

Forward Search 2.7

Developer Guide

“Getting started with Forward Search”

Document version 2.7.0.1

| 1

Forward IT ApS – www.forwardsearch.dk – http://portal.forwardsearch.dk

Table of contents

Introduction ... 2

Forward Search System overview ... 2

Forward Search ... 3

Installation and configuration ... 4

Install .. 5

Configuration .. 6

Configuration of website source .. 6

WebService configuration .. 7

Tagging of content ... 8

Marking what to index ... 9

The Robots Exclusion Protocol ... 10

Robots Meta Tags ... 10

The fields of the index ... 11

Predefined field overview .. 11

Collecting information .. 12

The TEXT field ... 12

Dublin Core ... 12

Extended custom fields .. 12

Mapping a custom field .. 13

Language Identification .. 13

Last modified .. 13

Categorize webpages based on url ... 14

Custom metadata mapping (deprecated) .. 14

Geo Search fields .. 15

Run Forward Search Crawler ... 16

Manual trigger .. 16

Schedule ... 16

Event trigger ... 17

Search: Use of the Forward Search WebServices ... 18

User-control, XSLT or Ajax .. 18

Search by User-control ... 18

| 2

Forward IT ApS – www.forwardsearch.dk – http://portal.forwardsearch.dk

The other search interfaces .. 19

Engine commands .. 19

Building queries .. 19

The Query language .. 20

Facet counting .. 23

Did-You-Mean ... 23

Type-ahead ... 24

Tuning ... 25

Using a Thesaurus ... 25

Stop words .. 26

Maintenance .. 27

Re-index .. 27

Logs ... 27

Appendix .. 30

Productivity tools in the installation package .. 30

A sample custom thesaurus ... 30

Using and configuring the debug logger .. 32

A sample search query ... 33

Subpage items .. 35

Troubleshooting ... 36

Introduction
This document describes the many aspects of installing, configuring and using the Forward Search web and

enterprise search system. Its intended audience is developers and web administrators in charge of

constructing and maintaining one or several Forward Search indexes.

Forward Search System overview
The Forward Search System consists of 6 components:

• the Crawlers and Connectors

• the Index service

• the Index

• the Post Processer service

• the WebServices

• the Admin interface

| 3

Forward IT ApS – www.forwardsearch.dk – http://portal.forwardsearch.dk

These elements and their relationship and dependencies with each other and the surrounding system can

be seen in the following model overview diagram, and described further below. Blue elements denote

Forward Search components.

The configuration entities are marked with red numbers, and are referred to in the text below. The required

presence of a valid license file is marked with a key.

Forward Search

Forward Search is a crawler-based search solution that allows for very fast searches into a large set of

diverse content.

The first 2 components are “the Crawlers and Content Connectors” and the Index service. The solution is

crawler based which means that content is "crawled" and indexed in a separate process not related to the

searches. This process Crawls various content sources and constructs an index. This can be done by either

event update, scheduled update or a combination of those.

Scheduling is typically done during low-activity hours and controlled by the Forward Search Scheduler.

Event update is occurring every time new content is added, altered or deleted and subsequently published.

The third component is the index itself. The index is a large binary file constructed and maintained by the

Index Service. The index contains all the discovered words and pointers to the actual content. It also

contains a lot of other important and useful data about the content. When a search is performed, the

search only needs to look up the search criteria in the index and return the information found herein. It

doesn’t have to look into the actual sources at all.

The fourth component is the post processing service. It’s a service that allows for manipulations to the

index after it was build. The processes placed in the post processor is basically the same as can be handled

in the document finalizer of the index-server, but typically, the post processing service runs independently

| 4

Forward IT ApS – www.forwardsearch.dk – http://portal.forwardsearch.dk

of the index and searching, in a separate process that can be set at low priority, slowly chewing through the

index, processing the documents one by one. It is therefore ideal for slow processes, which would

otherwise impede the availability of the index and the speed of the re-indexing. Please refer to separate

document on how to configure and use the post processor.

The fifth component is the set of WebServices. There are 5 service endpoints in the Forward Search

WebServices.

The first “forwardsearchwebservice.asmx” is the most important service, since it provides the functionality

for which Forward Search is known - supplying fast and flexible search.

The Admin service is an extension of the search service, with additional features.

The Trigger service allows for calling the index service whenever new or changed content is published from

the source (e.g. CMS system).

The event service makes it possible to trigger index updated from events raised elsewhere.

Injection service makes it possible to fetch an index scheme and update documents in the index directly.

The last Statistic service is administrative services used by the Forward Search Admin client.

The final component of the Forward Search is the Admin interface, the topic of this user-manual. The

purpose of the admin interface is to inspect the index and manage the configuration of the system. This

management is done by exposing functionality that allows changes to the configuration files of the index

server and the Web Services. These files are marked "1" and "3" in the diagram. These two files are

referred to as the Indexserver Config.xml and the Webservice Config.xml, since they both have the filename

config.xml.

Also the scheduler configuration (sch.xml), marked with a “2” in the diagram allows for maintenance from

the admin interface, even though it is not as evident on the diagram. The scheduler controls when the

various search-sources are crawled and re-indexed by the index server.

Installation and configuration

Below, the installation and configuration procedures are described in some details. The basic steps are:

 Install

1. Download

2. Unblock

3. Unzip

4. WebService setup

5. Indexservice setup

6. Administration client install

Configuration

7. Index & source setup

8. Run the indexer

| 5

Forward IT ApS – www.forwardsearch.dk – http://portal.forwardsearch.dk

Install

To Set up Forward Search, complete the following steps and tasks:

1. Download the latest available version of Forward Search from http://portal.forwardsearch.dk

(Choose the menu item “Technical Resources” and sub-menu “Download”. The download is

labelled “Release - Forward Search Backend - 2.7.x.x – Full” followed by the release date. The file

itself is a zip file named “forwardsearch_version_2.7.x.x.zip” and is a little less than 30 MB large)

2. Unblock - Remember to “Unblock” the zip-file first, if applicable.

3. Unzip the file to a chosen location on the server file system. This location is the installation

“approot”. Apart from the main Forward Search modules, a few other things are unzipped as well.

Please refer to the appendix for more on these productivity tools.

4. Web services setup

a. Apply the needed rights to the [approot]\WebSite folder.

b. Change paths in the [approot]\WebSite\Data\web.config file. The 5 paths to change are

located under the <appSettings> entry. They instruct the WebServices about where to find

the index server files.

c. Place the received license file to the folder [approot]\WebSite\data. The license file

must be renamed to “lic.xml”.

d. Create a website pointing to this folder. This website becomes the “WebService

url”. Make sure it runs under an account that has write access to the website- and

index folders.

5. Index service setup

a. Change paths in the configuration file: [approot]\Forward.IndexServer\data\Config.xml.

The paths to change are those 5 paths found in the section

“<appDataProcessSettings>”, pr. default pointing to “C:\ForwardSearch...”

Also Change the url in the configuration file, entry <WebServiceNetworkAddress> to:

[webservice url]/forwardsearchWebservice.asmx

b. Place the received license file to the folder [approot]\Forward.IndexServer\data. The

license file must be renamed to “lic.xml”.

c. Register the index-server: Run [approot]\Forward.IndexServer\ ServiceInstaller.cmd.

This should make the forward index-server appear as “started” and “automatic” in

the windows “Services” list.

6. Administration Client install

Chose the version of the administration client to use:

• Standalone version

• Sitecore version

• EPiServer version

Download it from http://portal.forwardsearch.dk and install it at a chosen location. Please refer

to the relevant version of the “Admin package” document for more details on the installation.

| 6

Forward IT ApS – www.forwardsearch.dk – http://portal.forwardsearch.dk

Configuration

To setup a target website for search indexing, complete the following steps and tasks

7. Index & Source setup.

a. Edit the [approot]\Forward.IndexServer\data\Config.xml to include a “websetting” section

(also referred to as a “source”) relating to the website to be indexed. You can copy the

demo site section already present in the file. See “Configuration of website source” below

for more details on the settings.

b. Edit the [approot]\WebSite\data\Config.xml to include a “database” section relating to the

index you are about to create. See further details in “WebService configuration” below.

Notice: We strongly recommend that you use the administration client to create new

sources and indexes. That way, the configuration files are kept consistent and all entries are

validated.

8. Run the indexer. You can start the indexer from the administration client, or you can run the trigger

executable: [approot]\Forward.IndexServer\Forward.IndexServer.Trigger.exe

Configuration of website source

Each website source has its own entry in the index-server configuration file, under the top-entry

“webSettings”. File-sources are located under the top-entry “fileSettings”.

The entries available and thus needs configuration are listed in the table below, with an example of the

entry as it appears in the config file, and the name under which it is edited in the Administration Client. We

also refer you to the “User Guide Admin Client” page 18 for more on the source configuration fields.

Label Description Sample

Source name The name, displayed, not actually

used.

<webSetting name="SomeName">

Source id The unique id of the source. <id>1500</id>

Index name The name of the target index <indexname>MyIndex</indexname>

Source enabled Is this source enabled? <enable>True</enable>

Website root The starting url of the crawler. <webSite>http://www.mysite.com/en/</webSite>

Exclude patterns Which patterns can NOT appear

in the url?

<excludePattern>.js,.css,.gif,.jpg,.png </excludePattern>

Include patterns Which patterns MUST appear in

the url? (leave blank to skip

include-pattern test)

<includePattern>/en<includePattern>

Ignore trailing slash Consider urls with and without

trailing slash to be the same

page?

<ignoreTrailingSlash>True</ignoreTrailingSlash>

Remove Anchor

Text

Don’t index text inside anchor

tags.

<removeAnchorText>True</removeAnchorText>

Default Language Use this language if none other

found.

<defaultLang>en</defaultLang>

Path to Index Where is the binary index file? <pathForwardIndex>C:\forwardsearch\ForwardData\mySite\Index

</pathForwardIndex>

Path to dump files Where should temporary dump

files be stored?

<pathDump>C:\forwardsearch\ForwardData\Dump</pathDump>

Event WebService The url of the event webservice <pathEvent>http://mywebservice.local/eventservice.asmx</pathEvent>

| 7

Forward IT ApS – www.forwardsearch.dk – http://portal.forwardsearch.dk

Use Preview Store the first page as html in the

“PREV” field

<preview>False</preview>

Generate

thumbnail

generate an image of the first

page

<thumbnail>False</thumbnail>

Thumbs normal

size

Set to True to use 300px

thumbnails. False = 100px.

<thumbnailNormalSize>False</thumbnailNormalSize>

Use Inherit Apply inheritance to media

documents.

<useInheritDocumentDetails>False</useInheritDocumentDetails>

Network

credentials

Use these credentials to access

protected files.

 <networkCredential>

 <domain />

 <user />

 <password />

 </networkCredential>

Partial crawl Only process a part of the

website.

<partialCrawl>False</partialCrawl>

Partial crawl count Number of pages to process in a

partial crawl.

<partialCrawlCount>500</partialCrawlCount>

Partial crawl

resume

True: When index is run again,

continue the partial crawl. Else

start over from the first page.

<partialCrawlResume>False</partialCrawlResume>

User agent The user agent name of the

Forward Search crawler.

<userAgent>ForwardSearchBot</userAgent>

Forms

Authentication

Set up login information for

access to protected web pages.

<formsAuthentication/>

Stay home True: Don’t leave the current

domain when following links.

<stayHome>True</stayHome>

Crawler Depth If “stay home” is false, only move

this number of links away from

domain.

<crawlerDepth>1</crawlerDepth>

Crawler Timeout Expire a page request after this

time (milliseconds)

<crawlerTimeOut>500000</crawlerTimeOut>

Fieldmap name Name of extended custom field

map to apply

<extendedFieldMap>ReferencesMap</extendedFieldMap>

Post processing

script

Path to a script og executable

that will be run whenever the

indexer completes an indexing.

<postIndexingScript>RunDocMod.cmd</postIndexingScript>

WebService configuration

Each index in the Forward Search system has its own “database” entry in the WebService configuration file,

under the top-entry “databases”.

The entries available and thus needs configuration are listed in the table below, with an example of the

entry as it appears in the config file, and the name under which it is edited in the Administration Client.

We also refer you to the “User Guide Admin Client” page 14 for more on editing the indexes.

Label Description Sample

Name <name>SampleSite</name>

Index Path Where is the binary index file? Same

value as the index-server config entry

“pathForwardIndex”

<config> C:\forwardsearch\ForwardData\MySite\Index</config>

Provider Integer that indicates which search

provider to use. Default is 2; the normal

<provider>2</provider>

| 8

Forward IT ApS – www.forwardsearch.dk – http://portal.forwardsearch.dk

Forward Search index. This is the only

option for most solutions.

Multilingual

thesaurus

Should the multilingual thesaurus be

used for this index? Notice, that the

multilingual thesaurus requires a specific

license.

<UseMultiLingThesaurus>False</UseMultiLingThesaurus>

Custom

thesaurus

Full, local server path to the custom

thesaurus file.

<cusths>C:\forwardsearch\WebSite\Data\MySite\cusths.xml</cusths>

Stopword Full, local server path to the stopword

list.

<stopword > C:\forwardsearch\WebSite\stopword_en.lst</stopword >

Fieldmap name Name of extended custom field map to

apply

<extendedFieldMap>ReferencesMap</extendedFieldMap>

Popular terms

Number of days back to maintain popular

search words.

<popularTermsDaysBack>2</popularTermsDaysBack>

Popular terms

start-weight

A decimal: 0.0 < X <= 1.0. The weight

relative to the youngest terms that the

oldest terms in the popular list should

have. 1.0 = equal weight, 0.5 = half the

weight and so forth.

<popularTermsStartweight>0.5</popularTermsStartweight>

Reduce text returned as a search result, particular content of the index field TEXT might be huge.

It is possible to reduce the amount by referring to a section in the WebService configuration, like this

“TITL,URL,TEXT@A” as display paragraphs argument for the search service.

<reduceTextSections>
 <section name="A">

 <reduceText>...</reduceText>

 <countInWords>true</countInWords>

 <count>25</count>
 <returnFromStart>false</returnFromStart>

 </section>

 <section name="B">
 <reduceText>...</reduceText>

 <countInWords>true</countInWords>

 <count>25</count>
 <returnFromStart>true</returnFromStart>

 </section>

</reduceTextSections>

In this case TEXT will only contain 25 word with the query centred within

Section B would return the first 25 words from the field Count in words false would return 25 characters

Tagging of content

The process of marking up the content pages with various tags and information in order to enrich the index

and thus enhance search capabilities is called “tagging the content”. It consists of two tasks: Marking what

to index and Emitting extra information.

| 9

Forward IT ApS – www.forwardsearch.dk – http://portal.forwardsearch.dk

Marking what to index

You can, and should control what part of the webpages that should be indexed as text - that is, what part of

the html should be tokenized and index into the “TEXT” field in the index. You use the de-facto standard

comment tags <!--BeginNoIndex--> and <!--EndNoIndex--> to do this. (No whitespace)

The standard procedure is to exclude everything on a page and then “un-exclude” the main contents only.

This approach is illustrated in the figure below. A “BeginNoIndex” starts the page and an “EndNoIndex”

terminates the page. In the control or placeholder or other rendering component that emits the main

contents html, an “EndNoIndex” starts the emission, and a “BeginNoIndex” terminates it. The result is that

only the text within the Main Contents is extracted from the webpage and added to the TEXT field.

You should normally always exclude from being indexed into the TEXT field, the following page elements:

• Headers – identity and similar, that appears unchanged on all pages. (Since the text appears on all

pages, it doesn’t add any find ability to the documents in the index)

• Navigation elements. (The link text should appear on and be indexed as part of the page to which

the link leads. This also ensures that the link text can only be found by authenticated users, if the

page is protected)

• Content from teasers, panel-boxes, news-links, banners etc. (These elements should be indexed on

their own pages instead. A notable exception is panel-boxes containing trivia or other facts or

perspectives on the main content, that does not natively belong to any other page, or is highly

relevant for the page where they appear.)

| 10

Forward IT ApS – www.forwardsearch.dk – http://portal.forwardsearch.dk

The “No-follow” directive

You can also mark up any area of the webpage that contains links the crawler should not follow. . You use

the de-facto standard comment tags <!-- BeginNoFollow --> and <!--EndNoFollow --> to

do this.

Alternately, you can exclude a single anchor from being followed by setting the “rel” attribuite to

“nofollow”.

The Robots Exclusion Protocol

You can indicate which parts of the site should not be visited by a robot – including Forward Search - by

providing a specially formatted file on the site, in a file called ”robots.txt”. Read more about the robots.txt

file here: http://en.wikipedia.org/wiki/Robots_exclusion_standard

Robots Meta Tags

You can also exclude an entire page from being indexed or “followed”, by setting the de facto standard

meta tag “robots:

NoIndex: <meta name="robots" content="noindex">

<meta name="robots" content="noindex,nofollow">

NoFollow: <meta name="robots" content="nofollow">

<meta name="robots" content="noindex,nofollow">

On a more fine-grained level, It is possible to exclude links in blocks (like BeginNoIndex—EndNoIndex)

with the comment tags <!--BeginNoFollow--> <!--EndNoFollow-->

Or even for single anchors: Rendering the anchor attribute ”rel” with the value ”NoFollow” prevents

Forward Search from following the link:

Don’t follow!

| 11

Forward IT ApS – www.forwardsearch.dk – http://portal.forwardsearch.dk

The fields of the index
An index consists of a number of fields with a number of values - terms – pointing to the documents that

contains these terms. Many of the fields are predefined in Forward Search, and are shared among all

indexes. Other fields are defined pr. index and exist only in the index they were designed for.

The field table in the next section lists all the predefined fields, and indicates how Forward Search attempts

to collect data for them.

Predefined field overview

The table below lists the predefined index fields, their common name, usage and the possible

matching tags from where the data for the field is harvested - mainly as Meta tags. An “X” in the

“All” field indicates that this field will be included in “All” searches – searches that have targeted

no specific field.

Notice that the predefined field names are with a few exceptions all 3 or 4 letter names, and all in

uppercase.

Field

name

Common

name

All Source Content

TITL Title X dc.title or <title> tag Title of document

TEXT Text X All text not marked

“NoIndex”

Indexed text of document (normally, the entire text of

the page minus header, footer and navigation.)

DOCE Extension From url Document Extension (htm, pdf, docx or similar)

URL Url From url The url of the document

AUTH Author X dc.creator -

dc.contributor - author

The Author of the document

CATG Category X Url (via the

CategoryRules file) -

dc.category

The category of the document. May be auto-generated

using the category-rules setup; see the developer guide

about this.

KEYW Keywords X dc.keywords -

keywords

Any keywords from the metadata of the document.

SUBJ Subject X dc.subject – subject Any subject from the metadata of the document.

SIZE Size The file size The document size in bytes

MODT Modified The modified date The last modified date of the document, if found.

LANG Language See above. The document language set explicitly or defaulted.

ITID Item id X The CMS item id A possible document id (typically relevant for CMS)

SIDS Subitemid Id of the subitem Content is fetch from Subitem tag, look at appendix

COMM Comment X dc.description –

comments –

description

Any comment or description from the metadata of the

document.

ACLS Access

control

 Emitted access control

list, if present.

Access control list values

HASH Hash Hashkey of url The hash key used for storing dump files and uniquely

identifying the document.

BIN Binary From the document True or false: Is the document a binary?

PARENT parent Determined by

crawler

The parent url

SITE Domain Url The main url of the website to which the document

belongs

PATH Local path - The local path to the index server copy of the

document.

| 12

Forward IT ApS – www.forwardsearch.dk – http://portal.forwardsearch.dk

RREF Referring

pages

 - The number of referring pages.

CUSA

…CUSO

Custom field

A to O

X Meta tags The 15 “old” custom fields. Notice, that these 15

custom fields will be made obsolete. Use the Extended

Custom fields instead.

ECxx Extended

custom field

 Meta tags, html tags. Extended custom fields with automatic naming based

on the field id. The “xx” is replaced with letters “A”

thru “J”, denoting numbers 0-9. Notice, that Extended

custom fields can be labeled individually.

GLOC Geo locality Meta Tag The geo locality, if any.

GLAT Latitude Meta tag or html tag The latitude found for the document.

GLON Longitude Meta tag or html tag The longitude found for the document.

GNxx Geonet xx Calculated field. Geo net fields. For each geo-net (denoted by the xx,

just like in the extended custom fields above) contains

the actual box that the document is mapped to.

There are more fields stored in the index, but most of those not shown are system-fields where the content is not

adequate for viewing.

Collecting information

When Forward Search process content/documents, it collects information regarding the document, based

on a number of rules.

• Fetching Meta tags in the order they are listed in above table, Dublin core before normal tags.

• Extended custom field setup

• Enrichments made by custom code (“Categorize webpages based on url”, is a plugin sample)

• Part of url or language embedded in query string

Everything else might go into TEXT.

The TEXT field

Any text content on the page not excluded (with BeginNoIndex or anchor-tag exclusion for instance), and

not detected as Meta Data, is harvested from the document and placed in the TEXT field, as plain text. (Any

html tags are removed)

Dublin Core

Forward Search tries to identify Dublin Core meta-tag fields. It is possible, through the use of extended

custom fields, to address even more of the Dublin Core field definition space. In the field table below,

Dublin Core fields are defined starting with the prefix “dc.” as specified by the standard.

Read more about Dublin Core here: http://dublincore.org/

Extended custom fields
it is possible to can use an arbitrary number of extended custom fields which are manageable from the

Administration client.

| 13

Forward IT ApS – www.forwardsearch.dk – http://portal.forwardsearch.dk

Mapping a custom field

Thus, a field specification looking like this:

 < field indexfield =" AGENCY" > dc.publisher </ field >

Will look for data in a field on the page like this:

 <meta name="dc.publisher" content="John Doe" />

Store the data in the index like this:

 AGENCY:John Doe

Tokenized as two individually searchable words:

 AGENCY:John
 AGENCY:Doe

For more information on use of extended custom fields consult the Forward Search Extended Custom Fields

document available on the Partner Portal.

Language Identification

A dedicated plug-in detect the language (if not already detected) on the document element. The detected

value will be set on the predefined document element field “LANG”.

The applied Language detection rules are, in prioritized order:

1. Query string : ?lang= XX (where XX is the language code)
2. Html-tag: <html xmlns="http://www.w3.org/1999/xhtml" lang="XX " xml:lang="XX" > (where

XX is the language code)

3. Analyze based on different language characteristics.

4. If all else fails, it uses the default value from configuration file.

Last modified

Forward search look at the timestamp last modified to determine if a document should updates in a series

of incremental crawls.

The timestamp can be supplied an http header (normal for binaries) or as a Meta Tag:

• <META HTTP-EQUIV="Last-Modified" CONTENT=“date"/>

These 3 formats are supported:

• Tue, 15 Nov 1994 12:45:26 GMT

• yyyyMMddHHmmss

• yyyyMMddTHHmmss

Read more about Last modified here:

http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.29

| 14

Forward IT ApS – www.forwardsearch.dk – http://portal.forwardsearch.dk

Categorize webpages based on url

In order to achieve a simple categorization of your pages – populating the “CATG” field – you can set up a

mapping of the urls to a set of page categories. Follow these steps to set up a category mapping:

1. Edit [apppath]\Forward.DataProcess.PlugIns\CategoryRules.xml

2. Specify the domain for which the category rules should apply

3. For each category to include, create a “category” entry with the category name.

4. For each url pattern that should map to this category, add a “pattern” entry with the url pattern (a

full or part of the url – like “/news” or “/blog”.

When a document is processed by the indexer, it will check the patterns in the file with the document url. If

it matches, that category name is stored in the CATG field. The first url pattern to match is used.

This feature is implemented as an example of a finalizer plugin, the project files is located in

[apppath] \Tools

Below is a small sample category-rules file for reference:

<?xml version="1.0" encoding="utf-8" ?>
<rules>
 <www.mysite.com>
 <category name="Product">
 <pattern>/Products</pattern>
 </category>
 <category name="Solutions">
 <pattern>/Solutions</pattern>
 </category>
 <category name="Services">
 <pattern>/Services</pattern>
 </category>
 <category name="NewsEvents">
 <pattern>/Newslist</pattern>
 </category>
 <category name="InvestorRelations">
 <pattern>investor%20relations</pattern>
 <pattern>investor relations</pattern>
 </category>
 </www. mysite.com>
 <excludePattern>http://localhost/test</excludePattern>
</rules>

A sample CategoryRules.xml file

Custom metadata mapping (deprecated)

Available for backward compatibility is also the 15 “old” custom fields called ”CUSA” to “CUSO”. These

fields can be mapped to meta-data using a mapping-file. Each mapping converts an html Meta Tag value

into a field in the index. This field is indexed as a text, using the standard analyzer, included in the “All”

search and hit-highlighted. It will also be possible to sort by the field.

The mapping file is located in the index-server plug-in directory:

 [apppath]\Forward.DataProcess.PlugIns\

and is called:

| 15

Forward IT ApS – www.forwardsearch.dk – http://portal.forwardsearch.dk

Forward.DataProcess.PlugIns.WebPage.CustomMetadataMapping.xml

These 15 custom fields will be discontinued, but they can be maintained in the index using the extended

custom fields feature, and thus, search-code relying on the index field names “CUSA” to “CUSO” can be

made to work also after migrating to the next major version.

Geo Search fields

When utilizing the Geo Search capabilities of Forward Search, extra fields are added to the index:

There are as many geo-net fields (GNxx) as there are defined geo nets in the geo-setup file.

Field Source Description All?

GLAT
geo.position or
or

The latitude of the document

GLON
geo.position or
or

The longitude of the document

GLOC geolocality
An associated locality name or
closeby locality yes

GUNC geouncertainty
An indeger in meters that indicates
the uncertainty of the location.

GNxx Auto
Calculated field with the id of the box
for net xx.

The Geo Search capabilities of Forward Search require a separate license. Please refer to separate

documents on how to configure and use the geo-search feature.

| 16

Forward IT ApS – www.forwardsearch.dk – http://portal.forwardsearch.dk

Run Forward Search Crawler

There are 3 different ways to activate the crawler and indexer:

• Manual trigger (run [approot]\Forward.IndexServer.Trigger.exe)

• Schedule

• Event based trigger

Manual trigger

You can start the indexer manually from the administration client, or you can run the trigger executable:

[approot]\Forward.IndexServer\Forward.IndexServer.Trigger.exe

Schedule

You can set up the index server to run on fixed times by using the scheduler build into the index server.

(You can also use the windows scheduler if that turns out to be more convenient)

Notice: The schedule file can be edited from the GUI interface the administration client as seen below. This

is the recommended method to edit scheduled tasks. Please refer to the administration client

documentation for further on scheduled task editing.

The schedules list in the admin client. There are 4 schedules, 2 for specific sources, 2 for all file/web sources.

The top 3 are repeated, the last one only runs once, on the date and time stated.

To manually edit the sch.xml in [approot]\Forward.IndexServer\data, open the file in a simple text editor or

xml editor. All scheduled tasks are elements with the tag name “task”. The elements of a single schedule

entry – a “task” are:

 Id: unique id

 Datetime: scheduled from first date

 Name: name of task

 Modetype:

 D=dayly

 W=weekly

 m=monthly

 Repeatly only once or reccurring

 Daylist weekday if weekly

 Crawltype which section: WEB,FILE,SPS (WEB = website - FILE = Fileserver - SPS = SharePoint)

 Crawlsecid id from websetting

| 17

Forward IT ApS – www.forwardsearch.dk – http://portal.forwardsearch.dk

Below is a sample schedule “task” entry for reference:

<task>
 <id>633422088379687500</id>
 <datetime>27-03-2008 12:00</datetime>
 <name>printer</name>
 <modetype>D</modetype>
 <repeatly>True</repeatly>
 <daylist>Thursday;</daylist>
 <crawltype>WEB</crawltype>
 <crawlsecid>1388993805</crawlsecid>
</task>

Event trigger

It is often relevant to have the index updated with new or changed content as soon as these changes are

published and thus available on the website. This can be accomplished by calling the Event Trigger

WebService, included in the Forward Search installation. Then you need to hook the call to this WebService

method to the event in the CMS.

When the event is fired, the changed urls are sent to the Forward Search WebService EventService.asmx –

the method “EventUpdate”.

The index-server is also triggered, but delays its actions 30 seconds to allow for more urls to be posted.

Then it starts a re-indexing of the received urls.

To make sure the index-server is triggered, provide the windows hostname in the entry

“ForwardIndexServer_HostName” in web.config of the WebService.

The index-server also needs to be able to retrieve the urls. Therefore, make sure the EventService.asmx url

is specified in the index server configuration file, as described in the chapter “Configuration of website

source“ earlier in this document.

There are samples with full documentation for use of the event trigger for selected CMS available on the

Forward Search Partner Portal.

| 18

Forward IT ApS – www.forwardsearch.dk – http://portal.forwardsearch.dk

Search: Use of the Forward Search WebServices

To perform a search into a Forward Search index, you must construct a query and then call a WebService

with the query, the name of the index and the fields you wish to have returned in the result set. You may

further add pagination information and other parameters to the call, known as “engine commands”.

User-control, XSLT or Ajax

In content management systems like Sitecore and Umbraco XSLT renderings is common. In those cases, you

can call the WebService through the use of the XSLT extension delivered with Forward Search. The result is

returned as an XML document ready for iterating in the XSLT.

For more complex queries, for queries in In EPiServer and other system, your query and the subsequent

result-rendering can be handled by a usercontrol or webpart, utilizing the Forward Search API. The result is

returned as a dataset with two or more tables containing the result data, ready for data binding to

repeaters and similar.

Finally, to request a search query and process the results client side via Ajax, you can call the handler

version of the search interface, and retrieve the results as a Json object ready for JavaScript based iteration

and rendering.

Search by User-control

When you decide to create the search query and render the results in a user control or similar, you will

need to include the forward search assembly “Forward.Search” in the dll “Forward.Search.dll”. This

namespace contains several classes that make the construction of even complex search queries easy. You

will also need to make a web-reference to the ForwardSearchWebservice.asmx, a part of the installed

Forward Search WebServices.

The Query class allows you to construct queries and sub-queries, and the Term and GeoTerm classes allow

you to add search terms and specialized geographical terms to the query.

Once the query is constructed, you can call the WebService method “Search” and pass along the search

query by converting it into xml, using its method “ToXml”. For simple text searches, you can skip the query

construction and simply call the WebService “Search” method with a text string.

The Search method has these parameters:

 Search(String index, The name of the index to query
 string user, An optional user (for secure documents)

 string textquery, The simple version of the query- a text string
 XmlNode xmlquery, The query as an XmlNode
 string format, Optional formatting instructions
 int startIndex, Pagination: The first document to return from the result
 int endIndex, Pagination: The last document
 string displayParagraphs, The fields to return, as a comma-separated list

a)
 string sortParagraphs, The field or fields to sort the result by

b)
 bool ascending, Sort ascending?
 string engineCommands) Optionally a number of extra commands for the search

| 19

Forward IT ApS – www.forwardsearch.dk – http://portal.forwardsearch.dk

a) Fieldnames may be post fixed with “@A” where A refers to a section in the reduct text configuration descripted in the

WebService configuration.

b) “WEIGHT” is a special fieldname, telling the search engine to sort results based on relevancy – other fields can be

combined but not WEIGHT. There is neither anything as least relevant.

The other search interfaces

The XSLTextension contain among other methods, a “SearchXMLQueryAllArgs” method which gives a very

accurate equivalent to the WebService method described above.

It is possible to generate a query in pure xml, see example in “A sample search query” appendix

The search handler “ForwardSearchAsJson.ashx” has the same query-parameter options as the WebService

(though not exactly the same names they are shorter), and is therefore also its equivalent.

For more on these interfaces and the other relevant interfaces available in Forward Search, please refer to

the other available documents pertaining to the specific needs you have.

Engine commands

As part of the search query, you can pass a semicolon-separated list of engine commands in the “engine

commands” field of the search query (all versions of it). Engine commands affects the way the search

engine handles the search query and the results. The actual query is not affected by engine commands.

Here are some relevant engine commands you can opt to include:

Command Effect

USEHITHIGHLIGHT

UHHL
Fields returned are marked with hit-highlighting, meaning that matching search words

are surrounded by a span tag:

 ..

Notice that you can use either the long or shorthand version.
NOPOP The search words are not collected to the popular words system. Use this for all search

queries that are not free-text searches entered by visitors.

NOLOG The search query is not collected to the search history system. Use this for all system-

generated queries that are not directly related to user input

#KILL# Reset the WebServices, clear caches and reload all configuration files. No search is

performed when this command is detected.

facetlist Look a section below about facet counting

facetlistthreshold Look a section below about facet counting

Notice, that there are more engine commands available, some of which are described under the relevant

topics.

Building queries

There are basically two ways to construct and submit a search query. The resulting search will be performed

the same way disregarding; only the construction, marshalling and parsing of the query is different. The two

ways to construct queries are:

1) Constructing a query as a “human text” string. For example:

“(cauldron OR bubble) AND AUTHOR:Shakespeare ”.

| 20

Forward IT ApS – www.forwardsearch.dk – http://portal.forwardsearch.dk

When using this approach, the human text string is parsed into queries and terms by the search

query parser.

2) Making a query by adding terms and sub queries to query (either in xml or as .NET user-controls

instantiating Search classes). When using this approach, the query parser simply constructs the

correct queries and terms directly from the serialized xml - possibly generated from the instantiated

.NET classes.

Below is a short introduction to the query language and how to implement it as query string and using the

Search classes. After the query language introduction is a short introduction with samples on how to create

queries using the Search classes.

The Query language

The query language is constructed of a query made up of one or more a sequence terms.

The Term

One term contains a string of one or more words to search for and an index field to search in – for instance:

Find “Shakespeare ” in field “AUTHOR”.

Several words in a term

The string of words is itself parsed by the query parser. Thus, the term: Find “cauldron OR bubble ” in

field TEXT is automatically changed to two terms: Find “cauldrom ” in field “TEXT” OR’ed with term Find

“bubble ” in field “TEXT”. (If the string of words has no logical operator, the AND operator is default

used.)

Several terms in a query

Several terms are combined in a query to form a number of parallel terms, that are joined using the logical

operator AND, OR or NOT, depending on what is specified. Default is always “AND”.

Sub-queries

Several terms can be joined together forming a sub-query that combine with other queries using different

boolean operators. For instance the example from above: “(cauldron OR bubble) AND
AUTHOR:Shakespeare ” contains the sub-query (cauldron OR bubble) within the query, that also

contains the term AUTHOR:Shakespeare . Sub-queries represent sets of parenthesis in the human-text

query. There is no technical limit to the level of nesting sub-queries within other queries, but there is an

upper limit in number of terms total for the entire query, which is set at 60.000 individual terms. A warning

will be issued to the error-log if this limit is passed.

Phrase terms

Searching for an entire phrase in a field is possible using a phrase query. In the human text form, it is

indicated by using quotes around the term string: TEXT:”fire burn and cauldron bubble” .

| 21

Forward IT ApS – www.forwardsearch.dk – http://portal.forwardsearch.dk

“All” search terms

If you don’t specify a field to search in, the system automatically assumes “ALL” text fields, which means

that the search is done in all those fields that are natural text fields. The table in the section “The fields of

the index” above indicates which fields are “ALL” fields.

Wildcard terms

You can use wildcards when specifying the search word. You can substitute single letters (with a question

mark) or sequences of letters (using an asterisk) So an example as “AUTHOR:Shake*” will find hits in the

“AUTHOR” field for “shakespeare ”, as will “AUTHOR:Shake?peare ”.

Range terms

You can search for ranges in special numeric or prepared text fields. By providing a start and end number

(double), the term will match all records that fall between these two values, themselves included.

Geo terms

Using the special class Geoterm, you can search for records that fall within a certain distance from a center.

You provide a longitude and latitude specification of the center and a maximum distance OR a minimum

number of hits. The search engine will match all records within distance OR find the closest records, up to

the minimum specified, if available. When using a Geoterm, it must always be added to the outer-most

query, and it cannot be nested, nor can you use more than one Geoterm in a query. Geo terms require that

the index is prepared for geographical searches. Please reference the separate document on geo-searches

with Forward Search. You cannot make geo-searches using human text queries or XML queries, but must

use the Search classes in .NET code.

Further options

It is also possible to construct terms with fuzzy logic (the query text doesn’t have to match exactly what is

found in the index) or with a proximity clause where several words must fall within a certain distance (in

characters) from each other in the stored text for the field, for the record to be a match. Read more on this

in a separate document.

The Search classes

Getting started with the Search classes in .NET is easy. Just include the Forward.Search.dll in your project

and reference the Forward.Search namespace to gain access to these two central classes:

Class: Query

Instances of this class accept the addition of terms and sub-queries, to construct complex queries, and it is

responsible for serializing the query object and its terms and sub-queries into XML for the search call to the

WebService.

Important methods and properties:

AddFieldQuery Add a term, a geo-term or a sub-query to the query. (4 overloads)
OperatorBetweenTerms Set the Boolean operator to operate on the terms added to this query.

AND, OR or NOT.
ToXml Use this to convert the query to an xml document for adding to the

Search WebService.

| 22

Forward IT ApS – www.forwardsearch.dk – http://portal.forwardsearch.dk

Class: Term

Instances of this class contain query values pertaining to a single field and using a common Boolean

operator. Terms must always be added to queries before submitted to the search method of the

WebService.

Important methods and properties:

FieldName The field to target. Or “ALL” (or blank for “ALL”)

FieldValue The search string.
FieldOperator If the search string consists of several words, this operator is applied:

OR or AND
FieldType Text (default) or Range or DateTime.

StartRange / EndRange If FieldType is Range, add the start and end for the range search, as

doubles.

StartDateTime / EndDateTime If FieldType is DateTime, add the start and end for the range search, as

date-time instances.

FactorBoost Boost the weight of this field in the calculation of the total score of the

result. The value is a percentage of “normal” boost, and thus 100 = no

specific boost. Minimum is 1 for a 1/100th boost and maximum is 1000

for a factor 10 boost.
FactorFuzzy Allow some fuzziness in the search (misspelling, different endings etc.)

The factor is a digit between 0 and 9, where 9 denote an almost perfect

match and 0 indicates a very loose match. Default factor is 5.

FactorProximity Require the words in search string to be in close proximity: A positive

integer that indicates the allowed number of words between the search

words in the term, for it to be considered a match. If only a single word

is in the term search string, this setting is ignored.

Class: GeoTerm

Instances of this class contain query values used for geo-searching. It relates to the Geo Search specific

calculated fields of the index, if such exists. Therefore, no field needs to be set manually.

Important methods and properties:

Latitude The latitude as a string, of the center

Longitude The longitude as a string, of the center
DistanceUnit The distance unit entered. Options are Feet, Meter, Kilometer, Mile,

NauticMile and Yard
MaxDistance The maximum distance as an integer, in the specified unit. Only records

within the circle defined by center and with this distance as maximum

are considered hits. (ignored if MinHits > 0)
MinHits The minimum number of hits to look for. If > 0 then the search engine

will look for hits in ever increasing distances from the center until

MinHits is found or the index is exhausted.

In the appendix you will find a C# snippet of a construction of a query and the subsequent call of a

WebService with that query.

| 23

Forward IT ApS – www.forwardsearch.dk – http://portal.forwardsearch.dk

Facet counting

If the index to query has been prepared with “facets” – various properties on the documents turned into

custom fields for use as dimensions or refinement options on the search result, you can request the

Forward Search engine to count and return the selected facet fields as a part of the search query. The facet

fields are specified in an engine command like this example, where some product properties are used as

facets:

 "facetlist:BRAND,COLOR,TYPE,OPTIONS;facetlistthreshold:5000;"

Facets can be single-value fields (like “Brand”, which, for each document will only contain a single value) or

multi-valued fields (like “Options” that may contain a comma separated list of various options for the

product the document is about).

Read more about setting up and querying facets in the separate document “Facet Counted Search – Quick

Guide”, available on http://portal.forwardsearch.dk

Did-You-Mean

Forward Search provides another WebService method by which you can request the search engine to

return from the index terms that more or less matches the one you propose in the call. This feature is

commonly known as the “Did you mean” feature, and can be used for spelling-correction and suggestions

for the user to improve the search experience. The method returns a data table with the closest relevant

suggestions based on your input. Two similar methods exist for this feature – one has a few extra input

parameters – that’s the one documented below.

The Did-you-mean method has these parameters:

 DidYouMeanEx(string user, An optional user (for secure documents)

 string password, An optional password (for secure documents)

 string database, The name of the index to query

 string word, The word to look for similar terms for

 int suggestions, How many suggestions to return (max)

 int minimumdist, The minimum “distance” between the word and the suggestions

 int minimumfreq) The minimum number of occurrences for a term to be suggested.

The “minimumdist” parameter allows you to specify how different the suggestion must be to be returned as

a suggestion. The default is “0” meaning that the word itself, if it exists, is also returned (the distance to

itself is “0”) A distance of 1 approximately means that a single letter needs to be replaced to get to the

suggestion, and so forth.

Notice, that the maximum distance is “8”, so that words quite different from the provided word are never

returned, and the search engine has a natural “stop” condition for looking further. But short words might

never reach 8 in difference, so be sure to consider this when using the results for short words, particularly

in small indexes where the risk of alien results is higher, since there will be fewer terms with a close match.

The “minimumfreq” parameter allows you to filter the returned suggestions by frequency – a suggestion

that only exists one or two times in the entire index, may very well be a misspelling, and this way, you can

force a minimum frequency. The default is 4.

| 24

Forward IT ApS – www.forwardsearch.dk – http://portal.forwardsearch.dk

Type-ahead

To support “type-ahead” or “auto-completion” functionality of search fields, Forward Search provides a

handler function that allows the query of filtered field values from the term lists of the index, and returns

the matching hits with frequency counts as a simple Json string, ready for use in various auto-completion

JavaScript components. A free-to-use auto-completion component is distributed with the administration

client and with our sample site, including source code that demonstrates the usage. Please also refer to the

separate document “Type-ahead Quick guide” on more about how to use this interface for auto-completion

of search fields.

| 25

Forward IT ApS – www.forwardsearch.dk – http://portal.forwardsearch.dk

Tuning

Using a Thesaurus

For free text searches, in order to improve the chance of relevant result hits, you can expand the search

query to contain other words that are related to the entered search word. This is done by looking up the

entered search words in a thesaurus and adding any found similar terms to the query. If the visitor searches

for “Car” we can make sure the engine also searches for results with “Automobile”.

You can opt to use a premade multi-lingual thesaurus provided with Forward Search if you desire so. It

contains standard word-aliases for 25 languages. A separate license is required for using this option.

Custom Thesaurus

You can also construct a custom thesaurus with words that are tailor-made for the specific application. It

could be product-aliases, keywords from recent ads and campaigns, the inclusion of obsolete product-

numbers for customers with old catalogues and a number of other practical scenarios. One typical example

is to add the correctly spelled version of often-misspelled words. Using the query history feature of Forward

Search may suggest relevant candidates for such spell-fixing thesaurus entries.

The custom thesaurus is an xml document located with the index file, the exact location specified in the

index setup. The file is pr. default called “cusths.xml” see the section “Forward Search WebService

configuration” in the chapter “Installation and configuration” earlier in this document.

The custom thesaurus file consists of a list of words grouped together according to similarity of meaning,

synonyms, related words etc.

Notice: You can edit the custom thesaurus through a GUI interface in the administration client, or you can

work directly in the xml file. Any changes to this setup is first active after the WebService has been

reinitialized (kill application pool or use the admin feature to reload configuration)

Examples

Type Word (parent) Alternatives (child)

Synonyms Automobile Car

Bike Bicycle

Categories vs. specifics Toy Lego

Doll

Car Ford

Volvo

Singular vs. plural Video Videos

Videos Video

Alternative writing AK47 AK-47

AK/47 AK-47

AK 47 AK-47

Notice, that for the count, we want to have both singular pointing to plural and plural pointing to singular.

This could also be the case for synonyms and categories, but less likely for alternative writing of a product

id.

The structure of the thesaurus is as shown here – for the examples above, the “Car” word. (Full sample is in

appendix)

| 26

Forward IT ApS – www.forwardsearch.dk – http://portal.forwardsearch.dk

 <Parent>
 <id>5</id>
 <word>car</word>
 </Parent>
 <Child>
 <id>5</id>
 <word>ford</word>
 </Child>
 <Child>
 <id>5</id>
 <word>volvo</word>
 </Child>

Each “word” or “term” is a “parent” node with a unique id, and each alternative is a “child” node pointing

to that id. The order of entries in the custom thesaurus is based on the order of creation, and all parents are

listed first. See the appendix for the full example custom thesaurus.

 In the administration client editor, the same thesaurus would look like this:

In the administration client, the custom thesaurus terms and alternates are grouped together. Color and

arrows indicates if an alternate is itself also a term in the thesaurus, and a double-arrow indicates that it, as

a term, relates to the term it itself relates to as an alternate. The list is alphabetically sorted by term, or by

count of alternates.

Stop words

Some words can be considered as noise, especially when results are returned based on relevance ranking.

To avoid these words from being indexed and being searched for, you can create and maintain a “stop-

word” list with the words to ignore. Stop words are persisted in normal text files, one stop word pr. line, in

the relevant language.

Forward Search uses the stop word list specified in the WebService configuration file, as mentioned in the

section “Forward Search WebService configuration” on page 8 above. Alternately, the system looks for a

common stop word list called "stopword_common.lst" in index parent dir. If several languages are present

as sources for a single index, it is recommended to edit the common stop word list, including all stop-words

for all relevant languages.

If no stop word list is provided, an internal list is used with these English stop-words:

I, a, about, an, are, as, at, be, by, com, de, en, for, from, how, in, is, it, la,
of, on, or, that, the, this, to, was, what, when, w here, who, will, with, the, www

To turn off using stop words, including the internal list, create a new, empty file called

"stopword_common.lst" and place it in the parent directory to the index.

| 27

Forward IT ApS – www.forwardsearch.dk – http://portal.forwardsearch.dk

Maintenance

Re-index

The indexes are normally maintained and updated through the setup of scheduled tasks and through

updates occurring as a result of event updates in the CMS. If you need to re-index an index you can do it in

one of several ways:

• Using the Administration Client. For the relevant index, click the “Recycle” button and confirm the

re-index in the subsequent dialog-box.

• Manual file-deletion. Delete the files in the dump, storage and index folders of the relevant source

and index. Then run forward.indexserver.trigger.exe

• Automatic file-deletionService trigger. Run forward.indexserver.trigger. Exe with ”reindex” console

argument.

• Direct call to Service. Telnet to forward.indexserver service on port 12051 write command

”CLEANALL” and ”CRAWL ALL”

Logs

The index server and the WebService write various status and error messages to several logs. Below is a

very brief description of these logs, to assist you in finding the relevant information when monitoring and

trouble-shooting the system.

The “I’m alive” logging

The Index-service writes ”I’m alive” to the Windows “Application Event log” once every hour. If the index-

service is not running properly, this entry should be missing. Use this to establish an approximate “time of

death” if the index-server has stopped working.

For a few severe errors, the Index-service writes the error to the Windows “Application Event log”. These

log-entries may therefore contain extra information pertaining to the failure.

The crawler logs

The index-service crawler process writes a status-log to [apppath]\data\logging\[yyyymmdd].il files. These

files contain information about the crawling and indexing process, hereunder warnings and error messages

and how long time indexing tasks and steps take to complete. The log is, as the indexing-process, divided

into two major tasks; crawling and data processing. The log reflects this using these 3 abbreviations:

IS Index server. Typically start and stop messages.

CW Crawler process. The crawler crawls the content and gathers all the documents to be indexed.

The crawler therefore also finds broken links.

DP Data processor. The data processor performs the actual indexing. It also performs a number of

other pre- and post-processing of the found documents.

Looking at these log files, it gives a picture of how the website performs, we would except between 3 and

15 entries per second. The “il” logs can be viewed using the administration client, and here filtered for

various types of entries. A number of specialized reports on these log files can also be applied, and 3 user-

definable custom reports are available.

| 28

Forward IT ApS – www.forwardsearch.dk – http://portal.forwardsearch.dk

Entries for each visited page is logged with both “WOP:” and “ResponseTime for:”, where WOP is pre page

fetch and ResponseTime is post. Response time entries are aggregated into the admin client to collect info

about average response time, slowest pages (blacksheeps).

Be careful about assumptions about response time, because a normal visitor will never visit all pages, and

might have a better cache hit ratios.

From version 2.7 Debug mode - Setting in config.xml is ignored; it is changed into 2 log4net loggers:

Normal logger: forwardsearchmainlogger

Verbose logger: forwardsearchmainloggerlevel2

The Query log

This log captures all queries made against the indexes, unless “NOLOG” was specified in the search call

engine command field. The log files are date-stamped and located here:

[apppath]\WebSite\ForwardSearchWebService\Data\logging\[yyyymmdd].qlf

The administration client allows viewing and filtering the query log.

The Search Query history list shown here is filtered by the term “laptop”. There have been 79 queries for that

term, which returned 43 hits. Also notice, that the same search but with a capital “L” was performed 27

times. Since the search engine always searches case-insensitive, obviously the two versions of the query

return the same number of hits.

The Popular search words log

This log captures the search terms used against the indexes, unless “NOPOP” or “#NOLOG#” was specified

in the search call engine command field. The terms included are those queried against text fields using AND

or OR operators. Sub queries and terms following “NOT” operators will not be added the popular search

word log. The days back popular search words are maintained, and the relative weight each term should

have in ranking the popularity, is configurable in the index-server config file.

| 29

Forward IT ApS – www.forwardsearch.dk – http://portal.forwardsearch.dk

The popular-search word files are date-stamped and located here:

[apppath]\WebSite\ForwardSearchWebService\Data\logging\[yyyymmdd].plf

The administration client allows viewing and filtering the query log.

The Debug logs

The index-server and the WebServices may be configured to write extensive debug-logs and error logs to a

subdirectory under [apppath]\website\data\debuglogs\ and

[apppath]\Forward.Indexserver\data\debuglogs\. These logs, that use Log4Net, contain a large number of

information that can assist pinpointing problems in the indexing process as well as the search process. This

logging is per default disabled, but can be enabled by creating the mentioned above, and setting the error-

level to “DEBUG”. See the appendix for more on configuring the debug logging.

| 30

Forward IT ApS – www.forwardsearch.dk – http://portal.forwardsearch.dk

Appendix

Productivity tools in the installation package

When unzipping the Forward Search package, the main modules are unzipped to three sub-folders of the

installation root. Two other folders are also created, containing various additions and productivity tools.

These are described in brief below.

PPS

The PPS subfolder contains the binaries and configuration files for the Forward Search Post processing

services, used for altering and enhancing the index after re-indexing. For more on the post processor,

please refer to a separate document.

Tools

The Tools folder contains three sub directories: the “Finalizer”, the “XSLT Helper” and the “Tester”. They are

described below.

• The Finalizer is a separate Visual Studio C# project containing the basic “Document Finalizer” code

that can be used to create a modified version of the document finalizer assembly, and through this

modify the prepared documents before they are written to the index.

• The XSLT helper is an extension assembly to be used when rendering search results using XSLT

transformation. It contains the logic needed to query the Forward Search WebService and to iterate

and render the result.

• The Tester is an executable windows application that allows you to test the Forward search

WebService and make queries against a selected index. It is therefore useful both for testing the

configuration of the WebService and for testing the actual contents of an index.

A sample custom thesaurus

The custom thesaurus seen below matches the one described in the section about the custom thesaurus,

with all entries present.

<?xml version="1.0" standalone="yes"?>
<Thesaurus>
 <xs:schema id="Thesaurus" xmlns="" xmlns:xs="http ://www.w3.org/2001/XMLSchema" xmlns:msdata="urn:sch emas-
microsoft-com:xml-msdata">
 <xs:element name="Thesaurus" msdata:IsDataSet=" true" msdata:UseCurrentLocale="true">
 <xs:complexType>
 <xs:choice minOccurs="0" maxOccurs="unbound ed">
 <xs:element name="Parent">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="id" msdata:AutoIn crement="true" type="xs:int" />
 <xs:element name="word" type="xs:st ring" minOccurs="0" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="Child">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="id" type="xs:int" />
 <xs:element name="word" type="xs:st ring" minOccurs="0" />
 </xs:sequence>

| 31

Forward IT ApS – www.forwardsearch.dk – http://portal.forwardsearch.dk

 </xs:complexType>
 </xs:element>
 </xs:choice>
 </xs:complexType>
 <xs:unique name="Constraint1">
 <xs:selector xpath=".//Parent" />
 <xs:field xpath="id" />
 </xs:unique>
 <xs:keyref name="ParentToChild" refer="Constr aint1">
 <xs:selector xpath=".//Child" />
 <xs:field xpath="id" />
 </xs:keyref>
 </xs:element>
 </xs:schema>
 <Parent>
 <id>0</id>
 <word>bike</word>
 </Parent>
 <Parent>
 <id>1</id>
 <word>ak47</word>
 </Parent>
 <Parent>
 <id>2</id>
 <word>automobile</word>
 </Parent>
 <Parent>
 <id>3</id>
 <word>videos</word>
 </Parent>
 <Parent>
 <id>4</id>
 <word>video</word>
 </Parent>
 <Parent>
 <id>5</id>
 <word>car</word>
 </Parent>
 <Parent>
 <id>6</id>
 <word>ak/47</word>
 </Parent>
 <Parent>
 <id>7</id>
 <word>ak 47</word>
 </Parent>
 <Child>
 <id>0</id>
 <word>bicycle</word>
 </Child>
 <Child>
 <id>1</id>
 <word>ak-47</word>
 </Child>
 <Child>
 <id>2</id>
 <word>car</word>
 </Child>
 <Child>
 <id>3</id>
 <word>video</word>
 </Child>
 <Child>
 <id>4</id>
 <word>videos</word>
 </Child>
 <Child>
 <id>5</id>
 <word>ford</word>
 </Child>
 <Child>
 <id>5</id>
 <word>volvo</word>
 </Child>
 <Child>
 <id>6</id>
 <word>ak-47</word>
 </Child>
 <Child>
 <id>7</id>
 <word>ak-47</word>
 </Child>
</Thesaurus>

| 32

Forward IT ApS – www.forwardsearch.dk – http://portal.forwardsearch.dk

Using and configuring the debug logger

The Forward Search operates a logger utilizing the renowned Apache Log4net logging system.

At install time, these components are installed as part of the admin client:

log4net.dll The latest log4net.dll.

log4net.config The configuration file for the logging system.*

Enable debug logging

At install time, the debug logging is disabled. In the configuration, it is possible to turn on the debug logging,

by changing the line <level value=”INFO” /> in the <root> section into <level value=”DEBUG” />, and thus

allowing DEBUG level messages to be sent to the debug log file. The <root> section will then look like this:

 <root>
 <level value="DEBUG" />
 <!-- appender-ref ref="SmtpAppender" -->
 <appender-ref ref="RollingLogFileAppender" />
 <appender-ref ref="RollingErrorFileAppender" />
 </root>

For more information about how to configure and use log4net used in the Forward Search Admin client,

please refer to the Apache Log4Net documentation here:

http://logging.apache.org/log4net/index.html

| 33

Forward IT ApS – www.forwardsearch.dk – http://portal.forwardsearch.dk

A sample search query

Below you will find a snipped of C# code, that implements a search call by first constructing a query with

geo-search, range and a nested “OR” query, and then calls the WebService with it. All the search

parameters are “hardcoded” except the index name, which obviously is not what is normally done.

In the search call, we ask for the first 100 hits, and we want the result sorted by the geographical distance

(GDST). For each hit returned, we ask for the title and text, as well as the color, price and distance to be

included.

private DataSet Search(string index)

{
 Query mainquery = new Query(Operator.AND);

 // Add the geo-term - with a fixed center and distance

 GeoTerm geoterm = new GeoTerm();

 geoterm.Latitude = "55.7904";
 geoterm.Longitude = "6.4370";

 DistanceUnits u = DistanceUnits.Meter;
 geoterm.MaxDistance = 2000;

 mainquery.AddFieldQuery(geoterm);

 // Add a subquery with 3 OR'ed values
 Query subquery = new Query();

 subquery.OperatorBetweenTerms = Operator.OR;

 Term tA = new Term("COLOR", "YELLOW");
 Term tB = new Term("COLOR", "ORANGE");

 Term tC = new Term("COLOR", "BEIGE");
 subquery.AddFieldQuery(tA);

 subquery.AddFieldQuery(tB);

 subquery.AddFieldQuery(tC);

 mainquery.AddFieldQuery(subquery);

 // Add a range query for prices
 Term range = new Term("PRICE", 2000.0, 5000.0);

 range.FieldType = FieldType.Range;

 mainquery.AddFieldQuery(range);

 // Create the webservice proxy and call it. Return the dataset if success.
 ForwardSearchWebService ws = new ForwardSearchWebService();

 try

 {

 DataSet dataset = ws.Search(index, "EveryOne", string.Empty, mainquery.ToXml(), "", 1, 100,

 "TITL,TEXT@A,COLOR,GDST,PRICE", "GDST", false, "");

 if (dataset != null && dataset.Tables.Count > 0)
 {

 return dataset;

 }

 }

 catch (Exception e)
 {
 errormessages.Text = "Could not call Search on webservice. Failed with error: " + e.Message;

 }

 return null;

}

| 34

Forward IT ApS – www.forwardsearch.dk – http://portal.forwardsearch.dk

This will generate an xml query like this:
<Root>

 <OperatorBetweenTerms>AND</OperatorBetweenTerms>

 <Terms>

 <GeoTerm Latitude="55.7904" Longitude="6.4370" MaxDistance="2000" MinHits="0"

 DistanceUnit="Meter" FactorBoost="100" NegativeSignLetters="WS" />

 <SubQuery>

 <OperatorBetweenTerms>OR</OperatorBetweenTerms>

 <Terms>

<Term FieldName="COLOR" FieldOperator="AND" SearchExpand="None"

FieldValue="YELLOW" FieldType="Text" FactorFuzzy="5" FactorProximity="1"

FactorBoost="100" />

<Term FieldName="COLOR" FieldOperator="AND" SearchExpand="None"

FieldValue="ORANGE" FieldType="Text" FactorFuzzy="5" FactorProximity="1"

FactorBoost="100" />

 <Term FieldName="COLOR" FieldOperator="AND" SearchExpand="None" FieldValue="BEIGE"

 FieldType="Text" FactorFuzzy="5" FactorProximity="1" FactorBoost="100" />

 </Terms>

 </SubQuery>

 <Term FieldName="PRICE" FieldOperator="AND" StartRange="2000" EndRange="5000"
 SearchExpand="None" FieldType="Range" FactorFuzzy="5" FactorProximity="1"

 FactorBoost="100" />

 </Terms>

</Root>

| 35

Forward IT ApS – www.forwardsearch.dk – http://portal.forwardsearch.dk

Subpage items

Tagging content with sub item comments make the crawler index each block as separate documents and

with a common header. The Url field will refer to the full of the page with the itemid added as bookmark.

<html>

 <head>

 <title>Common header</title>

 </head>

 <body>

 <!--SubItemBegin {EDE96BE5-6716-4ABA-8D78-8417B37EF527}-->

 <div>

 Item 1

 </div>

 <!--SubItemEnd-->

 <!--SubItemBegin {EDE96BE5-6716-4ABA-8D78-8417B37EF528}-->

 <div>

 Item 2

 </div>

 <!--SubItemEnd-->

 <!--SubItemBegin {EDE96BE5-6716-4ABA-8D78-8417B37EF529}-->

 <div>

 Item 3

 </div>

 <!--SubItemEnd-->

 <!--SubItemBegin {EDE96BE5-6716-4ABA-8D78-8417B37EF530}-->

 <div>

 Item 4

 </div>

 <!--SubItemEnd-->

 </body>

<html>

| 36

Forward IT ApS – www.forwardsearch.dk – http://portal.forwardsearch.dk

Troubleshooting
Why does it return a license error, when I'm using the WebService?

• Is it at standard license, with limited frontend webserver access?

My search won’t work on certain navigation

• Is the selected page set? (start and end cursors for which part of the query to return)

Why do my documents show up with strange titles?

• How is your metadata controlled? Dublin core title tag? Or do the binary documents contain any

document properties?

 Why won’t my crawler run again?

• Look in the log for “|E|Storage table lock: doc” it is a locking mechanism that prevents the crawler

from updating the index inconsistent. If the process previous was interrupted (terminated) it might

need attention (if the interrupted step was data processing, a reindex might be necessary)

Why does my title get cut off?

• It could be a matter of encoding if the title contains apostrophes “somebody’s car” the correct

rendering would be “somebody's car”

How do I combine thesaurus hits with expanded search?

I did search on keywords this way:

Term keywordsMatch = new Term ("ALL", keywords, TermOperator.AND, ExpandSearch.TruncateRight);

When I change the ExpandSearch to “None”, the custom thesaurus works.

Is there any possibility to have the benefit of the thesaurus together with the benefit of “truncate right”?

• Sure just add both terms, with and without truncation

How do I control my content?

• Beside simple crawler based indexing.

• You might consider:

- The Document.Finalizer a plugin for the indexing pipeline right before documents are

written into the index.

- Injection of content into an index is possible through WebService api

Is it safe to delete files from dump?

• Yes, if the indexing process is idle.

Why is my index not updated?

• Is the service running? (write to application event log once every hour)

• Is the schedule set? (sch.xml in ”data” folder or windows schedule task)

• Is the storage tables locked? (normally ”forwarddata\storage\...*.lck”)

