VMware ThinApp User’s Manual

VMware ThinApp 4.0.2

5 vmware:

VMware ThinApp User’s Manual

VMware ThinApp User’s Manual
Item: EN-000117-02

You can find the most up-to-date technical documentation on the VMware Web site at:
http://www.vmware.com/support/

The VMware Web site also provides the latest product updates.

If you have comments about this documentation, submit your feedback to:

docfeedback@vmware.com

© 2009 VMware, Inc. All rights reserved. This product is protected by U.S. and international
copyright and intellectual property laws. VMware products are covered by one or more patents listed
at http://www.vmware.com/go/patents.

VMware, the VMware “boxes” logo and design, Virtual SMP, and VMotion are registered trademarks or
trademarks of VMware, Inc. in the United States and/or other jurisdictions. All other marks and names
mentioned herein may be trademarks of their respective companies.

VMware, Inc.

3401 Hillview Ave.
Palo Alto, CA 94304
www.vmware.com

2 VMware, Inc.

http://www.vmware.com/support/
http://www.vmware.com/support
mailto:docfeedback@vmware.com

Contents

About This Book 9

1 Installing ThinApp 11

ThinApp Requirements 11
Operating Systems, Applications, and Systems That ThinApp Supports
Applications That ThinApp Cannot Virtualize 12

Recommendations for Installing ThinApp 13
Using a Clean Computer 13
Using the Earliest Operating System Required For Users 14

Install ThinApp 14

2 Capturing Applications 15

Reviewing the Capture Process 15
Assessing Application Dependencies Before the Capture Process 16
Recommended Tasks Before the Capture Process 16

Capture an Application with the Setup Capture Wizard 16
Specify Entry Points, Data Containers, and Inventory Names 18
Specify Active Directory Access and Sandbox Locations 20
Specify Isolation Modes 21
Specify Location, MSI, and Compression Options 24
Review Project Files and Build Application Packages 25

Modifying Isolation Modes 26

Modifying Settings in the Package.ini File 26
Edit the Package.ini File 27

Modifying Settings in the ##Attributes.ini File 28
Edit the ##Attributes.ini File 28

3 Deploying Applications 29
Reviewing ThinApp Deployment Options 29
Deploying ThinApp With Deployment Tools 29
Deploying ThinApp in the VMware View Environment 30
Deploying ThinApp on Network Shares 30
Deploying ThinApp Using Executable Files 30

VMware, Inc.

11

VMware ThinApp User’s Manual

Facilitating File Launching with the thinreg.exe Utility 31
Application Sync Effect on the thinreg.exe Utility 31
Run the thinreg.exe Utility 32
Optional thinreg.exe Parameters 32
Building an MSI Database 35
Customizing MSI Files with Package.ini Parameters 36
Modify the Package.ini File to Create MSI Files 37
Controlling Application Access with Active Directory 39
Reviewing Package.ini Entries for Active Directory Access Control 39
Using ThinApp Packages Streamed from the Network 40
How ThinApp Application Streaming Works 41
Reviewing Requirements and Recommendations for Streaming Packages 42
Stream ThinApp Packages from the Network 43
Using Captured Applications with Other System Components 43
Performing Paste Operations 43
Accessing Printers 44
Accessing Drivers 44
Accessing the Local Disk, the Removable Disk, and Network Shares 44
Accessing the System Registry 45
Accessing Networking and Sockets 45
Using Shared Memory and Named Pipes 45
Using COM, DCOM,, and Out-of-Process COM Components 45
Starting Services 45
Using File Type Associations 46
Sample Isolation Mode Configuration Depending on Deployment Context 46
View of Isolation Mode Effect on the Windows Registry 47

4 Updating Applications 49

Application Updates That the End User Triggers 49
Reviewing the Application Sync Utility 49
Reviewing the Application Link Utility 52

Application Updates That the Administrator Triggers 57
Force an Application Sync Update with AppSync.exe 58
Reviewing the sbmerge.exe Workflow 58

Automatic Application Updates 60
Dynamic Updates Without Administrator Rights 61

Upgrading Running Applications on a Network Share 62
Reviewing File Locks 62
Upgrade a Running Application 62

Sandbox Considerations for Upgraded Applications 63

4 VMware, Inc.

Contents

5 Monitoring and Troubleshooting ThinApp 65

Providing Information to VMware Support 65

Using Log Monitor 66
Troubleshoot Activity with Log Monitor 66
Perform Advanced Log Monitor Operations 67
Log Format 69

Troubleshooting Specific Applications 79
Troubleshoot Registry Setup for Microsoft Outlook 79
Viewing Attachments in Microsoft Outlook 79
Starting Explorer.exe in the Virtual Environment 80
Troubleshooting Java Runtime Environment Version Conflict 81

A Package.ini Parameters 83

Isolation and Virtualization Parameters 84
ChildProcessEnvironmentDefault 84
ChildProcessEnvironmentExceptions 84
DirectorylsolationMode 85
External COMObjects 85
ExternalDLLs 86
IsolatedMemoryObjects 86
IsolatedSynchronizationObjects 87
RegistrylsolationMode 88
SandboxCOMObjects 88
VirtualizeExternal OutOfProcessCOM 89

General Purpose Parameters 89
AddPageExecutePermission 89
AllowUnsupportedExternalChildProcesses 90
AnsiCodePage 91
AutoShutdownServices 91
AutoStartServices 91
BlockSize 92
CachePath 93
CapturedUsingVersion 93
CompressionType 94
DisableTracing 95
ExcludePattern 95
FileTypes 96
Localeldentifier 96
LocaleName 97
LogPath 97
OutDir 97

VMware, Inc. 5

VMware ThinApp User’s Manual

NetRelaunch 98
Protocols 98
RuntimeEULA 99
Shortcuts 99
UACRequestedPrivilegesLevel 99
UACRequestedPrivilegesUiAccess 100
UpgradePath 100
VirtualComputerName 101
VirtualDrives 102
Wow64 103
Access Control Parameters 104
AccessDeniedMsg 104
PermittedGroups 104
Parameters for Individual Applications 105
Disabled 105
CommandLine 106
Icon 106
NoRelocation 107
ReadOnlyData 108
ReserveExtraAddressSpace 108
RetainAlllcons 109
Shortcut 109
Source 110
StripVersionInfo 110
WorkingDirectory 110
Version. XXXX 111
Application Link Parameters 111
Application Link Path Name Formats 112
RequiredAppLinks 112
OptionalAppLinks 113
Application Sync Parameters 114
AppSyncURL 114
AppSyncUpdateFrequency 115
AppSyncExpirePeriod 115
AppSyncWarningPeriod 115
AppSyncWarningFrequency 115
AppSyncWarningMessage 116
AppSyncExpireMessage 116
AppSyncUpdatedMessage 117
AppSyncClearSandboxOnUpdate 117
MSI Parameters 117

6 VMware, Inc.

MSIArpProductlcon 117
MSIDefaultInstallAllUsers 118
MSIFilename 118
MSlIInstallDirectory 119
MSIManufacturer 119
MSIProductCode 120
MSIProductVersion 120
MSIRequireElevatedPrivileges 120
MSIUpgradeCode 121
MSIUseCabs 121

Sandbox Parameters 122
SandboxName 122
SandboxPath 122
InventoryName 123
SandboxNetworkDrives 124
SandboxRemovableDisk 124
RemoveSandboxOnExit 125

B ThinApp Sandbox 127

Search Order for the Sandbox 127
Controlling the Sandbox Location 129
Place the Sandbox on the Network 130
Place the Sandbox on a USB Drive 130
Make a Portable Application 131
Sandbox Structure 131
Making Changes to the Sandbox 131
Listing Virtual Registry Contents with vregtool 132

C ThinApp Directory Files 133

D Snapshot Commands and Customization 135

VMware, Inc.

Methods of Using the snapshot.exe Utility 136
Creating Snapshots of Machine States 136
Creating the Template Package.ini file from Two Snapshot Files 137
Creating the ThinApp Project from the Template Package.ini File 137
Displaying the Contents of a Snapshot File 138

Sample snapshot.exe Commands 138

Create a Project Without the Setup Capture Wizard 139

Customizing the snapshot.ini File 140

Contents

VMware ThinApp User’s Manual

E ThinApp Virtual File System 143
Virtual File System Formats 143
Merged and Virtual Views of the File System 144
Using Folder Macros 144
List of Folder Macros 145
Processing %SystemRoot% 147

F ThinApp Scripts 149

Callback Functions 150

Example Scripts 150
Jbat Example 151
Timeout Example 151
Modify the Virtual Registry 152
.reg Example 152
Stopping a Service Example 152
Copying a File Example 153
Add a Value to the System Registry 154

API Functions 155
AddForcedVirtualLoadPath 155
ExitProcess 156
ExpandPath 156
ExecuteExternalProcess 157
ExecuteVirtualProcess 157
GetBuildOption 158
GetFileVersionValue 159
GetCommandLine 160
GetCurrentProcessName 160
GetOSVersion 160
GetEnvironmentVariable 162
RemoveSandboxOnExit 162
SetEnvironmentVariable 163
SetfileSystemlsolation 163
SetRegistrylsolation 164
WaitForProcess 164

Index 167

8 VMware, Inc.

About This Book

The VMuware ThinApp User’s Manual provides information about how to install
ThinApp, capture applications, deploy applications, and upgrade applications.
You can refer to this guide to customize parameters and perform scripting.

Intended Audience

This book is intended for anyone who wants to install and use ThinApp. Typical users
are system administrators responsible for the distribution and maintenance of
corporate software packages.

Document Feedback

VMware welcomes your suggestions for improving our documentation. If you have
comments, send your feedback to docfeedback@vmware.com.

Technical Support and Education Resources

The following sections describe the technical support resources available to you.
To access the current version of this book and other books, go to
http://www.vmware.com/support/pubs.

Online and Telephone Support

To use online support to submit technical support requests, view your product and
contract information, and register your products, go to
http://www.vmware.com/support.

VMware, Inc. 9

mailto:docfeedback@vmware.com
http://www.vmware.com/support/pubs
http://www.vmware.com/support

VMware ThinApp User’s Manual

Customers with appropriate support contracts should use telephone support for the
fastest response on priority 1 issues. Go to
http://www.vmware.com/support/phone_support.html.

Support Offerings

To find out how VMware support offerings can help meet your business needs, go to
http://www.vmware.com/support/services.

VMware Professional Services

VMware Education Services courses offer extensive hands-on labs, case study
examples, and course materials designed to be used as on-the-job reference tools.
Courses are available onsite, in the classroom, and live online. For onsite pilot
programs and implementation best practices, VMware Consulting Services provides
offerings to help you assess, plan, build, and manage your virtual environment.

To access information about education classes, certification programs, and consulting
services, go to http://www.vmware.com/services.

10 VMware, Inc.

http://www.vmware.com/support/phone_support.html
http://www.vmware.com/support/services
http://www.vmware.com/services/

Installing ThinApp

ThinApp provides the ThinApp.msi file to install the software.

This information includes the following topics:

“ThinApp Requirements” on page 11
“Recommendations for Installing ThinApp” on page 13

“Install ThinApp” on page 14

ThinApp Requirements

Review the requirements for operating systems and captured applications before
installing ThinApp.

Operating Systems, Applications, and Systems That ThinApp
Supports

ThinApp supports the following operating systems, applications, and systems:

VMware, Inc.

32-bit platforms: Windows NT, Windows 2000, Windows XP, Windows XPE,
Windows 2003 Server, Windows Vista, Windows Server 2008

64-bit platforms: Windows XP 64 bit, Windows 2003 64 bit, Windows Vista 64 bit,
Windows Server 2008 64 bit

16-bit applications running on 32-bit Windows operating systems
32-bit applications running on 32-bit and 64-bit Windows operating systems

Terminal Server and Citrix Xenapp

"

VMware ThinApp User’s Manual

ThinApp supports Japanese applications captured and run on Japanese operating
systems.

ThinApp does not support these operating systems and applications:
B 16-bit or non-x86 platforms such as Windows CE
B 64-bit applications running on 32-bit or 64-bit Windows operating systems

B 16-bit applications running on 64-bit Windows operating systems

Applications That ThinApp Cannot Virtualize

ThinApp cannot convert some applications into virtual applications and might block
certain application functions.

You must use traditional installation technologies to deploy the following types of
applications:

B Applications requiring installation of kernel-mode device drivers
ODBC drivers work because they are user mode drivers.

B Antivirus and personal firewalls

B Scanner drivers and printer drivers

B Some VPN clients

Device Drivers

Applications that require device drivers do not work when packaged with ThinApp.
You must install those device drivers in their original format on the host computer.
Because ThinApp does not support virtualized device drivers, you cannot use ThinApp
to virtualize antivirus, VPN clients, personal firewalls, and disk and volume
mounting-related utilities.

If you capture Adobe Acrobat, you can open, edit, and save PDF files, but you cannot
see or use the PDF printer driver that allows you to save documents to PDF format.
Shell Integration

Some applications that provide shell integration might have reduced functions when
they are included in a ThinApp package. When ThinApp virtualizes applications, the
applications might lose some shell integration functions with the system explorer shell.

12 VMware, Inc.

Chapter 1 Installing ThinApp

DCOM Services that are Accessible on a Network

ThinApp isolates COM and DCOM services. Applications that install DCOM services
are accessible on the local computer only by other captured applications running in the
same ThinApp sandbox. ThinApp supports virtual DCOM and COM on the same
computer but does not support network DCOM.

Global Hook DLLs

Some applications use the SetWindowsHookEx API function to add a DLL to all
processes on the host computer. The added DLL intercepts Windows messages to
capture keyboard and mouse input from other applications. ThinApp ignores requests
from applications that use the SetWindowsHookEx function to try to install global hook
DLLs. ThinApp might reduce the application functions.

Recommendations for Installing ThinApp

When you install ThinApp, keep in mind the recommendations and best practices.

Using a Clean Computer

VMware recommends using a clean computer to install ThinApp because the
environment affects the application capture process. A clean computer is a physical or
virtual machine with only a Windows operating system. In a corporate environment
where you have a base desktop image, the base desktop image is your clean computer.
The desktop computer might already have some components and libraries installed.

Application installers skip files that already exist on the computer. If the installer skips
files, the ThinApp package does not include them during the application capture
process. The application might fail to run on other computers where the files do not
exist. A clean computer allows the capture process to scan the computer file system and
registry quickly.

If you install ThinApp and capture an application on a computer that has Microsoft .NET
2.0 already installed, .NET 2.0 is not included in the ThinApp package. The captured
application runs only on computers that have .NET 2.0 already installed.

Using Virtual Machines for Clean Computers

The easiest way to set up a clean computer is to create a virtual machine. You can install
Windows on the virtual machine and take a snapshot of the entire virtual machine in
its clean state. After you capture an application, you can restore the snapshot and revert
it to a clean virtual machine state that is ready for the next application capture.

You can use VMware Workstation or other VMware products to create virtual
machines. For information about VMware products, see the VMware Web site.

VMware, Inc. 13

VMware ThinApp User’s Manual

Using the Earliest Operating System Required For Users

Install ThinApp on a clean machine with the earliest version of the operating system
you plan to support. In most cases, the earliest platform is Windows 2000 or
Windows XP. Most packages captured on Windows XP work on Windows 2000.

In some cases, Windows XP includes some DLLs that Windows 2000 does not have.
ThinApp excludes these DLLS from the captured application package if the application
typically installs these DLLs.

After you create a ThinApp application package, you can overwrite files in the package
with updated versions and rebuild the application without the capture process.

Install ThinApp

Use the ThinApp.msi file to install ThinApp. For information about the directory that
the installation creates, see Appendix C, “ThinApp Directory Files,” on page 133.

Install ThinApp software
1 Download ThinApp to a clean physical or virtual Windows machine.
2 Double-click the ThinApp.msi file.

3 Accept the license, enter the serial number, and enter a license display name that
appears when you start applications that ThinApp captures.

4 Click Next.

ThinApp is installed.

14 VMware, Inc.

Capturing Applications

You can capture applications with the Setup Capture wizard. For information about
capturing applications from the command line, see Appendix D, “Snapshot
Commands and Customization,” on page 135.

This information uses Mozilla Firefox as a key example for application capture and
includes the following topics:

“Reviewing the Capture Process” on page 15

“Capture an Application with the Setup Capture Wizard” on page 16
“Modifying Isolation Modes” on page 26

“Modifying Settings in the Package.ini File” on page 26

“Modifying Settings in the ##Attributes.ini File” on page 28

Reviewing the Capture Process

The capture process involves the following phases:

VMware, Inc.

Snapshot of the clean machine.
Installation of the application that ThinApp needs to capture.
Configuration of application settings.

For example, setting Firefox as a default browser, setting a home page, and setting
default security settings.

Snapshot of the machine after the application installation.

ThinApp assesses the differences between the initial snapshot and the snapshot
you are making.

15

VMware ThinApp User’s Manual

Configuration of ThinApp parameters to customize such areas as executable file
compression, sandbox location, and domain user access to applications.

Build of the ThinApp application package.

Assessing Application Dependencies Before the Capture
Process

Before capturing an application, assess whether the application has any dependencies
on other applications, libraries, or frameworks and whether to capture these
dependencies. VMware recommends using the Application Link utility to link separate
components at runtime. See Chapter 4, “Updating Applications,” on page 49.

Recommended Tasks Before the Capture Process

You can perform the following tasks before you start the capture process to protect the
file system and to become familiar with certain ThinApp functions that are affected by
the capture process:

Shut down applications, such as virus scans, that might change the file system
while ThinApp takes snapshots.

Become familiar with the ThinApp sandbox, thinreg.exe utility, Application
Sync utility, and MSI file deployment in case you need to address those functions
in the capture process. See Appendix B, “ThinApp Sandbox,” on page 127,
“Facilitating File Launching with the thinreg.exe Utility” on page 31, “Reviewing
the Application Sync Utility” on page 49, and “Building an MSI Database” on
page 35.

Capture an Application with the Setup Capture Wizard

16

The Setup Capture process packages an application and sets initial application

parameters. If you use a virtual machine, consider taking a snapshot before you run the
wizard. A snapshot of the original clean state allows you to revert to the snapshot when
you want to capture another application.

Capture an application

1

Download the applications to capture.

For example, download Firefox Setup 2.0.0.3.exe and copy it to the clean
machine you are working with.

From the desktop, select Start > Programs > VMware > ThinApp Setup Capture.

VMware, Inc.

Chapter 2 Capturing Applications

3 (Optional) In the dialog box that defines a clean computer, click Advanced
Settings to select the drives and registry hives to scan.

You might want to scan a particular location other than the C:\ drive if you install
applications to a different drive. In rare cases, you might want to avoid scanning a
registry hive if you know that the application installer does not modify the registry.

4 Click Next to begin the first snapshot of the hard drive and registry files.
The scanning process takes about 10 seconds for Windows XP.
5 Minimize the Setup Capture wizard and install the applications to capture.

For example, double-click Firefox Setup 2.0.0.3.exe to install Firefox. If the
application needs to reboot after the installation, reboot the system. The reboot
restarts the Setup Capture wizard.

6 Make any necessary configuration changes to comply with your organization’s
policies, such as using specific security settings or a particular home page.

If you do not make configuration changes at this time, each user must make
changes.

7 (Optional) Start the application and respond to any prompts for information before
you continue with the Setup Capture wizard.

If you do not respond to any prompts at this time, each user who uses the
application must do so during the initial start.

8 Close the application.

9 Maximize the Setup Capture wizard and click Next to proceed with another
snapshot of the machine.

ThinApp stores the differences between the first snapshot and this snapshot in a
virtual file system and virtual registry.

Proceed to specify the executable files that start the virtual application, the file that
stores virtual files and registry information, and the application name for internal
tracking. See “Specify Entry Points, Data Containers, and Inventory Names” on
page 18.

VMware, Inc. 17

VMware ThinApp User’s Manual

Specify Entry Points, Data Containers, and Inventory Names

Entry points are the executable files that start the virtual application. The entry points
you can choose from depend on the executable files that your captured application
creates during installation.

For example, if you install Microsoft Office, you can select entry points for Microsoft
Word, Microsoft Excel, and other applications that are installed during a Microsoft
Office installation. If you install Firefox, you might select Mozilla Firefox.exe and
Mozilla Firefox (SafeMode) .exe if users require safe mode access.

During the build process that occurs at the end of the Setup Capture wizard, ThinApp
generates one executable file for each selected entry point. If you deploy the application
as an MSI file or use the thinreg. exe utility, the desktop and Start menu shortcuts
created on end-user desktops point to these entry points.

To troubleshoot or debug your environment, select the following entry points during
the setup capture process:

B cmd.exe - Starts a command prompt in a virtual context that allows you to view
the virtual filesystem.

B regedit.exe - Starts the registry editor in a virtual context that allows you to
view the virtual registry.

B iexplore.exe - Starts iexplore.exe in a virtual context that allows you to test
virtualized ActiveX controls.

Entry points start native executable files in a virtual context. Entry points do not create
virtual packages of cmd.exe, regedit.exe, or iexplore.exe.

If you cannot predict the need for debugging or troubleshooting the environment, you
can instead use the Disabled parameter in the Package. ini file at a later time to active
these entry points. See “Disabled” on page 105.

18 VMware, Inc.

Chapter 2 Capturing Applications

Specify entry points, container files, and internal tracking names in the wizard
1 Select the check boxes for user-accessible entry points.

The wizard populates the list with executable files that ThinApp installed during
the capture process, and automatically selects the executable files that were
directly accessible through the desktop or Start menu shortcuts.

2 Select the primary data container, the file that stores virtual files and registry
information, from the list based on the selected entry points.

m [f the size of the primary container is smaller than 200MB, ThinApp creates a
.exe file as the primary container. For a small application such as Firefox, any
.exe file can serve as the main data container.

m [f the size of the primary container is larger than 200MB, ThinApp creates a
separate.dat file as the primary container because Windows XP and
Windows 2000 cannot show shortcut icons for large . exe files. Generating
separate small .exe files along with the . dat file fixes the problem.

m [f the size of the primary container is between 200MB and 1.5GB, ThinApp
creates the default . dat file unless you select a . exe file to override the default
.dat file.

3 If you select a .exe file to override the default . dat file when size of the primary
container is between 200MB and 1.5GB, ignore the generated warning.

Selecting a . exe file allows all applications to work properly but might prevent the
proper display of icons.

4 If you cannot select a primary data container, type a primary data container name.

If you plan to use the Application Sync utility to update a captured application,
ThinApp uses the primary data container name during the process. You must use
the same name across multiple versions of the application. You might not be able
to select the same primary data container name from the list. For example,
Microsoft Office 2003 and Microsoft Office 2007 do not have common entry point
names.

5 (Optional) Change the inventory name that ThinApp uses for internal tracking of
the application in the Package. ini file.

Using the thinreg. exe utility or deploying the captured application as an MSI file
causes the inventory name to appear in the Add or Remove Programs dialog box
for Windows.

Proceed to specify Active Directory information and the sandbox location. See “Specify
Active Directory Access and Sandbox Locations” on page 20.

VMware, Inc. 19

VMware ThinApp User’s Manual

Specify Active Directory Access and Sandbox Locations

ThinApp can use Active Directory groups to authorize access to the application and
sandbox location. For example, you might restrict access to an application to ensure
users do not pass it to unauthorized users.

The sandbox is the directory where all changes that the captured application makes are
stored. The next time you launch the application, those changes are incorporated from
the sandbox. When you delete the sandbox directory, the application reverts to its
captured state.

Specify access and sandbox information in the wizard

1 (Optional) Click Add to specify Active Directory information.

Option Action

Object Types Specifies objects.

Locations Specifies a location in the forest.
Object names (manually enter) Searches for object names.
Advanced Locates user names in the Active

Directory forest.

Common Queries (under Advanced) Searches for groups according to
names, descriptions, disabled
accounts, passwords, and days since
last login.

2 Select the ThinApp sandbox location.

You can deploy it to a local user machine, carry it on a mobile USB stick, or store it
in a network location.

If you deploy the sandbox to a local machine, use the user’s profile. If you store the
sandbox in a network drive, enter the absolute path to the location where you want
the sandbox created. A sample path is \\thinapp\sandbox\Firefox. You can
select a network location even if an application is installed on a local machine.

Proceed to specify whether the application can modify elements outside of the virtual
environment. See “Specify Isolation Modes” on page 21.

20 VMware, Inc.

Chapter 2 Capturing Applications

Specify Isolation Modes

Isolation modes help determine the changes that affect the virtual environment and the
physical environment.You can set Merged and WriteCopy isolation modes in the Setup
Capture wizard. The wizard does not provide the Full isolation mode option.

For information about the Full isolation mode that is available outside of the wizard,
see “Modifying Isolation Modes” on page 26.

The key effect of the selection of Merged and WriteCopy isolation modes within the
Setup Capture wizard is on the value of the DirectoryIsolationMode parameter in
the Package. ini file. This parameter controls the default isolation mode for the project
except when a different isolation mode exists in the ##Attributes.ini file for an
individual directory. For information about the DirectoryIsolationMode parameter,
see “DirectorylsolationMode” on page 85.

Merged isolation mode allows the application to modify elements on the physical file
system outside of the virtual application package. Some applications rely on DLLs and
registry information in the local system image. The advantage of using Merged mode
is that documents saved by users end up on the physical system in the location expected
by users, instead of in the sandbox. The disadvantage is that this mode might clutter the
system image. An example of the residue might be first-execution markers by
shareware applications written to random computer locations as part of the licensing
process.

When you select the Merged isolation mode in the Setup Capture wizard, ThinApp
completes the following operations:

® ThinApp sets the DirectoryIsolationMode parameter in the Package.ini file
to Merged.

® ThinApp assigns the Merged isolation mode to the following directories:
® %Personal%
® %Desktop%
B %SystemSystem% \ spool

If you save documents to the desktop and My Documents folder, ThinApp saves
the documents to the physical system regardless of the Merged mode selection
because Merged mode affects documents saved to global locations such as
C:\myfiles.

VMware, Inc. 21

VMware ThinApp User’s Manual

22

B ThinApp excludes some locations from the Merged isolation mode and assigns the
WriteCopy isolation mode to the following directories and their subdirectories:

m %AppData%

m %Common AppData¥%

m %lLocal AppData%

® %Program Files Common%
m %ProgramFilesDir%

B %SystemRoot%

B %SystemSystem¥%

® ThinApp assigns the Full isolation mode to any new directories that the
application creates during the installation.

The Merged option in the Setup Capture wizard has the same effect as the Merged
mode setting in the Package. ini file, but the directory exceptions that use WriteCopy
isolation mode apply only to the wizard option. The wizard configures the directory
exceptions for you and adds ##Attributes. ini files within the directories. To achieve
the same result outside of the wizard, you must configure these directory exceptions
manually.

WriteCopy isolation mode allows ThinApp to intercept write operations and redirect
them to the sandbox. VMware recommends WriteCopy mode for legacy or untrusted
applications. Although this mode might make it difficult to locate user data files that

reside in the sandbox instead of the actual system, this mode is useful for locked down
desktops where you want to prevent users from affecting the operating file system and
registry files.

When you select the WriteCopy isolation mode in the Setup Capture wizard, ThinApp
completes the following operations:

B ThinApp sets the DirectoryIsolationMode parameter in the Package.ini file
to WriteCopy.

® ThinApp assigns the WriteCopy isolation mode to the following directories:
m %AppData%
m %Common AppData¥%
m %lLocal AppData%
® %Program Files Common%

m %ProgramFilesDir%

VMware, Inc.

Chapter 2 Capturing Applications

B %SystemRoot¥%
B %SystemSystem¥%
® ThinApp assigns the Merged isolation mode to the following directories:
m %Personal%
B %Desktop%
B %SystemSystem% \ spool

® ThinApp assigns the Full isolation mode to any new directories that the
application creates during the installation.

The WriteCopy option in the Setup Capture wizard has the same effect as the
WriteCopy isolation mode setting in the Package.. ini file, but the directory exceptions
apply only to the wizard option. The wizard configures the directory exceptions for you
and adds ##Attributes. ini files within the directories. To achieve the same result
outside of the wizard, you must configure these directory exceptions manually.

Regardless of the selected isolation mode, ThinApp treats write operations to network
drives according to the SandboxNetworkDrives parameter in the Package.ini file.
This parameter has a default value of 0 that directs write operations to the physical
drive. ThinApp treats write operations to removable disks according to the
SandboxRemovableDrives parameter in the Package. ini. This parameter has a
default value of 0 that directs write operations to the physical drive.

All runtime modifications to virtual elements in the captured application are stored in
the sandbox, regardless of the isolation mode setting. At runtime, virtual and physical
registry elements are indistinguishable to an application, but virtual registry elements
always supersede physical registry elements when both exist in the same location. If
virtual and physical entries exist at the same location, isolation modes do not affect
access to these entries because the application always interacts with virtual elements. If
external group policy updates occur separately from the package through the physical
registry, you might need to remove virtual registry elements from a package and verify
that the parent element of these virtual registry elements does not use Full isolation.
Because child elements inherit isolation modes from parent elements, Full isolation in
a parent element can block the visibility of physical child elements to an application.

VMware, Inc. 23

VMware ThinApp User’s Manual

Specify the isolation modes in the wizard

Select the isolation mode to determine which files and registry keys are visible and
written by the virtual application you create.

Option Action

Merged Allows the application to read resources on and write to the
local machine

WriteCopy Allows the application to read resources on the local machine
and restrict most modifications to the sandbox.
ThinApp copies physical file system changes to the sandbox to
ensure ThinApp only modifies copies of files instead of the
actual files.

Proceed to select the application package location, create an MSI package, and
compress the executable file. See “Specify Location, MSI, and Compression Options”
on page 24.

Specify Location, MSI, and Compression Options

You can change the location of the package that stores the captures application, create
MSI files with executable files, and compress the package size.

A typical Firefox application does not require an MSI installation. But other
applications, such as Microsoft Office, that integrate with application delivery tools,
work well as an MSI package. MSI generation requires you to install the MSI on the
target device before you can use the application package.

MSI packages automate the process of registering file-type associations, registering
desktop and Start menu shortcut, and displaying control panel extensions. If you plan
to deploy ThinApp executables directly on each machine, you can accomplish the same
registration using the thinreg. exe utility.

Specify the application path, MSI name, and executable size in the wizard
1 (Optional) Change the directory where you want to save the application package.

The package stores the captured software application. If you keep the default
directory and capture Firefox 2.0.0.3, the path might appear as C:\Program
Files\VMware\VMware ThinApp\Captures\Mozilla Firefox (2.0.0.3).

2 (Optional) Select the Build MSI package check box and change the MSI filename.

24 VMware, Inc.

Chapter 2 Capturing Applications

3 (Optional) To create a smaller executable file for locations such as a USB stick, click
Fast compression.

In typical circumstances, compression reduces the on-disk storage requirement by
50 percent but slows the application performance when ThinApp uncompresses
initial blocks that start the application.

4 Click Next to create the ThinApp project.

A project is the data created by the capture process. You cannot run or deploy the
application until you build the application package.

Proceed to build the executable file or MSI application package. See “Review Project
Files and Build Application Packages” on page 25.

Review Project Files and Build Application Packages

The application package is the executable file or MSI file that you use to run or deploy
a captured application. Before you build the package from the ThinApp project, you
can review the project files to update settings.

If you capture an application on a 32-bit operating system and want to build it on a
64-bit operating system, you must set the THINSTALL_BIN environment variable on the
machine with the 64-bit operating system to C:\Program Files
(x86)\VMware\VMware ThinApp.

You do not need to build the package on the same machine on which you captured the
application. You can copy the project to another computer and discard the capture
machine.

Browse the project and build the executable file or MSI file in the wizard

1 (Optional) Click Browse Project to look at the ThinApp project files in Windows
Explorer.

For example, if you captured Firefox 2.0.0.3, the location of the project files might
be C:\Program Files\VMware\VMware ThinApp\Captures\Mozilla Firefox
2.0.0. 3. You might browse the project before you build the application
executable file or MSI file to update a setting, such as an Active Directory
specification, in the Package. in1 file that contains the parameters set during the
capture process.

The project includes folders, such as %AppData%, that represent file system paths
that might change locations when running on different operating systems or
computers. Most folders have ##Attributes.ini files that specify the isolation
mode at the folder level. The isolation mode setting at the granular folder level
overrides the overall isolation mode setting of the Package. ini file.

VMware, Inc. 25

VMware ThinApp User’s Manual

2 Click Build Now to build an executable file or MSI file containing the files you
installed during the Setup Capture process.

3 Click Finish.

You can rebuild the package at any time after clicking Finish if you need to make
changes.

Modifying Isolation Modes

ThinApp provides the Merged and WriteCopy isolation mode choices in the Setup Capture
wizard. For information about those modes, see “Specify Isolation Modes” on page 21.

You can use a third isolation mode, Full, outside the wizard in the ThinApp project text
files. The Full isolation mode secures the virtual environment by blocking visibility to
system elements outside the virtual application package. This mode restricts any changes
to files or registry keys to the sandbox and ensures that no interaction exists with the
environment outside the virtual application package. Full isolation prevents application
conflict between the virtual application and applications installed on the physical system.

ThinApp caches the isolation modes for the registry and the file system at runtime in
the sandbox. If you change the isolation mode for the project and rebuild the executable
file, you might need to delete the sandbox for the change to take effect.

You can modify isolation modes in the Package. ini and ##Attributes.ini files. See
“Edit the Package.ini File” on page 27 and “Edit the ##Attributes.ini File” on page 28.
For information about the effect of application updates on isolation modes, see
“Affecting Isolation Modes with Application Link” on page 55.

Modifying Settings in the Package.ini File

26

The Package. ini file contains configuration settings and resides in the captured
application folder. For example, a Firefox 2.0.0.3 path might be C:\Program
Files\VMware\VMware ThinApp\Captures\Mozilla Firefox
2.0.0.3\Package.ini.

The following parameters are examples of settings that you might modify:
B DirectoryIsolationMode - Sets the isolation mode to Merged, WriteCopy, or Full.

ThinApp caches the isolation modes for the registry and the file system at runtime
in the sandbox. If you change the isolation mode for the project and rebuild the
executable file, you might need to delete the sandbox for the change to take effect.

B PermittedGroups — Restricts use of an application package to a specific set of
Active Directory users.

VMware, Inc.

Chapter 2 Capturing Applications

SandboxName — Names the ThinApp sandbox.

You might keep the name for incremental application updates and change the
name for major updates.

SandboxPath — Sets the sandbox location.

You can set the sandbox in a USB location if the application executable file resides
in that location.

SandboxNetworkDrives — Specifies whether to direct write operations on the
network share to the sandbox.

RequiredApplLinks — Specifies a list of external ThinApp packages to import to
the current package at runtime.

If ThinApp cannot import a package, ThinApp stops the base application.

OptionalApplLinks — Specifies a list of external ThinApp packages to import to
the current package at runtime.

If ThinApp cannot import a package, ThinApp allows the base application to start.

For general information about all Package.ini parameters, see Appendix A,
“Package.ini Parameters,” on page 83. For more information about parameters that
affect MSI file generation, see “Customizing MSI Files with Package.ini Parameters” on
page 36. For information about parameters that affect application updates, see
Chapter 4, “Updating Applications,” on page 49.

Edit the Package.ini File

Use a text editor to update the Package.ini file.

Edit the Package.ini parameters

1

VMware, Inc.

Open the Package. ini file located in the captured application folder.

For example, a Firefox 2.0.0.3 path mightbe C:\Program Files\VMware\VMware
ThinApp\Captures\Mozilla Firefox 2.0.0.3\Package.ini.

Activate the parameter to edit by removing the semicolon at the beginning of the
line.

For example, activate the RemoveSandboxOnExit parameter for Firefox:
RemoveSandboxOnExit=1

Another example might involve commenting out the Protocols parameter if you
do not want Firefox to take over the protocols.

27

VMware ThinApp User’s Manual

3 Delete or change the value of the parameter and save the file.

4 Double-click the build.bat file in the captured application folder to rebuild the
application package.

For example, a Firefox 2.0.0.3 path to the build.bat file might be C:\Program
Files\VMware\VMware ThinApp\Captures\Mozilla Firefox
2.0.0.3\build.bat.

Modifying Settings in the ##Attributes.ini File

The ##Attributes.ini file applies settings at the directory level. The Package.ini
file applies settings at the overall application level.

For example, you can set the isolation mode at the directory or application level to
determine which files and registry keys are visible and written by the virtual
application you create. The detailed setting in the ##Attributes.ini file overrides the
overall Package.in1i setting. The Package. in1i setting determines the isolation mode
only when ThinApp does not have ##Attributes.ini information.

To compress only certain folders with large files rather than an entire application, you
can compress files at the folder level with the CompressionType parameter in the
##Attributes.ini file.

The ##Attributes.ini file appears in most folders for the captured application.
For example, the Attributes.ini file might be located in C:\Program
Files\VMware\VMware ThinApp\Captures\Mozilla Firefox
2.0.0.3\%AppData¥\##Attributes.ini.

Edit the ##Attributes.ini File

Use a text editor to update the ##Attributes.ini file.

Edit the ##Attributes.ini parameters
1 Inthe ##Attibutes.ini file, uncomment, update, or delete the parameter.

2 Double-click the build.bat file in the captured application folder to rebuild the
application package.

28 VMware, Inc.

Deploying Applications

Working with captured applications might involve working with deployment tools, the

thinreg.exe utility, MSI files, and Active Directory.

This information includes the following topics:

B “Reviewing ThinApp Deployment Options” on page 29

® “Facilitating File Launching with the thinreg.exe Utility” on page 31

B “Building an MSI Database” on page 35

® “Controlling Application Access with Active Directory” on page 39

® “Using ThinApp Packages Streamed from the Network” on page 40

B “Using Captured Applications with Other System Components” on page 43

B “Sample Isolation Mode Configuration Depending on Deployment Context” on
page 46

Reviewing ThinApp Deployment Options

You can deploy captured applications with deployment tools, in a VMware View
environment, on a network share, or as basic executable files.

Deploying ThinApp With Deployment Tools

Medium and large enterprises often use major deployment tools, such as Symantec,
BMC, and SMS tools. ThinApp works with all major deployment tools.

VMware, Inc.

29

VMware ThinApp User’s Manual

30

When you use any of these tools, you can create MSI files for the captured applications
and follow the same process you use to deploy native MSI files. See deployment
instructions from the tool vendors. For information about MSI files, see “Building an
MSI Database” on page 35.

Deploying ThinApp in the VMware View Environment

If you work with VMware View, the workflow involves the following tasks:
® Creating executable files for the captured applications.
B Storing the executable files on a network share.

® Creating a login script that queries applications entitled to the user and runs the
thinreg.exe utility with the option that registers the applications on the local
machine. Login scripts are useful for nonpersistent desktops. See “Facilitating File
Launching with the thinreg.exe Utility” on page 31.

® Controlling user access to fileshares. IT administrators might control access by
organizing network shares based on function and associating permissions with
network shares based on those functional boundaries.

Deploying ThinApp on Network Shares

Small and medium enterprises tend to use a network share. You can create executable
files for the captured application and store them on a network share. Each time you
deploy a new application or an update to an existing package, you can notify client
users to run the thinreg. exe utility with an appropriate option.

IT administrators can control user access to fileshares by organizing network shares
based on function and associating permissions with network shares based on those
functional boundaries.

The differences between the network share option and the VMware View option are
that the network share option assumes a mix of physical and virtual (persistent)
desktops and involves users running the thinreg. exe utility directly instead of
relying on login scripts.

Deploying ThinApp Using Executable Files

You use this basic option in an environment where disk usage is limited. You can create
executable files for the captured applications, copy them from a central repository, and
run the thinreg. exe utility manually to register file type associations, desktop
shortcuts, and the application package on the system.

VMware, Inc.

Chapter 3 Deploying Applications

Facilitating File Launching with the thinreg.exe Utility

ThinApp requires you to use the thinreg. exe utility to facilitate starting files, such as
a .doc document or an . html page. For example, if you click a URL in an email
message, ThinApp must be set to start Firefox. You do not have to run the thinreg.exe
utility for MSI files because MSI files start the utility automatically during the
application installation.

The thinreg.exe utility creates the Start menu and desktop shortcuts, sets up file type
associations, adds uninstall information to the system control panel, and unregisters
previously registered packages. The utility allows you to see the control panel
extensions for applications, such as Quicktime or the mail control panel applet for
Microsoft Outlook 2007. When you right-click a file, such as a . doc file, the
thinreg.exe utility allows you to see the same menu options for a . doc file in a native
environment.

If an application runs SMTP or HTTP protocols, such as an email link on a Web page
that needs to open Microsoft Outlook 2007, the thinreg.exe utility starts available
virtual applications that can handle those protocols. If virtual applications are not
available, the thinreg.exe utility starts native applications that can handle those
protocols.

The default location of the utility is C:\Program Files\VMware\VMware ThinApp.

Application Sync Effect on the thinreg.exe Utility

ThinApp provides the Application Sync utility to update an application package.
The Application Sync utility has the following effect on the thinreg.exe utility:

® Ifyou add, modify, or remove executable files, the thinreg. exe utility reregisters
the file type associations, shortcuts, and icons.

®m If you install protocols, MIME types, control panel applets, and templates other
than executable files, the thinreg. exe utility reregisters these elements.

For information about the Application Sync utility, see “Reviewing the Application
Sync Utility” on page 49.

VMware, Inc. 31

VMware ThinApp User’s Manual

32

Run the thinreg.exe Utility

This

example provides some sample thinreg.exe commands. The package name in

the thinreg.exe commands can appear in the following ways:

C:\<absolute_path_to_.exe>

Relative path to .exe file

\\<server>\<share>\<path_to_.exe>

As a variation, you can use a wildcard specification, such as *. exe.

If the path or filename contains spaces, enclose the path in double quotation marks.
The following command shows the use of double quotation marks:

thinreg.exe "\\DEPLOYSERVER\ThinApps\Microsoft Office Word 2007.exe"

For information about thinreg.exe parameters, see “Optional thinreg.exe

Para

Run

1

meters” on page 32.

the thinreg.exe utility

Determine the executable files that ThinApp must register with the local
environment.

From the command line, type:

thinreg.exe [<optional_parameters>]
[<packagel.exe>][<package?2.exe>][<packages_by_wildcard>]

If the server name is DEPLOYSERVER and the share is ThinApps, use the
following example to register Microsoft Word for the logged-in user:

ThinReg.exe "\\DEPLOYSERVER\ThinApps\Microsoft Office 2007 Word.exe"

Use the following example to register all Microsoft Office applications in the
specified directory for the logged-in user:

ThinReg.exe "\\DEPLOYSERVER\ThinApps\Microsoft Office *.exe"

Optional thinreg.exe Parameters

The

thinreg.exe utility monitors the PermittedGroups setting in the Package.ini

file, registering and unregistering packages as needed. When the thinreg. exe utility
registers a package for the current user, the utility creates only the shortcuts and file

type

associations that the current user is authorized for in the PermittedGroups

setting. If this setting does not exist, the current user is authorized for all executable

files.

VMware, Inc.

When the thinreg. exe utility registers a package for all users with the /allusers
parameter, ThinApp creates all shortcuts and file type associations regardless of the

Chapter 3 Deploying Applications

PermittedGroups setting. When you double-click a shortcut icon that you are not

authorized for, you cannot run the application.

If the package name you want to register or unregister contains spaces, you must
enclose it in double quotation marks.

For information about the PermittedGroups setting, see “PermittedGroups” on

page 104.

Table 3-1lists optional parameters for the thinreg. exe utility. Any command that uses

the /a parameter requires administrator rights.

Table 3-1. Optional thinreg.exe parameters

Parameter

/a, /allusers

Purpose

Registers a package for all
users.

If an unauthorized user
attempts to run the
application, a message
informs the user that he or
she cannot run the
application.

Sample Usage

thinreg.exe /a
"\\<server>\<share>\Microsoft
Office 2007 Word.exe"

/4, /quiet

Blocks output.

thinreg.exe /q
"\\<server>\<share>\Microsoft
Office 2007 Word.exe"

/u, /unregister,
/uninstall

Unregisters a package.
This command removes
the software from the
Add/Remove Programs
control panel applet.

Unregisters Microsoft Word for the
current user:

thinreg.exe /u
"\\<server>\<share>\Microsoft
Office 2007 Word.exe"

Unregisters all Microsoft Office
applications for the current user and
removes the Add/Remove Programs
entry:

thinreg.exe /u
"\\server\share\Microsoft
Office *.exe"

If a user registers the package with the
/a parameter, you must use the /a
parameter when unregistering the
package:

thinreg.exe /u /a *.exe

VMware, Inc.

33

VMware ThinApp User’s Manual

34

Table 3-1. Optional thinreg.exe parameters (Continued)

Parameter

/r, /reregister

Purpose

Reregisters a package.

Under typical
circumstances, the
thinreg.exe utility can
detect whether a package is
already registered and
skips it. The /r option
forces the thinreg.exe
utility to reregister the
package.

Sample Usage

thinreg.exe /r
"\\<server>\<share>\Microsoft
Office 2007 Word.exe"

If a user registers the package with the
/a parameter, you must use the /a
when reregistering the package:

%

thinreg.exe /r /a *.exe

/k,
/keepunauthorized,
/keep

Prevents the removal of
registration information
even if you are no longer
authorized to access an
application package.
Without this option, the
thinreg.exe utility
removes the registration
information for that
package if it detects you are
no longer authorized to
access the package.
ThinApp stores
authorization information
in the PermittedGroups
parameter of the
Package.ini file.

thinreg.exe /k
"\\<server>\<share>\Microsoft
Office 2007 Word.exe"

VMware, Inc.

Chapter 3 Deploying Applications

Table 3-1. Optional thinreg.exe parameters (Continued)

Parameter Purpose Sample Usage

/noarp Prevents the creation of an thinreg.exe /q /noarp
entry in the Add/Remove "\\<server>\<share>\Microsoft
Programs control panel Office 2007 Word.exe"
applet.

/norelaunch Starts the thinreg.exe thinreg.exe /q /norelaunch

utility on Microsoft Vista
without elevated
privileges. Standard users
can start the utility without
a user account control
(UAC) pop-up window.
When the thinreg.exe
utility detects a need for
more privileges, such as
the privileges required for
the /allusers parameter,
the utility restartsitself as a
privileged process and
generates a UAC pop-up
window.The /norelaunch
option blocks this restart
process and causes the
registration to fail.

"\\<server>\<share>\Microsoft
Office 2007 Word.exe"

Building an MSI Database

If you do not create MSI files with the Setup Capture wizard, you can still create these
files after building an application. An MSI database is useful for delivering captured
applications through traditional desktop management systems to remote locations and

automatically creating shortcuts and file type associations. Basic Active Directory
group policies provide ways to distribute and start MSI packages.

ThinApp creates an MSI database that contains certain files depending on the database

size:

® For databases smaller than 2GB, the MSI database consists of captured executable
files, installer logic, and the thinreg.exe utility.

®m For databases larger than 2GB, the MSI database consists of installer logic and the
thinreg. exe utility. ThinApp stores the captured executable files in cabinet files. For
example, the files might be <inventory_name>_1.CAB and
<inventory_name>_2.CAB. The . CAB files must be in the same directory as the MSI
files. ThinApp must distribute these files with the MSI file to have a complete installer.

VMware, Inc.

35

VMware ThinApp User’s Manual

Customizing MSI Files with Package.ini Parameters

You can customize the behavior of MSI files by modifying Package.ini parameters,

such as the following parameters, and rebuilding the application package:

TheMSIInstallDirectory parameter sets the installation directory for the package.
For example, include this line in the Package. ini file:
MSIInstallDirectory=C:\Program Files\

The MSIDefaultInstallAllUsers parameter sets installation of the package for
individual users. ThinApp installs the package in the %AppData% user directory.

For example, include this line in the Package. ini file:
MSIDefaultInstallAllUsers=0

For more information about this parameter, see “Specifying a Database Installation
for Individual Users and Machines” on page 37.

The MSIFileName parameter names the package.
For example, include this line in the Package. in1 file:
MSIFilename=Firefox30.msi

The MSIRequireElevatedPrivileges parameter indicates whether an installer
needs elevated privileges for deployment on Microsoft Vista. Installations for
individual users do not usually need elevated privileges but per-machine
installations require such privileges.

For example, include this line in the Package. ini file:
MSIRequireElevatedPrivileges=1

The MSIProductCode parameter makes it easier to install a new version of the
application. An MSI database contains a product code and an upgrade code. When
you update a package, keep the original value of the MSIUpgradeCode parameter.

If the parameter value of the new version is the same as the value of the old version,
the installation prompts you to remove the old version. If the values for the
parameter are different, the installation uninstalls the old version and installs the
new version.

VMware recommends that you avoid specifying an MSIProductCode value and
allow ThinApp to generate a different product code for each build.

Regardless of the parameter values specified at build time, you can override the settings
at deployment time. See “Force MSI Deployments for Each User or Each Machine” on
page 37. For more information on MSI parameters, see “MSI Parameters” on page 117.

36

VMware, Inc.

Chapter 3 Deploying Applications

Modify the Package.ini File to Create MSI Files

You must enter a value for the MSIFilename parameter to generate MSI files. For more
information about MSI parameters, see “Customizing MSI Files with Package.ini
Parameters” on page 36 and “MSI Parameters” on page 117.
Edit the MSI parameters
1 Inthe Package.ini file, enter the MSI filename:

MSIFilename=<filename>.msi

For example, the filename for Firefox might be Mozilla Firefox 2.0.0.3.msi.

2 (Optional) Update other MSI parameters.

3 Double-click the build.bat file in the captured application folder to rebuild the
application package.

Specifying a Database Installation for Individual Users and Machines

ThinApp installs the MSI database across all machines. You can change the default
installation with the following parameter values:

m To create a database installation for individual users, use a value of 0 for the
MSIDefaultInstallAllUsers parameter in the Package.ini file. This value
creates msiexec parameters for each user.

m To create a database installation for individual machines for administrators and
individual user installations for other users, use a value of 2 for the
MSIDefaultInstallAllUsers parameter. Administrators belong to the
Administrators Active Directory group.

For more information about the MSIDefaultInstallAllUsers parameter, see
“MSIDefaultInstallAllUsers” on page 118.

Force MSI Deployments for Each User or Each Machine

Regardless of the parameter values specified at build time, you can override the settings
at deployment time. For example, if you created the database with a value of 1 for the
MSIDefaultInstallAllUsers parameter, you can still force individual user
deployments for Firefox 3.0 with the msiexec /i Firefox30.msi ALLUSERS=""
command.

If you use the ALLUSERS="" argument for the msiexec command, ThinApp extracts the
captured executable files to the %AppData% user directory.

VMware, Inc. 37

VMware ThinApp User’s Manual

Force MSI deployments for individual users
From the command line, type:

msiexec /i <database>.msi ALLUSERS=""

Force MSI deployments for all users on a machine
From the command line, type:

msiexec /i <database>.msi ALLUSERS=1

Override the MSI Installation Directory

When ThinApp performs an individual machine MSI deployment, the default
installation directory is the localized equivalent of
%ProgramFilesDir%\<inventory_name> (VMware ThinApp).If you install a Firefox
package for each machine, the package resides in %ProgramFilesDir%\Mozilla
Firefox (VMware ThinApp).

When ThinApp performs an MSI deployment for individual users, the default
installation directory is %AppData%\<inventory_name> (VMware ThinApp).

In both cases, you can override the installation directory by passing an INSTALLDIR
property to the msiexec command.

Override the MSI installation directory
From the command line, type:

msiexec /i <database>.msi INSTALLDIR=C:\<my_directory>\<my_package>

Deploying MSI Files on Microsoft Vista

When you deploy MSI files on Vista, you must indicate whether an installer needs
elevated privileges. Typical individual user installations do not require elevated
privileges but individual machine installations require such privileges. ThinApp
provides the MSIRequireElevatedPrivileges parameter in the Package. ini file
that specifies the need for elevated privileges when the value is set to 1. Specifying a
value of 1 for this parameter or forcing an individual user installation from the
command line can generate UAC prompts. Specifying a value of 0 for this parameter
prevents UAC prompts but the deployment fails for machine-wide installations.

38 VMware, Inc.

Chapter 3 Deploying Applications

Controlling Application Access with Active Directory

You can control access to applications using Active Directory groups. When you build
a package, ThinApp converts Active Directory group names into Security Identifier (SID)
values. A SID is a small binary value that uniquely identifies an object. SID values are
not unique for a few groups, such as the administrator group. Because ThinApp stores
SID values in packages for future validation, the following considerations apply to
Active Directory use:

B You must be connected to your Active Directory domain during the build process
and the groups you specify must exist. ThinApp looks up the SID value during the
build.

® If you delete a group and recreate it, the SID might change. In this case, rebuild the
package to authenticate against the new group.

B When users are offline, ThinApp can authenticate them using cached credentials.
If the users can log into their machines, authentication still works. Use a group
policy to set the period when cached credentials are valid.

B Cached credentials might not refresh on clients until the next Active Directory
refresh cycle. You can force a group policy on a client by using the gpupdate
command. This command refreshes local group policy, group policy, and security
settings stored in Active Directory. You might need to log off before Active
Directory credentials are recached.

m Certain groups, such as the Administrators group and Everyone group, have the
same SID on every Active Directory domain and workgroup. Other groups you
create have a domain-specific SID. Users cannot create their own local group with
the same name to bypass authentication.

Reviewing Package.ini Entries for Active Directory Access
Control

ThinApp provides the PermittedGroups parameter in the Package. in1 file to control
Active Directory access. When you start a captured application, the PermittedGroups
parameter checks whether a user is a member of a specified Active Directory group. If
the user is not a member of the Active Directory group, Thinapp does not start the
application.

In the following example Package.in1i entry, Appl and App2 inherit
PermittedGroups values:

[BuildOptions]
PermittedGroups=Administrators;0fficeUsers

VMware, Inc. 39

VMware ThinApp User’s Manual

[Appl.exe]

[App2.exe]

In the following example entry, only users belonging to the Applusers group can use
the App1. exe file, and members of the Everyone group can use the App2. exe file.
The default message for denied users changes for App1:

[BuildOptions]

PermittedGroups=Everyone

[Appl.exe]

PermittedGroups=ApplUsers

AccessDeniedMsg=Sorry, you can’t run this application

[App2.exe]

Using ThinApp Packages Streamed from the Network

Any network storage device can serve as a streaming server for hundreds or thousands
of client computers. See Figure 3-1.

Figure 3-1. Data Block Streaming over a Network Share

—

Jill's
Sandbox

Sam’s
Sandbox

Joe’s
Sandbox

shared folder

40 VMware, Inc.

Chapter 3 Deploying Applications

On the end-user desktop, you can create shortcuts that point to the centrally hosted
executable file packages. When the user clicks the shortcut, the application begins
streaming to the client computer. During the initial streaming startup process, the
ThinApp status bar informs the user of the progress.

How ThinApp Application Streaming Works

When you place compressed ThinApp executable files on a network share or USB flash
drive, the contents from the executable file stream to client computers in a block-based
fashion. As an application requests specific parts of data files, ThinApp reads this
information in the compressed format over the network using standard Windows file
sharing protocol. For a view of the process, see Figure 3-2.

After a client computer receives data, ThinApp decompresses the data directly to memory.
Because ThinApp does not write data to the disk, the process is fast. A large package does
not necessarily take a long time to load over the network and the package size does not
affect the startup time of an application. If you add an extra 20GB file to a package that
is not in use at runtime, the package loads at the same speed. If the application opens
and reads 32KB of data from the 20GB file, ThinApp only requests 32KB of data.

The ThinApp runtime client is a small part of the executable file package. When
ThinApp loads the runtime client, it sets up the environment and starts the target
executable file. The target executable file accesses other parts of the application stored
in the virtual operating system. The runtime client intercepts such requests and serves
them by loading DLLs from the virtual operating system.

The load time of the runtime client across a network is a few milliseconds. After
ThinApp loads the runtime client to memory on the client computer, the end-user
computer calculates which blocks of data are required from the server and reads them
based on application activity.

When the application makes subsequent read requests for the same data, the Windows
disk cache provides data without requiring a network read operation. If the client
computer runs low on memory, Windows discards some of its disk cache and provides
the memory resource to other applications.

VMware, Inc. 41

VMware ThinApp User’s Manual

42

Figure 3-2. Application Streaming

packaged executable

VMware ThinApp VOS

local PC

virtual registry

compressed file

decompressed
(Block 1)

64KB (Block 1) Ethornet

g O

64KB (Block 2)

l*l

decompressed
(Block 2)

64KB (Block 3)

64KB (Block 4)

64KB (Block 5)

Reviewing Requirements and Recommendations for Streaming
Packages

ThinApp does not require specific server software to provide streaming capability. Any
Windows file share, NAS device, or SMB share can provide this capability. The amount
of data that needs to transfer before the application can begin running varies for each
application. Microsoft Office requires that only a fraction of the package contents
stream before an application can run.

VMware recommends that you use ThinApp streaming in a LAN-based environment
with a minimum of 100MB networks. For WAN and Internet deployments that involve
frequent or unexpected disconnections, VMware recommends one of the following
solutions:

® Use a URL to deploy the applications.

B Use a desktop deployment solution to push the package to the background.
Allow the application to run only after the entire package downloads.

VMware, Inc.

Chapter 3 Deploying Applications

These solutions reduce failures and eliminate situations in which the application
requires unstreamed portions during a network outage. A company with many branch
offices typically designates one application repository that mirrors a central shared
folder at each branch office. This setup optimizes local performance for client machines
located at each branch office.

Reviewing Security Recommendations for Streaming Packages

VMware recommends that you make a central shared directory for the package
read-only. Users can read the package contents but not change the executable file
contents. When a package streams from a shared location, ThinApp stores application
changes in the user sandbox. The default sandbox location is
%AppData%\Thinstall\<application_name>. You can configure the sandbox
location at runtime or at package time.

A common configuration is to place the user sandbox on another central storage device.
The user can use any computer and retain individual application settings at a central
share. When packages stream from a central share, they remain locked until all users
exit the application.

Stream ThinApp Packages from the Network

Users can access packaged applications through the network.

Stream packages from the network
1 Place the ThinApp package in a location accessible to client computers.

2 Send a link to users to run the application directly.

Using Captured Applications with Other System
Components

Captured applications can interact with other components installed on the desktop.

Performing Paste Operations
Review the following paste operations and limitations with ThinApp:

m Pasting content from system installed applications to captured applications —
This paste operation is unlimited. The virtual application can receive any standard
clipboard formats, such as text, graphics, and HTML. The virtual application can
receive OLE objects.

VMware, Inc. 43

VMware ThinApp User’s Manual

44

B Pasting from captured applications to system applications — ThinApp converts
OLE objects created in virtual applications to system native objects when you paste
them into native applications.

Accessing Printers

A captured application has access to any printer installed on the computer that it is
running on. Captured applications and applications installed on the physical system
have the same printing ability.

You cannot use ThinApp to virtualize printer drivers. You must manually install printer
drivers on a computer.

Accessing Drivers

A captured application has full access to any device driver installed on the computer
that it is running on. Captured applications and applications installed on the physical
system have the same relationship with device drivers. If an application requires a
device driver, you must install the driver separately from the ThinApp package.

In some cases, an application without an associated driver might function with some
limitations. For example, Adobe Acrobat installs a printer driver that allows
applications system wide to render PDF files using a print mechanism. When you use
a captured version of Adobe Acrobat, you can use it to load, edit, and save PDF files
without the printer driver installation. Other applications do not detect a new printer
driver unless the driver is installed.

Accessing the Local Disk, the Removable Disk, and Network
Shares

When you create a project structure, ThinApp configures isolation modes for
directories and registry subtrees. The isolation modes control which directories the
application can read and write to on the local computer. Review the default
configuration options:

® Hard disk — An example of a hard disk is C: \. Isolation modes selected during the
capture process affect access. Users can write to their Desktop and My Documents
folders. Other modifications that the application makes go into the user sandbox.
The default location of the sandbox is in the Application Data directory.

B Removable disk — By default, any user who has access rights can read or write to
any location on a removable disk.

VMware, Inc.

Chapter 3 Deploying Applications

B Network mapped drives — By default, any user who has access rights can read or
write to any location on a network mapped disk.

® UNC network paths — By default, any user who has access rights can read or write
to any location on a UNC network path.

Accessing the System Registry

By default, captured applications can read the full system registry as permitted by
access permissions. Specific parts of the registry are isolated from the system during the
package creation process. This isolation reduces conflicts between different versions of
virtual applications and system-installed applications. By default, ThinApp saves all
registry modifications from captured applications in an isolated sandbox and the
system remains unchanged.

Accessing Networking and Sockets

Captured applications have standard access to networking capability. Captured
applications can bind to local ports and make remote connections if the user has access
permissions to perform these operations.

Using Shared Memory and Named Pipes

Captured applications can interact with other applications on the system by using
shared memory, named pipes, mutex objects, and semaphores.

ThinApp can isolate shared memory objects and synchronization objects. This isolation
makes them invisible to other applications, and other application objects are invisible
to a captured application.

Using COM, DCOM, and Out-of-Process COM Components

Captured applications can create COM controls from the virtual environment and the
system. If a COM control is installed as an out-of-process COM, the control runs as a
virtual process when a captured application uses it. You can control modifications that
the captured applications make.

Starting Services

Captured applications can start and run system-installed services and virtual services.
System services run in the virtual environment that controls the modifications that the
services can make.

VMware, Inc. 45

VMware ThinApp User’s Manual

Using File Type Associations

Captured applications can execute system-installed applications by using file type
associations. You can add file type associations to the local computer registry to point
to captured executable files for individual users and machines.

Sample Isolation Mode Configuration Depending on
Deployment Context

48

Isolation modes control the read and write access for specific system directories and
system registry subkeys. See “Modifying Isolation Modes” on page 26.

You can adjust isolation modes to resolve the problems in Table 3-2.

Table 3-2. Sample Problems and Solutions That Use Isolation Modes

Problem

An application fails to run
because previous or future
versions exist simultaneously or
fail to uninstall properly.

Solution

Use the Full isolation mode.

ThinApp hides host computer files and registry keys from
the application when the host computer files are located in
the same directories and subkeys that the application
installer creates.

For directories and subkeys that have Full isolation, the
applications only detect virtual files and subkeys. Any
system values that exist in the same location are invisible to
the application.

An application fails because
users did not design or test it for
a multiuser environment. The
application fails to modify files
and keys without affecting other
users.

Use the WriteCopy isolation mode.

ThinApp makes copies of registry keys and files that the
application writes and performs all the modifications in a
user-specific sandbox.

For directories and subkeys that have WriteCopy isolation,
the application recognizes the host computer files and
virtual files. All write operations convert host computer
files into virtual files in the sandbox.

An application fails because it
has write permission to global
locations and is not designed for
a locked-down desktop
environment found in a
corporate setting or on Windows
Vista.

Use the WriteCopy isolation mode.

ThinApp makes copies of registry keys and files that the
application writes and performs all the modifications in a
user-specific sandbox.

For directories and subkeys that have WriteCopy isolation,
the application recognizes the host computer files and
virtual files. All write operations convert host computer
files into virtual files in the sandbox.

VMware, Inc.

Chapter 3 Deploying Applications

View of Isolation Mode Effect on the Windows Registry

Figure 3-3 shows a section of the Windows registry for a computer that has older
Microsoft Office applications installed. Microsoft Office 2003 creates the
HKEY_LOCAL_MACHINE\Software\Microsoft\Office\11.0 registry subtree.

Figure 3-3. Windows Registry as seen by Windows Regedit
w O 0DBC
E&SI
. @J10.0
#-[J11.0
+-{18.0
#{19.0
#-_1 Common
EI Delivery
E] Live Meeting
#-{_] Outlook
#-{_] PowerPoint
[Visio

When ThinApp runs a captured version of Microsoft Visio 2007, ThinApp sets the
HKLM\Software\Microsoft\Office registry subtree to full isolation. This setting
prevents Microsoft Visio 2007 from failing because of registry settings that might
preexist on the host computer at the same location.

VMware, Inc. 47

VMware ThinApp User’s Manual

48

Figure 3-4 shows the registry from the perspective of the captured Microsoft Visio 2007.

Figure 3-4. Windows Registry as seen by the captured Microsoft Visio 2007

Vot ice

=l 12.0
. [+l Access Connectivity

-l Common

+-[@l Registration
-l User Settings

&l Visio

{20 10.0
L3l 11.0
{23 8.0
[9.0

| Common

- Delivery
] Live Meeting
1 Outlook

_| PowerPoint

L3 Visio

VMware, Inc.

Updating Applications

You can update captured applications with different utilities depending on the extent
of change and dependencies on other applications.

This information includes the following topics:

m “Application Updates That the End User Triggers” on page 49

m “Application Updates That the Administrator Triggers” on page 57
B “Automatic Application Updates” on page 60

® “Upgrading Running Applications on a Network Share” on page 62

B “Sandbox Considerations for Upgraded Applications” on page 63

Application Updates That the End User Triggers

ThinApp provides the Application Sync and Application Link utilities to update
applications. The Application Sync utility updates an entire application package.
The Application Link utility keeps shared components or dependent applications in
separate packages.

Reviewing the Application Sync Utility

The Application Sync utility keeps deployed virtual applications up to date. When an
application starts with this utility enabled, the application queries a Web server to
determine if an updated version of the executable file is available. If an update is
available, the differences between the existing package and the new package are
downloaded and used to construct an updated version of the package. The updated
package is used for future launches.

VMware, Inc. 49

VMware ThinApp User’s Manual

50

The Application Sync utility is useful for major configuration updates to the
application. For example, you might need to update Firefox to the next major version.

Using Application Sync in a Managed or Unmanaged Environment

If you use virtual applications that update automatically in a managed computer
environment, do not use the Application Sync utility because it might clash with other
update capabilities.

If an automatic update feature updates an application, the update exists in the sandbox.
If the Application Sync utility attempts to update the application after an automatic
application update, the version update stored in the sandbox take precedence over the
files contained in the Application Sync version. The order of precedence for updating
files is the files in the sandbox, the virtual operating system, and the physical machine.

If you have an unmanaged environment that does not update applications
automatically, use the Application Sync utility to update applications.
Edit Application Sync Parameters in the Package.ini File

You can configure the Application Sync utility by editing the Package. ini file.
The AppSyncURL parameter requires a URL path. ThinApp supports HTTP, HTTPS,
and file protocols. For information about all Application Sync parameters, see
“Application Sync Parameters” on page 114,

Edit Application Sync parameters
1 Open the Package. ini file located in the captured application folder.

For example, a Firefox 2.0.0.3 path to the Package. in1i file might be C:\Program
Files\VMware\VMware ThinApp\Captures\Mozilla Firefox
2.0.0.3\Package.ini.

2 Uncomment the Application Sync parameters you want to edit by removing the
semicolon at the beginning of the line.

You must uncomment the AppSyncURL parameter to enable the utility.
3 Change the value of the parameters and save the file.

For example, you can copy an executable file of the latest Firefox version to a
mapped network drive and enter a path to that location as the value of the
AppSyncURL parameter. If Z: is the mapped drive and Firefox is the name of the
directory that stores the executable file, a sample path is
file:///Z:/Firefox/Firefox.exe.

4 In the captured application folder, double-click the build.bat file to rebuild the
application package.

VMware, Inc.

Chapter 4 Updating Applications

For example, a Firefox 2.0.0.3 path to the build.bat file might be C:\Program
Files\VMware\VMware ThinApp\Captures\Mozilla Firefox
2.0.0.3\build.bat.

If you start the new executable file, for instance Mozilla Firefox 3.exe, in the
\bin directory, ThinApp converts the original application to the new version. If
you cannot see the update and you originally copied the update to a network drive,
verify the connection to that drive.

Fix an Incorrect Update with Application Sync

If you have multiple Application Sync download updates, such as multiple Microsoft
Office updates, and a certain update has an adverse affect or needs to be withdrawn,
you can address the problem.

Fix an incorrect update
Place the correct update on the server that ThinApp can access.

The update is applied the next time the application is started on a client machine.

Application Sync Effect on Entry Point Executable Files

The Application Sync utility updates entry point executable files. For example, assume
you deploy a Microsoft Office 2007 package that does not include Microsoft
PowerPoint. The Microsoft Office PowerPoint 2007.exe entry point does not
exist for the original package. If you rebuild the Microsoft Office 2007 package to
include Microsoft PowerPoint, and you use the Application Sync utility to update client
machines, the end users can access an entry point executable file for Microsoft
PowerPoint.

Updating thinreg.exe Registrations with Application Sync

If you register virtual applications on the system using thinreg.exe and update
applications with the Application Sync utility, you can update registrations by placing
a copy of thinreg.exe, located in C:\Program Files\VMware\VMware ThinApp,
alongside the updated package on the server.

VMware, Inc. 51

VMware ThinApp User’s Manual

52

Maintaining the Primary Data Container Name with Application Sync

The Application Sync utility requires that the name of the primary data container, the
file that stores virtual files and registry information, is the same for the old and new
versions of an application. For example, you cannot have an old version with
Microsoft Office Excel 2003.exe asthe primary data container name while the
new version has Microsoft Office 2007.dat as the primary data container name.
For more information about the primary data container, see “Specify Entry Points, Data
Containers, and Inventory Names” on page 18.

Reviewing the Application Link Utility

The Application Link utility connects dependent applications at runtime. You can
package, deploy, and update component pieces separately rather than capture all
components in the same package. ThinApp supports linking up to 250 packages at a
time. Each package can be any size.

The Application Link utility is useful for the following objects:

® Large shared libraries and frameworks — Link runtime components, such as .NET,
JRE, or ODBC drivers, with dependent applications.

For example, you can link .NET to an application even if the local machine for the
application does not allow the installation of .NET or already has a different
version of .NET.

B Add-on components and plug-ins — Package and deploy application-specific
components and plug-ins separately from the base application.

For example, you might separate Adobe Flash Player or Adobe Reader from a base
Firefox application and link the components.

The Application Link utility allows you to deploy a single virtualized Microsoft
Office to all users and deploy individual add-on components for each user.

® Hot fixes and service packs — Link updates to an application and roll back to a
previous version if users experience significant issues with the new version. You
can deploy minor patches to applications as a single file and reduce the need for
rollbacks.

The Application Link utility provides bandwidth savings. For example, if you have
Microsoft Office 2007 Service Pack 1 and you want to update to Service Pack 2

without Application Link, you would need to transfer 1.5Gb of data per computer
with the deployment of a new Office 2007 Service Pack 2 package. The Application
Link utility transfers just the updates and not the whole package to the computers.

VMware, Inc.

Chapter 4 Updating Applications

View of the Application using Application Link

Figure 4-1 shows the running application with a merged view of the system, the base
application, and all linked components. Files, registry keys, services, COM objects, and
environment variables from dependency packages are visible to the base application.

Figure 4-1. View of the System, Base Application, and Linked Components Using
Application Link

= €2 Local Disk (C:)
[_] Documents and Settings
System Files = [Program Files
] Common Files
[ComPlus Applications

= &2 Local Disk (C:)
Base Application = [:] Program Files
[_|Base Application

=l & Local Disk (C:)
Component Package I=/[_] Program Files
[__] Componentl

Application Link

=] € Local Disk (C:)
[Documents and Settings

ng:tirﬁe;ﬁ;f =[] Program Files
+ Base Application [_1Base Application
+ Component Package D Common Files

[_] ComPlus Applications
[_] Componentl

Link a Base Application to the Microsoft .NET Framework

Review this sample workflow to link a base application, MyApp . exe, to a separate
package that contains the Microsoft .NET 2.0 Framework. Make sure the base
application capture process does not include the Microsoft .NET 2.0 Framework.
For information about the process of capturing an application, see Chapter 2,
“Capturing Applications,” on page 15.

VMware, Inc. 53

VMware ThinApp User’s Manual

54

For information about required and optional Application Link parameters in the
Package.ini file, see “Application Link Parameters” on page 111.

Link an application to Microsoft .NET

1

Capture the installation of the .NET 2.0 Framework.

During the capture process, you must select at least one user-accessible entry point.
Rename the. exe file that ThinApp produces to a . dat file.

This renaming prevents users from accidentally running the application.

The name of the . dat file you select does not matter because users do not run the
file directly. For example, use dotnet.dat.

Save the .NET project to C:\Captures\dotnet.

Capture the base application by using the same physical system or virtual machine
with the NET framework already installed.

Save the project to C:\Captures\MyApp.

Open the Package. ini file in the captured application folder for the base
application.

Enable the RequiredAppLinks parameter for the base application by adding the
following line after the [BuildOptions] entry:

RequiredAppLinks=dotnet.dat

Application Link parameters must reference the primary data container of the
application you want to link to. You cannot reference shortcut . exe files because
these files do not contain any applications, files, or registry keys.

Rebuild the .NET 2.0 and base application packages:

a Double-click the build.bat file in C:\Captures\MyApp.

b Double-click the build.bat file in C:\Captures\dotnet.

Running these batch files builds separate ThinApp packages.

Deploy the applications to an end-user desktop in C:\Program Files\MyApp:

a Copy C:\Captures\MyApp\bin\MyApp.exe to
\\<end_user_desktop>\<Program_Files_share>\MyApp\MyApp.exe.

b Copy C:\Captures\dotnet\bin\cmd.exe to
\\<end_user_desktop>\<Program_Files_share>\MyApp\dotnet.dat.

VMware, Inc.

Chapter 4 Updating Applications

Set up Nested Links with Application Link

ThinApp supports nested links with the Application Link utility. For example, if
Microsoft Office links to a service pack, and the service pack links to a hot fix, ThinApp
supports all these dependencies.

This procedure refers to AppA that requires AppB and AppB that requires AppC.
Assume the following folder layout for the procedure:

m c:\AppFolder\AppA\AppA.exe
m c:\AppFolder\AppB\AppB.exe
m c:\AppFolder\AppC\AppC.exe

For information about setting up required and optional Application Link parameters in
this procedure, see “Application Link Parameters” on page 111.

Set up nested links
1 Capture Application A.

2 Inthe Package.ini file, specify Application B as a required or optional
application link.

For example, type the following line:
RequiredLinks=\AppFolder\AppB\AppB.exe
3 Capture Application B.

4 Inthe Package.ini file for Application B, specify Application C as a required or
optional application link.

For example, type the following line:
RequiredLinks=\AppFolder\AppC\AppC.exe
5 Capture Application C.
If you start Application A, it can access the files and registry keys of Application B
and Application B can access the files and registry keys of Application C.
Affecting Isolation Modes with Application Link

ThinApp loads an Application Link layer during application startup and merges
registry entries and file system directories. If ThinApp finds a registry subkey or file
system directory that did not previously exist in the main package or layer that is
already merged, ThinApp uses the isolation mode specified in the layer being loaded.

VMware, Inc. 55

VMware ThinApp User’s Manual

56

If the registry subkey or file system directory exists in the main package and a layer that
is already merged, ThinApp uses the most restrictive isolation mode specified in any of
the layers or main package. The order of most restrictive to least restrictive isolation
modes is Full, WriteCopy, and Merged.

Reviewing the PermittedGroups Effect on Linked Packages

If you link two applications and you specify a value for the PermittedGroups
parameter, the user account used for starting the application must be a member of at
least one of the Active Directory groups for this parameter in the Package. ini files of
both applications. For information about the PermittedGroups parameter, see “Access
Control Parameters” on page 104.

Sandbox Changes for Standalone and Linked Packages

Sandbox changes from linked packages are not visible to the parent executable file. For
example, you can install Acrobat Reader as a standalone virtual package and as a linked
package to the base Firefox application. When you start Acrobat Reader as a standalone
application by running the virtual package and you make changes to the preferences,
ThinApp stores the changes in the sandbox for Acrobat Reader. When you start Firefox,
Firefox cannot detect those changes because Firefox has its own sandbox. Opening a
.pdf file with Firefox does not reflect the preference changes that exist in the standalone
Acrobat Reader application.

Reviewing File and Registry Collisions in Linked Packages

If the base application contains a file or registry entry at the same location as a linked
package, a collision occurs. When this happens, the order of import operations
determines which package has priority. The last package imported has priority in such
cases and the file or registry contents from that package are visible to the running
application. ThinApp imports applications according to the RequiredAppLinks or
OptionalApplLinks parameter. If either parameter specifies a wildcard character that
matches more than one file, alphabetical order determines which package is imported
first.

If two or more packages include VBScript scripts, the run order for the scripts is

alphabetical by package without regard to order of import operations. Use unique file
names for VBScript scripts. VBScript name collisions might prevent scripts from other
imported packages from running. If two packages contain a script with the same name,
ThinApp runs only the version of the script from the most recently imported package.

The OptionalApplLinks parameter might appear as:

OptionalApplLinks=a.exe;b.exe;plugins*.exe

VMware, Inc.

Chapter 4 Updating Applications

Using a.exe and b. exe as sample executable files, ThinApp uses the following import
order:

B Base application

H g.exe

m b.exe

B Plug-ins loaded in alphabetical order
B Nested plug-ins for a.exe

B Nested plug-ins for b.exe

® Nested plug-ins for first set of plug-ins above

Storing Multiple Versions of a Linked Application in the Same Directory

If the directory holds a linked package, and you add an updated version of the linked
package in the same directory, the Application Link utility detects and uses the updated
version.

Using Application Sync For the Base Application and Linked Packages

If you use Application Link to link packages to a base package, you can use Application
Sync to update all packages. For example, if you have Microsoft Office 2007 and link
Adobe Reader, you can have Application Sync entries in the Package. ini files for both
packages to update them. If any linked package fails to download or is expired,
ThinApp terminates the linked packages and the main application.

Application Updates That the Administrator Triggers
ThinApp provides the AppSync.exe and sbmerge. exe utilities for administrators.
The AppSync. exe utility forces an Application Sync update on a client machine.

The sbmerge. exe utility make incremental updates to applications. For example, an
administrator might use the utility to incorporate a plug-in for Firefox or to change the
home page of a Web site to point to a different default site.

VMware, Inc. 57

VMware ThinApp User’s Manual

58

Force an Application Sync Update with AppSync.exe

You can use AppSync. exe to force an Application Sync update on a client machine. You
might want to update a package stored in a location where standard users do not have
write access. In this situation, you cannot use Application Sync parameters to check for
updates when an application starts because users do not have the required rights to
update the package. You can schedule a daily AppSync. exe run under an account with
sufficient privileges. The Application Sync parameters, such as
AppSyncUpdateFrequency, in the Package. ini file do not affect AppSync. exe.

Force an application sync update
From the command line, type the following command:
AppSync <Application_Sync_URL> <executable_file_path>

The value of the URL is the same as the Application Sync URL in the Package. ini file
and the executable file path is the path to the executable file that requires the update.

Reviewing the sbmerge.exe Workflow

The sbmerge. exe utility merges runtime changes recorded in the application sandbox
back into a ThinApp project. A typical workflow for this utility involves the following
tasks:

® Capturing an application.
B Building the application with the build.bat file.

B Running a captured application and customizing the settings and virtual
environment. ThinApp stores the changes in the sandbox.

B Running the sbmerge. exe utility to merge registry and file system changes from
the sandbox into the ThinApp project.

B Rebuilding the captured application with the build.bat file

® Deploying the updated application.

Merge Sandbox Changes with the Application

This procedure uses Firefox 2.0.0.3 as an example of the captured application.
Merge sandbox changes with Firefox

1 Capture Firefox 2.0.0.3.

2 Double-click the build.bat file in the captured application folder to rebuild the
application package.

VMware, Inc.

Chapter 4 Updating Applications

For example, a Firefox 2.0.0.3 path to the build.bat file might be C:\Program
Files\VMware\VMware ThinApp\Captures\Mozilla Firefox
2.0.0.3\build.bat.

3 Create a Thinstall directory in the bin directory for the sandbox location.
4 Start Firefox and make a change to the settings.
For example, change the home page.

5 From the command line, navigate to the directory where the ThinApp project
folder resides.

For example, navigate to C:\Program Files\VMware\VMware
ThinApp\Captures\Mozilla Firefox 2.0.0.3.

6 From the command line, type the following command:
"C:\Program Files\VMware\VMware ThinApp\sbmerge" Print

ThinApp prints the changes that affected the sandbox folder when using the
captured application.

7 From the command line, type the following command:
"C:\Program Files\VMware\VMware ThinApp\sbmerge" Apply

ThinApp empties the Thinstall folder and merges the sandbox changes with the
application.

sbmerge.exe Commands

The sbmerge.exe Print command displays sandbox changes and does not make
modifications to the sandbox or original project.

The sbmerge.exe Apply command merges changes from the sandbox with the
original project. This command updates the project registry and file system to reflect
changes and deletes the sandbox directory.

Usage

"C:\Program Files\VMware\VMware ThinApp\sbmerge" Print
[<optional_parameters>]
"C:\Program Files\VMware\VMware ThinApp\sbmerge" Apply
[<optional_parameters>]

VMware, Inc. 59

VMware ThinApp User’s Manual

Optional Parameters

Parameter Description

—ProjectDir <project_path> If you start the sbmerge. exe command from a location
other than the application project folder, use the
absolute or relative path to the project directory using
the -ProjectDir <project_path> parameter.

A sample command is "C:\Program
Files\VMware\VMware ThinApp\sbmerge" Print
-ProjectDir "C:\<project_folder_path>"".

-SandboxDir <sandbox_path> When you start a captured application, it searches for
the sandbox in a particular order. See “Search Order for
the Sandbox” on page 127.
If you use a custom location for the sandbox, use the
-SandboxDir <sandbox_path> parameter to specify
the location.

—Quiet Blocks the printing of progress messages.

-Exclude <excluded_file>.ini Prevents the merging of specific files or registry entries
from the sandbox.
You can specify a . in1 file to determine the content for
exclusion. This file contains separate sections to specify
files, such as the FileSystemIgnorelList and the
RegistryIgnorelList.
The sbmerge. exe utility uses the snapshot. ini file in
the ThinApp installation folder by default to exclude
certain content from the merge process. This option
allows you to specify another .1ini file to ensure
additional exclusion of content.

Automatic Application Updates

60

If an application can update automatically, its update mechanism functions with
ThinApp. If the application downloads the update and runs an installer or patching
program, this activity occurs inside the virtual environment and ThinApp stores the
changes from the update software in the sandbox. When the application restarts, it uses
the version of the executable file in the sandbox and not the executable file from the
original package.

For example, if you capture Firefox 1.5, your autoupdate mechanism might prompt you
to upgrade to Firefox 2.0. If you proceed with the upgrade, the application downloads
the updates, writes the updates to the sandbox, and prompts you to restart the
application. When you run the captured application again, Firefox 2.0 starts. If you
delete the sandbox, Firefox reverts back to version 1.5.

VMware, Inc.

Chapter 4 Updating Applications

To merge changes that an auto-update mechanism makes with the original package to
build an updated executable file, use the sbmerge. exe utility. See “Application
Updates That the Administrator Triggers” on page 57.

NOTE If you use the Application Sync utility to perform application updates, disable
the auto-update capabilities of the application. See “Using Application Sync in a
Managed or Unmanaged Environment” on page 50.

Dynamic Updates Without Administrator Rights

You can update applications dynamically without requiring administrator rights.

For example, .NET-based applications that download new DLL files from the Internet
as part of their update process must run the ngen. exe file to generate native image
assemblies for startup performance. In typical circumstances, the ngen. exe file writes
to HKLM and C: \WINDOWS, both of which are only accessible with administrator
accounts. With ThinApp, the ngen. exe file can install native image assemblies on guest
user accounts but stores changes in a user-specific directory.

You can update the package on a central computer and push the changes to client
machines or central network shares as a new captured executable file. Use one of the
following options for applying updates:

B During the setup capture process.
B Inside the virtual environment.

Applications with auto-update capabilities can undergo updates. If the update is a
patch.exe file, the patch program can run in the virtual environment and run
from a cmd. exe file entry point. Changes occur in the sandbox during automatic
updates or manual updates to allow you to revert to the original version by
deleting the sandbox.

If you apply patches in the virtual environment on a central packaging machine,
you can use the sbmerge. exe utility to merge sandbox changes made by the
update with the application. See “Application Updates That the Administrator
Triggers” on page 57.

B In the captured project.

If you must update a small set of files or registry keys, replace the files in the
captured project. This approach is useful for software developers who integrate
ThinApp builds with their workflow.

VMware, Inc. 61

VMware ThinApp User’s Manual

Upgrading Running Applications on a Network Share

ThinApp allows you to upgrade or roll back an application that is running on a network
share for multiple users. The upgrade process occurs when the user quits the
application and starts it a second time. In Terminal Server environments, you can have
multiple users executing different versions at the same time during the transition
period.

Reviewing File Locks

Starting an application locks the executable file package. You cannot replace, delete, or
move the application. This file lock ensures that any computer or user who accesses a
specific version of an application continues to have that version available as long as the
application processes and subprocesses are running.

If you store an application in a central location for many users, this file lock prevents
administrators from replacing a packaged executable file with a new version until all
users exit the application and release their locks.

Upgrade a Running Application

You can copy a new version of an application into an existing deployment directory
with a higher filename extension, such as .1 or .2. This procedure uses Firefox as a
sample application.

You do not need to update shortcuts.

Upgrade a running application

1 Deploy the original version of the application, such as Firefox.exe.

2 Copy the application to a central share at \\<server>\<share>\Firefox.exe.
A sample location is C:\Program Files\Firefox\Firefox.exe.

3 Create a desktop or Start menu shortcut to the user’s desktop that points to a
shared executable file location at \\<server>\<share>\Firefox.exe.

Assume two users start Firefox.exe and lock the application.

4 Copy the updated version of Firefox.exe to the central share at
\\<server>\<share>\Firefox.1.

If you are a new user, ThinApp launches the application with the new package
datain Firefox.1.If you are a user working with the original version, you can see
the new version after you exit the application and restart the application.

62 VMware, Inc.

Chapter 4 Updating Applications

5 If you must deploy a more current update of Firefox, place it in the same directory
with a higher number at the end.

6 Copy Version 2.0 of Firefox.exe to central share at
\\<server>\<share>\Firefox.?2

After Firefox.1is unlocked, you can delete it, but Firefox.exe should remain in
place because the user shortcuts continue to point there. ThinApp always uses the
filename that has the highest version number. If you must roll back to an earlier version
and the most recent version is still locked, copy the old version so that it has the highest
version number.

Sandbox Considerations for Upgraded Applications

When you upgrade an application, you can control whether users continue to use their
previous settings by keeping the sandbox name consistent in the Package. ini file.
You can prevent users from using an older sandbox with an upgraded application by
packaging the upgraded application with a new name for the sandbox. Starting the
upgraded application the first time creates the sandbox with the new name.

VMware, Inc. 63

VMware ThinApp User’s Manual

64 VMware, Inc.

Monitoring and
Troubleshooting ThinApp

You can use Log Monitor to generate trace files and troubleshoot the ThinApp

environment.

This information includes the following topics:

“Providing Information to VMware Support” on page 65
“Using Log Monitor” on page 66

“Troubleshooting Specific Applications” on page 79

Providing Information to VMware Support

VMware support requires the following information from you to troubleshoot a

ThinApp environment:

VMware, Inc.

Step-by-step reproduction of the procedure you performed when you encountered
the problem.

Information on the host configuration. Specify the Windows operating system, the
use of Terminal Server or Citrix Xenapp, and any prerequisite programs that you
installed on the native machine.

Copies of the Log Monitor trace files. See “Using Log Monitor” on page 66.

Exact copy of the capture folder and all content. Do not include the compiled
executable files from the /bin subfolder.

Description of the expected and accurate behavior of the application.

(Optional) Copies of the applications that you captured. Include the server
components configuration for Oracle Server or Active Directory.

65

VMware ThinApp User’s Manual

(Optional) Native or physical files or registry key settings that might be relevant to
the problem.

(Optional) System services or required device drivers.

(Optional) Virtual machine that reproduces the defect. VMware Support might
request this if the support contact is unable to reproduce the problem.

(Optional) One or more WebEx sessions to facilitate debugging in your
environment.

Using Log Monitor

66

Log Monitor captures detailed chronological activity for executable files that the
captured application starts. Log Monitor intercepts and logs names, addresses,
parameters, and return values for each function call by target executable files or DLLs.
Log Monitor captures the following activity:

Win32 API calls from applications running in the ThinApp virtual operating
system.

Potential errors, exceptions, and security events within the application.

All DLLs loaded by the application and address ranges.

The generated log files can be large and over 100MB depending on how long the
application runs with Log Monitor and how busy an application is. The only reason to
run Log Monitor for an application is to capture trace files. Trace files are critical for
troubleshooting problems by analyzing and correlating multiple entries within the
trace file.

Troubleshoot Activity with Log Monitor

You can use Log Monitor to perform basic troubleshooting.

Troubleshoot ThinApp Logs

1
2

Shut down the captured application to investigate.

On the computer where you captured the application, select Start > Programs >
VMware > ThinApp Log Monitor.

To start Log Monitor on a deployment machine, copy the log_monitor.exe,
logging.dl1, and Setup Capture.exe files from C:\Program
Files\VMware\VMware ThinApp to the deployment machine.

VMware, Inc.

Chapter 5 Monitoring and Troubleshooting ThinApp

Start the captured application.

As the application starts, a new entry appears in the Log Monitor list. Log Monitor
shows one entry for each new trace file. Each file does not necessarily correspond
with a single process.

Terminate the application as soon as it encounters an error.
Generate logs for each trace file you want to investigate:

a Select the . trace file in the list.

b Click Generate text trace report.

Child processes that the parent process generates reside in the same log. Multiple
independent processes do not reside in the same log.

ThinApp generates a . trace file. Log Monitor converts the binary . trace file into
a . txt file.

(Optional) Open the . txt file with a text editor and scan the information. In some
circumstances, the . txt file is too large to open with the text editor.

Zip the .txt files and send the files to VMware support.

Perform Advanced Log Monitor Operations

Advanced operations in Log Monitor include stopping applications or deleting trace
files. If an application is busy or experiencing slow performance with a specific action,
you can perform suspend and resume operations to capture logs for a specific duration.

The resulting log file is smaller than the typical log file and easier to analyze. Even when

you use the suspend and resume operations, the root cause of an error might occur

outside of your duration window. Suspend and resume operations are global and affect
all applications.

For more information about using these options, contact VMware Support.

Use advanced Log Monitor options

1
2

VMware, Inc.

Shut down the captured application to investigate.

On the computer where you captured the application, select Start > Programs >
VMware > ThinApp Log Monitor.

To start Log Monitor on a deployment machine, copy the log_monitor.exe,
logging.dl1, and Setup Capture.exe files from C:\Program
Files\VMware\VMware ThinApp to the deployment machine.

67

VMware ThinApp User’s Manual

68

(Optional) Capture logs for a specific duration to troubleshoot an exact issue.
a Select the Suspend check box.

b Start the captured application and let it run to the point where the error occurs
or the performance problem starts.

¢ InLog Monitor, deselect the Suspend check box to resume the logging
process.

You can check the application behavior to isolate the issue.
d Select the Suspend check box to stop the logging process.
(Optional) Select a file in the trace file list to delete and click Delete File.
(Optional) Click Kill App to stop a running process.
(Optional) Click the Compress check box to decrease the size of a trace file.
This operation slows the performance of the application.
(Optional) Generate a trace file report:

a Select a trace file in the file list, enter a trace filename, or click Browse to select
a trace file on your system.

b (Optional) Enter or change the name of the output report.
c¢ Click Generate text trace report to create a report.

You can view the file with a text editor that supports UNIX-style line breaks.

Locating Errors

ThinApp logging provides a large amount of information. The following tips might
help advanced users investigate errors:

Look at the Potential Errors Detected section of the . txt trace file.

Entries might not indicate errors. ThinApp lists each Win32 API call where the
Windows error code changed.

Look at exceptions that the applications generate.

Exceptions can indicate errors. Exception types include C++ and .NET. The trace
file records the exception type and DLL that generates the exception. If the
application, such as a .NET or Java application, creates an exception from
self-generating code, the trace file indicates an unknown module.

VMware, Inc.

Chapter 5 Monitoring and Troubleshooting ThinApp

The following example is a .trace entry for an exception:

*%% Exception EXCEPTION_ACCESS_VIOLATION on read of 0x10 from
unknown_module:0x7c9105f8

If you find an exception, scan the earlier part of the trace file for the source of the
exception. Ignore the floating point exceptions that Virtual Basic 6 applications
generate during typical use.

Look at child processes.

Log Monitor produces one . trace file for each process. If an application starts
several child processes, determine which process is causing the problem. In some
cases, such as circumstances involving out-of-process COM, a parent application
uses COM to start a child process, runs a function remotely, and continues to run
functions.

When you run applications from a network share that generates two processes,
ignore the first process.

ThinApp addresses the slow performance of Symantec antivirus applications by
restarting processes.

Search for the error message displayed in dialog boxes.

Some applications call the MessageBox Win32 API function to display unexpected
errors at runtime. You can search a trace file for MessageBox or the contents of the
string displayed in the error and determine what the application was running just
before the dialog box appeared.

Narrow the focus on calls originating from a specific DLL and thread.

The log format specifies the DLL and thread that makes a call. You can often ignore
the calls from system DLLs.

Log Format

A trace file includes the following sections:

VMware, Inc.

System configuration

This section includes information about the operating system, drives, installed
software, environment variables, process list, services, and drivers.

The information starts with a Dump started on string and ends with a Dump
ended on string.

69

VMware ThinApp User’s Manual

70

Header

This section shows contextual information for the instance of the process that Log
Monitor tracks. Some of the displayed attributes show logging options, address
ranges when the operating system runtime is loaded, and macro mapping to actual
system paths.

ThinApp marks the beginning of the header section with sequence number 000001.
In typical circumstances, ThinApp marks the end of this section with a message
about the Application Sync utility.

Body

This section includes trace activity as the application starts and performs
operations. Each line represents function calls that target executable files or one of
the DLLs make.

The section starts with a New Modules detected in memory entry followed by
the SYSTEM_LOADED modules list. The section ends with a Modules Loaded entry.

Summary

This section includes modules that the captured application loads, potential errors,
and a profile of the 150 slowest calls.

The section starts with the Modules Loaded message.

General APl Log Message Format

The following message has an example format for API calls:

000257 0a88 mydll.d1ll :4ad0576d->kernel32.d11:7c81b1f® SetConsoleMode (IN
HANDLE

hConsoleHandle=7h, IN DWORD dwMode=3h)

000258 0a88 mydll.d1ll :4ad0576d<-kernel32.d11:7c81b1f® SetConsoleMode
->B00OL=1h (O

This example includes the following entries:

000257 indicates the log entry number. Each log entry has a unique number.

0a88 indicates the current running thread ID. If the application has one thread, this
number does not change. If two or more threads record data to the log file, you
might use the thread ID to follow thread-specific sequential actions because
ThinApp records log entries in the order in which they occur.

mydl1.d1l1 indicates the DLL that makes the API call.

VMware, Inc.

Chapter 5 Monitoring and Troubleshooting ThinApp

B 4ad0576d indicates the return address for the API call that myd11.d11 makes. In
typical circumstances, the return address is the address in the code where the call
originates.

B —> indicates the process of entering the call. For the call entry log element,
ThinApp displays the input parameters. These parameters are in and in/out
parameters.

B <-indicates the process of the call returning to the original caller. For call exit log
entries, ThinApp displays the output parameters. These parameters are out and
in/out parameters.

m kernel32.dl1l indicates the DLL where the API call lands.

B 7c81b1f0 indicates the address of the API inside kernel32 where the call lands. If
you disassemble kerne132.d11 at the 7c81b1f0 address, you locate the code for
the SetConsoleMode function.

B —>BOOL=1h indicates the API returns the value of 1 and the return code has the
BOOL type.

Application Startup Information

The following entries shows basic information about the application, such as the
module name and process ID (PID), and about Log Monitor, such as the version and
options.

000001 0a88 Logging started for Module=C:\test\cmd_test\bin\cmd.exe
Using archive=

PID=0xec

CommandLine = cmd

000002 0a88 Logging options: CAP_LEVEL=9 MAX_CAP_ARY=25 MAX_CAP_STR=150
MAX_NEST=100

VERSION=3.090

000003 0a88 System Current Directory = C:\test\cmd_test\bin Virtual Current
Directory = C:\test\cmd_test\bin

000004 0a88 |start_env_var| =::=::\

000005 0a88 |start_env_var| =C:=C:\test\cmd_test\bin

000006 0a88 |start_env_var| =ExitCode=00000000

000007 0a88 |start_env_var| ALLUSERSPROFILE=C:\Documents and Settings\All
Users.WINDOWS

VMware, Inc. 71

VMware ThinApp User’s Manual

72

List of DLLs Loaded into Memory During Runtime

The Modules loaded section is located near the end of the log file and describes the
DLLs that are loaded into memory at runtime and the DLL addresses. The information
shows whether Windows or ThinApp loads the DLLs.

This example includes the following entries:

B SYSTEM_LOADED indicates that Windows loads the DLL. The file must exist on the
disk.

® MEMORY_MAPPED_ANON indicates that ThinApp loads the DLL. ThinApp mightload
the file from the virtual file system.

B 46800000-46873fff indicates the address range in virtual memory where the
DLL resides.

® PRELOADED_BY_SYSTEM and PRELOADED_MAP are duplicate entries and refer to the
memory address range where the executable image file is mapped into memory.

The log includes a summary of the length of the longest calls.

——-Modules loaded —-

PRELOADED_MAP 00400000-00452fff, C:\Program Files\Adobe\Reader
8.0\Reader\AcroRd32.exe

PRELOADED_BY_SYSTEM 00400000-00452fff, C:\Program Files\Adobe\Reader
8.0\Reader\AcroRd32.exe

SYSTEM_LOADED 00400000-00452fff, C:\test\AcroRd32.exe
MEMORY_MAPPED_ANON 013b0000-020affff, C:\Program Files\Adobe\Reader
8.0\Reader\AcroRd32.d11

———-Timing Report: list of slowest 150 objects profiled —-—
8255572220 total cycles (2955.56 ms): |sprof| thinapp_LoadlLibrary2

765380728 cycles (274.01 ms) on log entry 21753
428701805 cycles (153.48 ms) on log entry 191955
410404281 cycles (146.93 ms) on log entry 193969

. 438 total calls
7847975891 total cycles (2809.64 ms): |sprof| ts_load_internal_module
764794646 cycles (273.80 ms) on log entry 21753
426837866 cycles (152.81 ms) on log entry 191955
408570540 cycles (146.27 ms) on log entry 193969

. 94 total calls
4451728477 total cycles (1593.76 ms): |sprof| ts_lookup_imports
544327945 cycles (194.87 ms) on log entry 21758
385149968 cycles (137.89 ms) on log entry 193970

VMware, Inc.

Chapter 5 Monitoring and Troubleshooting ThinApp

187246661 cycles (67.04 ms) on log entry 190210

. 34 total calls
1099873523 total cycles (393.76 ms): |sprof| new_thread_start
561664565 cycles (201.08 ms) on log entry 151922
531551734 cycles (190.30 ms) on log entry 152733
1619002 cycles (0.58 ms) on log entry 72875

Potential Errors

The Potential Errors Detected section shows the log entries that have three
asterisks (**¥) in strings. ThinApp marks entries that might pose problems by adding

to the log entry output. For information about interpreting this section, see
“Locating Errors” on page 68.

————Potential Errors Detected ——-

006425 0000075c LoadLibraryExW 'C:\Program Files\Adobe\Reader
8.0\Reader\Microsoft.Windows.Common-Controls.DLL' flags=2 -> 0 (failed **¥*)
006427 0000075c LoadLibraryExW 'C:\Program Files\Adobe\Reader

8.0\Reader\Microsoft.Windows.Common-Controls\Microsoft.Windows.Common-Control
s.DLL' flags=2

—> 0 (failed ***)

006428 0000089c nview.dll :1005b94b<-kernel32.dl1:7c80ae4b *** LoadLibraryW -
>HMODULE=7c800000h () *** GetLastError() returns 2 [0]: The system cannot
find the file specified.

007062 0000075c LoadLibraryExW 'C:\Program Files\Adobe\Reader
8.0\Reader\en-US\Microsoft.Windows.Common-Controls.DLL' flags=2 -> 0 (failed
ek)

010649 0000075c LoadLibraryExW 'C:\Program Files\Adobe\Reader

8.0\Reader\en-US\Microsoft.Windows.Common-Controls\Microsoft.Windows.Common-C
ontrols.DLL'

flags=2 —> 0 (failed **%*)

019127 0000075c MSVCR80.d11l :781348cc<-msvcrt.dll :77cl0396 ***
GetEnvironmentVariableA -

>DWORD=0h (OUT LPSTR 1pBuffer=*0h <bad ptr>) *** GetLastError() returns 203
[0]: The system

could not find the environment option that was entered.

019133 0000075c MSVCR80.d11l :78133003<-nview.dll :1000058c *** GetProcAddress
>FARPROC=*0h () *** GetLastError() returns 127 [203]: The specified procedure
could not be found.

019435 0000075c MSVCR80O.d11l :78136e08<-dbghelp.dll :59a60360 *** Getfile type
—>DWORD=0h ()

*%% GetLastError() returns 6 [0]: The handle is invalid.

019500 0000075c MSVCR8O.d11l :78134481<-nview.dll :1000058c *** GetProcAddress
>FARPROC=*0h () *** GetLastError() returns 127 [0]: The specified procedure
could not be found.

VMware, Inc. 73

VMware ThinApp User’s Manual

74

019530 0000075c MSVCR80.d11l :78131dcd<-dbghelp.dll :59a603al ***
GetModuleHandleA -

>HMODULE=0h () *** GetLastError() returns 126 [0]: The specified module could
not be found.

Troubleshooting Example for cmd.exe Utility

In the following example, ThinApp packages the cmd. exe utility and the utility runs
with logging turned on.

To simulate an application behaving incorrectly, you can run an invalid command. For
example, if you request the cmd. exe utility to run the foobar command, the utility
generates the foobar is not recognized as an internal or external command
message. Scan the trace file and check the Potential Errors Detected section. You
can locate the API functions that modified the GetLastError code.

The italicized paths show locations where the cmd . exe utility looks for the foobar
command. The bold paths show locations in the virtual file system that ThinApp
probes.

————Potential Errors Detected ——-

**%* Unable to determine if any services need to be auto-started, error 2
001550 *** FindFirstFileW ’C:\test\cmd_test\bin\foobar.*’ —>
INVALID_HANDLE_VALUE *** fgiled

[system probe C:\test\cmd_test\bin\foobar.* —> ffffffffh][no virtual or
system matches]

*%% FindFirstFileW —>HANDLE=ffffffffh .. *** GetLastError() returns 2 [203]:
The system cannot

find the file specified.

*%% FindFirstFileW ’C:\test\cmd_test\bin\foobar’ —> INVALID_HANDLE_VALUE *%**
failed [FS

missing in view O] [fs entry not found %drive_C%\test\cmd_test\bin\foobar][fs
entry not found

%drive_C%\test\cmd_test\bin]

%% FindFirstFileW ’C:\WINDOWS\system32\foobar.’ —> INVALID_HANDLE_VALUE #**%*
failed [system

probe C:\WINDOWS\system32\foobar.* —> ffffffffh][no virtual or system
matches]

*%% FindFirstFileW ’C:\WINDOWS\system32\foobar’ —> INVALID_HANDLE_VALUE **%*
failed [FS missing

in view 0] [fs entry not found %SystemSystem%\foobar]

%% FindFirstFileW ’C:\WINDOWS\foobar.’ —> INVALID_HANDLE_VALUE *** fagiled
[system probe

C:\WINDOWS\foobar.* —> ffffffffh][no virtual or system matches]

*%% FindFirstFileW ’C:\WINDOWS\foobar’ —> INVALID_HANDLE_VALUE *** fagiled [FS
missing in view

0] [fs entry not found %SystemRoot%\foobar]

%% FindFirstFileW ’C:\WINDOWS\System32\Wbem\foobar.’ —>
INVALID_HANDLE_VALUE *** failed

VMware, Inc.

Chapter 5 Monitoring and Troubleshooting ThinApp

[system probe C:\WINDOWS\System32\Wbem\foobar.* —-> ffffffffh][no virtual or
system matches]
*%% FindFirstFileW ’C:\WINDOWS\System32\Wbem\foobar’ —> INVALID_HANDLE_VALUE
**% fagiled [FS
missing in view O] [fs entry not found %SystemSystem%\Wbem\foobar]
%% FindFirstFileW ’c:\Program Files\subversion\bin\foobar.’ —>
INVALID_HANDLE_VALUE ***
failed [system probe c:\Program Files\subversion\bin\foobar.* —>
ffffffffh]l[no virtual or
system matches]

* FindFirstFileW ’c:\Program Files\subversion\bin\foobar’ ->
INVALID_HANDLE_VALUE *** failed
[FS missing in view O] [fs entry not found
%ProgramFilesDir%\subversion\bin\foobar] [fs entry
not found %ProgramFilesDir%\subversion\bin]
*%% FindFirstFileW ’c:\Program Files\Microsoft SQL
Server\90\Tools\binn\foobar.*’ —>
INVALID_HANDLE_VALUE *** failed [system probe c:\Program Files\Microsoft SQL
Server\90\Tools\binn\foobar.* —> ffffffffh][no virtual or system matches]
*%% FindFirstFileW ’c:\Program Files\Microsoft SQL
Server\90\Tools\binn\foobar’ —>
INVALID_HANDLE_VALUE *** fagiled [FS missing in view 0][fs entry not found
%ProgramFilesDir%\Microsoft SQL Server\90\Tools\binn\foobar][fs entry not
found
%ProgramFilesDir%\Microsoft SQL Server\90\Tools\binn]
%% FindFirstFileW ’c:\bin\foobar.’ —> INVALID_HANDLE_VALUE *** failed
[system probe
c:\bin\foobar.* —> ffffffffh][no virtual or system matches]
*%% FindFirstFileW ’c:\bin\foobar’ —> INVALID_HANDLE_VALUE *** failed [FS
missing in view
0] [fs entry not found %drive_c%\bin\foobar][fs entry not found %drive_c%\bin]
*%% FindFirstFileW ’C:\Program Files\Microsoft Visual
Studio\Common\Tools\WinNT\ foobar.*’ —>
INVALID_HANDLE_VALUE *** fagiled [system probe C:\Program Files\Microsoft
Visual
Studio\Common\Tools\WinNT\foobar.* —> ffffffffh][no virtual or system
matches]
*%% FindFirstFileW ’C:\Program Files\Microsoft Visual
Studio\Common\Tools\WinNT\ foobar’ —>
INVALID_HANDLE_VALUE *** failed [FS missing in view 0][fs entry not found
%ProgramFilesDir%\Microsoft Visual Studio\Common\Tools\WinNT\foobar][fs entry
not found
%ProgramFilesDir%\Microsoft Visual Studio\Common\Tools\WinNT]
*%% FindFirstFileW ’C:\Program Files\Microsoft Visual
Studio\Common\MSDev98\Bin\foobar.*’ —>
INVALID_HANDLE_VALUE *** fagiled [system probe C:\Program Files\Microsoft
Visual
Studio\Common\MSDev98\Bin\foobar.* —> ffffffffh][no virtual or system
matches]

VMware, Inc. 75

VMware ThinApp User’s Manual

76

*%% FindFirstFileW ’C:\Program Files\Microsoft Visual
Studio\Common\MSDev98\Bin\foobar’ —>

INVALID_HANDLE_VALUE *** failed [FS missing in view 0][fs entry not found
%ProgramFilesDir%\Microsoft Visual Studio\Common\MSDev98\Bin\foobar][fs entry
not found

%ProgramFilesDir%\Microsoft Visual Studio\Common\MSDev98\Bin]

*%% FindFirstFileW ’C:\Program Files\Microsoft Visual
Studio\Common\Tools\foobar.*’ —>

INVALID_HANDLE_VALUE *** failed [system probe C:\Program Files\Microsoft
Visual

Studio\Common\Tools\foobar.* —> ffffffffh][no virtual or system matches]

*%% FindFirstFileW ’C:\Program Files\Microsoft Visual
Studio\Common\Tools\foobar’ —>

INVALID_HANDLE_VALUE *** failed [FS missing in view 0] [fs entry not found
%ProgramFilesDir%\Microsoft Visual Studio\Common\Tools\foobar][fs entry not
found

%ProgramFilesDir%\Microsoft Visual Studio\Common\Tools]

*%% FindFirstFileW ’C:\Program Files\Microsoft Visual
Studio\VC98\bin\foobar.*’ —>

INVALID_HANDLE_VALUE *** failed [system probe C:\Program Files\Microsoft
Visual

Studio\VC98\bin\foobar.* —> ffffffffh][no virtual or system matches]

**% FindFirstFileW "C:\Program Files\Microsoft Visual Studio\VC98\bin\foobar’
—->

INVALID_HANDLE_VALUE *** fagiled [FS missing in view 0][fs entry not found
%ProgramFilesDir%\Microsoft Visual Studio\VC98\bin\foobar][fs entry not found
%ProgramFilesDir%\Microsoft Visual Studio\VC98\bin]

More Thorough Examination

A more thorough examination of an entry from the Potential Errors section of a
trace file might involve searching the full body of the Log Monitor trace file for that
specific entry and reviewing the system calls and conditions leading to the potential
error.

For example, the following entry might require a more thorough examination:

001550 *** FindFirstFileW ’C:\test\cmd_test\bin\foobar.*' —>
INVALID_HANDLE_VALUE *** failed [system probe

To determine why the cmd . exe utility probes c: \test\cmd_test\bin, scan the log for
this entry using the log entry number and determine what occurs before this call.

You might want to determine the locations where the cmd. exe utility obtained the
c:\test\cmd_test path. The bold excerpts of the log file show possible locations
where the cmd . exe utility obtained the c:\test\cmd_test path. The cmd. exe utility
obtains the first location by calling GetCurrentDirectoryW and the second location by
calling GetFullPathNameW with "." as the path specifies. These calls return the path for
the current working directory.

VMware, Inc.

Chapter 5 Monitoring and Troubleshooting ThinApp

The log file shows that the cmd . exe utility creates the c:\test\cmd_test\bin>
prompt. The utility queries the PROMPT environment variable that returns PG and
uses the WriteConsoleW API function to print the prompt to the screen after internally
expanding PG to c:\test\cmd_test\bin>.

000824 0a88 cmd.exe :4ad0697a<-ADVAPI32.d11:77dd038f FormatMessageW
—>DWORD=29h
(OUT LPWSTR 1pBuffer=*4AD38BAOh—>L"(C) Copyright 1985-2001 Microsoft
Corp.\ODh\0Ah")
000825 0a88 cmd.exe :4ad069d1->ADVAPI32.d11:77dd038f FormatMessageW (IN DWORD
dwFlags=1800h, IN LPCVOID 1pSource=*0h, IN DWORD dwMessageId=2334h, IN DWORD
dwLanguageId=0h, IN DWORD nSize=2000h, IN *Arguments=+*13DD40h-—>...)
000826 0a88 FormatMessageW
FORMAT_MESSAGE_FROM_HMODULE FORMAT_MESSAGE_FROM_SYSTEM
line_width=unlimited lpSource=0x0, dwMessageId=0x2334, dwlLanguageId=0x0

—> 0x29 ((C) Copyright 1985-2001 Microsoft

Corp.

000857 0a88 cmd.exe :4ad05dec<-kernel32.d11:7c835484 WriteConsoleW —>BOOL=1h
out

LPDWORD 1pNumberOfCharsWritten=*13DAACh->2h)

000858 0a88 cmd.exe :4ad01ba8->USERENV.d1l1l :769c03b9 GetEnvironmentVariableW

(IN
LPCWSTR 1pName=*4AD34624h—>L"PROMPT," IN DWORD nSize=2000h)
000859 0a88 GetEnvironmentVariable PROMPT —> PG

000860 0a88 cmd.exe :4ad01ba8<-USERENV.d1l1l :769c03b9 GetEnvironmentVariableW
>DWORD=4h (OUT LPWSTR 1pBuffer=*4AD2BA20h->L"PG")

000861 0a88 cmd.exe :4ad01580->USERENV.d1l1l :769c0396 GetCurrentDirectoryW
(IN DWORD

nBufferLength=104h)

000862 0a88 GetCurrentDirectoryW -> 0x14
(C:\test\cmd_test\bin)

000863 0088 cmd.exe :4ad01580<-USERENV.d1l1l :769c0396 GetCurrentDirectoryW
—>DWORD=14h

(OUT LPWSTR 1pBuffer=*4AD34400h->L"C:\test\cmd_test\bin")

000864 0a88 cmd.exe :4ad05b74->o0le32.dll :774e03f0 Getfile type (IN HANDLE

hFile=7h)
000865 0a88 Getfile type 7 —> 0Ox2
000866 0a88 cmd.exe :4ad05b74<-ole32.dll :774e03f0 Getfile type —->DWORD=2h

O

VMware, Inc. 77

VMware ThinApp User’s Manual

78

001533 0a88 cmd.exe :4ad01b0d<-kernel32.d11:7c80acOf SetErrorMode —>UINT=0h
O

001534 0a88 cmd.exe :4ad01lbl3->kernel32.d11:7c80acOf SetErrorMode (IN UINT
uMode=1h)

001535 0a88 cmd.exe :4ad01b13<-kernel32.d11:7c80acOf SetErrorMode —>UINT=0h
O

001536 0a88 cmd.exe :4ad01b24->IMM32.DLL :7639039b GetFullPathNameW (IN
LPCWSTR

1pFileName=*1638COh—>L."," IN DWORD nBufferLength=208h)

001537 0a88 GetFullPathNamew . -> 20
(buf=C:\test\cmd_test\bin,

file_part=bin)

001538 0a88 cmd.exe :4ad01b24<-IMM32.DLL :7639039b GetFullPathNameW
—>DWORD=14h

(OUT LPWSTR 1pBuffer=%#163D60h—>L"C:\test\cmd_test\bin," OUT
*1pFilePart=*13D8D4h-

>*163D82h—>L"bin")

001539 0a88 cmd.exe :4ad01b29->kernel32.d11:7c80acOf SetErrorMode (IN UINT
uMode=0h)

001540 0a88 cmd.exe :4ad01b29<-kernel32.d11:7c80acOf SetErrorMode —>UINT=1h
O

001541 0a88 cmd.exe :4ad01ba8->USERENV.d11l :769c03b9
GetEnvironmentVariableW (IN

LPCWSTR 1pName=*4AD34618h—>L"PATH," IN DWORD nSize=2000h)

GetEnvironmentVariableW -

—>DWORD=30h (OUT LPWSTR 1pBuffer=*4AD2BA20h-

—> L."COM;.EXE;.BAT;.CMD; .VBS; .VBE;.J]S;.JSE; .WSF; .WSH™)

001547 0a88 cmd.exe :4ad02aaa->kernel32.d11:7c80b2d0 GetDriveTypeW (IN
LPCWSTR 1pRootPathName=*13D8C4h—>L"C:\")

001548 0a88 cmd.exe :4ad02aaa<-kernel32.d11:7c80b2d0 GetDriveTypeW
—>UINT=3h O

001549 0a88 cmd.exe :4ad01b5f->USERENV.d11 :769c@3fa FindFirstFilew (IN
LPCWSTR 1pFileName=*1638COh—>L"C:\test\cmd_test\bin\foobar.*")

001550 0a88 FindFirstFileW ’C:\test\cmd_test\bin\foobar.*’

->

INVALID_HANDLE_VALUE *** failed [system probe C:\test\cmd_test\bin\foobar.* —>
ffffffffh][no virtual or system matches]

VMware, Inc.

Chapter 5 Monitoring and Troubleshooting ThinApp

Troubleshooting Specific Applications

Troubleshooting tips are available for capturing Microsoft Outlook, Explorer.exe, and
Java Runtime Environment.

Troubleshoot Registry Setup for Microsoft Outlook

Microsoft Outlook stores account settings in registry keys and files. When you start
Microsoft Outlook for the first time, it checks that the keys exist. If Microsoft Outlook
cannot locate the keys, it prompts you to create a new account.

This process works properly in the virtual environment when Microsoft Outlook is not
installed on the physical system. If the user already has Microsoft Outlook installed on
the physical system, the captured version finds the registry keys in the system registry
and uses those settings. You must use Full isolation mode for the registry keys and files
where Microsoft Outlook stores its settings.

Set up Full isolation mode for Microsoft Outlook registry keys
1 Add the following entries to the HKEY_CURRENT_USER. txt file:

isolation_full HKEY_CURRENT_USER\Identities
isolation_full HKEY_CURRENT_USER\Software\Microsoft\Windows
NT\CurrentVersion\Windows Messaging Subsystem\Profiles

2 Create a ##Attributes.ini file with the following entries:

[Isolation]
DirectoryIsolationMode=Full

3 Place the ##Attributes.ini file in each of the following subdirectories:

%AppData%\Microsoft\AddIns
%AppData%\Microsoft\Office
%AppData%\Microsoft\Outlook
%Local AppData%\Microsoft\FORMS
%Local AppData%\Microsoft\Outlook

4 (Optional) If the subdirectories do not exist, create the directories.

Viewing Attachments in Microsoft Outlook

Microsoft Outlook creates a default directory to store attachments when you open an
attachment for viewing. The typical location is C: \Documents and
Settings\<user_name>\Local Settings\Temp\Temporary Internet
Files\OLK<xxxx>. The last xxxx is replaced by a random entry.

VMware, Inc. 79

VMware ThinApp User’s Manual

80

You can view attachments when the viewing application runs in the same virtual
sandbox as Microsoft Outlook. External applications might not be able to find the file
to display because Microsoft Outlook stores the file in the sandbox. You must use the
Merged isolation mode for the directory that stores the attachments.

Set up Merged isolation mode to view Microsoft Outlook attachments

1 Add a value to the HKEY_CURRENT_USER. txt file that sets the name of the
attachment directory:

isolation_full
HKEY_CURRENT_USER\Software\Microsoft\Office\11.0\Outlook\Security
Value=OutlookSecureTempFolder

REG_SZ~%Profile%\Local Settings\OutlookTempxxxx#2300

In this example, 11.0 in the key name is for Microsoft Outlook 2003.

2 Replace the last four xxxx characters with random alphanumeric entries to
increase security.

3 Create a directory thatis named in the Out lookSecureTempFolder registry key in
your ThinApp project.

For example, create the %Profile%\Local Settings\OutlookTempxxxx
directory.

4 Inthe%Profile%\Local Settings\OutlookTempxxxx directory, create a
##Attributes.ini file with the following entries:

[Isolation]
DirectoryIsolationMode=Merged

Starting Explorer.exe in the Virtual Environment

Running one instance of the explorer.exe utility on a Windows operating system
makes it difficult to add an entry point to Windows Explorer and launch it inside the
virtual environment.

You can use the following methods to launch a Windows Explorer window inside the
virtual environment:

B Add an entry point to iExplorer and launch it with the -E parameter.
For example, add the following entries to the Package. ini file:

[iexplore.exe]

Shortcut=xxxx.exe

Source=%ProgramFilesDir%\Internet Explorer\iexplore.exe
CommandLine=%ProgramFilesDir%\Internet Explorer\iexplore.exe -E

VMware, Inc.

Chapter 5 Monitoring and Troubleshooting ThinApp

Add the following virtual registry key:

isolation_full
HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Explorer
Value=DesktopProcess

REG_DWORD=#01#00#00#00

Add the following entries to the Package. ini file:

[explorer.exe]
Shortcut=xxxxxx.exe
Source=%SystemRO0T%\explorer.exe

Use this method to browse the virtual file system with a familiar interface and
enable accurate file type associations without system changes, especially when
using portable applications. You can access shell-integrated components without
system changes.

Troubleshooting Java Runtime Environment Version Conflict

A conflict might occur if one version of Java is installed on the physical system and

another version is included in a captured executable file. Updated versions of Java

install a plug-in DLL that Internet Explorer loads. This plug-in DLL overwrites virtual

registry keys and conflicts with a virtualized copy of older Java runtimes.

Prevent Internet Explorer from loading plug-in DLLs

Add the following entry to the beginning of the HKEY_LOCAL_MACHINE. txt file:

isolation_full
HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\Explorer\Browser
Helper Objects

VMware, Inc.

81

VMware ThinApp User’s Manual

82 VMware, Inc.

Package.ini Parameters

The Package. in1 file contains parameters that configure a captured application
during the build process. Parameters can affect the configuration of isolation modes
and build options that include MSI, Application Link, Application Sync, and
application entry point settings. You can set certain Package.ini parameters during
the setup capture process. See Chapter 2, “Capturing Applications,” on page 15.

The [BuildOptions] section of the Package. in1 file applies to all applications.
Individual applications inherit these parameters unless the application-specific
sections overrides these settings. For example, the [Adobe Reader 8.exe] section of
the Package. ini file for an Adobe Reader application might have settings that
override the larger [BuildOptions] parameters. The application-specific parameters
show the application entry points that you create during the build process.

This information includes the following topics:

® “Isolation and Virtualization Parameters” on page 84
B “General Purpose Parameters” on page 89

B “Access Control Parameters” on page 104

B “Parameters for Individual Applications” on page 105
® “Application Link Parameters” on page 111

B “Application Sync Parameters” on page 114

® “MSI Parameters” on page 117

B “Sandbox Parameters” on page 122

VMware, Inc. 83

VMware ThinApp User’s Manual

Isolation and Virtualization Parameters

Isolation and virtualization parameters determine the processes that can run inside and
outside the virtual environment. The parameters include
ChildProcessEnvironmentExceptions, DirectoryIsolationMode, and
RegistryIsolationMode.

ChildProcessEnvironmentDefault

The ChildProcessEnvironmentDefault parameter determines whether ThinApp
runs all child processes in the virtual environment.

You can create specific exceptions with the ChildProcessEnvironmentExceptions
parameter. See “ChildProcessEnvironmentExceptions” on page 84.

Examples
The default entry creates all child processes in the virtual environment.

[BuildOptions]
ChildProcessEnvironmentDefault=Virtual

The External value creates child processes outside of the virtual environment.

[BuildOptions]
ChildProcessEnvironmentDefault=External

ChildProcessEnvironmentExceptions

The ChildProcessEnvironmentExceptions parameter notes exceptions to the
ChildProcessEnvironmentDefault parameter.

If the ChildProcessEnvironmentDefault parameter has a Virtual value, the
ChildProcessEnvironmentExceptions parameter lists the applications that run
outside of the virtual environment. If the ChildProcessEnvironmentDefault
parameter has an External value, the ChildProcessEnvironmentExceptions
parameter lists the applications that run inside the virtual environment.

Examples

You can specify exceptions to running child processes in the virtual environment.
When the virtual application launches a notepad. exe child process, the child process
runs outside the virtual environment.

[BuildOptions]
ChildProcessEnvironmentExceptions=AcroRd.exe;notepad.exe
ChildProcessEnvironmentDefault=Virtual

84 VMware, Inc.

Appendix A Package.ini Parameters

DirectorylsolationMode

The DirectoryIsolationMode parameter controls the default isolation mode for
application package directories that do not have specific settings. The default settings
depend on the application capture process.

The Package. ini file sets the default isolation mode for the project. Individual
##Attributes.ini files override the Package. ini file and specify the isolation mode
for specific directories and child directories. Any unspecified directories, such as
C:\myfolder, inherit the isolation mode from the Package. ini file.

For more information about isolation modes, see “Specify Isolation Modes” on page 21.

Examples

WriteCopy isolation mode allows the application to read resources on the local machine
but not write to the host computer.

[Isolation].
DirectoryIsolationMode=WriteCopy

Merged isolation mode allows the application to read resources on and write to any
location on the computer except where the package specifies otherwise. You can place
a ##Attributes.ini file in a subdirectory. A DirectoryIsolationMode parameter
placed in a ##Attributes. ini file overrides the setting in the Package. ini file.

[Isolation].
DirectoryIsolationMode=Merged

External COMObjects

The ExternalCOMObjects parameter controls whether ThinApp or Windows creates
a specific COM object CLSID key.

By default, ThinApp creates all COM objects in the virtual environment. COM supports
out-of-process executable servers and service-based COM objects. If an application can
create COM objects that generate modifications on the host computer, the integrity of
the host computer is at risk. If ThinApp runs out-of-process and service-based COM
objects in the virtual environment, ThinApp stores in the sandbox all changes that the
COM objects make.

VMware, Inc. 85

VMware ThinApp User’s Manual

86

Examples

ThinApp can run two COM objects outside of the virtual environment if the application
creates the objects.

[BuildOptions]
ExternalCOMObjects={8BC3FO5E-D86B-11D0-A075-00C04FB68820} ; {7DO96C5F-ACO8-4F1F
-BEB7-5C22C517CE39}

ExternalDLLs

The ExternalDLLs parameter forces Windows to load certain DLL files.

ThinApp determines whether to load DLL files or pass the loading process on to
Windows. If the DLL file resides in the virtual file system, ThinApp loads the file.

In some circumstances, Windows must load the DLL file when the file resides in the
virtual file system. For example, you might have a DLL file that is inserted in other
processes using Windows hooks. The DLL file that implements the hook must be
available on the host file system and Windows must load that file. When you specify a
DLL file in the ExternalDLLs parameter, ThinApp extracts the file from the virtual file
system to the sandbox and instructs Windows to load it.

The ExternalDLLs parameter does not support a DLL file that depends on other DLL
files inside the virtual file system. In this case, Windows cannot load the DLL file.
Examples

You can instruct ThinApp to pass the loading process of the inject.d11 and
injectme2.dl11 files on to Windows.

[BuildOptions]
ExternalDLLs=inject.dll;injectme2.dll

IsolatedMemoryObjects

The IsolatedMemoryObjects parameter lists the specific shared memory objects to
isolate from other applications.

Applications that use CreateFileMapping and OpenFileMapping Windows
functions create shared memory objects. Shared memory objects can have names or
remain anonymous. Named objects are visible to other applications running in the
same user account. In some circumstances, you might want to isolate shared memory
objects to ensure that virtual applications and system objects cannot detect each other.

VMware, Inc.

Appendix A Package.ini Parameters

The default ThinApp behavior isolates shared memory objects that embedded Internet
Explorer instances use. A conflict occurs between the explorer.exe and
iexplore.exe utilities when the utilities map sandbox files. You can use the
IsolatedMemoryObjects parameter to isolate additional named shared memory
objects to ensure that the objects are visible only to other virtual applications using the
same sandbox.

The IsolatedMemoryObjects parameter accepts a list of entries that are separated by
the semicolon (;). Each entry can use the asterisk (*) and question mark (?) as wildcard
characters to match variable patterns.

Examples

You can isolate two shared memory objects, match an object with out1look in the name,
and match an object with the exact My Shared Object name.

[BuildOptions]
IsolatedMemoryObjects=*outlook*;My Shared Object
IsolatedSynchronizationObjects

The IsolatedSynchronizationObjects parameter lists specific synchronization
objects to isolate from other applications.

Windows has the following named synchronization objects:
® Mutex
Use OpenMutex and CreateMutex to access this object.
m Semaphore
Use OpenSemaphore and CreateSemaphore to access this object.
® Events
Use OpenEvent and CreateEvent to access this object.

The default ThinApp behavior does not isolate synchronization objects. You can specify
synchronization objects to isolate from other applications that do not run in the same
virtual namespace. The sandbox location defines a namespace. If two applications
share the same sandbox path, the applications have the same namespace for isolated
synchronization objects. If two applications have the same sandbox name but different
sandbox paths, the applications have separate namespaces.

The IsolatedSynchronizationObjects parameter accepts a list of entries that are
separated by the semicolon (;). Each entry can use the asterisk (*) and question mark
(?) as wildcard characters to match variable patterns.

VMware, Inc. 87

VMware ThinApp User’s Manual

88

Examples

You can isolate two synchronization objects, match an object with outlook in the name,
and match an object with the exact My Shared Object name.

[BuildOptions]
IsolatedSynchronizationObjects=*outlook*;My Shared Object

RegistrylsolationMode

The RegistryIsolationMode parameter controls the default isolation mode for
registry keys in the package. This setting applies to the registry keys that do not have
explicit settings.

Examples

You can use the RegistryIsolationMode parameter to ensure that the application can
read keys from the host computer but not write to the host computer. If you do not
specify the registry isolation mode in the Package. ini file, the default value is
WriteCopy.

[Isolation]
RegistryIsolationMode=WriteCopy

You can use the RegistryIsolationMode parameter to ensure that the application can
write to any key on the computer, except where the package specifies otherwise.

[Isolation]
RegistryIsolationMode=Merged

SandboxCOMObjects

The SandboxCOMObjects parameter indicates whether native applications in the
physical environment can access COM objects that the virtual application registers at
runtime.

Examples

You can prevent native applications in the physical environment from accessing COM
objects that the virtual application registers. ThinApp places the COM objects that the
virtual application registers in the sandbox.

SandboxCOMObjects=1

You can make COM objects that the virtual application registers visible outside the
sandbox.

SandboxCOMObjects=0

VMware, Inc.

Appendix A Package.ini Parameters

VirtualizeExternalOutOfProcessCOM

The VirtualizeExternalOutOfProcessCOM parameter controls whether external
out-of-process COM objects can run in the virtual environment.

Captured applications can create COM objects from the host system and COM objects
that ThinApp registers in the virtual environment.

The VirtualizeExternalOutOfProcessCOM parameter determines how to address
out-of-process COM objects that are not part of a ThinApp package and are not
registered in the virtual registry. The default behavior of ThinApp executes external
out-of-process COM objects in the virtual environment to ensure that COM objects
cannot modify the host computer. If a compatibility issue exists with an external COM
object running in the virtual environment, you can use the
VirtualizeExternalOutOfProcessCOM parameter to create and run COM objects on
the host system. To run only specific COM objects outside of the virtual environment,
you can use the ExternalCOMObjects parameter to explicitly list the CLSID of each
COM object.

Examples

You can direct ThinApp to run all external out-of-process COM objects in the native
physical environment rather than the virtual environment.

[BuildOptions]
VirtualizeExternalOutOfProcessCOM=0

You can direct ThinApp to run all external out-of-process COM objects in the virtual
environment. This is the default behavior.

[BuildOptions]
VirtualizeExternalOutOfProcessCOM=1

General Purpose Parameters

The General Purpose section of the Package. in1 file addresses areas that include the
size of file compression blocks, path to the directory that stores font files, and shutdown
of virtual services.

AddPageExecutePermission

The AddPageExecutePermission parameter addresses applications that do not work
in a Data Execution Prevention (DEP) environment.

VMware, Inc. 89

VMware ThinApp User’s Manual

The DEP feature of Windows XP SP2, Windows Server 2003, and later versions and
operating systems protects against some security exploits that occur with buffer
overflow. This feature creates some compatibility issues. Windows turns off the feature
by default on Windows XP SP2 and you can use a machine-specific opt-in or opt-out list
of the applications to apply DEP protection to. Opt-in and opt-out policies can be
difficult to manage when a large number of machines and applications are involved.
The AddPageExecutePermission parameter instructs ThinApp to add execution
permission to pages that an application allocates. The application can run on machines
that have DEP protection enabled without modifying the opt-out list.

Examples
You can add execution permission to pages that an application allocates.

[BuildOptions]
;Disable some Data Execution protections for this particular application
AddPageExecutionPermission=1

AllowUnsupportedExternalChildProcesses

The AllowUnsupportedExternalChildProcesses parameter specifies whether to
prevent the virtualized application from creating a child 64-bit process. You can create
child 64-bit processes in the physical environment rather than the virtual environment.

If you do not specify a value, the default behavior facilitates unsupported external
processes.

Examples

The default setting of the AllowUnsupportedExternalChildProcesses parameter
causes ThinApp to run 64-bit applications in the physical environment. You can
execute 64-bit child process tasks on applications that run on 64-bit systems. Running
the print spooler is an example of a 64-bit child process task.

[BuildOptions]
AllowUnsupportedExternalChildProcesses=1

You can block ThinApp from generating 64-bit child processes outside of virtual
environment:

AllowUnsupportedExternalChildProcesses=0

90 VMware, Inc.

Appendix A Package.ini Parameters

AnsiCodePage

The AnsiCodePage parameter specifies the country locale where you captured the
application in a numerical value. ThinApp uses the value to translate multibyte strings.

Examples
The capture process generates the AnsiCodePage value.

[BuildOptions]
AnsiCodePage=1252

AutoShutdownServices

The AutoShutdownServices parameter controls whether to shutdown virtual services
when the last non-service process exits.

The default behavior shuts down virtual services when the last non-service child
process exits. The AutoShutdownServices parameter instructs ThinApp to keep
virtual services running even when all other processes exit. The parameter does not
affect services outside the virtual context.

Examples
You can keep virtual services running when the application exits.

[BuildOptions]
AutoShutdownServices=0

You can stop virtual services when the last non-service application exits. This is the
default behavior.

[BuildOptions]
AutoShutdownServices=1
AutoStartServices

The AutoStartServices parameter controls whether to start virtual service when the
first application starts.

The default behavior starts virtual services that are installed with the startup type of
Automatic. The virtual services start when the user runs the first parent process.
You can use the AutoStartServices parameter to disable the automatic starting of
virtual services.

VMware, Inc. 91

VMware ThinApp User’s Manual

92

Examples
You can prevent the start of virtual services.

[BuildOptions]
AutoStartServices=0

You can start virtual services when first process start. This is the default behavior.

[BuildOptions]
AutoStartServices=1

BlockSize

The BlockSize parameter controls the size of compression blocks when ThinApp
compresses files for a build.

Using a larger block size can achieve higher compression. Larger block sizes might slow
the performance because of the following reasons:

® The build process slows down with larger block sizes.

® The startup time and read operations for applications slow down with large block
sizes.

B More memory is required at runtime when you use larger block sizes.

You can specify the BlockSize parameter in the Package. ini file, where the block size
becomes the default for all files in the project unless otherwise specified, and in the
##Attributes.ini file, where the block size overrides the block size for the present
directory and all subdirectories. You can use different block sizes for different
directories within a single project.

Examples
You can set the default block size of 64KB.

[Compression]
BlockSize=64k

You can use other block sizes.

BlockSize=128k
BlockSize=256k
BlockSize=512k
BlockSize=1M

VMware, Inc.

Appendix A Package.ini Parameters

CachePath

The CachePath parameter sets the path to the cache directory that stores font files and
stub executable files. You can use this parameter to force the cache directory to reside
on a different drive.

This parameter can contain macros, such as %Local AppData%, that expand before use.
If the path is relative, ThinApp interprets the path relative to the directory where the
package is stored.

You can use the THINSTALL_CACHE_DIR environment variable to override this
parameter at runtime.

If neither the CachePath parameter nor the THINSTALL_CACHE_DIR environment
variable is present, ThinApp uses a default location. The default location depends on
the presence of a SandboxPath parameter in the Package. ini file. If the SandboxPath
parameter exists and the path setting is relative, CachePath defaults to the same path.
If the SandboxPath setting exists and the path setting is absolute, CachePath defaults
to %¥Local AppData%\Thinstall\Cache\Stubs.

Examples
You can set the cache directory to C:\VirtCache.
CachePath=C:\VirtCache

If the package resides in C:\VirtApps and the CachePath parameter has a value of
Cache, the cache directory is C:\VirtApps\Cache.

Using a USB key might involve forcing the sandbox on to the USB key. If you store
packages in the \VirtApps directory on the USB key, you can force the cache directory
to reside on the USB key:.

CachePath=Sandbox

CapturedUsingVersion
The CapturedUsingVersion parameter indicates the version of the Setup Capture
wizard used during the application capture process.
Examples
You do not need to adjust this parameter.

[BuildOptions]
CapturedUsingVersion=4.0.0-2200

VMware, Inc. 93

VMware ThinApp User’s Manual

94

CompressionType

The CompressionType parameter sets None or Fast compression.

None is the default value when you capture an application. This value is useful for
building your application quickly for testing purposes. Avoiding compression
improves application startup time on older computers or in circumstances where you
start the application multiple times and depend on the Windows disk cache to provide
data for each start.

Fast compression has a quick rate of decompression and little effect on application
startup time and memory consumption at runtime. Fast compression achieves similar
compression ratios as the ZIP algorithm.

Table A-1 lists sample compression ratios and startup times for a Microsoft Office 2003
package that runs from a local hard drive.

Table A-1. Sample Compression Ratios and Startup Times

Compression Type None Fast

Size 448,616KB 257,373KB
Compression ratio 100% 57%
Startup time (first run) 6 seconds 6 seconds
Startup time (second run) 0.1 seconds 1 seconds
Build time (first build) 3 minutes 19 minutes
Build time (second build) 2 minutes 1.2 minutes

You can specify the CompressionType parameter in the Package. ini file, where the
compression type becomes the default for all files in the project unless otherwise
specified, and the ##Attributes.ini file, where the compression type overrides the
compression algorithm for the present directory and all subdirectories. You can use
different compression algorithms for different directories within a single project.

Examples

You can prevent compression to facilitate fast build and load time. This is the default
behavior.

[Compression]
CompressionType=None

You can use fast compression for a slow build time and fast load time.

[Compression]
CompressionType=Fast

VMware, Inc.

Appendix A Package.ini Parameters

DisableTracing

The DisableTracing parameter prevents . trace file generation when you run Log
Monitor.Log Monitor produces . trace files for troubleshooting purposes.

You might want to disable . trace file generation for the following reasons:
B You might need to hide the execution history for security purposes.

B In a testing environment, you might need to turn off tracing for specific
applications that you know work properly. Producing extra . trace files wastes
disk space and CPU time.

Examples

You can stop an application from creating a . trace file even if you run Log Monitor.

[BuildOptions]
DisableTracing=1

The default behavior supports . trace file generation in Log Monitor.

[BuildOptions]
DisableTracing=0

ExcludePattern

The ExcludePattern parameter excludes specified files or directories during the
application build process.

You can specify the list of patterns with a comma separator. Wildcards (*) can match
none of the characters or at least one of the characters and question marks (?) match
exactly one character.

This syntax is similar to the DOS dir command but you can apply wildcard characters
to directory names and filenames. You can specify the ExcludePattern parameter in
the Package. ini file, where the pattern exclusion applies to the entire directory
structure, and the ##Attributes.ini file, where ThinApp adds the pattern exclusion
to the current list of exclusions and applies settings only to the specific directory and
subdirectories. You can create a different exclusion list for different directories in your
project.

Examples
You can exclude any path that ends with .bak or .ms1i.

[FileList]
ExcludePattern=*.bak,*.msi

VMware, Inc. 95

VMware ThinApp User’s Manual

96

You can exclude any directories called .svn or .cvs and all the subdirectories.
ExcludePattern=\.svn,\.cvs

The pattern does not match filenames or directories that contain .svn or . cvs in the
middle of the string.

FileTypes

The FileTypes parameter lists file extensions that thinreg.exe associates with an
executable file. You do not need separators between the file extensions in the list.
A typical list is .doc.docx.

This setting only makes sense in a section of the Package. in1 file that is specific to an
application, such as the [Adobe Reader 8.exe] section, rather than the overall
[BuildOptions] section.

In typical circumstances, the application capture process places the FileTypes list in
the Package. ini file. You can manually remove extensions that you do not want to
associate with the virtual package. For example, if you virtualize Microsoft Office 2007
and have Microsoft Office 2003 installed in the native physical environment, you can
remove the .doc extension from the FileTypes list and leave the.docx extension to
ensure that Microsoft Word 2003 opens . doc files and Microsoft Word 2007 opens
.docx files.

Examples

You can use the thinreg. exe utility to create file type associations for .doc and . dot
extensions and link them to Microsoft Word.

[Microsoft Office Word 2003.exe]
ReadOnlyData=bin\Package.ro.tvr
Source=%ProgramFilesDir%\Microsoft Office\OFFICE11\WINWORD.EXE
FileTypes=.doc.dot

Localeldentifier

The LocaleIdentifier parameter displays a numeric ID for the locale. The value
locates the correct language resources from the application.

Examples

1033 is the locale ID for an English language application.

[BuildOptions]
LocaleIdentifier=1033

VMware, Inc.

Appendix A Package.ini Parameters

LocaleName
The LocaleName parameter displays the name of the locale when you capture an
application on Microsoft Vista.
Examples
ThinApp can generate a Japanese locale name.

[BuildOptions]
LocaleName=ja-JP

LogPath

The LogPath parameter sets the location to store . trace files during logging activity.

Examples
You can direct ThinApp to store log files in c:\ThinappLogs.

[BuildOptions]
LogPath=C:\ThinappLogs

Unlike most paths in ThinApp, the log path cannot contain macros such as %AppData%
or %Temp%.
OutDir

The OutDir parameter specifies the directory that stores the build.bat output.

Examples
You can specify the bin directory as the location for the build.bat output.

[BuildOptions]
OutDir=bin

VMware, Inc. 97

VMware ThinApp User’s Manual

98

NetRelaunch

The NetRelaunch parameter determines whether to restart an application from the
local disk when you run the application from a network share or removable disk.

The default ThinApp behavior detects whether an application runs from a network
drive or a removable disk, and uses a local hard disk to restart the application. This
process resolves a problem that Symantec AntiVirus might generate when it tries to
perform a complete scan of an executable file. The scan can affect start times for large
executable files located on network shares. Symantec AntiVirus performs a full file scan
on executable files that start from a network share or removable disk and on executable
files that make the initial network connections.

Because a large number of desktops have Symantec AntiVirus, ThinApp allows
applications to start from a network share without incurring lengthy scan times.
ThinApp creates a stub executable file in the user sandbox and restarts the file.
ThinApp can load the remainder of the application data from the original source
location because Symantec AntiVirus can scan the stub quickly.

If your application is small or you know that Symantec AntiVirus is not installed on the
desktops you are deploying the application to, you might want to turn off the
NetRelaunch parameter for stronger initial startup performance.

Examples

You can prevent the restart of the application on a local hard disk.

[BuildOptions]
NetRelaunch=0

If the application starts from a network drive, you can restart the application using a
local stub file. This is the default behavior.

[BuildOptions]
NetRelaunch=1

Protocols

The Protocols parameter specifies the protocols, such as HTTD, that are visible to
applications in the physical environment.

Examples

You can enter the mailto protocol for a Microsoft Outlook package.

[BuildOptions]
Protocols=feed;feeds;mailto; Outlook.URL.mailto;stssync;webcal;webcals

VMware, Inc.

Appendix A Package.ini Parameters

RuntimeEULA

The RuntimeEULA parameter controls the ThinApp End User License Agreement
(EULA) display. The default behavior does not display the EULA. Depending on
ThinApp licensing terms, you might need to show an end-user license agreement.

Examples
The default value for the RuntimeEULA parameter does not show the EULA.

[BuildOptions]
;Default: do not show an Eula
RuntimeEULA=0

You can display a EULA.

[BuildOptions]
;Turn on display of EULA
RuntimeEULA=1

Shortcuts

The Shortcuts parameter lists the locations where the thinreg.exe utility creates a
shortcut to a virtual application. You can separate the entries with semicolons. Each
entry can contain a macro value. Use the Shortcuts parameter only in a section of the
Package. ini file that is specific to an application, such as the[Adobe Reader 8.exe]
section.

Examples

You can use the thinreg.exe utility to create a shortcut to the virtual Microsoft
Word 2003 application. ThinApp creates the shortcut in the Microsoft Office folder of
the Start menu.

[Microsoft Office Word 2003.exe]
ReadOnlyData=bin\Package.ro.tvr
Source=%ProgramFilesDir%\Microsoft Office\OFFICE11\WINWORD.EXE
Shortcuts=%Programs%\Microsoft Office

UACRequestedPrivilegesLevel

The UACRequestedPrivilegesLevel parameter specifies privileges for programs
requiring User Account Control (UAC) information. This parameter affects users
working on Windows Vista or later operating system versions.

VMware, Inc. 99

VMware ThinApp User’s Manual

100

You can use the following values:
m aslnvoker
This value uses the profile invoked in Vista.
B requireAdministrator
® highestAvailable

This value uses the highest available privilege that can avoid the UAC prompt.

Examples
You can specify that a program requires administrator privileges.

[BuildOptions]
UACRequestedPrivilegesLevel=requireAdministrator

UACRequestedPrivilegesUiAccess

Windows Vista or later operating system versions protect some elements of the user
interface. In typical circumstances, virtual applications do not require access to
protected elements.You can assign the UACRequestedPrivilegesUIAccess
parameter a true or false value to specify user interface access.

Examples

The default value of false ensures that the virtual application cannot access protected
elements.

[BuildOptions]
UACRequestedPrivilegesUiAccess=false

UpgradePath

The UpgradePath parameter specifies the location to probe for application updates.

ThinApp searches for application updates in the same directory as the main executable
file. You can use the UpgradePath parameter to specify an alternative location.

When the Application Sync utility downloads an update from a server, it stores the
update with a temporary name in the UpgradePath location. The next time the
application starts, ThinApp renames the temporary file with a .1 extension or a

.2 extension depending on whether .1 already exists. Other applications cannot use the

VMware, Inc.

Appendix A Package.ini Parameters

same sandbox. ThinApp attempts to change the name with the .1 extension to the
original name of the file that might reside in another directory. If ThinApp cannot make
this change, the file keeps the .1 extension in the UpgradePath location. Running the
original application accesses that file.

For information about the Application Sync utility, see “Reviewing the Application
Sync Utility” on page 49.
Examples

You can instruct ThinApp to probe for application upgrades in C:\Program
Files\MyAppUpgrades.

[BuildOptions]
UpgradePath=C:\Program Files\MyAppUpgrades

VirtualComputerName

The VirtualComputerName parameter is a string that GetComputerName and
GetComputerNameEx API functions return in a captured application.

Applications often use the name of the machine on which they are installed. Certain
applications connect to a database and use the name of the computer in the connection
string. For captured applications, the computer name is virtualized to ensure the
application runs on any machine regardless of the name.

Examples

You can rename a clean machine LOCALHOST before performing the capture process.
After you complete the application capture, the Package. ini file contains the
VirtualComputerName entry.

VirtualComputerName=LOCALHOST

If you enter a GetComputerName or GetComputerNameEx command, the machine
returns LOCALHOST.

If your Windows system requires the GetComputerName and GetComputerNameEx API
functions to operate in a standard way, do not rename the machine LOCALHOST.

The VirtualComputerName parameter is commented out in the Package. ini file.
The machine name replaces OriginalMachineName.

;VirtualComputerName=OriginalMachineName

VMware, Inc. 101

VMware ThinApp User’s Manual

102

VirtualDrives

The VirtualDrives parameter specifies additional drive letters that are available to
the application at runtime.

Virtual drives are useful when applications rely on hard-coded paths to drive letters
that might not be available on the client computers. For example, certain legacy
applications might expect that the D: drive is a CD-ROM and that data files are
available at D: \media.

Virtual drives are visible only to applications running in the virtual environment.
Virtual drives do not affect the physical Windows environment. Virtual drives inherit
isolation modes from the default isolation mode of the project unless you specifically
override the mode. If you configure your virtual drive with the IsolationMode
parameter set to Merged, any write operations to that drive fail if it does not exist on the
physical system.

A project lists virtual drive information for drives that are present at the time of
application capture. The VirtualDrives parameter uses semicolons to separate
information assigned to different drive letters and commas to separate parameters for
individual drive letters. The VirtualDrives parameter includes this information:

B Driveis asingle character between A and Z.
B Serial is an eight digit hex number.
B Typeis FIXED, REMOVABLE, CD-ROM, or RAMDISK.
B FIXED—Indicates fixed media.
For example, a hard drive or internal Flash drive.
B REMOVABLE—Indicates removable media.
For example, a disk drive, thumb drive, or flash card reader.
B (CD-ROM—Indicates a CD-ROM drive.
m RAMDISK—Indicates a RAM disk.

Examples

The VirtualDrives parameter is a single string that can hold information for multiple
drive letters, and optional parameters for those drive letters.

VirtualDrives= Drive=A, Serial=12345678, Type=REMOVABLE; Drive=B,
Serial=9ABCDEF®, Type=FIXED

Basic usage specifies a single virtual drive letter. By default, ThinApp assigns a serial
number and the FIXED type to the drive.

VMware, Inc.

Appendix A Package.ini Parameters

You can specify the X, D, and Z virtual drive letters.

[BuildOptions]
VirtualDrives=Drive=X, Serial=ff897828, Type=REMOVABLE; Drive=D, Type=CDROM;
Drive=Z

Drive X is a removable disk with the ff797828 serial number.
Drive D is a CD-ROM drive with an assigned serial number,

Drive Z is a FIXED disk with an assigned serial number.

Change Virtual Drive Isolation Settings

You might need to use the ##Attributes.ini file to change the isolation mode of a
virtual drive.

Specify the isolation mode for a virtual drive
1 Add the %Drive_X% folder to your ThinApp project.

2 Inthenew directory, add the ##Attributes. ini file to specify the isolation mode
for the drive letter.

Wow64

The Wow64 parameter helps run 32-bit applications on a 64-bit Windows operating
system. If a 32-bit application tries to handle its own 64-bit registry redirection, you can
enable this parameter before building a project.

Examples

You can simulate an environment where 32-bit applications run on a 32-bit operating
system instead of a 64-bit operating system.

[BuildOptions]
Wow64=0

You can simulate an environment where the application detects it always runs under
WOW64.

[BuildOptions]
Wow64=1

You can leave the parameter commented out to prevent WOW64 emulation.

[BuildOptions]
;Wow64=0

VMware, Inc. 103

VMware ThinApp User’s Manual

Access Control Parameters

ThinApp provides parameters that define user access to packages. The parameters
include AccessDeniedMsg and PermittedGroups.

AccessDeniedMsg

The AccessDeniedMsg parameter contains an error message to display to users who do
not have permission to run a package. The default setting is You are not currently
authorized to run this application. Please contact your Administrator.

Examples
You can customize the string for unauthorized users.

[BuildOptions]

PermittedGroups=Administrator;0fficeUsers

AccessDeniedMsg=You do not have permission to execute this application,
please call support @ 1-800-822-2992

PermittedGroups

The PermittedGroups parameter restricts a package to a specific set of Active
Directory users.

When ThinApp builds an application, ThinApp assumes any specified group names
are valid and converts the names to SID values. ThinApp can resolve group ownership
at runtime using cached credentials. You can continue to authenticate laptop users even
when they are offline.

You can specify group names, SID strings, or a mix of group names and SID strings in
the same line of the PermittedGroups parameter.

If you use a domain-based group name, you must be connected to that domain when
you build the application package. If you enter a SID directly in the parameter value,
you do not need to connect to the domain where the SID is defined.

If the user does not have access to run the package, you can customize the
AccessDeniedMsg parameter to instruct the user.

104 VMware, Inc.

Appendix A Package.ini Parameters

Examples

You can specify a list of Active Directory user group names separated by semicolons.
The [BuildOptions] section of the Package. ini file sets default values for
applications in a project that individual application sections, such as [Adobe Reader
8.exe], can overwrite.

[BuildOptions]

PermittedGroups=Administrator;0fficeUsers

AccessDeniedMsg=You do not have permission to execute this application,
please call support @ 1-800-822-2992

You can overwrite global PermittedGroups users.

[Appl.exe]

PermittedGroups=Guest

AccessDeniedMsg=You do not have permission to execute this application,
please call support @ 1-800-822-2992

You can inherit PermittedGroups settings from the [BuildOptions] parameters.

[App2.exe]

You can mix group names and SID strings in the same entry for the PermittedGroups
parameter.

PermittedGroups=S-1-5-32-544;0ffice Users

Parameters for Individual Applications

Parameters specific to application, such as the [Adobe Reader 8.exe] entries of the
Package.ini file for an Adobe Reader application, affect areas such as command-line
arguments, icon use, and address space reservation.

Disabled

The Disabled parameter indicates that a build target is a placeholder and prevents
ThinApp from generating an executable file.

If you do not select the cmd . exe, regedit.exe, or iexplore.exe entry points during
the application capture process, and you develop a need to debug or troubleshoot the
environment, you can set the Disabled parameter to 0 and rebuild the project to
generate these entry points. For information about the troubleshooting entry points, see
“Specify Entry Points, Data Containers, and Inventory Names” on page 18.

VMware, Inc. 105

VMware ThinApp User’s Manual

Examples

You can prevent the generation of the application executable file during the build
process.

[app.exe]
Source=%ProgramFilesDir%\myapp\app.exe
Disabled=1

You can use a value of 0 for the Disabled parameter or remove the line to generate the
application executable file.

[app.exe]
Source=%ProgramFilesDir%\myapp\app.exe
Disabled=0

CommandLine

The CommandLine parameter specifies command-line arguments for a shortcut
executable file.

When you specify the command line argument that ThinApp passes to the virtual
application, include the application name as the first parameter.

Examples
You can enter /SomeOption SomeParameter as your command-line arguments.

[MyShortcutApp.exe]
Source=%ProgramFilesDir%\Myapp\MyShortcutApp.exe
Shortcut=HostApp.exe
CommandLine="%ProgramFilesDir%\Myapp\MyShortcutApp.exe" /SomeOption
SomeParameter

Use folder macros for your path name conventions. See “Using Folder Macros” on
page 144 for more information.

Ilcon

The Icon parameter specifies the icon file to use for the generated executable file.

By default, each generated application uses the main group icon from its source
executable file and the individual icon resource that the group icon points to. You can
specify a .1ico file or executable file to use an alternative icon.

106 VMware, Inc.

Appendix A Package.ini Parameters

Examples

You can specify a NULL value to generate an executable file without icons. Do not use a
NULL value when you use the file types directive. The executable file image allocates
one icon for each file type.

[myapp.exe]
Source=%ProgramFilesDir%\myapp\app.exe
Icon=NULL

You can specify the application icon by using an executable file that is different from
the Source executable file.

[myapp.exe]
Source=%ProgramFilesDir%\myapp\app.exe
Icon=%ProgramFilesDir%\myapp\app2.exe

You can specify the set to use by appending ,1 ,2 to the end of the icon path.

[myapp.exe]
Source=%ProgramFilesDir%\myapp\app.exe
Icon=%ProgramFilesDir%\myapp\app2.exe,1

You can use a .1ico file to specify the application icon.

[myapp.exe]
Source=%ProgramFilesDir%\myapp\app.exe
Icon=%ProgramFilesDir%\myap\myicon.ico

NoRelocation

The NoRelocation parameter strips relocation information from the generated
executable file.

Windows executable files might contain base relocation information that enables
Windows to load the executable file image at an alternative starting memory address.
If the base address is greater than 0x40000, Windows always loads the executable file
image at its specified base address. You can safely remove unnecessary relocation
information from the resulting image.

Relocation information is typically small on disk. Removing this information does not
affect the size of the generated executable files.

Examples

You can strip the relocation information from the generated executable file.

[app.exe]

Source=%ProgramFilesDir%\myapp\app.exe
NoRelocation=1

VMware, Inc. 107

VMware ThinApp User’s Manual

108

ReadOnlyData

The ReadOnlyData parameter specifies the name of the read-only virtual registry file
created during the application build. If the ReadOnlyData parameter appears in an
application-specific section of the Package. ini file, the specified file is the primary
data container.

Examples
You can specify Package. ro. tvr as the name of the virtual registry file.

ReadOnlyData=bin\Package.ro.tvr

ReserveExtraAddressSpace

The ReserveExtraAddressSpace parameter indicates the amount of extra address
space to reserve for the captured executable file.

In typical circumstances, the t1ink.exe utility sets the Windows SizeOfImage field in
the generated executable file based on the SizeOfImage field of the source executable
file. The Windows loader uses the SizeOfImage field to determine how much virtual
address space to reserve for the executable file. When you build a package based on a
source executable file that is not included in the package, you can reserve virtual

address space by specifying the ReserveExtraAddressSpace parameter. The value is
the number of bytes to reserve. You can follow the number by K to indicate kilobytes or
M to indicate megabytes. The default value of 0 specifies address space to reserve.

Examples
You can instruct the Windows loader to reserve 512KB of address space.

[app.exe]
Source=%ProgramFilesDir%\myapp\app.exe
ReserveExtraAddressSpace=512K

The default behavior does not reserve extra address space.

[app.exe]
Source=%ProgramFilesDir%\myapp\app.exe
ReserveExtraAddressSpace=0

VMware, Inc.

Appendix A Package.ini Parameters

RetainAlllcons

The RetainAllIcons parameter keeps all of the original icons of the source executable
file in the captured executable file.

By default, the t1ink.exe utility constructs a new executable file using a source
executable file. To reduce disk space, the new executable file image contains only icons
that you can view from the system shell. The package contains all the other icons. The
icons remain accessible to the application while it runs. The icons that the system can
access have a larger disk size because ThinApp cannot compress the icons. In certain
circumstances, you might want to have all of the original icons of the application visible
to the system shell.

Examples

You can instruct the t1ink. exe utility to retain all of the original icons of the
application.

[app.exe]
Source=%ProgramFilesDir%\myapp\app.exe
RetainAllIcons=1

The default behavior strips out unused icons from the portion of the executable file that
is visible to the physical environment.

[app.exe]
Source=%ProgramFilesDir%\myapp\app.exe
RetainAllIcons=0

Shortcut

The Shortcut parameter points to the name of the generated executable file that
contains the package data.

Examples

You can create a shortcut application that references the HostApp . exe file. The package
must list the HostApp . exe file. The file must reside in the same directory to ensure that
the MyShortcutApp.exe file can start.

[MyShortcutApp.exe]
Source=%ProgramFilesDir%\Myapp\MyShortcutApp.exe
Shortcut=HostApp.exe

VMware, Inc. 109

VMware ThinApp User’s Manual

Source
The Source parameter points to the executable file that ThinApp initially loads.

ThinApp specifies the source for each executable file. If an application suite has three
user entry points, such as Winword.exe, Powerpnt.exe, and Excel.exe, the
Package. ini file lists three application entries. Each entry has a different source entry.

Examples
You can create an accessible entry point for C:\Program Files\Myapp\appl.exe.

[appl.exe]
Source=%ProgramFilesDir%\Myapp\appl.exe

You can create an accessible entry point for C:\Program Files\Myapp\app2.exe.

[app2.exe]
Source=%ProgramFilesDir%\Myapp\app2.exe

StripVersioninfo

The StripVersionInfo parameter removes all version information from the source
executable file when ThinApp builds the application.

Version information for executable files is in Windows properties. Properties
information includes the copyright, trademark, and version number. By default,
ThinApp copies all version information from the source executable file. The
StripVersionInfo parameter strips version information from the captured
application.

Examples
You can generate a target application without version information.
[app.exe]
Source=%ProgramFilesDir%\myapp\app.exe
StripVersionInfo=1
WorkingDirectory

The WorkingDirectory parameter sets the current working directory before the
application starts.

You can set the Current Working Directory (CWD) for individual applications.
The CWD value does not need to exist on the system.

110 VMware, Inc.

Appendix A Package.ini Parameters

Examples
You can set the current working directory to C:\Program Files\My Application.

[Application.exe]
WorkingDirectory=%ProgramFilesDir%\My Application

Version. XXXX

The Version.XXXX parameter overrides executable file version strings or adds new
version strings.

ThinApp copies version resources from the original executable file. You can override
the version resource strings and add new ones with a
Version.<string_name>=<string_value> setting.

Examples
You can set My New Product Name as the version product name value.

[Application.exe]
Version.ProductName=My New Product Name
Version.Description=This Product is great!

Application Link Parameters

The Application Link utility keeps shared components or dependent applications in
separate packages. In the Package. ini file, you can use the OptionalAppLinks and
RequiredAppLinks entries to dynamically combine ThinApp packages at runtime on
end-user computers. This process enables you to package, deploy, and update
component pieces separately and retain the benefits of application virtualization.

ThinApp supports linking up to 250 packages at a time. Each package can be any size.

Sandbox changes from linked packages are not visible to the parent executable file. For
example, you can install Acrobat Reader as a standalone virtual package and as a linked
package to the base Firefox application. When you start Acrobat Reader as a standalone
application by running the virtual package and you make changes to the preferences,
ThinApp stores the changes in the sandbox for Acrobat Reader. When you start Firefox,
Firefox cannot detect those changes because Firefox has its own sandbox. Opening a
.pdf file with Firefox does not reflect the preference changes that exist in the standalone
Acrobat Reader application.

For more information about the Application Link utility, see “Reviewing the
Application Link Utility” on page 52, “Optional AppLinks” on page 113, and
“RequiredAppLinks” on page 112.

VMware, Inc. 111

VMware ThinApp User’s Manual

112

Application Link Path Name Formats

The Application Link utility supports the following path name formats:

® Path names can be relative to the base executable file. For example,
RequiredAppLinks=..\SomeDirectory results in c:\MyDir\SomeDirectory
when you deploy the base executable file to c:\MyDir\SubDir\
Dependency . exe.

® Path names can be absolute path names. An example is
RequiredAppLinks=c:\SomeDirectory.

® Path names can use a network share or a UNC path. An example is
RequiredAppLinks=\\share\somedir\Dependency.exe.

B Path names can contain environment variables and dynamically expand to any of
the preceding path names. An example is
RequiredAppLinks=%MYAPP_ADDONS%\Dependency .exe.

® Path names can specify multiple links or dependencies with a semicolon that
separates individual filenames. An example is
RequiredAppLinks=Dependencyl.exe; Dependency?.exe;.

RequiredAppLinks

The RequiredApplLinks parameter specifies a list of external ThinApp packages to
import to the current package at runtime. You can specify absolute paths, such as
c:\abs\path\dotnet.exe, relative paths, such as relpath\dotnet.exe, and UNC
paths, such as \\server\share\dotnet.exe.

If the import operation for any specified package fails, an error message appears and
the parent executable file exits. You can use the OptionalAppLinks parameter instead
to continue even when load errors occur. If you use a wildcard pattern to specify a
package and files do not match the wildcard pattern, ThinApp does not generate an
error message.

Importing packages involves the following tasks:

B Running VBScript scripts from imported packages

B Starting auto-start services from imported packages

B Registering fonts from imported packages

B Relocating SxS DLL files from Windows XP to Windows Vista

You cannot import a shortcut package. You can only import the primary data container.

VMware, Inc.

Appendix A Package.ini Parameters

For more information about the Application Link utility, see “Reviewing the Application
Link Utility” on page 52.
Examples

If you package the .NET framework in the dotnet. exe package and you have a .NET
application, you can specify that the application needs to link to the dotnet.exe file
before it can start.

RequiredAppLinks=c:\abs\path\dotnet.exe

You can import a single package located in the same directory as the parent executable
file.

RequiredAppLinks=Plugin.exe
You can import a single package located in a subdirectory of the parent executable file.
RequiredAppLinks=plugins\Plugin.exe

You can import all executable files located in the directory for plug-in files. If ThinApp
cannot import any executable file because the file is not a proper Thinapp package or
because a security problem exists, the parent executable file fails to load.

RequiredAppLinks=plugins*.exe
You can import all executable files located at the n:\plugins absolute path.
RequiredAppLinks=n:\plugins*.exe

You can expand the PLUGINS environment variable and import all executable files at
this location.

RequiredAppLinks=%PLUGINS%*.exe

You can load two specified plug-in files and a list of executable files located under the
plug-in location.

RequiredAppLinks=pluginl.exe;plugin2.exe;plugins*.exe

OptionalAppLinks

The OptionalApplLinks parameter is similar to the RequireAppLinks parameter but
ignores errors and starts the main application even when an import operation fails. You
can specify absolute paths, such as c:\abs\path\dotnet.exe, relative paths, such as
relpath\dotnet.exe, and UNC paths, such as \\server\share\dotnet.exe.

For information about the RequireAppLinks parameter, see “Required AppLinks” on
page 112.

VMware, Inc. 113

VMware ThinApp User’s Manual

Application Sync Parameters

114

The Application Sync utility enables you to keep deployed virtual applications up to
date. When an application starts, Application Sync can query a Web server to see if an
updated version of the package is available. If an update is available, ThinApp
downloads the differences between the existing package and the new package and
constructs an updated version of the package. For more information about the
Application Sync utility, see “Reviewing the Application Sync Utility” on page 49.

The following entries are the default settings for Application Sync parameters:

AppSyncURL=https://example.com/some/path/PackageName.exe
AppSyncUpdateFrequency=1d

AppSyncExpirePeriod=30d

AppSyncWarningPeriod=5d

AppSyncWarningFrequency=1d

AppSyncWarningMessage=This application will become unavailable for use in
AppSyncWarningPeriod days if it cannot contact its update server. Check your
network connection to ensure uninterrupted service

AppSyncExpireMessage=This application has been unable to contact its update
server for AppSyncExpirePeriod days, so it is unavailable for use. Check your
network connection and try again

AppSyncUpdatedMessage=

AppSyncClearSandboxOnUpdate=0

AppSyncURL

The AppSyncURL parameter sets the URL of the Web server that stores updates.
Application Sync works over the HTTP (unsecure) and HTTPS (secure) protocols. Part
of the HTTPS protocol involves checking the identity of the Web serve. You can include
a user name and a password in the AppSyncURL parameter for basic authentication.
ThinApp adheres to the standard Internet Explorer proxy setting.

Examples

You can assign a value to the AppSyncURL parameter according to the following format:
AppSyncURL=https://example.com/<path>/<package_name>.exe

You can use the File protocol.

file:///C:/<path>/<package_name>.exe
file://<server>/<share>/<path>/<package_name>.exe

VMware, Inc.

Appendix A Package.ini Parameters

AppSyncUpdateFrequency
The AppSyncUpdateFrequency parameter specifies how often ThinApp checks the
Web server for application updates. By default, a package connects to the Web server
once a day to check for updates.
Examples

You can set the Application Sync update frequency to a number followed by m (month),
d (day), ory (year). A value of 0 makes the captured application check for updates every
time you start it.

AppSyncUpdateFrequency=1d

AppSyncExpirePeriod
The AppSyncExpirePeriod parameter sets the application update frequency in
minutes (m), hours (h), or days (d). If ThinApp cannot reach the Web server, the package
continues to work until the AppSyncExpirePeriod ends.
Examples
The default setting for the AppSyncExpirePeriod parameter is 30 days.
AppSyncExpirePeriod=30d
You can prevent the package from expiring with the never value.

AppSyncExpirePeriod=never

AppSyncWarningPeriod
The AppSyncWarningPeriod parameter sets the start of the warning period before a
package expires.
Examples
You can set the AppSyncWarningPeriod parameter to five days.

AppSyncWarningPeriod=5d

AppSyncWarningFrequency

The AppSyncWarningFrequency specifies how often warning appear before the
package expires. When the warning period starts, ThinApp checks the Web server
every time an application starts.

VMware, Inc. 115

VMware ThinApp User’s Manual

116

The AppSyncWarningFrequency parameter checks for new versions and downloads
updates in the background. The user can continue to use the old version. If the user
quits an application before the download is complete, the download resumes when the
virtual application starts again. When the download is finished, ThinApp activates the
new version the next time the application starts.

When the package expires, the version check and download occur in the foreground.
A progress bar appears during the download phase.

Examples

The default value sets the warning message to appear only once a day.
AppSyncWarningFrequency=1d

A 0 value configures the warning to appear each time the application starts.

AppSyncWarningFrequency=0

AppSyncWarningMessage

The AppSyncWarningMessage parameter sets the message that appears when the
connection to the Web server fails.

Examples
ThinApp includes default message for the Application Sync utility warning.

AppSyncWarningMessage=This application will become unavailable for use in
<AppSyncWarningPeriod_value> days if it cannot contact its update server.
Check your network connection to ensure uninterrupted service

AppSyncExpireMessage

The AppSyncExpireMessage parameter sets the message that appears when the
connection to the Web server fails after the expiration period ends and a virtual
application starts. The application quits when the message appears.

Examples

ThinApp provides a default message for the AppSyncExpireMessage parameter.

AppSyncExpireMessage=This application has been unable to contact its update
server for <AppSyncExpirePeriod_value> days, so it is unavailable for use.
Check your network connection and try again

VMware, Inc.

Appendix A Package.ini Parameters

AppSyncUpdatedMessage
The AppSyncUpdatedMessage parameter sets the message that appears when an
updated package first starts.
Examples
The AppSyncUpdatedMessage value can confirm that the application is updated.

AppSyncUpdatedMessage=Your application has been updated.

AppSyncClearSandboxOnUpdate

The AppSyncClearSandboxOnUpdate parameter empties the sandbox after an update.

Examples

The default behavior does not clear the sandbox.

AppSyncClearSandboxOnUpdate=0

You can set the AppSyncClearSandboxOnUpdate parameter to 1 to clear the sandbox.

AppSyncClearSandboxOnUpdate=1

MSI Parameters

MSI parameters configure MSI files that you might deploy instead of executable files.
For information on MSI files, see “Building an MSI Database” on page 35.

MSIArpProducticon

The MSIArpProductIcon parameter specifies the icons to place in the Windows control
panel for the Add or Remove Programs list.

Examples
You can specify icons for Microsoft Office 2007 in the Add or Remove Programs list.

MSIArpProductIcon=%Program Files Common%\Microsoft Shared\OFFICE12\
Office Setup Controller\OSETUP.DLL,1

The general format is MSIArpProductIcon=<filename>[,<icon_index>].
The <icon_index> entry is optional.

VMware, Inc. 117

VMware ThinApp User’s Manual

MSIiDefaultinstallAllUsers

The MSIDefaultInstallAllUsers parameter sets the installation mode of the MSI
database. You caninstall a .ms1 file for all users on a computer and for individual users.
The parameter works only when the MSIFilename parameter requests the generation
of a Windows installer database.

For information about forcing an MSI installation for each user or each machine, see
“Force MSI Deployments for Each User or Each Machine” on page 37.

Examples

If a user installs the .ms1i file with a value of 1 for the MSIDefaultInstallAllUsers
parameter, that user and all other users who log in to the computer can use shortcuts,
file type associations, and more. You must have administrator rights for a machine
installation.

[BuildOptions]

MSIFilename=mymsi.msi

MSIDefaultInstallAllUsers=1

If a user installs the .ms1i file with a value of 0 for the MSIDefaultInstallAllUsers
parameter, only that user can use shortcuts, file type associations, and more. You do not
need administrator rights for an individual user installation.

[BuildOptions]

MSIFilename=mymsi.msi

MSIDefaultInstallAllUsers=0

Administrators can create a database installation for all users on a machine and users
without administrator rights can create installations for individual users.
[BuildOptions]

MSIFilename=mymsi.msi
MSIDefaultInstallAllUsers=2

MSIFilename

The MSIFilename parameter enables the generation of an MSI database and specifies
its filename.

The MSIFilename parameter produces a Windows installer with the specified filename
in the output directory.

118 VMware, Inc.

Appendix A Package.ini Parameters

Examples

You can generate an MSI file during the build process and replace the mymsi.msi file
with your own filename.

[BuildOptions]
MSIFilename=mymsi.msi

MSlinstallDirectory

The MSIInstallDirectory parameter specifies the path of the MSI installation
directory. The parameter works only when the MSIFilename parameter requests the
generation of a Windows installer database.

By default, ThinApp places packages in the %ProgramFilesDir%\<InventoryName>
directory during the installation on each machine. You can change the installation path
with the MSIInstallDirectory parameter. When you use a relative path, the path is
relative to %ProgramFilesDir% for installations on each machine and relative to
%AppData¥% for installations for each user. If you set the MSIInstallDirectory
parameter to ExampleDir, the default installation directory for installations on each
machine is %ProgramFilesDir%\ExampleDir.

Examples
You can install a .ms1 file in the C:\Program Files\My Application directory.

[BuildOptions]
MSIFilename=mymsi.msi
MSIInstallDirectory=My Application

MSIManufacturer

The MSIManufacturer parameter specifies the manufacturer to put in the MSI
database. The default setting is the name of the company to which your copy of
Windows is registered. The parameter works only when the MSIFilename parameter
requests the generation of a Windows installer database.

Examples

You can set the MSIManufacturer parameter to the name of your organization.
The name does not have any effect other than appearing in the properties of the MSI
database.

[BuildOptions]
MSIFilename=mymsi.msi
MSIManufacturer=My Company Name

VMware, Inc. 119

VMware ThinApp User’s Manual

120

MSIProductCode

The MSIProductCode parameter specifies a product code for the MSI database.
The parameter works only when the MSIFilename parameter requests the generation
of a Windows Installer database.

Each MSI database needs a product code. The capture process generates a default
product code and places it in the Package. ini file. If you change the product code, the
new value must be a valid Globally Unique Identifier (GUID).

Examples

You can create an MST file with 590810CE-65E6-3E0B-08EF-9CCF8AE20DOE as the
product code.
[BuildOptions]

MSIFilename=mymsi.msi
MSIProductCode={590810CE-65E6-3EOB-Q8EF-9CCF8AE20DOE}

MSIProductVersion

The MSIProductVersion parameter specifies a product version number for the MSI
database. The parameter works only when the MSIFilename parameter requests the
generation of a Windows installer database.

The product version appears when you show the properties of the database. When you
deploy a package to a machine that already has the package installed, Windows
Installer checks the version numbers and blocks the installation of an older version over
an updated version. In this situation, you must manually uninstall the new version.

Examples
The default product version is 1.0.

[BuildOptions]
MSIFilename=mymsi.msi
MSIProductVersion=1.0

MSIRequireElevatedPrivileges

The MSIRequireElevatedPrivileges parameter applies to Windows Vista and
specifies elevated privilege requirements for the MSI database. The parameter works
only when the MSIFilename parameter requests the generation of a Windows installer
database.

VMware, Inc.

Appendix A Package.ini Parameters

A value of 1 marks the MSI database as requiring elevated privileges. If your system is
set up for UAC prompts, a UAC prompt appears when you install an application.

A value of 0 blocks the UAC prompt and the installation across all machines.

Examples

The default setting of 1 creates an MSI file that always prompts for elevated privileges
on Windows Vista.

[BuildOptions]
MSIFilename=mymsi.msi
MSIRequireElevatedPrivileges=1

MSIUpgradeCode

The MSIUpgradeCode parameter specifies an upgrade code for the MSI database.
The parameter works only when the MSIFilename parameter requests the generation
of a Windows installer database.

VMware recommends that each MSI database has an upgrade code. The capture
process generates a suitable upgrade code in the Package. ini file. Avoid changing the
UpgradeCode value unless you verify that the new value is a valid GUID.

Examples

You can create an MSI file with D89F1994-A24B-3E11-0C94-7FD1E13AB93F as the
upgrade code.

[BuildOptions]
MSIFilename=mymsi.msi
MSIUpgradeCode={D89F1994-A24B-3E11-0C94-7FD1E13AB93F}

MSIUseCabs

The MSIUseCabs parameter determines the use of . cab files.

If you set the value to 1, ThinApp stores the package files in a . cab file. The . cab file is
in the MSI file.

If you set the value to 0, ThinApp does not use .cab files. You might avoid a . cab file
when it slows down the installation process for applications. You can distribute the MSI
file and individual executable files in /bin to install the application.

VMware, Inc. 121

VMware ThinApp User’s Manual

Examples
You can store package files in a . cab file.

[BuildOptions]
MSIUseCabs=1

Sandbox Parameters

122

The sandbox is the directory where all changes that the captured application makes are
stored. Sandbox parameters include SandboxName, SandboxPath, and
RemoveSandboxOnExit. For more information on the sandbox, see Appendix B,
“ThinApp Sandbox,” on page 127.

SandboxName

The SandboxName parameter sets the name of the directory that stores the sandbox.

When you upgrade an application, the sandbox name helps determine whether users
retain previous personal settings or require new settings. Changing the sandbox name
with new deployments affects the need to create a new sandbox with different settings
or retains the same sandbox.

Examples

You can make My Application 1.0 the sandbox directory name.

[BuildOptions]
SandboxName=My Application 1.0

SandboxPath

The SandboxPath parameter sets the path to create a new sandbox.

If an application runs only from portable media, such as USB flash devices, you can use
the SandboxPath parameter to force the application to use a local sandbox. For
information on how ThinApp locates a sandbox, see “Search Order for the Sandbox”
on page 127.

Examples
You can create the sandbox in the same directory as the executable file.

[BuildOptions]
SandboxPath=.

VMware, Inc.

Appendix A Package.ini Parameters

You can create the sandbox in a subdirectory subordinate to the executable file location.

[BuildOptions]
SandboxPath=LocalSandbox\Subdirl

You can create the sandbox in the AppData folder of the user under the Thinstall
subdirectory:

[BuildOptions]
SandboxPath=%AppData%\Thinstall

You can create the sandbox on a network mapped drive.

[BuildOptions]
SandboxPath=Z:\Sandboxes

InventoryName

The InventoryName parameter is a string that inventory control systems use for
package identification. The string can be independent of versions.

The thinreg. exe utility, a utility that facilitates file launching, and ThinApp MSI files
reference this parameter to determine the product name for display in the Add or
Remove Programs control panel. For example, if the inventory name is SuperApp and
you install an MSI file or register a package with the thinreg.exe utility, the Add or
Remove programs list displays an installed application with the SuperApp (VMware
ThinApp) string. ThinApp appends VMware ThinApp to the inventory name to
distinguish applications that are virtualized during inventory scans. For information
about the thinreg.exe utility and MSI files, see “Facilitating File Launching with the
thinreg.exe Utility” on page 31 and “Building an MSI Database” on page 35.

The application capture process sets a default value for the InventoryName parameter
based on new strings created under one of the following locations:

m HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\
CurrentVersion\Uninstall

m HKEY_CURRENT_USER\SOFTWARE\Microsoft\Windows\
CurrentVersion\Uninstall

If you capture multiple applications together, the capture process selects an
InventoryName value based on one of the newly installed applications. You might
need to update the value manually to reflect the true contents of the package. For
example, if you capture the SuperApp application and the application requires the
installation of Java Runtime, the InventoryName value might appear as Java Runtime
Environment 1.5 instead of SuperApp.

VMware, Inc. 123

VMware ThinApp User’s Manual

The value of the InventoryName parameter does not affect the application at runtime.
If you install multiple virtualized applications using the same inventory name, the
applications overwrite each other in the Add or Remove Programs list and prevent you
from uninstalling all of the registered packages.

When you deploy new versions of an application, you might want to change the
SandboxName parameter to ensure that the new version has isolated user settings.
You can leave the InventoryName parameter constant across versions of the same
application.

Examples
You can set the inventory name to Microsoft Office 2003.

[BuildOptions]
InventoryName=Microsoft Office 2003

SandboxNetworkDrives

The SandboxNetworkDrives parameter determines whether ThinApp uses
sandboxes for network-mapped drives.

Examples

You can store changes in the sandbox and prevent the user from writing directly to
network-mapped drives.

[BuildOptions]
SandboxNetworkDrives=1

You can write directly to network-mapped drives without storing changes in a
sandbox. This is the default behavior.

(default)
[BuildOptions]
SandboxNetworkDrives=0

SandboxRemovableDisk

The SandboxRemovableDisk parameter determines whether ThinApp uses sandboxes
for removable disks. Removable disks include USB flash devices and removable hard
drives.

124 VMware, Inc.

Appendix A Package.ini Parameters

Examples

You can store changes in the sandbox and prevent users from writing directly to
removable disks.

[BuildOptions]
SandboxRemovableDisk=1

You can write directly to removable disks without storing changes in a sandbox. This is
the default behavior.

[BuildOptions]
SandboxRemovableDisk=0

RemoveSandboxOnExit

The RemoveSandboxOnExit parameter deletes the sandbox when the last child process
exits and resets the application.

ThinApp stores all application changes to the registry and file system locations with
WriteCopy or Full isolation in the sandbox. By default, the sandbox directory keeps
consistent settings across multiple runs of the application. In certain circumstances, you
might want to delete the sandbox each time the application exits.

If the application creates child processes, ThinApp does not delete the sandbox until all
child processes exit. Applications might leave child processes behind by design that can
block the clean-up operation. For example, Microsoft Office 2003 leaves behind the
ctfmon.exe process. You might need to use a script to end the ctfmon.exe process
and child processes to force the cleanup operation to occur.

You can decide at runtime whether use the RemoveSandboxOnExit script API function
to delete the sandbox on exit.

Examples
You can delete the sandbox when the application exits.

[BuildOptions]
RemoveSandboxOnExit=1

You can leave the sandbox behind when the application exits. This is the default
behavior.

[BuildOptions]
RemoveSandboxOnExit=0

VMware, Inc. 125

VMware ThinApp User’s Manual

126 VMware, Inc.

ThinApp Sandbox

The sandbox is the directory where all changes that the captured application makes are
stored. The next time you start the application, those changes are incorporated from the
sandbox. When you delete the sandbox directory, the application reverts to its captured
state.

This information includes the following topics:
® “Search Order for the Sandbox” on page 127
® “Controlling the Sandbox Location” on page 129

B “Sandbox Structure” on page 131

Search Order for the Sandbox

During startup of the captured application, ThinApp searches for an existing sandbox
in specific locations and in a specific order. ThinApp uses the first sandbox it detects.
If ThinApp cannot locate an existing sandbox, ThinApp creates a sandbox according to
certain environment variable and parameter settings. Review the search order and
sandbox creation logic before changing the placement of the sandbox.

The search order uses Firefox 3.0 as an example with the following variables:
B <sandbox_name> is Mozilla Firefox 3.0

The SandboxName parameter in the Package. in1 file determines the name.
See “SandboxName” on page 122.

B <sandbox_path>is Z:\sandboxes

The SandboxPath parameter in the Package. ini file determines the path.
See “SandboxPath” on page 122.

VMware, Inc. 127

VMware ThinApp User’s Manual

128

B <exe_directory>is C:\Program Files\Firefox
The application runs from this location.
m <computer_name> is JOHNDOE-COMPUTER
m %AppData%is C:\Documents and Settings\JohnDoe\Application Data

ThinApp requests the Application Data folder location from the operating
system. The location depends on the operating system or configuration.

ThinApp starts the sandbox search by trying to locate the following environment
variables in this order:

B %<sandbox_name>_SANDBOX_DIR%

This environment variable changes the sandbox location for specific applications
on the computer. For example, if the Mozilla Firefox 3.0_SANDBOX_DIR
environment variable exists, its value determines the parent directory sandbox
location. If the value is z: \FirefoxSandbox before you run the application,
ThinApp stores the sandbox in z:\FirefoxSandbox.JOHNDOE—COMPUTER if the
directory already exists. If the directory does not exist, ThinApp creates a sandbox
in z:\FirefoxSandbox.

B %THINSTALL_SANDBOX_DIR%

This environment variable changes the location of all ThinApp applications on a
computer. For example, if the THINSTALL_SANDBOX_DIR environment variable
exists, its value determines the parent directory sandbox location. If the value is
z:\MySandboxes before you run the application, ThinApp stores the sandbox in
z:\MySandboxes . JOHNDOE-COMPUTER if the directory already exists. If the
directory does not exist, ThinApp creates a sandbox in z: \MySandboxes.

If ThinApp does not detect the %<sandbox_name>_SANDBOX_DIR% or
%THINSTALL_SANDBOX_DIR% environment variable, ThinApp checks for the following
file system directories and creates a sandbox in the first directory it detects:

B <exe_directory>\<sandbox_name>.<computer_name>

For example, C:\Program Files\Firefox\Mozilla Firefox
3.0.JOHNDOE-COMPUTER

B <exe_directory>\<sandbox_name>
For example, C:\Program Files\Firefox\Mozilla Firefox 3.0
B <exe_directory>\Thinstall\<sandbox_name>.<computer_name>

For example, C:\Program Files\Firefox\Thinstall\Mozilla Firefox
3.0.JOHNDOE-COMPUTER

VMware, Inc.

Appendix B ThinApp Sandbox

B <exe_directory>\Thinstall\<sandbox_name>
For example, C:\Program Files\Firefox\Thinstall\Mozilla Firefox 3.0
B <sandbox_path>\<sandbox_name>.<computer_name>
For example, Z:\sandboxes\Mozilla Firefox 3.0.JOHNDOE-COMPUTER
B <sandbox_path>\<sandbox_name>
For example, Z:\sandboxes\Mozilla Firefox 3.0
m %AppData%\Thinstall\<sandbox_name>.<computer_name>

For example, C:\Documents and Settings\JohnDoe\Application
Data\Thinstall\Mozilla Firefox 3.0.JOHNDOE-COMPUTER

B %AppData%\Thinstall\<sandbox_name>

For example, C:\Documents and Settings\JohnDoe\Application
Data\Thinstall\Mozilla Firefox 3.0

If ThinApp does not detect the %<sandbox_name>_SANDBOX_DIR% and
%THINSTALL_SANDBOX_DIR% environment variables, and does not detect an existing
sandbox in the ordered file system directories, ThinApp creates a sandbox using the
following logic:

® If the SANDBOXPATH Package.ini parameter is set, the value determines the
sandbox location.

® If ThinApp completes the sandbox search without any results, ThinApp creates a
sandbox in the default %AppData%\Thinstall directory of the user.

NOTE Only one computer at a time can use a shared sandbox. If a computer is already
using a sandbox, ThinApp creates a new sandbox to allow you to continue working
until the previous copy of the sandbox closes.

Controlling the Sandbox Location

The setup capture process adds the SandboxName parameter to the Package. ini file.
If you capture Firefox and Mozilla Firefox 3.0 is the value of this parameter, the
defaultlocation of the sandbox for the application is %AppData%\Thinstall\Mozilla
Firefox 3.0. The typical %AppData% location is C:\Documents and
Settings\<user_name>\Application Data.

%AppData¥%is often mapped to a shared network drive to allow for easy backups. In this
situation, users can log in to any machine and retain their application settings.

VMware, Inc. 129

VMware ThinApp User’s Manual

Place the Sandbox on the Network

You can use the SandboxPath parameter to store the sandbox on a mapped drive.

Store the sandbox on a mapped drive
1 Open the Package.ini file.

2 Under the SandboxName parameter, set the SandboxPath parameter to the
network location:

SandboxName=Mozilla Firefox 3.0
SandboxPath=Z:\Sandbox

Forexample, ifMozilla Firefox 3.0 is the value of the SandboxName parameter,
the captured Firefox application creates the sandbox in Z:\Sandbox\Mozilla
Firefox 3.0.

Place the Sandbox on a USB Drive

You can use the SandboxPath parameter to set a USB location for the sandbox.
The captured application loads and saves changes to the same directory on the USB
drive where the executable file resides.

Store the sandbox in a USB location
1 Open the Package. ini file.

2 Under the SandboxName parameter, set the SandboxPath parameter to this value:

SandboxName=Mozilla Firefox 3.0
SandboxPath=.

For example, ifMozilla Firefox 3.0 is the value of the SandboxName parameter,
the captured Firefox application creates theMozilla Firefox 3.0 sandboxin the
same directory that Firefox runs from.

130 VMware, Inc.

Appendix B ThinApp Sandbox

Make a Portable Application

To make a captured application portable for a USB device, iPod, or other similar device,
the sandbox must reside in a subdirectory relative to the executable file.

Make a captured application portable
1 Create a Thinstall directory in the same directory as your captured application.
2 Move the Thinstall directory from %AppData% to the application directory.

The next time the application starts, the application operates on this local sandbox.

3 Copy the application and sandbox to a portable device and start the application
there.

Sandbox Structure

ThinApp stores the sandbox using a file structure almost identical to the build project
structure. ThinApp uses macro names for shell folder locations, such as %AppData%,
instead of hard coded paths. This structure enables the sandbox to migrate to different
computers dynamically when the application runs from new locations.

The sandbox contains the following registry files:

B Registry.rw.tvr - Contains all registry modifications that the application
makes.

B Registry.rw.1lck - Prevents other computers from simultaneously using a
registry located on a network share.

B Registry.tvr.backup — Contains a backup of the . tvr file from the last
successful run if ThinApp detects corruption. On startup, ThinApp restores the
.tvr file.

Besides these registry files, the sandbox contains directories that include %AppData%,
%ProgramFilesDir%, and %SystemRoot%. Each of these folders contains modifications
to respective folders in the captured application.

Making Changes to the Sandbox

ThinApp stores file system information in the virtual registry. The virtual registry
enables ThinApp to optimize file system access in the virtual environment.

For example, when an application tries to open a file, ThinApp does not need to consult
the real file system for the real system location and again for the sandbox location.
Instead, ThinApp can check for the file’s existence by consulting only the virtual
registry. This ability increases the ThinApp runtime performance.

VMware, Inc. 131

VMware ThinApp User’s Manual

VMware does not support modifying or adding files directly to the sandbox. If you
copy files to the sandbox directory, the files are not visible to the application. If the file
already exists in the sandbox, you can overwrite and update the file. VMware
recommends that you perform all modifications from the application itself.

Listing Virtual Registry Contents with vregtool

Because the sandbox contains the modifications to the registry, you might need the
vregtool utility to view modified virtual registry changes. You must have access to the
vregtool utility in C:\Program Files\VMware\VMware ThinApp.

A sample command to list the contents of a virtual registry file is vregtool
registry.rw.tvr printkeys.

132 VMware, Inc.

ThinApp Directory Files

The ThinApp installation generates the VMware ThinApp directory in C:\Program
Files\VMware. You might need to locate files in this directory to perform operations

such as starting the Log Monitor utility to view recent activity.

The following key files in the VMware ThinApp directory include utilities and
configuration files:

VMware, Inc.

AppSync.exe — Keeps captured applications up to date with the latest available
version.

logging.dll — Generates . trace files.

dll_dump.exe — Lists all captured applications that are currently running on a
system.

log_monitor.exe — Displays the execution history and errors of an application.

sbmerge.exe — Merges runtime changes recorded in the application sandbox with
the ThinApp project and updates the captured application.

Setup Capture.exe — Captures and configures applications through a wizard.

snapshot.exe — Compares the preinstallation environment and postinstallation
environment during the application capture process.

ThinApp starts this utility during the setup capture process.

snapshot.ini — Stores entries for the virtual registry and virtual file system that
ThinApp ignores during the process of capturing an application.

The snapshot. exe file references the snapshot. ini file. Advanced users might
modify the snapshot. ini file to ensure ThinApp does not capture certain entries
when creating an application package.

133

VMware ThinApp User’s Manual

134

template.msi — Builds the MSI files.

You can customize this template to ensure the .ms1 files generated by ThinApp
adhere to company deployment procedures and standards. For example, you can
add registry settings that you want ThinApp to add to client computers as part of
the installation.

thinreg.exe — Registers captured applications on a computer.

This registration includes setting up shortcuts and the Start menu and setting up
file type associations that allow you to start applications.

tlink.exe — Links key modules during the build process of the captured
application.

vftool.exe — Compiles the virtual file system during the build process of the
captured application.

vregtool.exe — Compiles the virtual registry during the build process of the
captured application.

VMware, Inc.

Snapshot Commands and
Customization

The snapshot. exe utility creates a snapshot of a computer file system and registry and
creates a ThinApp project from two previously captured snapshots. You do not need to
start the snapshot . exe utility directly because the Setup Capture wizard starts it. Only
advanced users and system integrators who are building ThinApp functionality into
other platforms might make direct use of this utility.

Creating a snapshot of a computer file system and registry involves scanning and
saving a copy of the following data:

m File information for all local drives

This information includes directories, filenames, file attributes, file sizes, and file
modification dates.

® HKEY_LOCAL_MACHINE and HKEY_USERS registry trees

ThinApp does not scan HKEY_CLASSES_ROOT and HKEY_CURRENT_USER registry
entries because those entries are subsets of HKEY_LOCAL_MACHINE and
HKEY_USERS entries.

The snapshot. in1i configuration file specifies what directories and subkeys to exclude
from a ThinApp project when you capture an application. You might customize this file
for certain applications.

This information includes the following topics:

B “Methods of Using the snapshot.exe Utility” on page 136

B “Sample snapshot.exe Commands” on page 138

B “Create a Project Without the Setup Capture Wizard” on page 139
B “Customizing the snapshot.ini File” on page 140

VMware, Inc. 135

VMware ThinApp User’s Manual

Methods of Using the snapshot.exe Utility

You can use the snapshot. exe utility to create snapshot files of machine states, create
the template file for the Package. ini file, create a ThinApp project, and display the
contents of a snapshot file.

For information about the full procedure to create a ThinApp project from the
command line, see “Create a Project Without the Setup Capture Wizard” on page 139.

Creating Snapshots of Machine States

The snapshot. exe utility creates a snapshot file of a machine state. ThinApp captures
the machine state and saves it to a single file to create a project. The snapshot.exe
utility saves a copy of registry data and file system metadata that includes paths,
filenames, sizes, attributes, and timestamps.

Usage

snapshot.exe SnapshotFileName.snapshot [-Config
ConfigFile.ini][BaseDirl] [BaseDir2] [BaseRegl]

Examples

Snapshot My.snapshot
Snapshot My.snapshot -Config MyExclusions.ini
Snapshot My.snapshot c:\MyAppDirectory HKEY_LOCAL_MACHINE\Software\MyApp

Options

The options specify the directories or subkeys in the snapshot.

Option Description

—-Config ConfigFile.ini Specifies directories or registry subkeys to
exclude during snapshot creation. If you do
not specify a configuration file, ThinApp uses
the snapshot. ini file from the ThinApp
installation directory.

136 VMware, Inc.

Appendix D Snapshot Commands and Customization

Option Description

BaseDirl Specifies one or more base directories to
include in the scan. If you do not specify base
directories, the snapshot . exe utility scans
c:\ and all subdirectories.

If you scan a machine where Windows or
program files are installed on different disks,
include these drives in the scan.

If you know that your application installation
creates or modifies files in fixed locations,
specify these directories to reduce the total
time required to scan a machine.

BaseRegl Species one or more base registry subkeys to
include in the scan. If you do not specify
registry subkeys, the snapshot. exe utility
scans the HKEY_LOCAL_MACHINE and
HKEY_USERS keys.

Creating the Template Package.ini file from Two Snapshot Files

The snapshot. exe utility generates a template Package. ini file. The utility scans the
two snapshot files for all applications that are created and referenced from shortcut
links or the Start menu. The template Package. ini file becomes the basis of the
Package.ini file in a ThinApp project.

Usage

snapshot.exe Snapl.snapshot -SuggestProject Snap2.snapshot OutputTemplate.ini

Examples
Snapshot Start.snapshot -SuggestProject End.snapshot Template.ini

ThinApp requires all of the parameters.

Creating the ThinApp Project from the Template Package.ini File

The snapshot . exe utility creates the ThinApp project file from the template
Package.ini file.

Usage

snapshot.exe Template.ini -GenerateProject OutDir [-Config ConfigFile.ini]

VMware, Inc. 137

VMware ThinApp User’s Manual

Examples

Snapshot Template.ini -GenerateProject c:\MyProject
Snapshot Template.ini -GenerateProject c:\MyProject -Config
MyExclusions.ini

—-Config ConfigFile.1ini is optional. The configuration file specifies directories or
registry subkeys for exclusion from the project. If you do not specify a configuration
file, ThinApp uses the snapshot.ini file.

Displaying the Contents of a Snapshot File

The snapshot . exe utility lists the contents of the snapshot file.

Usage

snapshot.exe SnapshotFileName.snapshot -Print

Examples
Snapshot Start.snapshot -Print

ThinApp requires all of the parameters.

Sample snhapshot.exe Commands

Table D-1 describes sample commands for the snapshot. exe utility. The parameters
are not case-sensitive. The commands are wrapped in the Command column because
of space restraints.

Table D-1. snapshot.exe Sample Commands

Command Description

snapshot c:\Capture.snapshot Captures a complete snapshot of local drives
and registry to the file
c:\Capture.snapshot.

snapshot c:\Capture.snapshot c:\ e:\ Captures a complete snapshot of the c:\ and
e:\ drives. ThinApp does not capture registry
information.

snapshot c:\Capture.snapshot c:\ Captures a complete snapshot of the c:\
HKEY_LOCAL_MACHINE\Software\Classes drive and all of the HKEY_CLASSES_ROOT
registry subtree.

snapshot c:\Original.snapshot -Diff Generates a ThinApp project directory by
c:\NewEnvironment.snapshot comparing two snapshots.
c:\MyProject

138 VMware, Inc.

Appendix D Snapshot Commands and Customization

Table D-1. snapshot.exe Sample Commands (Continued)

Command

snapshot Original.snapshot
-DiffPrint NewEnvironment.snapshot

Description

Displays differences between two captured
snapshots.

snapshot C:\data.snapshot snapshot
C:\data.snapshot C:\
HKEY_LOCAL_MACHINE

Saves the state of the computer file system
and registry.

snapshot C:\start.snapshot
—diffprint C:\end.snapshot

Compares two recorded states.

snapshot C:\start.snapshot -print

Prints the contents of a saved state.

snapshot C:\start.snapshot
-SuggestProject C:\end.snapshot
C:\project.ini snapshot
C:\project.ini —GenerateProject

Generates a ThinApp project by comparing
two saved states.

Create a Project Without the Setup Capture Wizard

You can use the snapshot. exe utility from the command line instead of using the
Setup Capture wizard that runs the snapshot. exe utility in the background. The
command-line utility is useful to package a large number of applications or automate
ThinApp project creation. The typical location of the snapshot. exe utility is
C:\Program Files\VMware\VMware ThinApp\snapshot.exe.

The snapshot process makes a copy of the all registry entries on the system and file
system metadata. File system metadata includes path, filename, attribute, size, and
timestamp information but excludes actual file data.

Create a project with the snapshot.exe command line utility

1 Save an initial snapshot of the current machine configuration to disk.

snapshot.exe c:\Start.snapshot

2 Install the application and make any necessary manual system changes.

3 Save to disk a snapshot of the new machine configuration.

snapshot.exe c:\End.snapshot

VMware, Inc.

139

VMware ThinApp User’s Manual

4

Generate a template Package. ini file.

snapshot.exe c:\Start.snapshot -SuggestProject c:\End.snapshot
c:\Template.ini

ThinApp uses the template file to generate the final Package. ini file. The
template file contains a list of all detected executable file entry points and
Package.ini parameters. If you write your own script to replace the Setup
Capture wizard, use the template Package. ini file to select the entry points to
keep or customize Package. ini parameters such as InventoryName.

Generate a ThinApp project.
snapshot.exe c:\Template.ini -GenerateProject c:\MyProjectDirectory

(Optional) Delete the temporary c:\Start.snapshot, c:\End.snapshot, and
c:\Template.1ini files.

(Optional) To generate multiple projects with different configurations, reuse the
original Start.snapshot file and repeat the procedure from Step 2.

Customizing the snapshot.ini File

140

The snapshot.ini configuration file specifies what registry keys to exclude from a

ThinApp project when you capture an application.

For example, if you use Internet Explorer 7, you might need ThinApp to capture the
following registry keys:

HKEY_CURRENT_USER\Software\Microsoft\Internet Explorer\
Desktop\Components

HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\
Internet Settings

HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\
Internet Settings\Connections

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Hardware Profiles\
0001\Software\Microsoft\windows\CurrentVersion\Internet Settings

If the snapshot.ini file excludes the
HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\
Internet Settings\Connections key by default, you can remove this key from the
snapshot.ini file to ensure that ThinApp captures the key in the capture process.

VMware, Inc.

Appendix D Snapshot Commands and Customization

If you do not customize the snapshot. ini file, the snapshot process loads the file from
one of these locations:

VMware, Inc.

Application Data\Thinapp\snapshot.ini
This location is the AppData directory of the user.
C:\Program Files\VMware\VMWare Thinapp\snapshot.ini

This is the location from which ThinApp runs the snapshot. exe utility.

141

VMware ThinApp User’s Manual

142 VMware, Inc.

ThinApp Virtual File System

ThinApp stores the differences between snapshots during the setup capture process in
a virtual file system and virtual registry.

This information about the virtual file system includes the following topics:
® “Virtual File System Formats” on page 143
B “Merged and Virtual Views of the File System” on page 144

m “Using Folder Macros” on page 144

Virtual File System Formats
ThinApp generates the following virtual file system formats:
m Build

The setup capture process generates this format from files found directly on the
physical file system. ThinApp uses folder macros to represent Windows shell
folder locations.

® Embedded

The build.bat file triggers a build process that embeds a read-only file system in
executable files. The executable files provide block-based streaming to client
computers. ThinApp compresses the file system.

VMware, Inc. 143

VMware ThinApp User’s Manual

B Sandbox

Running the captured application generates the read-write directory structure that
holds file data that the application modifies. File modifications that prompt ThinApp
to extract embedded virtual files to the sandbox include the following operations:

® Changing the timestamp or attributes of a file
B Opening a file with write access

B Truncating a file

B Renaming or moving a file

The embedded and sandbox file systems use folder macros to enable file paths to
dynamically expand at runtime.

Merged and Virtual Views of the File System

Isolation modes specify whether ThinApp presents the application with a merged view
of the virtual and physical file system or a view of virtual files. For information about
isolation modes, see “Modifying Isolation Modes” on page 26.

Using Folder Macros

144

ThinApp uses macros to represent file system path locations that might change when
virtualized applications run on different Windows operating systems or computers.
The use of macros allows shared application profile information to instantly migrate to
different operating systems.

For example, you might capture an application on a system that has C: \WINNT as the
Windows directory and deploy the application on a system that has C: \Windows as the
Windows directory. ThinApp transparently converts C: \WINNT to %SystemRoot%
during the capture process for that system and expands %SystemRoot% to C: \Windows
during runtime for that system.

If an application registers DLLs to C:\winnt\system32 while running on

Windows 2000, the user can quit the application and log in to a Windows XP machine.
On the Windows XP machine, the files appear to exist at C:\windows\system32 and
all related registry keys point to C: \windows\system32.

On Windows Vista, ThinApp moves Windows SxS DLLs and policy information to
match Windows Vista instead of using Windows XP file path styles. This feature allows
most applications to migrate to updated or older operating systems.

VMware, Inc.

Appendix E ThinApp Virtual File System

ThinApp provides SxS support for applications running on Windows 2000 even though
the underlying operating system does not. This support enables most applications
captured on Windows XP to run on Windows 2000 without changes.

List of Folder Macros

ThinApp uses the shfolder.d11 file to obtain the location of shell folders. Older
versions of the shfolder.dl11 file do not support some macro names.

Macros requiring shfolder.d11 version 5.0 or later include %ProgramFilesDir%,
%Common AppData¥%, %Local AppData%, %My Pictures%, and %Profile%.

Macros requiring shfolder.d11 version 6.0 or later include %My Videos%,
%Personal%, and %Profiles%.

Table E-1 lists the available folder macros.
Table E-1. Folder Macros

Macro Name Typical Location

%AdminTools% C:\Documents and Settings\<user_name>\
Start Menu\Programs\Administrative Tools

%AppData% C:\Documents and Settings\<user_name>\
Application Data

%CDBurn Area% C:\Documents and Settings\<user_name>\
Local Settings\Application Data\Microsoft
\CD Burning

%Common AdminTools% C:\Documents and Settings\All Users\

Start Menu\Programs\Administrative Tools
%Common AppData% C:\Documents and Settings\All Users\

Application Data
%Common Desktop% C:\Documents and Settings\All Users\Desktop
%Common Documents% C:\Documents and Settings\All Users\Documents
%Common Favorites% C:\Documents and Settings\All Users\Favorites
%Common Programs% C:\Documents and Settings\All Users\

Start Menu\Programs
%Common StartMenu% C:\Documents and Settings\All Users\Start Menu
%Common Startup% C:\Documents and Settings\All Users\

Start Menu\Programs\Startup
%Common Templates% C:\Documents and Settings\All Users\Templates
%Cookies% C:\Documents and Settings\<user_name>\Cookies

VMware, Inc. 145

VMware ThinApp User’s Manual

Table E-1. Folder Macros (Continued)

Macro Name

%Desktop%

Typical Location

C:\Documents and Settings\<user_name>\Desktop

%Drive_c%

C:\

%Drive_m%

M:\

%Favorites% C:\Documents and Settings\<user_name>\Favorites
%Fonts% C:\Windows\Fonts
%History% C:\Documents and Settings\<user_name>\Local

Settings\History

%Internet Cache%

C:\Documents and Settings\<user_name>\Local
Settings\Temporary Internet Files

%Local AppData%

C:\Documents and Settings\<user_name>\
Local Settings\Application Data

%My Pictures%

C:\Documents and Settings\<user_name>\
My Documents\My Pictures

%My Videos%

C:\Documents and Settings\<user_name>\My Documents\
My Videos

%Program Files Common%

:\Program Files\Common Files

%NetHood% C:\Documents and Settings\<user_name>\NetHood
%Personal% C:\Documents and Settings\<user_name>\My Documents
%PrintHood% C:\Documents and Settings\<user_name>\PrintHood
%Profile% C:\Documents and Settings\<user_name>
%Profiles% C:\Documents and Settings

C

C

%ProgramFilesDir% :\Program Files

%Programs% C:\Documents and Settings\<user_name>\
Start Menu\Programs

%Recent% C:\Documents and Settings\<user_name>\
My Recent Documents

%Resources% C:\Windows\Resources

%Resources Localized%

C:\Windows\Resources\<language_ID>

%SendTo% C:\Documents and Settings\<user_name>\SendTo
%Startup% C:\Documents and Settings\<user_name>\

Start Menu\Programs\Startup
%SystemRoot% C:\Windows

146

VMware, Inc.

Appendix E ThinApp Virtual File System

Table E-1. Folder Macros (Continued)

Macro Name Typical Location
%SystemSystem% C:\Windows\System32
%TEMP% C:\Documents and Settings\<user_name>\

Local Settings\Temp

%Templates¥% C:\Documents and Settings\<user_name>\Templates

Processing %SystemRoot%

A Terminal Services environment has a shared Windows directory, such as
C:\Windows, and a private Windows directory, such as C:\Documents and
Settings\User\Windows. In this environment, ThinApp uses the user-specific
directory for %SystemRoot%.

VMware, Inc. 147

VMware ThinApp User’s Manual

148 VMware, Inc.

ThinApp Scripts

Scripts modify the behavior of virtual applications dynamically. You can create custom
code before starting an application packaged with ThinApp or after an application
exits. You can use scripts to authenticate users and load configuration files from a
physical to virtual environment.

Callback functions run code during specific events. If applications create child
processes, use callback functions to run code only in the main parent process.

API functions run ThinApp functions and interact with the ThinApp runtime. API
functions can authenticate users and prevent the start of applications for unauthorized
users.

Adding scripts to your application involves creating an ANSI text file with the . vbs file
extension in the root application project directory. The root project directory is the same
directory that contains the Package. in1 file. During the build process, ThinApp adds
the script files to the executable file and runs each of the script files at runtime.

ThinApp uses VBScript to run script files. For information about VBScript, see the
Microsoft VBScript documentation. You can use VBScript to access COM controls
registered on the host system or within the virtual package.

This information includes the following topics:
B “Callback Functions” on page 150

B “Example Scripts” on page 150

® “API Functions” on page 155

VMware, Inc. 149

VMware ThinApp User’s Manual

Callback Functions

Callback functions with specific names run only under certain conditions. For example,

callback functions run script code only when an application starts or quits.

Callback function names include the following names:

OnFirstSandboxOwner —Called only when an application first locks the sandbox.
This callback is not called if a second copy of the same application uses the same
sandbox while the first copy runs. If the first application spawns a subprocess and
quits, the second subprocess locks the sandbox and prevents this callback from
running until all subprocesses quit and the application runs again.

OnFirstParentStart—Called before running a ThinApp executable file
regardless of whether the sandbox is simutaneously owned by another captured
executable file.

OnFirstParentExit—Called when the first parent process exits. If a parent
process runs a child process and quits, this callback is called even if the child
process continues to run.

OnLastProcessExit—Called when the last process owning the sandbox exits. If a
parent process runs a child process and quits, this callback is called when the last
child process exits.

The following callback example shows the OnFirstSandboxOwner and
OnFirstParentExit functions:

example.vbs
Function OnFirstSandboxOwner
msgbox "The sandbox owner 1is:
End Function

+ GetCurrentProcessName

Function OnFirstParentExit
msgbox "Quiting application:
End Function

+ GetCurrentProcessName

msgbox "This code will execute for all parent and child processes'

Example Scripts

You might use a script in the following circumstances:

150

Timing out an application on a specific date.
Running a . bat file from a network share inside the virtual environment.

Modifying the virtual registry.

VMware, Inc.

Appendix F ThinApp Scripts

B Importing the . reg file at runtime.
B Stopping a virtual service when the main application quits.
® Copying an external system configuration file into the virtual environment on

startup.

Use a script

1 Save the script contents in a plain text file with the . vbs extension in the same
directory as your Package. ini file.

You can use any filename. ThinApp adds all . vbs files to the package at build time.

2 Rebuild the application.

.bat Example

The following script runs an external .bat file from a network share inside of the
virtual environment. The . bat file makes modifications to the virtual environment by
copying files, deleting files, or applying registry changes using regedit /s

regfile. reg. Run this script only for the first parent process. If you run this script for
other processes, each copy of the cmd. exe utility runs the script and an infinite
recursion develops.

Function OnFirstParentStart

Set Shell = CreateObject("Wscript.Shell")
Shell.Run "\\jcdesk2\test\test.bat"

End Function

Timeout Example

The following script prevents the use of an application after a specified date. The VBS
date uses the #mm/dd/yyyy# format, regardless of locale.

This check occurs upon startup of the parent process and any child processes.

if Date >= #03/20/2007# then

msgbox "This application has expired, please contact Administrator"
ExitProcess 0
end if

VMware, Inc. 151

VMware ThinApp User’s Manual

152

Modify the Virtual Registry

The following script procedure modifies the virtual registry at runtime to load an
external ODBC driver from the same directory where the package executable file is
located.

Modify the registry
1 Obtain the path to the package executable files.
Origin = GetEnvironmentVariable("TS_ORIGIN")

2 Find the last slash in the path and obtain the characters that precede the slash.

LastSlash = InStrRev(Origin, "\")
SourcePath = Left(Origin, LastSlash)

3 Form a new path to the ODBC DLL file located outside of the package.
DriverPath=SourcePath + "tsodbc32.d11"
4 Modify the virtual registry to point it to this location.

Set WSHShell = CreateObject("Wscript.Shell™)
WSHShell.RegWrite "HKEY_LOCAL_MACHINE\SOFTWARE\ODBC\ODBCINST.INI\Transoft
ODBC Driver\Driver," DriverPath

This modification causes the application to load the DLL from an external location.

.reg Example

The following script imports the registry values from an external . reg file into the
virtual registry at runtime.

Function OnFirstParentStart
ExecuteVirtualProcess "regedit /s c:\tmp\somereg.reg"
End Function

Stopping a Service Example

The following script stops a virtual or native service when the main application quits.

Function OnFirstParentExit

Set WshShell = CreateObject("WScript.Shell")
WshShell.Run "net stop ""iPod Service"""
End Function

VMware, Inc.

Appendix F ThinApp Scripts

Copying a File Example

The following script sections shows how to copy a configuration file located in the same
directory as the captured executable file into the virtual file system each time the
application starts. This script is useful for an external configuration file that is easy to
edit after deployment. Because the copy operation occurs each time you run the
application, any changes to the external version are reflected in the virtual version.

For example, if your captured executable file is running from
\\server\share\myapp.exe, this script searches for a configuration file located at
\\server\share\config.ini and copies it to the virtual file system location at
c:\Program Files\my application\config.ini.

By putting this code in the OnFirstParentStart function, it is only called once each
time the script runs. Otherwise it runs for every child process.

Function OnFirstParentStart

ThinApp sets up TS_ORIGIN to indicate the full path to a captured executable file
package. A virtual application sets the TS_ORIGIN variable to the physical path of the
primary data container.If you have a virtual application consisting of the main.exe and
shortcut. exe files, both files reside in C: \VirtApp. When you run the main. exe file,
TS_ORIGIN var issetto C:\VirtApp\main.exe. When you run the shortcut.exe
file, the TS_ORIGIN environment variable is set to C:\VirtApp\main.exe. The
environment variable is always set to the primary data container, even when you create
a shortcut. When you run VBScript scripts that are included in the package, the variable
is already set and available to the scripts.

Origin = GetEnvironmentVariable("TS_ORIGIN")

You can separate the filename from TS_ORIGIN by finding the last backslash and
removing all of the characters following it.

LastSlash = InStrRev(Origin, "\'")
SourcePath = Left(Origin, LastSlash)

The source file to copy into the virtual environment is the package path plus
config.ini.

SourceFile = SourcePath + "Config.ini"

The location to copy to might be a different location on different computers if the
Program Files directory is mapped to a location other than c:\. The following call
lets ThinApp expand a macro to obtain the correct location for the local computer.

DestFile = ExpandPath("%ProgramFilesDir%\MyApplication\Config.ini")

VMware, Inc. 153

VMware ThinApp User’s Manual

154

Use the file systemObject parameter to check the source file exists.

Set objFSO = CreateObject("Scripting.filesystemObject™)
If objFSO.FileExists(SourceFile) Then

If the source file exists, copy it into the virtual file system. The
%ProgramFilesDir%\MyApplication virtual directory is in the package.

objFSO.CopyFile SourceFile, DestFile, TRUE
End if
End Function

Add a Value to the System Registry

This script procedure adds a value to the physical system registry.

Add a value to the system registry

1 Create a .reg file and run the regedit /s command as an external process that

accesses the system registry instead of the virtual registry.

Function OnFirstParentStart

2 Create the . reg file in a location that has the IsolationMode parameter set to
Merged so that the virtual environment can access it with this script and the

physical environment can it with the regedit /s command.

RegFileName = ExpandPath("'%Personal%\thin.reg")
Set fso = CreateObject("Scripting.filesystemObject")
Set RegFile = fso.CreateTextFile(RegFileName, true)

The %Personal¥% directory is a directory that has Merged isolation mode by

default.
3 Construct the . reg file.

RegFile.WriteLine("Windows Registry Editor Version 5.00")
RegFile.WriteBlankLines (1)
RegFile.WriteLine (" [HKEY_CURRENT_USER\Software\Thinapp\demo]")

RegFile.WriteLine(chr(34) and "InventoryName" and chr(34) and "=" and

chr(34) and GetBuildOption('InventoryName") and chr(34))
RegFile.Close

VMware, Inc.

Appendix F ThinApp Scripts

4 Enter the information in the system registry.

RegEditPid = ExecuteExternalProcess('"regedit /s " and chr(34) and
RegFileName and chr(34))
WaitForProcess RegEditPid, 0

Wait until the process is complete.
5 Clean the environment.

fso.DeleteFile(RegFileName)
End Function

API Functions

You can use API functions that instruct ThinApp to complete operations such as load
DLLs as virtual DLLS, convert paths from macro format to system format, and run
commands inside of the virtual environment.

AddForcedVirtualLoadPath

The AddForcedVirtualLoadPath(Path) function instructs ThinApp toload all DLLs
from the specified path as virtual DLLs even if they are not located in the package.

Use this function if the application needs to load external DLLs that depend on DLLs
located inside the package.

Parameters

Path

[in] The filename or path for DLLs to load as virtual.

Examples

You can load any DLL located in the same directory as the executable file as a virtual
DLL.

Origin = GetEnvironmentVariable("TS_ORIGIN")
TS_ORIGIN is the path from which the executable file is running.

You can delete the filename from TS_ORIGIN by finding the last backslash and
removing all of the characters that follow it.

LastSlash = InStrRev(Origin, "\'")
SourcePath = Left(Origin, LastSlash)

VMware, Inc. 155

VMware ThinApp User’s Manual

You can instruct ThinApp to load all DLLs in the same or lower directory from where
the source executable file resides.

AddForcedVirtualLoadPath(SourcePath)

This process allows you to drop additional files in the SourcePath tree and have them
resolve import operations against virtual DLLs.
ExitProcess

The ExitProcessExitCode function quits the current process and sets the specified
error code.

Parameters

ExitCode

[in] The error code to set. This information might be available to a parent process. A
value of 0 indicates no error.

Examples
You can exit the process and indicate success.
ExitProcess 0

When the process exits, the scripting system receives its OnLastProcessExist
function callback. Any loaded DLLs run termination code to clean up the environment.

ExpandPath

The ExpandPath (InputPath) function converts a path from macro format to system
format.

Parameters
InputPath

[in] A path in macro format.

Returns

The expanded macro path in system format.

156 VMware, Inc.

Appendix F ThinApp Scripts

Examples
Path = ExpandPath ("%ProgramFilesDir%\Myapp.exe")
Path = c:\Program Files\myapp.exe

All macro paths must escape the % and # characters by replacing these characters with
#25 and #23.

Path = ExpandPath ("%ProgramFilesDir%\FilenameWithPercent#25.exe")
This expands to this path:

C:\Program Files\FileNameWithPercent%.exe

ExecuteExternalProcess
The ExecuteExternalProcess(CommandLine) function runs a command outside of
the virtual environment. You can use this function to make physical system changes.
Parameters
CommandLine
[in] Representation of the application and command-line parameters to run outside of
the virtual environment.
Returns
Integer process ID. You can use the process ID with the WaitForProcess function. See
“WaitForProcess” on page 164.
Examples

ExecuteExternalProcess("cmd.exe /c copy c:\systemfile.txt
c:\hewsystemfile.txt")

You can run a command that requires quotation marks in the command line.

ExecuteExternalProcess("regsvr32 /s " and chr(34) and "c:\Program
Files\my.ocx" and chr(34))

ExecuteVirtualProcess

The ExecuteVirtualProcess (CommandLine) function runs a command inside of the
virtual environment. You can use this function to make changes to the virtual
environment.

VMware, Inc. 157

VMware ThinApp User’s Manual

158

Parameters

CommandLine

[in] Representation of the application and command-line parameters to run outside of
the virtual environment.

Returns

Integer process ID. You can use the process ID with the WaitForProcess function. See
“WaitForProcess” on page 164.

Examples

ExecuteVirtualProcess("cmd.exe /c copy c:\systemfile.txt c:\virtualfile.txt")

You can run a command that requires quotation marks in the command line.

ExecuteVirtualProcess("regsvr32 /s " and chr(34) and "c:\Program
Files\my.ocx" and chr(34))

GetBuildOption

The GetBuildOption(OptionName) function returns the value of a setting specified in
the [BuildOptions] section of the Package.ini file used for capturing applications.
Parameters

OptionName

[in] Name of the setting.

Returns

This function returns a string value. If the requested option name does not exist, the
function returns an empty string ("").

Examples

Package.ini contains:
[BuildOptions]
CapturedUsingVersion=4.0.1-2866

The following line appears in a VBS file:

Value = GetBuildOption("CapturedUsingVersion™)

VMware, Inc.

GetFileVersionValue

Appendix F ThinApp Scripts

The GetFileVersionValue(Filename, Value) function returns version information
value from files such as a specific DLL, OCX, or executable file. You can use this

function to determine the internal version number of a DLL or retrieve DLL

information about the copyright owner or a product name.

Parameters

Filename

[in] The name of the filename whose version information is being retrieved.

Value

[in] The name of the value to retrieve from the version information section of the

specified file.

You can retrieve the following values from most DLLs:

® Comments

B InternalName

B ProductName

® CompanyName
® LegalCopyright
B ProductVersion

®m FileDescription

B LegalTrademarks
B PrivateBuild

® FileVersion

B OriginalFilename
B SpecialBuild
Returns

This function returns a string value. If the requested filename does not exist, or the
function cannot locate the specified value in the file, the function returns an empty

"

string ("").

VMware, Inc.

159

VMware ThinApp User’s Manual

160

Examples

FileVersion = GetFileVersionValue("c:\windows\system32\kernel32.d11,"
"FileVersion")

if FileVersion = "1.0.0.0" then
MsgBox "This is Version 1.0!"

End if

GetCommandLine

The GetCommandLine function accesses the command-line parameters passed to the
running program.

Returns

This function returns a string that represents the command-line arguments passed to
the current running program, including the original executable file.

Examples

MsgBox "The command line for this EXE was " + GetCommandLine

GetCurrentProcessName

The GetCurrentProcessName function accesses the full virtual path name of the
current process.

Returns

This function returns a string that represents the full executable path name inside of the
virtual environment. In most circumstances, this pathis c:\Program Files\.. ., even
if the package source runs from a network share.

Examples

MsgBox "Running EXE path is " + GetCurrentProcessName

GetOSVersion

The GetOSVersion() function returns information about the current version of
Windows.

Parameters

This function has no parameters.

VMware, Inc.

Returns

This function returns a string in the following format:

MAJOR.MINOR.BUILD_NUMBER.PLATFORM_ID OS_STRING

MAJOR is one the following values:

Windows Vista
Windows Server 2008
Windows Server 2003
Windows XP
Windows 2000

Windows NT 4.0

6

6

MINOR is one of the following values:

Windows Vista
Windows Server 2008
Windows Server 2003
Windows XP
Windows 2000
Windows NT 4.0

Windows NT 3.51

BUILD_NUMBER is the build number of the operating system.

0

0

0

51

PLATFORM_ID assigns one of the following values:

Appendix F ThinApp Scripts

Value = 1 for Windows Me, Windows 98, or Windows 95 (Windows 95 based OS)

Value = 2 for Windows Server 2003, Windows XP, Windows 2000, or Windows NT.

(Windows NT based OS)

OS_STRING represents information about the operating system such as Service Pack 2.

Examples

if GetOSVersion() = "5.1.0.2 Service Pack 2"
then MsgBox "You are running on Windows XP Service Pack 2!"

endif

VMware, Inc.

161

VMware ThinApp User’s Manual

GetEnvironmentVariable
The GetEnvironmentVariable(Name) function returns the environment variable
associated with the Name variable.
Parameters
Name

[in] The name of the environment variable for which the value is retrieved.

Returns

This function returns the string value associated with the Name environment variable.

Examples

MsgBbox "The package source EXE is " + GetEnvironmentVariable("TS_ORIGIN™)

RemoveSandboxOnExit

The RemoveSandboxOnExit(YesNo) function set toggles that determine whether to
delete the sandbox when the last child process exits.

If you set the RemoveSandboxOnExit parameter to 1 in the Package.ini file, the
default cleanup behavior for the package with is Yes. You can change the cleanup
behavior to No by calling RemoveSandboxOnExit with the value of 0. If you do not
modify the RemoveSandboxOnExit=1 entry in the Package. ini file, the default
cleanup behavior for the package is No. You can change the cleanup behavior to Yes by
calling RemoveSandboxOnExit with the value of 1.

Parameters

Yes No

[in] Do you want to clean up when the last process shuts down? 1=Yes, 0=No

Examples

The following example turns on cleanup:
RemoveSandboxOnExit 1

The following example turns off cleanup:

RemoveSandboxOnExit ©

162 VMware, Inc.

Appendix F ThinApp Scripts

SetEnvironmentVariable
The SetEnvironmentVariable(Name, Value) function set the value of an
environment variable.
Parameters
Name
[in] The name of the environment variable to store the value.
Value

[in] The value to store.

Examples

SetEnvironmentVariable "PATH", "C:\Windows\system32"

SetfileSystemlsolation
The Setfile systemIsolation(Directory, IsolationMode) function sets the
isolation mode of a directory.
Parameters
Directory
[in] Full path of the directory whose isolation mode is to be set.
IsolationMode
[in] Isolation mode to set:
1 =WriteCopy
2 =Merged
3=Full
Examples
You can set the Merged isolation mode for the temp directory.

Setfile systemIsolation GetEnvironmentVariable("TEMP"), 2

VMware, Inc. 163

VMware ThinApp User’s Manual

SetRegistrylsolation
The SetRegistryIsolation(RegistryKey, IsolationMode) function sets the
isolation mode of a registry key.
Parameters
RegistryKey

[in] The registry key on which to set the isolation mode. Start with HKLM for
HKEY_LOCAL_MACHINE, HKCU for HKEY_CURRENT_USER, and HKCR for
HKEY_CLASSES_ROOQT.

IsolationMode

[in] Isolation mode to set:
1 = WriteCopy

2 =Merged

3=Full

Examples

You can set the Full isolation mode for
HKEY_CURRENT_USER\Software\Thinapp\Test

SetRegistryIsolation "HKCU\Software\Thinapp\Test," 3

WaitForProcess
The WaitForProcess(ProcessID, TimeOutInMilliSeconds) function waits until
the process ID is finished running.
Parameters
ProcessID

[in] The process ID to end. The process ID can come from ExecuteExternalProcess
or ExecuteVirtualProcess.

TimeOutInMilliSeconds

[in] The maximum amount of time to wait for the process to finish running before
continuing. A value of 0 specifies INFINITE.

164 VMware, Inc.

Returns
This function returns an integer:

0 = Timeout fails
1 =Process exits
2 = Process does not exist or security is denied

Examples

id = ExecuteExternalProcess("cmd.exe")
WaitForProcess(id, 0)

VMware, Inc.

Appendix F ThinApp Scripts

165

VMware ThinApp User’s Manual

166 VMware, Inc.

Index

Symbols

##Attributes.ini
comparing to Package.ini 28
editing 28
modifying isolation modes 26

A

Active Directory
authorizing access to groups 20
controlling access to applications 39
using Package.ini parameters 39

API parameters
AddForcedVirtualLoadPath 155
ExecuteExternalProcess 157
ExecuteVirtualProcess 157
ExitProcess 156
ExpandPath 156
GetBuildOption 158
GetCommandLine 160
GetCurrentProcessName 160
GetEnvironmentVariable 162
GetFileVersionValue 159
GetOSVersion 160
RemoveSandboxOnExit 162
SetEnvironmentVariable 163
SetfileSystemlsolation 163
SetRegistrylsolation 164
WaitForProcess 164

Application Link
defining 49, 52
defining access with the Permit-

tedGroups parameter 56

VMware, Inc.

effect on isolation modes 55
file and registry collisions 56

linking packages to base applications
and using Application
Sync 57

optional links 113

path name formats 112
required links 112
sample workflow 53
setting up nested links 55

storing multiple versions of linked
applications 57

view of 53
Application Sync
clashing with automatic update
capabilities 50
defining 49
editing parameters 50

effect on entry point executable
files 51

effect on thinreg.exe 31
fixing incorrect updates 51

forcing updates with appsync.exe
commands 58
maintaining the primary data
container name 52
parameters 114

updating base applications with
linked packages 57

updating thinreg.exe
registrations 51

167

VMware ThinApp User’s Manual

168

applications
capturing 15
controlling access for Active
Directory groups 39

difference between Application Sync
and Application Link 49

not supported by ThinApp 12

sandbox considerations during
upgrade processes 63

streaming requirements and
recommendations 42

updating 49

C
capturing applications
assessing application
dependencies 16
phases of 15
recommendations before 16
with the Setup Capture wizard 16-26
with the snapshot.exe utility 139
cmd.exe, defining 18
compression
for executable files 25
for trace files 68
computers
defining a clean system 13

using virtual machines for clean
systems 13

cut and paste operations, ThinApp
limitations 43

D

data container, See primary data
container

DCOM services, access for captured
applications 13

deploying
applications on network share 30

applications with deployment
tools 29

executable files 30
MSiI files 29
deployment tools, using MSI files 29

device drivers, incompatible with
ThinApp 12

DLLs
loading into memory 72
recording by Log Monitor 66
drivers, support for 44

E
entry points
defining 18
for troubleshooting 18
updating with Application Sync 51

G

global hook DLLs, reduced function with
ThinApp 13

I
iexplore.exe, defining 18
installing ThinApp 14
inventory name, purpose of 19
isolation modes
effect on virtual file system 144
Full 26
Merged 24
modifying 26
sample configuration 46
using Application Link 55
WriteCopy 24

VMware, Inc.

L

log format 69
Log Monitor
extra options 67
suspending and resuming
logging 67
troubleshooting procedures 66
using 66

Merged isolation mode 24

Microsoft Vista, deploying MSI files 38

MSI files
automating the thinreg.exe utility 24
building the database 35
customizing parameters 36
deploying on Microsoft Vista 38
generating 24
modifying the Package.ini 37
overriding the installation

directory 38

parameters 117

N

nested links, using Application Link 55
network, streaming packages 40

(0

operating systems
support for 11

using the lowest version for ThinApp
installation 14

P
Package.ini
AccessDeniedMsg 104
Active Directory parameters 39
AddPageExecutePermission 89
AllowUnsuppportedExternalChildPr
ocesses 90

VMware, Inc.

Index

AnsiCodePage 91
AppSyncClearSandboxOnUpdate 117
AppSyncExpireMessage 116
AppSyncExpirePeriod 115
AppSyncUpdateFrequency 115
AppSyncUpdateMessage 117
AppSyncURL 114
AppSyncWarningFrequency 115
AppSyncWarningMessage 116
AppSyncWarningPeriod 115
AutoShutdownServices 91
AutoStartServices 91

BlockSize 92

CachePath 93
CapturedUsingVersion 93
ChildProcessEnvironmentDefault 84

ChildProcessEnvironmentExceptions
84

CommandLine 106
CompressionType 94

description of common
parameters 26

DirectorylsolationMode 85

Disabled 105

DisableTracing 95

editing Application Sync
parameters 50

ExcludePattern 95

ExternalCOMObjects 85

ExternalDLLs 86

FileTypes 96

Icon 106

InventoryName 123

IsolatedMemoryObjects 86

IsolatedSynchronizationObjects 87

Localeldentifier 96

LocaleName 97

LogPath 97

modifying isolation modes 26

169

VMware ThinApp User’s Manual

170

modifying MSI| parameters 37
MSI parameters 36
MSIArpProducticon 117
MSIDefaultinstallAllUsers 118
MSIFilename 118
MSilInstallDirectory 119
MSIManufacturer 119
MSIProductCode 120
MSIProductVersion 120
MSIRequireElevatedPrivileges 120
MSIUpgradeCode 121
MSIUseCabs 121
NetRelaunch 98
NoRelocation 107
OptionalAppLinks 113
OutDir 97

parameters 83-125
PermittedGroups 104
Protocols 98

ReadOnlyData 108
RegistrylsolationMode 88
RemoveSandboxOnExit 125
RequiredAppLinks 112
ReserveExtraAddressSpace 108
RetainAlllcons 109
RuntimeEULA 99
SandboxCOMObjects 88
SandboxName 122
SandboxNetworkDrives 124
SandboxPath 122
SandboxRemovableDisk 124
Shortcut 109

Shortcuts 99

Source 110

StripVersioninfo 110
UACRequestedPrivilegesLevel 99

UACRequestedPrivilegesUiAccess
100

UpgradePath 100

Version. XXXX 111
VirtualComputerName 101
VirtualDrives 102

VirtualizeExternalOutOfProcessCO
M 89

WorkingDirectory 110
Wow64 103
parameters

applying settings at folder level
instead of package
level 28

for MSI files 36

for Package.ini 83
for sbmerge.exe 59
for thinreg.exe 32

PermittedGroups, effect on Application
Link 56

primary data container
defining 19
maintaining the name with
Application Sync 52
size implications 19
project files 25

R

regedit.exe, defining 18

S

sandbox

considerations for upgraded
applications 63

defining 127
location 20, 129
parameters 122
search order 127
structure 131
sbmerge.exe
commands 59
defining 57
merging runtime changes 58

VMware, Inc.

scripts
.bat example 151
.reg example 152
callback functions 150
copyfile example 153
registry modify example 152
stopping service example 152
system registry example 154
timeout example 151

Setup Capture wizard, using 16-26

shell integration, reduced functions with
ThinApp 12

snapshot.exe

creating snapshots from the
command line 135

sample commands 138
sample procedure 139
snapshot.ini, defining 135, 140

support
for applications 11
for operating systems 11

T
ThinApp

applications that are not
supported 12

browsing project files 25

deployment options 29

directory files 133

folder macros 144

in a VMware View environment 30

installing 14

recommendation for clean
computers 13

requirements for installing and
capturing applications 11

streaming packages from the
network 40

supported operating systems and
applications 11

VMware, Inc.

Index

updating applications 49

using thinreg.exe 31
thinreg.exe

defining 31

parameters 32

running 32

starting with MSI files 24

updating registrations with

Application Sync 51

with Application Sync 31
troubleshooting

Explorer.exe 80

Java Runtime Environment 81

Microsoft Outlook 79

providing required information to
VMware support 65

with Log Monitor 66

u

upgrading applications, methods and
considerations 49-63

\'
virtual file system
format stages 143

representing path locations with
macros 144

using 143
using isolation modes 144
VMware support

required information for
troubleshooting 65

VMware View, using captured
applications 30

vregtool, listing virtual registry
contents 132

w
WriteCopy isolation mode 24

171

VMware ThinApp User’s Manual

172 VMware, Inc.

	VMware ThinApp User’s Manual
	Contents
	About This Book
	Installing ThinApp
	ThinApp Requirements
	Operating Systems, Applications, and Systems That ThinApp Supports
	Applications That ThinApp Cannot Virtualize
	Device Drivers
	Shell Integration
	DCOM Services that are Accessible on a Network
	Global Hook DLLs

	Recommendations for Installing ThinApp
	Using a Clean Computer
	Using Virtual Machines for Clean Computers

	Using the Earliest Operating System Required For Users

	Install ThinApp

	Capturing Applications
	Reviewing the Capture Process
	Assessing Application Dependencies Before the Capture Process
	Recommended Tasks Before the Capture Process

	Capture an Application with the Setup Capture Wizard
	Specify Entry Points, Data Containers, and Inventory Names
	Specify Active Directory Access and Sandbox Locations
	Specify Isolation Modes
	Specify Location, MSI, and Compression Options
	Review Project Files and Build Application Packages

	Modifying Isolation Modes
	Modifying Settings in the Package.ini File
	Edit the Package.ini File

	Modifying Settings in the ##Attributes.ini File
	Edit the ##Attributes.ini File

	Deploying Applications
	Reviewing ThinApp Deployment Options
	Deploying ThinApp With Deployment Tools
	Deploying ThinApp in the VMware View Environment
	Deploying ThinApp on Network Shares
	Deploying ThinApp Using Executable Files

	Facilitating File Launching with the thinreg.exe Utility
	Application Sync Effect on the thinreg.exe Utility
	Run the thinreg.exe Utility
	Optional thinreg.exe Parameters

	Building an MSI Database
	Customizing MSI Files with Package.ini Parameters
	Modify the Package.ini File to Create MSI Files
	Specifying a Database Installation for Individual Users and Machines
	Deploying MSI Files on Microsoft Vista

	Controlling Application Access with Active Directory
	Reviewing Package.ini Entries for Active Directory Access Control

	Using ThinApp Packages Streamed from the Network
	How ThinApp Application Streaming Works
	Reviewing Requirements and Recommendations for Streaming Packages
	Reviewing Security Recommendations for Streaming Packages

	Stream ThinApp Packages from the Network

	Using Captured Applications with Other System Components
	Performing Paste Operations
	Accessing Printers
	Accessing Drivers
	Accessing the Local Disk, the Removable Disk, and Network Shares
	Accessing the System Registry
	Accessing Networking and Sockets
	Using Shared Memory and Named Pipes
	Using COM, DCOM, and Out-of-Process COM Components
	Starting Services
	Using File Type Associations

	Sample Isolation Mode Configuration Depending on Deployment Context
	View of Isolation Mode Effect on the Windows Registry

	Updating Applications
	Application Updates That the End User Triggers
	Reviewing the Application Sync Utility
	Using Application Sync in a Managed or Unmanaged Environment
	Edit Application Sync Parameters in the Package.ini File
	Fix an Incorrect Update with Application Sync
	Application Sync Effect on Entry Point Executable Files
	Updating thinreg.exe Registrations with Application Sync
	Maintaining the Primary Data Container Name with Application Sync

	Reviewing the Application Link Utility
	View of the Application using Application Link
	Link a Base Application to the Microsoft .NET Framework
	Set up Nested Links with Application Link
	Affecting Isolation Modes with Application Link
	Reviewing the PermittedGroups Effect on Linked Packages
	Sandbox Changes for Standalone and Linked Packages
	Reviewing File and Registry Collisions in Linked Packages
	Storing Multiple Versions of a Linked Application in the Same Directory
	Using Application Sync For the Base Application and Linked Packages

	Application Updates That the Administrator Triggers
	Force an Application Sync Update with AppSync.exe
	Reviewing the sbmerge.exe Workflow
	Merge Sandbox Changes with the Application
	sbmerge.exe Commands

	Automatic Application Updates
	Dynamic Updates Without Administrator Rights

	Upgrading Running Applications on a Network Share
	Reviewing File Locks
	Upgrade a Running Application

	Sandbox Considerations for Upgraded Applications

	Monitoring and Troubleshooting ThinApp
	Providing Information to VMware Support
	Using Log Monitor
	Troubleshoot Activity with Log Monitor
	Perform Advanced Log Monitor Operations
	Locating Errors

	Log Format
	General API Log Message Format
	Application Startup Information
	List of DLLs Loaded into Memory During Runtime
	Potential Errors
	Troubleshooting Example for cmd.exe Utility

	Troubleshooting Specific Applications
	Troubleshoot Registry Setup for Microsoft Outlook
	Viewing Attachments in Microsoft Outlook
	Starting Explorer.exe in the Virtual Environment
	Troubleshooting Java Runtime Environment Version Conflict

	Package.ini Parameters
	Isolation and Virtualization Parameters
	ChildProcessEnvironmentDefault
	Examples

	ChildProcessEnvironmentExceptions
	Examples

	DirectoryIsolationMode
	Examples

	ExternalCOMObjects
	Examples

	ExternalDLLs
	Examples

	IsolatedMemoryObjects
	Examples

	IsolatedSynchronizationObjects
	Examples

	RegistryIsolationMode
	Examples

	SandboxCOMObjects
	Examples

	VirtualizeExternalOutOfProcessCOM
	Examples

	General Purpose Parameters
	AddPageExecutePermission
	Examples

	AllowUnsupportedExternalChildProcesses
	Examples

	AnsiCodePage
	Examples

	AutoShutdownServices
	Examples

	AutoStartServices
	Examples

	BlockSize
	Examples

	CachePath
	Examples

	CapturedUsingVersion
	Examples

	CompressionType
	Examples

	DisableTracing
	Examples

	ExcludePattern
	Examples

	FileTypes
	Examples

	LocaleIdentifier
	Examples

	LocaleName
	Examples

	LogPath
	Examples

	OutDir
	Examples

	NetRelaunch
	Examples

	Protocols
	Examples

	RuntimeEULA
	Examples

	Shortcuts
	Examples

	UACRequestedPrivilegesLevel
	Examples

	UACRequestedPrivilegesUiAccess
	Examples

	UpgradePath
	Examples

	VirtualComputerName
	Examples

	VirtualDrives
	Examples
	Change Virtual Drive Isolation Settings

	Wow64
	Examples

	Access Control Parameters
	AccessDeniedMsg
	Examples

	PermittedGroups
	Examples

	Parameters for Individual Applications
	Disabled
	Examples

	CommandLine
	Examples

	Icon
	Examples

	NoRelocation
	Examples

	ReadOnlyData
	Examples

	ReserveExtraAddressSpace
	Examples

	RetainAllIcons
	Examples

	Shortcut
	Examples

	Source
	Examples

	StripVersionInfo
	Examples

	WorkingDirectory
	Examples

	Version.XXXX
	Examples

	Application Link Parameters
	Application Link Path Name Formats
	RequiredAppLinks
	Examples

	OptionalAppLinks

	Application Sync Parameters
	AppSyncURL
	Examples

	AppSyncUpdateFrequency
	Examples

	AppSyncExpirePeriod
	Examples

	AppSyncWarningPeriod
	Examples

	AppSyncWarningFrequency
	Examples

	AppSyncWarningMessage
	Examples

	AppSyncExpireMessage
	Examples

	AppSyncUpdatedMessage
	Examples

	AppSyncClearSandboxOnUpdate
	Examples

	MSI Parameters
	MSIArpProductIcon
	Examples

	MSIDefaultInstallAllUsers
	Examples

	MSIFilename
	Examples

	MSIInstallDirectory
	Examples

	MSIManufacturer
	Examples

	MSIProductCode
	Examples

	MSIProductVersion
	Examples

	MSIRequireElevatedPrivileges
	Examples

	MSIUpgradeCode
	Examples

	MSIUseCabs
	Examples

	Sandbox Parameters
	SandboxName
	Examples

	SandboxPath
	Examples

	InventoryName
	Examples

	SandboxNetworkDrives
	Examples

	SandboxRemovableDisk
	Examples

	RemoveSandboxOnExit
	Examples

	ThinApp Sandbox
	Search Order for the Sandbox
	Controlling the Sandbox Location
	Place the Sandbox on the Network
	Place the Sandbox on a USB Drive
	Make a Portable Application

	Sandbox Structure
	Making Changes to the Sandbox
	Listing Virtual Registry Contents with vregtool

	ThinApp Directory Files
	Snapshot Commands and Customization
	Methods of Using the snapshot.exe Utility
	Creating Snapshots of Machine States
	Usage
	Examples
	Options

	Creating the Template Package.ini file from Two Snapshot Files
	Usage
	Examples

	Creating the ThinApp Project from the Template Package.ini File
	Usage
	Examples

	Displaying the Contents of a Snapshot File
	Usage
	Examples

	Sample snapshot.exe Commands
	Create a Project Without the Setup Capture Wizard
	Customizing the snapshot.ini File

	ThinApp Virtual File System
	Virtual File System Formats
	Merged and Virtual Views of the File System
	Using Folder Macros
	List of Folder Macros
	Processing %SystemRoot%

	ThinApp Scripts
	Callback Functions
	Example Scripts
	.bat Example
	Timeout Example
	Modify the Virtual Registry
	.reg Example
	Stopping a Service Example
	Copying a File Example
	Add a Value to the System Registry

	API Functions
	AddForcedVirtualLoadPath
	Parameters
	Examples

	ExitProcess
	Parameters
	Examples

	ExpandPath
	Parameters
	Returns
	Examples

	ExecuteExternalProcess
	Parameters
	Returns
	Examples

	ExecuteVirtualProcess
	Parameters
	Returns
	Examples

	GetBuildOption
	Parameters
	Returns
	Examples

	GetFileVersionValue
	Parameters
	Returns
	Examples

	GetCommandLine
	Returns
	Examples

	GetCurrentProcessName
	Returns
	Examples

	GetOSVersion
	Parameters
	Returns
	Examples

	GetEnvironmentVariable
	Parameters
	Returns
	Examples

	RemoveSandboxOnExit
	Parameters
	Examples

	SetEnvironmentVariable
	Parameters
	Examples

	SetfileSystemIsolation
	Parameters
	Examples

	SetRegistryIsolation
	Parameters
	Examples

	WaitForProcess
	Parameters
	Returns
	Examples

	Index

