

Description: ERET is the R4000 instruction for returning from an interrupt, exception, or error
trap. Unlike a branch or jump instruction,ERETdoes not execute the next instruction.
ERETmust not itself be placed in a branch delay slot.

A.5.2 LL – Load Linked

31 2526 2021 1516 0

LL base rt offset

6 5 5 16
1 1 0 0 0 0

Format : LL rt, offset(base)

Description: The 16-bit offset is sign-extended and added to the content of general register
base to form a virtual address. The contents of the word at the memory location
specified by the effective address are loaded into general registerrt . The processor
begin checking the accessed word for modification by other processors and devices.

A.5.3 SC – Store Conditional

31 2526 2021 1516 0

SC base rt offset

6 5 5 16
1 1 1 0 0 0

Format : SC rt, offset(base)

Description: The 16-bit offset is sign-extended and added to the content of general register
base to form a virtual address. The contents of general registerrt are condition-
ally stored at the memory location specified by the effective address.

If any other processor or device has modified the physical address since the time of
the previous Load Linked instruction, or if anERETinstruction occurs between the
Load Linked instruction and this store instruction, the store fails and is inhibited from
taking place.

124

B SimOS

SimOS is an environment for studying the hardware and software of computer systems. SimOS
simulates the hardware of a computer system in enough detail to boot a commercial operating sys-
tem and run realistic workloads on top of it. This chapter briefly describes SimOS as development
environment used to design and run TopsySMP.

B.1 Introduction

SimOS is a machine simulation environment developed at the Computer System Laboratory at Stan-
ford University. It is designed to study large complex computer systems. SimOS differs from most
simulation tools in that it simulates the complete hardware of the computer system. In contrast, most
other environments only simulate portions of the hardware. SimOS simulates the computer hard-
ware with sufficient speed and detail to run existing system software and application programs. For
example, the current version of SimOS simulates the hardware of multiprocessor computer systems
in enough detail to boot, run, and study Silicon Graphics’ IRIX operating system as well as any
application that runs on it.

Simulating machines at the hardware level has allowed SimOS to be used for a wide range of studies
including this thesis. Operating system programmers can develop their software in an environment
that provides the same interface as the target hardware, while taking advantages of the system visibil-
ity and repeatability offered by a simulation environment. They can non-intrusively collect detailed
performance-analysis metrics such as instruction execution, memory-system stall, and interprocessor
communication time.

Although machine simulation is a well-established technique, it has traditionally been limited to
small system configurations. SimOS includes both high-speed machine emulation techniques and
more accurate machine simulation techniques. Using emulation techniques based on binary transla-
tion, SimOS can execute workload less than 10 times slower than the underlying hardware.

SimOS includes novel mechanisms for mapping the data collected by the hardware models back to
concepts that are meaningful to the user. It uses a flexible mechanism called annotations to build
knowledge about the state of the software being executed. Annotations are user-defined scripts that
are executed when hardware events of particular interest occur. The scripts have non-intrusive access
to the entire state of the machine, and can control the classification of simulation statistics. For
example, an annotation put on the context switching routine of the operating system allows the user
to determine the currently scheduled process and to separate the execution behavior of the different
processes of the workload.

125

B SimOS

B.2 The SimOS Environment

Despite its name, SimOS does not model an operating system or any application software, but rather
models the hardware components of the target machine. As shown in Figure B.1, SimOS contains
software simulation of all the hardware components of modern computer systems: processors, mem-
ory management units (MMUs), caches, memory systems, as well as I/O devices such as SCSI disks,
Ethernets, hardware clocks, and consoles. SimOS currently simulates the hardware of MIPS-based
multiprocessors in enough detail to boot and run an essentially unmodified version of a commercial
operating system, Silicon Graphics’ IRIX.

Unix machine (MIPS, SPARC, Alpha, x86)

RAM

Ethernet

Console

Models
Disk CPU/MMU Models

Memory System Models

Target operating system (e.g. IRIX, Topsy, TopsySMP)

SimOS

models
Target hardware

Host platform

Figure B.1: The SimOS Environment

In order to run the operating system and application programs, SimOS must simulate the hardware
functionality visible to the software. For example, the simulation model of a CPU must be capable of
simulating the execution of all MIPS CPU instructions including the privileged instructions. It must
also provide the virtual address to physical address translation done by the memory management unit
(MMU). For the MIPS architecture this means implementing the associative lookup of the translation
lookaside buffer (TLB), including raising the relevant exceptions if the translation fails.

SimOS models the behavior of I/O devices by responding to uncached accesses from the CPU,
interrupting the CPU when an I/O request has completed, and performing direct memory access
(DMA). The console and network devices can be connected to real terminals or networks to allow
the user to interactively configure the workloads that run on the simulator.

B.2.1 Interchangeable Simulation Models

Because of the additional work needed for complete machine simulation, SimOS includes a set
of interchangeable simulation models for each hardware component of the system. Each of these
models is a self-contained software implementation of the device’s functional behavior. Although
all models implement the behavior of the hardware components in sufficient detail to correctly run

126

B.2 The SimOS Environment

Detail

Speed

Embra

Mipsy
MXS

Figure B.2: Speed vs. Details

the operating system and application programs, the models differ greatly in their timing accuracy,
interleaving of multiprocessor execution, statistics collection, and simulation speed (see Figure B.2).

Furthermore, the user can dynamically select which model of hardware component is used at any
time during the simulation. Each model supports the ability to transfer its state to the other models
of the same hardware component.

High-Speed Machine Emulation Models
To support high-speed emulation of a MIPS processor and memory system, SimOS includesEmbra
[WR96], which uses the dynamic binary translation approach. Dynamic binary translators translate
blocks of instructions into code sequences that implement the effects of the original instructions on
the simulated machine state. The translated code is then executed directly on the host hardware.
Sophisticated caching of translations and other optimizations results in executing workloads with a
slowdown of less than a factor of 10.

Detailed Machine Simulation Models
Although Embra’s use of self-generated and self-modifying code allows it to simulate at high speeds,
the techniques cannot be easily extended to build more detailed and accurate models. To build
such models, SimOS uses more conventional software engineering techniques that value clean well-
defined interfaces and ease of programming over simulation speed. SimOS contains interfaces for
supporting different processor, memory system, and I/O device models.

SimOS contains accurate models of two different processor pipelines. The first, calledMipsy, is a
simple pipeline with blocking caches such as used in the MIPS R4000. The second, calledMXS,
is a superscalar, dynamically scheduled pipeline with nonblocking caches such as used in the MIPS
R10000. The two models vary greatly in speed and detail.

Mipsy and MXS can both drive arbitrarily accurate memory system models. SimOS currently
supports memory system with uniform memory access time, a simple cache-coherent nonuniform
memory architecture (CC-NUMA) memory system, and a cycle accurate simulation of the Stanford
FLASH memory system.

127

B SimOS

For I/O device simulation, SimOS includes detailed timing models for common devices such as SCSI
disks and interconnection networks such as Ethernet.

B.3 Data Collection Mechanisms

Low-level machine simulator such as SimOS have a great advantage in that they see all events that
happen on the simulated system. These events include the execution of instructions, MMU excep-
tions, cache misses, CPU pipeline stalls, and so on. The accurate simulation models of SimOS are
heavily instrumented to collect both event counts and timing information describing the simulated
machine’s execution behavior. SimOS’s data classification mechanisms need to be customized for
the structure of the workload being studied as well as the exact classification desired. A Tcl scripting
language interpreter embedded in SimOS accomplishes this in a simple and flexible way. Users of
SimOS can write Tcl scripts that interact closely with the hardware simulation models to control
data recording and classification. These scripts can non-intrusively probe the state of the simulated
machine and therefore can make classification decisions based on the state of the workload. The use
of a scripting language allows users to customize the data collection without having to modify the
simulator.

Annotations are the key to mapping low-level events to higher-level concepts. Annotations are Tcl
scripts that the user can attach to specific hardware events. Whenever an event occurs that has an
annotation attached to it, the associated Tcl code is executed. Annotations can run without any effect
on the execution of the simulated system. Annotations have access to the entire state of the simulated
machine, including registers, TLBs, devices, caches, and memories. Furthermore, annotations can
access the symbol table of the kernel and applications running in the simulator, allowing symbolic
references to procedures and data. Examples of simulated events on which annotations can be set
include:

� Execution reaching a particular program counter address.

� Referencing a particular data address.

� Occurrence of an exception or interrupt.

� Execution of a particular opcode.

� Reaching a particular cycle count.

Annotations may also trigger other events that correspond to higher-level concepts. Using this mech-
anism we can define annotation types that are triggered by software events.

It is common that when collecting various numbers you’ll want to know the average, standard devi-
ation, minimum or maximum or some other set of values. SimOS provide statistics to help facilitate
this common need. By repeatedly submitting entries to a particular statistics bucket, a simple statis-
tical database is kept that allows extraction of all sorts of numerical data at a later point. Figure B.3
shows an example of an annotation script using statistics collection.

128

B.3 Data Collection Mechanisms

annotation set simos enter {
statistics reset spinlock

}
annotation set pc kernel::lock:START {

set spin_start $CYCLES
}
annotation set pc kernel::lock:END {

global spin_start
set cspintime [expr $CYCLES - $spin_start]
statistics entry spinlock $cspintime

}
annotation set simos exit {

console "***** SPINLOCK STATS *****\n"
console "[statistics list spinlock]\n"

}

Figure B.3: Annotation Script for SimOS

The first annotation triggers on the initialization of the SimOS environment. Upon startup a statistics
bucket calledspinlock is instantiated and reset to zero. The next annotation triggers when the
program counter (PC) is equal to the start address of the kernel functionlock . Then, a variable
calledspin start is set to the value of the current cycle counter. The third annotation is triggered
on the event that the kernel functionlock is left. It calculates the spin time (e.g. the difference
between the current cycle counter and the value of the variablespin start previously set by
the second annotation) and submits its value to the spinlock statistics bucket. The last annotation
triggers on the end of the simulation run and prints the spinlock statistics onto the console which will
eventually look like this:

***** SPINLOCK STATS *****
n 2163 sumX 50394.000 minX 15.000 maxX 323.000

This means that there have been 2163 calls to the kernel routinelock which spent a total of 50 394
processor cycles inside the function. The minimum the processor spent inside the function was 15
cycles, the maximum 323 cycles.

SimOS provides a wealth of statistics during a simulation run, like execution time, memory system
behavior and the number of instructions executed. It is often important to attribute the statistics to
different phases of the workload. The most basic example is to split the workload between the time
spent in the operating system and the time spent in the user process. Other breakdowns may be more
complicated. For example you may want to consider each function of a user application to be a
separate phase of execution.

SimOS provides a timing module as an easy way to separate and categorize execution behavior.
To use the timing module, simply mark the start and end of each phase. The resulting output is a
tree structure where each phase of execution is a node in the tree. The timing abstraction is quite
powerful, and the SimOS group continues to improve its implementation. The long-term goal is a
visual interface which will make it easy to collapse and expand nodes to further understand workload
behavior.

129

B SimOS

The timing tree structure can be transformed in to a diagram showing the execution profile of a
workload. Figure B.4 shows the startup phase of TopsySMP running on a 4-CPU multiprocessor and
the execution of a compute bound benchmark. The execution time of each processor is broken down
between the kernel, user, and idle modes. For kernel modes, the graph further separates the time
spent executing in the individual kernel modules.

 idle
 boot
 user
 ioThread
 tmThread
 mmThread

|

0.0
|

0.1
|

0.2
| |

0.3
|

0.4
|

0.5

|0

|
|

|
|

|95

| | | | | | |

|
|

|
|

|
|

 Time (seconds)

 P
er

ce
nt

 o
f E

xe
cu

tio
n

T
im

e

0.6

15

35

55

75

Figure B.4: Processor Mode Breakdown

130

C Project Description

Thema : TopsySMP (Symmetrical Multiprocessing)

Beginn der Arbeit : 26. Oktober 1998

Abgabetermin : 10. März 1999

Betreuung : George Fankhauser

Arbeitsplatz : ETZ C96

Umgebung : Solaris als Entwicklungsumgebung, Topsy V1.1 Sourcecode, MIPS R3000
Emulator

C.1 Einleitung

Topsy ist ein portables micro-kernel Betriebssystem, das am TIK f¨ur den Unterricht entworfen wur-
de. In der ersten Version wurde es f¨ur die Familie der 32-bit MIPS Prozessoren gebaut (R2k/R3k)
und wurde bereits auf weitere Plattformen portiert. Es zeichnet sich durch eine saubere Struktur, eine
hohe Portabilit¨at (Trennung des Systems in hardware-abh¨angige und hardware-unabh¨angige Modu-
le) und eine gute Dokumentation aus. Dokumentation ¨uber Topsy ist auf der Topsy-Homepage unter
http://www.tik.ee.ethz.ch/˜topsy verf¨ugbar.

C.2 Mehrprozessorsysteme mit gemeinsamem Speicher

Die Klasse der Mehrprozessorsysteme mit gemeinsamem Speicher bildet die am weitesten verbreitet
Gruppe von Parallelrechnern. Aufgrund Memory-Bottlenecks beim Zugriff mehrerer Prozessoren
auf den gleichen Speicher ist diese Art von Parallelrechner nicht skalierbar. F¨ur eine kleiner An-
zahl CPUs jedoch, kombiniert mit grossen Caches, k¨onnen solche Maschinen eine gute Leistung als
Workstation oder Server bringen. Bekannte Produkte werden auf Basis von intel, sparc, mips, al-
pha und weiteren CPUs hergestellt. Die Verwaltung mehrerer CPUs durch das Betriebssystem kann
prinzipiell nach zwei Verfahren geschehen: Master/Slave oder symmterisch. Master/Slave Techni-
ken werden v.a. in System angewandt, die monolithisch gebaut sind. Dabei bootet das OS auf einer
CPU und behandelt weitere Prozessoren als Slaves. Diese Technik wird z.B. im MacOS angewandt.
Sie hat den Nachteil, dass das OS selbst immer noch an eine CPU gebunden ist; zudem gibt es Imple-
mentationen die keine transparente Prozessmigration zu den Slave-CPUs erlaubt. Der symmetrische

131

C Project Description

Ansatz hingegen startet auf allen CPUs das gleiche Betriebssystem, wobei dieses den Zugriff auf
gemeinsame Ressourcen entflechten muss. Im Fall von Topsy gibt es diese Entflechtung bereits f¨ur
den Ein-Prozessor-Fall, da es sich bei diesem System um einen Kernel mit quasi-parallel laufen-
den Threads handelt, die an beliebigen Stellen unterbrochen werden k¨onnen (pre-emptable kernel
servers).

C.3 Aufgabenstellung

C.3.1 Verwandte Arbeiten

Um einen kurzen̈Uberblick zu geben, soll die Arbeit die Implementation von SMP Hard- und Soft-
ware beleuchten. Auf der Hardware-Seite soll der intel SMP Standard und eine typische RISC-
Workstation mit mehreren CPUs gew¨ahlt werden (je nach verf¨ugbarer Dokumentation). Bei der
Systemsoftware, die SMP unterst¨utzt, sollen kurz die Ans¨atze in Mach 3.0, Linux 2.1, NT 4.0 und
Solaris 2.6 diskutiert werden.

C.3.2 Plattform

Als Entwicklungs- und Testplattform hat sich die MIPS R3000 Architektur wegen ihrer Einfachheit
bestens bew¨ahrt. Um eine SMP-Plattform zu implementieren, soll auf Basis des R3000 Emulators ei-
ne Version entwickelt werden, die beliebig viele CPUs instanzieren kann. Dabei sollen Aspekte wie
Debugging, Tracing und Performance (Caches) beachtet werden. Z.B. k¨onnte jede virtuelle CPU als
Java-Thread laufen, was eine Verteilung auf echten MP-Maschinen erlauben w¨urde. Die Hardware-
Mechanismen des SMP-Systems (Bus/Memory-Locks, Interrupt-Dispatching, etc.) soll sich an rea-
len Systemen orientieren. Zudem soll das Modell der Maschine die Evaluation der Skalierbarkeit
des Systems unterst¨utzen, d.h. der Memorybottleneck soll auch auf dem Simulator ‘sp¨urbar’ sein.
Ein einfaches Cachemodell f¨ur die CPUs w¨are wünschenswert. Der ¨uberarbeitete Emulator soll als
rpm-Package und als tar.gz-file zur Verf¨ugung gestellt werden.

C.3.3 Der SMP-Kernel

Auf der Basis der virtuellen, dokumentierten SMP-Hardware mit mehreren R3000 CPUs soll nun der
Topsy Kernel so erweitert werden, dass sowohl Kernel- wie auch User-Threads auf allen CPUs laufen
können und das System effizient ausgelastet wird. Als Grundlage soll ein Design-Dokument dienen,
das die Funktionsweise der Erweiterungen detailliert beschreibt und die Entwurfsentscheidungen
diskutiert. Falls Erweiterungen an der Syscall-Schnittstelle n¨otig sein sollten, sind diese ebenfalls zu
genau zu dokumentieren. Anpassungen werden u.a. an folgenden Stellen notwendig sein:

� Initialisierung

� Scheduling

� Interrupt/Exception Handling

132

C.4 Bemerkungen

� Kernel Locks

� Idle Threads

C.3.4 Testen

Das Hauptziel der Arbeit ist eine saubere, verst¨andliche und korrekte Implementation. Diese soll mit
geeigneten Testprogrammen und anderen Hilfsmitteln (z.B. Tracing) ¨uberprüft werden.

C.3.5 Messungen

Schliesslich soll die Leistung des Systems evaluiert werden. Hier sollen folgende Aspekte beachtet
werden:

� Vergleich zwischen single-processor Topsy und SMP Version: Was sind die Kosten des SMP
Kernels im normalen Betrieb?

� Skalierbarkeit: Welcher Einfluss hat die Anzahl der Prozessoren auf verschiedene Aufgaben
des Betriebssystems?

� Vergleich mit anderen Systemen: Dieser soll soweit wie m¨oglich und aufgrund erh¨altlicher
Messdaten durchgef¨uhrt werden.

C.3.6 Dokumentation

Neben der ¨ublichen Diplomarbeit (schriftlicher Bericht) soll eine erweiterte Kurzfassung in Englisch
abgegeben werden, die das System gen¨ugend gut beschreibt, um als Beilage zum Topsy Manual zu
dienen (Appendix o.¨a.).

C.4 Bemerkungen

� Mit dem Betreuer sind w¨ochentliche Sitzungen zu vereinbaren. In diesen Sitzungen soll der
Student m¨undlich über den Fortgang der Arbeit berichten und anstehende Probleme diskutie-
ren.

� Am Ende der ersten Woche ist ein Zeitplan f¨ur den Ablauf der Arbeit sowie eine schriftliche
Spezifikation der Arbeit vorzulegen und mit dem Betreuer abzustimmen.

� Am Ende des zweiten Monats der Arbeit soll ein kurzer schriftlicher Zwischenbericht abgege-
ben werden, der ¨uber den Stand der Arbeit Auskunft gibt (Vorversion des Berichts).

� Bereits vorhandene Software kann ¨ubernommen und gegebenenfalls angepasst werden. Neuer
Code soll m¨oglichst sauber in den Bestehenden integriert werden.

133

C Project Description

C.5 Ergebnisse der Arbeit

Neben einem m¨undlichen Vortrag von 20 Minuten Dauer im Rahmen des Fachseminars Kommuni-
kationssysteme sind die folgenden schriftlichen Unterlagen abzugeben:

� Ein kurzer Bericht in Deutsch oder Englisch. Dieser enth¨alt eine Darstellung der Problematik,
eine Beschreibung der untersuchten Entwurfsalternativen, eine Begr¨undung für die getroffe-
nen Entwurfsentscheidungen, sowie eine Auflistung der gel¨osten und ungel¨osten Probleme.
Eine kritische W¨urdigung der gestellten Aufgabe und des vereinbarten Zeitplanes rundet den
Bericht ab (in vierfacher Ausf¨uhrung).

� Ein Handbuch zum fertigen System bestehend aus System¨ubersicht, Implementationsbeschrei-
bung, Beschreibung der Programm- und Datenstrukturen sowie Hinweise zur Portierung der
Programme. (Teil des Berichts)

� Eine Sammlung aller zum System geh¨orenden Programme.

� Die vorhandenen Testunterlagen und -programme.

� Eine englischsprachige (deutschsprachige) Zusammenfassung von 1 bis 2 Seiten, die einem
Aussenstehenden einen schnellenÜberblick über die Arbeit gestattet. Die Zusammenfassung
ist wie folgt zu gliedern: (1) Introduction, (2) Aims & Goals, (3) Results, (4) Further Work.

134

Glossary

This section contains all abbreviations used in this thesis.

API : Application Programming Interface

APIC : Advanced Programmable Interrupt
Controller

BIOS : Basic Input/Output System

CPU : Central Processing Unit

DMA : Direct Memory Access

DSM : Distributed Shared-Memory

FIFO : First-In-First-Out

FPU : Floating-Point Unit

HAL : Hardware Abstraction Layer

I/O : Input/Output

IPC : Inter-Process Communication

ISA : Instruction Set Architecture

MIMD : Multiple Instruction Multiple Data

MMU : Memory Management Unit

MP : Multiprocessor or Multiprocessing

NUMA : Nonuniform Memory Access

OS : Operating System

PA : Physical Address

PC : Program Counter

PFN : Page Frame Number

RISC : Reduced Instruction Set Computer

SIMD : Single Instruction Multiple Data

SMP : Symmetrical Multiprocessor

TIK : (Institut für) Technische Informatik
und Kommunikationsnetze

TLB : Translation Lookaside Buffer

UART : Universal Asynchronous Receiver/
Transmitter

UMA : Uniform Memory Access

UP : Uni-Processor

VA : Virtual Address

VPN : Virtual Page Number

135

Bibliography

[Bac86] M. J. BACH. The Design of the UNIX Operating System. Prentice Hall, 1986.

[Cat94] B. CATANZARO. Multiprocessor System Architectures. Sun Microsystems, 1994.

[Dij65] E. W. DIJSKTRA. Co-operating Sequential Processes. InProgramming Languages.
Academic Press, London, 1965.

[Fan] G. FANKHAUSER. A MIPS R3000 Simulator in Java. http://www.tik.ee.ethz.ch/˜gfa/
MipsSim.html.

[FCZP97] G. FANKHAUSER, C. CONRAD, E. ZITZLER, AND B. PLATTNER. Topsy - A Teach-
able Operating System. Computer Engineering and Networks Laboratory, ETH Z¨urich,
1997.

[Fly66] M. J. FLYNN. Very High-Speed Computing Systems.Proccedings of the IEEE, 54,
December 1966.

[Hei94] J. HEINRICH. MIPS R4000 Microprocessor User’s Manual. MIPS Technology, Inc.,
2nd edition, 1994.

[Int94] Integrated Device Technology, Inc.IDT79R3051, R3052 RISController Hardware
User’s Manual, 1994. Revision 1.4.

[Int97] Intel Cooperation.MultiProcessor Specification, 1997. Version 1.4.

[KH92] G. KANE AND J. HEINRICH. MIPS RISC Architecture. Prentice Hall, 1992.

[KR88] B. W. KERNIGHAN AND D. M. RITCHIE. The C Programming Language. Prentice-
Hall International, 2nd edition, 1988.

[RBDH97] M. ROSENBLUM, E. BUGNION, S. DEVINE, AND S. A. HERROD. Using the SimOS
Machine Simulator to Study Complex Computer Systems.ACM Transactions on Mod-
eling and Computer Simulation, 7(1):78–103, January 1997.

[RHWG95] M. ROSENBLUM, S. A. HERROD, E. WITCHEL, AND A. GUPTA. Complete Computer
System Simulation: The SimOS Approach.IEEE Parallel and Distributed Technology,
Fall 1995.

[Ruf98] L. RUF. Topsy i386. Semester Thesis at the Computer Engineering and Networks
Laboratory, ETH Z¨urich, 1998.

136

[SS94] M. SINGHAL AND N. G. SHIVARATRI . Advanced Concepts in Operating Systems.
McGraw-Hill, 1994.

[Sta] Stanford University.The SimOS Home Page. http://simos.stanford.edu.

[Suz92] N. SUZUKI , editor. Shared Memory Multiprocessing. MIT Press, 1992.

[Tan92] A. S. TANENBAUM. Modern Operating Systems. Prentice-Hall International, 1992.

[WR96] E. WITCHEL AND M. ROSENBLUM. Embra: Fast and Flexible Machine Simulation.
Sigmetrics ’96, 1996.

137

