

rBOX630-FL

Linux

Software User’s Manual

ii

Disclaimers

This manual has been carefully checked and believed to contain accurate information.
Axiomtek Co., Ltd. assumes no responsibility for any infringements of patents or any third
party’s rights, and any liability arising from such use.

Axiomtek does not warrant or assume any legal liability or responsibility for the accuracy,
completeness or usefulness of any information in this document. Axiomtek does not make any
commitment to update the information in this manual.

Axiomtek reserves the right to change or revise this document and/or product at any time
without notice.

No part of this document may be reproduced, stored in a retrieval system, or transmitted, in
any form or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior written permission of Axiomtek Co., Ltd.

Trademarks Acknowledgments

Axiomtek is a trademark of Axiomtek Co., Ltd.

Windows
®

 is a trademark of Microsoft Corporation.

Other brand names and trademarks are the properties and registered brands of their
respective owners.

Copyright 2015 Axiomtek Co., Ltd.

All Rights Reserved

Oct. 2015, Version A1

Printed in Taiwan

iii

Table of Contents

Disclaimers ... ii

Chapter 1 Introduction ... 1

1.1 Specifications .. 2

Chapter 2 Getting Started 5

2.1 Connecting the rBOX630 .. 5

2.1.1 Serial Console ... 6

2.1.2 SSH over Ethernet .. 8

2.2 How to Develop a Sample Program ... 10

2.2.1 Install Yocto Toolchain ... 10

2.2.2 Setting Up the Cross-Development Environment 10

2.2.3 Write and Compile Sample Program ... 10

2.3 How to Put and Run a Sample Program .. 11

2.3.1 Via FTP (Default disable) ... 11

2.3.2 Via USB Flash Drive .. 12

2.3.3 Via TFTP ... 12

Chapter 3 The Embedded Linux 13

3.1 Embedded Linux Image Managing .. 13

3.1.1 System Version ... 13

3.1.2 System Time .. 13

3.1.3 Internal RTC Time ... 13

3.1.4 External RTC Time .. 14

3.1.5 Adjusting System Time .. 14

3.2 Networking ... 15

3.2.1 FTP – File Transfer Protocol ... 15

3.2.2 TFTP – Trivial File Transfer Protocol ... 15

3.2.3 NFS – Network File System .. 15

Chapter 4 Programming Guide 17

4.1 librb217 API Functions ... 17

4.2 librb217 API Examples .. 22

4.2.1 Get Board ID and Power Status .. 22

4.2.2 COM Port Configuration .. 22

4.2.3 Watchdog Timer .. 23

4.2.4 Digital Input and Output... 24

4.2.5 LEDs Control ... 24

4.3 CAN Bus ... 25

iv

4.4 Compile Demo Program ... 27

4.4.1 Install Yocto Toolchain ... 27

4.4.2 Run demo program ... 27

Chapter 5 Board Support Package (BSP) 29

5.1 Host Development System Installation ... 29

5.1.1 Install Host System .. 29

5.1.2 Install Yocto development ... 30

5.1.3 Build and Install Yocto toolchain .. 31

5.2 U-Boot for rBOX630 .. 32

5.2.1 Booting the System with an NFS Filesystem .. 32

5.2.2 Booting the System from eMMC ... 33

5.2.3 Booting the System from SD CARD (rBOX630 default) 33

5.3 Additional Information .. 34

5.3.1 Create a Bootable SD CARD for rBOX630 ... 34

rBOX630 Linux

Introduction 1

Chapter 1

 Introduction

The extreme compact rBOX630 supports the low power RISC-based module (iMX6) processor
with extended temperature range of -40°C to +70°C for using in wide range operating
environments. Multiple built-in serial ports, high-speed LANs and USB 2.0 ports enable fast
and efficient data computation, communication and acquisition. Its digital I/O feature provides
users with the convenience of digital devices connection. Besides, the industrial grade
IP40-rated rBOX630 meets Safety Agency requirements and has passed heavy industrial CE
and FCC testing.

This user’s manual is for the embedded Linux preinstalled in rBOX630. The embedded Linux
is derived from Linux Yocto Board Support Package, which is based on Linux Kernel 3.0.35
and our hardware patches to suit rBOX630.

Software structure
The preinstalled embedded Linux image is located in eMMC Flash memory which is
partitioned and formatted to accommodate boot loader, kernel and root filesystem. It follows
standard Linux architecture to allow user to easily develop and deploy application software that
follows Portable Operating System Interface (POSIX).

To facilitate user program in monitoring and controlling I/O device such as DIO, CAN,
Watchdog Timer, the rBOX630 includes ‘librb217.so’ shared library.

In addition to ext3 and ext4 file system, this embedded Linux kernel is compiled with support
for NFS, including server-side, client-side functionality and ‘Root file system on NFS’. Using an
NFS root mount we have several advantages such as:
 The root file system is not size-restricted by the device’s storage like Flash memory.
 Change made to application files during development is immediately available to the

target device.

For connectivity, this image includes most popular internet protocols, some servers and utilities
not only making it easy for downloading/uploading files (Linux kernel, application program) or
for debugging, but also communicating to outside world via Ethernet, WiFi and 3G.

For the convenience of manipulating embedded Linux, this image includes lots of popular
packages such as busybox, udev, etc.

rBOX630 Linux

2 Introduction

1.1 Specifications

 OS: Linux

 Kernel: 3.0.35 (with Freescale and Axiomtek hardware modified patch)

 Support Protocol Types

 ICMP.
 TCP/IP.
 UDP, DHCP, Telnet, HTTP, HTTPS, SSL, SMTP, ARP, NTP, DNS, PPP, PPPoE,

FTP, TFTP, NFS.

 Shell
 Bash

 File system

 NFS, ext3, ext4

 Daemons

 Telnetd: Telnet server daemon
 FTPD: FTP server daemon

rBOX630 Linux

Introduction 3

 Utilities

 Telnet: Telnet client program
 FTP: FTP client program
 TFTP: Trivial File Transfer Protocol client

 Packages

 busybox: Small collection of standard Linux command-line utilities
 udev: A device manager for Linux kernel
 dosfstools : Utilities for making and checking MS-DOS FAT file system
 e2fsprogs: A set of utilities for maintaining the ext2, ext3 and ext4 file systems
 ethtool: A Linux command for displaying or modifying the Network Interface

Controller (NIC) parameters
 i2c-tools : A heterogeneous set of I2C tools for Linux
 procps : Utilities to report on the state of the system, including the states of running

processes, amount of memory
 wireless-tools: A package of Linux commands (simple text-based utilities/tools)

intended to support and facilitate the configuration of wireless devices using the
Linux Wireless Extension

 Development Environment

 Host OS/ development OS: Ubuntu 14.04 LTS
 Toolchain/ cross compiler: ARM, gcc-4.8.1 (Yocto project 1.5.4 Dora)

 HW’s Lib (Hardware’s Library)

 WiFi (Optional)
- Detect signal strength
- Set AP connection
- Set web, wpa, wpa2
- Support search AP

 Digital I/O

- Read digital input
- Write digital output

 CAN

- Support open/write/read/close functions

 3G
- Set number connection
- Support user name/password
- Detect signal strength

 GPS

- Detect signal strength
- Support satellite positioning

 Watch Dog Timer

- Enable
- Clean
- Set timer

 COM

- RS-232/422/485 mode setting

Note

All specifications and images are subject to change without notice.

http://en.wikipedia.org/wiki/Ext2
http://en.wikipedia.org/wiki/Ext3
http://en.wikipedia.org/wiki/Ext4
http://en.wikipedia.org/wiki/File_system
http://en.wikipedia.org/wiki/Linux
http://en.wikipedia.org/wiki/Network_Interface_Controller
http://en.wikipedia.org/wiki/Network_Interface_Controller
http://en.wikipedia.org/wiki/Linux

rBOX630 Linux

4 Introduction

This page is intentionally left blank.

rBOX630 Linux

Getting Started 5

Chapter 2

 Getting Started

2.1 Connecting the rBOX630

You can connect the rBOX630 to personal computer (PC) in two ways:
 Serial RS-232 console
 SSH over Ethernet

Note: Please download below data from Axiomtek’s website as below list if you have the

demand.

- BSP support package.
http://www.axiomtek.com/products/ViewProduct.asp?view=8947

http://www.axiomtek.com/products/ViewProduct.asp?view=8947

rBOX630 Linux

6 Getting Started

2.1.1 Serial Console

The serial console is a convenient interface for connecting rBOX630 to PC. First of all, it
is very important to make sure that the serial port settings are as follows:

Baudrate: 115200 bps
Parity: None
Data bits: 8
Stop bit: 1
Flow Control: None

Here we use PuTTY to setup and link to the rBOX630. Learn how to do it with these step
by step instructions:

1. Open PuTTY and choose ‘Serial’ as the connection type.

2. Configure the serial port correctly (see image below). Click Open and power on the
rBOX630.

rBOX630 Linux

Getting Started 7

3. The Bootloader default booting system setup to SD Card, If you don’t have

bootable SD Card and want boot from eMMC, Try type this command on u-boot.

4. If connection is established successfully, you should see the following image.

5. To login, please enter ‘root’ (with no password).

rBOX630 Linux

8 Getting Started

2.1.2 SSH over Ethernet

Now, we are going to connect the rBOX630 to PC over Ethernet. The following
illustrations show how to do it under Windows

®
 and Linux environment.

Note: rBOX630 LAN2 default IP address is 192.168.0.254.

For Windows
®

users:

1. Here we also use PuTTY to setup and link. Open PuTTY and choose ‘SSH’ as the

connection type. Then set the IP address to 192.168.0.254 and click Open.

2. If connection is established successfully, you should see the following image.

rBOX630 Linux

Getting Started 9

3. To login rBOX630, please enter ‘root’ (with no password).

For Linux users:

1. Open terminal and keyin ‘ssh’ command.

2. After the connection is established successfully.

rBOX630 Linux

10 Getting Started

2.2 How to Develop a Sample Program

In this section, learn how to develop a sample program for rBOX630 with the following step by
step instructions. The sample program is named ‘hello.c’.

2.2.1 Install Yocto Toolchain

Before you develop and compile sample program, you should install Yocto toolchain into
development PC. To do so, refer to Chapter 5 Board Support Package.

2.2.2 Setting Up the Cross-Development Environment

Before you can develop using the cross-toolchain, you need to set up the
cross-development environment, and then you can find this script in the directory you
chose for installation.
~$ source /opt/poky/1.5.4/environment-setup-cortexa9hf-vfp-neon-poky-linux-gnueabi

2.2.3 Write and Compile Sample Program

~$ mkdir -p example
~$ cd example
Use vi to edit hello.c.
~$ vi hello.c

#include<stdio.h>
int main()
{
 printf(“hello world\n”);
 return 0;
}

To compile the program, please do:
~$ arm-poky-linux-gnueabi-gcc hello.c -o hello

After compiling, enter the following command and you can see the ‘hello’ execution file.

~$ ls -l

rBOX630 Linux

Getting Started 11

2.3 How to Put and Run a Sample Program

In this section, we provide 3 methods showing how to put the ‘hello’ program into rBOX630 and
execute it.

2.3.1 Via FTP (Default disable)

The rBOX630 has a built-in FTP server. Users can put ‘hello’ program to rBOX630 via
FTP by following the steps below.

1. Enable FTPD daemon

Use vi to create /etc/xinetd.d/ftpd file

Restart Internet server
~# /etc/init.d/xinetd reload
~# /etc/init.d/xinetd restart

2. ~$ ftp 192.168.0.254 (without username and password)

3. ftp> bin
4. ftp> put hello

If the operation is successful, you can see ‘hello’ program at rBOX630’s /home/root
directory.

rBOX630 Linux

12 Getting Started

5. ~# chmod +x hello
6. Run the ‘hello’ program.

~# ./hello

2.3.2 Via USB Flash Drive

Another method of putting ‘hello’ program into rBOX630 is via USB flash drive. Please
follow the instructions below.

1. From the PC, copy ‘hello’ program to USB flash drive.
2. Attach USB flash drive to rBOX630.
3. ~# cp /media/sda1/hello /home/root
4. ~# cd /home/root
5. ~# chmod +x hello
6. ~# ./hello

2.3.3 Via TFTP

Originally the Host Development System Installation already has TFTP server installed.
You can put the ‘hello’ program into rBOX630 via TFTP. Please follow the instructions
below.

1. ~$ cp hello /tftpboot

2. ~# tftp -g -r hello 192.168.0.3 (tftp server IP)
3. ~# chmod +x hello
4. Run the ‘hello’ program.

~# ./hello

rBOX630 Linux

The Embedded Linux 13

Chapter 3

 The Embedded Linux

3.1 Embedded Linux Image Managing

3.1.1 System Version

This section describes how to determine system version information including kernel
and root filesystem version.

Check kernel version with the following command:
~# uname -r

Check root filesystem with the login screen:

3.1.2 System Time

System time is the time value loaded from RTC each time the system boots up. Read
system time with the following command:
~# date

3.1.3 Internal RTC Time

The internal RTC time is read from i.MX processor internal RTC. Note that this time
value is not saved, when system power is removed.

Read internal RTC time with the following command:
~# hwclock -r --rtc=/dev/rtc1

rBOX630 Linux

14 The Embedded Linux

3.1.4 External RTC Time

The external RTC time is read from RS5C372 external RTC. When system power is
removed, this time value is kept as RS5C372 is powered by battery.

Read external RTC time with the following command:
~# hwclock -r

3.1.5 Adjusting System Time

Manually setting up the system time.
~# date -s YYYYMMDDHHmm.SS

Write sync time to internal RTC
$ hwclock -w --rtc=/dev/rtc1

Write sync time to external RTC
$ hwclock -w

rBOX630 Linux

The Embedded Linux 15

3.2 Networking

3.2.1 FTP – File Transfer Protocol

FTP is a standard network protocol used to transfer files from one host to another host
over TCP-based network.

The rBOX630 comes with a built-in FTP server. Section 2.1 shows the steps to put ‘hello’
program to rBOX630 via FTP.

3.2.2 TFTP – Trivial File Transfer Protocol

TFTP is a lightweight protocol of transfer files between a TFTP server and TFTP client
over Ethernet. To support TFTP, this embedded Linux image has built-in TFTP client, so
does its accompanying bootloader U-boot.

In Chapter 5, there are descriptions of TFTP server installation and kernel boot up
process via TFTP. Section 2.3.3 shows you how to transfer file between server and
client.

3.2.3 NFS – Network File System

NFS enables you to export a directory on an NFS server and mount that directory on
remote client machine as if it were a local file system. Using NFS on target machine, we
can have access to a huge number of files, libraries, and utilities during development
and debugging, as well as booting up kernel.

This embedded Linux kernel is compiled with support for NFS, including server-side,
client-side functionality and ‘Root file system on NFS’. Section 5.1 and 5.2.1 show how
to boot up embedded Linux with an NFS support.

rBOX630 Linux

16 The Embedded Linux

This page is intentionally left blank.

rBOX630 Linux

Programming Guide 17

Chapter 4

 Programming Guide

We release a set of application programming interface (API) functions for users to
access/control hardware. With these API functions, users can more easily design their own
software. This chapter includes detailed description of each API function and step-by-step
code samples showing how it works.

4.1 librb217 API Functions

The rBOX630 BSP includes ‘librb217.so’ shared library for users to access I/O and read back
system information. This shared library is kept in BSP, you can find it in
rBOX630-rb_lib-x.x.x.tar.bz2 of AxTools. Extract the compressed file, then besides the shared
library you can also see a demo folder containing API header file and example programs.

Summary table of available API functions

No. Function Description

1 Get_BoardID() Get board ID.

2 Get_PowerStatus() Get power status.

3 Set_LEDStatus() Set ACT/RDY LED status.

4 Set_ALARMLED() Set ALARM LED status

5 Get_COMType() Get COM port communication mode type.

6 Set_COMType() Set COM port communication mode type.

7 Set_COMTermination() Set termination of specified COM port.

8 CPLD_Get_WDTCounter() Get watchdog timer counter value.

9 CPLD_WDT_Enable() Enable watchdog timer. Also used it to reset WDT
counter.

10 CPLD_WDT_Disable() Disable watchdog timer.

11 CPLD_WDTStatus() Detect watchdog timer status.

12 Get_DI() Read high or low state on digital input channels.

13 Get_DO() Read high or low state on digital output channels.

14 Set_DO() Set digital output channels to high or low state.

15 Set_CANTermination() Set termination of specified CAN port.

rBOX630 Linux

18 Programming Guide

Function: Get_BoardID()

Function __u16 Get_BoardID(void);

Description Get board ID.

Arguments None.

Return Board ID (in 2 bytes pattern).

Others None.

Function: Get_PowerStatus()

Function int Get_PowerStatus(int number);

Description Get power status.

Arguments number: Power number.

0: Power1.

1: Power2.

Return 0: Power fails.

1: Power is OK.

Others None.

Function: Set_LEDStatus()

Function int Set_LEDStatus(int onoff);

Description Set ACT/RDY LED status.

Arguments onoff: System LED status.

1: On.

0: Blink.

Return 0: No error.

1: Function fails.

Others None.

Function: Set_ALARMLED ()

Function int Set_ALARMLED(int onoff);

Description Set ALARM LED status.

Arguments onoff: Alarm LED status.

1: On.

0: Off.

Return 0: No error.

1: Function fails.

Others None.

rBOX630 Linux

Programming Guide 19

Function: Get_COMType()

Function int Get_COMType(int number);

Description Get COM port communication mode type.

Arguments number: COM port number.

1: COM1.

2: COM2.

3: COM3.

4: COM4.

Return 0: Reserved.

1: RS232 Enable.

2: RS422/RS485_4W Enable.

3: RS485_2W Enable.

Others None.

Function: Set_COMType()

Function int Set_COMType(int number, int type);

Description Set COM port communication mode type.

Arguments number: COM port number.

1: COM1.

2: COM2.

3: COM3.

4: COM4.

type: COM port mode type

0: Reserved.

1: RS232 Enable.

2: RS422/RS485_4W Enable.

3: RS485_2W Enable.

Return 0: No error.

1: Function fails.

Others None.

rBOX630 Linux

20 Programming Guide

Function: Set_COMTermination()

Function int Set_COMTermination(int number, int onoff);

Description Set termination of specified COM port.

Arguments number: COM port number.

1: COM1.

2: COM2.

3: COM3.

4: COM4.

onoff: Enable or disable termination.

1: Enable termination.

0: Disable termination.

Return 0: No error.

1: Function fails.

Others None.

Function: CPLD_Get_WDTCounter()

Function __u8 CPLD_Get_WDTCounter(void);

Description Get watchdog timer counter value.

Arguments None

Return 0~255 where 1 unit ~= 250ms.

Others None.

Function: CPLD_WDT_Enable()

Function int CPLD_WDT_Enable(__u8 timeout);

Description Enable watchdog timer. Also use it to reset WDT counter.

Arguments timeout: Timeout value. The range is from 0 to 255 where 1 unit ~= 250ms.

Return 0: No error.

1: Function fails.

Others None.

Function: CPLD_WDT_Disable()

Function int CPLD_WDT_Disable(void);

Description Disable watchdog timer.

Arguments None.

Return 0: No error.

1: Function fails.

Others None.

rBOX630 Linux

Programming Guide 21

Function: CPLD_WDTStatus()

Function __u8 CPLD_WDTStatus(void);

Description Detect watchdog timer status.

Arguments None.

Return 0: If watchdog timer has not been triggered, return value = 0.

1: If watchdog timer has been triggered, return value = 1.

Others None.

Function: Get_DI()

Function int Get_DI(__u8 *data);

Description Read high or low state on digital input channels.

Arguments data: This function will store digital input data in this argument.

Return 0: No error.

1: Function fails.

Others None.

Function: Get_DO()

Function int Get_DO(__u8 *data);

Description Read high or low state on digital output channels.

Arguments data: This function will store digital output data in this argument.

Return 0: No error.

1: Function fails.

Others None.

Function: Set_DO()

Function int Set_DO(__u8 data);

Description Set digital output channels to high or low state.

Arguments data: Data to be written to digital output channels.

Return 0: No error.

1: Function fails.

Others None.

rBOX630 Linux

22 Programming Guide

Function: Set_CANTermination()

Function int Set_CANTermination(int number, int onoff);

Description Set termination of specified CAN port.

Arguments number: CAN port number.

0: CAN0.

1: CAN1.

onoff: Enable or disable termination.

1: Enable termination.

0: Disable termination.

Return 0: No error.

1: Function fails.

Others None.

4.2 librb217 API Examples

Note

Before using the API functions, remember to include header file librb217.h.

4.2.1 Get Board ID and Power Status

Use these system API functions to read boardID, check power status, and etc.

printf("This Board Device ID: %x\n\n", Get_BoardID());
printf("Check Power 1 status: ");
if(Get_PowerStatus(1) == 1) printf("Good!!\n\n");
else printf("Fail!!\n\n");

printf("Check Power 2 status: ");
if(Get_PowerStatus(2) == 1) printf("Good!!\n\n");
else printf("Fail!!\n\n");

4.2.2 COM Port Configuration

The COM port related API functions enable users to configure specified COM port
communication mode to RS-232, 4-wired RS-422/485 and 2-wired RS-485.

printf("Read COM1 type: ");
if(Get_COMType(1) == 1) printf(" RS232\n\n");
else if(Get_COMType(1) == 2) printf(" RS422\n\n");
else if(Get_COMType(1) == 3) printf(" RS485\n\n");
else printf(" RSVD\n\n");

printf("Set COM2 to RS485..\n");

Set_COMType(2, 3);
printf("Read COM2 type: ");
if(Get_COMType(2) == 1) printf(" RS232\n\n");
else if(Get_COMType(2) == 2) printf(" RS422\n\n");
else if(Get_COMType(2) == 3) printf(" RS485\n\n");
else printf(" RSVD\n\n")

rBOX630 Linux

Programming Guide 23

4.2.3 Watchdog Timer

Software stability is major issue in most application. Some embedded systems are not
watched by human for 24 hours. It is usually too slow to wait for someone to reboot
when system hangs. The systems need to be able to reset automatically when things go
wrong. The watchdog timer gives us solution.

The watchdog timer is a counter that triggers a system reset when it counts down to zero
from a preset value. The software starts counter with an initial value and must reset it
periodically. If the counter ever reaches zero which means the software has crashed, the
system will reboot. With these API functions, you can enable, disable, set watchdog
timer value to 0 from 255 where 1 unit ~= 250ms, and etc..

Begin

Enable and Initialize

Watchdog Timer

Program “A”

Disable Watchdog

Timer

Next

Next

Next

Next

Begin

Enable and Initialize

Watchdog Timer

Program “A”

Reset Watchdog

Timer

Next

Next

Next

Next

printf("Enable CPLD WDT 30 sec..\n");
CPLD_WDT_Enable(120);
printf("CPLD WDT Counter: [%.2f] sec\n\n",(float)
CPLD_Get_WDTCounter()/4);
printf("Delay 5 sec..\n");
sleep(5);

printf("CPLD WDT Counter: [%.2f] sec\n\n",(float)
CPLD_Get_WDTCounter()/4);
printf("Disable CPLD WDT..\n");
CPLD_WDT_Disable();

rBOX630 Linux

24 Programming Guide

4.2.4 Digital Input and Output

The digital related API functions allow users to set digital output signals to high or low
and detect signal state from each digital channel.

unsigned char xch;
Get_DI(&xch);
printf("Current Digital-Input Data is %2X\n",xch);
Set_DO(0xAA);
Get_DO(&xch);
printf("Current Digital-Output Data is %2X\n",xch);

4.2.5 LEDs Control

Four different LEDs are supported by rBOX630: ACT/RDY LED, ALARM LED and
Minicard strength, linked LED. Use the LED API functions to control LED on/off state.

printf("Turn on ACT/RDY LED ..\n");
Set_LEDStatus(1);
sleep(2);
printf("Turn off(blinking) ACT/RDY LED ..\n");
Set_LEDStatus(0)
printf("Turn on ALARM LED ..\n");
Set_ALARMLED(1);
Set_3GSLEDGreen();
sleep(2);
printf("Turn off ALARM LED ..\n");
Set_ALARMLED(0);

Use sysfs filesystem to control Minicard LED on/off state.
Turn on linked LED
~# echo 0 > /sys/class/leds/card1-link/brightness
Turn off linked LED
~# echo 255 > /sys/class/leds/card1-link/brightness
Turn on strength LED Green
~# echo 0 > /sys/class/leds/card1-good/brightness
Turn off strength LED Green
~# echo 255 > /sys/class/leds/card1-good/brightness
Turn on strength LED Amber
~# echo 0 > /sys/class/leds/card1-poor/brightness
Turn off strength LED Amber
~# echo 255 > /sys/class/leds/card1-poor/brightness

rBOX630 Linux

Programming Guide 25

4.3 CAN Bus

The Controller Area Network (CAN) bus is a serial bus protocol that usually used in connecting
intelligent industrial device networks and building smart automatic control systems. Use the
SocketCAN API to read and write to CAN bus on rBOX630. An example program showing how
it works is provided below.

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#include <string.h>

#include <net/if.h>

#include <sys/types.h>

#include <sys/socket.h>

#include <sys/ioctl.h>

#include <linux/can.h>

#include <linux/can/raw.h>

#define SIOCSCANBAUDRATE 0x89F0

int main(void)

{

 int s,s1;

 int nbytes;

 struct sockaddr_can addr,addr1;

 struct can_frame frame,frame1;

 struct ifreq ifr,ifr1;

 int xBitRate=500000;

rBOX630 Linux

26 Programming Guide

 char *ifname = "can0";

 char *ifname1 = "can1";

 if((s = socket(PF_CAN, SOCK_RAW, CAN_RAW)) < 0) {

 perror("Error while opening socket");

 return -1;

 }

 if((s1 = socket(PF_CAN, SOCK_RAW, CAN_RAW)) < 0) {

 perror("Error while opening socket");

 return -1;

 }

 strcpy(ifr.ifr_name, ifname);

 strcpy(ifr1.ifr_name,ifname1);

 ioctl(s, SIOCGIFINDEX, &ifr);

 ioctl(s1,SIOCGIFINDEX, &ifr1);

 addr.can_family = AF_CAN;

 addr.can_ifindex = ifr.ifr_ifindex;

 ifr.ifr_ifru.ifru_ivalue = xBitRate;

 ioctl(s, SIOCSCANBAUDRATE, &ifr);

 addr1.can_family = AF_CAN;

 addr1.can_ifindex = ifr1.ifr_ifindex;

 ifr.ifr_ifru.ifru_ivalue = xBitRate;

 ioctl(s1, SIOCSCANBAUDRATE, &ifr1);

 printf("%s at index %d\n", ifname, ifr.ifr_ifindex);

 printf("%s at index %d\n", ifname1, ifr1.ifr_ifindex);

 if(bind(s, (struct sockaddr *)&addr, sizeof(addr)) < 0) {

 perror("Error in socket bind");

 return -2;

 }

 if(bind(s1, (struct sockaddr *)&addr1, sizeof(addr1)) < 0) {

 perror("Error in socket bind");

 return -2;

 }

 frame.can_id = 0x123;

 frame.can_dlc = 2;

 frame.data[0] = 0x11;

 frame.data[1] = 0x22;

 write(s, &frame, sizeof(struct can_frame));

 printf("Wrote data[0]:%2x,data[1]:%2x\n",frame.data[0],frame.data[1]);

 read(s1, &frame1, sizeof(struct can_frame));

 printf("Read data[0]:%2x,data[1]:%2x\n",frame1.data[0],frame1.data[1]);

 return 0;

}

rBOX630 Linux

Programming Guide 27

4.4 Compile Demo Program

4.4.1 Install Yocto Toolchain

Before you develop and compile sample program, you should install Yocto toolchain into
development PC. To do so, refer to Chapter 5 Board Support Package.

To compile and build demo program for rBOX630, please do:
Change to your project directory.
~$ cd ~/Project
Set up the cross-development environment.
~$ source /opt/poky/1.5.4/environment-setup-cortexa9hf-vfp-neon-poky-linux-gnueabi
Extract driver source to your project directory.
~$ tar jxf rBOX630-rb_lib-x.x.x.tar.bz2 -C ~/Project
Change to rb_lib/demo directory.
~$ cd ~/Project/rb_lib/demo
Build the demo program.
~$ make

Then you should have example programs such as open_comport, wdt, cpld, diotest, and
commode.

4.4.2 Run demo program

Refer to section 2.3 for detailed information.

rBOX630 Linux

28 Programming Guide

This page is intentionally left blank.

rBOX630 Linux

Board Support Package (BSP) 29

Chapter 5

 Board Support Package (BSP)

5.1 Host Development System Installation

5.1.1 Install Host System

1. Download Ubuntu 14.04 LTS iso image.

2. Install Ubuntu 14.04.

3. Install host packages needed by Yocto development as follows:

~$ sudo apt-get install wget git-core unzip texinfo libsdl1.2-dev gawk diffstat
~$ sudo apt-get install build-essential chrpath sed cvs subversion coreutils
~$ sudo apt-get install texi2html docbook-utils python-pysqlite2 help2man
~$ sudo apt-get install make gcc g++ desktop-file-utils libgl1-mesa-dev
~$ sudo apt-get install libglu1-mesa-dev mercurial autoconf
~$ sudo apt-get install automake groff curl lzop asciidoc xterm

4. Install and configure TFTP server:
After tftpd is installed, configure it by editing /etc/xinetd.d/tftp. Change the default
export path (it is either /usr/var/tftpboot or /var/lib/tftpboot) to /. Or change the
default export path to whatever directory you want to download from. Then reboot
the hardware.
$ sudo aptitude -y install tftp tftpd xinetd
$ sudo vi /etc/xinetd.d/tftp

rBOX630 Linux

30 Board Support Package (BSP)

Then restart the TFTP server.
$ sudo /etc/init.d/xinetd restart

5. Install and configure NFS server:
$ sudo aptitude -y install nfs-common nfs-kernel-server portmap
To configure nfs server, add lines to /etc/exports as follows:
/tools/rootfs *(rw,sync,no_root_squash)
$ sudo vi /etc/exports
Create a symbolic link to root filesystem which your build.
$ sudo mkdir /tools
$ sudo ln -s ~/Project/rootfs /tools/rootfs

Then restart the NFS server.
$ sudo /etc/init.d/nfs-kernel-server restart

5.1.2 Install Yocto development

1. Setting up the repo utility.

Create a bin folder in the home directory.
~$ mkdir ~/bin (this step may not be needed if the bin folder already exists)
~$ curl http://commondatastorage.googleapis.com/git-repo-downloads/repo >
~/bin/repo
~$ chmod a+x ~/bin/repo

Add the following line to the .bashrcfile to ensure that the ~/binfolder is in your
PATH variable.
export PATH=~/bin:$PATH

2. Setting up the Git environment
~$ git config --global user.name “Your Name”
~$ git config --global user.email “Your Email”

3. Download the Freescale’s Yocto BSP source
~$ mkdir fsl-community-bsp
~$ cd fsl-community-bsp
~$ repo init -u https://github.com/Freescale/fsl-community-bsp-platform -b dora
~$ repo sync

4. Extract Axiomtek’s Yocto BSP source
~$ tar zxvf meta-axiomtek-x.x.x.tar.gz -C fsl-community-bsp/sources

5. Update bblayers.conf
~$ vi fsl-community-bsp/sources/base/conf/bblayers.conf
And add this line after ${BSPDIR}/sources/meta-fsl-demos \
${BSPDIR}/sources/meta-axiomtek \

6. First build
Change to fsl-community-bsp directory
~$ cd fsl-community-bsp
Create your local branch
~$ repo start <new branch name> --all
Choose your board
~$ MACHINE=rbox630 source setup-environment build
Start to build image
~$ bitbake rbox-image-test

rBOX630 Linux

Board Support Package (BSP) 31

5.1.3 Build and Install Yocto toolchain

1. Build the toolchain for rBOX630 from Yocto development.

Change to Yocto development directory.
~$ cd fsl-community-bsp
~$ source setup-environment build
~$ bitbake meta-toolchain

After these steps to generate the toolchain into the Build Directory.

2. Install the toolchain into your host system /opt directory.
~$./tmp/deploy/sdk/poky-eglibc-x86_64-meta-toolchain-cortexa9hf-vfp-neon-toolc
hain-1.5.4.sh

rBOX630 Linux

32 Board Support Package (BSP)

5.2 U-Boot for rBOX630

5.2.1 Booting the System with an NFS Filesystem

By default, U-Boot is configured to boot from SD CARD. To boot from NFS, first you
must set some configurations. Press any key to break from the boot progress and set
configurations.

Setup TFTP server IP:
MX6SDL Q7M120 U-Boot > setenv serverip 192.168.1.101
Setup board IP address:
MX6SDL Q7M120 U-Boot > setenv ipaddr 192.168.1.103
Run boot from NFS server:
MX6SDL Q7M120 U-Boot > run bootcmd_net

NOTE: If the MAC address has not burned into fuse, you must set the MAC address to
 use network in U-Boot.
MX6SDL Q7M120 U-Boot > setenv ethaddr xx:xx:xx:xx:xx:xx

rBOX630 Linux

Board Support Package (BSP) 33

5.2.2 Booting the System from eMMC

MX6SDL Q7M120 U-Boot > run bootcmd_emmc

5.2.3 Booting the System from SD CARD (rBOX630 default)

MX6SDL Q7M120 U-Boot > run bootcmd_sd

rBOX630 Linux

34 Board Support Package (BSP)

5.3 Additional Information

5.3.1 Create a Bootable SD CARD for rBOX630

1. Copying the Boot Loader image.

~$ sudo dd if=./u-boot.bin of=/dev/sdb bs=512 seek=2 skip=2 conv=fsync
The first 1KB of the SD card, that includes the partition table, will be preserved

2. Copying the Kernel image.
~$ sudo dd if=./uImage of=/dev/sdb bs=512 seek=2048 conv=fsync
This will copy uImage to the media at offset 1MB

3. Copying the Root File System (rootfs).
First, a partition table must be created.

To create a first partition FAT32 format for Windows PC easy access, after offset
16384 (in sectors of 512 bytes) , and Second partition Linux format for Root
filesystem enter the following command:
~$ sudo fdisk /dev/sdb

Type the following parameters (each followed by <Enter>):

u [switch the unit to sectors instead of cylinders]
d [repeat this until no partition is reported by the ‘p’ command]
n [create a new partition]
p [create a primary partition]
1 [the first partition]
16384 [starting at offset sector #16384, i.e. 8MB, which leaves enough space for

the kernel, the boot loader and its configuration data]
+1G [create 1G size for FAT32]
t [change a partition’s system id]
b [choice W95 FAT32 type]
n [create a new partition]
p [create a primary partition]
2 [the second partition]
2113536 [starting after offset sector #2113536]
<enter> [using the default value will create a partition that spans to the last sector

of the medium]
 w [this writes the partition table to the medium and fdisk exits]

rBOX630 Linux

Board Support Package (BSP) 35

rBOX630 Linux

36 Board Support Package (BSP)

Run the following command to format the partition
~$ sudo mkfs.vfat /dev/sdb1
~$ sudo mkfs.ext3 /dev/sdb2

 Copy the target file system to the partition
~$ mkdir /home/user/mountpoint
~$ sudo mount /dev/sdb2 /home/user/mountpoint

 Extract rootfs package to certain directory
~$ sudo tar zxf rootfs.tar.gz -C /home/user/mountpoint

NOTE: Make sure that the device node is correct for the SD CARD. i.e. sdb or sdc

