
http://wrap.warwick.ac.uk/

Original citation:
Howarth, R. M. and Francis, N. D. (1988) Cluster programming language definition and
user manual. University of Warwick. Department of Computer Science. (Department of
Computer Science Research Report). (Unpublished) CS-RR-125

Permanent WRAP url:
http://wrap.warwick.ac.uk/60821

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for-
profit purposes without prior permission or charge. Provided that the authors, title and
full bibliographic details are credited, a hyperlink and/or URL is given for the original
metadata page and the content is not changed in any way.

A note on versions:
The version presented in WRAP is the published version or, version of record, and may
be cited as it appears here.For more information, please contact the WRAP Team at:
publications@warwick.ac.uk

http://wrap.warwick.ac.uk/
http://wrap.warwick.ac.uk/60821
mailto:publications@warwick.ac.uk

ruResearch report 125

CLUSTER PROGRAMMING LANGIJAGE:

DEFINITION AND USER]\{ANUAL

Rolf M Howarth & Nick D Francis

G.R12s)

The Cluster Programming Language, or CPL, is a high-level array programming language,
used to program the lower levels of the Warwick Pynamid Machine. It is designed to closely
match the stmctr.rre of the architecture, in order to provide a convenient model for users of
the machine and to pennit an efficient implementation of the language. Because of the nature
of the architectr,re, the language combines both SIMD and MIMD style parallel programming
constructs. In this report the language is defined, with several complete examples of code
being given, and use of an early interpreter implementation is also described.

Department of Computer Science

University of Warwick
Coventry CV47AJ-
IJnited Kinsdom July 1988

cluster Programming Language: Definition and user Manual

Rolf M. Howarth and Nick D. Francis
Department of Computer Science

Universiry of Warwick
Coventry CV4 7AL

E - mail : v I s i @flame .warwick.ac.uk

1. Introduction

The Cluster Programming Language, or CPL, is a high-level array programming language, used.
to program the lower levels of the Warwick Pyramid Machine (see below). It is designed to
closely match the sffucture of the architecture, in order to provide a convenient model for users
of the machine and to permit an efficient implementation of the language. Because of the narure
of the architecture, the language combines both SIMD and MIMD style parallel programming
constructs. In this report the language is defined, with several complete examples of code being
given. Use of an early interpreter implementation is also described.

2. Hardware model

The Warwick Pyramid Machinel'2 is a parallel architecture designed for real-time image and
signal processing, with particular emphasis on the transformation from iconic to symbolic data
representations. It consists of several heterogeneous layers: a fine grain array of single bit pro-
cessors (one per pixel) for numeric processing, an intermediate control layer, and a large grain
array of transputers for symbolic processing (fig.1). At each level the type and granuiariiy of
processor is chosen to match the strucrure of the data and the types of operation to be performed
on it.

Symbolic Processing Layer
8x8 .ML\ID transpuler array

Intermediate Level Processors
16x16 MIMD processors, conrolling ppEls

Iconic Layer
86x256 SIMD bit-serial associarive ppFl s

Fig. I Warwick Pyramid Machine

For low and intermediate level image processing the array of bit-serial associative Pixel Process-
ing Elements (PPELs) is used, arranged in clusters of 16x16 PPELs each with an associated Inter-
mediate lrvel Processor (ILP) controlling the cluster. The PPELs within a cluster operate in
broadcast instruction SIMD mode, but the ILPs themselves are independent, providing local con-
trol. Together these two levels form a multi-SIMD machine.

In this document we restrict our attention to the ILP/?PEL cluster level of the machine, as the
transputer level above is programmed separately (in either occam or parallel C) and runs more or
less autonomouslv.

Host Machine
Sun workstation

A cluster should ah+'ays be regarded as a whole - as a single processor capable of performing
either scalar (ILP) or vector (ppEL) operarions:

2.1 Scalar processor

The ILP is a general purpose 16-bit processor, implemented as a micro-programmable bit-slice
processor, with instnrctions to access the PPEL array wired into its instruction set (one bit in the
microcode word selects whether the instruction is an ILP or a PPEL instruction). The ppEL array
is in effect a co-processor to the main ILp.

Each ILP/?PEL cluster can be regarded as a conventionai SIMD machine, but the machine as a
whole contains many such clusters, and is capable of MSIMD operation since each cluster can
operate independently. When it is necessary to operate several clusters as a single entity, adja-
cent [LPs must be synchronised in order that PPEL communication across the cluiter boundaries
performs as expected.

The dual-ported ILP data memory is shared between the ILP and the transputer above it in the
pyramid, and is used for communication between the two. The ILP microcode store is also a
dual-porr RAM. The transputer writes to it at boot time to load either a complete application or a
standard set of library routines callable from an application running on Jhe transputers (this
library might include a multi-bit multiply command involving many hundreds of one bit ppEL
instructions, or a routine to perform a Sobel edge detection convolution, for example). These
routines are usually written in CPL, which is then compiled into ILp microcode.

2.2 Vector processor

The PPELs are simple but numerous processors, each with a bit-serial N-TJ,7 ffag bits used for
storing intermediate results, and (currently) 256 bits of general pu_rpose memory.

The PPELs operate in SIMD mode (each processor executing the same instruction but on dif-
ferent data), with instructions broadcast over the array on a common bus. ppEL operations may
be executed unconditionally or be restricted to those PPELs in a cluster which hive the active
flag 'A' set. In addition the ILP can address an individual PPEL or group of ppEls by placing a
mask on the address mesh, described in the next section.

^lhe 256 bits of memory for each processor can be divided into arbitrary sized words (for exam-
ple, it may be used as a collection of 8-bit grey-scale images, floating point values, single bit
flags, and intermediate arirhmetical results of varying lengths).

The ALU performs arbitrary logic functions mapping three input bits to two ourput bits. In each
instruction cycle two source operand bits i and 7 (from the flags, from main memory, or from a
neighbouring PPEL) together with the accumulator flag F are read into the ALU, combined by
some logical function, and two result bits written out: one back to the F flag and one to another
destination d. This operation is performed by all enabled PPELs within a iluste, concurenrly.
By making use of the flag bit it is possible to perform simple multi-bit operations such as addi-
tion at the rate of one bit per instruction cycle.

lunction code
16

condaAv
3

src srcJ
4

dest
3

oft sel
3

address
8

Table 1 ppEL insrruction op-code

Each of the argument fields in the op-code specifies either one of the flag bits, a value from the
register file, or the output from an adjacent PPEL. Ir is possible for both source and destination
to lie in the register file, but then they must be the same bit as there is only a single address field.
The output select sub-field specifies what data is output to neighbouring ppEls (io, for example,

all the PPELs could copy the F flag from the PPEL to their north into their Y flag, at the same
time passing their F flag on to the sourh).

X Y z T U V A

M0lMllM2lM3 t\ns5

X

F

Y,Z,T,U,V
A

output bit; passes results to the open collector H and v response circuitry.
ALU flag; carries over results during multi-bit operations.

Spare bits; used for intermediate results, saving 'A' etc.

Active bit; if the condition bit is set in the opcode then only those processors
whose active bit is set perform the operation, otherwise 'A' may be used as anoth-
er general purpose bit.

General purpose 256-bit register file.

Table 2 ppEL flags and memory

2. 3 PPEL/ILP communication

The PPELs are connected together in the form of a mesh with 8-way nearest neighbour connec-
tivity. Data can be read in from these neighbour lines during normal ppEL instruction cycles as
mentioned earlier. In addition to this there are several mechanisms for communication between
the PPELs and the ILP, utilised by special instructions at the ILp level.
Associative feedback to the controlling tLP is provided via the PPEL X ourput flag. An open col-
lector wired-oR circuit gives a some/none response over the whole cluster. At the sami time a
fast adder tree provides the ILP with a count of the number of responding ppEls in a cluster.
To facilitate reading data into and out of the array the PPELs are also connected on a grid of
addressing lines with a wired-OR response capability. These lines, running along a1 rhi rows
and columns in a cluster with an encoder at the two edges, enable individuaipixels to be located
quickly (fiT.2). The ILPs also have direct access to the lines, giving them the ability to establish
whether more than one PPEL is responding.

V address

Vmask

H address

M

Fig.2 Use of the FW responder mesh

The lines are bidirectional, with the horizontal and vertical directions being connolled by the lr
and v condition bits in the PPEL instruction word. This allows the ILp to directly address an
individual PPEL or grcup of PPELs, using the cluster like a RAM. Another application is to write
on one and read from the other, enabling a single column say, and then reading the 16 bits from
that column in parailel.

2.4 ILP|ILP and lLpltransputer issues
'fhe scenario in which ILP programs are run is that of procedures being called from the control-
ling transputer. This might be achieved by means of aimall operatingiystem kernel running on
each ILP and implementing a procedure call protocol via the dud-pJned RAM shared with the
transputer. When an ILP procedure finishes, control retruns to this kernel, which makes any
result available to the Eansputer and awaits the next procedure call. An alternative approach is
to have the transputer directly set up a stack frame in the ILp memofy, as if a call were being
carried out by the ILP, and then load the ILP instruction counter with the start address.
For reasons of simpliciry, the same prog:lm (ie. set of callable procedures) is loaded into all theILPs. There is no requirement, however, that different transputers should call the same pro-
cedure together, which permia the ILps to run independently.

When necessary' synchronisation benveen ILPs is performed via a number of open collector sync
channels. The basic merhanism is that those ILPs wishing to synchronise firsi all pull the sync
channel low, ie. inactive. They can then perform individuil operations. When an ILp finishes, it
stops forcing the channel low and idles, waiting for it to become active again. Eventually more
and more ILPs will finish and become ready, until the last one goes ready, when the sync line
floats high and all the ILps may continue together, in sync.

There are several sync channels available, permitting independent groups of ILps to synchronise
themselves. One transputer in the system acts as master, allocatinglhis^resource (sync channels)
on request to those transputers wishing to synchronise their ILps. Typically one oi the puo-"-
ters in a transputer to ILP call will be the number of a sync channel to use. io p'o,r., against the
possibiliry that one of the ILPs in a group wishing to synchronise becom.r rr.dy before the other
ILPs have initialised the sync operation by pulling the line low, the controlling transputer irself
forces the sync channel inactive until it receives confirmation that ail the ILrs using that channel
have initialised.

Note that we have only describei the low level mechanism of ILp synchronisation. Responsibil-
ity for breaking down an application into tasks for the ILps to perform concurrently and-deciding
when synchronisation needs to take place, and between which ILps, lies with the o*rpu,ri
array' The master transputer plays a key role in this, making use, amongst other things, of a glo-
bal some/none and response count over the entfue ILP a:ray (an extension of the circuiury wiitrin
each cluster), but a discussion of how the transputer level is prograrnmed lies outside the scope
of this document.

An alternative means of achieving purely local synchronisation is by using rhe ILp to ILp com-
munication primitives 'send' and 'receive'. These use a rendezvous mechanism, whereby nwo
adjacent ILPs must be ready at the same fime, one to send and one to receive, before a communi-
cation is able to take place. when necessary, data can also be transferred to or from the control-
ling mnsputer in the same way.

3. CPL language definition
When using CPL the prognmmer's model closely matches the hardware. Scalar operations,
including ILP integer arithmetic, function calls and loop control, use a simple conventional syn-
tax similar to Pascal or C. ln addition to this standard core, though, there ire corn-ands to jer-
form a vector operation in parallel over all the PPELs in the cluster, as well as operands to iead
data in and out of the PPEL array which can be used in ILp expressions.

Because there are these two different kinds of processor within a cluster, it is helpful always to
make a clear distinction between ILP and PPEL instructions in a CPL program. For example, the'tl' instruction is the familiar conditional at the ILP level, while 'vehere'is used to restrict a ppEL
operation to certain pixels within a cluster. These operations, as well as calculations and assign-
ments and so on, ars analogous at the two levels, but if the syntax of the language were to hide
the distinction between similar operations on different processors it would unaouUteaty lead to
confusion.

We therefore innoduce the basic ILP and PPEL operations in separate sections, followed by a
description of interfacing between the two. In the following definitions we use bold for reserved
words or symbols, and italic for other syntax elements. Example code is in a sanserif font.
A program consists of statements, usually one per line, though a semicolon can be used to
separate multiple statements on the same line. Spaces betrveen tokens are needed where ambi-
guities might otherwise arise. Extra spaces and blank lines are ignored. Everything benveen a'#' and the end of a line is ignored as a comment.

A. Conventional scalar programming

This section describes those ILP operations which are familiar from normal sequential, pro-
cedural languages.

3.1 ruP variables and expressions

ILP variables are 16 bit signed integers. They are referred to by symbols, consisring of upper
and lower case alphabetics and the underscore character, which must be declared before use:

intt ilpvar, ...

An ILP expression may consist of just a single term, either an ILP variable, an integer cons*nt, a
function return value, or some other special term (such as 'any', see 3.8). These basic terms can
also be combined using the arithmeric and logical operators given in table 3 (based on those of
the C languageT). Parentheses may be used to alter t-h" pt...d"nce of operators in an expression.
Constants are usuaily in decimal, but may be in binary or hexadecimal if preceded by ,0b' or
'0x' respectively.

Expressions may be evaiuated and rhe result assigned to an ILp variable:
tlpvar := ilpexpr

For example,
int: average, x
average := (count()+x)P

Arrays of integers can also be defined. Conventional square bracket notation is used, eg.
int: a[to]
x := a[2]

l0 element array, atolto atgl
refer to the third element

- | bitwise nor (unary)
| | l^-:^^t -^^ /------\! | logical not (una-ry)

I negation (unary)*lVo
lmulriplyidivide/modulus

+ - | add/subtract

& | bitwise and^ I bitwise xor
| | bitwise or

<=>>= lcomparison
!= = | (in)equatity
&& ll I logical and/or

Table -t ILp operator precedence

3.2 Control constructs

Various conml constmcts are available. Remember that in general many rl-ps are running the
same program concurently, so in a conditional branch or loop some ILps can be executinf one
branch while some are following the other. See section 3.9 foinores on synchronising rhe oi.ru-
tion of multiple ILPs.

The syntax of a conditional branch is
if expr then

... stmts ...
lelse

... stmts ...1
endif.

If there is only one statement in the body
'endif' be omitted, for example

if x<0 then x := -x
The simplest way to implement a loop is with the 'for..next' statement. The two expressions are
evaluated once at the start to give the lower and upper bounds of the loop. On each iteration the
loop variable is incremented by one, or by the step size if given (which may be negative, in
which case the loop counts down), until it reaches the upper bound.

for var = €xpt to expr [step expr)
... stmts ...

next vcr.

There are two forms of 'while' loop, the standard
while expr d,o

endwhile
carry out body of loop if expr is true

and with the condition at the end, so the loop is always carried out at least once
do

while expr.

A generalised loop in the manner of Ada exists too, where the condition, or conditions, can
occur at any point within the loop. The 'exit' statement causes a jump to the end of the loop,
and can also be used to break out of 'while' or .for' loops.

carried out if erpr is true

carried out if etpr is false

it may be placed on the same line as the ,if', and the

6

loop

exit lwhen exprl

enOloop.

exit when condition is true

3.3 Program structure: functions
A CPL program consists of a number of function or procedure definitions. As in C there is no
distinction between functions returning a value and procedures which do not. Unlike C how-
ever, there is no 'main' procedure where execution always starts, since it is up to the controlling
transputer to initiate execution of code on a cluster by calling any procedure it choses. Functioni
may be called by the Eansputer or from within another CPL function, but the syntax remains the
same.

func name (fparameter list])
...body of funuion ...

/return expr) # optional (integer) retun value
endfunc.

The parameter list specifies the type of formal parameters being passed to the function, eg.
func sobel (int: n; bitplane: image, result).

Variables defined in the parameter list or within a function are local to that function. All vari-
ables, both ints and bitplanes (see below), that are declared outside of a function are static and
global, however, and their value is accessible from within any function.

B. PPEL array programming

3.4 Bitplanes

The basic data types operated on by the PPELs are single bits. Apart from the 8 flag bits X, y, Z,
T, (J, V, A and F, each PPEL has a number of bits of main memory, currently 256 bits, addressed
M0... M255. Contiguous bits of this memory are frequently grouped together for multi-bit opera-
tions. For example, Ml0,l1,l2,l3 may be used as an accumulator, containing one 4-bit number.
Data is stored least significanr bit first (ie. Ml0 = lsb, Ml3 = msb).

Since it is inconvenient to keep track of these locations by explicit address, the language allows
named PPEL variables. The statement

bitplan e: flag, image[al

for example, allocates a single bit (in each PPEL across the plane) to a token/ag, and 8 contigu-
ous bits to a token image. In this example image might be placed at M10..M17; this would then
be accessed using innge to refer to all 8 bits, image[]l to refer to Mll, imaget3..Sl to refer to the
3 bits Ml3..M15 etc.

While it is possible to use explicit memory addresses when special circumstances demand it, and
also to access all the flag bits, their use is to be discouraged as no knowledge should be assumed
about which locations the compiler may use. The flags X, Y and Z arc freely available for use in
a CPL progmm (where X is used to signal a response from the PPEL to the ILp), but the orhers
are used by the compiler for PPEL expression evaluation, as carry and overflow flags, to save the
state of A, and so on.

Bitplanes are allocated automatically on a PPEL data stack. When a CPL function returns, the
memory used as bitplanes within that function is freed again. Internally a bitplane is really a
pointer to some PPEL memory and a count of bits. Normally a 'bitplane' statement allocates the

7

appropriate numbr of bits in PPEL memory, initialises them to zero, and associates the address
and size of the bitplane with the symbol name. An alternative use is just to use the address of an
existing bitplane, by placing the bitplane at a given address using ,='.

lsigned/ bitplane: name [[sizs]l [=ppelvar], ...

For example, if we assume that free PPEL memory (the stack) currently starts at M100, the state-
ment

bitplane : im ag e[a] =tt t 6, buffe r[B], m sb=buffe r{ 71, lovv{dl=buffe r, fl ag
would result in the following birplanes being defined

image M16.,M23
buffer M100..M107
msb M107
Iow M|00..WA3
flag M108.

As bitplanes are aUocated dynamically their size may be given by an ILP expression calculated
at run time.

Bitplanes are normally unsigned, unless a bitplane declaration is preceded with the reserved
word 'signed' in which case the most significant bit is used as a sign bit and two's complement
arithmetic is used.

3.5 PPEL expressions

Calculations over the array are described by PPEL expressions. When an expression is evaluated
it returns a bitplane value which may then be assigned to a PPEL variable or flag:

ppelvar <- ppelexpr.

PPEL expressions consist of bitplanes and numeric constants combined using various arithmeti-
cal and logical operators. Since ILP and PPEL expressions operate on different data types a dif-
ferent set of operators is used, but the function and precedence rules for these operators is identi-
cal to the corresponding ILP operators (refer to table 3).

Aritfunetic

PLUS
MINUS
TIMES
DIVIDE

I-ogical

NOT
AND
OR
XOR
SHIFT>
SHIFT<

Comparison

GT (>)
LT (<)
EQ (=
NE (*
LE (<
GE (>

Table 4 PPEL operarors

Because PPEL calculations involve variable numbers of bits, the precision used when evaluating
an expression is derived from the sizes of the birplanes used in the expression. The minimum
number of bits to guafimtee correct evaluation is used. If the number of bits in the variable being
assigned to differs from that of the expression being evaluated, the result is truncated or null-
padded / sign-extended accordingly (and the F flag is set if the result is too large to fit).

To ensure that PPEL expressions can be evaluated to the appropriate precision the size of a bit-
plane is always associated with the bitplane itself. During a function call the size of a bitplane is
passed along with its address (bitplane parameters are always passed by reference), which allows
one to pass bitplanes of arbitrary size to a function, and to write functions which work correctly
whatever the precision of their parameters are. The 'sizeof(bttplane)' operator can be used to
determine the number of bits in a bitplane.

This default number of bits used when evaluating expressions can be reduced by selecting a slice
or subset of a bitplane using the square bracket notation. Start and end bits (with bit 0 =-lsb) are
specified, where a missing end means take the range up to the end of the birplane.
A PPEL 'constant' is constant across the cluster. It may be a decimal, binary or hexadecimal
constant' or it may be given by the value of an ILP expression if the '$' rype conversion operator
is used (see 3.8). PPEL constants need not necessarily be fixed at compiie time, so long ai a sin-
gle value to be used across the whole cluster is given at the ILp level.

Examples of ppeL expressions

num <- image MTNUS goffset
flag <- NoT (Z AND (num[o..a] GT 4))
num <-$(countO + l) # ILP expression

3.6 Accessing neighbouing ppEls

To access data from one of the 8 adjacent neighbours the notation d,irzreg can be used in ppEL
expressions, where dir is one of N,NE,E,sE,s,sw,w,Nw. It may also be of the form
'Voilpexpr', in whic.h case the ILP expression must evaluate to a number in the range 0.. 7 which
is used as the direction (where N is 0, NE is l, etc.)

num <-0
num[0..q] <-)bl0l 10
num[t..] <- 1xA

image <- N:image
temp <- "/"i:num

Decimalconstant
Binary constant
Hexadecimalconstant

shift entire image south by one pixel
read from neighbour given by variable 'i,

set allYs in column 4

get PPEL at position (4,7) to respond if A is set

One frequently wants to perform an operation over all the neighbours of a ppEL, so the special
notation

assoc_op all:bitplane
can be used in expressions with one of the operators SUM (or pLUS), AND, OR and XOR, eg.

flag <- OR all:X
is equivalent to the much more cumbersome (and less efficient, because in the former case the
compiler is able to produce optimised code)

flag <- N:X OR NE:X OR E:X OR ...

To combine the four direct neighbours only (N, E, S and w) use ,ail4'.

3.7 Conditional operations

The PPELs are SIMD processors and the same instruction is broadcast to all the ppEls within a
cluster. Simple conditional operations, restricting a PPEL insrruction to those ppEls that have
the condition flag 'A' set, can be performed by appending '?' to the instruction, eg.

num <-num PLUS | ?

This will increment the bitplane nun on just those PPELs whose condition bit is set. Note that
this instruction will still take the same number of cycles as an unconditional instruction even if
no PPELs are enabled and execute it.

By default conditions act on the A register, but an instruction can also be conditional on the H or
V mask (described in 2.3). The '?' modifier may be followed by the letters A, H or V to indicate
the condition or conditions, eg.

hmask:= Oxl0
Y<- I ?H
vmask:= 0x80
X <_ 1 ?HVA

9

To rnake use of conditionals easier the 'where' instruction resricts execution of a block of code
to those PPELs that satisfy the conditional expression (ie. those where expr evaluates to a non-
zero value)

where eryr
... .rPnr.t ...

Ielsewhere
... stmts...l

endwhere.

For example

where (suM all:data EQ 0)
data <- 0

endwhere.
thin isolated points (those with 0 neighbours)

'Where' statements can be nested, progressively restricting the set of active ppEls.

There are two variations on the 'where' statement that may be used to restrict operations to a sin-
gle PPEL (specified by its address) or to an area of PPELs (specified by rwo maik values) respec-
tively.

rvhereaddr address

address is in the range 0 .. nz-r,where n is the size of a cluster, typically 16.

rvheremask lmaskvmask

hmask and vmask are placed on the horizontal and vertical mesh lines (see 2.3).

A 'where' statement with an 'elsewhere' clause is implemented by first broadcasting the initial
block of instructions to the PPEL :uray, then toggling the appropriate condition bit and broad-
casting the 'else' portion. Again, the point should be made that execution time for a .where'
conditional is the same even if no PPELs are enabled to perform one or the other block of
instructions.

C. Other aspects of CpL

3.8 Interface between ILP and ppELs

There are a number of special terns and predefined functions that can be used within ILp expres-
sions to access the PPEL cluster.

The horizontal and vertical mesh lines are accessed via two ILP registen, which are referred to
from CPL using the reserved words 'hmask' and 'vmask'. Any value written to these ,vari-
ables' is placed on the mesh when a '?H' or '?V' conditional modifier is used. If they are read in
an expression then data is read from the mesh. Similarly, 'any' is a read only pseudo variable,
yielding a Boolean value which is true (ie. 1) if any PPELs in the cluster currenrlv have their X
responder bit set, or false (0) otherwise.

The function 'firstX0' returns the address of the respond.ing PPEL with lowest address, or -l if
there are no responders. This uses the output of the priority encoders infig.2 and works by pick-
ing the first row, enabling that row and then selecting the first column with a ."rpond.r.
'count()' returns a count of the number of responders in the cluster.

The function 'read(cddress,&ppelvar)'can be used to read data from a particular ppEL (in
effect this works by using 'whereaddr' to select the PPEL, getting it to output its data onto the
some/none bus one bit at a time, and accumulating the value in an ILp register).

10

To pass data from the ILP to the PPELs normal PPEL instructions are used but with the parame-
ters specified indirectly by ILp expressions.

The '$' type casting operator converts an tLP expression to a ppEL numeric constant, and the
'Vo' opetalor converts an ILP expression to a bitplane address. No assumptions should be made
as to how a pointer to a bitplane is stored at the ILP level (information stored includes the
address and size of the bitplane, whether it is a flag or in main PPEL memory, and is signed or
unsigned). Instead, '&'can be applied to any bitplane to yield its address and size in this inter-
nal format. Ttre 'Vo' operator should only be applied to expressions previously obtained using
'&'.
'Vo' is also used to specify a direction indirectly, as tn'Vod:bitplane'. As a convenient abbrevia-
tion, one may omit the '&' when referring to directions, so 'for d = N to W step 2, canbe used to
step through the four direct neighbours, for example. The loop variable can be used as a sub-
script directly (where N=0, NE=l, E=2 and so on) to accumulate a result over neighbours.

For symmetry with 'read()' the function 'write(address,.&ppelvar,ilpexpr)'is provided, though
it is directly equivalent to

whereaddr (address)
ppelvar <- g(ilpexpr)

endwhere.

Also useful in this context are several 'compiler constants' which give details of the current
implementation: Isize (the number of ILPs across in the machine), Myaddr (the address of this
ILP, from 0 to Isizexlsize - I), and Psize (the size of a cluster, in ppEls across).

3.9 ILP synchronisation and communication

The basic mechanism for ILP synchronisation and communication is as describe d in 2.4 .

In normal use the transputers determine which ILPs should synchronise themselves and pass
down the numbers of one or more sync channels for the ILPs to use. To perform synchronisation
in a cPL program this sync channel must first be initialised, using

syncon n # channel n allocated by transputer.

The actuai synchronisation of ILPs using that sync channel then occurs once they have all exe-
cuted the instnrction

s)'nc # wait until ail ILps are ready.

ILP to ILP communication is via occam-like channels, and is indicated by the reserved word
'chan'. Thus

chan c ! ilpexpr
chan c ? ilpvar

where c is one of the five (predefined) channels N,s,E,w and up. For example,
chanE?x
chan UP ! (result+l)
dir:= chan E
chan dir ! 1 # indirect channel specification

(This use of '?' should not be confused with ppEL conditional operations.)

send word
receive word

ll

4. References

1. R.M. Howarth, "A heterogeneous pyramid array architecrure for image understanding,,,
Research Report 115, Dept. of Computer Science, University of Warwick, Diember 19g7.
2. G.R. Nudd, R.M. Howarth, T.J. Atherton, N.D. Francis, G.J. Vaudin, and D.W. Walton, ,.A
heterogeneous architecture for parallel image processing ," in Proc. IgSg uK Information Tech-
nology Conference, pp.495-499, Swansea, July 1988.

3. C.C. Weems and S.P. Levitan, "The Image Understanding Architecture," in proc. DAR1A
Image Understanding Workshop, pp.483-496, February 19g7.

4. S. Pass, "The GRID parallel computer system," in Image Processing System Architectures,
ed. J. Kittler & M.J. Duff, pp. z3-3s, Research studies press, 19g5.

5. M.J.B. Duff and T.J. Fountain (editors), Cellular Ingic Image Processing, Academic press,
New York, 1986.

6. D.E. Reynolds and G.P. Otto, "CLIP 'Image Processing C' User Manual", Report No. g2/4,
Image Processing Group, University College t ondon, 19g1.

7. B.W. Kernighan and D.M. Ritchie, The C Progratnming Language, prenrice-Hall, 197g.

t2

Appendix I

Example 1: Sobel edge detection

Pertorm the following convolution for horizontatedges
-t-2-1
000
121
and the same thing vertically, then combine the fwo as the sum of mods.
lllustrates the use of 'sizeof to work with arbitrary precision data.

func sobel (bitplane:image, resu It)
Store intermediate results with sufficient precision
bitpl an e : parti al[sizeo f(i m ag e) +2], te m pfs i ze of (i m ag e) +21

temp[t..] <- image # bmp <- image.2+E+W
temp <- temp PLUS E:image pLuS W:image

temp <- S:temp MTNUS Ntemp

where F # negate if negative to get absolute vatue
temp <- 0 MINUS temp

endwhere

partial <- temp # partial is used to save lGxl

temp[t..] <- image # Same thing verticaily
temp[O] <- 0 # cleared iniiatty but now contains junk
temp <- temp pLUS N:image pLtJS S:image

temp <- E:temp MINUS W:temp
where F

temp <- 0 MINUS temp
endwhere

Return lGxl + lGyl, scaled to fit size of resutt
re su lt <- (partial PLU s temp) sH t FT> (s +sizeof (i mag e) - sizeof (re s u tt))

endfunc sobel

13

Example 2: Edge following

This function follorys edges, returning a tist of the addresses of edge points
within a cluster. lt ignores any intersections.

func simple_edge_follow (bitplane: lmage)
bitplane: Mark, Edge, Result[a]
int: addr, th, dir
sobel(lmage, Result) # catculate g-bit Sobet
th := lfiyssljold(Result) # calculate threshold
Edge <- Result Gf $tn # Set Edge if Resutt > th
Mark <- 0
toop

X <- Edge AND (suM ail:Edge Ea r) # set x if #neighbours = r, ie. it,s an endpoint
exit when lany # exit toop if no endpoints in this ctuster
addr:= firsXo
whereaddr addr

Mark <- | * pick an endpoint to start from
endwhere
do

addr := firstX()
chan Up ! addr # output one point to the Symbolic layer
where Mark

clear Edge # reset the point we have read
endwhere
X <- Mark # output mark to its neighbours
F <- oR all:X # tes;t if any of the neigi'tbour inputs are set
X <- Edge AND F
Mark <- X

while any
endloop # continue untilthe data has been read out

endfunc

t4

Example 3: Mean and maximum

Calculate local means and maxima within a cluster simultaneously, one bit at
a time, by iterating starting with the most significant bit.

int: mean, max # globalvariables to return results

func meanmax (bitplane: image)
bitplane: flag
int: total, i

flag <- 1 X this ppEL not less than max (so far)
total := 0
lfl1X l= 0

for i = sizeof(image)-1 to 0 step -l
X <- image[il
total := Z'total + count()

lf flag=Q l've already been discounted as max, so don,t output X
X <- X AND flag
fTte,X l= 2'max + any

lf some pixel in the cluster has this bit set (any) but my
bit isn't set (X:0) then I can't be a maximal pixel

if any then flag <- X # if ,any & X=0,then reset flag
next i

mean := total/(Psize'Psize)
endfunc

This code fragment illustrates the ,al!' notation:

bitplane: Unbrs[e]
Nnbrs <- 0 # IJse a 3-bit accumulator to count the neighbours
for dir = N to NW # iterate over the g neighbours

Nnbrs <- Nnbrs ?LUS l"dir:Edoe
next dir

is equivalent to

Nnbrs <- suM all:Edge # GUM is a synonym for pLUS)

l5

Example 4: Guarded edge thinning

Elliman and Mahmood's thinning algorithm (adapted by N.Francis)
incorporates extensive guarding to prevent over-erosion

From D.G.Elliman and A.Mahmood "Towards faster and more shapely thinning,,,# in Parallel Processing for computer vision and Display, Leeds, ,lan i gaa

func thin (bitplane: edge_bit)
bitplane: count[a], init_coun{ql, number_se{al, init_flag
bitplane: neighbour[B], clear_flag, temp, guard[a], any_guard
int:d

Get all neighbours bits and count them
ford=NtoNW

n e ig h b o u r[d] <- lod : e dg e_bit
nert d
number_set <- SUM all:edge_bit

Count number of consecutive bits set in neighbotur
init_ffag <- 1 # lnitiatise flags
clear_flag <- 0
ford=NtoNW

where neighbour{d}
count <- count ?LUS I # if bit set inc count
where init_flag

init_count <- init_count pLUs I # if bit set & not had a zero yet
endwhere

elsewhere
count <- 0 # if bit not set clear count
init_flag <- 0 # and init-fhg

endwhere
clear_flag <- clear_flag AR @ount Ee number_set)

next d

At this point init-count holds the number of consecutive bits set at start
count holds the #consecutive at the end of the word
clear_flag is set if we found 'number_set' consecutive bits at any stage

Now check for wrap around
where ((init_count 7LUS count) Ee number_set)

clear_flag <- l
endwhere

#'clear-flag'is set if allthe neighbouring bits are consecutive.

We don't want to thin solid regions or endpoints though...
where (number_set EQ 8) OR (number_set LT 3)

clear_flag <- 0
endwhere

Generate guard signals according to tabte 2 of Eiliman and Mahmood

temp <* (number_set EQ 3) AND clear_flag

16

where (temp AND neighOour{Nwl) # S neighbours
guard[NW] <- |

endwhere
where (temp AND neighbour{Swl)

guara[Sw] <- t
endwhere

#4or5neighbours
temp <- (number-set GT g) AND_(number_set LT 6) AND ctear_ftag
where (temp _AND neighbourfNW] euo neighbour[SW])

guard[Sl <- l
endwhere
where (teqp AND neighbour{SW| AND neighbour[SE])

guard[W] <- 1

endwhere

temp <- number_set EQ 6 # 6 neighbours
where (temp AND NoT neighbour{N}) ;

guara[Sl <- |
endwhere
where (temp AND NOT neighbour[NE])

guara[SW] <- |
endwhere
where (temp AND NOT neignboufEl)

guard[w] <- |
endwhere

temp <- number_set EQ 7 # 7 neighbours
where (temp AND NOT neighbourfN|)

guard[S] <- 1

endwhere
where (temp AND NOT neighbourfEfi

guard[W] <- |
endwhere
where (tenp AND NOT neighbourfNE])

guard[S..W] <- 7 # set guards S, St4/ and W
endwhere
where (temp AND NOT neighbourfSEl)

guard[W..Nw] <- 3 # set guards W, NW and N
guard[N] <- 1

endwhere

Check for any neighbour guards
any_guard <- 0
ford=NtoNW

any-guard <- any9uard OR %d:guard[(d+4f/"8] # d+4 calculates opposite direction
next d

lf clear_flag and no guards preventing me then ctear my pixel
where (clear_flag AND NOT anyjuard)

edge_bit <- 0
endwhere

endfunc thin

T7

Appendix II

An earlier implementation: User manual for the 'sim' interpreter
Introduction

Initially the cluster level of the wPM architecture was simulated by means of an interprerer for
an early version of the CPL language, running as a single user process under Unix. This version
of the language, now referred to as CPL-1, differs from the current definition in several ways.

There are various syntactic changes, chiefly at the PPEL level, reflecting the fact that in CpL-l
these operations were at a lower level, corresponding much more closely to the hardware (see
the section on 'Low level PpEL operations' below).

The PPEL memory model that CPL-1 assumed differs slightly from the current version in that it
has two banks of 128 bits each (P and Q), rather than a single register file (M). This has the
advantage that in a single PPEL instruction two bits from the register file can be accessed, but
only if they have painstakingly been set up to use corresponding locations within the p and e
files. This idea was eventually dropped as not being general purpose enough, as well as rather
cumbersome to use.

The original implementation included several implementarion dependent Vo and debugging
statements ('load' and 'save', 'display', 'print' and 'verbose', all described below). Some ol
these may reappear in future implementations of CPL-Z, as and when appropriate.

The original user manual, giving details of the language and how to use the simulator, is
appended below. Most of it does not make very exciting reading unfortunately, and it is mainly
of historical interest. Tacked on the end of this appendix, however, are some timing results and
sample oufput, which may be slightly more readily accessible.

The'sim' interpreter

An emulator of the PPEL and ILP levels of the wPM architecture has been implemented, in the
form of an interpreter for the Cluster Programming Language. A definition oi the language, as
implemented by sfin, is given below.

This implementation of CPL is only suitable for SIMD or multi-SIMD processing over the whole
image array, as it would need to be used in conjunction with some higher level language to pro-
vide a complete programming system for image understanding tasks. Its main use is for interac-
tively developing and experimenting with low level algorithms.

Srrn is written in C under Unix, and runs on both Vaxes and Suns. It currently implements
128x128 or 256x256 PPELs. It may be used interactively or from a script of CpL commands.
Images to be processed are loaded and saved as Unix files, and may also be ourput on a graphic
display. A basic timing metric is provided by displaying the execution time of a program in
clock cycles.

CPL-I language summary

A program consists of statements, one per line. Each line has the form
command argl arg2 ...

where these keyword and argument tokens are separated by white space characters or commas.
If a token contains a space or comma it must be quoted (with a single quote). Blank lines and
lines starting with a '#' ate ignored as comments. The commands are summarised below, with
more detailed notes on some of the commands and the form of parameters given in subsequent
sections.

18

I/O and simulator control
loadfilename n reg
save filename n reg
display n reg posn Ilabel]
verbose [+-]mask
print arg, ...
printf str, arg, ...

show drg,...
bitplane namefisizd| [-reg], ...

unsync
end

Basic PPEL operations
op ij d [addr] [?]
repeat n op ij d addr [?]

Multi-bit PPEL operarions

defaults to 1.

clear [n] dest [?]
set [n] dest [?]
complement In] dest [?]
copy [n] src dest [?]
copyc [n] src dest [?]
add n src dest [?]
sub n src dest [?]
subfrom n src dest [?]
scale n src dest const [?]
accumulate n src dest const [?]
compare n regl reg2 [?]

rvhere [l]src
whereaddr address
wheremask hmask vmask

... stmts ...

lelsewhere
... stmts ...1

endwhere

The following instructions may affect the X or F flag bits.
of a calculation is greater than Zn-l or less than 0.

load or save an image in a Unix file

output PPEL array contents
set simulator output level
display ILP variables or arguments
formatted print
display intemal simulator variables etc.
allocate a named array of ppEL memory
force unsync'd operation
terminate prognm

single bit operation
#repeat op i j d addr++ n times

The flag F is set when the result
For non-arithmetic operations n

dest e- 0
dest <- all 1's
dest (- not dest
dest F src
dest e- not src
dest <- dest + src, F <- overflow
dest <- dest - src, F <- overflow
dest (- src - dest, F <- overflow
dest (- const x src, F e- overflow
dest <- dest + const x src, F <- overflow
test & set: X <- (regl=reg2), F <- (regl>reg2)

A <- src, A (- not src
access a single PPEL by address 0..255
ac.cess PPELs using roVcolumn masks

#A<-notA

PPEL conditional operation

Any PPEL operation can be restricted to acrive PPELs (those with bit A seg if a ,?' is
appended to the instruction. Alternatively, one of the forms of 'where'can be used to
make all the PPEL statements in a block conditional on A. During awhere block an indivi-
dual operation can be made unconditional by appending a ,!'.
'Where' statements may not be nested as such, but successive where's can be used to pro-
gressively restrict the set of active PPELs, up to the occurrence of an 'endwhere'. (Foithe
second and subsequent where's'A(-A&src', though '!' can still be used to force
'A (- src'. The old value of A is not saved.)

19

ILP operations

if arg then # conditional (multi-)branching
... stmts ...

lelse
... stmts ...1

endif

for var = arg to arg [step arg] # BASIC-style for..next loop
... stmts ... # (unsynced if args aren't constants)

next [var] # var may be given for extra checking
rvhile arg do # standard while loop

enOrvnite

do # ditto, but loop is carried out at least once

,rt ii. urg

Ioop # generalised loop

exit ftvhen arg/ # can also break out of 'while' or 'for' loops

endloop

var ;= arg [binop arg] # assignment to ILp variable
sync # resynchronise the ILps

Low level PPEL operations

The PPEL ALU performs any of the 216 logic functions mapping three input bits (i,7 and F) to
two oufput bits (d and F), so the function opcode therefore has 16 bits (2 oulput bits for each of 8
different inputs).

For example, the code for the'add with carry'function is 0001011001101011, which may be
calculated by reading successive pairs out of the last two columns in the truth table below.

Table 5 Truth table for'add with carny'

There are two ways of specifying this function opcode in CPL. It may be given explicitly, as a
number consisting of eight base-4 digits preceded by an 'ar' sign (eg. @01 I2l2Z3 for the exam-
ple above). Alternatively, one of the predefined opcodes below may be used.

Input
Fii

i+j+F
F'd

000
001
010
0ll
100
101
lt0
lll

00
01
0l
l0
0l
10
l0
II

20

opd
AND i&j
xoR ij
oR itj
ADD ij
SUB (i-Iqaz
SELI i
NOTI -i
SELIJ i
oRF itjtf
SET 1

CLEAR O

opdf
NAND -(i&j) f
)oroR -(il) f
NoR -(itj) t
ADc (i+j+flVo2 (i+j+f)>2
sBC (i-j-t)Eo2 (i-j-0<0
SELJ j f
NOrJ I f
c\4P -(il) (i_j-0<0
ANDF i&j&f i&j&f
SETF O 1

CLRF O O

f
f
f
f
i&j
j>i
f
f
j
irjrf
f
f

i and 7 are PPEL operand addresses for the two source bits and d is the desrination. They can be
one of X, Y, z, T, A, I, P, Q, N, NE, ... NW. The addr field specifies the address of the source or
destination bit within the P or Q register file. Alternatively, extended ppEL addressing as below
may be used (provided the operands remain consistent with the single address format of low
level PPEL instructions), in which case the appropriate value for addi is filled in automarically.
Some exanrples of valid PpEL instructions are:

#Z<_X&Y
#ifAthenY<-P3
Pl7 +- Ql7+X+F, F <- carry
X <- Y&2, F <- YIZ

Multi-bit PPE L operations

Arrays of PPEL registers are frequently used for multi-bit operations, eg. p10,1 l,IZ,l3 may be
regarded as an accumulator, containing one 4-bit number, to which ttre +-bit value p14,1 5,16,17
may be added using the multi-bit macro insrruction 'add 4 p 14 p I0' .

Since it is inconvenient to keep track of these locations by explicit address, the language allows
named bitplanes. The statement'bitplanefag,image[8]' would allocate a single bil register
called fag and an 8-bit number register image in PPEL memory. The name image is usid to
refer to this 'variable' within multi-bit macro operations. Individual bits can be accessed using a
subscript notation, eg. image[7] refers to the most significanr bir (this works by adding * offirr
to the base address, so in fact image andimagef0] are the same thing). The subscripirnay also
come from an ILP variable, eg. image[i].

Values can be copied from one of these variables to another, for exampl e 'copy 8 image buffer,
copies image[O] to buffer[0], image[t] to buffer[Il, and so on. 'scale 4 U"Xui el7 T,muttlpties
by a constant (Q10t0..31 <- 7 * bufferto..3l), while 'add S l image' incremenis iiaget0..zl by one,
and so on. Note that source and destination are always assumed to be of the same length, so if
the destination needs to be longer to allow for the size of the result, the source has to be padded
to the same length.

Operations between different variables of the same register file are implemented using an inter-
mediate temPorary store. If corresponding registen of the P and e files are used, as in
'add4 Ql} PI}', the operation can execute much faster. Placed bitplanes (eg. ,bitplane
imagef8]=P16') may be used for this, but since this feature has not p.o.r"n itself to be particu-
larly useful it may disappear in the future (to be replaced with uniform addressing M0...M255).

ANDXYZ
SELIPPYS?
ADC X Q17 PI7
@02230223 Y Z X

2l

Parameter summar!

n is a bit count l--32 (up to 8 bits for'load' and 'save'); reg and dest we 'extended'ppEL regis-
ter addresses or named bitplanes, eg.x, y, F, NE, s, pl6, e0, e127, image. The addres, -uy ulro
be specified indirectly by the contents of an ILP variable, for examplel7ox,. src and regl',2 are
similar but may additionally be prefixed by a direction as in N:P16 or SE:F, or theyLay be
signed 16-bit consrants (which may be the value of an ILp variable, eg. ,$n').

Appropriate code for these different types of operand is generated by the compiler.

ILP operations

There arc26ILP variables in this implementation. Avar is one of the ILpvariables a... z. A
binop isoneof + - * | Vo & l^ = != > < >= <= (allwiththesamemeaningasinC).
arg is an ILP argument. It may & a var, a const, one of the special tenns described below, or a
simple expression containing these terms combined with btnop's, but note that expressions are
evaluated strictly from left to right with no algebraic precedence of operators, nor are spaces
allowed. For example, 'x+counV2' finds the average of j and count.

Special ILP terms include: firstX (address of first responding ppEL, coded as 16.x+y), any
(Boolean with value 1 if any PPELs in the cluster are responding, ie. have their X bit set, or b
otherwise), count (number of PPELS responding in this cluster). Th"te are also several .simula-
tor constants': myaddr (the address of this ILP, from 0 to Isizexlsize - I), Isize (number of nps
across in the simulator), Psize (size of a cluster, PPELs across), and ® (the address of a ppEL
register); also 'time' (the current time in ticks for the ILp, but excluding time spent waiting for a
sync) can be used.

read(ad-dress,n,reg) can be used to read data from a particular ppEL (in effect this works by
using 'whereaddr' to select the PPEL, getting it to output its data onto the some/none bus one bit
at a time, and accumulating the value in an ILp register).

I ndexe d PP E L addres sing

Use of the PPEL operations has been described above with explicit arguments, but it is also pos-
sible to specify a variable or other parameter indirectly from the .ont.nt, of an ILp variable.
Within an ILP expression the operator '&' can be applied to a ppEL operand (eg. X,N, Sw, p0,
image[7J, N:Ql6) to give the bit address used intemalty to refer to that ppel register. where one
would use one of these registers in a PPEL instruction, the operator'Vo'.an be used instead at
that point to dereference an ILP variable which contains a ppEL address, eg. .r := &pl6;
copyN:Vox Y'is equivalent to 'copyN:Pt6Il'. As a convenient abbreviation, one may omit the'&'when referring to directions, so'/or d=NtoWstep2'could be used io r,.p through the
four direct neighbours, for example. The loop variable can be used as a subscript directly 1*t.r.
|.[=Q,]rIE=1, E=2 and so on) to accumulate a result over the neighbours

On9 can specify numeric operands in PPEL operations (such as the bit count or a consrant src) in
a similar way, but using '$' (convert to numeric argument) rather than'Vo'(convert to address
argument).

Saving images as Unixfiles
loadfilename n reg
save filenarne n reg

reg is a PPEL address
n is a bit count from I to 8

Images are stored as binary files, one byte per pixel, in rows from top to bottom (within each row
the order is from left to right). We adopt the convention that the- size of an image should be
appended to the filename, so'boat.l28' is an image at a resolution of 128xi28, for example.

22

When loading a file the simulator first searches for a file with the name as given, then, if none is
found, tries again with the current simulator resolution appended to the ni.r. This allows one
to write a resolution independent script: the appropriate image file is located automatically.
A filename may either contain an explicit path (including the use of ,-/, torefer to the process,s
home directory), or be relative to the current directory. In the lafter case the current directory is
searched first' but if the image to be loaded is not found there then a standard images directory,
rvith location given by the value of the environment variable 'IMAGES', is searched next.

Tlrc'display' command

This ourputs an image stored in the PPEL array. Unfortunately the arguments to .display'
are

rather complicated, because there is a variety of ways of intelpreting and displaying data.
display n reg posn Ilabel]

When the bit count n is from 1 to 8, that number of bits is read and displayed as a grey-scale
(scaled to use the full range of available intensities regardless of the number tf Ui6 selected). If
n is greater than 8, it is still interpreted as a bit count, with values up to 255 shown on a grey-
scale and values over 256 mapped to one highlighted colour. lf n = -6, six bits are urJA io
display a colour image (rwo bits each of RGB). When n = -9 or -10, the bottom g bits are
mapped to a grey scale and the upper I or 2 bits are used as a mask plane for highlighting (0 -+gtey scale, 1 -+ red, 2 -+ yellow, 3 -+ purple). With n = -8 the ra*

"olo*
map is usi (be-ware!)

It256 is added to n, or if 'disploy i ...' is used, the intensity display is inverted when hardcopy
oufput is being generated (this should be used when displaying eige intensities for .*u-pi",
because in this case white on the screen corresponds bener to ttact on paper).

The posn argument normally lies between 0 and however many images fit on the screen (less
one). This number depends on the output device: for the Sun it is currently 12. If posn= 100 no
output is generated, andif posn is 101 or greater Qtosn- 100) lines of textual nu,,,i.i. output are
produced on the terminal (useful for looking at exact values for debugging). The labet isa string
of up to 20 characrers (or possibly more, depending on output device).
Two forms of graphical output are currently supported: display on a colour Sun, or postScript
output for producing hardcopy on a laser printer.

On the Sun the Sunview graphics system is used, creating a windoVframe for the output, which
must be closed manually by selecting the menu option 'Quit' with the mouse before the simula-
tor can terminate.

The PostScript version sends its output to stdout, and so is unsuitable for interactive use (its out-
put should be piped through 'lpr -Ppsc'). It sets 'verbose = 0', which means that all other oufput
is suppressed, other than error messages, which are sent to stderu.

It is also possible to select texrual output, displaying the ourput of three rows of the first ILp
numerically with the command line option '-t'.

The 'print' and'showt commands

The 'print' command displays the value of ILp variables and expressions (including parameters
such as count or firstX). The command takes a variable number of arguments, and-the ouqput
may be annotated if a string in double quotes is given (eg. 'print "count=", count,). The expies-
sions are printed out using a separate line for each ILP, so it may be helpful to print myaddr to
identify which ILP each line of output refers to.

'Printf is a formatted print, taking a format string in the manner of printf(3) in the Unix standard
library.

23

'Show' is used to display internal simulator variables: active, a mask showrng which ILps are
enabled and what the current ILP is when running out of sync; time, the simulation time in ticksfor the ILPs, where the subtotal for the current simulation slice is shown in parentheses; sym-
bols, the bitplane symbol table; or the current verbose setting. The 'show' command can also be
used on the parameters accepted by 'print' to print the values for all the ILps on one line (when
they are running in sync); or to display the value used internalll, to refer to ppEL addresses etc.

Tlrc'verbose' command

This selects the amount of simulator output. Its argument is a bit fleld, where the different bits
(hex values shown) have the following meaning (the name used internally is also shown):

1 DPRTEN 'print'command enabled (f)
2 DTOTAL Display toral number of ticks at end of program (t)
4 DWARN Display waming messages (eg. divide UV Oj ffl8 DINFO Display normal informational messages (t)
10 DVERB More verbose (extra info and stafus messages) (*)
20 DTRACE Trace internal simulator calls (*)
40 DILP Trace low-level calls to .l/p,
80 DDEBUC Simulator debugging
100 DTEACH Display time taken by each insrruction in ticks (*)
200 DECHO Echo each instruction (*)
400 DTEXT Text output only (graphics disabled)

The default outputs are marked (f). This default may be changed by giving a command line
option when the simulator is invoked. To echo statements as they o""* *-h.n * interpreter
script is running the option -e should be selected, this adds the (f) options. The command line
option -v adds the (*) oufputs, -t selects text oufput (and only one Lpls simulated so the simula-
tor runs faster with this oprion), -i adds 'ilp' tracing, and -i disables all ourput other than faral
erTor messages.

The simulator routine ilp() perforrns a single ILP or PPEL operation on all the currently active
llPs/clusters, so tracing calls to this routine with -i would show all the single bit operations car-
ried out during a multi-bit macro, for example.

'Verbose' can either take an absolute parameter in hex, or a change from the current value if
prefixed with '+' or '-' to set or reset particular bits, eg. 'verbosel8g' udd, simulator debue-
ging output. -

Use of the simulator
The interpreter may be run interactively or from a command script, depending on whether a
cmdfile is specified:

sinr l-eistTv?J I cmdfile]
The command line options select the amount of diagnostic information that gets ourput by the
simulator (see description of the 'verbose' command, or type 'sim -?' for a biief Oescription of
the options).

Unix lets you make a script directly executable if you have '#!sim' as rhe first line of the file and
make it executable (with 'chmod +x').

The interpreter terminates when it gets to the end of frle, or upon reading an 'end' instruction,
and then prints out the total execution time of the progam in clock ncts, where a tick is the time
taken to do one PPEL instruction (rypicaily 100 ns).

The keytroard intemrpt character (usually ^C) can also be used to terminate a simulator run.
When the interpreter is being used interactively ^C should be pressed once to intemrpt an

24

instruction and return to the input prompt ')', or twice in succession to quit.

Annotated listings

The '-T' option can be used to generate additional timing output. This is merged together with
the program source flle using the awk script 'annotate' to produce un unnotut.d listing showing
the average time spent executing each instruction. Usage: 'sim -T script >oufput' followed b!'annotate script output'.

Unsynced ILP operation

Normally all the ILPs run in lock-step synchronisafion, but after a conditional statement such as'ifl is encountered,rnultiple independent execution branches are followed unril all the u-ns sync
themselves again. The simulator implements this by doing multiple passes through the program,
simulating one ILP to completion (or to the next sync instruction) and then the next and so on,
keeping track of the time and current 'program counter' for each ILp. (This only works from
simulator scripts, as opposed to interactive use, as it is not possible to 'rewind' standard input.)
The unsync command forces this mode of operation and is occasionally useful to overcome lim-
itations in the current simulator implementation (for example, if you supply a ppEL parameter
from an ILP variable and the simulator is running in sync at that point the uufu" is taken from ILp
0, so if the ILPs have different values you will get incorrect resulis).

The inputs from neighbouring PPELs along the edge of a cluster are undefined when the simula-
tor is running in unsynced mode. This is probably a sort of bug, bur currently very difficult to'fix'. A neat solution might be to always feed back a ppEls own output along tire eOge.

Some timing results

A number of common low level image processing algorithms that might be performed at the
PPEL and ILP levels have been coded up in CPL and run on the simulator. Th" timings given
below assume one pixel per ppEL and a l00ns ll-plppEt_ cycle time.

Local maximum 8 ps
Local mean 6 ps
Laplacian operator 8 ps
Sobel edge detection 24 ps
Guarded thinning 63 ps
Chain coding and ourput 395 ps
Arbitrary 5x5 convolution 180 ps
64 bin histogram 65 ps

Table 6 Simulator timines

25

Appendix III

Example of otd-style cpL code, together with.simulator output
#lsim
Sobel edge detection convolution

#-t-2-t -101
#000 -202
#t2t -t?l

bitplane image[t 1]=Pl 6, partialh tJ:et 6
bitplane sobel[fi], resul{t t l
load'girl'I image
display 8 image 0'originalimage'

partial(10) := image'2+E+W
copy 8 image partia[tl
add 10 E:image partial
add l0 W:image partial

result(l 1) := S :partial-N :partiat
copy 10 S:partial result
subll N:partial result

negate if negative to get absolute value
where F

subfrom 1l 0 result
endwhere
sobel used as rnain accumulator for lGxl + lGyl
copy l0 result sobel

Display result
display i l0 result | 'horizontd edges'

Same thing verticaily
clear partial[0]
copy 8 image partiat[l1
clear 2 inagefal
add l0 N:image partiat
add l0 S:image partial

qlear result[10]
copy 10 E:partial resutt
subllW:partial result
where F

subfrom ll 0 result
endwhere
display i l0 result 2 'vertical edges,
add 11 result sobet

display i 1t sobet S'combined'

ir

verclcaL ed.ge s

run time: 235 ticks

26

orlglnal i.nage

Total simul-ator

