
IBM Informix
Guide to SQL
Tutorial
IBM Informix 4GL, Version 4.1
IBM Informix SQL, Version 4.1
IBM Informix ESQL/C, Version 5.0
IBM Informix ESQL/COBOL, Version 5.0
IBM Informix SE, Version 5.0
IBM Informix OnLine, Version 5.2
IBM Informix NET, Version 5.0
IBM Informix STAR, Version 5.0
November 2002
Part No. 000-9121

ii IBM Informix Guide to
This document contains proprietary information of IBM. It is provided under a license agreement and is
protected by copyright law. The information contained in this publication does not include any product
warranties, and any statements provided in this manual should not be interpreted as such.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information
in any way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1996, 2002. All rights reserved.

US Government User Restricted Rights—Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

Note:
Before using this information and the product it supports, read the information in the
appendix entitled “Notices.”
 SQL: Tutorial

Table of
Contents

Table of Contents

Introduction
In This Introduction 3
About this Manual 3
Organization of this Manual 4
IBM Informix Products That Use SQL 5
Products Covered in This Manual 5
The Demonstration Database 6

Creating the Demonstration Database on
IBM Informix OnLine 7

Creating the Demonstration Database on
IBM Informix SE 8

New Features in IBM Informix Server Products,
Version 5.x 9

Document Conventions 10
Typographical Conventions 11
Syntax Conventions 11
Example Code Conventions 16

Additional Documentation 17
Online Manuals 17
Error Message Files 18
Documentation Notes, Release Notes, Machine

Notes 21
Compliance with Industry Standards 21
IBM Welcomes Your Comments 22
Bookname
August 23, 2002 11:50 am

Chapter 1 Database Fundamentals
Chapter Overview 1-3
Databases: What and Why? 1-3

The Data Model 1-3
Concurrent Use 1-9
Centralized Management 1-11

Important Database Terms 1-12
The Relational Model 1-12

Structured Query Language 1-15
Standard SQL 1-16
Informix SQL and ANSI SQL 1-16
ANSI-Compliant Databases 1-17

The Database Software 1-17
The Database Server 1-17
The Applications 1-18
Interactive SQL 1-18
Reports and Forms 1-18
General Programming 1-19
Applications and Database Servers 1-19

Summary 1-20

Chapter 2 Simple SELECT Statements
Chapter Overview 2-3
Introducing the SELECT Statement 2-3

Some Basic Concepts 2-4
What This Chapter Contains 2-11

Single-Table SELECT Statements 2-12
Selecting All Columns and Rows 2-12
Selecting Specific Columns 2-19
Using the WHERE Clause 2-26
Creating a Comparison Condition 2-27
Expressions and Derived Values 2-41
Using Functions in SELECT Statements 2-47

Multiple-Table SELECT Statements 2-60
Creating a Cartesian Product 2-60
Creating a Join 2-62
Some Query Shortcuts 2-70

Summary 2-74
iv Table of Contents

Bookname
August 23, 2002 11:50 am

Chapter 3 Advanced SELECT Statements
Chapter Overview 3-3
Using the GROUP BY and HAVING Clauses 3-4

Using the GROUP BY Clause 3-4
Using the HAVING Clause 3-8

Creating Advanced Joins 3-10
Self-Joins 3-11
Outer Joins 3-19

Subqueries in SELECT Statements 3-29
Using ALL 3-30
Using ANY 3-31
Single-Valued Subqueries 3-32
Correlated Subqueries 3-33
Using EXISTS 3-34

Set Operations 3-37
Union 3-37
Intersection 3-45
Difference 3-47

 Summary 3-48

Chapter 4 Optimizing Your Queries
Chapter Overview 4-3
Optimizing Techniques 4-4

Verifying the Problem 4-4
Considering the Total System 4-5
Understanding the Application 4-5
Measuring the Application 4-6
Finding the Guilty Functions 4-7
Keeping an Open Mind 4-7

The Query Optimizer 4-8
The Importance of Table Order 4-8
How the Optimizer Works 4-14
Reading the Plan 4-19

Time Costs of a Query 4-20
Activities in Memory 4-20
Disk-Access Management 4-22
The Cost of Reading a Row 4-23
The Cost of Sequential Access 4-24
The Cost of Nonsequential Access 4-25
The Cost of Rowid Access 4-25
The Cost of Indexed Access 4-25
The Cost of Small Tables 4-26
The Cost of Network Access 4-26
Table of Contents v

Bookname
August 23, 2002 11:50 am

Making Queries Faster 4-29
Preparing a Test Environment 4-29
Studying the Data Model 4-30
Studying the Query Plan 4-30
Rethinking the Query 4-31
Using a Temporary Table to Speed Queries 4-36

Summary 4-41

Chapter 5 Statements That Modify Data
Chapter Overview 5-3
Statements That Modify Data 5-3

Deleting Rows 5-4
Deleting a Known Number of Rows 5-4
Inserting Rows 5-6
Updating Rows 5-11

Database Privileges 5-15
Displaying Table Privileges 5-16

Data Integrity 5-17
Entity Integrity 5-18
Semantic Integrity 5-19
Referential Integrity 5-19

Interrupted Modifications 5-21
The Transaction 5-22
The Transaction Log 5-22
Specifying Transactions 5-22

Archives and Logs 5-23
Archiving Simple Databases (IBM Informix SE) 5-24
Archiving IBM Informix OnLine 5-25

Concurrency and Locks 5-25
Summary 5-26

Chapter 6 SQL in Programs
Chapter Overview 6-3
SQL in Programs 6-4

Static Embedding 6-5
Dynamic Statements 6-5
Program Variables and Host Variables 6-5

Calling the Database Server 6-7
The SQL Communications Area 6-7
The SQLCODE Field 6-10
The SQLERRD Array 6-11
The SQLAWARN Array 6-11
vi Table of Contents

Bookname
August 23, 2002 11:50 am

Retrieving Single Rows 6-11
Data Type Conversion 6-13
Dealing with Null Data 6-14
Dealing with Errors 6-15

Retrieving Multiple Rows 6-17
Declaring a Cursor 6-18
Opening a Cursor 6-18
Fetching Rows 6-19
Cursor Input Modes 6-20
The Active Set of a Cursor 6-21
Using a Cursor: A Parts Explosion 6-24

 Dynamic SQL 6-26
Preparing a Statement 6-27
Executing Prepared SQL 6-29
Dynamic Host Variables 6-31
Freeing Prepared Statements 6-31
Quick Execution 6-32

Embedding Data Definition 6-32
Embedding Grant and Revoke Privileges 6-32

Summary 6-35

Chapter 7 Programs That Modify Data
Chapter Overview 7-3
Using DELETE 7-3

Direct Deletions 7-4
Deleting with a Cursor 7-7

Using INSERT 7-8
Using an Insert Cursor 7-8
Rows of Constants 7-11
An Insert Example 7-12

Using UPDATE 7-14
Using an Update Cursor 7-15
Cleaning up a Table 7-16

Concurrency and Locking 7-17
Concurrency and Performance 7-17
Locking and Integrity 7-18
Locking and Performance 7-18
Concurrency Issues 7-18
How Locks Work 7-20
Setting the Isolation Level 7-24
Setting the Lock Mode 7-27
Simple Concurrency 7-29
Locking with Other Database Servers 7-30
Table of Contents vii

Bookname
August 23, 2002 11:50 am

Hold Cursors 7-32
Summary 7-33

Chapter 8 Building a Data Model
Chapter Overview 8-3
Why Build a Data Model 8-3

Extended Relational Analysis 8-3
Basic Ideas 8-6

Tables, Rows, and Columns 8-6
Primary Keys 8-7
Candidate Keys 8-7
Foreign Keys (Join Columns) 8-8

Step 1: Name the Entities 8-8
Entity Keys 8-9
Entity Tables 8-11
The Address-Book Example 8-11

 Step 2: Define the Relationships 8-14
Discover the Relationships 8-14
Add Relationships to Tables 8-19

Step 3: List the Attributes 8-22
Select Attributes 8-22
Select Attribute Tables 8-22

Summary 8-24

Chapter 9 Implementing the Model
Chapter Overview 9-3
Defining the Domains 9-3

Data Types 9-4
Default Values 9-20
Check Constraints 9-20
Specifying Domains 9-21

Creating the Database 9-23
Using CREATE DATABASE 9-23
Using CREATE TABLE 9-26
Using Command Scripts 9-28
Populating the Tables 9-29

Summary 9-30
viii Table of Contents

Bookname
August 23, 2002 11:50 am

Chapter 10 Tuning the Model
Chapter Overview 10-3
IBM Informix OnLine Disk Storage 10-4

Chunks and Pages 10-4
Dbspaces and Blobspaces 10-5
Disk Mirroring 10-5
Databases 10-6
Tables and Spaces 10-6
Tblspaces 10-8
Extents 10-8
Defragmenting Tables 10-11

Calculating Table Sizes 10-13
Estimating Fixed-Length Rows 10-13
Estimating Variable-Length Rows 10-15
Estimating Index Pages 10-16
Estimating Blobpages 10-18
Locating Blob Data 10-19

Managing Indexes 10-20
Space Costs of Indexes 10-20
Time Costs of Indexes 10-21
Choosing Indexes 10-22
Duplicate Keys Slow Index Modifications 10-23
Dropping Indexes 10-24
Clustered Indexes 10-25

Denormalizing 10-27
Shorter Rows for Faster Queries 10-27
Expelling Long Strings 10-27
Splitting Wide Tables 10-29
Splitting Tall Tables 10-30
Redundant and Derived Data 10-31

Maximizing Concurrency 10-33
Easing Contention 10-33
Rescheduling Modifications 10-33
Isolating and Dispersing Updates 10-35

Summary 10-36

Chapter 11 Security, Stored Procedures, and Views
Chapter Overview 11-3
Controlling Access to Databases 11-3

Securing Database Files 11-4
Securing Confidential Data 11-5
Table of Contents ix

Bookname
August 23, 2002 11:50 am

Granting Privileges 11-5
Database-Level Privileges 11-6
Ownership Rights 11-7
Table-Level Privileges 11-8
Procedure-Level Privileges 11-13
Automating Privileges 11-13

Using Stored Procedures 11-16
Creating and Executing Stored Procedures 11-16
Restricting Reads of Data 11-18
Restricting Changes to Data 11-19
Monitoring Changes to Data 11-19
Restricting Object Creation 11-20

Using Views 11-21
Creating Views 11-22
Modifying Through a View 11-25

Privileges and Views 11-29
Privileges When Creating a View 11-29
Privileges When Using a View 11-30

Summary 11-32

Chapter 12 Networks and Distribution
Chapter Overview 12-3
Network Configurations 12-3

The Local Area Network 12-4
Networking the Database Server 12-5
Network Transparency 12-7

Connecting to Data 12-7
Connecting in the LAN 12-7
Connecting Through IBM Informix NET 12-8

Distributed Data 12-11
Naming External Tables 12-12
Using Synonyms with External Tables 12-13
Synonym Chains 12-14
Modifying External Tables 12-15

Summary 12-15

Appendix A Notices

Index
x Table of Contents

Bookname
August 23, 2002 11:50 am

Introduction
Introduction

In This Introduction 3

About this Manual 3

Organization of this Manual 4

IBM Informix Products That Use SQL 5

Products Covered in This Manual 5

The Demonstration Database 6
Creating the Demonstration Database on

IBM Informix OnLine 7
Creating the Demonstration Database on

IBM Informix SE 8

New Features in IBM Informix Server Products,
Version 5.x 9

Document Conventions 10
Typographical Conventions 11
Syntax Conventions 11
Example Code Conventions 16

Additional Documentation 17
Online Manuals 17
Error Message Files 18

The finderr Script 19
The rofferr Script 19

Documentation Notes, Release Notes,
Machine Notes 21

Compliance with Industry Standards 21

IBM Welcomes Your Comments 22

2 Introduction

In This Introduction
This introduction provides an overview of the information in this manual
and describes the conventions it uses.

About this Manual
This book is a tutorial on the Structured Query Language (SQL) as it is imple-
mented by IBM Informix products. IBM Informix Guide to SQL: Tutorial and its
companion volume IBM Informix Guide to SQL: Reference, tell you how to cre-
ate, manage, and use relational databases with IBM Informix software tools.

IBM Informix Guide to SQL: Tutorial was written for people who already know
how to use computers. To use this book effectively, you regularly should use
a computer—either a desktop workstation or a terminal connected to a larger
machine—in the course of your daily work. You need to know how to start
programs, create and copy files, and execute other common commands of
your computer operating system.

You also need to have the following IBM Informix software:

• An IBM Informix OnLine database server or an IBM Informix SE database
server

The database server either must be installed in your machine or in
another machine to which your machine is connected over a network.

• An IBM Informix application development tool, such as IBM Informix
SQL, IBM Informix 4GL, or DB-Access

The application development tool enables you to compose queries, send
them to the database server, and view the results that the database server
returns. You can use DB-Access to try out all the SQL statements described in
this guide.
Introduction 3

Organization of this Manual
Organization of this Manual
IBM Informix Guide to SQL: Tutorial includes the following chapters:

• The Introduction tells how SQL fits into the IBM Informix family of prod-
ucts and books, explains how to use this book, introduces the
demonstration database from which the product examples are drawn,
describes the IBM Informix Messages and Corrections product, and lists
the new features for Version 5.x of IBM Informix server products.

• Chapter 1, “Database Fundamentals,” contains an overview of database
terminology and defines some important terms and ideas that are used
throughout the book.

• Chapter 2, “Simple SELECT Statements,” begins the exploration of mak-
ing simple queries to fetch and display database data.

• Chapter 3, “Advanced SELECT Statements,” discusses making advanced
queries to fetch and display database data.

• Chapter 4, “Optimizing Your Queries,” defines techniques to refine and
optimize your queries, introduces and explains the query Optimizer, and
discusses the time costs of various operations.

• Chapter 5, “Statements That Modify Data,” describes the statements you
use to insert, delete, or update data, and introduces the concepts of data-
base privileges, maintaining data integrity, and archiving data.

• Chapter 6, “SQL in Programs,” discusses calling the database server,
retrieving rows, and embedding data.

• Chapter 7, “Programs That Modify Data,” provides an in-depth look at
INSERT, DELETE, and UPDATE statements, as well as a complete discus-
sion on concurrency and locking data.

• Chapter 8, “Building a Data Model,” describes the components of a data
model and provides a step-by-step procedure for building one.

• Chapter 9, “Implementing the Model,” tells you how to define the data-
base domains and create the database.

• Chapter 10, “Tuning the Model,” discusses many of the details that help
you set up an efficient database model, including disk storage, calculating
table sizes, managing indexes, and maximizing concurrency.

• Chapter 11, “Security and Views,” details how you can ensure data secu-
rity by granting privileges and using stored procedures and views.

• Chapter 12, “Networks and Distribution,” discusses networks and how
you can best set up a database to work over one.

• A Notices appendix describes IBM products, features, and services.
4 Introduction

IBM Informix Products That Use SQL
IBM Informix Products That Use SQL
IBM produces many application development tools and CASE tools that use
SQL. Application development tools currently available include products
such as IBM Informix SQL, IBM Informix 4GL and the IBM Informix 4GL Inter-
active Debugger, and embedded-language products, such as IBM Informix
ESQL/C.

IBM Informix UNIX products work with either an IBM Informix OnLine data-
base server or an IBM Informix SE database server. If you are running appli-
cations on a network, you can use an IBM Informix client/server product
such as IBM Informix NET or IBM Informix STAR. IBM Informix NET is the
communications facility for multiple IBM Informix SE database servers.
IBM Informix STAR allows distributed database access to multiple
IBM Informix OnLine database servers.

Products Covered in This Manual
The information presented in this manual is valid for the following products
and versions, and indicates differences in their use of SQL where appropriate:

• 4GL (C Compiler Version and Rapid Development System Version)
Version 4.1

• IBM Informix SQL Version 4.1

• IBM Informix ESQL/C Version 5.0

• IBM Informix ESQL/COBOL Version 5.0

• IBM Informix SE Version 5.0

• IBM Informix NET Version 5.0

• IBM Informix OnLine Version 5.2

• IBM Informix STAR Version 5.0

The IBM Informix TP/XA User Manual discusses the special considerations you
should be aware of when using SQL statements with IBM Informix TP/XA.
Introduction 5

The Demonstration Database
The Demonstration Database
The DB-Access utility, which is provided with your IBM Informix database
server products, includes a demonstration database called stores5 that con-
tains information about a fictitious wholesale sporting-goods distributor. The
sample command files that make up a demonstration application are
included as well.

Most of the examples in this manual are based on the stores5 demonstration
database. The stores5 database is described in detail and its contents are
listed in the IBM Informix Guide to SQL: Reference.

The script that you use to install the demonstration database is called
dbaccessdemo5 and is located in the $INFORMIXDIR/bin directory. The
database name that you supply is the name given to the demonstration data-
base. If you do not supply a database name, the name defaults to stores5. Fol-
low these rules for naming your database:

• Names for databases can be up to 10 characters long.

• The first character of a name must be a letter.

• You can use letters, characters, and underscores (_) for the rest of the
name.

• DB-Access makes no distinction between uppercase and lowercase letters.

• The database name should be unique.

When you run dbaccessdemo5, you are, as the creator of the database, the
owner and Database Administrator (DBA) of that database.

If you installed your IBM Informix database server product according to the
installation instructions, the files that make up the demonstration database
are protected so that you cannot make any changes to the original database.

You can run the dbaccessdemo5 script again whenever you want to work
with a fresh demonstration database. The script prompts you when the cre-
ation of the database is complete, and asks if you would like to copy the sam-
ple command files to the current directory. Answer “N” to the prompt if you
have made changes to the sample files and do not want them replaced with
the original versions. Answer “Y” to the prompt if you want to copy over the
sample command files.
6 Introduction

The Demonstration Database
Creating the Demonstration Database on IBM Informix
OnLine

Use the following steps to create and populate the demonstration database in
the IBM Informix OnLine environment:

1. Set the INFORMIXDIR environment so that it contains the name of the
directory in which your IBM Informix products are installed. Set SQLEXEC
to $INFORMIXDIR/lib/sqlturbo. (For a full description of environment
variables, see the IBM Informix Guide to SQL: Reference.)

2. Create a new directory for the SQL command files. Create the directory by
entering

mkdir dirname

3. Make the new directory the current directory by entering

cd dirname

4. Create the demonstration database and copy over the sample command
files by entering

dbaccessdemo5 dbname

The data for the database is put into the root dbspace.

To give someone else the SQL privileges to access the data, use the GRANT
and REVOKE statements. The GRANT and REVOKE statements are described
in the IBM Informix Guide to SQL: Reference.

To use the command files that have been copied to your directory, you must
have UNIX read and execute permissions for each directory in the pathname
of the directory from which you ran the dbaccessdemo5 script. To give some-
one else the permissions to access the command files in your directory, use
the UNIX chmod command.
Introduction 7

The Demonstration Database
Creating the Demonstration Database on IBM Informix SE
Use the following steps to create and populate the demonstration database in
the IBM Informix SE environment:

1. Set the INFORMIXDIR environment so that it contains the name of the
directory in which your IBM Informix products are installed. Set SQLEXEC
to $INFORMIXDIR/lib/sqlexec. (For a full description of environment
variables, see the IBM Informix Guide to SQL: Reference.)

2. Create a new directory for the demonstration database. This directory
will contain the example command files included with the demonstration
database. Create the directory by entering

mkdir dirname

3. Make the new directory the current directory by entering

cd dirname

4. Create the demonstration database and copy over the sample command
files by entering

dbaccessdemo5 dbname

When you run the dbaccessdemo5 script, it creates a subdirectory called
dbname.dbs in your current directory and places the database files associated
with stores5 there. You will see both data and index files in the dbname.dbs
directory.

To use the database and the command files that have been copied to your
directory, you must have UNIX read and execute permissions for each direc-
tory in the pathname of the directory from which you ran the dbaccessdemo5
script. To give someone else the permissions to access the command files in
your directory, use the UNIX chmod command. Check with your system
administrator for more information about operating system file and directory
permissions. UNIX permissions are discussed in the IBM Informix SE Adminis-
trator’s Guide.

To give someone else access to the database that you created, grant them the
appropriate privileges using the GRANT statement in DB-Access. To remove
privileges, use the REVOKE statement. The GRANT and REVOKE statements
are described in the IBM Informix Guide to SQL: Reference.
8 Introduction

New Features in IBM Informix Server Products, Version 5.x
New Features in IBM Informix Server Products,
Version 5.x

This section highlights the major new features implemented in Version 5.x of
IBM Informix server products:

• Enhanced Connectivity (IBM Informix OnLine only)

The version 5.2 IBM Informix OnLine database server enables you to con-
nect to Version 7.x client application tools when both server and client are
installed in the same machine.

• Enhanced support for chunk offsets (IBM Informix OnLine only)

The version 5.2 IBM Informix OnLine database server supports chunk off-
set values up to 2 Terabytes.

• Referential and Entity Integrity

New data integrity constraints allow you to specify a column or columns
as representing a primary or foreign key of a table upon creation, and to
establish dependencies between tables. Once specified, a parent-child
relationship between two tables is enforced by the database server. Other
constraints allow you to specify a default value for a column, or to specify
a condition for a column that an inserted value must meet.

• Stored Procedures

A stored procedure is a function written by a user using a combination of
SQL statements and Stored Procedure Language (SPL). Once created, a
procedure is stored as an object in the database in a compiled, optimized
form, and is available to other users with the appropriate privileges. In a
client/server environment, the use of stored procedures can significantly
reduce network traffic.

• Dynamic SQL

Support is provided for the X/Open implementation of dynamic SQL
using a system descriptor area. This support involves the new SQL state-
ments ALLOCATE DESCRIPTOR, DEALLOCATE DESCRIPTOR, GET
DESCRIPTOR, and SET DESCRIPTOR, as well as changes in the syntax of
existing dynamic management statements.

• Optimizer Enhancement

You can use the new SET OPTIMIZATION statement to instruct the data-
base server to select a high or low level of query optimization. The default
level of HIGH causes the database server to examine and select the best of
all possible optimization strategies. Since this level of optimization may
result in a longer-than-desired optimization time for some queries, you
have the option of setting an optimization level of LOW.
Introduction 9

Document Conventions
• Relay Module (IBM Informix NET only)

The Relay Module component of IBM Informix NET resides on
the client machine in a distributed data processing environment and
relays messages between the application development tool and an
IBM Informix OnLine or IBM Informix SE database server through a net-
work interface. The Relay Module allows version 5.0 application develop-
ment tools to connect to a remote database server without the need to run
an IBM Informix database server process on the client.

• Two-Phase Commit (IBM Informix STAR only)

The new two-phase commit protocol allows you to manipulate data in
multiple databases on multiple OnLine database servers within a single
transaction. It ensures that transactions that span more than one OnLine
database server are committed on an all-or-nothing basis.

• Support for Transaction Processing in the XA Environment
(IBM Informix TP/XA only)

IBM Informix TP/XA allows you to use the IBM Informix OnLine database
server as a Resource Manager in conformance with the X/Open
Preliminary Specification (April 1990), Distributed Transaction Processing: The
XA Interface. The IBM Informix TP/XA User Manual describes the changes in
the behavior of existing SQL statements that manage transactions in an
X/Open environment.

Document Conventions
This manual assumes that you are using IBM Informix OnLine as your data-
base server. Features and behavior specific to IBM Informix SE are noted
throughout the manual.
10 Introduction

Document Conventions
Typographical Conventions
IBM Informix product manuals use a standard set of conventions to introduce
new terms, illustrate screen displays, describe command syntax, and so forth.
The following typographical conventions are used throughout this manual:

When you are instructed to “enter” characters or to “execute” a command,
immediately press RETURN after the entry. When you are instructed to “type”
the text or to “press” other keys, no RETURN is required.

Syntax Conventions
Syntax diagrams describe the format of SQL statements or commands,
including alternative forms of a statement, required and optional parts of the
statement, and so forth. Syntax diagrams have their own conventions, which
are defined in detail and illustrated in this section. SQL statements are listed
in their entirety in the IBM Informix Guide to SQL: Reference, although some
statements may appear in other manuals.

Convention Meaning

KEYWORD All primary elements in a programming language statement
(keywords) appear in uppercase letters in a serif font.

italics
italics
italics

Within text, new terms and emphasized words appear in italics.
Within syntax and code examples, variable values that you are
to specify appear in italics.

boldface
boldface

Names of program entities (such as classes, events, and tables),
environment variables, file and pathnames, and interface
elements (such as icons, menu items, and buttons) appear in
boldface.

monospace
monospace

Information that the product displays and information that you
enter appear in a monospace typeface.

KEYSTROKE Keys that you are to press appear in uppercase letters in a sans
serif font.

♦ This symbol indicates the end of product- or platform-specific
information.

Indicates a unique identifier (primary key) for each table.
Introduction 11

Document Conventions
Each syntax diagram displays the sequences of required and optional ele-
ments that are valid in a statement. Briefly:

• All keywords are shown in uppercase letters for ease of identification,
even though you need not enter them that way.

• Words for which you must supply values are in italics.

A diagram begins at the upper left with a keyword. It ends at the upper right
with a vertical line. Between these points you can trace any path that does not
stop or back up. Each path describes a valid form of the statement.

Along a path, you may encounter the following elements::

Element Description

KEYWORD You must spell a word in uppercase letters exactly as
shown; however, you can use either uppercase or
lowercase letters when you enter it.

(.,;+*-/) Punctuation and mathematical notations are literal
symbols that you must enter exactly as shown.

" " Double quotes are literal symbols that you must enter as
shown. You can replace a pair of double quotes with a pair
of single quotes, if you prefer. You cannot mix double and
single quotes.

variable A word in italics represents a value that you must supply.
The nature of the value is explained immediately
following the diagram unless the variable appears in a box.
In that case, the page number of the detailed explanation
follows the variable name.

A reference in a box represents a subdiagram on the same
page or another page. Imagine that the subdiagram is
spliced into the main diagram at this point.

A reference to SQLR in another manual represents an SQL
statement or segment described in Chapter 7, “Syntax.”
Imagine that the statement or segment is spliced into the
main diagram at this point.

ADD Clause

Relational
Operator

see SQLR
12 Introduction

Document Conventions
A code in an icon is a signal warning you that this path is
valid only for some products or under certain conditions.
The codes indicate the products or conditions that support
the path. The following codes are used:

This path is valid only for IBM Informix SE.

This path is valid only for IBM Informix OnLine.

This path is valid only for IBM Informix STAR.

This path is valid only for IBM Informix NET.

This path is valid only for IBM Informix 4GL.

This path is valid only for IBM Informix SQL.

This path is valid for SQL statements in all the
following embedded-language products:
IBM Informix ESQL/C, or IBM Informix ESQL/
COBOL.

This path is valid only for IBM Informix ESQL/C.

This path is valid only for IBM Informix ESQL/
COBOL.

This path is valid only for DB-Access.

This path is valid only if you are using Informix
Stored Procedure Language (SPL).

This path is an Informix extension to ANSI-
standard SQL. If you initiate Informix extension
checking and include this syntax branch, you
receive a warning. If you have set the
DBANSIWARN environment variable, you
receive the warnings at run time. To receive the
warnings at compile time, compile with the -ansi
flag.

A shaded option is the default. Even if you do not
explicitly type the option, it will be in effect unless you
choose another option.

Element Description

I4GLI4GL

SESE

OLOL

STARSTAR

STARINET

I4GLI4GL

ISQLISQL

ESQLESQL

E/CE/C

E/CE/CO

E/CDB

STARSPL

++

ALL
Introduction 13

Document Conventions
Syntax enclosed in a pair of arrows indicates that this is a
subdiagram.

The vertical line is a terminator and indicates that the
statement is complete.

A branch below the main line indicates an optional path.

A loop indicates a path that can be repeated.

A gate () in an option indicates that you can only use
that option once, even though it is within a larger loop.

Element Description

NOT

IN

variable

,

column1 key

1

14 Introduction

Document Conventions
Figure 1 shows the elements of a syntax diagram for the CREATE DATABASE
statement.

Figure 1 Elements of a syntax diagram

To construct a statement using this diagram, start at the top left with the key-
words CREATE DATABASE. Then follow the diagram to the right, proceeding
through the options that you want. The diagram conveys the following
information:

1. You must type the words CREATE DATABASE.

2. You must supply a database name.

3. You can stop, taking the direct route to the terminator, or you can take one
or more of the optional paths.

4. If desired, you can designate a dbspace by typing the word IN and a
dbspace name.

SE Log Clause

CREATE DATABASE database name

IN dbspace

LOG IN "pathname"

MODE ANSI

BUFFERED

LOG

LOG MODE ANSI

OL Log Clause

WITH

WITH

Keywords Variables

Reference Boxes
Terminator

Subdiagrams

Punctuation
SE Log Clause

Signals

SE

OL OL Log Clause

OL
Introduction 15

Document Conventions
5. If desired, you can specify logging. Here, you are constrained by the data-
base server with which you are working.

• If you are using IBM Informix OnLine, go to the subdiagram named OL
Log Clause. Follow the subdiagram by typing the keyword WITH, then
choosing and typing either LOG, BUFFERED LOG, or LOG MODE ANSI.
Then, follow the arrow back to the main diagram.

• If you are using IBM Informix SE, go to the subdiagram named SE Log
Clause. Follow the subdiagram by typing the keywords WITH LOG IN,
typing a double quote, supplying a pathname, and closing the quotes.
You can then choose the MODE ANSI option below the line or continue
to follow the line across.

6. Once you are back at the main diagram, you come to the terminator. Your
CREATE DATABASE statement is complete.

Example Code Conventions
Examples of SQL code appear throughout this manual. Except where noted,
the code is not specific to any single IBM Informix application development
tool. If only SQL statements are listed, they are not delineated by semicolons.
To use this SQL code for a specific product, you must apply the syntax rules
for that product. For example, if you are using DB-Access or IBM Informix
SQL, you must delineate the statements with semicolons. If you are using an
embedded language, you must use EXEC SQL and a semicolon (or other
appropriate delimiters) at the start and end of each statement, respectively.

For example, you might see the following example code:

DATABASE stores
.
.
.
DELETE FROM customer

WHERE customer_num = 121
.
.
.
COMMIT WORK
CLOSE DATABASE

If you are using DB-Access or IBM Informix SQL, add semicolons at the end of
each statement. If you are using IBM Informix 4GL, use the code as it appears.
If you are using IBM Informix ESQL/C, add EXEC SQL or a dollar sign ($) at
16 Introduction

Additional Documentation
the beginning of each line and end each line with a semicolon. For detailed
directions on using SQL statements for a particular application development
tool, see the manual for your product.

Also note that dots in the example indicate that more code would be added
in a full application, but it is not necessary to show it to describe the concept
being discussed.

Additional Documentation
For additional information, refer to the following types of documentation:

• Online manuals

• Error message files

• Documentation notes, release notes, and machine notes

Online Manuals
A CD that contains your manuals in electronic format is provided with your
IBM Informix products. You can install the documentation or access it directly
from the CD. For information about how to install, read, and print online
manuals, see the installation insert that accompanies your CD. You can also
obtain the same online manuals at the IBM Informix Online Documentation
site at http://www-3.ibm.com/software/data/informix/pubs/library/.

You may want to refer to a number of related documents that complement
the IBM Informix Guide to SQL: Tutorial.

• A companion volume to the Tutorial, IBM Informix Guide to SQL: Reference,
provides full information on the structure and contents of the demonstra-
tion database that is provided with all IBM Informix application
development tools. It includes details of the system catalog, describes
UNIX environment variables that should be set, and defines column data
types supported by IBM Informix products. Further, it provides a detailed
description of all the SQL statements supported by IBM Informix products.
It also contains a glossary of useful terms.

• You, or whoever installs your IBM Informix products, should refer to the
UNIX Products Installation Guide for your particular release to ensure that
your IBM Informix product is properly set up before you begin to work
with it.

• If you are using your IBM Informix product across a network, you may
also want to refer to the appropriate IBM Informix NET and IBM Informix
STAR Installation and Configuration Guide.
Introduction 17

Additional Documentation
• Depending on the database server you are using, you or your system
administrator need either the IBM Informix OnLine Administrator’s Guide or
the IBM Informix SE Administrator’s Guide.

• When errors occur, you can look them up, by number, and find their cause
and solution in the IBM Informix Error Messages manual. If you prefer, you
can look up the error messages in the on-line message file described in the
section “Error Message Files” later in this Introduction.

Error Message Files
IBM Informix software products provide ASCII files that contain all of the
error messages and their corrective actions. For a detailed description of
these error messages, refer to the IBM Informix Error Messages manual in the
IBM Informix Online Documentation site at http://www-3.ibm.com/soft-
ware/data/informix/pubs/library/.

In addition, there are two ways in which you can access the error messages
directly from the ASCII Error Message File:

• Use the finderr script to display one or more error messages on the
terminal screen.

• Use the rofferr script to print one error message or a series of error
messages.

The scripts are in the $INFORMIXDIR/bin directory. The ASCII file has the
following path:

$INFORMIXDIR/msg/errmsg.txt

The error message numbers range from -1 through -33000. When you specify
these numbers for the finderr or rofferr scripts, you can omit the minus sign.
A few messages have positive numbers; these messages are used solely
within the application development tools. In the unlikely event that you
want to display them, you must precede the message number with a + sign.

The messages numbered -1 to -100 can be platform-dependent. If the message
text for a message in this range does not apply to your platform, check the
operating system documentation for the precise meaning of the message
number.
18 Introduction

Additional Documentation
The finderr Script

Use the finderr script to display one or more error messages, and their cor-
rective actions, on the terminal screen. The finderr script has the following
syntax:

msg_num is the number of the error message to display.

You can specify any number of error messages per finderr command. The
finderr command copies all the specified messages, and their corrective
actions, to standard output.

For example, to display the -359 error message, you can enter the following
command:

finderr -359

The following example demonstrates how to specify a list of error messages.
This example also pipes the output to the UNIX more command to control the
display. You can also redirect the output to another file so that you can save
or print the error messages:

finderr 233 107 113 134 143 144 154 | more

The rofferr Script

Use the rofferr script to format one error message, or a range of error mes-
sages, for printing. By default, rofferr displays output on the screen. You
need to send the output to nroff to interpret the formatting commands and
then to a printer, or to a file where the nroff output is stored until you are
ready to print. You can then print the file. For information on using nroff and
on printing files, see your UNIX documentation.

finderr

-

+

msg_num
Introduction 19

Additional Documentation
The rofferr script has the following syntax:

start_msg is the number of the first error message to format. This error
message number is required.

end_msg is the number of the last error message to format. This error
message number is optional. If you omit end_msg, only
start_msg is formatted.

The following example formats error message -359. It pipes the formatted
error message into nroff and sends the output of nroff to the default printer:

rofferr 359 | nroff -man | lpr

The following example formats and then prints all the error messages
between -1300 and -4999:

rofferr -1300 -4999 | nroff -man | lpr

-

+

start_msgrofferr

end_msg

+

-

20 Introduction

Compliance with Industry Standards
Documentation Notes, Release Notes, Machine Notes
In addition to the set of manuals, the following on-line files, located in the
$INFORMIXDIR/release directory, may supplement the information in
IBM Informix Guide to SQL: Tutorial:

Please examine these files because they contain vital information about appli-
cation and performance issues.

A number of IBM Informix products also provide on-line Help files that walk
you through each menu option. To invoke the Help feature, simply press
CTRL-W wherever you are in your IBM Informix product.

Compliance with Industry Standards
The American National Standards Institute (ANSI) has established a set of
industry standards for SQL. IBM Informix SQL-based products are fully com-
pliant with SQL-92 Entry Level (published as ANSI X3.135-1992), which is
identical to ISO 9075:1992. In addition, many features of Informix database
servers comply with the SQL-92 Intermediate and Full Level and X/Open
SQL CAE (common applications environment) standards.

Online File Purpose

SQLTDOC_5.txt The documentation notes file describes features that
are not covered in the manual or that were modified
since publication.

ENGREL_5.txt The release notes file describes feature differences
from earlier versions of IBM Informix products and
how these differences might affect current products.
This file also contains information about any known
problems and their workarounds.

ONLINE_5.txt The machine notes file describes any special actions
that you must take to configure and use IBM Informix
products on your computer. Machine notes are named
for the product described.
Introduction 21

IBM Welcomes Your Comments
IBM Welcomes Your Comments
To help us with future versions of our manuals, let us know about any cor-
rections or clarifications that you would find useful. Include the following
information:

• The name and version of your manual

• Any comments that you have about the manual

• Your name, address, and phone number

Send electronic mail to us at the following address:

docinf@us.ibm.com

This address is reserved for reporting errors and omissions in our documen-
tation. For immediate help with a technical problem, contact Customer Ser-
vices.
22 Introduction

Chapter
1

Database
Fundamentals
Chapter Overview 3

Databases: What and Why? 3
The Data Model 3

Storing Data 6
Querying Data 6
Modifying Data 8

Concurrent Use 9
Centralized Management 11

Group and Private Databases 11
Essential Databases 12

Important Database Terms 12
The Relational Model 12

Tables 12
Columns 13
Rows 13
Tables, Rows, and Columns 14
Operations on Tables 14

Structured Query Language 15
Standard SQL 16
Informix SQL and ANSI SQL 16
ANSI-Compliant Databases 17

The Database Software 17
The Database Server 17
The Applications 18
Interactive SQL 18
Reports and Forms 18

General Programming 19
Applications and Database Servers 19

Summary 20
1-2 Database Fundamentals

Chapter Overview
This chapter covers the fundamental concepts of databases and defines some
terms that are used throughout the book, with emphasis on the following
topics:

• What makes a database different from any collection of files?

• What terms are used to describe the main components of a database?

• What language is used to create, query, and modify a database?

• What are the main parts of the software that manages a database, and
how do these parts work with each other?

Databases: What and Why?
A database is a collection of information—but so is a simple computer file. What
makes a database so special? There must be reasons; otherwise people would
not spend so much money, effort, and computer time on databases. There are
two fundamental differences. First, a database comprises not only data but a
plan, or model of the data. Second, a database can be a common resource, used
concurrently by many people.

The Data Model
The principal difference between information collected in a database and
information in a file is in the way the data is organized. A file is organized
physically; certain items precede or follow other items. But the contents of a
database are organized according to a data model. A data model is a plan, or
map, that defines the units of data and specifies how each unit is related to
the others.

For example, a number can appear in either a file or a database. In a file, it is
simply a number that occurs at a certain point in the file. A number in a data-
base, however, has a role assigned to it by the data model. It may be a price
Database Fundamentals 1-3

Databases: What and Why?
that is associated with a product that was sold as one item of an order that was
placed by a customer. Each of these things—prices, products, items, orders,
and customers—are also roles specified by the data model. (See Figure 1-1.)

The data model is designed when the database is created; then units of data
are inserted according to the plan laid out in the model. In some books, the
term schema is used instead of data model.
1-4 Database Fundamentals

Databases: What and Why?
Figure 1-1 Illustration of a data model

1003
10/12/91

order

1012 06/18/91 1 case volleyballs 840.00
1013 06/22/91 1 each tennis racquet

1014 06/25/91 1 case footballs 960.00
1015 06/27/91 1 case baseball gloves 450.00

1010 06/17/91 1 case tennis balls 36.00

19.80

ORDERS

customer
Anthony Higgins

order
1001

01/20/91

item
tennis

racquet

order
1013

09/01/91

2
volleyball

nets

item
1 case
tennis
balls

item

1011
03/23/91

order

19.80

1011 06/18/91 5 each tennis racquet 99.00
Database Fundamentals 1-5

Databases: What and Why?
Storing Data

Another difference between a database and a file is that the organization of
the database is stored with the database.

A file may have a complex inner structure, but the definition of that structure
is not within the file; it is in the programs that create or use the file. For exam-
ple, a document file as stored by a word processing program may contain
very detailed structures describing the format of the document. However,
only the word processing program itself can decipher the contents of the file
because the structure is defined within the program, not within the file.

A data model, however, is contained in the database it describes. It travels
with the database, and is available to any program that uses the database. The
model defines not only the names of the data items, but their data types as
well, so a program can adapt itself to the database. For example, a program
can find out that, in the current database, a price item is a decimal number
with eight digits, two to the right of the decimal point. Then it can allocate
storage for a number of that type. How programs work with databases is the
subject of Chapters 6 and 7 in this manual.

Querying Data

Yet another difference between a database and a file is in the way you can
interrogate them. You can search a file sequentially, looking for particular val-
ues at particular physical locations in each record. That is, you might ask of a
file, “What records have numbers under 20 in the fifth field of each record?”
Figure 1-2 illustrates this type of search.
1-6 Database Fundamentals

Databases: What and Why?
Figure 1-2 Searching a file sequentially

In contrast, when you query a database you use the terms defined by its
model. To a database, you can pose questions such as, “What orders have been
placed for products made by the Shimara Corporation, by customers in New
Jersey, with ship dates in the second quarter?” Figure 1-3 illustrates this type
of query.

In other words, when you interrogate data stored in a file, you must state
your question in terms of the physical layout of the file. When you query a
database, you can ignore the arcane details of computer storage and state
your query in terms that reflect the real world—at least, to the extent that the
data model itself reflects the real world.

In this manual, Chapters 2 and 3 discuss the language you use for making
queries. Chapters 8 through 11 discuss designing an accurate, robust data
model for other people to query.

1015 06/27/91 1 case baseball gloves 450.00
1014 06/25/91 1 case footballs 960.00

1013 06/22/91 1 each tennis racquet19.80

1013 06/22/91 1 case tennis balls 36.00

1013 06/22/91 1 case tennis balls 48.00

1012 06/18/91 1 case volleyballs 840.00

1010 06/17/91 1 case tennis balls 36.00

ORDERS

1011 06/18/91 5 each tennis racquet 99.00
Database Fundamentals 1-7

Databases: What and Why?
Figure 1-3 Querying a database

Modifying Data

The model also makes it possible to modify the contents of the database with
less chance for error. You can query the database with commands such as
“Find every stock item with a manufacturer of Presta or Schraeder and increase
its price by 13%.” You state changes in terms that reflect the meaning of the
data. You do not have to waste time and effort thinking about details of fields
within records in a file, so the chances for error are less.

The statements you use to modify stored data are covered in Chapter 5 of this
manual.

RUN: Next Restart Exit
Display the next page of query results

---------new demo------------Press CTRL-W for Help--------

1019 Bob Shorter SHM swim cap 07/16/91

Cathy
O'Brian

customer

order
1016

06/29/91

order
1023

07/24/91

order
1019

07/16/91

Shimara
manufacturer New Jersey

state

Bob
Shorter

customer

stores5
1-8 Database Fundamentals

Databases: What and Why?
Concurrent Use
A database can be a common resource for many computer users. Multiple
users can query and modify a database simultaneously. The database server
(the program that manages the contents of all databases) ensures that the
queries and modifications are done in sequence and without conflict.

Having concurrent users on a database provides great advantages, but also
introduces new problems of security and privacy.

Some databases are private; individuals set them up for their own use. Other
databases contain confidential material that must be shared, but only among
a select group of persons. Still other databases provide public access.

IBM Informix database software provides the means to control database use.
(See Figure 1-4.) When you design a database, you can perform any of these
functions:

• Keep the database completely private.

• Open its entire contents to all users or to selected users.

• Restrict the selection of data that some users can view. (In fact, you can
reveal entirely different selections of data to different groups of users.)

• Allow specified users to view certain items but not modify them.

• Allow specified users to add new data but not modify old data.

• Allow specified users to modify all, or specified items of, existing data.

• Ensure that added or modified data conforms to the data model.

The facilities that make these and other things possible are discussed in
Chapter 11 of this manual.
Database Fundamentals 1-9

Databases: What and Why?
Figure 1-4 Sharing the database

��
��

�
�

TABLE B

TABLE A

TABLE C

Update TABLE C OnlyQuery TABLE A and
TABLE B only

Modify and Update
TABLES A and B only

View Column 3, TABLE B and
Columns 1 and 2, TABLE C only�����
��������������
�����
��������������
�����
��������������TABLE B,C
1-10 Database Fundamentals

Databases: What and Why?
Centralized Management
Databases that are used by many people are highly valuable and must be pro-
tected as important business assets. This creates two important problems:
archiving and maintenance. The IBM Informix OnLine database server allows
these tasks to be centralized.

Databases must be guarded against loss or damage. The hazards are many:
failures in software and hardware, and the risks of fire, flood, and other nat-
ural disasters. Losing an important database creates a huge potential for
damage. The damage could include not only the expense and difficulty of re-
creating the lost data, but the loss of productive time by the database users,
and the loss of business and good will while the users are unable to work. A
plan for regular archiving of critical databases can help avoid or mitigate
these potential disasters.

A large database used by many people must be maintained and tuned. Some-
one must monitor its use of system resources, chart its growth, anticipate bot-
tlenecks, and plan for expansion. Users will report problems in the applica-
tion programs; someone must diagnose these and correct them. If rapid
response is important, someone must study and analyze the performance of
the system and find the causes of slow responses.

Group and Private Databases

Some IBM Informix database servers are designed to manage relatively small
databases that are used privately by individuals, or that are shared among a
small group of users.

These database servers (for example, IBM Informix SE for the UNIX operating
system) store databases in files managed by the host operating system. These
databases can be archived using the same procedures for backing up files that
work with other computer files; that is, copying the files to another medium
when they are not in use. The only difference is that when a database is
archived its transaction log file must be reset to empty. (The use of transaction
logs is discussed in Chapter 7; Chapter 10 has more information on
archiving.)

Performance problems that arise in group and private databases are usually
related to particular queries that take too long. Chapter 4 deals in depth with
the reasons why a query takes more or less time. After you understand all the
features of the SELECT statement and the alternative ways of stating a query,
as covered in Chapters 2 and 3, you can use the tips in Chapter 4 to improve
the performance of the queries that otherwise might take excessive amounts
of time.
Database Fundamentals 1-11

Important Database Terms
Essential Databases

The IBM Informix OnLine database server is designed to manage large data-
bases with requirements for high reliability, high availability, and high per-
formance. While it supports private and group databases very well, it is at its
best managing the databases that are essential if your organization is to carry
out its work successfully.

IBM Informix OnLine gives its operator the ability to make archival copies
while the databases are in use. It also allows incremental archiving (archiving
only modified data), an important feature when a full copy could take many
reels of tape.

IBM Informix OnLine has an interactive monitor program by which its oper-
ator (or any user) can monitor the activities within the database server to see
when bottlenecks are developing. It also comes with utility programs to ana-
lyze its use of disk storage.

Chapter 10 contains an overview of the IBM Informix OnLine disk storage
methods, as part of the necessary background information to the main topic.
However, all the details of using and managing IBM Informix OnLine are con-
tained in the IBM Informix OnLine Administrator’s Guide.

Important Database Terms
You should know two sets of terms before you begin the next chapter. One set
of terms describes the database and the data model; the other set describes
the computer programs that manage the database.

The Relational Model
IBM Informix databases are relational databases. In technical terms, that
means that the data model by which an IBM Informix database is organized
is based on the relational calculus devised by E.F. Codd. In practical terms, it
means that all data is presented in the form of tables comprising rows and col-
umns.

Tables

A database is a collection of information grouped into one or more tables. A
table is an array of data items organized into rows and columns. A demon-
stration database is distributed with every IBM Informix product. A table
from the demonstration database is shown in Figure 1-5.
1-12 Database Fundamentals

Important Database Terms
stock Table

stock_num manu_code description unit_price unit unit_descr
1 HRO baseball gloves 250.00 case 10 gloves/case
1 HSK baseball gloves 800.00 case 10 gloves/case
1 SMT baseball gloves 450.00 case 10 gloves/case
2 HRO baseball 126.00 case 24/case
3 HSK baseball bat 240.00 case 12/case
4 HSK football 960.00 case 24/case
4 HRO football 480.00 case 24/case
5 NRG tennis racquet 28.00 each each

. . . .
313 ANZ swim cap 60.00 box 12/box

Figure 1-5 The stock table from the demonstration database distributed with all IBM Informix
products

A table represents all that is known about one entity, one type of thing that
the database describes. The example table, stock, represents all that is known
about the merchandise that is stocked by a sporting-goods store. Other tables
in the demonstration database represent such entities as customer and
orders.

A database is primarily a collection of tables. To create a database is to create
a set of tables. The right to query or modify tables can be controlled on a table-
by-table basis, so that some users can view or modify some tables and not
others.

Columns

Each column of a table stands for one attribute, that is, one characteristic, fea-
ture, or fact that is true of the subject of the table. The stock table has columns
for the following facts about items of merchandise: stock numbers, manufac-
turer codes, descriptions, prices, and units of measure.

Rows

Each row of a table stands for one instance of the subject of the table; that is,
one particular, individual example of that entity. Each row of the stock table
stands for one item of merchandise that is sold by the sporting-goods store.
Database Fundamentals 1-13

Important Database Terms
Tables, Rows, and Columns

You now understand that the relational model of data is a very simple way of
organizing data to reflect the world using these simple corresponding rela-
tionships:

table = entity A table represents all that the database knows about
one subject or kind of thing.

column = attribute A column represents one feature, characteristic, or fact
that is true of the table subject.

row = instance A row represents one individual instance of the table
subject.

There are some rules about how you choose entities and attributes, but they
are important only when you are designing a new database. (Database
design is covered in Chapters 8 through 11 of this manual.) The data model
in an existing database already is set. To use the database, you only need to
know the names of the tables and columns and how they correspond to the
real world.

Operations on Tables

Since a database is really a collection of tables, database operations are oper-
ations on tables. The relational model supports three fundamental opera-
tions, two of which are illustrated in Figure 1-6. (All three operations are
defined in more detail, with many examples, in Chapters 2 and 3 of this
manual.)

To select from a table is to choose certain rows, leaving others aside. One selec-
tion that could be made on the stock table is “select all rows in which the
manufacturer code is HRO and the unit price is between 100.00 and 200.00.”

To project from a table is to choose certain columns, leaving others aside. One
projection that can be made from the stock table is “show me the stock_num,
unit_descr, and unit_price columns only.”

A table contains information about only one entity; when you want informa-
tion about multiple entities, you must join their tables. There are many differ-
ent ways of joining tables. (The join operation is the subject of Chapter 3 of
this manual.)
1-14 Database Fundamentals

Structured Query Language
Figure 1-6 Illustration of selection and projection

Structured Query Language
Computer software has not yet reached a point where you can literally ask a
database, “what orders have been placed by customers in New Jersey with
ship dates in the second quarter?” You must still phrase questions in a
restricted syntax that the software can easily parse. You can pose the same
question to the demonstration database in the following terms:

SELECT * FROM customer, orders
WHERE customer.customer_num = orders.customer_num

AND customer.state = "NJ"
AND orders.ship_date
BETWEEN DATE("7/1/91") AND DATE("7/30/91")

This question is a sample of the Structured Query Language (SQL). It is the
language that you use to direct all operations on the database. SQL is com-
posed of statements, each of which begins with one or two keywords that
specify a function. SQL includes about 67 statements, from ALLOCATE
DESCRIPTOR to WHENEVER.

P R O J E C T I O N

SELECTION

stock Table

stock_num manu_code description unit_price unit unit_descr
1 HRO baseball gloves 250.00 case 10 gloves/case
1 HSK baseball gloves 800.00 case 10 gloves/case
1 SMT baseball gloves 450.00 case 10 gloves/case
2 HRO baseball 126.00 case 24/case
3 HSK baseball bat 240.00 case 12/case
4 HSK football 960.00 case 24/case
4 HRO football 480.00 case 24/case
5 NRG tennis racquet 28.00 each each
Database Fundamentals 1-15

Structured Query Language
All of the SQL statements are specified in detail in the IBM Informix Guide to
SQL: Reference. Most of the statements are used infrequently—while setting
up or tuning a database. Most people spend their time using three or four
statements at most.

One statement, SELECT, is in almost constant use. It is the only statement with
which you can retrieve data from the database. It is also the most complicated
of the statements, and all of the next two chapters of this book are devoted to
exploring its many uses.

Standard SQL
SQL and the relational model were invented and developed at IBM in the
early and middle 1970s. Once IBM proved that it was possible to implement
practical relational databases and that SQL was a usable language for control-
ling them, other vendors began to provide similar products for non-IBM
computers.

For reasons of performance or competitive advantage, or to take advantage
of local hardware or software features, each of these SQL implementations
differed in small ways from each other and from the IBM version of the lan-
guage. To ensure that the differences remained small, a standards committee
was formed in the early 1980s.

Committee X3H2, sponsored by the American National Standards Institute
(ANSI), issued the SQL1 standard in 1986. This standard defines a core set of
SQL features and the syntax of statements such as SELECT.

Informix SQL and ANSI SQL
The SQL version that is supported by IBM Informix products is highly com-
patible with standard SQL (it is also compatible with the IBM version of the
language). However, it does contain extensions to the standard; that is, extra
options or features for certain statements, and looser rules for others. Most of
the differences occur in the statements that are not in everyday use. For exam-
ple, few differences occur in the SELECT statement, which accounts for 90%
of the SQL use for a typical person.

However, the extensions do exist, and that creates a conflict. Thousands of
our customers have embedded Informix-style SQL in programs and stored
queries. They rely on us to keep its language the same. Other customers
require the ability to use databases in a way that conforms exactly to the ANSI
standard. They rely on us to change its language to conform.
1-16 Database Fundamentals

The Database Software
We resolved the conflict with the following compromise:

• Our version of SQL, with its extensions to the standard, is available by
default.

• You can ask any Informix SQL language processor to check your use of
SQL and post a warning flag whenever you use an Informix extension.

This resolution is fair but makes the SQL documentation more complicated.
Wherever there is a difference between Informix and ANSI SQL, the
IBM Informix Guide to SQL: Reference describes both versions. Since you proba-
bly intend to use only one version, you will have to ignore the version you do
not need.

ANSI-Compliant Databases
You can designate a database as ANSI-compliant by using the MODE ANSI
keywords when you create it. Within such a database, certain characteristics
of the ANSI standard apply. For example, all actions that modify data auto-
matically take place within a transaction, which means that the changes are
made in their entirety or not at all. Differences in the behavior of ANSI-
compliant databases are noted where appropriate in the IBM Informix Guide to
SQL: Reference.

The Database Software
You only can access your database with the help of two layers of sophisti-
cated software. You work directly with the top layer, and it uses the bottom
layer to access the data. You command both layers using the Structured
Query Language.

The Database Server
The database server is the program that manages the contents of the database
as they are stored on disk. The database server knows how tables, rows, and
columns are actually organized in physical computer storage. The database
server also interprets and executes all SQL commands.
Database Fundamentals 1-17

The Database Software
The Applications
A database application, or simply application, is a program that uses the data-
base. It does so by calling on the database server. At its simplest, the applica-
tion sends SQL commands to the database server and the database server
sends rows of data back to the application. Then the application displays the
rows to you, its user.

Alternatively, you command the application to add new data to the database.
It incorporates the new data as part of an SQL command to insert a row, and
passes this command to the database server for execution.

There are several types of applications. Some allow you to access the data-
base interactively using SQL; others present the stored data in different forms
related to its use.

Interactive SQL
To carry out the examples in this book, and to experiment with SQL and data-
base design for yourself, you need a program that lets you execute SQL state-
ments interactively. DB-Access and IBM Informix SQL are two such programs.
They assist you in composing SQL statements, then they pass your SQL to the
database server for execution and display the results to you.

Reports and Forms
After you perfect a query to return precisely the data in which you are inter-
ested, you need to format the data for display as a report or form on the ter-
minal screen. ACE is the report generator for IBM Informix SQL. You provide
to it a SELECT statement that returns the rows of data, and a report specifica-
tion stating how the pages of the report are to be laid out. ACE compiles this
information into a program that you can run whenever you want to produce
that report.

PERFORM is the module of IBM Informix SQL that generates interactive
screen forms. You prepare a form specification that relates display fields on
the screen to columns within tables in the database. PERFORM compiles this
specification into a program that you can run at any time. When run, the form
program interrogates the database to display a row or rows of data on the
screen in the format you specified. You can arrange the form so that the user
can type in sample values and have matching rows returned from the data-
base (the query-by-example feature).

For more information on these products, refer to the manuals that come with
them.
1-18 Database Fundamentals

The Database Software
General Programming
Programs that you write can incorporate SQL statements and exchange data
with the database server. That is, you can write a program to retrieve data
from the database and format it in any way you choose. You also can write
programs that take data from any source in any format, prepare it, and insert
it into the database.

The most convenient programming language for this kind of work is
IBM Informix 4GL, a nonprocedural language designed expressly for writing
database applications. However, you can also communicate with an Informix
database server from programs written in C and COBOL.

You also can write programs called stored procedures to work with database
data and objects. The stored procedures that you write are stored directly in
a database within tables. You can then execute a stored procedure from
DB-Access or an embedded-language program.

Chapters 6 and 7 of this manual present an overview of how SQL is used in
programs.

Applications and Database Servers
Every program that uses data from a database operates the same way.
Regardless of whether it is a packaged program such as IBM Informix SQL, a
report program compiled by ACE or a program that you wrote using
IBM Informix 4GL or embedded SQL, you find the same two layers in every
case:

1. An application that interacts with the user, prepares and formats data,
and sets up SQL statements.

2. A database server that manages the database and interprets the SQL.

All the applications converge on the database server, and only the database
server manipulates the database files on disk. This concept is illustrated in
Figure 1-7.
Database Fundamentals 1-19

Summary
Figure 1-7 Many applications converging on one database server

Summary
A database contains a collection of related information, but differs in a fun-
damental way from other methods of storing data. The database contains not
only the data, but also a data model that defines each data item and specifies
its meaning with respect to the other items and to the real world.

A database can be used, and even modified, by a number of computer users
working concurrently. Different users can be given different views of the con-
tents of a database, and their access to those contents can be restricted in sev-
eral ways.

�
ENGINE

DATA
BASE

4GL�
�
�ESQL/C

QuickStep

DATABASE
SERVER

ACE
1-20 Database Fundamentals

Summary
A database can be crucially important to the success of an organization and
can require central administration and monitoring. The IBM Informix OnLine
database server caters to the needs of essential applications; both
IBM Informix OnLine and IBM Informix SE support smaller databases for pri-
vate or group use.

You control and query a database using the Structured Query Language,
which was pioneered by IBM and standardized by ANSI. You will probably
take advantage of the Informix extensions to the ANSI-defined language, but
your IBM Informix tools also makes it possible to maintain strict compliance
with ANSI standards.

Two layers of software mediate all your work with databases. The bottom
layer is always a database server that executes SQL statements and manages
the data on disk and in computer memory. The top layer is one of many appli-
cations, some from us and some written by you, other vendors, or your col-
leagues.
Database Fundamentals 1-21

Chapter
2
Simple SELECT
Statements
Chapter Overview 3

Introducing the SELECT Statement 3
Some Basic Concepts 4

Privileges 4
Relational Operations 5
Selection and Projection 5
Joining 9

What This Chapter Contains 11
The Forms of SELECT 11
Special Data Types 11

Single-Table SELECT Statements 12
Selecting All Columns and Rows 12

Using the Asterisk 12
Reordering the Columns 13
Sorting the Rows 14

Selecting Specific Columns 19
Selecting Substrings 25

Using the WHERE Clause 26
Creating a Comparison Condition 27

Using Variable Text Searches 34
Using Exact Text Comparisons 34
Using a Single-Character Wildcard 35
Comparing for Special Characters 39

Expressions and Derived Values 41
Arithmetic Expressions 41
Sorting on Derived Columns 46

Using Functions in SELECT Statements 47
Aggregate Functions 47
Time Functions 49
Other Functions and Keywords 55

Multiple-Table SELECT Statements 60
Creating a Cartesian Product 60
Creating a Join 62

Equi-Join 62
Natural Join 65
Multiple-Table Join 68

Some Query Shortcuts 70
Using Aliases 70
The INTO TEMP Clause 73

Summary 74
2-2 Simple SELECT Statements

Chapter Overview
SELECT is the most important and the most complex SQL statement. It is used,
along with the SQL statements INSERT, UPDATE, and DELETE, to manipulate
data. You can use the SELECT statement in the following ways:

• By itself to retrieve data from a database

• As part of an INSERT statement to produce new rows

• As part of an UPDATE statement to update information

The SELECT statement is the primary way to query on information in a data-
base. It is your key to retrieving data in a program, report, screen form, or
spreadsheet.

This chapter shows how you can use the SELECT statement to query on and
retrieve data in a variety of ways from a relational database. It discusses how
to tailor your statements to select columns or rows of information from one
or more tables, how to include expressions and functions in SELECT state-
ments, and how to create various join conditions between relational database
tables.

Introducing the SELECT Statement
The SELECT statement is constructed of clauses that let you look at data in a
relational database. These clauses let you select columns and rows from one
or more database tables or views, specify one or more conditions, order and
summarize the data, and put the selected data in a temporary table.

This chapter shows how to use five SELECT statement clauses. You must
include these clauses in a SELECT statement in the following order:

1. SELECT clause

2. FROM clause

3. WHERE clause
Simple SELECT Statements 2-3

Introducing the SELECT Statement
4. ORDER BY clause

5. INTO TEMP clause

Only the SELECT and FROM clauses are required. These two clauses form the
basis for every database query because they specify the tables and columns
to be retrieved.

• Add a WHERE clause to select specific rows or create a join condition.

• Add an ORDER BY clause to change the order in which data is produced.

• Add an INTO TEMP clause to save the results as a table for further queries.

Two additional SELECT statement clauses, GROUP BY and HAVING, enable
you to perform more complex data retrieval. They are introduced in Chapter
3. Another clause, INTO, is used to specify the program or host variable to
receive data from a SELECT statement in the IBM Informix 4GL and
IBM Informix ESQL products. Complete syntax and rules for using the
SELECT statement are shown in Chapter 7 of IBM Informix Guide to SQL: Refer-
ence.

Some Basic Concepts
The SELECT statement, unlike INSERT, UPDATE, and DELETE statements,
does not modify the data in a database. It is used simply to query on the data.
Whereas only one user at a time can modify data, any number of users can
query on or select the data concurrently. The statements that modify data are
discussed in Chapter 5. The INSERT, UPDATE, and DELETE statements appear
in Chapter 7 of IBM Informix Guide to SQL: Reference.

Privileges

Before you can query on data, you must have CONNECT privilege to the data-
base and SELECT privilege to the tables in it. These privileges normally are
granted to all users as a matter of course. Database access privileges are dis-
cussed in “Chapter Overview” on page 11-3 of this manual and in the GRANT
and REVOKE statements in Chapter 7 of IBM Informix Guide to SQL: Reference.

In a relational database, a column is a data element that contains a particular
type of information that occurs in every row in the table. A row is a group of
related items of information about a single entity across all columns in a
database table.
2-4 Simple SELECT Statements

Introducing the SELECT Statement
You can select columns and rows from a database table; from a system catalog
table, a file that contains information on the database; or from a view, which is
a virtual table created to contain a customized set of data. System catalog
tables are shown and views are discussed in the IBM Informix Guide to SQL:
Reference.

Relational Operations

A relational operation involves manipulating one or more tables or relations to
result in another table. The three kinds of relational operation are selection,
projection, and join. This chapter includes examples of selection, projection,
and simple joining.

Selection and Projection

In relational terminology, selection is defined as taking the horizontal subset of
rows of a single table that satisfies a particular condition. This kind of SELECT
statement returns some of the rows and all of the columns in a table. Selection
is implemented through the WHERE clause of a SELECT statement.

SELECT * FROM customer
WHERE state = "NJ"
Simple SELECT Statements 2-5

Introducing the SELECT Statement
The result of this query contains the same number of columns as the
customer table, but only a subset of its rows. (Because the data in the selected
columns does not fit on one line of the Interactive Editor screen, the data is
displayed vertically instead of horizontally.)

customer_num 119
fname Bob
lname Shorter
company The Triathletes Club
address1 2405 Kings Highway
address2
city Cherry Hill
state NJ
zipcode 08002
phone 609-663-6079

customer_num 122
fname Cathy
lname O’Brian
company The Sporting Life
address1 543 Nassau Street
address2
city Princeton
state NJ
zipcode 08540
phone 609-342-0054
2-6 Simple SELECT Statements

Introducing the SELECT Statement
In relational terminology, projection is defined as taking a vertical subset from
the columns of a single table that retains the unique rows. This kind of
SELECT statement returns some of the columns and all of the rows in a table.
Projection is implemented through the select list in the SELECT clause of a
SELECT statement.

SELECT UNIQUE city, state, zipcode
FROM customer

The result of this query contains the same number of rows as the customer
table, but it projects only a subset of its columns.

city state zipcode

Bartlesville OK 74006
Blue Island NY 60406
Brighton MA 02135
Cherry Hill NJ 08002
Denver CO 80219
Jacksonville FL 32256
Los Altos CA 94022
Menlo Park CA 94025
Mountain View CA 94040
Mountain View CA 94063
Oakland CA 94609
Palo Alto CA 94303
Palo Alto CA 94304
Phoenix AZ 85008
Phoenix AZ 85016
Princeton NJ 08540
Redwood City CA 94026
Redwood City CA 94062
Redwood City CA 94063
San Francisco CA 94117
Sunnyvale CA 94085
Sunnyvale CA 94086
Wilmington DE 19898
Simple SELECT Statements 2-7

Introducing the SELECT Statement
The most common kind of SELECT statement uses both selection and projec-
tion. A query of this kind returns some of the rows and some of the columns
in a table.

SELECT UNIQUE city, state, zipcode
FROM customer
WHERE state = "NJ"

The result of this query contains a subset of the rows and a subset of the col-
umns in the customer table.

city state zipcode

Cherry Hill NJ 08002
Princeton NJ 08540
2-8 Simple SELECT Statements

Introducing the SELECT Statement
Joining

A join occurs when two or more tables are connected by one or more columns
in common, creating a new table of results. Figure 2-1 uses a subset of the
items and stock tables to illustrate the concept of a join.

Figure 2-1 Example of a join between two tables

1 1001 1

1 1002 4

2 1002 3

3 1003 5

1 1005 5

4 HSK football

2 HRO baseball

1 HSK baseball gloves

1 HRO baseball gloves

5 NRG tennis racquet

3 1003

1 1005 5 tennis racquet

item_num order_num stock_num stock_num manu_code description
items Table (example)

1 1002

1 1001

stock Table (example)

1 baseball gloves

4 football

5 tennis racquet

item_num order_num stock_num description

SELECT unique item_num, order_num, stock_num, description
FROM items, stock
WHERE items.stock_num = stock.stock_num
Simple SELECT Statements 2-9

Introducing the SELECT Statement
The following SELECT statement joins the customer and state tables.

SELECT UNIQUE city, state, zipcode, sname
FROM customer, state
WHERE customer.state = state.code

The result of this query is composed of specified rows and columns from both
the customer and state tables.

city state zipcode sname

Bartlesville OK 74006 Oklahoma
Blue Island NY 60406 New York
Brighton MA 02135 Massachusetts
Cherry Hill NJ 08002 New Jersey
Denver CO 80219 Colorado
Jacksonville FL 32256 Florida
Los Altos CA 94022 California
Menlo Park CA 94025 California
Mountain View CA 94040 California
Mountain View CA 94063 California
Oakland CA 94609 California
Palo Alto CA 94303 California
Palo Alto CA 94304 California
Phoenix AZ 85008 Arizona
Phoenix AZ 85016 Arizona
Princeton NJ 08540 New Jersey
Redwood City CA 94026 California
Redwood City CA 94062 California
Redwood City CA 94063 California
San Francisco CA 94117 California
Sunnyvale CA 94085 California
Sunnyvale CA 94086 California
Wilmington DE 19898 Delaware
2-10 Simple SELECT Statements

Introducing the SELECT Statement
What This Chapter Contains
This chapter introduces the basic methods for retrieving data from a rela-
tional database. More complex uses of SELECT statements, such as subque-
ries, outer joins, and unions, are discussed in the next chapter.

Most of the examples in this chapter are taken from the nine tables in the
stores5 demonstration database, which is installed with the software for your
IBM Informix application development tool. In the interest of brevity, the
examples may show only part of the data that is retrieved for each SELECT
statement. See the IBM Informix Guide to SQL: Reference for information on the
structure and contents of the stores5 database. For emphasis, keywords are
shown in uppercase letters in the examples, although SQL is not case
sensitive.

The Forms of SELECT

Although the syntax remains the same across all IBM Informix products, the
form of a SELECT statement and the location and formatting of the resulting
output depends on the application. The examples in this chapter and in
Chapter 3 display the SELECT statements and their output as they appear
when you use the interactive Query-Language option of DB-Access or
IBM Informix SQL. You also can use SELECT statements to query on data non-
interactively through IBM Informix SQL reports, you can embed them in a
language such as IBM Informix ESQL/C (where they are treated as executable
code), or you can incorporate them in IBM Informix 4GL as part of its fourth-
generation language.

Special Data Types

The examples use the IBM Informix OnLine database server, which enables
database applications to include the data types VARCHAR, TEXT, and BYTE.
These data types are not available to applications that run on IBM Informix
SE.

In the DB-Access or IBM Informix SQL Interactive Editor, when you issue a
SELECT statement that includes one of these three data types, the results of
the query are displayed differently.

• If you execute a query on a VARCHAR column, the entire VARCHAR value
is displayed, just as CHARACTER values are displayed.

• If you select a TEXT column, the contents of the TEXT column are dis-
played and you can scroll through them.
Simple SELECT Statements 2-11

Single-Table SELECT Statements
• If you query on a BYTE column, the words <BYTE value> are displayed
instead of the actual value.

Differences specific to VARCHAR, TEXT, and BYTE are noted as appropriate
throughout this chapter. For additional information on these and other data
types, see Chapter 9 in this manual. See also the IBM Informix Guide to SQL: Ref-
erence.

Single-Table SELECT Statements
There are many ways to query on a single table in a database. You can tailor
a SELECT statement to

• Retrieve all or specific columns

• Retrieve all or specific rows

• Perform computations or other functions on the retrieved data

• Order the data in various ways

Selecting All Columns and Rows
The most basic SELECT statement contains just the two required clauses,
SELECT and FROM.

Using the Asterisk

The following statement specifies all the columns in the manufact table in a
select list. A select list is a list of the column names or expressions that you
want to project from a table.

SELECT manu_code, manu_name, lead_time
FROM manufact

The following statement uses the wildcard * as shorthand for the select list.
The asterisk stands for the names of all the columns in the table. You can use
the asterisk whenever you want all the columns, in their defined order.

SELECT * FROM manufact
2-12 Simple SELECT Statements

Single-Table SELECT Statements
The two examples are equivalent and display the same results, that is, a list
of every column and row in the manufact table. The results are displayed as
they would appear in the DB-Access or IBM Informix SQL Interactive Editor.

Reordering the Columns

You can change the order in which the columns are listed by changing their
order in your select list.

SELECT manu_name, manu_code, lead_time
FROM manufact

This select list includes the same columns as the previous one, but because
the columns are specified in a different order, the display is different also.

manu_code manu_name lead_time

 SMT Smith 3
 ANZ Anza 5
 NRG Norge 7
 HSK Husky 5
 HRO Hero 4
 SHM Shimara 30
 KAR Karsten 21
 NKL Nikolus 8
 PRC ProCycle 9

manu_name manu_code lead_time

 Smith SMT 3
 Anza ANZ 5
 Norge NRG 7
 Husky HSK 5
 Hero HRO 4
 Shimara SHM 30
 Karsten KAR 21
 Nikolus NKL 8
 ProCycle PRC 9
Simple SELECT Statements 2-13

Single-Table SELECT Statements
Sorting the Rows

You can direct the system to sort the data in a specific order by adding an
ORDER BY clause to your SELECT statement. The columns you want to use in
the ORDER BY clause must be included in the select list either explicitly or
implicitly.

An explicit select list includes all the column names.

SELECT manu_code, manu_name, lead_time
FROM manufact
ORDER BY lead_time

An implicit select list uses the * symbol.

SELECT * FROM manufact
ORDER BY lead_time

Either of the preceding statements produce the same display, that is, a list of
every column and row in the manufact table, in order of lead_time:

Ascending Order

The retrieved data is sorted and displayed, by default, in ascending order.
Ascending order is uppercase A to lowercase z for CHARACTER data types,
and lowest to highest value for number data types. DATE and DATETIME
type data are sorted from earliest to latest, and INTERVAL data is ordered
from shortest to longest span of time.

SELECT * FROM manufact
ORDER BY lead_time DESC

manu_code manu_name lead_time

 SMT Smith 3
 HRO Hero 4
 HSK Husky 5
 ANZ Anza 5
 NRG Norge 7
 NKL Nikolus 8
 PRC ProCycle 9
 KAR Karsten 21
 SHM Shimara 30
2-14 Simple SELECT Statements

Single-Table SELECT Statements
Descending Order

The keyword DESC following a column name causes the retrieved data to be
sorted in descending order.

You can specify any column (except TEXT or BYTE) in the ORDER BY clause,
and the database server will sort the data based on the values in that column.

Sorting on Multiple Columns

You also can ORDER BY two or more columns, creating a nested sort. The
default is still ascending, and the column listed first in the ORDER BY clause
takes precedence.

In the following two examples of a nested sort, the order in which selected
data is displayed is modified by changing the order of the two columns
named in the ORDER BY clause.

SELECT * FROM stock
ORDER BY manu_code, unit_price

manu_code manu_name lead_time

 SHM Shimara 30
 KAR Karsten 21
 PRC ProCycle 9
 NKL Nikolus 8
 NRG Norge 7
 HSK Husky 5
 ANZ Anza 5
 HRO Hero 4
 SMT Smith 3
Simple SELECT Statements 2-15

Single-Table SELECT Statements
Here, the manu_code column data is shown in alphabetical order and, within
each set of rows with the same manu_code (for example, ANZ, HRO), the
unit_price is listed in ascending order of price.

In the following example, the order of the columns in the ORDER BY clause is
reversed:

SELECT * FROM stock
ORDER BY unit_price, manu_code

stock_num manu_code description unit_price unit unit_descr

5 ANZ tennis racquet $19.80 each each
9 ANZ volleyball net $20.00 each each
6 ANZ tennis ball $48.00 case 24 cans/case

313 ANZ swim cap $60.00 box 12/box
201 ANZ golf shoes $75.00 each each
310 ANZ kick board $84.00 case 12/case
301 ANZ running shoes $95.00 each each
304 ANZ watch $170.00 box 10/box
110 ANZ helmet $244.00 case 4/case
205 ANZ 3 golf balls $312.00 case 24/case
8 ANZ volleyball $840.00 case 24/case

302 HRO ice pack $4.50 each each
309 HRO ear drops $40.00 case 20/case
.
.
.
113 SHM 18-spd, assmbld $685.90 each each
5 SMT tennis racquet $25.00 each each
6 SMT tennis ball $36.00 case 24 cans/case
1 SMT baseball gloves $450.00 case 10 gloves/case
2-16 Simple SELECT Statements

Single-Table SELECT Statements
Here, the data is shown in ascending order of unit_price and, where two or
more rows have the same unit_price (for example, $20.00, $48.00, $312.00),
the manu_code is in alphabetical order.

stock_num manu_code description unit_price unit unit_descr

302 HRO ice pack $4.50 each each
302 KAR ice pack $5.00 each each
5 ANZ tennis racquet $19.80 each each
9 ANZ volleyball net $20.00 each each

103 PRC frnt derailleur $20.00 each each
106 PRC bicycle stem $23.00 each each
5 SMT tennis racquet $25.00 each each

.

.

.
301 HRO running shoes $42.50 each each
204 KAR putter $45.00 each each
108 SHM crankset $45.00 each each
6 ANZ tennis ball $48.00 case 24 cans/case

305 HRO first-aid kit $48.00 case 4/case
303 PRC socks $48.00 box 24 pairs/box
311 SHM water gloves $48.00 box 4 pairs/box
.
.
.
110 HSK helmet $308.00 case 4/case
205 ANZ 3 golf balls $312.00 case 24/case
205 HRO 3 golf balls $312.00 case 24/case
205 NKL 3 golf balls $312.00 case 24/case
1 SMT baseball gloves $450.00 case 10 gloves/case
4 HRO football $480.00 case 24/case

102 PRC bicycle brakes $480.00 case 4 sets/case
111 SHM 10-spd, assmbld $499.99 each each
112 SHM 12-spd, assmbld $549.00 each each
7 HRO basketball $600.00 case 24/case

203 NKL irons/wedge $670.00 case 2 sets/case
113 SHM 18-spd, assmbld $685.90 each each
1 HSK baseball gloves $800.00 case 10 gloves/case
8 ANZ volleyball $840.00 case 24/case
4 HSK football $960.00 case 24/case
Simple SELECT Statements 2-17

Single-Table SELECT Statements
The order of the columns in the ORDER BY clause is important, and so is the
position of the DESC keyword. Although the following four SELECT state-
ments contain the same components in the ORDER BY clause, each produces
a different result (not shown).

SELECT * FROM stock
ORDER BY manu_code, unit_price DESC

SELECT * FROM stock
ORDER BY unit_price, manu_code DESC

SELECT * FROM stock
ORDER BY manu_code DESC, unit_price

SELECT * FROM stock
ORDER BY unit_price DESC, manu_code
2-18 Simple SELECT Statements

Single-Table SELECT Statements
Selecting Specific Columns
The previous section showed how to select and order all data from a table.
However, often all you want to see is the data in one or more specific col-
umns. Again, the formula is to use the SELECT and FROM clauses, specify the
columns and table, and perhaps order the data in ascending or descending
order with an ORDER BY clause.

Suppose you want to find all the customer numbers in the orders table.

SELECT customer_num FROM orders

This statement simply selects all data in the customer_num column in the
orders table and lists the customer numbers on all the orders, including
duplicates.

The output includes a number of duplicates because some customers have
placed more than one order. Sometimes you want to see duplicate rows in a
projection. Other times, you are interested only in the distinct values, not
how often each value appears.

customer_num

101
104
104
104
104
106
106
110
110
111
112
115
116
117
117
119
120
121
122
123
124
126
127
Simple SELECT Statements 2-19

Single-Table SELECT Statements
You can cause duplicate rows to be suppressed by including the keyword
DISTINCT or its synonym UNIQUE at the start of the select list.

SELECT DISTINCT customer_num FROM orders

SELECT UNIQUE customer_num FROM orders

Either of these statements limits the display to show each customer number
in the orders table only once, producing a more readable list.

Suppose you are handling a customer call and you want to locate purchase
order number DM354331. You decide to list all the purchase order numbers in
the orders table.

SELECT po_num FROM orders

customer_num

101
104
106
110
111
112
115
116
117
119
120
121
122
123
124
126
127
2-20 Simple SELECT Statements

Single-Table SELECT Statements
This SELECT statement retrieves data in the po_num column in the orders
table and displays the following list:

po_num

 B77836
 9270
 B77890
 8006
 2865
 Q13557
 278693
 LZ230
 4745
 429Q
 B77897
 278701
 B77930
 8052
 MA003
 PC6782
 DM354331
 S22942
 Z55709
 W2286
 C3288
 W9925
 KF2961
Simple SELECT Statements 2-21

Single-Table SELECT Statements
However, the list is not in a very useful order. You can add an ORDER BY
clause to sort the column data in ascending order and make it easier to find
that particular po_num.

SELECT po_num FROM orders
ORDER BY po_num

po_num

 278693
 278701
 2865
 429Q
 4745
 8006
 8052
 9270
 B77836
 B77890
 B77897
 B77930
 C3288
 DM354331
 KF2961
 LZ230
 MA003
 PC6782
 Q13557
 S22942
 W2286
 W9925
 Z55709
2-22 Simple SELECT Statements

Single-Table SELECT Statements
To select multiple columns from a table, list them in the select list in the
SELECT clause. The order in which the columns are selected is the order in
which they are produced, from left to right.

SELECT paid_date, ship_date, order_date,
customer_num, order_num, po_num

FROM orders
ORDER BY paid_date, order_date, customer_num

As shown earlier, you can use the ORDER BY clause to sort the data in ascend-
ing or descending order and perform nested sorts.

When you SELECT and ORDER BY several columns in a table, you might find
it easier to use integers to refer to the position of the columns in the ORDER
BY clause.

SELECT customer_num, order_num, po_num, order_date
FROM orders
ORDER BY 4, 1

SELECT customer_num, order_num, po_num, order_date
FROM orders
ORDER BY order_date, customer_num

paid_date ship_date order_date customer_num order_num po_num

05/30/1991 05/22/1991 106 1004 8006
05/30/1991 112 1006 Q13557

06/05/1991 05/31/1991 117 1007 278693
06/29/1991 06/18/1991 117 1012 278701
07/12/1991 06/29/1991 119 1016 PC6782
07/13/1991 07/09/1991 120 1017 DM354331

06/03/1991 05/26/1991 05/21/1991 101 1002 9270
06/14/1991 05/23/1991 05/22/1991 104 1003 B77890
06/21/1991 06/09/1991 05/24/1991 116 1005 2865
07/10/1991 07/03/1991 06/25/1991 106 1014 8052
07/21/1991 07/06/1991 06/07/1991 110 1008 LZ230
07/22/1991 06/01/1991 05/20/1991 104 1001 B77836
07/31/1991 07/10/1991 06/22/1991 104 1013 B77930
08/06/1991 07/13/1991 07/10/1991 121 1018 S22942
08/06/1991 07/16/1991 07/11/1991 122 1019 Z55709
08/21/1991 06/21/1991 06/14/1991 111 1009 4745
08/22/1991 06/29/1991 06/17/1991 115 1010 429Q
08/22/1991 07/25/1991 07/23/1991 124 1021 C3288
08/22/1991 07/30/1991 07/24/1991 127 1023 KF2961
08/29/1991 07/03/1991 06/18/1991 104 1011 B77897
08/31/1991 07/16/1991 06/27/1991 110 1015 MA003
09/02/1991 07/30/1991 07/24/1991 126 1022 W9925
09/20/1991 07/16/1991 07/11/1991 123 1020 W2286
Simple SELECT Statements 2-23

Single-Table SELECT Statements
These two statements retrieve and display the same data:

customer_num order_num po_num order_date

104 1001 B77836 05/20/1991
101 1002 9270 05/21/1991
104 1003 B77890 05/22/1991
106 1004 8006 05/22/1991
116 1005 2865 05/24/1991
112 1006 Q13557 05/30/1991
117 1007 278693 05/31/1991
110 1008 LZ230 06/07/1991
111 1009 4745 06/14/1991
115 1010 429Q 06/17/1991
104 1011 B77897 06/18/1991
117 1012 278701 06/18/1991
104 1013 B77930 06/22/1991
106 1014 8052 06/25/1991
110 1015 MA003 06/27/1991
119 1016 PC6782 06/29/1991
120 1017 DM354331 07/09/1991
121 1018 S22942 07/10/1991
122 1019 Z55709 07/11/1991
123 1020 W2286 07/11/1991
124 1021 C3288 07/23/1991
126 1022 W9925 07/24/1991
127 1023 KF2961 07/24/1991
2-24 Simple SELECT Statements

Single-Table SELECT Statements
You can include the DESC keyword in the ORDER BY clause when you have
assigned integers to column names.

SELECT customer_num, order_num, po_num, order_date
FROM orders
ORDER BY 4 DESC, 1

Here, data is sorted first in descending order by order_date and, within date,
in ascending order by customer_num.

Selecting Substrings

You can select part of the value of a CHARACTER column by including a
substring in the select list. Suppose your marketing department is planning a
mailing to your customers and wants a rough idea of their geographical dis-
tribution, based on zip codes.

SELECT zipcode[1,3], customer_num
FROM customer
ORDER BY zipcode
Simple SELECT Statements 2-25

Single-Table SELECT Statements
This SELECT statement uses a substring to select the first three characters of
the zipcode column (which identify the state) and the full customer_num,
and lists them in ascending order by zip code.

Using the WHERE Clause
Perhaps you want to see only those orders placed by a particular customer or
the calls entered by a particular customer service representative. You would
add a WHERE clause to a SELECT statement to retrieve these specific rows
from a table.

You can use the WHERE clause to set up a comparison condition or a join
condition. This section demonstrates only the first use. Join conditions are
described in a later section and in the next chapter.

zipcode customer_num

021 125
080 119
085 122
198 121
322 123
604 127
740 124
802 126
850 128
850 120
940 105
940 112
940 113
940 115
940 104
940 116
940 110
940 114
940 106
940 108
940 117
940 111
940 101
940 109
941 102
943 103
943 107
946 118
2-26 Simple SELECT Statements

Single-Table SELECT Statements
The set of rows returned by a SELECT statement is the active set for that state-
ment. A singleton SELECT statement returns a single row. In IBM Informix 4GL
or an embedded-language program, the retrieval of multiple rows requires
the use of a cursor. See Chapters 6 and 7 in this manual.

Creating a Comparison Condition
The WHERE clause of a SELECT statement specifies the rows you want to see.
A comparison condition employs specific keywords and operators to define the
search criteria.

For example, you might use one of the keywords BETWEEN, IN, LIKE, or
MATCHES to test for equality, or the keywords IS NULL to test for null values.
You can combine the keyword NOT with any of these keywords to specify the
opposite condition.

Figure 2-2 lists the relational operators you can use in a WHERE clause in place
of a keyword to test for equality.

Operator Operation
 = equals
!= or <> does not equal
 > greater than
 >= greater than or equal to
 < less than
 <= less than or equal to

Figure 2-2 Relational operators that test for equality

For CHAR expressions, “greater than” means after in ASCII collating order,
where lowercase letters are after uppercase letters, and both are after numer-
als. See the ASCII Character Set chart in the IBM Informix Guide to SQL: Refer-
ence. For DATE and DATETIME expressions, “greater than” means later in time,
and for INTERVAL expressions, it means of longer duration. You cannot use
TEXT or BYTE columns in string expressions, except when you test for NULL
values.

You can use the preceding keywords and operators in a WHERE clause to cre-
ate comparison condition queries that

• Include values

• Exclude values

• Find a range of values
Simple SELECT Statements 2-27

Single-Table SELECT Statements
• Find a subset of values

• Identify NULL values

You also can use the preceding keywords and operators in a WHERE clause
to create comparison condition queries that perform variable text searches
using

• Exact text comparison

• Single-character wildcards

• Restricted single-character wildcards

• Variable-length wildcards

• Subscripting

The examples that follow illustrate these types of queries.

Including Rows

Use the relational operator = to include rows in a WHERE clause.

SELECT customer_num, call_code, call_dtime, res_dtime
FROM cust_calls
WHERE user_id = "maryj"

This SELECT statement returns the following set of rows:

customer_num call_code call_dtime res_dtime

106 D 1991-06-12 08:20 1991-06-12 08:25
121 O 1991-07-10 14:05 1991-07-10 14:06
127 I 1991-07-31 14:30
2-28 Simple SELECT Statements

Single-Table SELECT Statements
Excluding Rows

Use the relational operators != or <> to exclude rows in a WHERE clause.

The following examples assume that you are selecting from an ANSI-
compliant database, and thus they specify the owner or login name of the cre-
ator of the customer table. This qualifier is not required when the creator of
the table is the current user, or when the database is not ANSI-compliant,
although it is not incorrect to include it in either case. For a complete discus-
sion of owner naming, see the IBM Informix Guide to SQL: Reference.

SELECT customer_num, company, city, state
FROM odin.customer
WHERE state != "CA"

SELECT customer_num, company, city, state
FROM odin.customer
WHERE state <> "CA"

Both of these statements exclude values by specifying that, in the customer
table owned by the user odin, the value in the state column should not be
equal to CA.

customer_num company city state

119 The Triathletes Club Cherry Hill NJ
120 Century Pro Shop Phoenix AZ
121 City Sports Wilmington DE
122 The Sporting Life Princeton NJ
123 Bay Sports Jacksonville FL
124 Putnum’s Putters Bartlesville OK
125 Total Fitness Sports Brighton MA
126 Neelie’s Discount Sp Denver CO
127 Big Blue Bike Shop Blue Island NY
128 Phoenix College Phoenix AZ
Simple SELECT Statements 2-29

Single-Table SELECT Statements
Specifying Rows

There are several ways to specify rows in a WHERE clause. Here are two:

SELECT catalog_num, stock_num, manu_code, cat_advert
FROM catalog
WHERE catalog_num BETWEEN 10005 AND 10008

SELECT catalog_num, stock_num, manu_code, cat_advert
FROM catalog
WHERE catalog_num >= 10005 AND catalog_num <= 10008

Both of these statements specify a range for catalog_num from 10005
through 10008, inclusive. The first statement uses keywords, and the second
uses relational operators to retrieve the following rows:

Note that although the catalog table includes a column with the BYTE data
type, that column is not included in this SELECT statement because the out-
put would show only the words <BYTE value> by the column name. You
can display TEXT and BYTE values by using the PROGRAM attribute when
using forms in IBM Informix SQL or IBM Informix 4GL or by writing a 4GL or
embedded-language program to do so.

catalog_num 10005
stock_num 3
manu_code HSK
cat_advert High-Technology Design Expands the Sweet Spot

catalog_num 10006
stock_num 3
manu_code SHM
cat_advert Durable Aluminum for High School and Collegiate

Athletes

catalog_num 10007
stock_num 4
manu_code HSK
cat_advert Quality Pigskin with Joe Namath Signature

catalog_num 10008
stock_num 4
manu_code HRO
cat_advert Highest Quality Football for High School

and Collegiate Competitions
2-30 Simple SELECT Statements

Single-Table SELECT Statements
Excluding a Range of Rows

SELECT fname, lname, company, city, state
FROM customer
WHERE zipcode NOT BETWEEN "94000" AND "94999"
ORDER BY state

Here, by using the keywords NOT BETWEEN, the condition excludes rows
that have the character range 94000 through 94999 in the zipcode column.

Using a WHERE Clause to Find a Subset of Values

As shown earlier, these examples also assume the use of an ANSI-compliant
database. Here, the owner qualifier is in quotation marks to preserve the case.

SELECT lname, city, state, phone
FROM "Aleta".customer
WHERE state = "AZ" OR state = "NJ"
ORDER BY lname

SELECT lname, city, state, phone
FROM "Aleta".customer
WHERE state IN ("AZ", "NJ")
ORDER BY lname

Both of these statements retrieve rows that include the subset of AZ or NJ in
the state column of the Aleta.customer table.

Note that you cannot test a TEXT or BYTE column with the IN keyword.

fname lname company city state

Fred Jewell Century* Pro Shop Phoenix AZ
Frank Lessor Phoenix University Phoenix AZ
Eileen Neelie Neelie’s Discount Sp Denver CO
Jason Wallack City Sports Wilmington DE
Marvin Hanlon Bay Sports Jacksonville FL
James Henry Total Fitness Sports Brighton MA
Bob Shorter The Triathletes Club Cherry Hill NJ
Cathy O’Brian The Sporting Life Princeton NJ
Kim Satifer Big Blue Bike Shop Blue Island NY
Chris Putnum Putnum’s Putters Bartlesville OK

lname city state phone

 Jewell Phoenix AZ 602-265-8754
 Lessor Phoenix AZ 602-533-1817
 O’Brian Princeton NJ 609-342-0054
 Shorter Cherry Hill NJ 609-663-6079
Simple SELECT Statements 2-31

Single-Table SELECT Statements
In this example of a query on an ANSI-compliant database, there are no quo-
tation marks around the table owner name. Whereas the two previous que-
ries searched the table Aleta.customer, this SELECT statement searches the
table ALETA.customer (which is a different table).

SELECT lname, city, state, phone
FROM Aleta.customer
WHERE state NOT IN ("AZ", "NJ")
ORDER BY state

Here, by adding the keyword NOT IN, the subset is changed to exclude the
subsets AZ and NJ in the state column. The results are in order of state.

lname city state phone

Pauli Sunnyvale CA 408-789-8075
Sadler San Francisco CA 415-822-1289
Currie Palo Alto CA 415-328-4543
Higgins Redwood City CA 415-368-1100
Vector Los Altos CA 415-776-3249
Watson Mountain View CA 415-389-8789
Ream Palo Alto CA 415-356-9876
Quinn Redwood City CA 415-544-8729
Miller Sunnyvale CA 408-723-8789
Jaeger Redwood City CA 415-743-3611
Keyes Sunnyvale CA 408-277-7245
Lawson Los Altos CA 415-887-7235
Beatty Menlo Park CA 415-356-9982
Albertson Redwood City CA 415-886-6677
Grant Menlo Park CA 415-356-1123
Parmelee Mountain View CA 415-534-8822
Sipes Redwood City CA 415-245-4578
Baxter Oakland CA 415-655-0011
Neelie Denver CO 303-936-7731
Wallack Wilmington DE 302-366-7511
Hanlon Jacksonville FL 904-823-4239
Henry Brighton MA 617-232-4159
Satifer Blue Island NY 312-944-5691
Putnum Bartlesville OK 918-355-2074
2-32 Simple SELECT Statements

Single-Table SELECT Statements
Identifying NULL Values

Use the IS NULL or IS NOT NULL option to check for NULL values. A NULL
represents either a value that is unknown or not applicable, or the absence of
data. A NULL value is not the same as a zero or blank.

SELECT order_num, customer_num, po_num, ship_date
FROM orders
WHERE paid_date IS NULL
ORDER BY customer_num

This SELECT statement returns all rows that have a NULL paid_date.

Forming Compound Conditions

You can connect two or more comparison conditions or Boolean expressions
by using the logical operators AND, OR, and NOT. A Boolean expression eval-
uates astrue orfalse or, if NULL values are involved, asunknown. You can
use TEXT or BYTE objects in a Boolean expression only when you test for a
NULL value.

Here, the operator AND combines two comparison expressions in the WHERE
clause.

SELECT order_num, customer_num, po_num, ship_date
FROM orders
WHERE paid_date IS NULL

AND ship_date IS NOT NULL
ORDER BY customer_num

order_num customer_num po_num ship_date

1004 106 8006 05/30/1991
1006 112 Q13557
1007 117 278693 06/05/1991
1012 117 278701 06/29/1991
1016 119 PC6782 07/12/1991
1017 120 DM354331 07/13/1991
Simple SELECT Statements 2-33

Single-Table SELECT Statements
This SELECT statement returns all rows that have a NULL paid_date and that
do not also have a NULL ship_date.

Using Variable Text Searches

You can use the keywords LIKE and MATCHES for variable text queries based
on substring searches of CHARACTER fields. Include the keyword NOT to
indicate the opposite condition. The keyword LIKE is the ANSI standard,
whereas MATCHES is an Informix extension.

Variable text search strings can include the wildcards listed in Figure 2-3
with LIKE or MATCHES.

Symbol Meaning

 LIKE

% evaluates to zero or more characters
 _ evaluates to a single character
 \ escapes special significance of next character

 MATCHES

 * evaluates to zero or more characters
? evaluates to a single character (except NULL)
[] evaluates to single character or range of values
\ escapes special significance of next character

Figure 2-3 Wildcards used with LIKE and MATCHES

You cannot test a TEXT or BYTE column with LIKE or MATCHES.

Using Exact Text Comparisons

The following examples include a WHERE clause that searches for exact text
comparisons by using the keyword LIKE or MATCHES or the relational oper-
ator =. Unlike earlier examples, these examples illustrate how to query on an
external table in an ANSI-compliant database.

order_num customer_num po_num ship_date

1004 106 8006 05/30/1991
1007 117 278693 06/05/1991
1012 117 278701 06/29/1991
1016 119 PC6782 07/12/1991
1017 120 DM354331 07/13/1991
2-34 Simple SELECT Statements

Single-Table SELECT Statements
An external table is a table that is not in the current database. You can access
only external tables that are part of an ANSI-compliant database.

Whereas the database used previously in this chapter was the demonstration
database called stores5, the FROM clause in the following examples specifies
the manatee table, created by the owner bubba, which resides in an ANSI-
compliant database named syzygy. For more information on defining exter-
nal tables, see the IBM Informix Guide to SQL: Reference.

SELECT * FROM syzygy:bubba.manatee
WHERE description = "helmet"
ORDER BY mfg_code

SELECT * FROM syzygy:bubba.manatee
WHERE description LIKE "helmet"
ORDER BY mfg_code

SELECT * FROM syzygy:bubba.manatee
WHERE description MATCHES "helmet"
ORDER BY mfg_code

Any of these SELECT statements retrieves all the rows that have the single
word helmet in the description column.

Using a Single-Character Wildcard

The following examples illustrate the use of a single-character wildcard in a
WHERE clause. Further, they demonstrate a query on an external table. Here,
the stock table is in the external database sloth, which, besides being outside
the current stores5 database, is on a separate database server called meerkat.

stock_no mfg_code description unit_price unit unit_type

991 ANT helmet $222.00 case 4/case
991 BKE helmet $269.00 case 4/case
991 JSK helmet $311.00 each 4/case
991 PRM helmet $234.00 case 4/case
991 SHR helmet $245.00 case 4/case
Simple SELECT Statements 2-35

Single-Table SELECT Statements
For details on external tables, external databases, and networks, see
Chapter 12 in this manual. See also the IBM Informix Guide to SQL: Reference.

SELECT * FROM sloth@meerkat:stock
WHERE manu_code LIKE "_R_"

AND unit_price >= 100
ORDER BY description, unit_price

SELECT * FROM sloth@meerkat:stock
WHERE manu_code MATCHES "?R?"

AND unit_price >= 100
ORDER BY description, unit_price

Both SELECT statements retrieve only those rows for which the middle letter
of the manu_code is R.

The comparison "_R_" (for LIKE) or "?R?" (for MATCHES) specifies, from
left to right, the following items:

• Any single character

• The letter R

• Any single character

stock_num manu_code description unit_price unit unit_descr

205 HRO 3 golf balls $312.00 each 24/case
306 PRC Tandem adapter $160.00 each each
307 PRC baby jogger $250.00 each each
2 HRO baseball $126.00 case 24/case
1 HRO baseball gloves $250.00 case 10 gloves/case
7 HRO basketball $600.00 case 24/case

102 PRC bicycle brakes $480.00 case 4 sets/case
114 PRC bicycle gloves $120.00 case 10 pairs/case
4 HRO football $480.00 case 24/case

110 PRC helmet $236.00 case 4/case
110 HRO helmet $260.00 case 4/case
308 PRC twin jogger $280.00 each each
304 HRO watch $280.00 box 10/box
2-36 Simple SELECT Statements

Single-Table SELECT Statements
WHERE Clause with Restricted Single-Character Wildcard

SELECT * FROM stock
WHERE manu_code MATCHES "[A-H]*"
ORDER BY description, manu_code, unit_price

This statement selects only those rows where the manu_code begins with A
through H and returns the following rows:

The class test "[A-H]" specifies any single letter from A through H inclusive.
There is no equivalent wildcard symbol for the LIKE keyword.

stock_num manu_code description unit_price unit unit_descr

205 ANZ 3 golf balls $312.00 case 24/case
205 HRO 3 golf balls $312.00 case 24/case
2 HRO baseball $126.00 case 24/case
3 HSK baseball bat $240.00 case 12/case
1 HRO baseball gloves $250.00 case 10 gloves/case
1 HSK baseball gloves $800.00 case 10 gloves/case
7 HRO basketball $600.00 case 24/case

.

.

.
110 ANZ helmet $244.00 case 4/case
110 HRO helmet $260.00 case 4/case
110 HSK helmet $308.00 case 4/case
.
.
.
301 ANZ running shoes $95.00 each each
301 HRO running shoes $42.50 each each
313 ANZ swim cap $60.00 box 12/box
6 ANZ tennis ball $48.00 case 24 cans/case
5 ANZ tennis racquet $19.80 each each
8 ANZ volleyball $840.00 case 24/case
9 ANZ volleyball net $20.00 each each

304 ANZ watch $170.00 box 10/box
304 HRO watch $280.00 box 10/box
Simple SELECT Statements 2-37

Single-Table SELECT Statements
WHERE Clause with Variable-Length Wildcard

These examples use a wildcard at the end of a string to retrieve all the rows
where the description begins with the characters bicycle.

SELECT * FROM stock
WHERE description LIKE "bicycle%"
ORDER BY description, manu_code

SELECT * FROM stock
WHERE description MATCHES "bicycle*"
ORDER BY description, manu_code

Either SELECT statement returns these rows:

The comparison "bicycle%" or "bicycle*" specifies the characters
bicycle followed by any sequence of zero or more characters. It matches
bicycle stem with stem matched by the wildcard. It matches to the char-
acters bicycle alone, if there is a row with that description.

The next SELECT statement narrows the search further by adding another
comparison condition that excludes a manu_code of PRC.

SELECT * FROM stock
WHERE description LIKE "%bicycle%"

AND manu_code NOT LIKE "PRC"
ORDER BY description, manu_code

The SELECT statement retrieves only these rows:

stock_num manu_code description unit_price unit unit_descr

102 PRC bicycle brakes $480.00 case 4 sets/case
102 SHM bicycle brakes $220.00 case 4 sets/case
114 PRC bicycle gloves $120.00 case 10 pairs/case
107 PRC bicycle saddle $70.00 pair pair
106 PRC bicycle stem $23.00 each each
101 PRC bicycle tires $88.00 box 4/box
101 SHM bicycle tires $68.00 box 4/box
105 PRC bicycle wheels $53.00 pair pair
105 SHM bicycle wheels $80.00 pair pair

stock_num manu_code description unit_price unit unit_descr

102 SHM bicycle brakes $220.00 case 4 sets/case
101 SHM bicycle tires $68.00 box 4/box
105 SHM bicycle wheels $80.00 pair pair
2-38 Simple SELECT Statements

Single-Table SELECT Statements
Note that when you select from a large table and use an initial wildcard in the
comparison string, the query often takes longer to execute. This is because
indexes cannot be used, so every row must be searched.

Comparing for Special Characters

The keyword ESCAPE used with LIKE or MATCHES lets you protect a special
character from misinterpretation as a wildcard symbol.

SELECT * FROM cust_calls
WHERE res_descr LIKE "%!%%" ESCAPE "!"

The ESCAPE keyword designates an escape character (it is ! in this example),
which protects one following character so it is interpreted as data and not as
a wildcard. In the example, the escape character causes the middle percent
sign to be treated as data. By using the ESCAPE keyword, you can search for
occurrences of a percent sign (%) in the res_descr column with the LIKE wild-
card %. The query retrieves the following row:

Using Subscripting in a WHERE Clause

You can use subscripting in the WHERE clause of a SELECT statement to specify
a range of characters or numbers in a column.

SELECT catalog_num, stock_num, manu_code, cat_advert,
cat_descr

FROM catalog
WHERE cat_advert[1,4] = "High"

The subscript [1,4] causes the query to retrieve all rows in which the first
four letters of the cat_advert column are High.

 customer_num 116
 call_dtime 1990-12-21 11:24
 user_id mannyn
 call_code I
 call_descr Second complaint from this customer! Received

two cases right-handed outfielder gloves
(1 HRO) instead of one case lefties.

 res_dtime 1990-12-27 08:19
 res_descr Memo to shipping (Ava Brown) to send case of

left-handed gloves, pick up wrong case; memo
to billing requesting 5% discount to placate
customer due to second offense and lateness
of resolution because of holiday
Simple SELECT Statements 2-39

Single-Table SELECT Statements
catalog_num 10004
 stock_num 2
 manu_code HRO
 cat_advert Highest Quality Ball Available, from

Hand-Stitching to the Robinson Signature
 cat_descr
Jackie Robinson signature ball. Highest professional quality, used by National
League.

 catalog_num 10005
 stock_num 3
 manu_code HSK
 cat_advert High-Technology Design Expands the Sweet Spot
 cat_descr
Pro-style wood. Available in sizes: 31, 32, 33, 34, 35.

 catalog_num 10008
 stock_num 4
 manu_code HRO
 cat_advert Highest Quality Football for High School and

Collegiate Competitions
 cat_descr
NFL-style, pigskin.

 catalog_num 10012
 stock_num 6
 manu_code SMT
 cat_advert High-Visibility Tennis, Day or Night
 cat_descr
Soft yellow color for easy visibility in sunlight or
artificial light.

 catalog_num 10043
 stock_num 202
 manu_code KAR
 cat_advert High-Quality Woods Appropriate for High School

Competitions or Serious Amateurs
 cat_descr
Full set of woods designed for precision control and
power performance.

 catalog_num 10045
 stock_num 204
 manu_code KAR
 cat_advert High-Quality Beginning Set of Irons

Appropriate for High School Competitions
 cat_descr
Ideally balanced for optimum control. Nylon covered shaft.

 catalog_num 10068
 stock_num 310
 manu_code ANZ
 cat_advert High-Quality Kickboard
 cat_descr
White. Standard size.
2-40 Simple SELECT Statements

Single-Table SELECT Statements
Expressions and Derived Values
You are not limited to selecting columns by name. You can use the SELECT
clause of a SELECT statement to perform computations on column data and
to display information derived from the contents of one or more columns. You
do this by listing an expression in the select list.

An expression consists of a column name, a constant, a quoted string, a key-
word, or any combination of these connected by operators. It also can include
host variables (program data) when the SELECT statement is embedded in a
program.

Arithmetic Expressions

An arithmetic expression contains one or more arithmetic operators listed in
Figure 2-4 and translates to a number.

Operator Operation
+ addition
- subtraction
* multiplication
/ division

Figure 2-4 Arithmetic operators used in arithmetic expressions

Operations of this nature enable you to see the results of proposed computa-
tions without actually altering the data in the database. Add an INTO TEMP
clause to save the altered data in a temporary table for further reference, com-
putations, or impromptu reports.

You cannot use TEXT or BYTE columns in arithmetic expressions.

SELECT stock_num, description, unit, unit_descr,
unit_price, unit_price * 1.07

FROM stock
WHERE unit_price >= 400
Simple SELECT Statements 2-41

Single-Table SELECT Statements
This SELECT statement calculates a 7% sales tax on the unit_price column
when the unit_price is $400 or higher (but does not update it in the database).
If you are using the DB-Access or IBM Informix SQL Interactive Editor, the
result is displayed in a column labeled expression.

This statement calculates a surcharge of $6.50 on orders when the quantity
ordered is less than 5.

SELECT item_num, order_num, quantity,
total_price, total_price + 6.50

FROM items
WHERE quantity < 5

stock_num description unit unit_descr unit_price (expression)

1 baseball gloves case 10 gloves/case $800.00 $856.0000
1 baseball gloves case 10 gloves/case $450.00 $481.5000
4 football case 24/case $960.00 $1027.2000
4 football case 24/case $480.00 $513.6000
7 basketball case 24/case $600.00 $642.0000
8 volleyball case 24/case $840.00 $898.8000

102 bicycle brakes case 4 sets/case $480.00 $513.6000
111 10-spd, assmbld each each $499.99 $534.9893
112 12-spd, assmbld each each $549.00 $587.4300
113 18-spd, assmbld each each $685.90 $733.9130
203 irons/wedge case 2 sets/case $670.00 $716.9000
2-42 Simple SELECT Statements

Single-Table SELECT Statements
If you are using DB-Access or IBM Informix SQL, the result is displayed in a
column labeled expression.

SELECT customer_num, user_id, call_code,
call_dtime, res_dtime - call_dtime

FROM cust_calls
ORDER BY user_id

item_num order_num quantity total_price (expression)

1 1001 1 $250.00 $256.50
1 1002 1 $960.00 $966.50
2 1002 1 $240.00 $246.50
1 1003 1 $20.00 $26.50
2 1003 1 $840.00 $846.50
1 1004 1 $250.00 $256.50
2 1004 1 $126.00 $132.50
3 1004 1 $240.00 $246.50
4 1004 1 $800.00 $806.50
.
.
.
1 1021 2 $75.00 $81.50
2 1021 3 $225.00 $231.50
3 1021 3 $690.00 $696.50
4 1021 2 $624.00 $630.50
1 1022 1 $40.00 $46.50
2 1022 2 $96.00 $102.50
3 1022 2 $96.00 $102.50
1 1023 2 $40.00 $46.50
2 1023 2 $116.00 $122.50
3 1023 1 $80.00 $86.50
4 1023 1 $228.00 $234.50
5 1023 1 $170.00 $176.50
6 1023 1 $190.00 $196.50
Simple SELECT Statements 2-43

Single-Table SELECT Statements
This SELECT statement calculates and displays in an expression column (if you
are using DB-Access or IBM Informix SQL) the interval between when the cus-
tomer call was received (call_dtime) and when the call was resolved
(res_dtime), in days, hours, and minutes.

Using Display Labels

You can assign a display label to a computed or derived data column to replace
the default column header expression. In the three preceding examples, you
can define a display label after the computation in the SELECT clause. The
results displayed will be the same as shown earlier, but the column display-
ing derived values will now have descriptive headers.

SELECT stock_num, description, unit, unit_descr,
unit_price, unit_price * 1.07 taxed

FROM stock
WHERE unit_price >= 400

Here, the label taxed is assigned to the expression in the select list that dis-
plays the results of the operation unit_price * 1.07.

customer_num user_id call_code call_dtime (expression)

116 mannyn I 1990-12-21 11:24 5 20:55
116 mannyn I 1990-11-28 13:34 0 03:13
106 maryj D 1991-06-12 08:20 0 00:05
121 maryj O 1991-07-10 14:05 0 00:01
127 maryj I 1991-07-31 14:30
110 richc L 1991-07-07 10:24 0 00:06
119 richc B 1991-07-01 15:00 0 17:21

stock_num description unit unit_descr unit_price taxed

1 baseball gloves case 10 gloves/case $800.00 $856.0000
1 baseball gloves case 10 gloves/case $450.00 $481.5000
4 football case 24/case $960.00 $1027.2000
4 football case 24/case $480.00 $513.6000
7 basketball case 24/case $600.00 $642.0000
8 volleyball case 24/case $840.00 $898.8000

102 bicycle brakes case 4 sets/case $480.00 $513.6000
111 10-spd, assmbld each each $499.99 $534.9893
112 12-spd, assmbld each each $549.00 $587.4300
113 18-spd, assmbld each each $685.90 $733.9130
203 irons/wedge case 2 sets/case $670.00 $716.9000
2-44 Simple SELECT Statements

Single-Table SELECT Statements
In this SELECT statement, the label surcharge is defined for the column that
displays the results of the operation total_price + 6.50.

SELECT item_num, order_num, quantity,
total_price, total_price + 6.50 surcharge

FROM items
WHERE quantity < 5

The surcharge column is labeled in the output.

This SELECT statement assigns the label span to the column that displays the
results of subtracting the DATETIME column call_dtime from the DATETIME
column res_dtime.

SELECT customer_num, user_id, call_code,
call_dtime, res_dtime - call_dtime span

FROM cust_calls
ORDER BY user_id

item_num order_num quantity total_price surcharge
.
.
.
2 1013 1 $36.00 $42.50
3 1013 1 $48.00 $54.50
4 1013 2 $40.00 $46.50
1 1014 1 $960.00 $966.50
2 1014 1 $480.00 $486.50
1 1015 1 $450.00 $456.50
1 1016 2 $136.00 $142.50
2 1016 3 $90.00 $96.50
3 1016 1 $308.00 $314.50
4 1016 1 $120.00 $126.50
1 1017 4 $150.00 $156.50
2 1017 1 $230.00 $236.50
.
.
.

Simple SELECT Statements 2-45

Single-Table SELECT Statements
The span column is labeled in the output.

Sorting on Derived Columns

When you want to ORDER BY an expression, you can use either the display
label assigned to the expression or an integer.

SELECT customer_num, user_id, call_code,
call_dtime, res_dtime - call_dtime span

FROM cust_calls
ORDER BY span

This query retrieves the same data from the cust_calls table as the previous
query, but here the ORDER BY clause causes the data to be displayed in
ascending order of the derived values in the span column.

The next version uses an integer to represent the result of the operation
res_dtime - call_dtime and retrieves the same rows.

SELECT customer_num, user_id, call_code,
call_dtime, res_dtime - call_dtime span

FROM cust_calls
ORDER BY 5

customer_num user_id call_code call_dtime span

116 mannyn I 1990-12-21 11:24 5 20:55
116 mannyn I 1990-11-28 13:34 0 03:13
106 maryj D 1991-06-12 08:20 0 00:05
121 maryj O 1991-07-10 14:05 0 00:01
127 maryj I 1991-07-31 14:30
110 richc L 1991-07-07 10:24 0 00:06
119 richc B 1991-07-01 15:00 0 17:21

customer_num user_id call_code call_dtime span

127 maryj I 1991-07-31 14:30
121 maryj O 1991-07-10 14:05 0 00:01
106 maryj D 1991-06-12 08:20 0 00:05
110 richc L 1991-07-07 10:24 0 00:06
116 mannyn I 1990-11-28 13:34 0 03:13
119 richc B 1991-07-01 15:00 0 17:21
116 mannyn I 1990-12-21 11:24 5 20:55
2-46 Simple SELECT Statements

Single-Table SELECT Statements
Using Functions in SELECT Statements
In addition to column names and operators, an expression also can include
one or more functions.

There are five aggregate functions and eight time functions, as well as the
LENGTH, USER, TODAY, HEX, ROUND, and TRUNC functions. These func-
tions are described in detail in the IBM Informix Guide to SQL: Reference.

Aggregate Functions

The aggregate functions are COUNT, AVG, MAX, MIN, and SUM. They take on
values that depend on all the rows selected and return information about
rows, not the rows themselves. You cannot use these functions with TEXT or
BYTE columns.

Aggregates often are used to summarize information about groups of rows
in a table. This use is discussed in Chapter 3. When you apply an aggregate
function to an entire table, the result contains a single row that summarizes
all of the selected rows.

This SELECT statement counts and displays the total number of rows in the
stock table.

SELECT COUNT(*)
FROM stock

This is the result:

This statement includes a WHERE clause to count specific rows in the stock
table, in this case, only those rows that have a manu_code of SHM.

SELECT COUNT (*)
FROM stock
WHERE manu_code = "SHM"

This is the result:

(count(*))

73

(count(*))

16
Simple SELECT Statements 2-47

Single-Table SELECT Statements
By including the keyword DISTINCT (or its synonym UNIQUE) and a column
name in the SELECT statement, you can tally the number of different manu-
facturer codes in the stock table.

SELECT COUNT (DISTINCT manu_code)
FROM stock

This is the result:

This SELECT statement computes the average unit_price of all rows in the
stock table.

SELECT AVG (unit_price)
FROM stock

This is the result:

This SELECT statement computes the average unit_price of just those rows in
the stock table that have a manu_code of SHM.

SELECT AVG (unit_price)
FROM stock
WHERE manu_code = "SHM"

 This is the result:

You can combine aggregate functions in a SELECT statement.

SELECT MAX (ship_charge), MIN (ship_charge)
FROM orders

(count)

9

(avg)

$196.00

(avg)

$200.24
2-48 Simple SELECT Statements

Single-Table SELECT Statements
This SELECT statement finds and displays both the highest and lowest
ship_charge in the orders table.

You can apply functions to expressions, and you can supply display labels for
their results.

SELECT MAX (res_dtime - call_dtime) maximum,
MIN (res_dtime - call_dtime) minimum,
AVG (res_dtime - call_dtime) average
FROM cust_calls

This query finds and displays the maximum, minimum, and average amount
of time (in days, hours, and minutes) between the reception and resolution of
a customer call and labels the derived values appropriately.

SELECT SUM (ship_weight)
FROM orders
WHERE ship_date = "07/13/1991"

This SELECT statement calculates and displays the total ship_weight of
orders shipped on July 13, 1991.

Time Functions

You can use the time functions DAY, MDY, MONTH, WEEKDAY, YEAR, and
DATE in either the SELECT clause or the WHERE clause of a query. These func-
tions return a value that corresponds to the expressions or arguments that
you use to call the function. You also can use the CURRENT function to return
a value with the current date and time, or the EXTEND function to adjust the
precision of a DATE or DATETIME value.

(max) (min)

$25.20 $5.00

maximum minimum average

5 20:55 0 00:01 1 02:56

(sum)

130.5
Simple SELECT Statements 2-49

Single-Table SELECT Statements
Using DAY and CURRENT

SELECT customer_num, DAY (call_dtime), DAY (res_dtime)
FROM cust_calls

This SELECT statement returns the day of the month for the call_dtime and
res_dtime columns in two expression columns.

SELECT customer_num, DAY (call_dtime), DAY (res_dtime)
FROM cust_calls
WHERE DAY (call_dtime) < DAY (CURRENT)

This SELECT statement uses the DAY and CURRENT functions to compare col-
umn values to the current day of the month. It selects only those rows where
the value is earlier than the current day.

customer_num (expression) (expression)

106 12 12
110 7 7
119 1 2
121 10 10
127 31
116 28 28
116 21 27

customer_num (expression) (expression)

106 12 12
110 7 7
119 1 2
2-50 Simple SELECT Statements

Single-Table SELECT Statements
SELECT customer_num, call_code, call_descr
FROM cust_calls
WHERE call_dtime < CURRENT YEAR TO DAY

This query shows another use of the CURRENT function, selecting rows
where the day is earlier than the current one.

customer_num 106
call_code D
call_descr Order was received, but two of the cans of ANZ tennis

balls within the case were empty

customer_num 116
call_code I
call_descr Received plain white swim caps (313 ANZ) instead of

navy with team logo (313 SHM)

customer_num 116
call_code I
call_descr Second complaint from this customer! Received two

cases right-handed outfielder gloves (1 HRO) instead of
one case lefties.
Simple SELECT Statements 2-51

Single-Table SELECT Statements
Using MONTH

SELECT customer_num,
MONTH (call_dtime) call_month,
MONTH (res_dtime) res_month
FROM cust_calls

This SELECT statement uses the MONTH function to extract and show what
month the customer call was received and resolved and uses display labels
for the resulting columns. However, it does not make a distinction between
years.

SELECT customer_num,
MONTH (call_dtime) called,
MONTH (res_dtime) resolved
FROM cust_calls
WHERE DAY (res_dtime) < DAY (CURRENT)

This SELECT statement uses the MONTH function plus DAY and CURRENT to
show what month the customer call was received and resolved if DAY is ear-
lier than the current day.

customer_num call_month res_month

106 6 6
110 7 7
119 7 7
121 7 7
127 7
116 11 11
116 12 12

customer_num called resolved

106 6 6
110 7 7
119 7 7
121 7 7
2-52 Simple SELECT Statements

Single-Table SELECT Statements
Using WEEKDAY

SELECT customer_num,
WEEKDAY (call_dtime) called,
WEEKDAY (res_dtime) resolved
FROM cust_calls
ORDER BY resolved

In this SELECT statement, the WEEKDAY function is used to indicate which
day of the week calls were received and resolved (0 represents Sunday, 1 is
Monday, and so on), and the expression columns are labeled.

SELECT COUNT(*)
FROM cust_calls
WHERE WEEKDAY (call_dtime) IN (0,7)

This SELECT statement uses the COUNT and WEEKDAY functions to count
how many calls were received on a weekend. This kind of SELECT would give
you an idea of customer call patterns or indicate whether overtime pay might
be required.

customer_num called resolved

127 2
119 0 1
106 2 2
121 2 2
116 2 2
116 4 3
110 6 6

(count(*))

1

Simple SELECT Statements 2-53

Single-Table SELECT Statements
SELECT customer_num, call_code,
YEAR (call_dtime) call_year,
YEAR (res_dtime) res_year
FROM cust_calls
WHERE YEAR (call_dtime) < YEAR (TODAY)

This SELECT statement retrieves rows where the call_dtime is earlier than the
beginning of the current year.

Formatting DATETIME Values

In the following query, the EXTEND function restricts the two DATETIME val-
ues by displaying only the specified subfields.

SELECT customer_num,
EXTEND (call_dtime, month to minute) call_time,
EXTEND (res_dtime, month to minute) res_time
FROM cust_calls
ORDER BY res_time

The result returns the month-to-minute range for the columns labeled
call_time and res_time and gives an indication of the workload.

customer_num call_code call_year res_year

116 I 1990 1990
116 I 1990 1990

customer_num call_time res_time

127 07-31 14:30
106 06-12 08:20 06-12 08:25
119 07-01 15:00 07-02 08:21
110 07-07 10:24 07-07 10:30
121 07-10 14:05 07-10 14:06
116 11-28 13:34 11-28 16:47
116 12-21 11:24 12-27 08:19
2-54 Simple SELECT Statements

Single-Table SELECT Statements
Using the DATE Function

This query retrieves DATETIME values only when call_dtime is later than the
specified DATE.

SELECT customer_num, call_dtime, res_dtime
FROM cust_calls
WHERE call_dtime > DATE ("12/31/90")

It returns these rows:

SELECT customer_num,
DATE (call_dtime) called,
DATE (res_dtime) resolved
FROM cust_calls
WHERE call_dtime >= DATE ("1/1/91")

Here, the SELECT statement converts DATETIME values to DATE format and
displays the values, with labels, only when call_dtime is greater than or
equal to the specified date.

Other Functions and Keywords

You also can use the LENGTH, USER, CURRENT, and TODAY functions any-
where in an SQL expression that you would use a constant. In addition, with
IBM Informix OnLine, you can include the SITENAME keyword in a SELECT
statement to display the name of the database server where the current data-
base resides.

customer_num call_dtime res_dtime

106 1991-06-12 08:20 1991-06-12 08:25
110 1991-07-07 10:24 1991-07-07 10:30
119 1991-07-01 15:00 1991-07-02 08:21
121 1991-07-10 14:05 1991-07-10 14:06
127 1991-07-31 14:30

customer_num called resolved

106 06/12/1991 06/12/1991
110 07/07/1991 07/07/1991
119 07/01/1991 07/02/1991
121 07/10/1991 07/10/1991
127 07/31/1991
Simple SELECT Statements 2-55

Single-Table SELECT Statements
You can use these functions and keywords to select an expression that con-
sists entirely of constant values or one that includes column data. In the first
instance, the result is the same for all rows of output.

In addition, you can use the HEX function to return the hexadecimal encoding
of an expression, the ROUND function to return the rounded value of an
expression, and the TRUNC function to return the truncated value of an
expression.

SELECT customer_num,
LENGTH (fname) + LENGTH (lname) namelength
FROM customer
WHERE LENGTH (company) > 15

In this SELECT statement, the LENGTH function calculates the number of
bytes in the combined fname and lname columns for each row where the
length of company is greater than 15.

While perhaps not too useful when you work with the DB-Access or
IBM Informix SQL Interactive Editor, the LENGTH function can be important
to determine the string length for programs and reports. LENGTH returns the
clipped length of a CHARACTER or VARCHAR string and the full number of
bytes in a TEXT or BYTE string.

The USER function can be handy when you want to define a restricted view
of a table that contains only your rows. For information on creating views, see
Chapter 11 in this manual. See the IBM Informix Guide to SQL: Reference for
information on the GRANT and CREATE VIEW statements.

customer_num namelength

101 11
105 13
107 11
112 14
115 11
118 10
119 10
120 10
122 12
124 11
125 10
126 12
127 10
128 11
2-56 Simple SELECT Statements

Single-Table SELECT Statements
This SELECT statement specifies the cust_calls table.

SELECT USER from cust_calls

This SELECT statement returns the user name (login account name) of the
user who executes the query. It is repeated once for each row in the table.

SELECT * FROM cust_calls
WHERE user_id = USER

If the user name of the current user is richc, this SELECT statement retrieves
only those rows in the cust_calls table that are owned by that user.

SELECT * FROM orders
WHERE order_date = TODAY

This SELECT statement, if issued when today’s system date is July 10, 1991,
returns this one row:

customer_num 110
call_dtime 1991-07-07 10:24
user_id richc
call_code L
call_descr Order placed one month ago (6/7) not received.
res_dtime 1991-07-07 10:30
res_descr Checked with shipping (Ed Smith). Order sent

yesterday- we were waiting for goods from ANZ. Next
time will call with delay if necessary.

customer_num 119
call_dtime 1991-07-01 15:00
user_id richc
call_code B
call_descr Bill does not reflect credit from previous order
res_dtime 1991-07-02 08:21
res_descr Spoke with Jane Akant in Finance. She found the

error and is sending new bill to customer

 order_num 1018
 order_date 07/10/1991
 customer_num 121
 ship_instruct SW corner of Biltmore Mall
 backlog n
 po_num S22942
 ship_date 07/13/1991
 ship_weight 70.50
 ship_charge $20.00
 paid_date 08/06/1991
Simple SELECT Statements 2-57

Single-Table SELECT Statements
You can include the keyword SITENAME in a SELECT statement on
IBM Informix OnLine to find the name of the database server. You can query
on the SITENAME for any table that has rows, including system catalog tables.

SELECT SITENAME server, tabid FROM systables
WHERE tabid <= 4

In this SELECT statement, you assign the label server to the SITENAME
expression and also select the tabid column from the systables system cata-
log table. This table describes database tables, and tabid is the serial interval
table identifier.

Without the WHERE clause to restrict the values in the tabid, the database
server name would be repeated for each row of the systables table.

server tabid

 montague 1
 montague 2
 montague 3
 montague 4
2-58 Simple SELECT Statements

Single-Table SELECT Statements
SELECT HEX(customer_num) hexnum, HEX (zipcode) hexzip,
HEX (rowid) hexrow
FROM CUSTOMER

In this SELECT statement, the HEX function returns the hexadecimal format
of three specified columns in the customer table:

hexnum hexzip hexrow

0x00000065 0x00016F86 0x00000001
0x00000066 0x00016FA5 0x00000002
0x00000067 0x0001705F 0x00000003
0x00000068 0x00016F4A 0x00000004
0x00000069 0x00016F46 0x00000005
0x0000006A 0x00016F6F 0x00000006
0x0000006B 0x00017060 0x00000007
0x0000006C 0x00016F6F 0x00000008
0x0000006D 0x00016F86 0x00000009
0x0000006E 0x00016F6E 0x0000000A
0x0000006F 0x00016F85 0x0000000B
0x00000070 0x00016F46 0x0000000C
0x00000071 0x00016F49 0x0000000D
0x00000072 0x00016F6E 0x0000000E
0x00000073 0x00016F49 0x0000000F
0x00000074 0x00016F58 0x00000010
0x00000075 0x00016F6F 0x00000011
0x00000076 0x00017191 0x00000012
0x00000077 0x00001F42 0x00000013
0x00000078 0x00014C18 0x00000014
0x00000079 0x00004DBA 0x00000015
0x0000007A 0x0000215C 0x00000016
0x0000007B 0x00007E00 0x00000017
0x0000007C 0x00012116 0x00000018
0x0000007D 0x00000857 0x00000019
0x0000007E 0x0001395B 0x0000001A
0x0000007F 0x0000EBF6 0x0000001B
0x00000080 0x00014C10 0x0000001C
Simple SELECT Statements 2-59

Multiple-Table SELECT Statements
Multiple-Table SELECT Statements
You can select data from two or more tables by naming these tables in the
FROM clause. Add a WHERE clause to create a join condition between at least
one related column in each table. This creates a temporary composite table in
which each pair of rows that satisfies the join condition is linked to form a
single row.

A simple join combines information from two or more tables based on the rela-
tionship between one column in each table. A composite join is a join between
two or more tables based on the relationship between two or more columns
in each table.

To create a join, you must specify a relationship, called a join condition,
between at least one column from each table. Because the columns are being
compared, they must have compatible data types. When you join large tables,
performance will be better when the columns in the join condition are
indexed.

Data types are described in Chapter 3 of IBM Informix Guide to SQL: Reference,
and indexing is discussed in Chapters 4 and 10 of this manual.

Creating a Cartesian Product
When you perform a multiple-table query that does not explicitly state a join
condition among the tables, you create a Cartesian product. A Cartesian prod-
uct consists of every possible combination of rows from the tables. This is
usually a very large, unwieldy result and the data will not be accurate.

This SELECT statement selects from two tables and produces a Cartesian
product.

SELECT * FROM customer, state
2-60 Simple SELECT Statements

Multiple-Table SELECT Statements
Although there are only 52 rows in the state table and 28 rows in the cus-
tomer table, the effect of this SELECT statement is to multiply the rows of one
table by the rows of the other and retrieve an impractical 1456 rows.

Note that some of the data displayed in the concatenated rows is inaccurate.
For example, while the city and state from the customer table indicate an
address in California, the code and sname from the state table might be for a
different state.

customer_num 101
 fname Ludwig
 lname Pauli
 company All Sports Supplies
 address1 213 Erstwild Court
 address2
 city Sunnyvale
 state CA
 zipcode 94086
 phone 408-789-8075
 code AK
 sname Alaska

 customer_num 101
 fname Ludwig
 lname Pauli
 company All Sports Supplies
 address1 213 Erstwild Court
 address2
 city Sunnyvale
 state CA
 zipcode 94086
 phone 408-789-8075
 code HI
 sname Hawaii

 customer_num 101
 fname Ludwig
 lname Pauli
 company All Sports Supplies
 address1 213 Erstwild Court
 address2
 city Sunnyvale
 state CA
 zipcode 94086
 phone 408-789-8075
 code CA
 sname California
.
.
.

Simple SELECT Statements 2-61

Multiple-Table SELECT Statements
Creating a Join
Conceptually, the first stage of any join is the creation of a Cartesian product.
To refine or constrain this Cartesian product and eliminate meaningless rows
of data, include a WHERE clause with a valid join condition in your SELECT
statement.

This section illustrates equi-joins, natural joins, and multiple-table joins. More
complex forms, such as self-joins and outer joins, are covered in Chapter 3.

Equi-Join

An equi-join is a join based on equality or matching values. This equality is
indicated with an equal sign (=) in the comparison operation in the WHERE
clause.

SELECT * FROM manufact, stock
WHERE manufact.manu_code = stock.manu_code

This SELECT statement joins the manufact and stock tables on the
manu_code column, retrieving only those rows for which the values for the
two columns are equal.
2-62 Simple SELECT Statements

Multiple-Table SELECT Statements
Note that in this equi-join, the output includes the manu_code column from
both the manufact and stock tables because the select list requested every
column.

manu_code SMT
 manu_name Smith
 lead_time 3
 stock_num 1
 manu_code SMT
 description baseball gloves
 unit_price $450.00
 unit case
 unit_descr 10 gloves/case

 manu_code SMT
 manu_name Smith
 lead_time 3
 stock_num 5
 manu_code SMT
 description tennis racquet
 unit_price $25.00
 unit each
 unit_descr each

 manu_code SMT
 manu_name Smith
 lead_time 3
 stock_num 6
 manu_code SMT
 description tennis ball
 unit_price $36.00
 unit case
 unit_descr 24 cans/case

manu_code ANZ
 manu_name Anza
 lead_time 5
 stock_num 5
 manu_code ANZ
 description tennis racquet
 unit_price $19.80
 unit each
 unit_descr each
.
.
.

Simple SELECT Statements 2-63

Multiple-Table SELECT Statements
You also can create an equi-join with additional constraints, one where the
comparison condition is based on the inequality of values in the joined col-
umns. These kinds of joins use a relational operator other than = in the com-
parison condition specified in the WHERE clause.

When columns in the joined tables have the same name, the columns must be
preceded by the name of a specific table and a period, as shown in the follow-
ing example:

SELECT order_num, order_date, ship_date, cust_calls.*
FROM orders, cust_calls
WHERE call_dtime >= ship_date

AND cust_calls.customer_num = orders.customer_num
ORDER BY customer_num
2-64 Simple SELECT Statements

Multiple-Table SELECT Statements
This SELECT statement joins on the customer_num column and then selects
only those rows where the call_dtime in the cust_calls table is greater than
or equal to the ship_date in the orders table. It returns these rows:

Natural Join

A natural join is structured so that the join column does not display data
redundantly, as in the following example:

SELECT manu_name, lead_time, stock.*
FROM manufact, stock
WHERE manufact.manu_code = stock.manu_code

 order_num 1004
 order_date 05/22/1991
 ship_date 05/30/1991
 customer_num 106
 call_dtime 1991-06-12 08:20
 user_id maryj
 call_code D
 call_descr Order received okay, but two of the cans of

ANZ tennis balls within the case were empty
 res_dtime 1991-06-12 08:25
 res_descr Authorized credit for two cans to customer,

issued apology. Called ANZ buyer to report
the qa problem.

 order_num 1008
 order_date 06/07/1991
 ship_date 07/06/1991
 customer_num 110
 call_dtime 1991-07-07 10:24
 user_id richc
 call_code L
 call_descr Order placed one month ago (6/7) not received.
 res_dtime 1991-07-07 10:30
 res_descr Checked with shipping (Ed Smith). Order out

yesterday-was waiting for goods from ANZ.
Next time will call with delay if necessary.

 order_num 1023
 order_date 07/24/1991
 ship_date 07/30/1991
 customer_num 127
 call_dtime 1991-07-31 14:30
 user_id maryj
 call_code I
 call_descr Received Hero watches (item # 304) instead

of ANZ watches
 res_dtime
 res_descr Sent memo to shipping to send ANZ item 304

to customer and pickup HRO watches. Should
be done tomorrow, 8/1
Simple SELECT Statements 2-65

Multiple-Table SELECT Statements
Like the previous example, this SELECT statement joins the manufact and
stock tables on the manu_code column, but because the select list is more
closely defined, the manu_code is listed only once for each row retrieved:

 manu_name Smith
 lead_time 3
 stock_num 1
 manu_code SMT
 description baseball gloves
 unit_price $450.00
 unit case
 unit_descr 10 gloves/case

 manu_name Smith
 lead_time 3
 stock_num 5
 manu_code SMT
 description tennis racquet
 unit_price $25.00
 unit each
 unit_descr each

 manu_name Smith
 lead_time 3
 stock_num 6
 manu_code SMT
 description tennis ball
 unit_price $36.00
 unit case
 unit_descr 24 cans/case

 manu_name Anza
 lead_time 5
 stock_num 5
 manu_code ANZ
 description tennis racquet
 unit_price $19.80
 unit each
 unit_descr each
.
.
.

2-66 Simple SELECT Statements

Multiple-Table SELECT Statements
All joins are associative, that is, the order of the joining terms in the WHERE
clause does not affect the meaning of the join.

SELECT catalog.*, description, unit_price, unit, unit_descr
FROM catalog, stock
WHERE catalog.stock_num = stock.stock_num

AND catalog.manu_code = stock.manu_code
AND catalog_num = 10017

SELECT catalog.*, description, unit_price, unit, unit_descr
FROM catalog, stock
WHERE catalog_num = 10017

AND catalog.manu_code = stock.manu_code
AND catalog.stock_num = stock.stock_num

Both of these SELECT statements create the same natural join and retrieve the
following row:

Note that this display includes a TEXT column, cat_descr; a BYTE column,
cat_picture; and a VARCHAR column, cat_advert.

 catalog_num 10017
 stock_num 101
 manu_code PRC
 cat_descr
 Reinforced, hand-finished tubular. Polyurethane belted.
 Effective against punctures. Mixed tread for super wear
 and road grip.
 cat_picture <BYTE value>

 cat_advert Ultimate in Puncture Protection, Tires
Designed for In-City Riding

 description bicycle tires
 unit_price $88.00
 unit box
 unit_descr 4/box
Simple SELECT Statements 2-67

Multiple-Table SELECT Statements
Multiple-Table Join

A multiple-table join connects more than two tables on one or more associ-
ated columns. It can be an equi-join or a natural join.

SELECT * FROM catalog, stock, manufact
WHERE catalog.stock_num = stock.stock_num

AND stock.manu_code = manufact.manu_code
AND catalog_num = 10025

This SELECT statement creates an equi-join on the catalog, stock, and
manufact tables and retrieves the following row:

Note that the manu_code is repeated three times, once for each table, and
stock_num is repeated twice.

Because of the considerable duplication in the previous example of a
multiple-table query, it is wise to more closely define the SELECT statement
by including specific columns in the select list.

 catalog_num 10025
 stock_num 106
 manu_code PRC
 cat_descr
 Hard anodized alloy with pearl finish; 6mm hex bolt hardware.
 Available in lengths of 90-140mm in 10mm increments.
 cat_picture <BYTE value>

 cat_advert ProCycle Stem with Pearl Finish
 stock_num 106
 manu_code PRC
 description bicycle stem
 unit_price $23.00
 unit each
 unit_descr each
 manu_code PRC
 manu_name ProCycle
 lead_time 9
2-68 Simple SELECT Statements

Multiple-Table SELECT Statements
SELECT catalog.*, description, unit_price, unit,
unit_descr, manu_name, lead_time

FROM catalog, stock, manufact
WHERE catalog.stock_num = stock.stock_num

AND stock.manu_code = manufact.manu_code
AND catalog_num = 10025

This SELECT statement uses a wildcard to select all columns from the table
having the most columns and then specifies columns from the other two
tables. This SELECT statement produces the following natural join that
displays the same information as the previous example, but without
duplication:

 catalog_num 10025
 stock_num 106
 manu_code PRC
 cat_descr
 Hard anodized alloy with pearl finish. 6mm hex bolt hardware.
 Available in lengths of 90-140mm in 10mm increments.
 cat_picture <BYTE value>

 cat_advert ProCycle Stem with Pearl Finish
 description bicycle stem
 unit_price $23.00
 unit each
 unit_descr each
 manu_name ProCycle
 lead_time 9
Simple SELECT Statements 2-69

Multiple-Table SELECT Statements
Some Query Shortcuts
You can use aliases, the INTO TEMP clause, and display labels to speed your
way through joins and multiple-table queries and produce output for other
uses.

Using Aliases

You can make multiple-table queries shorter and more readable by assigning
aliases to the tables in a SELECT statement. An alias is a word that immedi-
ately follows the name of a table in the FROM clause. You can use it wherever
the table name would be used, for instance, as a prefix to the column names
in the other clauses.

SELECT s.stock_num, s.manu_code, s.description,
s.unit_price, s.unit, c.catalog_num,
c.cat_descr, c.cat_advert, m.lead_time

FROM stock s, catalog c, manufact m
WHERE s.stock_num = c.stock_num

AND s.manu_code = c.manu_code
AND s.manu_code = m.manu_code
AND s.manu_code IN ("HRO", "HSK")
AND s.stock_num BETWEEN 100 AND 301

ORDER BY catalog_num

The associative nature of the SELECT statement allows you to use an alias
before you define it. In this example, the aliases s for the stock table, c for the
catalog table, and m for the manufact table are specified in the FROM clause
and used throughout the SELECT and WHERE clauses as column prefixes.

Compare the length of the preceding SELECT statement to the following one,
which does not use aliases.

SELECT stock.stock_num, stock.manu_code, stock.description,
 stock.unit_price, stock.unit, catalog.catalog_num,
 catalog.cat_descr, catalog.cat_advert,
 manufact.lead_time

FROM stock, catalog, manufact
WHERE stock.stock_num = catalog.stock_num

AND stock.manu_code = catalog.manu_code
AND stock.manu_code = manufact.manu_code
AND stock.manu_code IN ("HRO", "HSK")
AND stock.stock_num BETWEEN 100 AND 301

ORDER BY catalog_num
2-70 Simple SELECT Statements

Multiple-Table SELECT Statements
These two SELECT statements are equivalent and retrieve the following data:

Note that you cannot ORDER BY the TEXT column cat_descr or the BYTE
column cat_picture.

 stock_num 110
 manu_code HRO
 description helmet
 unit_price $260.00
 unit case
 catalog_num 10033
 cat_descr
 Newest ultralight helmet uses plastic shell. Largest ventilation
 channels of any helmet on the market. 8.5 oz.
 cat_advert Lightweight Plastic Slatted with Vents Assures Cool

Comfort Without Sacrificing Protection
 lead_time 4

 stock_num 110
 manu_code HSK
 description helmet
 unit_price $308.00
 unit each
 catalog_num 10034
 cat_descr
 Aerodynamic (teardrop) helmet covered with anti-drag fabric.
Credited with shaving 2 seconds/mile from winner’s time in
 Tour de France time-trial. 7.5 oz.
 cat_advert Teardrop Design Endorsed by Yellow Jerseys,

You Can Time the Difference
 lead_time 5

 stock_num 205
 manu_code HRO
 description 3 golf balls
 unit_price $312.00
 unit each
 catalog_num 10048
 cat_descr
 Combination fluorescent yellow and standard white.
 cat_advert HiFlier Golf Balls: Case Includes Fluorescent

Yellow and Standard White
 lead_time 4

 stock_num 301
 manu_code HRO
 description running shoes
 unit_price $42.50
 unit each
 catalog_num 10050
 cat_descr
 Engineered for serious training with exceptional stability.
 Fabulous shock absorption. Great durability. Specify
mens/womens, size.
 cat_advert Pronators and Supinators Take Heart: A Serious

Training Shoe For Runners Who Need Motion Control
 lead_time 4
Simple SELECT Statements 2-71

Multiple-Table SELECT Statements
You also can use aliases to shorten your queries on external tables residing in
external databases.

SELECT order_num, lname, fname, phone
FROM masterdb@central:customer c, sales@western:orders o
WHERE c.customer_num = o.customer_num

AND order_num <= 1010

This SELECT statement joins columns from two tables that reside in different
databases and systems, neither of which is the current database or system. By
assigning the aliases c and o to the long database@system:table names,
masterdb@central:customer and sales@western:orders, respectively, you
can use the aliases to shorten the expression in the WHERE clause and retrieve
this information.

For more information on external tables and external databases, see Chapter
12 in this manual and Chapter 7 in IBM Informix Guide to SQL: Reference.

You also can use synonyms as shorthand references to the long names of exter-
nal and current tables and views. For details on how to create and use syn-
onyms, see the CREATE SYNONYM statement in Chapter 7 of IBM Informix
Guide to SQL: Reference.

order_num lname fname phone

1001 Higgins Anthony 415-368-1100
1002 Pauli Ludwig 408-789-8075
1003 Higgins Anthony 415-368-1100
1004 Watson George 415-389-8789
1005 Parmelee Jean 415-534-8822
1006 Lawson Margaret 415-887-7235
1007 Sipes Arnold 415-245-4578
1008 Jaeger Roy 415-743-3611
1009 Keyes Frances 408-277-7245
1010 Grant Alfred 415-356-1123
2-72 Simple SELECT Statements

Multiple-Table SELECT Statements
The INTO TEMP Clause

By adding an INTO TEMP clause to your SELECT statement, you can tempo-
rarily save the results of a multiple-table query in a separate table that can be
queried or manipulated without modifying the database. Temporary tables
are dropped when you end your SQL session or when your program or report
terminates.

SELECT DISTINCT stock_num, manu_name, description,
unit_price, unit_price * 1.05

FROM stock, manufact
WHERE manufact.manu_code = stock.manu_code
INTO TEMP stockman

This SELECT statement creates a temporary table called stockman and stores
the results of the query in it.

You can query on this table and join it with other tables, thus avoiding a mul-
tiple sort and moving more quickly through the database. Temporary tables
are discussed at greater length in Chapter 4 of this manual.

stock_num manu_name description unit_price (expression)

1 Hero baseball gloves $250.00 $262.5000
1 Husky baseball gloves $800.00 $840.0000
1 Smith baseball gloves $450.00 $472.5000
2 Hero baseball $126.00 $132.3000
3 Husky baseball bat $240.00 $252.0000
4 Hero football $480.00 $504.0000
4 Husky football $960.00 $1008.0000
.
.
.

306 Shimara tandem adapter $190.00 $199.5000
307 ProCycle infant jogger $250.00 $262.5000
308 ProCycle twin jogger $280.00 $294.0000
309 Hero ear drops $40.00 $42.0000
309 Shimara ear drops $40.00 $42.0000
310 Anza kick board $84.00 $88.2000
310 Shimara kick board $80.00 $84.0000
311 Shimara water gloves $48.00 $50.4000
312 Hero racer goggles $72.00 $75.6000
312 Shimara racer goggles $96.00 $100.8000
Simple SELECT Statements 2-73

Summary
Summary
This chapter introduced sample syntax and results for basic kinds of SELECT
statements that are used to query on a relational database. Earlier sections of
the chapter showed how to perform the following activities:

• Select all columns and rows from a table with the SELECT and FROM
clauses.

• Select specific columns from a table with the SELECT and FROM clauses.

• Select specific rows from a table with the SELECT, FROM, and WHERE
clauses.

• Use the DISTINCT or UNIQUE keyword in the SELECT clause to eliminate
duplicate rows from query results.

• Sort retrieved data with the ORDER BY clause and the DESC keyword.

• Use the BETWEEN, IN, MATCHES, and LIKE keywords and various rela-
tional operators in the WHERE clause to create a comparison condition.

• Create comparison conditions that include values, exclude values, find a
range of values (with keywords, relational operators, and subscripting),
and find a subset of values.

• Perform variable text searches using exact text comparisons, variable-
length wildcards, and restricted and unrestricted wildcards.

• Use the logical operators AND, OR, and NOT to connect search conditions
or Boolean expressions in a WHERE clause.

• Use the ESCAPE keyword to protect special characters in a query.

• Search for NULL values with the IS NULL and IS NOT NULL keywords in
the WHERE clause.

• Use arithmetic operators in the SELECT clause to perform computations
on number fields and display derived data.

• Use substrings and subscripting to tailor your queries.

• Assign display labels to computed columns as a formatting tool for
reports.

• Use the aggregate functions COUNT, AVG, MAX, MIN, and SUM in the
SELECT clause to calculate and retrieve specific data.

• Include the time functions DATE, DAY, MDY, MONTH, WEEKDAY, YEAR,
CURRENT, and EXTEND plus the TODAY, LENGTH, and USER functions in
your SELECT statements.
2-74 Simple SELECT Statements

Summary
This chapter also introduced simple join conditions that enable you to select
and display data from two or more tables. The section “Multiple-Table
SELECT Statements” told how to

• Create a Cartesian product.

• Constrain a Cartesian product by including a WHERE clause with a valid
join condition in your query.

• Define and create a natural join and an equi-join.

• Join two or more tables on one or more columns.

• Use aliases as a shortcut in multiple-table queries.

• Retrieve selected data into a separate, temporary table with the INTO
TEMP clause to perform computations outside the database.

The next chapter explains more complex queries and subqueries; self-joins
and outer joins; the GROUP BY and HAVING clauses; and the UNION,
INTERSECTION, and DIFFERENCE set operations.
Simple SELECT Statements 2-75

Chapter
3

Advanced SELECT
Statements
Chapter Overview 3

Using the GROUP BY and HAVING Clauses 4
Using the GROUP BY Clause 4
Using the HAVING Clause 8

Creating Advanced Joins 10
Self-Joins 11
Outer Joins 19

Simple Join 20
Simple Outer Join on Two Tables 22
Outer Join for a Simple Join to a Third Table 24
Outer Join for an Outer Join to a Third Table 25
Outer Join of Two Tables to a Third Table 27

Subqueries in SELECT Statements 29
Using ALL 30
Using ANY 31
Single-Valued Subqueries 32
Correlated Subqueries 33
Using EXISTS 34

Set Operations 37
Union 37
Intersection 45
Difference 47

 Summary 48

3-2 Advanced SELECT Statements

Chapter Overview
The preceding chapter demonstrated some of the basic ways to retrieve data
from a relational database with the SELECT statement. This chapter increases
the scope of what you can do with this powerful SQL statement and enables
you to perform more complex database queries and data manipulation.

Whereas the previous chapter focused on five of the clauses in SELECT state-
ment syntax, this chapter adds two more. You can use the GROUP BY clause
with aggregate functions to organize rows returned by the FROM clause. You
can include a HAVING clause to place conditions on the values returned by
the GROUP BY clause.

This chapter extends the earlier discussion of joins. It illustrates self-joins,
which enable you to join a table to itself, and four kinds of outer joins, where
you apply the keyword OUTER to treat two or more joined tables unequally.
It also introduces correlated and uncorrelated subqueries and their opera-
tional keywords, shows how to combine queries with the UNION operator,
and defines the set operations known as union, intersection, and difference.

Examples in this chapter show how to use some or all of the SELECT state-
ment clauses in your queries. The clauses must appear in this order:

1. SELECT clause

2. FROM clause

3. WHERE clause

4. GROUP BY clause

5. HAVING clause

6. ORDER BY clause

7. INTO TEMP clause

An additional SELECT statement clause, INTO, which you can use to specify
program and host variables in IBM Informix 4GL and the embedded-language
products, is described in Chapter 6 of this manual, as well as the product
manuals.
Advanced SELECT Statements 3-3

Using the GROUP BY and HAVING Clauses
Using the GROUP BY and HAVING Clauses
The optional GROUP BY and HAVING clauses add functionality to your
SELECT statement. You can include one or both in a basic SELECT statement
to increase your ability to manipulate aggregates.

The GROUP BY clause combines similar rows, producing a single result row
for each group of rows that have the same values for each column listed in the
select list. The HAVING clause sets conditions on those groups after they are
formed. You can use a GROUP BY clause without a HAVING clause, or a
HAVING clause without a GROUP BY clause.

Using the GROUP BY Clause
The GROUP BY clause divides a table into sets. It is most often combined with
aggregate functions that produce summary values for each of those sets.
Some of the examples in Chapter 2 showed the use of aggregate functions
applied to a whole table. This chapter illustrates aggregate functions applied
to groups of rows.

Using the GROUP BY clause without aggregates is much like using the
DISTINCT (or UNIQUE) keyword in the SELECT clause. Chapter 2 included
this example:

SELECT DISTINCT customer_num FROM orders

You also could write it this way:

SELECT customer_num
FROM orders
GROUP BY customer_num
3-4 Advanced SELECT Statements

Using the GROUP BY and HAVING Clauses
Either statement returns these rows:

The GROUP BY clause collected the rows into sets so that the rows in each set
all had equal customer numbers. With no other columns selected, the result
is a list of the unique customer_num values.

The power of the GROUP BY clause is more apparent when it is used with
aggregate functions.

SELECT order_num, COUNT (*) number, SUM (total_price) price
FROM items
GROUP BY order_num

This SELECT statement retrieves the number of items and the total price of all
items for each order. The GROUP BY clause causes the rows of the items table
to be collected into groups, each group composed of rows that have identical
order_num values. (That is, the items of each order are grouped together.)
After the groups are formed, the aggregate functions COUNT and SUM are
applied within each group.

customer_num

101
104
106
110
111
112
115
116
117
119
120
121
122
123
124
126
127
Advanced SELECT Statements 3-5

Using the GROUP BY and HAVING Clauses
The query returns one row for each group. It uses labels to give names to the
results of the COUNT and SUM expressions as follows:

The SELECT statement collected the rows of the items table into groups that
had identical order numbers and computed the COUNT of rows in each
group and the sum of the prices.

Note that you cannot include a column having a TEXT or BYTE data type in a
GROUP BY clause. To group, you must be able to sort, and there is no natural
sort order for TEXT or BYTE data.

Unlike the ORDER BY clause, the GROUP BY clause does not order data.
Include an ORDER BY clause after your GROUP BY clause if you want to sort
data in a particular order or to sort on an aggregate in the select list.

SELECT order_num, COUNT(*) number, SUM (total_price) price
FROM items
GROUP BY order_num
ORDER BY price

order_num number price

1001 1 $250.00
1002 2 $1200.00
1003 3 $959.00
1004 4 $1416.00
1005 4 $562.00
1006 5 $448.00
1007 5 $1696.00
1008 2 $940.00
.
.
.
1015 1 $450.00
1016 4 $654.00
1017 3 $584.00
1018 5 $1131.00
1019 1 $1499.97
1020 2 $438.00
1021 4 $1614.00
1022 3 $232.00
1023 6 $824.00
3-6 Advanced SELECT Statements

Using the GROUP BY and HAVING Clauses
This query is the same as the previous one but includes an ORDER BY clause
to sort the retrieved rows in ascending order of price:

As stated in the preceding chapter, you can use an integer in an ORDER BY
clause to indicate the position of a column in the select list. You also can use
an integer in a GROUP BY clause to indicate the position of column names or
display labels in the group list.

This SELECT statement returns the same rows as the previous query:

SELECT order_num, COUNT(*) number, SUM (total_price) price
FROM items
GROUP BY 1
ORDER BY 3

When you build your SELECT statement, remember that all non-aggregate
columns that are in the select list in the SELECT clause must also be included
in the group list in the GROUP BY clause. The reason for this is that a SELECT
with GROUP BY must return only one row per group. Columns that are listed
after GROUP BY are certain to reflect only one distinct value within a group,
and that value can be returned. However, a column not listed after GROUP BY
might contain different values in the rows that are contained in a group.

order_num number price

1010 2 $84.00
1011 1 $99.00
1013 4 $143.80
1022 3 $232.00
1001 1 $250.00
1020 2 $438.00
1006 5 $448.00
1015 1 $450.00
1009 1 $450.00
.
.
.
1018 5 $1131.00
1002 2 $1200.00
1004 4 $1416.00
1014 2 $1440.00
1019 1 $1499.97
1021 4 $1614.00
1007 5 $1696.00
Advanced SELECT Statements 3-7

Using the GROUP BY and HAVING Clauses
You can use the GROUP BY clause in a SELECT statement that joins tables.

SELECT o.order_num, SUM (i.total_price)
FROM orders o, items i
WHERE o.order_date > "01/01/90"

AND o.customer_num = 110
AND o.order_num = i.order_num

GROUP BY o.order_num

This query joins the orders and items tables, assigns table aliases to them,
and returns the following two rows:

Using the HAVING Clause
The HAVING clause usually complements a GROUP BY clause by applying
one or more qualifying conditions to groups after they are formed, similar to
the way the WHERE clause qualifies individual rows. One advantage to using
a HAVING clause is that you can include aggregates in the search condition,
whereas you cannot include aggregates in the search condition of a WHERE
clause.

Each HAVING condition compares one column or aggregate expression of the
group with another aggregate expression of the group or with a constant. You
can use HAVING to place conditions on both column values and aggregate
values in the group list.

SELECT order_num, COUNT(*) number, AVG (total_price) average
FROM items
GROUP BY order_num
HAVING COUNT(*) > 2

order_num (sum)

1008 $940.00
1015 $450.00
3-8 Advanced SELECT Statements

Using the GROUP BY and HAVING Clauses
This SELECT statement returns the average total price per item on all orders
that have more than two items. The HAVING clause tests each group as it is
formed and selects those composed of two or more rows.

If you use a HAVING clause without a GROUP BY clause, the HAVING condi-
tion applies to all rows that satisfy the search condition. In other words, all
rows that satisfy the search condition make up a single group.

SELECT AVG (total_price) average
FROM items
HAVING count(*) > 2

This statement, a modified version of the previous example, returns just one
row, the average of all total_price values in the table:

If this query, like the previous one, had included the non-aggregate column
order_num in the select list, you would have had to include a GROUP BY
clause with that column in the group list. In addition, if the condition in the
HAVING clause had not been satisfied, the output would have shown the col-
umn heading and a message would have indicated that no rows were found.

order_num number average

1003 3 $319.67
1004 4 $354.00
1005 4 $140.50
1006 5 $89.60
1007 5 $339.20
1013 4 $35.95
1016 4 $163.50
1017 3 $194.67
1018 5 $226.20
1021 4 $403.50
1022 3 $77.33
1023 6 $137.33

average

$270.97
Advanced SELECT Statements 3-9

Creating Advanced Joins
The following example contains all seven SELECT statement clauses that you
can use in the Informix version of interactive SQL (the INTO clause naming
program or host variables is available only in an IBM Informix 4GL or
embedded-language program):

SELECT o.order_num, SUM (i.total_price) price,
paid_date - order_date span

FROM orders o, items i
WHERE o.order_date > "01/01/90"

AND o.customer_num > 110
AND o.order_num = i.order_num

GROUP BY 1, 3
HAVING COUNT (*) < 5
ORDER BY 3
INTO TEMP temptab1

This SELECT statement joins the orders and items tables; employs display
labels, table aliases, and integers used as column indicators; groups and
orders the data; and puts the following results in a temporary table:

Creating Advanced Joins
The previous chapter showed how to include a WHERE clause in a SELECT
statement to join two or more tables on one or more columns. It illustrated
natural joins and equi-joins.

This chapter discusses the uses of two more complex kinds of joins: self-joins
and outer joins. As described for simple joins in Chapter 2, you can define
aliases for tables and assign display labels to expressions to shorten your
multiple-table queries. You also can sort data with an ORDER BY clause and
SELECT query results into a temporary table.

order_num price span

1017 $584.00
1016 $654.00
1012 $1040.00
1019 $1499.97 26
1005 $562.00 28
1021 $1614.00 30
1022 $232.00 40
1010 $84.00 66
1009 $450.00 68
1020 $438.00 71
3-10 Advanced SELECT Statements

Creating Advanced Joins
Self-Joins
A join does not always have to involve two different tables. You can join a
table to itself, creating a self-join. This can be useful when you want to com-
pare values in a column to other values in the same column.

To create a self-join, list a table twice in the FROM clause, assigning it a differ-
ent alias each time. Use the aliases to refer to the table in the SELECT and
WHERE clauses as if it were two different tables. (Aliases in SELECT state-
ments are shown in Chapter 2 of this manual and discussed in Chapter 7 of
IBM Informix Guide to SQL: Reference.)

Just as in joins between tables, you can use arithmetic expressions in self-
joins. You can test for NULL values, and you can ORDER BY a specified col-
umn in ascending or descending order.

SELECT x.order_num, x.ship_weight, x.ship_date,
y.order_num, y.ship_weight, y.ship_date

FROM orders x, orders y
WHERE x.ship_weight >= 5 * y.ship_weight

AND x.ship_date IS NOT NULL
AND y.ship_date IS NOT NULL

ORDER BY x.ship_date

This SELECT statement finds pairs of orders where the ship_weight differs by
a factor of five or more and the ship_date is not NULL, and orders the data by
ship_date:

 order_num ship_weight ship_date order_num ship_weight ship_date

 1004 95.80 05/30/1991 1011 10.40 07/03/1991
 1004 95.80 05/30/1991 1020 14.00 07/16/1991
 1004 95.80 05/30/1991 1022 15.00 07/30/1991
 1007 125.90 06/05/1991 1015 20.60 07/16/1991
 1007 125.90 06/05/1991 1020 14.00 07/16/1991
 1007 125.90 06/05/1991 1022 15.00 07/30/1991
 1007 125.90 06/05/1991 1011 10.40 07/03/1991
 1007 125.90 06/05/1991 1001 20.40 06/01/1991
 1007 125.90 06/05/1991 1009 20.40 06/21/1991
 1005 80.80 06/09/1991 1011 10.40 07/03/1991
 1005 80.80 06/09/1991 1020 14.00 07/16/1991
 1005 80.80 06/09/1991 1022 15.00 07/30/1991
 1012 70.80 06/29/1991 1011 10.40 07/03/1991
 1012 70.80 06/29/1991 1020 14.00 07/16/1991
 1013 60.80 07/10/1991 1011 10.40 07/03/1991
 1017 60.00 07/13/1991 1011 10.40 07/03/1991
 1018 70.50 07/13/1991 1011 10.40 07/03/1991

.

.

.

Advanced SELECT Statements 3-11

Creating Advanced Joins
Suppose you want to select the results of a self-join into a temporary table.
You would, of course, append an INTO TEMP clause to the SELECT statement.
However, because you are, in effect, creating a new table, you also must
rename at least one set of column names by assigning them display labels.
Otherwise, you will see an error message that indicates duplicate column
names, and the temporary table is not created.

SELECT x.order_num orders1, x.po_num purch1,
x.ship_date ship1, y.order_num orders2,
y.po_num purch2, y.ship_date ship2

FROM orders x, orders y
WHERE x.ship_weight >= 5 * y.ship_weight

AND x.ship_date IS NOT NULL
AND y.ship_date IS NOT NULL

INTO TEMP shipping

This SELECT statement, which is similar to the previous one, labels all col-
umns selected from the orders table and puts them in a temporary table
called shipping. If you SELECT * from that table, you see these rows:

orders1 purch1 ship1 orders2 purch2 ship2

1004 8006 05/30/1991 1011 B77897 07/03/1991
1004 8006 05/30/1991 1020 W2286 07/16/1991
1004 8006 05/30/1991 1022 W9925 07/30/1991
1005 2865 06/09/1991 1011 B77897 07/03/1991
1005 2865 06/09/1991 1020 W2286 07/16/1991
1005 2865 06/09/1991 1022 W9925 07/30/1991
1007 278693 06/05/1991 1001 B77836 06/01/1991
1007 278693 06/05/1991 1009 4745 06/21/1991
1007 278693 06/05/1991 1011 B77897 07/03/1991
1007 278693 06/05/1991 1015 MA003 07/16/1991
1007 278693 06/05/1991 1020 W2286 07/16/1991
1007 278693 06/05/1991 1022 W9925 07/30/1991
1012 278701 06/29/1991 1011 B77897 07/03/1991
1012 278701 06/29/1991 1020 W2286 07/16/1991
1013 B77930 07/10/1991 1011 B77897 07/03/1991
1017 DM354331 07/13/1991 1011 B77897 07/03/1991
1018 S22942 07/13/1991 1011 B77897 07/03/1991
1018 S22942 07/13/1991 1020 W2286 07/16/1991
1019 Z55709 07/16/1991 1011 B77897 07/03/1991
1019 Z55709 07/16/1991 1020 W2286 07/16/1991
1019 Z55709 07/16/1991 1022 W9925 07/30/1991
1023 KF2961 07/30/1991 1011 B77897 07/03/1991
3-12 Advanced SELECT Statements

Creating Advanced Joins
You can join a table to itself more than once. The maximum number of self-
joins depends on the resources available to you.

SELECT s1.manu_code, s2.manu_code, s3.manu_code,
s1.stock_num, s1.description

FROM stock s1, stock s2, stock s3
WHERE s1.stock_num = s2.stock_num

AND s2.stock_num = s3.stock_num
AND s1.manu_code < s2.manu_code
AND s2.manu_code < s3.manu_code

ORDER BY stock_num

This self-join creates a list of those items in the stock table that are supplied
by three manufacturers. By including the last two conditions in the WHERE
clause, it eliminates duplicate manufacturer codes in rows retrieved.

manu_code manu_code manu_code stock_num description

HRO HSK SMT 1 baseball gloves
ANZ NRG SMT 5 tennis racquet
ANZ HRO HSK 110 helmet
ANZ HRO PRC 110 helmet
ANZ HRO SHM 110 helmet
ANZ HSK PRC 110 helmet
ANZ HSK SHM 110 helmet
ANZ PRC SHM 110 helmet
HRO HSK PRC 110 helmet
HRO HSK SHM 110 helmet
HRO PRC SHM 110 helmet
HSK PRC SHM 110 helmet
ANZ KAR NKL 201 golf shoes
ANZ HRO NKL 205 3 golf balls
ANZ HRO KAR 301 running shoes
 .
 .
 .
HRO PRC SHM 301 running shoes
KAR NKL PRC 301 running shoes
KAR NKL SHM 301 running shoes
KAR PRC SHM 301 running shoes
NKL PRC SHM 301 running shoes
Advanced SELECT Statements 3-13

Creating Advanced Joins
Say you want to select rows from a payroll table to determine which employ-
ees earn more than their manager. You can construct the following self-join:

SELECT emp.employee_num, emp.gross_pay, emp.level,
emp.dept_num, mgr.employee_num, mgr.gross_pay,
mgr.level

FROM payroll emp, payroll mgr
WHERE emp.gross_pay > mgr.gross_pay

AND emp.level < mgr.level
ORDER BY 4

The following example of a self-join uses a correlated subquery to retrieve and
list the 10 highest-priced items ordered:

SELECT order_num, total_price
FROM items a
WHERE 10 >

(SELECT COUNT (*)
FROM items b
WHERE b.total_price < a.total_price)

ORDER BY total_price

It returns the following 10 rows:

You can create a similar query to find and list the 10 employees in the com-
pany who have the most seniority.

Correlated and uncorrelated subqueries are described later in this chapter.

order_num total_price

1018 $15.00
1013 $19.80
1003 $20.00
1005 $36.00
1006 $36.00
1013 $36.00
1010 $36.00
1013 $40.00
1022 $40.00
1023 $40.00
3-14 Advanced SELECT Statements

Creating Advanced Joins
Using Rowid Values

You can use the hidden rowid column in a self-join to locate duplicate values
in a table. In the following example, the condition x.rowid != y.rowid is
equivalent to saying “row x is not the same row as row y.”

SELECT x.rowid, x.customer_num
FROM cust_calls x, cust_calls y
WHERE x.customer_num = y.customer_num

AND x.rowid != y.rowid

This SELECT statement selects data twice from the cust_calls table,
assigning it the table aliases x and y. It searches for duplicate values in the
customer_num column, and for their rowids, finding this pair:

You can write the last condition in the previous SELECT statement either as

AND x.rowid != y.rowid

or

AND NOT x.rowid = y.rowid

Another way to locate duplicate values is with a correlated subquery, as
follows:

SELECT x.customer_num, x.call_dtime
FROM cust_calls x
WHERE 1 <

(SELECT COUNT (*) FROM cust_calls y
WHERE x.customer_num = y.customer_num)

This SELECT statement locates the same two duplicate customer_num values
as the previous query and returns these rows:

rowid customer_num

515 116
769 116

customer_num call_dtime

116 1990-11-28 13:34
116 1990-12-21 11:24
Advanced SELECT Statements 3-15

Creating Advanced Joins
You can use the rowid, shown earlier in a self-join, to locate the internal
record number associated with a row in a database table. Rowid is, in effect,
a hidden column in every table. The sequential values of rowid have no spe-
cial significance and may vary depending on the location of the physical data
in the chunk. See Chapter 4 in this manual for a discussion of performance
issues and the rowid value.

SELECT rowid, * FROM manufact

This SELECT statement uses rowid and the wildcard * in the SELECT clause to
retrieve every row in the manufact table and their corresponding rowids.

You also can use rowid when you select a specific column.

SELECT rowid, manu_code FROM manufact

This SELECT statement produces these results:

rowid manu_code manu_name lead_time

257 SMT Smith 3
258 ANZ Anza 5
259 NRG Norge 7
260 HSK Husky 5
261 HRO Hero 4
262 SHM Shimara 30
263 KAR Karsten 21
264 NKL Nikolus 8
265 PRC ProCycle 9

rowid manu_code

258 ANZ
261 HRO
260 HSK
263 KAR
264 NKL
259 NRG
265 PRC
262 SHM
257 SMT
3-16 Advanced SELECT Statements

Creating Advanced Joins
You also can use the rowid in the WHERE clause to retrieve rows based on
their internal record number. This method is handy when no other unique
column exists in a table.

SELECT * FROM manufact WHERE rowid = 263

This SELECT statement returns just one row:

Using the USER Function

To obtain additional information about a table, you can combine the rowid
with the USER function and, on IBM Informix OnLine, with the SITENAME
keyword. USER and SITENAME were discussed in Chapter 2 of this manual.

SELECT USER username, rowid FROM cust_calls

This query assigns the label username to the USER expression column and
returns this information about the cust_calls table:

You also can use the USER function in a WHERE clause when you select the
rowid.

SELECT rowid FROM cust_calls WHERE user_id = USER

manu_code manu_name lead_time

KAR Karsten 21

username rowid

zenda 257
zenda 258
zenda 259
zenda 513
zenda 514
zenda 515
zenda 769
Advanced SELECT Statements 3-17

Creating Advanced Joins
This query returns the rowid for only those rows entered by the user who
entered the statement. For example, if the user richc entered this SELECT
statement, this would be the output:

Using the SITENAME Function

Add the DBSERVERNAME keyword to a query to find out where the current
database resides.

SELECT DBSERVERNAME server, tabid, rowid, USER username
FROM systables
WHERE tabid >= 105 OR rowid <= 260
ORDER BY rowid

This SELECT statement finds the server name and the user name as well as the
rowid and the tabid, which is the serial interval table identifier for system cat-
alog tables. It assigns display labels to the DBSERVERNAME and USER expres-
sions and returns these 10 rows from the systables system catalog table:

Note that you should never store a rowid in a permanent table or attempt to
use it as a foreign key because the rowid can change. For example, if a table
is dropped and then reloaded from external data, all the rowids will be
different.

rowid

258
259

 server tabid rowid username

 manatee 1 257 zenda
 manatee 2 258 zenda
 manatee 3 259 zenda
 manatee 4 260 zenda
 manatee 105 274 zenda
 manatee 106 1025 zenda
 manatee 107 1026 zenda
 manatee 108 1027 zenda
 manatee 109 1028 zenda
 manatee 110 1029 zenda
3-18 Advanced SELECT Statements

Creating Advanced Joins
Outer Joins
Chapter 2 showed how to create and use some simple joins. Whereas a simple
join treats two or more joined tables equally, an outer join treats two or more
joined tables unsymmetrically. It makes one of the tables dominant (also called
“preserved”) over the other subservient tables.

There are four basic types of outer joins:

• A simple outer join on two tables

• A simple outer join to a third table

• An outer join for a simple join to a third table

• An outer join for an outer join to a third table

These four types of outer joins are illustrated in this section. See the discus-
sion of outer joins in Chapter 7 of IBM Informix Guide to SQL: Reference for full
information on their syntax, use, and logic.

In a simple join, the result contains only the combinations of rows from the
tables that satisfy the join conditions. Rows that do not satisfy the join conditions
are discarded.

In an outer join, the result contains the combinations of rows from the tables
that satisfy the join conditions. Rows from the dominant table that would other-
wise be discarded are preserved, even though no matching row was found in the sub-
servient table. The dominant-table rows that do not have a matching subservi-
ent-table row receive a row of nulls before the selected columns are projected.

An outer join applies conditions to the subservient table while sequentially
applying the join conditions to the rows of the dominant table. The condi-
tions are expressed in a WHERE clause.

An outer join must have a SELECT clause, a FROM clause, and a WHERE
clause. You transform a simple join into an outer join by inserting the key-
word OUTER directly before the name of the subservient tables in the FROM
clause. As shown later in this section, you can include the OUTER keyword
more than once in your query.

Before you make heavy use of outer joins, you should determine whether one
or more simple joins will do. You often can get by with a simple join when
you do not need supplemental information from other tables.

The examples in this section use table aliases for brevity. Table aliases are
discussed in the preceding chapter.
Advanced SELECT Statements 3-19

Creating Advanced Joins
Simple Join

This is an example of the type of simple join on the customer and cust_calls
tables shown in Chapter 2 of this manual:

SELECT c.customer_num, c.lname, c.company,
c.phone, u.call_dtime, u.call_descr

FROM customer c, cust_calls u
WHERE c.customer_num = u.customer_num

This query returns only those rows where the customer has made a call to
customer service:
3-20 Advanced SELECT Statements

Creating Advanced Joins
customer_num 106
lname Watson
company Watson & Son
phone 415-389-8789
call_dtime 1991-06-12 08:20
call_descr Order was received, but two of the cans of

ANZ tennis balls within the case were empty

customer_num 110
lname Jaeger
company AA Athletics
phone 415-743-3611
call_dtime 1991-07-07 10:24
call_descr Order placed one month ago (6/7) not received.

customer_num 119
lname Shorter
company The Triathletes Club
phone 609-663-6079
call_dtime 1991-07-01 15:00
call_descr Bill does not reflect credit from previous order

customer_num 121
lname Wallack
company City Sports
phone 302-366-7511
call_dtime 1991-07-10 14:05
call_descr Customer likes our merchandise. Requests that we

stock more types of infant joggers. Will call back
to place order.

customer_num 127
lname Satifer
company Big Blue Bike Shop
phone 312-944-5691
call_dtime 1991-07-31 14:30
call_descr Received Hero watches (item # 304) instead of

ANZ watches

customer_num 116
lname Parmelee
company Olympic City
phone 415-534-8822
call_dtime 1990-11-28 13:34
call_descr Received plain white swim caps (313 ANZ) instead

of navy with team logo (313 SHM)

customer_num 116
lname Parmelee
company Olympic City
phone 415-534-8822
call_dtime 1990-12-21 11:24
call_descr Second complaint from this customer! Received

two cases right-handed outfielder gloves (1 HRO)
instead of one case lefties.
Advanced SELECT Statements 3-21

Creating Advanced Joins
Simple Outer Join on Two Tables

The following example uses the same select list, tables, and comparison con-
dition as the preceding example, but this time creates a simple outer join:

SELECT c.customer_num, c.lname, c.company,
c.phone, u.call_dtime, u.call_descr

FROM customer c, OUTER cust_calls u
WHERE c.customer_num = u.customer_num

The addition of the keyword OUTER in front of the cust_calls table makes it
the subservient table. An outer join causes the query to return information on
all customers, whether or not they have made calls to customer service. All
rows from the dominant customer table are retrieved, and null values are
assigned to corresponding rows from the subservient cust_calls table.
3-22 Advanced SELECT Statements

Creating Advanced Joins
customer_num 101
lname Pauli
company All Sports Supplies
phone 408-789-8075
call_dtime
call_descr

customer_num 102
lname Sadler
company Sports Spot
phone 415-822-1289
call_dtime
call_descr

customer_num 103
lname Currie
company Phil’s Sports
phone 415-328-4543
call_dtime
call_descr

customer_num 104
lname Higgins
company Play Ball!
phone 415-368-1100
call_dtime
call_descr

customer_num 105
lname Vector
company Los Altos Sports
phone 415-776-3249
call_dtime
call_descr

customer_num 106
lname Watson
company Watson & Son
phone 415-389-8789
call_dtime 1991-06-12 08:20
call_descr Order was received, but two of the cans of

ANZ tennis balls within the case were empty

customer_num 107
lname Ream
company Athletic Supplies
phone 415-356-9876
call_dtime
call_descr

customer_num 108
lname Quinn
company Quinn’s Sports
phone 415-544-8729
call_dtime
call_descr

.

.

.

Advanced SELECT Statements 3-23

Creating Advanced Joins
Outer Join for a Simple Join to a Third Table

The following example shows an outer join that is the result of a simple join
to a third table. This second type of outer join is known as a nested simple join:

SELECT c.customer_num, c.lname, o.order_num,
i.stock_num, i.manu_code, i.quantity

FROM customer c, OUTER (orders o, items i)
WHERE c.customer_num = o.customer_num

AND o.order_num = i.order_num
AND manu_code IN ("KAR", "SHM")

ORDER BY lname

This SELECT statement first performs a simple join on the orders and items
tables, retrieving information on all orders for items with a manu_code of
KAR or SHM. It then performs an outer join to combine this information with
data from the dominant customer table. An optional ORDER BY clause reor-
ganizes the data into this form:

customer_num lname order_num stock_num manu_code quantity

114 Albertson
118 Baxter
113 Beatty
103 Currie
115 Grant
123 Hanlon 1020 301 KAR 4
123 Hanlon 1020 204 KAR 2
125 Henry
104 Higgins
110 Jaeger
120 Jewell 1017 202 KAR 1
120 Jewell 1017 301 SHM 2
111 Keyes
112 Lawson
128 Lessor
109 Miller
126 Neelie
122 O’Brian 1019 111 SHM 3
116 Parmelee
101 Pauli
124 Putnum 1021 202 KAR 3
108 Quinn
107 Ream
102 Sadler
127 Satifer 1023 306 SHM 1
127 Satifer 1023 105 SHM 1
127 Satifer 1023 110 SHM 1
119 Shorter 1016 101 SHM 2
117 Sipes
105 Vector
121 Wallack 1018 302 KAR 3
106 Watson
3-24 Advanced SELECT Statements

Creating Advanced Joins
Outer Join for an Outer Join to a Third Table

This SELECT statement creates an outer join that is the result of an outer join
to a third table. This third type is known as a nested outer join:

SELECT c.customer_num, lname, o.order_num,
stock_num, manu_code, quantity

FROM customer c, OUTER (orders o, OUTER items i)
WHERE c.customer_num = o.customer_num

AND o.order_num = i.order_num
AND manu_code IN ("KAR", "SHM")

ORDER BY lname

This query first performs an outer join on the orders and items tables, retriev-
ing information on all orders for items with a manu_code of KAR or SHM. It
then performs an outer join, which combines this information with data from
the dominant customer table. This query preserves order numbers that the
previous example eliminated, returning rows for orders that do not contain
items with either manufacturer code. An optional ORDER BY clause
reorganizes the data.
Advanced SELECT Statements 3-25

Creating Advanced Joins
There are two ways to state the join conditions when you apply an outer join
to the result of an outer join to a third table. The two subservient tables are
joined, but you can join the dominant table to either subservient table with-
out affecting the results if the dominant table and the subservient table share
a common column.

customer_num lname order_num stock_num manu_code quantity

114 Albertson
118 Baxter
113 Beatty
103 Currie
115 Grant 1010
123 Hanlon 1020 204 KAR 2
123 Hanlon 1020 301 KAR 4
125 Henry
104 Higgins 1011
104 Higgins 1001
104 Higgins 1013
104 Higgins 1003
110 Jaeger 1008
110 Jaeger 1015
120 Jewell 1017 301 SHM 2
120 Jewell 1017 202 KAR 1
111 Keyes 1009
112 Lawson 1006
128 Lessor
109 Miller
126 Neelie 1022
122 O’Brian 1019 111 SHM 3
116 Parmelee 1005
101 Pauli 1002
124 Putnum 1021 202 KAR 3
108 Quinn
107 Ream
102 Sadler
127 Satifer 1023 110 SHM 1
127 Satifer 1023 105 SHM 1
127 Satifer 1023 306 SHM 1
119 Shorter 1016 101 SHM 2
117 Sipes 1012
117 Sipes 1007
105 Vector
121 Wallack 1018 302 KAR 3
106 Watson 1014
106 Watson 1004
3-26 Advanced SELECT Statements

Creating Advanced Joins
Outer Join of Two Tables to a Third Table

This SELECT statement shows an outer join that is the result of an outer join
of each of two tables to a third table. In this fourth type of outer join, join rela-
tionships are possible only between the dominant table and the subservient
tables:

SELECT c.customer_num, lname, o.order_num,
order_date, call_dtime

FROM customer c, OUTER orders o, OUTER cust_calls x
WHERE c.customer_num = o.customer_num

AND c.customer_num = x.customer_num
INTO TEMP service

This query individually joins the subservient tables orders and cust_calls to
the dominant customer table; it does not join the two subservient tables. An
INTO TEMP clause selects the results into a temporary table for further
manipulation or queries.
Advanced SELECT Statements 3-27

Creating Advanced Joins
Note that if the preceding SELECT statement had tried to create a join condi-
tion between the two subservient tables o and x, as in the following example,
an error message would have indicated the creation of a two-sided outer join:

WHERE o.customer_num = x.customer_num

customer_num lname order_num order_date call_dtime

114 Albertson
118 Baxter
113 Beatty
103 Currie
115 Grant 1010 06/17/1991
123 Hanlon 1020 07/11/1991
125 Henry
104 Higgins 1003 05/22/1991
104 Higgins 1001 05/20/1991
104 Higgins 1013 06/22/1991
104 Higgins 1011 06/18/1991
110 Jaeger 1015 06/27/1991 1991-07-07 10:24
110 Jaeger 1008 06/07/1991 1991-07-07 10:24
120 Jewell 1017 07/09/1991
111 Keyes 1009 06/14/1991
112 Lawson 1006 05/30/1991
109 Miller
128 Moore
126 Neelie 1022 07/24/1991
122 O’Brian 1019 07/11/1991
116 Parmelee 1005 05/24/1991 1990-12-21 11:24
116 Parmelee 1005 05/24/1991 1990-11-28 13:34
101 Pauli 1002 05/21/1991
124 Putnum 1021 07/23/1991
108 Quinn
107 Ream
102 Sadler
127 Satifer 1023 07/24/1991 1991-07-31 14:30
119 Shorter 1016 06/29/1991 1991-07-01 15:00
117 Sipes 1007 05/31/1991
117 Sipes 1012 06/18/1991
105 Vector
121 Wallack 1018 07/10/1991 1991-07-10 14:05
106 Watson 1004 05/22/1991 1991-06-12 08:20
106 Watson 1014 06/25/1991 1991-06-12 08:20
3-28 Advanced SELECT Statements

Subqueries in SELECT Statements
Subqueries in SELECT Statements
A SELECT statement nested in the WHERE clause of another SELECT statement
(or in an INSERT, DELETE, or UPDATE statement) is called a subquery. Each
subquery must contain a SELECT clause and a FROM clause, and must be
enclosed in parentheses that tell the database server to perform that
operation first.

Subqueries can be correlated or uncorrelated. A subquery (or inner SELECT
statement) is correlated when the value it produces depends on a value pro-
duced by the outer SELECT statement that contains it. Any other kind of sub-
query is considered uncorrelated.

The important feature of a correlated subquery is that, because it depends on
a value from the outer SELECT, it must be executed repeatedly, once for every
value produced by the outer SELECT. An uncorrelated subquery is executed
only once.

Often, you can construct a SELECT statement with a subquery to replace two
separate SELECT statements.

Subqueries in SELECT statements allow you to

• Compare an expression to the result of another SELECT statement.

• Determine whether an expression is included in the results of another
SELECT statement.

• Determine whether any rows are selected by another SELECT statement.

An optional WHERE clause in a subquery often is used to narrow the search
condition.

A subquery selects and returns values to the first or outer SELECT statement.
A subquery can return no value, a single value, or a set of values.

• If it returns no value, the query returns no rows at all. Such a subquery is
equivalent to a NULL value.

• If it returns one value, the subquery returns either one aggregate expres-
sion or else selects exactly one row and one column. Such a subquery is
equivalent to a single number or character value.

• If it returns a list or set of values, the subquery returns either one row or
one column.

The following keywords introduce a subquery in the WHERE clause of a
SELECT statement:

• ALL

• ANY
Advanced SELECT Statements 3-29

Subqueries in SELECT Statements
• IN

• EXISTS

You can use any of the relational operators with ALL and ANY to compare
something to every one of (ALL), or to any one of (ANY), the values that the
subquery produces. You can use the keyword SOME in place of ANY. The
operator IN is equivalent to =ANY. To create the opposite search condition,
use the keyword NOT or a different relational operator.

The EXISTS operator tests a subquery to see if it found any values at all; that
is, it asks if the result of the subquery is not null.

See Chapter 7 in IBM Informix Guide to SQL: Reference for the complete syntax
used in creating a condition with a subquery. See also Chapter 4 of this man-
ual for information on performance implications for correlated and uncorre-
lated subqueries.

Using ALL
Use the keyword ALL preceding a subquery to determine whether a compar-
ison is true for every value returned. If the subquery returns no values, the
search condition is true. (If it returns no values at all, the condition is true of
all of the zero values.)

SELECT order_num, stock_num, manu_code, total_price
FROM items
WHERE total_price < ALL

(SELECT total_price FROM items
WHERE order_num = 1023)

This SELECT statement lists the following information for all orders that con-
tain an item for which the total price is less than the total price on every item
in order number 1023:

order_num stock_num manu_code total_price

1003 9 ANZ $20.00
1005 6 SMT $36.00
1006 6 SMT $36.00
1010 6 SMT $36.00
1013 5 ANZ $19.80
1013 6 SMT $36.00
1018 302 KAR $15.00
3-30 Advanced SELECT Statements

Subqueries in SELECT Statements
Using ANY
Use the keyword ANY (or its synonym SOME) preceding a subquery to deter-
mine whether a comparison is true for at least one of the values returned. If
the subquery returns no values, the search condition is false. (Since there were
no values, the condition could not be true of one of them.)

SELECT DISTINCT order_num
FROM items
WHERE total_price > ANY

(SELECT total_price
FROM items
WHERE order_num = 1005)

This query finds the order number of all orders that contain an item for which
the total price is greater than the total price of any one of the items in order
number 1005, returning these rows:

order_num

1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
Advanced SELECT Statements 3-31

Subqueries in SELECT Statements
Single-Valued Subqueries
You do not need to include the keyword ALL or ANY if you know the sub-
query will return exactly one value to the outer-level query. A subquery that
returns exactly one value can be treated like a function. This kind of subquery
often uses an aggregate function, since aggregate functions always return
single values:

SELECT order_num FROM items
WHERE stock_num = 9

AND quantity =
(SELECT MAX (quantity)

FROM items
WHERE stock_num = 9)

This SELECT statement uses the aggregate function MAX in a subquery to find
the order_num for orders that include the maximum number of volleyball
nets. It returns this row:

The following example uses the aggregate function MIN in the subquery to
select items for which the total price is higher than 10 times the minimum
price:

SELECT order_num, stock_num, manu_code, total_price
FROM items x
WHERE total_price >

(SELECT 10 * MIN (total_price)
FROM items
WHERE order_num = x.order_num)

The query retrieves these rows:

order_num

1012

order_num stock_num manu_code total_price

1003 8 ANZ $840.00
1018 307 PRC $500.00
1018 110 PRC $236.00
1018 304 HRO $280.00
3-32 Advanced SELECT Statements

Subqueries in SELECT Statements
Correlated Subqueries
The following example of a correlated subquery returns a list of the 10 earliest
shipping dates in the orders table. It includes an ORDER BY clause after the
subquery to order the results because you cannot include ORDER BY within a
subquery.

SELECT po_num, ship_date FROM orders main
WHERE 10 >

(SELECT COUNT (DISTINCT ship_date)
FROM orders sub
WHERE sub.ship_date > main.ship_date)
AND ship_date IS NOT NULL

ORDER BY ship_date, po_num

The subquery is correlated because the number it produces depends on
main.ship_date, a value produced by the outer SELECT. Thus, the subquery
must be executed anew for every row that the outer query considers.

The subquery uses the COUNT function to return a value to the main query.
The ORDER BY clause then orders the data. The query locates and returns the
13 rows that have the 10 latest shipping dates.

If you use a correlated subquery like the preceding one on a very large table,
you should index the ship_date column to improve performance. Otherwise,
this SELECT statement might be considered somewhat inefficient because it
executes the subquery once for every row of the table. Indexing and perfor-
mance issues are discussed in Chapter 10 of this manual.

po_num ship_date

4745 06/21/1991
278701 06/29/1991
429Q 06/29/1991
8052 07/03/1991
B77897 07/03/1991
LZ230 07/06/1991
B77930 07/10/1991
PC6782 07/12/1991
DM354331 07/13/1991
S22942 07/13/1991
MA003 07/16/1991
W2286 07/16/1991
Z55709 07/16/1991
C3288 07/25/1991
KF2961 07/30/1991
W9925 07/30/1991
Advanced SELECT Statements 3-33

Subqueries in SELECT Statements
Using EXISTS
The keyword EXISTS is known as an existential qualifier because the subquery
is true only if the outer SELECT finds at least one row.

SELECT UNIQUE manu_name, lead_time
FROM manufact
WHERE EXISTS

(SELECT * FROM stock
WHERE description MATCHES "*shoe*"

AND manufact.manu_code = stock.manu_code)

You often can construct a query with EXISTS that is equivalent to one that uses
IN. You also can substitute =ANY for IN.

SELECT UNIQUE manu_name, lead_time
FROM stock, manufact
WHERE manufact.manu_code IN

(SELECT manu_code FROM stock
WHERE description MATCHES "*shoe*")

AND stock.manu_code = manufact.manu_code

Both of the preceding queries return two rows: manufacturers that produce a
kind of shoe and the lead time for ordering the product.

Note that you cannot use the predicate IN for a subquery that contains a col-
umn with a TEXT or BYTE data type.

Add the keyword NOT to IN or to EXISTS to create a search condition that is
the opposite of the one in the preceding queries. You also can substitute
!=ALL for NOT IN.

Here are two different ways to do the same thing. One way might allow the
database server to do less work than the other, depending on the design of
the database and the size of the tables. To find out which query might be

manu_name lead_time

Anza 5
Hero 4
Karsten 21
Nikolus 8
ProCycle 9
Shimara 30
3-34 Advanced SELECT Statements

Subqueries in SELECT Statements
better, you can use the SET EXPLAIN command to get a listing of the query
plan. SET EXPLAIN is discussed in Chapter 4 of this manual and in Chapter 7
of IBM Informix Guide to SQL: Reference.

SELECT customer_num, company FROM customer
WHERE customer_num NOT IN

(SELECT customer_num FROM orders
WHERE customer.customer_num = orders.customer_num)

SELECT customer_num, company FROM customer
WHERE NOT EXISTS

(SELECT * FROM orders
WHERE customer.customer_num = orders.customer_num)

Both of these statements return the following 11 rows identifying customers
who have not placed orders:

Note that the keywords EXISTS and IN are used for the set operation known
as intersection, and the keywords NOT EXISTS and NOT IN are used for the set
operation known as difference. These concepts are discussed later in this
chapter.

The following SELECT statement identifies all the items in the stock table that
have not been ordered yet by performing a subquery on the items table:

SELECT stock.* FROM stock
WHERE NOT EXISTS

(SELECT * FROM items
WHERE stock.stock_num = items.stock_num

AND stock.manu_code = items.manu_code)

customer_num company

102 Sports Spot
103 Phil’s Sports
105 Los Altos Sports
107 Athletic Supplies
108 Quinn’s Sports
109 Sport Stuff
113 Sportstown
114 Sporting Place
118 Blue Ribbon Sports
125 Total Fitness Sports
128 Phoenix University
Advanced SELECT Statements 3-35

Subqueries in SELECT Statements
It returns these rows:

Note that there is no logical limit to the number of subqueries a SELECT state-
ment can have, but there is a physical limit on the size of any statement when
considered as a character string. However, this limit probably is larger than
any practical statement you are likely to compose.

Perhaps you want to check whether information has been entered correctly
in the database. One way to find errors in a database is to write a query that
returns output only when errors exist. A subquery of this type serves as a
kind of audit query.

SELECT * FROM items
WHERE total_price != quantity *

(SELECT unit_price FROM stock
WHERE stock.stock_num = items.stock_num

AND stock.manu_code = items.manu_code)

stock_num manu_code description unit_price unit unit_descr

101 PRC bicycle tires $88.00 box 4/box
102 SHM bicycle brakes $220.00 case 4 sets/case
102 PRC bicycle brakes $480.00 case 4 sets/case
105 PRC bicycle wheels $53.00 pair pair
106 PRC bicycle stem $23.00 each each
107 PRC bicycle saddle $70.00 pair pair
108 SHM crankset $45.00 each each
109 SHM pedal binding $200.00 case 4 pairs/case
110 ANZ helmet $244.00 case 4/case
110 HRO helmet $260.00 case 4/case
112 SHM 12-spd, assmbld $549.00 each each
113 SHM 18-spd, assmbld $685.90 each each
201 KAR golf shoes $90.00 each each
202 NKL metal woods $174.00 case 2 sets/case
203 NKL irons/wedge $670.00 case 2 sets/case
205 NKL 3 golf balls $312.00 case 24/case
205 HRO 3 golf balls $312.00 case 24/case
301 NKL running shoes $97.00 each each
301 HRO running shoes $42.50 each each
301 PRC running shoes $75.00 each each
301 ANZ running shoes $95.00 each each
302 HRO ice pack $4.50 each each
303 KAR socks $36.00 box 24 pairs/box
305 HRO first-aid kit $48.00 case 4/case
306 PRC tandem adapter $160.00 each each
308 PRC twin jogger $280.00 each each
309 SHM ear drops $40.00 case 20/case
310 SHM kick board $80.00 case 10/case
310 ANZ kick board $84.00 case 12/case
311 SHM water gloves $48.00 box 4 pairs/box
312 SHM racer goggles $96.00 box 12/box
312 HRO racer goggles $72.00 box 12/box
313 SHM swim cap $72.00 box 12/box
313 ANZ swim cap $60.00 box 12/box
3-36 Advanced SELECT Statements

Set Operations
This SELECT statement returns only those rows for which the total price of an
item on an order is not equal to the stock unit price times the order quantity.
Assuming that no discount has been applied, such rows must have been
entered incorrectly in the database. For example:

Set Operations
The standard set operations union, intersection, and difference let you manipu-
late database information. These three functions enable you to use SELECT
statements to check the integrity of your database after you have performed
an update, insert, or delete. They can be useful when you are transferring
data to a history table, for example, and want to verify that the correct data is
in the history table before you delete it from the original table.

Union
The union function uses the UNION keyword or operator to combine two
queries into a single compound query. You can use the UNION keyword
between two or more SELECT statements to unite them and produce a tempo-
rary table containing rows that exist in any or all of the original tables. (Note
that you cannot use a UNION operator inside a subquery or in the definition
of a view.) Figure 3-1 illustrates the union set operation.

item_num order_num stock_num manu_code quantity total_price

1 1004 1 HRO 1 $960.00
2 1006 5 NRG 5 $190.00
Advanced SELECT Statements 3-37

Set Operations
Figure 3-1 The union set operation

The UNION keyword selects all rows from the two queries, removes dupli-
cates, and returns what is left. Because the results of the queries are combined
into a single result, the select list in each query must have the same number
of columns. Also, the corresponding columns selected from each table must
be of the same data type (CHARACTER type columns must be the same
length), and these corresponding columns must either all allow or all
disallow nulls.

This compound SELECT statement performs a union on the stock_num and
manu_code columns in the stock and items tables:

SELECT DISTINCT stock_num, manu_code
FROM stock
WHERE unit_price < 25.00

UNION

SELECT stock_num, manu_code
FROM items
WHERE quantity > 3

quantity > 3

unit_price < 25.00

unit_price

quantity

qualifies

less than
or equal

to 3

greater than
or equal to

25.00

less than
25.00

qualifies

qualifies

greater
than 3

SELECT DISTINCT stock_num, manu_code
FROM stock
WHERE unit_price < 25.00

UNION

SELECT stock_num, manu_code
FROM items
WHERE quantity > 3
3-38 Advanced SELECT Statements

Set Operations
This SELECT statement selects those items that have a unit price of less than
$25.00 or that have been ordered in quantities greater than three and lists
their stock_num and manu_code:

If you include an ORDER BY clause, it must follow the last SELECT statement
and use an integer, not an identifier, to refer to the ordering column. Ordering
takes place after the set operation is complete.

SELECT DISTINCT stock_num, manu_code
FROM stock
WHERE unit_price < 25.00

UNION

SELECT stock_num, manu_code
FROM items
WHERE quantity > 3
ORDER BY 2

This compound query selects the same rows as the previous SELECT state-
ment but displays them in order of manufacturer code:

stock_num manu_code

5 ANZ
5 NRG
5 SMT
9 ANZ

103 PRC
106 PRC
201 NKL
301 KAR
302 HRO
302 KAR

stock_num manu_code

5 ANZ
9 ANZ

302 HRO
301 KAR
302 KAR
201 NKL

5 NRG
103 PRC
106 PRC

5 SMT
Advanced SELECT Statements 3-39

Set Operations
By default, the UNION keyword excludes duplicate rows. Add the optional
keyword ALL to retain the duplicate values.

SELECT stock_num, manu_code
FROM stock
WHERE unit_price < 25.00

UNION ALL

SELECT stock_num, manu_code
FROM items
WHERE quantity > 3
ORDER BY 2
INTO TEMP stockitem

This compound SELECT statement uses the UNION ALL keywords to unite
two SELECT statements and puts the results into a temporary table by adding
an INTO TEMP clause after the final SELECT. It returns the same rows as the
preceding example but also includes duplicate values.

stock_num manu_code

9 ANZ
5 ANZ
9 ANZ
5 ANZ
9 ANZ
5 ANZ
5 ANZ
5 ANZ

302 HRO
302 KAR
301 KAR
201 NKL

5 NRG
5 NRG

103 PRC
106 PRC

5 SMT
5 SMT
3-40 Advanced SELECT Statements

Set Operations
Corresponding columns in the select lists for the combined queries must
have identical data types, but the columns do not need to use the same
identifier.

SELECT DISTINCT state
FROM customer
WHERE customer_num BETWEEN 120 AND 125

UNION

SELECT DISTINCT code
FROM state
WHERE sname MATCHES "*a"

This SELECT statement selects the state column from the customer table and
the corresponding code column from the state table. It returns state code
abbreviations for customer numbers 120 through 125, or for states whose
sname ends in A or a.

state

AK
AL
AZ
CA
DE
FL
GA
IA
IN
LA
MA
MN
MT
NC
ND
NE
NJ
NV
OK
PA
SC
SD
VA
WV
Advanced SELECT Statements 3-41

Set Operations
In compound queries, the column names or display labels in the first SELECT
statement are the ones that appear in the results. Thus, in this example, the
column name state from the first SELECT statement was used instead of the
column name code from the second.

This SELECT statement performs a union on three tables. The maximum num-
ber of unions depends on the practicality of the application and any memory
limitations.

SELECT stock_num, manu_code
FROM stock
WHERE unit_price > 600.00

UNION ALL

SELECT stock_num, manu_code
FROM catalog
WHERE catalog_num = 10025

UNION ALL

SELECT stock_num, manu_code
FROM items
WHERE quantity = 10
ORDER BY 2

This compound query selects items where the unit_price in the stock table is
greater than $600, or the catalog_num in the catalog table is 10025, or the
quantity in the items table is 10, and orders it by manu_code:

See Chapter 7 of IBM Informix Guide to SQL: Reference for the complete syntax
of the SELECT statement and the UNION operator. See also Chapters 6 and 7
in this manual, as well as the product manuals, for information specific to the
IBM Informix 4GL and IBM Informix ESQL/C products and any limitations
involving the INTO clause and compound queries.

stock_num manu_code

5 ANZ
9 ANZ
8 ANZ
4 HSK
1 HSK

203 NKL
5 NRG

106 PRC
113 SHM
3-42 Advanced SELECT Statements

Set Operations
The following example uses a combined query to select data into a temporary
table and then adds a simple query to order and display it. You must separate
the combined and simple queries with a semicolon.

The combined query uses a literal in the select list to tag the output of part of
a union so it can be distinguished later. The tag is given the label sortkey. The
simple query uses that tag as a sort key for ordering the retrieved rows.

SELECT "1" sortkey, lname, fname, company,
city, state, phone

FROM customer x
WHERE state = "CA"

UNION

SELECT "2" sortkey, lname, fname, company,
city, state, phone

FROM customer y
WHERE state <> "CA"
INTO TEMP calcust;

SELECT * FROM calcust
ORDER BY 1

This query pair creates a list where the California customers, the ones called
most frequently, appear first:
Advanced SELECT Statements 3-43

Set Operations
sortkey 1
lname Albertson
fname Frank
company Sporting Place
city Redwood City
state CA
phone 415-886-6677

sortkey 1
lname Baxter
fname Dick
company Blue Ribbon Sports
city Oakland
state CA
phone 415-655-0011

sortkey 1
lname Beatty
fname Lana
company Sportstown
city Menlo Park
state CA
phone 415-356-9982

sortkey 1
lname Currie
fname Philip
company Phil’s Sports
city Palo Alto
state CA
phone 415-328-4543

sortkey 1
lname Grant
fname Alfred
company Gold Medal Sports
city Menlo Park
state CA
phone 415-356-1123
.
.
.
sortkey 2
lname Satifer
fname Kim
company Big Blue Bike Shop
city Blue Island
state NY
phone 312-944-5691

sortkey 2
lname Shorter
fname Bob
company The Triathletes Club
city Cherry Hill
state NJ
phone 609-663-6079

sortkey 2
lname Wallack
fname Jason
company City Sports
city Wilmington
state DE
phone 302-366-7511
3-44 Advanced SELECT Statements

Set Operations
Intersection
The intersection of two sets of rows produces a table containing rows that exist
in both of the original tables. Use the keyword EXISTS or IN to introduce sub-
queries that show the intersection of two sets. Figure 3-2 illustrates the inter-
section set operation.

Figure 3-2 The intersection set operation

The following example of a nested SELECT statement shows the intersection
of the stock and items tables:

SELECT stock_num, manu_code, unit_price
FROM stock
WHERE stock_num IN

(SELECT stock_num FROM items)
ORDER BY stock_num

stock_num

stock_num

qualifies

not in
items table

not in stock
table

exists in
stock table

exists in
items table

SELECT stock_num, manu_code, unit_price
FROM stock
WHERE stock_num IN
(SELECT stock_num FROM items)
ORDER BY stock_num

stock table

items table
Advanced SELECT Statements 3-45

Set Operations
The results contain all the elements from both sets, returning the following 57
rows:

stock_num manu_code unit_price

1 HRO $250.00
1 HSK $800.00
1 SMT $450.00
2 HRO $126.00
3 HSK $240.00
3 SHM $280.00
4 HRO $480.00
4 HSK $960.00
5 ANZ $19.80
5 NRG $28.00
5 SMT $25.00
6 ANZ $48.00
6 SMT $36.00
7 HRO $600.00
8 ANZ $840.00
9 ANZ $20.00

101 PRC $88.00
101 SHM $68.00
103 PRC $20.00
104 PRC $58.00
105 PRC $53.00
105 SHM $80.00
109 PRC $30.00
109 SHM $200.00
110 ANZ $244.00
110 HRO $260.00
110 HSK $308.00
110 PRC $236.00
110 SHM $228.00
111 SHM $499.99
114 PRC $120.00
201 ANZ $75.00
201 KAR $90.00
201 NKL $37.50
202 KAR $230.00
202 NKL $174.00
204 KAR $45.00
205 ANZ $312.00
205 HRO $312.00
205 NKL $312.00
301 ANZ $95.00
301 HRO $42.50
301 KAR $87.00
301 NKL $97.00
301 PRC $75.00
301 SHM $102.00
302 HRO $4.50
302 KAR $5.00
303 KAR $36.00
303 PRC $48.00
304 ANZ $170.00
304 HRO $280.00
306 PRC $160.00
306 SHM $190.00
307 PRC $250.00
309 HRO $40.00
309 SHM $40.00
3-46 Advanced SELECT Statements

Set Operations
Difference
The difference between two sets of rows produces a table containing rows in
the first set that are not also in the second set. Use the keywords NOT EXISTS
or NOT IN to introduce subqueries that show the difference between two sets.
Figure 3-3 illustrates the difference set operation.

Figure 3-3 The difference set operation

The following example of a nested SELECT statement shows the difference
between the stock and items tables:

SELECT stock_num, manu_code, unit_price
FROM stock
WHERE stock_num NOT IN

(SELECT stock_num FROM items)
ORDER BY stock_num

stock_num

stock_num

qualifies

not in
items table

not in stock
table

exists in
stock table

exists in
items table

SELECT stock_num, manu_code, unit_price
FROM stock
WHERE stock_num NOT IN
(SELECT stock_num FROM items)
ORDER BY stock_num

stock table

items table
Advanced SELECT Statements 3-47

Summary
The results contain all the elements from only the first set, returning the
following 17 rows:

Summary
This chapter was built on concepts introduced in Chapter 2. It provided sam-
ple syntax and results for more advanced kinds of SELECT statements, which
are used to perform a query on a relational database. This chapter

• Introduced the GROUP BY and HAVING clauses, which can be used with
aggregates to return groups of rows and apply conditions to those
groups.

• Described how to use the rowid to retrieve internal record numbers from
tables and system catalog tables, and discussed the serial internal table
identifier or tabid.

• Showed how to join a table to itself with a self-join to compare values in
a column to other values in the same column, and to identify duplicates.

• Introduced the keyword OUTER, explained how an outer join treats two
or more tables asymmetrically, and provided examples of the four kinds
of outer join.

• Described how to create correlated and uncorrelated subqueries by nest-
ing a SELECT statement in the WHERE clause of another SELECT
statement, and showed the use of aggregate functions in subqueries.

stock_num manu_code unit_price

102 PRC $480.00
102 SHM $220.00
106 PRC $23.00
107 PRC $70.00
108 SHM $45.00
112 SHM $549.00
113 SHM $685.90
203 NKL $670.00
305 HRO $48.00
308 PRC $280.00
310 ANZ $84.00
310 SHM $80.00
311 SHM $48.00
312 HRO $72.00
312 SHM $96.00
313 ANZ $60.00
313 SHM $72.00
3-48 Advanced SELECT Statements

Summary
• Demonstrated the use of the keywords ALL, ANY, EXISTS, IN, and SOME
in creating subqueries, and the effect of adding the keyword NOT or a
relational operator.

• Discussed the set operations union, intersection, and difference.

• Showed how to use the UNION and UNION ALL keywords to create com-
pound queries consisting of two or more SELECT statements.
Advanced SELECT Statements 3-49

Chapter
4

Optimizing Your
Queries
Chapter Overview 3

Optimizing Techniques 4
Verifying the Problem 4
Considering the Total System 5
Understanding the Application 5
Measuring the Application 6

Manual Timing 6
Time from Operating System Commands 6
Time from the Programming Language 6

Finding the Guilty Functions 7
Keeping an Open Mind 7

The Query Optimizer 8
The Importance of Table Order 8

A Join Without Filters 8
A Join with Column Filters 10
Using Indexes 12
The Sort-Merge Join Technique 13

How the Optimizer Works 14
Selecting an Optimization Level 14
Providing Input 14
Assessing Filters 15
Selecting Table-Access Paths 17
Selecting the Query Plan 18

Reading the Plan 19

Time Costs of a Query 20
Activities in Memory 20

Disk-Access Management 22
Disk Pages 23
Page Buffers 23

The Cost of Reading a Row 23
The Cost of Sequential Access 24
The Cost of Nonsequential Access 25
The Cost of Rowid Access 25
The Cost of Indexed Access 25
The Cost of Small Tables 26
The Cost of Network Access 26

Making Queries Faster 29
Preparing a Test Environment 29
Studying the Data Model 30
Studying the Query Plan 30
Rethinking the Query 31

Rewriting Joins Through Views 31
Avoiding or Simplifying Sorts 31
Eliminating Sequential Access to Large Tables 32
Using Unions to Avoid Sequential Access 32
Replacing Autoindexes with Indexes 33
Using Composite Indexes 33
Using tbcheck on Suspect Indexes 34
Dropping and Rebuilding Indexes After Updates 34
Avoiding Correlated Subqueries 34
Avoiding Difficult Regular Expressions 35
Avoiding Noninitial Substrings 35

Using a Temporary Table to Speed Queries 36
Using a Temporary Table to Avoid Multiple Sorts 36
Substituting Sorting for Nonsequential Access 37

Summary 41
4-2 Optimizing Your Queries

Chapter Overview
How much time should a query take? How many disk operations should the
computer perform while executing a query? For many queries, it does not
matter as long as the computer finds the information faster than a human can.
But some queries must be performed in a limited amount of time, or must use
only a limited amount of machine power.

This chapter reviews techniques for making queries more efficient. It assumes
that you work with an existing database and cannot change its arrangement of
tables. (Techniques of designing a new database for reliability and perfor-
mance are discussed in Chapters 8 through 11 in this manual.)

This chapter covers the following topics:

• A general discussion of techniques for optimizing software, emphasizing
all the things to look at before you change any SQL statement.

• A description of the optimizer, the part of the database server that decides
how to perform a query. When you know how the optimizer forms a
query plan, you can help it form more efficient ones.

• A discussion of the operations that take time during a query, so you can
better choose between fast and slow operations.

• An assortment of techniques to help the optimizer choose the fastest way
to accomplish a query.

This chapter concentrates on SQL performance, but performance problems
can arise from other parts of the programs in which SQL statements are
embedded. Two books that address general issues of performance are
The Elements of Programming Style by Kernighan and Ritchie (McGraw-Hill
1978) and Writing Efficient Programs by Jon Louis Bentley (Prentice-Hall
1982). Much of Bentley’s advice can be applied to SQL statements and data-
base design.
Optimizing Your Queries 4-3

Optimizing Techniques
Optimizing Techniques
Before you begin optimizing your SQL statements, begin considering them as
part of a larger system that includes these components:

• One or more programs

The saved queries, compiled screen forms and reports, and programs in
one or more languages in which SQL statements are embedded.

• One or more stored procedures.

The compiled procedures, made up of SQL and SPL (Structured Procedure
Language) statements, which are stored in an executable form in the
database.

• One or more computers

The machines that store the programs and the databases.

• One or more maintainers

The people responsible for maintaining the programs.

• One or more users

The people whose work the system is supposed to amplify or simplify.

• One or more organizations

The groups that own the computers and choose what work is to be done.

You may work in a large corporation where each of these components is
separate. Or you may be the proprietor, maintainer, and sole user of a desk-
top workstation. In every case, it is important to recognize two points about
the system as a whole. First, the goal of the system is to serve its users. Any
effort you spend optimizing programs is wasted unless the result helps the
users in some way. Second, SQL statements are only a small part of the sys-
tem. Often, the most effective improvements can be found in other parts of
the system.

The following paragraphs outline a general procedure for analyzing any
computer performance problem. Follow the procedure to help avoid over-
looking possible solutions, including the nontechnical ones that sometimes
provide the best answer to performance problems.

Verifying the Problem
Before you begin optimizing SQL statements, be sure the problem lies with
the program. How much more effective will the user be if you make the pro-
gram faster? If the answer is “not much,” look elsewhere for a solution.
4-4 Optimizing Your Queries

Optimizing Techniques
Considering the Total System
Consider the entire system of programs, computers, and users within an
organization. You might find a better solution by changing schedules or man-
aging resources differently. Maybe the problem operation would be faster if
it were done at a different time, or on a different machine, or with different
jobs running at the same time. Or maybe not. But you need to consider these
possibilities before you decide your best course of action.

Understanding the Application
Learn all about the application as a whole. A database application usually
has many parts, such as saved queries, screen forms, report specifications,
and programs. Consider them together with the user’s procedures, and ask
yourself the following questions:

• What is being done?

You may identify excess or redundant steps that can be eliminated. Even
if every step or action is important, it will help you to know them all and
their sequence of use.

• Why is it being done?

Especially in older applications, you may find steps that serve no pur-
pose; for example, an operation might have been put in long ago for
debugging and never removed.

• For whom is it being done?

Make sure that all output from the application is wanted and used by
someone. You may find output that nobody wants any more. Or the out-
put may be needed infrequently or in a simpler format.

• Where is the slow part?

Isolate as closely as possible which steps are too slow. Your time is
limited, too; you want to spend time where it yields the best results.

By taking the time to understand the application, you can know all of its
parts, how they are used, whether they are all essential, and which parts are
too slow.
Optimizing Your Queries 4-5

Optimizing Techniques
Measuring the Application
You cannot make meaningful progress on a performance problem until you
have measured it. You must find a way to take repeatable, quantitative
measurements of the slow parts of the application. This is crucial for the
following reasons:

• Without numbers you cannot accurately and specifically describe the
problem to users or to the organization.

To convey the problem appropriately, you need to determine measure-
ments such as “The report runs in 2 hours 38 minutes,” or “The average
update takes 13 seconds, but during peak hours it takes up to 49 sec-
onds.”

• Without numbers you cannot set meaningful goals.

When you have specific measurements, you can obtain agreement on
numeric goals for performance.

• Without numbers you cannot measure and demonstrate your progress.

You need measurements to detect and demonstrate small improvements,
and to choose between alternative solutions.

Manual Timing

You can obtain repeatable measurements with a hand-operated stopwatch.
With practice, most people can obtain timings that are repeatable within two-
tenths of a second. Manual timing is useful if you are measuring only a few
events that are at least several seconds long.

Time from Operating System Commands

Your operating system probably has a command that displays the time. You
can package an operation to be timed between two time commands in a
command script.

Time from the Programming Language

Most programming languages have a library function for the time of day. If
you have access to the source code, you can insert statements to measure the
time of specific actions. For example, if the application is written in 4GL, you
4-6 Optimizing Your Queries

Optimizing Techniques
can use the CURRENT function to obtain the current time as a DATETIME
value. A 4GL program can perform automated timing with code similar to the
following fragment:

DEFINE start_time DATETIME HOUR TO FRACTION(2),
elapsed INTERVAL MINUTE(4) TO FRACTION(2)

LET start_time = EXTEND(CURRENT,HOUR TO FRACTION(2))

{ -- here perform the operation to be timed -- }

LET elapsed = EXTEND(CURRENT,HOUR TO FRACTION(2))-start_time
DISPLAY "Elapsed time was ",elapsed

Elapsed time, in a multiprogramming system or network environment, does
not always correspond to execution time. Most C libraries contain a function
that returns the CPU time of a program, and C functions can be called from
4GL programs and ACE reports.

Finding the Guilty Functions
In most programs, a very small fraction of the code (typically 20% or less)
accounts for the bulk of the program execution time (typically 80% or more).
The 80-20 rule, as it is called, holds in most cases; often, the proportions are
even greater. After you establish a timing mechanism, use it to define the hot
spots in the application, that is, the statements that consume most of the time.

Keeping an Open Mind
With embedded SQL, in which one statement can trigger thousands of disk
accesses, it is likely that the guilty 20% includes some SQL. However, this is
by no means certain. If you do not begin your examination of the problem with
an open mind, it is easy to overlook the part of a program that is consuming
the most time.

If the sluggish operations are not due to the SQL, turn to the books cited on
page 4-3. If the SQL statements need attention, you need to understand the
actions of the query optimizer.
Optimizing Your Queries 4-7

The Query Optimizer
The Query Optimizer
The optimizer component of the database server decides how to perform a
query. Its most important job is to decide the order in which to examine each
table row. To make that decision, it has to decide on the most efficient way to
access each table—by a sequential scan of its rows, by an existing index, or by
a temporary index built for the occasion—and it has to estimate how many
rows each table contributes to the final result.

Optimizer design is not a science, and the optimizer is one part of a database
server that is under continuous development and improvement. This discus-
sion reflects the optimizer used in Version 5.0 of IBM Informix database serv-
ers. IBM Informix database servers with earlier version numbers have an
older, simpler optimizer.

The Importance of Table Order
The order in which tables are examined has an enormous effect on the speed
of a join operation. This concept can be clarified with some examples that
show how the database server works.

A Join Without Filters

Here is a SELECT statement that calls for a three-way join:

SELECT C.customer_num, O.order_num, SUM (items.total_price)
FROM customer C, orders O, items I
WHERE C.customer_num = O.customer_num

AND O.order_num = I.order_num
GROUP BY C.customer_num, O.order_num

For the moment, imagine that indexes were never invented. Without indexes,
the database server has no choice but to perform this operation using a sim-
ple nested loop. One of two practical query plans is displayed in Figure 4-1,
expressed in a programming pseudocode. A query plan states the order in
which the database server examines tables, and the methods by which it
accesses the tables.
4-8 Optimizing Your Queries

The Query Optimizer
for each row in the customer table do:
read the row into C
for each row in the orders table do:

read the row into O
if O.customer_num = C.customer_num then

let Sum = 0
for each row in the items table do:

read the row into I
if I.order_num = O.order_num then

let Sum = Sum + I.total_price
end if

end for
prepare an output row from C,I,and Sum

end if
end for

end for

Figure 4-1 A query plan in pseudocode

This procedure reads the following rows:

• All rows of the customer table once

• All rows of the orders table once for each row of the customer table

• All rows of the items table once for each row of orders that appears in the
output (every row of orders should appear once)

This is not the only possible query plan; another merely reverses the roles of
customer and orders: for each row of orders, it reads all rows of customer
looking for a matching customer_num. It reads the same number of rows,
although in a different sequence.

The number of rows in each table is kept in the system catalog table named
systables. You can write the following query to calculate the total count of
rows read by the query plan in Figure 4-1:

SELECT C.nrows + C.nrows*O.nrows + O.nrows*I.nrows
FROM systables C, systables O, systables I
WHERE C.tabname = "customer"

AND O.tabname = "orders"
AND I.tabname = "items"

That is essentially how the optimizer predicts the amount of work required
by this query plan. (The row counts in systables are only updated when the
UPDATE STATISTICS command is run. Thus, the optimizer sometimes works
from outdated information.)
Optimizing Your Queries 4-9

The Query Optimizer
A Join with Column Filters

In the preceding example, there was no difference in the amount of work that
would be done by the two possible query plans. The presence of a column fil-
ter changes things. A column filter is a WHERE expression that reduces the
number of rows that a table contributes to a join. Here is the preceding query
with a filter added:

SELECT C.customer_num, O.order_num, SUM (items.total_price)
FROM customer C, orders O, items I
WHERE C.customer_num = O.customer_num

AND O.order_num = I.order_num
AND O.paid_date IS NULL

GROUP BY C.customer_num, O.order_num

The expression O.paid_date IS NULL filters out some rows, reducing the
number of rows that are used from the orders table. As before, two query
plans are possible. The plan that starts by reading from orders is displayed in
pseudocode in Figure 4-2.

for each row in the orders table do:
read the row into O
if O.paid_date is null then

for each row in the customer table do:
read the row into C
if O.customer_num = C.customer_num then

let Sum = 0
for each row in the items table do:

read the row into I
if I.order_num = O.order_num then

let Sum = Sum + I.total_price
end if

end for
prepare an output row from C,I,and Sum

end if
end for

end if
end for

Figure 4-2 One of two query plans in pseudocode

Let pdnull stand for the number of rows in orders that pass the filter. It is the
number that the following query returns:

SELECT COUNT(*) FROM orders WHERE paid_date IS NULL
4-10 Optimizing Your Queries

The Query Optimizer
Assume that there is just one customer for every order, as there should be.
Then we can say that the plan in Figure 4-2 reads these rows:

• All rows of the orders table once

• All rows of the customer table, pdnull times

• All rows of the items table, pdnull times

for each row in the customer table do:
read the row into C
for each row in the orders table do:

read the row into O
if O.paid_date is null and

O.customer_num = C.customer_num then
let Sum = 0
for each row in the items table do:

read the row into I
if I.order_num = O.order_num then

let Sum = Sum + I.total_price
end if

end for
prepare an output row from C,I,and Sum

end if
end for

Figure 4-3 The alternative query plan in pseudocode

An alternative plan is shown in Figure 4-3; it reads from customer first.
Because the filter is not applied in the first step, this plan reads these rows:

• All rows of the customer table once

• All rows of the orders table, once for every row of customer

• All rows of the items table, pdnull times

The query plans in Figure 4-2 and Figure 4-3 produce the same output,
although in different sequences. They differ in that one reads a table pdnull
times while the other reads a table SELECT COUNT(*) FROM customer
times. The choice the optimizer makes between them could make a difference
of thousands of disk accesses in a real application.
Optimizing Your Queries 4-11

The Query Optimizer
Using Indexes

The preceding examples do not use indexes or constraints. That was
unrealistic; almost all tables have one or more indexes or constraints, and
their presence makes a difference in the query plan. Figure 4-4 shows the
outline of a query plan for the previous query as it might be constructed
using indexes. (See also “The Structure of an Index” on page 4-28.)

for each row in the customer table do:
read the row into C
look up C.customer_num in index on orders.customer_num
for each matching row in the orders table do:

read the row into O
if O.paid_date is null then

let Sum = 0
look up O.order_num in index on items.order_num
for each matching row in the items table do:

read the row into I
let Sum = Sum + I.total_price

end for
prepare an output row from C,I,and Sum

end if
end for

end for

Figure 4-4 A query plan using indexes in pseudocode

The keys in an index are sorted so that when the first matching key is found,
any other rows with identical keys can be read without further searching.
This query plan reads only the following rows:

• All rows of the customer table once

• All rows of the orders table once

• Those rows of the items table that match to pdnull rows from orders

This is a huge reduction in effort compared to the plans without indexes. (An
inverse plan, reading orders first and looking up rows in customer by its
index, is equally effective.)

However, any plan that uses an index must read index data from disk as well
as read row data. It is difficult to predict the number of index pages that are
read, since some number of recently used index pages are retained in mem-
ory and are found there when they are needed. (See “Disk-Access Manage-
ment” on page 4-22.)
4-12 Optimizing Your Queries

The Query Optimizer
The physical order of a table also can affect the cost of index use. The query
plan in Figure 4-4 reads the rows of the customer table in physical order. If
that is also customer-number order, customer numbers are presented in
sequence to the index on orders.customer_num. Since the index is sorted, the
result is to read the index pages sequentially. Almost certainly, they are read
only once.

The physical order of the customer table is customer-number order if a clus-
tered index is on that column. It is approximately that order if customer num-
bers are SERIAL values generated by the database server.

However, if the physical order is random with respect to customer numbers,
each search of the index on orders might lead to a different page of index
keys, so that an index page is read for almost every row.

The Sort-Merge Join Technique

The sort-merge table join, implemented in Version 5.0, provides an alterna-
tive to the nested-loop table join. It allows the optimizer to choose the best
path of execution to produce the fastest possible join. This may be a loop join,
a sort-merge join, or a combination of the two.

Sort-merge functionality optimizes the execution of certain queries without
degrading performance where sort merge is not used. A sort-merge join hap-
pens automatically when at least one filter of the join is an equality operator.

The sort-merge join does not change the fundamental strategy of the opti-
mizer. Rather, it provides a richer set of alternatives to nested-loop joins using
temporary indexes and alters the way the ORDER BY and GROUP BY paths are
analyzed. The path chosen by the optimizer is displayed in the output when
the SET EXPLAIN ON statement is issued, is described in the IBM Informix
Guide to SQL: Reference and in “Reading the Plan” on page 4-19.
Optimizing Your Queries 4-13

The Query Optimizer
How the Optimizer Works
The optimizer in Version 4.0 and later IBM Informix database servers formu-
lates all possible query plans. For each plan, it estimates the number of table
rows to be examined, disk pages to be read, and (when the IBM Informix
STAR feature is installed) network accesses that the plan requires. It selects
the plan with the lowest estimate.

Selecting an Optimization Level

With Version 5.0, you can specify a high or low level of database server opti-
mization with the SET OPTIMIZATION statement. This statement is described
in detail in the IBM Informix Guide to SQL: Reference.

The default (high) optimization level is a sophisticated, cost-based strategy
that examines all the reasonable choices and selects the best overall alterna-
tive. However, for large joins, this level may incur more overhead than you
want; in extreme cases, performance degradation can be severe. The low opti-
mization level eliminates unlikely join strategies during the early stages,
reducing the amount of time and resources spent during optimization. The
risk with this level is that the optimal strategy is not selected because it was
eliminated from consideration during the early stages. You normally obtain
optimum overall performance with the default optimization level. If experi-
mentation with your application reveals that the low optimization level is
best, then you should set your optimization level to low.

Providing Input

The optimizer can only be successful if its estimates are accurate. (They need
not be accurate in absolute terms, but they must be relatively accurate so that
better plans produce lower estimates than worse plans.) However, the opti-
mizer has only limited information. To keep its own work down to a small
fraction of the execution time, it has to make do with the information in the
system catalog tables and other summary information. There is no time, for
example, for the optimizer to perform a SELECT COUNT(*) operation to
obtain an accurate count of the rows in a table.
4-14 Optimizing Your Queries

The Query Optimizer
The information available to the optimizer comes from the system catalog
tables. (See the IBM Informix Guide to SQL: Reference for information on system
catalog tables.) In all IBM Informix database servers, this information
includes

• The number of rows in a table (as of the most recent UPDATE STATISTICS
command)

• Whether a column is constrained to be unique

• The indexes that exist on a table, including which columns they encom-
pass, whether they are ascending or descending, and whether they are
clustered

The system catalog tables maintained by IBM Informix OnLine supply the
following additional input:

• The number of disk pages occupied by row data

• The depth of the index B+ tree structure (a measure of the amount of work
needed to perform an index lookup)

• The number of disk pages occupied by index entries

• The number of unique entries in an index (divided by the number of
rows, this suggests how many rows might match to a given key)

• Second-largest and second-smallest key values in an indexed column

Only the second-largest and second-smallest key values are noted because
the extreme values might be special out-of-range signals. The database server
assumes that key values are distributed smoothly between the second largest
and second smallest. Only the initial four bytes of these keys are stored.

Assessing Filters

The optimizer first examines the expressions in the WHERE clause by looking
for filters. The optimizer estimates the selectivity of each filter it finds. The
selectivity is a number between 0 and 1 that indicates the fraction of rows the
optimizer thinks the filter will pass. A very selective filter that passes very
few rows is assigned a selectivity near 0; a filter that passes most rows is
assigned a selectivity near 1. For details on this process, see “Filter Selectivity
Assignments” on page 4-17.

The optimizer also notes other information about the query, such as whether
an index is sufficient. If only an indexed column is selected, it is faster to read
the index pages and not read rows at all. (This is often possible with
subqueries.)
Optimizing Your Queries 4-15

The Query Optimizer
In addition, the optimizer notes whether an index can be used to evaluate a
filter. For this purpose, an indexed column is a column that has an index, or
one that is named first in a composite index. There are several cases to
consider:

• When an indexed column is compared to a literal, a host variable, or an
uncorrelated subquery, the database server can look up matching values
in the index instead of reading the rows.

• When an indexed column is compared to a column in another table (a join
expression), the database server can use the index to find matching
values, provided that the query plan calls for reading rows from the other
table first. The following join expression is an example:

WHERE customer.customer_num = orders.customer_num

If rows of customer are read first, values of customer_num can be looked
up in an index on orders.customer_num.

• Whether an index can be used in processing an ORDER BY clause. If all the
columns in the clause appear in one index in the same sequence, the
database server can use the index to read the rows in their ordered
sequence, thus avoiding a sort.

• Whether an index can be used in processing a GROUP BY clause. If all the
columns in the clause appear in one index in the same sequence, the data-
base server can read groups with equal keys from the index without
needing a sort.
4-16 Optimizing Your Queries

The Query Optimizer
Selecting Table-Access Paths

The optimizer next chooses what it estimates to be the most efficient way of
accessing each table named in the query. It has four choices:

• To read the rows of the table sequentially

• To read one of the indexes for the table and read the rows to which the
index points

• To create and use a temporary index

• To perform a sort merge

The choice between the first two options depends in large part on the
presence of a filter expression. When there is any filter on an indexed column,
the database server chooses the selected rows through the index and pro-
cesses only those rows.

Filter Selectivity Assignments
The following table lists some of the selectivities that the optimizer assigns to filters of differ-
ent types. It is not an exhaustive list, and other expression forms may be added in the future.

Expression Form Selectivity (F)
indexed-col = literal-value
indexed-col = host-variable
indexed-col IS NULL F = 1/(number of distinct keys in index)
tab1.indexed-col = tab2.indexed-col F = 1/(number of distinct keys in the larger index)
indexed-col > literal-value F = (2nd-max - literal-value)/(2nd-max - 2nd-min)
indexed-col < literal-value F = (literal-value - 2nd-min)/(2nd-max - 2nd-min)
any-col IS NULL
any-col = any-expression F = 1/10
any-col > any-expression
any-col < any-expression F = 1/3
any-col MATCHES any-expression
any-col LIKE any-expression F = 1/5

EXISTS subquery F = 1 if subquery estimated to return >0 rows, else 0

NOT expression F = 1 - F(expression)
expr1 AND expr2 F = F(expr1) × F(expr2)
expr1 OR expr2 F = F(expr1) + F(expr2) - F(expr1) × F(expr2)

any-col IN list treated as anycol = item1 OR…OR anycol = itemn
any-col relop ANY subquery treated as any-col relop value1 OR…OR anycol relop valuen

 for estimated size of subquery n
Key:
indexed-col: first or only column in an index (IBM Informix OnLine only)
2nd-max, 2nd-min: second-largest and -smallest key values in indexed column (IBM Informix OnLine only)
any-col: any column not covered by a preceding formula
Optimizing Your Queries 4-17

The Query Optimizer
When there is no filter, the database server must read all of the rows anyway.
It is usually faster simply to read the rows, rather than reading the pages of
an index and then reading the rows. However, if the rows are required in
sorted order, there may be a net savings in reading the index and through it
reading the rows in sorted order.

The optimizer might choose a third option, creating a temporary index, in
two cases. When neither table in a join has an index on the joining column,
and the tables are large enough, the optimizer may decide that it is quicker to
build an index to one table than to read through that table sequentially for
each row of the other table. You can also use a temporary index to generate
rows in sorted or grouped sequence. (The alternative is to write the output
rows to a temporary table and sort that.)

The optimizer has a fourth option—performing a sort merge—which does
not require a temporary index. This happens automatically when at least one
filter of the join is an equality operator.

Selecting the Query Plan

With all this information available, the optimizer generates all possible query
plans for joining tables in pairs. Then, if more than two tables are joined, the
optimizer uses the best two-table plans to form all plans for joining two tables
to a third, three to a fourth, and so on.

The optimizer adds any final work to the completed join plans. For example,
if there is an ORDER BY or GROUP BY clause, and a plan does not produce
rows in ordered sequence, the optimizer adds to the plan an estimate of the
cost of sorting the output. Sorting is discussed in “Time Cost of a Sort” on
page 4-22.

Finally, the optimizer selects a plan that appears to promise the least amount
of work, and passes it to the main part of the database server to be executed.
4-18 Optimizing Your Queries

The Query Optimizer
Reading the Plan
The choice the optimizer makes does not have to remain a mystery; you can
determine exactly what query plan it chooses. Execute the statement SET
EXPLAIN ON before you execute a query. Beginning with the next query, the
optimizer writes an explanation of its query plan to a particular file (the name
of the file and its location depend on the operating system in use). A typical
explanation is shown in Figure 4-5.

After repeating the query, the optimizer shows its estimate of the work to be
done (104 in Figure 4-5) in arbitrary units. A single disk access is one unit,
and other actions are scaled to that. This query plan was chosen over others
because its estimate was the lowest.

QUERY:

SELECT C.customer_num, O.order_num, SUM (I.total_price)

FROM customer C, orders O, items I
WHERE C.customer_num = O.customer_num

AND O.order_num = I.order_num
GROUP BY C.customer_num, O.order_num;

Estimated Cost: 104
Estimated # of Rows Returned: 2

1) pubs.o: INDEX PATH

 (1) Index Keys: order_num

2) pubs.c: INDEX PATH

 (1) Index Keys: customer_num (Key-Only)
Lower Index Filter: pubs.c.customer_num = pubs.o.customer_num

3) pubs.i: INDEX PATH

 (1) Index Keys: order_num
 Lower Index Filter: pubs.i.order_num = pubs.o.order_num

Figure 4-5 Typical output produced by the optimizer with SET EXPLAIN ON

The optimizer also reveals its estimate of the number of rows the query pro-
duces. In Figure 4-5, the optimizer incorrectly estimates 2. The estimate is
incorrect because the optimizer has no good way to tell how many groups the
GROUP BY clause produces. You know that there is a group for every row in
the orders table; the optimizer cannot know that.
Optimizing Your Queries 4-19

Time Costs of a Query
In the body of the explanation, the optimizer lists the order in which tables
are accessed and the method, or access path, by which it reads each table. The
following breakdown clarifies the plan:

1. The orders table is read first. The index on order_num is used; hence the
rows are read in order_num sequence.

Since all rows are read, it actually is less effort to read the table sequen-
tially. However, retrieving the rows in order_num sequence lets the
GROUP BY clause be performed without a final sort.

2. For each row of orders, a search is made for matching rows in the
customer table. The search uses the index on customer_num.

The notation Key-Only means that since only the customer_num column
is used in the output, only the index is read; no row is read from the table.

3. For each row of orders that has a matching customer_num, a search is
made in the items table using the index on order_num.

It is not always obvious why the optimizer makes its choices. By comparing
the plans produced by several variations in the query, you can usually
deduce some of its logic. However, it may be best to read the explanation file
accepting that this is what the optimizer does without trying too hard to see
why it chooses to do it.

Time Costs of a Query
To execute a query, the database server spends most of its time in performing
two types of operation: reading data from disk, and comparing column val-
ues. Of the two, reading data is, by far, the slower task. This section examines
where the database server spends time. The next section explores the impli-
cations of making queries faster.

Activities in Memory
The database server can only process data in memory. It must read a row into
memory before it can test it with a filter expression. It must read rows from
both tables before it can test a join condition. The database server prepares an
output row in memory by assembling the selected columns from other rows
in memory.

Most of these activities go very quickly. Depending on the computer, the
database server can perform hundreds or even thousands of comparisons a
second. As a result, the time spent on in-memory work is usually a small part
of the whole execution time.
4-20 Optimizing Your Queries

Time Costs of a Query
Two in-memory activities can take a significant amount of time. One is sort-
ing, as described in “Time Cost of a Sort” on page 4-22. The other activity is
processing comparisons using LIKE and MATCHES, especially those that test
for “zero or more” characters at the front or in the middle of values.
Optimizing Your Queries 4-21

Time Costs of a Query
Disk-Access Management
It takes much longer to read a row from disk than to examine a row in mem-
ory. The main goal of the optimizer is to reduce the amount of data that must
be read from disk, but it can eliminate only the most obvious inefficiencies.

Time Cost of a Sort
A sort requires both in-memory work and disk work.

The in-memory work is proportional to c∗w∗n∗log2(n), where

c is the number of columns being ordered, and represents the
costs of extracting column values from the row and concate-
nating them into a sort key.

w is proportional to the width of the combined sort key in bytes,
and stands for the work of copying or comparing one sort key.
A numeric value for w would depend strongly on the com-
puter hardware in use.

n∗log2(n) is the number of comparisons that are made while sorting a
table of n rows.

The disk work is proportional to 2∗n∗m, where n is again the number of
rows. The factor m represents the number of levels of merge the sort must
use, a factor that depends on the number of sort keys that can be held in
memory.

When all the keys can be held in memory, m=1 and the disk work is pro-
portional to 2n. In other words, the rows are read, sorted in memory, and
written. (When building an index, only index pages are written.)

For tables from moderate to large sizes, rows are sorted in batches that fit
in memory and then the batches are merged. When m=2, the rows are
read, sorted, and written in batches. Then the batches are read again and
merged and written again, resulting in disk work proportional to 4n. For
extremely large tables, the batches must be broken into batches. The disk
work is then proportional to 6n. In short, as table size goes up there are
sudden, discontinuous changes in the amount of disk work in a sort,
from 2n to 4n to 6n. The table size at which these steps occur depends on
many factors, only one of which (key size) is in your control.

The best way to reduce the cost of sorting is to find a way to sort fewer
rows, since the factor n dominates both expressions. When that is not
possible, look for ways to sort on fewer and narrower columns. Not only
does this reduce the factors c and w, it defers the step to the next merge
level.
4-22 Optimizing Your Queries

Time Costs of a Query
Disk Pages

The database server deals with disk storage in units called pages. A page is a
block of fixed size. The same size is used for all databases managed by one
database server. Indexes are also stored in page-size units.

The size of a page depends on the database server. With IBM Informix
OnLine, the page size is set when OnLine is initialized. It is usually 2 kilo-
bytes (2,048 bytes), but you can ask the person who installed OnLine to tell
you what was chosen. Other IBM Informix database servers use the file stor-
age of the host operating system, so their page size is the block size used by
the host operating system. One kilobyte (1,024 bytes) is a typical size, but you
should check it for the operating system you use.

It is possible to define tables so wide that one row fills a page (some database
servers permit a row to exceed the size of a page). However, a typical row size
is between 50 and 200 bytes, so in a typical table a disk page contains from 5
to 50 rows. An index entry consists of a key value and a 4-byte pointer, so an
index page typically contains from 50 to 500 entries.

Page Buffers

The database server has a set of memory spaces in which it keeps copies of
the disk pages it read most recently. It does this in the hope that these pages
will be needed again. If they are, the database server will not have to read
them from disk.

Like the size of a disk page, the number of these page buffers depends on the
database server and the host operating system.

The Cost of Reading a Row
When the database server needs to examine a row that is not already in mem-
ory, it must read it from disk. It does not read just one row; it reads the pages
that contain the row. (When a row is larger than a page, it reads as many
whole pages as necessary.) The cost of reading one page is the basic unit of
work that the optimizer uses for its calculations.

The actual cost of reading a page is variable and hard to predict. It is a
combination of the following factors:

Buffering The needed page might be in a page buffer already, in which
case the cost of access is near zero.

Contention If more than one application is contending for the use of the
disk hardware, the database server request can be delayed.
Optimizing Your Queries 4-23

Time Costs of a Query
Seek time The slowest thing a disk does is to seek; that is, to move the
access arm to the track holding the data. Seek time depends
on the speed of the disk and the location of the disk arm
when the operation starts. Seek time varies from zero to a
large fraction of a second.

Latency The transfer cannot start until the beginning of the page
rotates under the access arm. This latency, or rotational delay,
depends on the speed of the disk and on the position of the
disk when the operation starts. Latency can vary from zero
to a few milliseconds.

The time cost of reading a page can vary from microseconds (for a page in a
buffer), to a few milliseconds (when contention is zero and the disk arm is
already in position), to hundreds of milliseconds.

The Cost of Sequential Access
Disk costs are lowest when the database server reads the rows of a table in
physical order. When the first row on that page is requested, its disk page is
read. Requests for subsequent rows are satisfied from the buffer until the
entire page is used. As a result, each page is read only once.

Provided that the database server is the only program using the disk, the
seek-time cost is also minimized. The disk pages of consecutive rows are usu-
ally in consecutive locations on the disk, so the access arm moves very little
from one page to the next. Even when that is not the case, groups of consec-
utive pages are usually located together so that only a few long seeks are
needed. For example, IBM Informix OnLine allocates disk space to a table in
multipage extents. Extents may be separated on the disk, but within an extent
the pages are close together.

Even latency costs may be lowest when pages are read sequentially. This
depends on the hardware and, when operating system files are used, on the
methods of the operating system. Disks are usually set up so that when pages
are read sequentially, latency is minimized. On the other hand, it is possible
to set up a disk so that a full rotation occurs between each sequential page,
drastically slowing sequential access.
4-24 Optimizing Your Queries

Time Costs of a Query
The Cost of Nonsequential Access
Disk costs are higher when the rows of a table are called for in a sequence that
is unrelated to physical order. Practical tables are normally much larger than
the database server page buffers, so only a small part of the table pages can
be held in memory. When a table is read in nonsequential order, only a few
rows are found in buffered pages. Usually one disk page is read for every row
that is requested.

Since the pages are not taken sequentially from the disk, there is usually both
a seek delay and a rotational delay before each page can be read. In short,
when a table is read nonsequentially, the disk access time is much higher than
when it is read sequentially.

The Cost of Rowid Access
The simplest form of nonsequential access is to select a row based on its rowid
value. (The use of rowid in a SELECT statement is discussed in Chapter 3. The
use of rowid in database design is discussed in Chapter 10.) A rowid value
specifies the physical location of the row and its page. The database server
simply reads the page, incurring the costs already noted.

The Cost of Indexed Access
There is an additional cost associated with finding a row through an index:
The index itself is stored on disk, and its pages must be read into memory.

The database server uses indexes in two ways. One way is to look up a row
given a key value. This is the kind of look up used when you join two tables,
as in a statement such as this:

SELECT company, order_num
FROM customer, orders
WHERE customer.customer_num = orders.customer_num

One table, probably customer, is read sequentially. Its value of
customer_num is used to search the index on the customer_num column of
orders. When a match is found, that row of orders is read.

An index look up works downward from the root page to a leaf page. (See
“The Structure of an Index” on page 4-28.) The root page, since it is used so
often, is almost always found in a page buffer. The odds of finding a leaf page
in a buffer depend on the size of the index; the odds become poorer as the size
of the table increases.
Optimizing Your Queries 4-25

Time Costs of a Query
If a table is very large, so that the number of index leaf pages is much larger
than the buffer space, almost every search causes a leaf page to be read in
addition to the page containing the row. The number of pages read is approx-
imately 2r, where r is the number of rows to be looked up. Although it is
costly, this kind of access is still a bargain, since the alternative is to perform
each look up by reading the entire orders table, with disk costs proportional
to r2.

The other way the database server uses an index is to read it sequentially. It
does this to fetch the rows of a table in a specific order other than the physical
order. For this kind of access, the database server reads the leaf pages in
sequence, treating them as a list of rows in key sequence. Since the index
pages are read only once, the total of disk operations is proportional to r+i,
where i is the number of leaf pages in the index.

The Cost of Small Tables
One conclusion you can draw from the preceding paragraphs is that small
tables are never slow. A table is “small” if it occupies so few pages that it can
be retained entirely in the page buffers. Any table that fits in four or fewer
pages is certainly “small” in this sense.

In the stores5 database, the state table that relates abbreviations to names of
states has a total size less than 1,000 bytes; it fits in, at most, two pages. It can
be included in any query at almost no cost. No matter how it is used—even
if it is read sequentially many times—it costs two disk accesses at most.

The Cost of Network Access
Whenever data is moved over a network, additional delays are imposed.
Networks are used in two contexts:

• Using IBM Informix NET, the application sends a query across the net-
work to a database server in another machine. The database server
performs the query using its locally attached disk. The output rows are
returned over the network to the application.

• Using the IBM Informix STAR (distributed data) component of
IBM Informix OnLine, a database server in one machine can read and
update rows from tables in databases located on other machines.

Both contexts may apply; it is possible to use IBM Informix NET to call on one
IBM Informix OnLine server, and send that server a query that causes it to use
tables at yet other servers.
4-26 Optimizing Your Queries

Time Costs of a Query
The data sent over a network consists of command messages and buffer-
sized blocks of row data. While many differences of detail exist between the
two contexts, they can be treated identically under a simple model in which
one machine, the sender, sends a request to another, the responder, which
responds with a block of data from a table.

Whenever data is exchanged over a network, delays are inevitable in the
following situations:

• If the network is busy, the sender must wait its turn to transmit. Such
delays are typically brief, less than a millisecond. But in a heavily loaded
network, they can increase exponentially to tenths of seconds and more.

• The responder may be handling requests from more than one sender, so
when the request arrives, it may be queued for a time that can range from
milliseconds to seconds.
Optimizing Your Queries 4-27

Time Costs of a Query
• When the responder acts on the request, it incurs the time costs of disk
access and in-memory operations as described in the preceding topics.

• Transmission of the response is again subject to network delays.

The important point about network access is its extreme variability. In the
best case, when neither the network nor the responder is busy, transmission
and queueing delays are insignificant and the responder sends a row almost

The Structure of an Index
An index is arranged as a hierarchy of pages (technically, a B+ tree), as
depicted in the figure below. At the bottom level, a sequence of leaf pages
contains the index key values of the table rows, each with a pointer to the
location of the row containing that value. The keys in the leaf pages are
in key sequence.

At each higher level, a page lists the highest key value to be found in
each page at the lower next level. The topmost level is a single root page
from which any other page of the index can be found.

The size of one entry is the width of the indexed columns in bytes, plus
4. If you know that and the page size, you can estimate the number of
entries per page. This estimate is approximate since first, some data com-
pression is used in storing keys and second, not all pages are full.

The number of levels depends on the number of rows to be indexed and
the number of entries per page. Suppose a page holds 100 keys. Then a
table of 100 rows has a single index page, the root page. A table with
between 101 and 10,000 rows has a two-level index consisting of a root
page and from 2 to 100 leaf pages. A table with as many as 1,000,000 rows
has only a 3-level index (so the preceding index must belong to a table of
considerable size).

. . .

.

root page

leaf pageleaf page

.
4-28 Optimizing Your Queries

Making Queries Faster
as quickly as a local database server could do it. Furthermore, when the
sender asks for a second row, the page is likely still to be in the responder
page buffers.

Unfortunately, as network load goes up, all of these factors tend to go bad at
the same time. Transmission delays rise in both directions. The queue at the
responder gets longer. And the odds of a page remaining in the responder
buffer become worse. Thus, network access costs can change quite suddenly
from very low to extremely high.

The optimizer that IBM Informix OnLine uses assumes that access to a row
over the network takes longer than access to a row in a local database. The
optimizer has no way to account for varying network loads, so it is too pes-
simistic at times and too optimistic at others.

Making Queries Faster
In general, you can speed up a query by changing it so that it

• Reads fewer rows

• Avoids a sort, sorts fewer rows, or sorts on a simpler key

• Reads rows sequentially instead of nonsequentially

The way to achieve these ends is not always obvious. The specific methods
depend on the details of the application and the database design. The follow-
ing paragraphs suggest a general approach, followed by some techniques
that apply in limited circumstances.

Preparing a Test Environment
First, select a single query that is too slow. Then, set up an environment in
which you can take predictable, repeatable timings of that query. Without
this environment, you can never be sure whether a change helped.

If you are using a multiuser system or a network, so that system load varies
widely from hour to hour, you may need to perform your experiments at the
same time each day to obtain repeatable results. You may even need to work
at night.

If the query presently is embedded in a complicated program, consider
extracting the SELECT statement and executing it interactively, or embedding
it in a simpler program.
Optimizing Your Queries 4-29

Making Queries Faster
If the real query takes many minutes or hours to complete, it may be a good
idea to prepare a scaled-down database in which you can run tests more
quickly. This can be helpful, but you must be aware of two potential
problems:

• The optimizer can make different choices in a small database than in a
large one, even when the relative sizes of tables are the same. Verify that
the query plan is the same in the real and model databases.

• Execution time is rarely a linear function of table size. Sorting time, for
example, increases faster than table size, as does the cost of indexed
access when an index goes from two to three levels. What appears to be a
big improvement in the scaled-down environment can be insignificant
when applied to the full database.

Therefore, any conclusion you reach as a result of tests in the model database
must be tentative until verified in the large one.

Studying the Data Model
Study the definitions of all the tables, views, and indexes used in the data-
base. You can examine these details interactively using the Table option of
DB-Access or IBM Informix SQL. Pay particular attention to the indexes that
exist, to the data types of columns used in join conditions and for ordering,
and to the presence of views. This chapter is written assuming that you can-
not change the data model. Nevertheless, the better you understand it, the
better you can understand the query plans chosen by the optimizer.

For information on data types and views, see Chapters 9 and 11 of this
manual, respectively.

Studying the Query Plan
Use SET EXPLAIN ON to determine the query plan being used. Here are some
things to look for in particular:

• Unexpected tables are joined. A query against a view often joins more
tables than you might expect.

• Mention of temporary files means the output is being written to a
temporary table, after which it is sorted. The number of disk accesses is at
least twice what it is if a sort were not needed.

• Use of a sequential access path for the second or subsequent table in a join
means that the table is read in its entirety for every selected row of every
table that precedes it in the plan.
4-30 Optimizing Your Queries

Making Queries Faster
• Use of an autoindex path means the database server takes the time to
construct an index as a way of avoiding multiple sequential accesses.

• Use of a sequential access path for the first table in a join can be wasteful
when only a small fraction of its rows appear in the output.

Rethinking the Query
Now that you understand what the query is doing, look for ways to obtain
the same output with less effort. The following suggestions correspond to the
preceding list.

Rewriting Joins Through Views

You might find that the query joins a table to a view that is itself a join. If you
rewrite the query to join directly to fewer tables, you might be able to
produce a simpler query plan.

Avoiding or Simplifying Sorts

A sort is not necessarily negative. The sort algorithm of the database server
is highly tuned and extremely efficient. It is certainly as fast as any external
sort program you might apply to the same data. As long as the sort is per-
formed only occasionally, or to a relatively small number of output rows,
there is no need to avoid it.

However, you should avoid or simplify repeated sorts of large tables. The
optimizer avoids a sort step whenever it can produce the output in its proper
order automatically by using an index. Here are some factors that prevent the
optimizer from using an index:

• One or more of the ordered columns is not included in the index.

• The columns are named in a different sequence in the index and the
ORDER BY or GROUP BY clause.

• The ordered columns are taken from different tables.

Another way to avoid sorts is discussed in “Using a Temporary Table to
Speed Queries” on page 4-36.

If a sort is necessary, look for ways to simplify it. As discussed in “Time Cost
of a Sort” on page 4-22, the sort is quicker if you can sort on fewer or nar-
rower columns.
Optimizing Your Queries 4-31

Making Queries Faster
Eliminating Sequential Access to Large Tables

Sequential access to a table other than the very first one in the plan is omi-
nous; it threatens to read every row of the table once for every row selected
from the preceding tables. You should be able to judge how many times that
is: perhaps only a few, but perhaps hundreds or even thousands.

If the table is a small one, it can do no harm to read it over and over; the table
resides completely in memory. Sequential search of an in-memory table can
be faster than searching the same table through an index, especially if also
having its index pages in memory pushes other useful pages out of the
buffers.

When the table is larger than a few pages, however, repeated sequential
access is deadly to performance. One way to prevent it is to provide an index
to the column being used to join the table.

The subject of indexing is discussed in the context of database design in
“Managing Indexes” on page 10-20. However, any user with Resource priv-
ileges can build additional indexes. Use the CREATE INDEX command to
make an index.

An index consumes disk space proportional to the width of the key values
and the number of rows. (See “The Structure of an Index” on page 4-28.)
Also, the database server must update the index whenever rows are inserted,
deleted, or updated; this slows these operations. If necessary, you can use
DROP INDEX to release the index after a series of queries, thus freeing space
and making table updates easier.

Using Unions to Avoid Sequential Access

Certain forms of WHERE clauses force the optimizer to use sequential access
even when indexes exist on all the tested columns. The following query
forces sequential access to the orders table:

SELECT * FROM orders
WHERE (customer_num = 104 AND order_num > 1001)

OR order_num = 1008

The key element is that two (or more) separate sets of rows are retrieved. The
sets are defined by relational expressions that are connected by OR. In the
example, one set is selected by this test:

(customer_num = 104 AND order_num > 1001)
4-32 Optimizing Your Queries

Making Queries Faster
The other set is selected by this test:

order_num = 1008

The optimizer uses a sequential access path even though there are indexes on
the customer_num and order_num columns.

You can speed queries of this form by converting them into UNION queries.
Write a separate SELECT statement for each set of rows and connect them
with the UNION keyword. Here is the preceding example rewritten this way:

SELECT * FROM orders
WHERE (customer_num = 104 AND order_num > 1001)

UNION

SELECT * FROM orders
WHERE order_num = 1008

The optimizer uses an index path for each query.

Replacing Autoindexes with Indexes

If the query plan includes an autoindex path to a large table, take it as a rec-
ommendation from the optimizer that an index should be on that column. It
is reasonable to let the database server build and discard an index if you per-
form the query only occasionally, but if the query is done even daily, you save
time by creating a permanent index.

Using Composite Indexes

The optimizer can use a composite index (one that covers more than one
column) in several ways. In addition to its usual function of ensuring that the
values in columns abc are unique, an index on the columns a, b, and c (in that
order) can be used in the following ways:

• To evaluate filter expressions on column a

• To join column a to another table

• To implement ORDER BY or GROUP BY on columns a, ab, or abc (but not on
b, c, ac, or bc)
Optimizing Your Queries 4-33

Making Queries Faster
If your application is performing several long queries, each of which involves
a sort on the same columns, you might save time by creating a composite
index on those columns. In effect, you perform the sort once and save its
output for use in every query.

Using tbcheck on Suspect Indexes

With some database servers, it is possible for an index to become ineffective
because it has been internally corrupted. If a query that uses an index has
slowed down inexplicably, use the bcheck utility to check the integrity of the
index and to repair it if necessary. (The bcheck utility does the same job for
IBM Informix SE.)

Dropping and Rebuilding Indexes After Updates

After extensive amounts of updating (after the replacement of a fourth or
more of the rows of a table), the structure of an index can become inefficient.
If an index seems to be less effective than it should be, yet bcheck reports no
errors, try dropping the index and re-creating it.

Avoiding Correlated Subqueries

A correlated subquery is one in which a column label appears in both the
select list of the main query and the WHERE clause of the subquery. Since the
result of the subquery might be different for each row that the database
server examines, the subquery is executed anew for every row if the current
correlation values are different from the previous ones. The optimizer tries to
use an index on the correlation values to cluster identical values together.
This procedure can be extremely time consuming. Unfortunately, some que-
ries cannot be stated in SQL without the use of a correlated subquery.

When you see a subquery in a time-consuming SELECT statement, look to see
if it is correlated. (An uncorrelated subquery, one in which no row values
from the main query are tested within the subquery, is only executed once.)
If so, try to rewrite the query to avoid it. If you cannot, look for ways to
reduce the number of rows that are examined; for instance, try adding other
filter expressions to the WHERE clause, or try selecting a subset of rows into
a temporary table and searching only them.
4-34 Optimizing Your Queries

Making Queries Faster
Avoiding Difficult Regular Expressions

The MATCHES and LIKE keywords support wildcard matches—technically
known as regular expressions. Some regular expressions are more difficult than
others for the database server to process. A wildcard in the initial position, as
in the following example (find customers whose first names do not end in y),
forces the database server to examine every value in the column:

SELECT * FROM customer WHERE fname NOT LIKE "%y"

The optimizer does not attempt to use an index for such a filter, even when
one exists. It forces sequential access for the table. If the table is the second or
later one in a join, the query is slow.

If a difficult test for a regular expression is essential, avoid combining it with
a join. First process the single table, applying the test for a regular expression
to select the desired rows. Save the result in a temporary table, and join that
table to the others.

Regular-expression tests with wildcards only in the middle or at the end of
the operand do not prevent the use of an index when one exists. However,
they still can be slow to execute. Depending on the data in the column, you
can convert some expressions to range tests using relational operators. The
following SELECT statement is an example:

SELECT * FROM customer WHERE zipcode LIKE "98_ _ _"

You can rewrite that SELECT statement using a relational operator:

SELECT * FROM customer WHERE zipcode >= "98000"

Avoiding Noninitial Substrings

A filter based on a noninitial substring of a column also requires every value
in the column to be tested. Here is an example:

SELECT * FROM customer
WHERE zipcode[4,5] > "50"

The optimizer does not use an index to evaluate such a filter even when one
exists.
Optimizing Your Queries 4-35

Making Queries Faster
The optimizer uses an index to process a filter that tests an initial substring of
an indexed column. However, the presence of the substring test can interfere
with the use of a composite index to test both the substring column and
another column.

 A test of an initial substring can often be rewritten as a relational or
BETWEEN test on the whole column, and may be faster when that is done.

Using a Temporary Table to Speed Queries
Building a temporary, ordered subset of a table can sometimes speed up a
query. It can help to avoid multiple-sort operations and can simplify the work
of the optimizer in other ways.

Using a Temporary Table to Avoid Multiple Sorts

For example, suppose your application produces a series of reports on
customers who have outstanding balances, one report for each major postal
area, ordered by customer name. In other words, there is a series of queries
each of this form (using hypothetical table and column names):

SELECT cust.name, rcvbles.balance, ...other columns...
FROM cust, rcvbles
WHERE cust.customer_id = rcvbles.customer_id

AND rcvbls.balance > 0
AND cust.postcode LIKE "98_ _ _"

ORDER BY cust.name

This query reads the entire cust table. For every row with the right postcode,
the database server searches the index on rcvbles.customer_id and performs
a nonsequential disk access for every match. The rows are written to a tem-
porary file and sorted.

This procedure is acceptable if the query is done only once, but this example
includes a series of queries, each incurring the same amount of work.
4-36 Optimizing Your Queries

Making Queries Faster
An alternative is to select all customers with outstanding balances into a
temporary table, ordered by customer name, like this:

SELECT cust.name, rcvbles.balance, ...other columns...
FROM cust, rcvbles
WHERE cust.customer_id = rcvbles.customer_id

AND cvbls.balance > 0
ORDER BY cust.name
INTO TEMP cust_with_balance

Now you can direct queries against the temporary table in this form:

SELECT *
FROM cust_with_balance
WHERE postcode LIKE "98_ _ _"

Each query reads the temporary table sequentially, but the table has fewer
rows than the primary table. No nonsequential disk accesses are performed.
No sort is required since the physical order of the table is the desired order.
The total effort should be considerably less than before.

There is one possible disadvantage: any changes made to the primary table
after the temporary table has been created are not reflected in the output. This
is not a problem for most applications, but it might be for some.

Substituting Sorting for Nonsequential Access

Nonsequential disk access is the slowest kind. The SQL language hides this
fact, and makes it easy to write queries that access huge numbers of pages
nonsequentially. Sometimes you can improve a query by substituting the
sorting ability of the database server for nonsequential access.The following
example demonstrates this, and also demonstrates how to make numerical
estimates of the cost of a query plan.

Imagine a large manufacturing firm whose database includes three tables
shown in schematic form in Figure 4-6. (Table diagrams in this form are
described in Chapter 8 of this manual. Not all the columns are shown.)

The first table, part, contains parts used in the products of the company.

The second, vendor, contains data about the vendors who provide the parts.
The third, parven, records which parts are available from which vendors, and
at what price.
Optimizing Your Queries 4-37

Making Queries Faster
Figure 4-6 Three tables from a manufacturing database

The following query is run regularly against these tables to produce a report
of all available prices:

SELECT part_desc, vendor_name, price
FROM part, vendor, parven
WHERE part.part_num = parven.part_num

AND parven.vendor_num = vendor.vendor_num
ORDER BY part.part_num

Although it appears to be a relatively simple three-table join, the query takes
too much time. As part of your investigation, you prepare a table showing the
approximate sizes of the tables and their indexes, in pages. The table appears
in Figure 4-7. It is based on a disk page size of 4,096 bytes. Only approximate
numbers are used. The actual number of rows changes often, and only esti-
mated calculations are made in any case.

On further investigation, you learn that the index on part_num is clustered,
so that the part table is in physical order by part_num. Similarly, the vendor
table is in physical order by vendor_num. The parven table is not in any par-
ticular order. The sizes of these tables indicate that the odds of a successful
nonsequential access from a buffered page are very poor.

The best query plan for this query (not necessarily the one the optimizer
chooses) is to read the part table sequentially first, then use the value of
part_num to access the matching rows of parven (about 1.5 of them per part),
and then use the value of parven.vendor_num to access vendor through its
index.

 100,000
 999,999

part_num

pk

spiral spanner
spotted paint

part_desc

part

 9,100,000
 9,999,999

vendor_num

pk

Wrenchers SA
Spottiswode

vendor_name

vendor

 100,000
 999,999

part_num

pk, fk

parven

vendor_num

 9,100,000
 9,999,999

price

 $14.98
 $0.066

pk, fk
4-38 Optimizing Your Queries

Making Queries Faster
Tables Row Size Row Count Rows/Page Data Pages

part 150 10,000 25 400
vendor 150 1,000 25 40
parven 13 15,000 300 50

Indexes Key Size Keys/Page Leaf Pages

part_num 4 500 20
vendor_num 4 500 2
parven (composite) 8 250 60

Figure 4-7 Documenting the sizes of tables and indexes in pages

The resulting number of disk accesses can be estimated as follows:

• 400 pages read sequentially from part

• 10,000 nonsequential accesses to the parven table, 2 pages each (one index
leaf page, one data page), or 20,000 disk pages

• 15,000 nonsequential accesses to the vendor table, or 30,000 disk pages

Even a simple join on well-indexed tables can cost 50,400 disk reads. How-
ever, this can be improved by breaking the query into three steps using tem-
porary tables as shown in Figure 4-8. (The following solution comes from
W.H. Inmon; it is adapted from an example in his book Optimizing Perfor-
mance in DB2 Software, Prentice-Hall 1988.)

Figure 4-8 Breaking a query into three steps using temporary tables

part
parven
vendor

pv_by_vn
pvvn_by_pn

final query

 5,000 10,000 15,000 20,000 25,000 30,000 35,000 40,000 45,000 50,000DISK PAGES

400 pages
20,000 pages

30,000 pages

300 pages

892 pages

580 pages

Sequential and Nonsequential Disk Access

Disk Access Using Temporary Tables
Optimizing Your Queries 4-39

Making Queries Faster
The first step is to get the data of the parven table in vendor_num order:

SELECT part_num, vendor_num, price
FROM parven
ORDER BY vendor_num
INTO TEMP pv_by_vn

This statement reads parven sequentially (50 pages), writes a temporary
table (50 pages), and sorts it. The cost of the sort, assuming one merge level,
is about 200 pages, for a total of 300.

Join this temporary table to vendor and put the result in another temporary
table, ordered by part_num:

SELECT pv_by_vn.*, vendor.vendor_name
FROM pv_by_vn, vendor
WHERE pv_by_vn.vendor_num = vendor.vendor_num
ORDER BY pv_by_vn.part_num
INTO TEMP pvvn_by_pn;

DROP TABLE pv_by_vn

This query reads pv_by_vn sequentially (50 pages). It accesses vendor by
way of its index 15,000 times, but as the keys are presented in vendor_num
sequence, the effect is to read vendor sequentially through its index (42
pages).

If the vendor_name field is 32 bytes long, the output table has about 95 rows
per page and occupies about 160 pages. These pages are written and then
sorted, causing 5×160=800 page reads and writes. Thus, this query reads or
writes 892 pages in all. Now join its output to part for the final result:

SELECT pvvn_by_pn.*, part.part_desc
FROM pvvn_by_pn, part
WHERE pvvn_by_pn.part_num = part.part_num;

DROP TABLE pvvn_by_pn

This query reads pvvn_by_pn sequentially (160 pages). It accesses part by
way of its index 15,000 times, but again the keys are presented in part_num
sequence so the result is to read part sequentially (400 pages) through its
index (20 pages). The output is produced in sorted order.

By splitting the query into three steps, and by substituting sorts for indexed
access, a query that read 50,400 pages is converted into one that reads and
writes approximately 1772 pages, a 30-to-1 ratio.
4-40 Optimizing Your Queries

Summary
Note: IBM Informix database servers earlier than version 4.1 do not permit you to
use the ORDER BY and INTO TEMP clauses in the same query. With these database
servers, you can achieve the preceding solution by selecting INTO TEMP without
ordering, then applying the desired ordering through a clustered index. The improve-
ment is, at most, 15 to 1 rather than of 30 to 1.

Summary
Poor performance can come from a number of sources, not solely the SQL
operations in a program. Before you focus your attention on the code, take
the following steps:

• Examine the application in its context of machines, people, procedures,
and organization.

• Understand exactly what the application does, for whom, and why.

• Look for nontechnical solutions in the surrounding context.

• Develop a means of taking repeatable, quantitative measurements of the
performance of the application.

• Isolate the time-consuming parts as narrowly as possible.

The performance of an individual query is determined by the optimizer, a
part of the database server that formulates the query plan, the order in which
tables are read from disk. The optimizer exhaustively lists all possible query
plans and estimates the amount of work each causes. It passes the one with
the lowest estimate to the database server for execution.

The following operations in a query are time consuming:

• Reading rows from disk sequentially, nonsequentially by ROWID, and
nonsequentially through an index

• Reading rows over a network

• Sorting

• Performing some difficult matches of regular expressions

The general method to speed a query is first, to study the query plan of the
optimizer as documented by the SET EXPLAIN ON feature, and second, to
change the query so that the database server

• Reads fewer pages of data from disk

• Reads pages sequentially rather than nonsequentially

• Avoids sorting or sorts fewer rows or sorts on narrower columns
Optimizing Your Queries 4-41

Summary
You can achieve remarkable time savings in this way. Even if no time is saved,
the necessary study of the application and the query at least make it clear
where the time is being spent.
4-42 Optimizing Your Queries

Chapter
5

Statements That
Modify Data
Chapter Overview 3

Statements That Modify Data 3
Deleting Rows 4

Deleting All Rows of a Table 4
Deleting a Known Number of Rows 4

Deleting an Unknown Number of Rows 5
Complicated Delete Conditions 6

Inserting Rows 6
Single Rows 7
Multiple Rows and Expressions 9

Updating Rows 11
Selecting Rows to Update 12
Updating with Uniform Values 12
Impossible Updates 13
Updating with Selected Values 14

Database Privileges 15
Displaying Table Privileges 16

Data Integrity 17
Entity Integrity 18
Semantic Integrity 19
Referential Integrity 19

Interrupted Modifications 21
The Transaction 22
The Transaction Log 22
Specifying Transactions 22

Archives and Logs 23
Archiving Simple Databases (IBM Informix SE) 24
Archiving IBM Informix OnLine 25

Concurrency and Locks 25

Summary 26
5-2 Statements That Modify Data

Chapter Overview
Modifying data is fundamentally different from querying data. Querying
data involves examining the contents of tables. Modifying data involves
changing the contents of tables.

Think a moment about what happens if the system hardware or software fails
during a query. In this case, the effect on the application can be severe but the
database itself is unharmed. However, if the system fails while a modification
is under way, the state of the database itself is in doubt. Obviously, this can
have far-reaching implications. Before you delete, insert, or update rows in a
database, ask yourself the following questions:

• Is user access to the database and its tables secure, that is, are specific
users given limited database and table-level privileges?

• Does the modified data preserve the existing integrity of the database?

• Are systems in place that make the database relatively immune to exter-
nal events that might cause system or hardware failures?

If you are unable to answer yes to each of these questions, do not panic. Solu-
tions to all these problems are built into the database servers. After an intro-
duction to the statements that modify data, this chapter discusses these
solutions. Chapters 8 through 11 of this manual talk about these topics in
greater detail.

Statements That Modify Data
The following three statements modify data:

• DELETE

• INSERT

• UPDATE

Although these SQL statements are relatively simple when compared with
the more advanced SELECT statements, use them carefully since they do
change the contents of the database.
Modifying Data 5-3

Statements That Modify Data
Deleting Rows
The DELETE statement removes any row or combination of rows from a table.
There is no way you can recover a deleted row once the transaction is com-
mitted. (Transactions are discussed under “Interrupted Modifications” on
page 5-21. For now, think of a transaction and a statement as the same thing.)

When deleting a row, you must be careful also to delete any rows of other
tables whose values depend on the deleted row. If, however, your database
enforces referential constraints, you are not allowed to delete rows when
other rows depend on their value. For more information on referential con-
straints, refer to the section “Referential Integrity” on page 5-19.

Deleting All Rows of a Table

The DELETE statement specifies a table and usually contains a WHERE clause
that designates the row or rows that are to be removed from the table. If the
WHERE clause is left out, all rows are deleted. Do not execute the following
statement:

DELETE FROM customer

Since this DELETE statement contains no WHERE clause, all rows from the
customer table are deleted. If you attempt an unconditional delete using the
DB-Access or IBM Informix SQL menu options, you are warned and asked for
confirmation. However, an unconditional delete from within a program is
performed without warning.

Deleting a Known Number of Rows
The WHERE clause in a DELETE statement has the same form as the WHERE
clause in a SELECT statement. You can use it to designate exactly which row
or rows should be deleted. For example, you can delete a customer with a
specific customer number:

DELETE FROM customer WHERE customer_num = 175

In this example, since the customer_num column has a unique constraint,
you are sure that, at most, one row is deleted.
5-4 Modifying Data

Statements That Modify Data
Deleting an Unknown Number of Rows

You can also choose rows based on nonindexed columns, for example:

DELETE FROM customer WHERE company = "Druid Cyclery"

Since the column tested does not have a unique constraint, this statement
might delete more than one row. (Druid Cyclery may have two stores, both
with the same name but different customer numbers.)

You can find out how many rows might be affected by a DELETE statement
by selecting the count of qualifying rows from the customer table for Druid
Cyclery.

SELECT COUNT(*) FROM customer WHERE company = "Druid Cyclery"

You can also select the rows and display them, to be sure they are the ones
you mean to delete.

Using a SELECT statement as a test is only an approximation, however, when
the database is available to multiple users concurrently. Between the time
you execute the SELECT statement and the subsequent DELETE statement,
other users could have modified the table and changed the result. In this
example, another user might

• Insert a new row for another customer named Druid Cyclery

• Delete one or more of the Druid Cyclery rows before you do so

• Update a Druid Cyclery row to have a new company name, or update
some other customer to have the name Druid Cyclery

Although it is not likely that other users would do these things in that brief
interval, the possibility does exist. This same problem affects the UPDATE
statement. Ways of addressing this problem are discussed under “Concur-
rency and Locks” on page 5-25, and in greater detail in Chapter 7 of this
manual.

Another problem you may encounter is a hardware or software failure before
the statement finishes. In this case, the database may have deleted no rows,
some rows, or all specified rows. The state of the database is unknown, which
is undesirable. You can prevent this situation by using transaction logging, as
discussed in “Interrupted Modifications” on page 5-21.
Modifying Data 5-5

Statements That Modify Data
Complicated Delete Conditions

The WHERE clause in a DELETE statement can be almost as complicated as the
one in a SELECT statement. It can contain multiple conditions connected by
AND and OR, and it may contain subqueries.

Suppose you discover that some rows of the stock table were entered with
incorrect manufacturer codes. Rather than update them, you want to delete
them so they can be reentered. You know that these rows, unlike the correct
ones, have no matching rows in the manufact table. This allows you to write
the following DELETE statement:

DELETE FROM stock
WHERE 0 = (SELECT COUNT(*) FROM manufact

WHERE manufact.manu_code = stock.manu_code)

The subquery counts the number of rows of manufact that match; the count
is 1 for a correct row of stock and 0 for an incorrect one. The latter rows are
chosen for deletion.

One way to develop a DELETE statement with a complicated condition is to
first develop a SELECT statement that returns precisely the rows to be deleted.
Write it as SELECT *; when it returns the desired set of rows, change SELECT

* to read DELETE and execute it once more.

The WHERE clause of a DELETE statement cannot use a subquery that tests
the same table. That is, when you delete from stock, you cannot use a sub-
query in the WHERE clause that also selects from stock

The key to this rule is in the FROM clause. If a table is named in the FROM
clause of a DELETE statement, it cannot also appear in the FROM clause of a
subquery of the DELETE statement.

Inserting Rows
The INSERT statement adds a new row, or rows, to a table. The statement has
two basic functions: it can create a single new row using column values you
supply, or it can create a group of new rows using data selected from other
tables.
5-6 Modifying Data

Statements That Modify Data
Single Rows

In its simplest form, the INSERT statement creates one new row from a list of
column values, and puts that row in the table. Here is an example of adding
a row to the stock table:

INSERT INTO stock
VALUES(115, "PRC", "tire pump", 108, "box", "6/box")

The stock table has the following columns:

• stock_num, a number identifying the type of merchandise

• manu_code, a foreign key to the manufact table

• description

• unit_price

• unit (of measure)

• unit_descr (characterizing the unit of measure)

Notice that the values listed in the VALUES clause in the preceding example
have a one-to-one correspondence with the columns of this table. To write a
VALUES clause, you must know the columns of the tables as well as their
sequence from first to last.

Possible Column Values

The VALUES clause accepts only constant values, not expressions. The values
you supply can include

• Literal numbers

• Literal datetime values

• Literal interval values

• Quoted strings of characters

• The word NULL for a null value

• The word TODAY for today’s date

• The word CURRENT for the current date and time

• The word USER for your user name

• The word DBSERVERNAME (or SITENAME) for the name of the computer
where the database server is running

Some columns of a table might not allow null values. If you attempt to insert
NULL in such a column, the statement is rejected. Or a column in the table
may not permit duplicate values. If you specify a value that is a duplicate of
Modifying Data 5-7

Statements That Modify Data
one already in such a column, the statement is rejected. Some columns may
even restrict the possible column values allowed. These restrictions are
placed on columns using data integrity constraints. For more information on
data restrictions, see the section “Database Privileges” on page 5-15.

Only one column in a table can have the SERIAL data type. The database
server will generate values for a serial column. To make this happen, specify
the value zero for the serial column and the database server generates the
next actual value in sequence. Serial columns do not allow null values.

You can specify a nonzero value for a serial column (as long as it does not
duplicate any existing value in that column) and the database server uses the
value. However, that nonzero value may set a new starting point for values
that the database server generates. The next value the database server gener-
ates for you is one greater than the maximum value in the column.

Do not specify the currency symbols for columns that contain money values.
Just specify the numeric value of the amount.

The database server can convert between numeric and character data types.
You can give a string of numeric characters (for example, "-0075.6") as the
value of a numeric column. The database server converts the numeric string
to a number. An error occurs only if the string does not represent a number.

You can specify a number or a date as the value for a character column. The
database server converts that value to a character string. For example, if you
specify TODAY as the value for a character column, a character string repre-
senting today’s date is used. (The format used is specified by the DBDATE
environment variable.)

Listing Specific Column Names

You do not have to specify values for every column. Instead, you can list the
column names after the table name and then supply values for only those col-
umns you named. The following example inserts a new row into the stock
table:

INSERT INTO stock (stock_num,description,unit_price,manu_code)
VALUES (115,"tyre pump",114,"SHM")
5-8 Modifying Data

Statements That Modify Data
Notice that only the data for the stock number, description, unit price, and
manufacturer code is provided. The database server supplies the values for
the remaining columns:

• It generates a serial number for an unlisted serial column.

• It generates a default value for a column with a specific default associated
with it.

• It generates a null value for any column that allows nulls but does not
specify a default value or for any column that specifies null as the default
value.

This means that you must list and supply values for all columns that do not
specify a default value or do not permit nulls. However, you can list the col-
umns in any order—as long as the values for those columns are listed in the
same order.

After the INSERT statement is executed, the following new row is inserted
into the stock table:

stock_num manu_code description unit_price unit unit_descr

115 SHM tyre pump 114

Both the unit and unit_descr are blank, indicating that null values are in
those two columns. Since the unit column permits nulls, one can only guess
the number of tire pumps that were purchased for $114. Of course, if a default
value of “box” had been specified for this column, then “box” would have
been the unit of measure. In any case, when inserting values into specific col-
umns of a table, pay special attention to what data is needed to make sense
of that row.

Multiple Rows and Expressions

The other major form of the INSERT statement replaces the VALUES clause
with a SELECT statement. This feature allows you to insert the following data:

• Multiple rows with only one statement (a row is inserted for each row
returned by the SELECT statement)

• Calculated values (the VALUES clause only permits constants) since the
select list can contain expressions
Modifying Data 5-9

Statements That Modify Data
For example, suppose a follow-up call is required for every order that has
been paid for, but not shipped. The following INSERT statement finds those
orders and then inserts a row in cust_calls for each order:

INSERT INTO cust_calls (customer_num, call_descript)
SELECT customer_num, order_num FROM orders

WHERE paid_date IS NOT NULL
AND ship_date IS NULL

This SELECT statement returns two columns. The data from these columns (in
each selected row) is inserted into the named columns of the cust_calls table.
Then, an order number (from order_num, a serial column) is inserted into the
call description, which is a character column. Remember that the database
server allows you to insert integer values into a character column. It automat-
ically converts the serial number to a character string of decimal digits.

Restrictions on the Insert-Selection

There are four restrictions on the SELECT statement:

• It cannot contain an INTO clause.

• It cannot contain an INTO TEMP clause.

• It cannot contain an ORDER BY clause.

• It cannot refer to the table into which you are inserting rows.

The INTO, INTO TEMP, and ORDER BY clause restrictions are minor. The INTO
clause is not useful in this context (it is discussed in Chapter 6 of this manual).
You can work around the INTO TEMP clause restriction by first selecting the
data you want to insert into a temporary table and then inserting the data
from the temporary table using the INSERT statement. Likewise, the lack of
an ORDER BY clause is not important. If you need to ensure that the new rows
are physically ordered in the table, you can first select them into a temporary
table and order it, then insert from that temporary table. Or you can apply a
physical order to the table using a clustered index after all insertions are
done.

The fourth restriction is more serious because it prevents you from naming
the same table in both the INTO clause of the INSERT statement and the FROM
clause of the SELECT statement. (This saves the database server from getting
into an endless loop in which each inserted row is reselected and reinserted.)
In some cases, however, you may want to do this. For example, suppose that
you have learned that the Nikolus company supplies the same products as
the Anza company, but at half the price. You want to add rows to the stock
5-10 Modifying Data

Statements That Modify Data
table to reflect this. Optimally, you want to select data from all the Anza stock
rows and reinsert it with the Nikolus manufacturer code. However, you can-
not select from the same table into which you are inserting.

There is a way around this restriction. Select the data you want to insert into
a temporary table. Then, select from that table in the INSERT statement. Three
statements are required to accomplish this:

SELECT stock_num, "NKL" temp_manu, description, unit_price/2
half_price, unit, unit_descr FROM stock

WHERE manu_code = "ANZ"
INTO TEMP anzrows

INSERT INTO stock SELECT * FROM anzrows

DROP TABLE anzrows

This SELECT statement takes existing rows from stock, substitutes a literal
value for the manufacturer code and a computed value for the unit price.
These rows are then saved in a temporary table, anzrows, which is immedi-
ately inserted into the stock table.

When you insert multiple rows, there is a risk that one of the rows contains
invalid data that will cause the database server to report an error. When this
happens, the statement terminates early. Even if no error occurs, there is also
a very small risk that there will be a hardware or software failure while the
statement is executing (for example, the disk might fill up).

In either event, you cannot easily tell how many new rows were inserted. If
you repeat the statement in its entirety, you might create duplicate rows—or
you might not. Since the database is in an unknown state, you cannot tell
what to do. The answer lies in using transactions, as discussed under “Inter-
rupted Modifications” on page 5-21.

Updating Rows
You use the UPDATE statement to change the contents of one or more col-
umns in one or more existing rows of a table. This statements takes two fun-
damentally different forms. One lets you assign specific values to columns by
name; the other lets you assign a list of values (that might be returned by a
SELECT statement) to a list of columns. In either case, if you are updating
rows and some of the columns have data integrity constraints, the data you
change must be within the constraints placed on those columns. For more
information, refer to the section on “Database Privileges” on page 5-15.
Modifying Data 5-11

Statements That Modify Data
Selecting Rows to Update

Either form of the UPDATE statement can end with a WHERE clause that
determines which rows are modified. If you omit it, all rows are modified.
The WHERE clause can be quite complicated, so as to select the precise set of
rows that need changing. The only restriction on it is that the table that you
are updating cannot be named in the FROM clause of a subquery.

The first form of an UPDATE statement uses a series of assignment clauses to
specify new column values. Here is an example:

UPDATE customer
SET fname = "Barnaby", lname = "Dorfler"
WHERE customer_num = 103

The WHERE clause selects the row to be updated. In the stores5 database the
customer.customer_num column is the primary key for that table, so this
statement can update one row, at most.

You can also use subqueries in the WHERE clause. Suppose that the Anza cor-
poration issues a safety recall of their tennis balls. As a result, any unshipped
orders that include stock number 6 from manufacturer ANZ must be put on
back order.

UPDATE orders
SET backlog = "y"
WHERE ship_date IS NULL
AND order_num IN

(SELECT DISTINCT items.order_num FROM items
WHERE items.stock_num = 6
AND items.manu_code = "ANZ")

This subquery returns a column of order numbers (zero or more of them).
The UPDATE operation then tests each row of orders against the list and per-
forms the update if that row matches.

Updating with Uniform Values

Each assignment after the keyword SET specifies a new value for a column.
That value is applied uniformly to every row that is updated. In the examples
in the previous section, the new values were constants, but you can assign
5-12 Modifying Data

Statements That Modify Data
any expression, including one based on the column value itself. Suppose the
manufacturer code HRO has raised all prices by 5%, and you must update the
stock table to reflect this.

UPDATE stock
SET unit_price = unit_price * 1.05
WHERE manu_code = "HRO"

You can also use a subquery as part of the assigned value. When a subquery
is used as an element of an expression, it must return exactly one value (one
column and one row). Suppose that you decide that for any stock number,
you must charge a higher price than any manufacturer of that product. You
need to update the prices of all unshipped orders.

UPDATE items
SET total_price = quantity *

(SELECT MAX (unit_price) FROM stock
WHERE stock.stock_num = items.stock_num)

WHERE items.order_num IN
(SELECT order_num FROM orders

WHERE ship_date IS NULL)

The first SELECT statement returns a single value—the highest price in the
stock table for a particular product. This is a correlated subquery; because a
value from items appears in its WHERE clause, it must be executed for every
row that is updated.

The second SELECT statement produces a list of the order numbers of
unshipped orders. It is an uncorrelated subquery and is executed once.

Impossible Updates

There are restrictions on the use of subqueries when you modify data. In par-
ticular, you cannot query the table that is being modified. You can refer to the
present value of a column in an expression, as in the example in which the
unit_price column was incremented by 5%. You can refer to a value of a col-
umn in a WHERE clause in a subquery, as in the example that updated the
stock table, in which the items table is updated and items.stock_num is used
in a join expression.

The need to update and query a table at the same time does not arise often in
a well-designed database (database design is covered in Chapters 8 through
11 of this manual). However, you may want to do this when a database is first
being developed, before its design has been carefully thought through. A typ-
Modifying Data 5-13

Statements That Modify Data
ical problem arises when a table inadvertently and incorrectly contains a few
rows with duplicate values in a column that should be unique. You might
want to delete the duplicate rows or update only the duplicate rows. Either
way, a test for duplicate rows inevitably requires a subquery, which is not
allowed in an UPDATE statement or DELETE statement. Chapter 7 discusses
how to use an update cursor to perform this kind of modification.

Updating with Selected Values

The second form of UPDATE statement replaces the list of assignments with
a single bulk assignment, in which a list of columns is set equal to a list of val-
ues. When the values are simple constants, this form is nothing more than the
form of the previous example with its parts rearranged, as in this example:

UPDATE customer
SET (fname, lname) = ("Barnaby", "Dorfler")
WHERE customer_num = 103

There is no advantage to writing the statement this way. In fact, it is harder
to read since it is not obvious which values are assigned to which columns.

However, when the values to be assigned come from a single SELECT state-
ment, this form makes sense. Suppose that changes of address are to be
applied to several customers. Instead of updating the customer table each
time a change is reported, the new addresses are collected in a single tempo-
rary table named newaddr. It contains columns for the customer number and
the address-related fields of the customer table. Now the time comes to apply
all the new addresses at once. (This idea of collecting routine changes in a
separate table and applying them in a batch, outside of prime hours, is one of
the performance techniques covered in Chapter 10 of this manual.)

UPDATE customer
SET (address1, address2, city, state, zipcode) =

(SELECT address1, address2, city, state, zipcode
FROM newaddr
WHERE newaddr.customer_num =

customer.customer_num)
WHERE customer_num IN

(SELECT customer_num FROM newaddr)
5-14 Modifying Data

Database Privileges
Notice that the values for multiple columns are produced by a single SELECT
statement. If you rewrite this example in the other form, with an assignment
for each updated column, you must write five SELECT statements, one for
each column to be updated. Not only is such a statement harder to write, it
also takes much longer to execute.

Note: In IBM Informix 4GL and the embedded SQL programs, you can use record or
host variables to update values. For more information on this, refer to Chapter 6 of
this manual.

Database Privileges
There are two levels of privileges in a database: database-level privileges and
table-level privileges. When you create a database, you are the only one who
can access it until you, as the owner (or DBA) of the database, grant database-
level privileges to others. When you create a table in a database that is not
ANSI-compliant, all users have access privileges to the table until you, as the
owner of the table, revoke table-level privileges from specific users.

The three database-level privileges follow:

• Connect privilege, which allows you to open a database, issue queries,
and create and place indexes on temporary tables

• Resource privilege, which allows you to create permanent tables

• DBA privilege, which allows you to perform a number of additional func-
tions as the database administrator

There are seven table-level privileges. However, only the first four are cov-
ered here:

• Select privilege, which is granted on a table-by-table basis and allows you
to select rows from a table (This privilege can be limited by specific
columns in a table.)

• Delete privilege, which allows you to delete rows

• Insert privilege, which allows you to insert rows

• Update privilege, which allows you to update existing rows (that is, to
change their content)

The people who create databases and tables often grant the Connect and
Select privileges to public so that all users have them. If you can query a table,
you have at least the Connect and Select privileges for that database and
table.
Modifying Data 5-15

Database Privileges
The other table-level privileges are needed to modify data. The owners of
tables often withhold these privileges or grant them only to specific users. As
a result, you may not be able to modify some tables that you can query freely.

Since these privileges are granted on a table-by-table basis, you can have only
Insert privileges on one table and only Update privileges on another. The
Update privileges can be restricted even further to specific columns in a table.

Chapter 11 of this manual contains a complete discussion of the granting of
privileges from the standpoint of the database designer. A complete list of
privileges and a summary of the GRANT and REVOKE statements can be
found in Chapter 7 of IBM Informix Guide to SQL: Reference.

Displaying Table Privileges
If you are the owner of a table (that is, if you created it), you have all privi-
leges on that table. Otherwise, you can determine the privileges you have for
a certain table by querying the system catalog. The system catalog consists of
system tables that describe the database structure. The privileges granted on
each table are recorded in the systabauth system table. To display these priv-
ileges, you must also know the unique identifier number of the table. This
number is specified in the systables system table. So, to display privileges
granted on the orders table, you might enter the following SELECT statement:

SELECT * FROM systabauth
WHERE tabid = (SELECT tabid FROM systables

WHERE tabname = "orders")

The output of the query resembles the following display:

The grantor is the user who granted the privilege. The grantor is usually the
owner of the table, but can be another user empowered by the grantor. The
grantee is the user to whom the privilege has been granted, and the grantee
public means “any user with Connect privilege.” If your user name does not
appear, you have only those privileges granted to public.

grantor grantee tabid tabauth

tfecit mutator 101 su-i-x-
tfecit procrustes 101 s--idx-
tfecit public 101 s--i-x-
5-16 Modifying Data

Data Integrity
The tabauth column specifies the privileges granted. The letters in each row
of this column are the initial letters of the privilege names except that i
means Insert and x means Index. In this example, public has Select, Insert,
and Index privileges. Only the user mutator has Update privileges, and
only the user procrustes has Delete privileges.

Before the database server performs any action for you (for example, execute
a DELETE statement), it performs a query similar to the preceding one. If you
are not the owner of the table, and if it cannot find the necessary privilege on
the table for your user name or for public, it refuses to perform the operation.

Data Integrity
The INSERT, UPDATE, and DELETE statements modify data in an existing
database. Whenever you modify existing data, the integrity of the data can be
affected. For example, an order for a nonexistent product could be entered
into the orders table. Or a customer with outstanding orders could be deleted
from the customer table. Or the order number could be updated in the orders
table and not in the items table. In each of these cases, the integrity of the
stored data is lost.

Data integrity is actually made up of three parts:

• Entity Integrity

Each row of a table has a unique identifier.

• Semantic Integrity

The data in the columns properly reflects the types of information the col-
umn was designed to hold.

• Referential Integrity

The relationships between tables are enforced

Well-designed databases incorporate these principles so that when you mod-
ify data, the database itself prevents you from doing anything that could
harm the data integrity.
Modifying Data 5-17

Data Integrity
Entity Integrity
An entity is any person, place, or thing to be recorded in a database. Each
entity represents a table, and each row of a table represents an instance of that
entity. For example, if order is an entity, the orders table represents the idea of
order and each row in the table represents a specific order.

To identify each row in a table, the table must have a primary key. The pri-
mary key is a unique value that identifies each row. This requirement is called
the entity integrity constraint.

For example, the orders table primary key is order_num. The order_num col-
umn holds a unique system-generated order number for each row in the
table. To access a row of data in the orders table you can use the following
SELECT statement:

SELECT * FROM orders WHERE order_num = 1001

Using the order number in the WHERE clause of this statement enables you
to access a row easily because the order number uniquely identifies that row.
If the table allowed duplicate order numbers, it would be almost impossible
to access one single row, because all other columns of this table allow dupli-
cate values.

Refer to Chapter 8 of this manual for more information on primary keys and
entity integrity.
5-18 Modifying Data

Data Integrity
Semantic Integrity
Semantic integrity ensures that data entered into a row reflects an allowable
value for that row. This means that the value must be within the domain, or
allowable set of values, for that column. For example, the quantity column of
the items table only permits numbers. If a value outside the domain can be
entered into a column, the semantic integrity of the data is violated.

Semantic integrity is enforced using the following constraints:

• Data Type

The data type defines the types of values that you can store in a column.
For example, the data type SMALLINT allows you to enter values from
-32,767 to 32,767 into a column.

• Default Value

The default value is the value inserted into the column when an explicit
value is not specified. For example, the user_id column of the cust_calls
table defaults to the login name of the user if no name is entered.

• Check Constraint

The check constraint specifies conditions on data inserted into a column.
Each row inserted into a table must meet these conditions. For example,
the quantity column of the items table may check for quantities greater
than or equal to 1.

For more information on using semantic integrity constraints in database
design, refer to “Defining the Domains” on page 9-3.

Referential Integrity
Referential integrity refers to the relationship between tables. Since each table
in a database must have a primary key, it is possible that this primary key
appears in other tables because of its relationship to data within those tables.
When a primary key from one table appears in another table, it is called a for-
eign key.

Foreign keys join tables and establish dependencies between tables. Tables
can form a hierarchy of dependencies in such a way that if you change or
delete a row in one table, you destroy the meaning of rows in other tables. For
example, in the stores5 database, the customer_num column of the customer
table is a primary key for that table and a foreign key in the orders and
cust_call tables. Customer number 106, George Watson, is referenced in both
the orders and cust_calls tables. If customer 106 is deleted from the customer
table, the link between the three tables and this particular customer is
destroyed.
Modifying Data 5-19

Data Integrity
When you delete a row containing a primary key, or update it with a different
primary key, you destroy the meaning of any rows that contain that value as
a foreign key. Referential integrity is the logical dependency of a foreign key
on a primary key. The integrity of a row that contains a foreign key depends
on the integrity of the row that it references—the row that contains the match-
ing primary key.

You can identify primary and foreign keys, and the relationship between
them, using the CREATE TABLE and ALTER TABLE statements. For more
information on these statements, refer to Chapter 7 of IBM Informix Guide to
SQL: Reference. For information on building data models using foreign and
primary keys, refer to Chapter 8 of this manual.

106 George Watson

103 Philip Currie

customer_num fname lname

1003 05/22/1991 104

1004 05/22/1991 106

1002 05/21/1991 101

order_num order_date customer_num

customer Table
(detail)

orders Table
(detail)

cust_calls Table
(detail)

110 1991-07-07 10:24 richc

119 1991-07-01 15:00 richc

106 1991-06-12 8:20 maryj

customer_num call_dtime user_id
5-20 Modifying Data

Interrupted Modifications
Interrupted Modifications
Even if all the software is error-free and all the hardware is utterly reliable,
the world outside the computer can still interfere. It is possible for lightning
to strike the building, interrupting the electrical supply and stopping the
computer in the middle of your UPDATE statement. It is more likely, however,
that a disk fills up or a human operator supplies incorrect data, causing your
multirow insert to stop early with an error. In any case, as you are modifying
data, you must assume that some unforeseen event can interrupt the modifi-
cation.

When a modification is interrupted by an external cause, you cannot be sure
how much of the operation was completed. Even in a single-row operation,
you cannot know whether the data reached the disk or the indexes were
properly updated.

If multirow modifications are a problem, multistatement ones are worse. It
does not help that they are usually embedded in programs so that you do not
see the individual SQL statements being executed. For example, the job of
entering a new order in the stores5 database requires these steps:

• Insert a row in the orders table. (This generates an order number.)

• For each item ordered, insert a row in the items table.

There are two ways to program an order-entry application. One way is to
make it completely interactive so that the program inserts the first row imme-
diately, and then inserts each item as the operator enters data. This is the
wrong approach because it exposes the operation to the possibility of many
more unforeseen events: the customer’s telephone disconnecting, the opera-
tor hitting the wrong key, the operator’s terminal losing power, and so on.

The right way to build an order-entry application is as follows:

• Accept all the data interactively.

• Validate the data and expand it (by looking up codes in stock and
manufact, for example).

• Display the information on the screen for inspection.

• Wait for the operator to make a final commitment.

• Perform all the insertions as fast as possible.

Even when this is done, something unforeseen circumstance can halt the pro-
gram after it inserts the order but before it finishes inserting the items. If that
happens, the database is in an unpredictable condition: data integrity is
compromised.
Modifying Data 5-21

Interrupted Modifications
The Transaction
The solution to all these potential problems is called the transaction. A trans-
action is a sequence of modifications that either must be accomplished com-
pletely or not at all. The database server guarantees that operations
performed within the bounds of a transaction are either completely and per-
fectly committed to disk, or the database is restored to the state it was in
before the transaction started.

The transaction is not merely protection against unforeseen failures; it also
offers a program a way to escape when the program detects a logical error.
(This is discussed further in Chapter 7 of this manual.)

The Transaction Log
The database server can keep a journal of each change that it makes to the
database during a transaction. If something happens to cancel the transac-
tion, the database server automatically uses the data in the journal to reverse
the changes.

This journal is called a transaction log. The log is typically a disk file separate
from the database. The action of keeping the transaction up-to-date is called
transaction logging.

When a transaction fails, the database server uses the contents of the log to
undo whatever modifications were made when the transaction started. Many
things can make a transaction fail. The program that issues the SQL state-
ments can crash or be terminated, or there might be a hardware or software
failure in any other component of the system. As soon as the database server
discovers that the transaction failed—which might only be after the com-
puter and the database server are restarted—it returns the database to the
state it was in before the transaction began.

Databases do not keep transaction logs automatically. The database adminis-
trator must decide whether to make a database use transaction logging. If this
is not done, transactions are not available.

Specifying Transactions
The boundaries of transactions are specified with SQL statements. There are
two styles for doing this. In the most common style, you specify the start of a
multistatement transaction by executing the BEGIN WORK statement. In data-
bases that are created with the MODE ANSI option, there is no need to mark
the beginning of a transaction. One is always in effect; you only indicate the
end of each transaction.
5-22 Modifying Data

Archives and Logs
In both styles, you specify the end of a successful transaction by executing the
COMMIT WORK statement. This statement tells the database server that you
reached the end of a series of statements that must all succeed together. The
database server does whatever is necessary to make sure that all modifica-
tions are properly completed and committed to disk.

It is also possible for a program to cancel a transaction deliberately. It does so
by executing the ROLLBACK WORK statement. This statement asks the data-
base server to cancel the current transaction and undo any changes.

For example, an order-entry application can use a transaction when creating
a new order in the following way:

• Accept all data interactively.

• Validate and expand it.

• Wait for the operator to make a final commitment.

• Execute BEGIN WORK.

• Insert rows in the orders and items tables, checking the error code
returned by the database server.

• If there were no errors, execute COMMIT WORK, otherwise execute
ROLLBACK WORK.

If any external failure prevents the transaction from being completed, the
partial transaction is rolled back when the system is restarted. In all cases, the
database is in a predictable state: either the new order is completely entered,
or it is not entered at all.

Archives and Logs
By using transactions, you can ensure that the database is always in a consis-
tent state and that your modifications are properly recorded on disk. But the
disk itself is not perfectly safe. It is vulnerable to mechanical failures and to
flood, fire, and earthquake. The only safeguard is to keep multiple copies of
the data. These redundant copies are called archive copies.

The transaction log complements the archive copy of a database. Its contents
are a history of all modifications that occurred since the last time the database
was archived. If it should ever be necessary to restore the database from the
archive copy, the transaction log can be used to roll the database forward to
its most recent state.
Modifying Data 5-23

Archives and Logs
Archiving Simple Databases (IBM Informix SE)
If a database is stored in operating system files (IBM Informix SE), archive
copies are made using the normal methods for making backup copies in your
operating system. There are only two special considerations for databases.

The first is a practical consideration: a database can grow to great size. It may
become the largest file or set of files in the system. It also can be awkward or
very time consuming to make a copy of it. You may need a special procedure
for copying the database, separate from the usual backup procedures, and
the job may not be done as frequently.

The second consideration is the special relationship between the database
and the transaction log file. An archive copy is an image of the database at
one instant. The log file contains the history of modifications that were made
since one instant. It is important that those two instants are identical; in other
words, it is important to start a new transaction log file immediately upon
making an archive copy of the database. Then, if you must restore the data-
base from the archive tape, the transaction log contains exactly the history
needed to bring it forward in time from that instant to the latest update.

The statement that applies a log to a restored database is ROLLFORWARD
DATABASE. You start a new log file by using whatever operating system com-
mands are needed to delete the file and re-create it empty, or simply to set the
length of the file to zero.

A transaction log file can grow to extreme size. If you update a row ten times,
there is still just one row in the database—but there are ten update events
recorded in the log file. If the size of the log file is a problem, you can start a
fresh log. Choose a time when the database is not being updated (so no trans-
actions are active), and copy the existing log to another medium. That copy
represents all modifications for some period of time; preserve it carefully.
Then start a new log file. If you ever have to restore the database, you must
apply all the log files in their correct sequence.
5-24 Modifying Data

Concurrency and Locks
Archiving IBM Informix OnLine
The IBM Informix OnLine database server contains elaborate features to sup-
port archiving and logging. They are described in the IBM Informix OnLine
Administrator’s Guide.

Conceptually, the facilities of IBM Informix OnLine are similar to those
already described, but they are more elaborate for the following reasons:

• IBM Informix OnLine has very stringent requirements for performance
and reliability (for example, it supports making archive copies while
databases are in use).

• It manages its own disk space.

• It performs logging concurrently for all databases using a limited set of
log devices.

These facilities are usually managed from a central location, so the users of
the databases never have to be concerned with them.

If you want to make a personal archive copy of a single database or table that
is held by IBM Informix OnLine, you can do it with the tbunload utility. This
program copies a table or a database to tape. Its output consists of binary
images of the disk pages as IBM Informix OnLine held them. As a result, the
copy can be made very quickly, and the corresponding tbload program can
restore the file very quickly. However, the data format is not meaningful to
any other programs.

Concurrency and Locks
If your database is contained in a single-user workstation, with no network
connecting it to other machines, concurrency does not concern you. But in all
other cases, you must allow for the possibility that, while your program is
modifying data, another program is also reading or modifying the same data.
This is concurrency: two or more independent uses of the same data at the
same time.

A high level of concurrency is crucial to good performance in a multiuser
database system. Unless there are controls on the use of data, however, con-
currency can lead to a variety of negative effects. Programs could read obso-
lete data; modifications could be lost even though it seemed they were
entered successfully.
Modifying Data 5-25

Summary
The database server prevents errors of this kind by imposing a system of
locks. A lock is a claim, or reservation, that a program can place on a piece of
data. The database server guarantees that, as long as the data is locked, no
other program can modify it. When another program requests the data, the
database server either makes the program wait or turns it back with an error.

You use two commands to control the effect that locks have on your data
access: SET LOCK MODE and SET ISOLATION. The details of these statements
are best understood after a discussion on the use of cursors from within pro-
grams; they are covered in Chapters 6 and 7 of this manual.

Summary
Database access is regulated by the privileges that the database owner grants
you. The privileges that let you query data are often granted automatically,
but the ability to modify data is regulated by specific Insert, Delete, and
Update privileges that are granted on a table-by-table basis.

If data integrity constraints are imposed on the database, your ability to mod-
ify data is restricted by those constraints. Your database and table-level priv-
ileges, along with any data constraints, control how and when you can
modify data.

You can delete one or more rows from a table with the DELETE statement. Its
WHERE clause selects the rows; use a SELECT statement with the same clause
to preview the deletes.

Rows are added to a table with the INSERT statement. You can insert a single
row containing specified column values, or you can insert a block of rows
generated by a SELECT statement.

You use the UPDATE statement to modify the contents of existing rows. You
specify the new contents with expressions that can include subqueries, so
that you can use data based on other tables, or the updated table itself. The
statement has two forms: in the first form you specify new values column by
column; you use the other form when the new values are generated as a set
from a SELECT statement or a record variable.

You use transactions to prevent unforeseen interruptions in a modification
from leaving the database in an indeterminate state. When modifications are
performed within a transaction, they are rolled back following an error. The
transaction log also extends the periodically made archive copy of the data-
base, so that if the database must be restored, it can be brought right up to its
most recent state.
5-26 Modifying Data

Chapter
6

SQL in Programs
Chapter Overview 3

SQL in Programs 4
Static Embedding 5
Dynamic Statements 5
Program Variables and Host Variables 5

Calling the Database Server 7
The SQL Communications Area 7
The SQLCODE Field 10

End of Data 10
Negative Codes 10

The SQLERRD Array 11
The SQLAWARN Array 11

Retrieving Single Rows 11
Data Type Conversion 13
Dealing with Null Data 14
Dealing with Errors 15

End of Data 15
Serious Errors 16
Using Default Values 16

Retrieving Multiple Rows 17
Declaring a Cursor 18
Opening a Cursor 18
Fetching Rows 19

Detecting End of Data 19
Locating the INTO Clause 20

Cursor Input Modes 20

The Active Set of a Cursor 21
Creating the Active Set 21
The Active Set for a Sequential Cursor 22
The Active Set for a Scroll Cursor 22
The Active Set and Concurrency 23

Using a Cursor: A Parts Explosion 24

 Dynamic SQL 26
Preparing a Statement 27
Executing Prepared SQL 29

Using Prepared SELECT Statements 29
Dynamic Host Variables 31
Freeing Prepared Statements 31
Quick Execution 32

Embedding Data Definition 32
Embedding Grant and Revoke Privileges 32

Summary 35
6-2 SQL in Programs

Chapter Overview
In the examples in the chapters thus far, SQL is treated as if it were an inter-
active computer language; that is, as if you could type a SELECT statement
directly into the database server and see rows of data rolling back to you.

Of course, that is not how things are. Many layers of software stand between
you and the database server. The database server retains data in a binary
form that must be formatted before it can be displayed. It does not return a
mass of data at once; it returns one row at a time, as some program requests it.

DB-Access and IBM Informix SQL are two programs that perform this request-
ing, and format and display the data. They are designed to give you interac-
tive access to SQL. Other programs are written for a specific application. Such
programs can be written in any of several languages.

Almost any program can contain SQL statements, execute them, and retrieve
data from a database server. This chapter explains how these activities are
performed, and indicates how you can write programs that perform them.

This chapter is only an introduction to the concepts that are common to SQL
programming in any language. Before you can write a successful program in
a particular programming language, you must first become fluent in that lan-
guage. Then, since the details of the process are slightly different in every lan-
guage, you must become familiar with the manual for the IBM Informix
embedded SQL (ESQL) product specific to that language.
SQL in Programs 6-3

SQL in Programs
SQL in Programs
You can write a program in any of several languages and mix SQL statements
in among the other statements of the program, just as if they were ordinary
statements of that programming language. The SQL statements are said to be
embedded in the program, and the program is said to contain embedded SQL,
often abbreviated ESQL.

IBM produces IBM Informix ESQL products for these programming lan-
guages:

• C

• COBOL

All ESQL products work in a similar way, as shown in Figure 6-1. You write
a source program in which you treat SQL statements as executable code. Your
source program is processed by an ESQL preprocessor, a program that locates
the embedded SQL statements and converts them into a series of procedure
calls and special data structures.

Figure 6-1 Overview of processing a program with embedded SQL statements

The converted source program then passes through the programming lan-
guage compiler. The compiler output becomes an executable program after it
is linked with a library of ESQL procedures. When the program runs, the
ESQL library procedures are called; they set up communications with the
database server to carry out the SQL operations.

Whereas ESQL products allow you to embed SQL in the host language, some
languages have SQL as a natural part of their statement set. 4GL incorporates
the SQL language as a natural part of the fourth-generation language it sup-
ports. Informix Stored Procedure Language (SPL) also uses SQL as a natural
part of its statement set. You use 4GL or an ESQL product to write application
programs. You use SPL to write procedures that are stored with a database
and called from an application program.

ESQL source
program

ESQL
preprocessor

Source program
with procedure calls

Language
compiler

Executable
program
6-4 SQL in Programs

SQL in Programs
Static Embedding
There are two ways in which you can introduce SQL statements into a pro-
gram. The simpler and more common way is by static embedding, which
means that the SQL statements are written as part of the source program text.
The statements are static because they are a fixed part of the source text.

Dynamic Statements
Some applications require the ability to compose SQL statements in response
to user input. For example, a program might have to select different columns,
or apply different criteria to rows, depending on what the user wants.

This can be done with dynamic SQL, in which the program composes an SQL
statement as a string of characters in memory and passes it to the database
server to be executed. Dynamic statements are not part of the program source
text; they are constructed in memory during execution.

Program Variables and Host Variables
Application programs can use program variables within SQL statements.
In IBM Informix 4GL and SPL, you put the program variable in the SQL
statement as syntax allows. For example, a DELETE statement can use a pro-
gram variable in its WHERE clause. Figure 6-2 shows a program variable in
IBM Informix 4GL.

MAIN
.
.
.
DEFINE drop_number INT
LET drop_number = 108
DELETE FROM items WHERE order_num = drop_number
.
.
.

Figure 6-2 Using a program variable in IBM Informix 4GL
SQL in Programs 6-5

SQL in Programs
Figure 6-3 shows a program variable in SPL.

CREATE PROCEDURE delete_item (drop_number INT)
.
.
.
DELETE FROM items WHERE order_num = drop_number
.
.
.

Figure 6-3 Using a program variable in SPL

In applications that use embedded SQL statements, the SQL statements can
refer to the contents of program variables. A program variable that is named
in an embedded SQL statement is called a host variable because the SQL state-
ment is thought of as being a “guest” in the program.

Here is a DELETE statement as it might appear when embedded in a COBOL
source program:

EXEC SQL
DELETE FROM items

WHERE order_num = :o-num
END-EXEC.

The first and last lines mark off embedded SQL from the normal COBOL state-
ments. Between them you see an ordinary DELETE statement, just as it was
described in Chapter 5. When this part of the COBOL program is executed a
row, or rows, of the items table is deleted.

The statement contains one new feature. It compares the order_num column
to an item written as :o-num. This is the name of a host variable.

Each ESQL product has a means of delimiting the names of host variables
when they appear in the context of an SQL statement. In COBOL, host variable
names are designated with an initial colon. The example statement asks the
database server to delete rows in which the order number equals the current
contents of the host variable named :o-num. This is presumably a numeric
variable that is declared and assigned a value earlier in the program.

In IBM Informix ESQL/C, an SQL statement can be introduced with either a
leading currency symbol or the words EXEC SQL.
6-6 SQL in Programs

Calling the Database Server
But these differences of syntax are trivial; the essential points in all languages
(an embedded language, IBM Informix 4GL, or SPL) are as follows:

• You can embed SQL statements in a source program as if they were exe-
cutable statements of the host language.

• You can use program variables in SQL expressions the way literal values
are used.

If you have programming experience, you can immediately see the possibil-
ities. In the example, the order number to be deleted is passed in the variable
onum. That value comes from any source that a program can use: it can be
read from a file, the program can prompt a user to enter it, or it can be read
from the database. The DELETE statement itself can be part of a subroutine (in
which case onum can be a parameter of the subroutine); the subroutine can
be called once or repetitively.

In short, when you embed SQL statements in a program, you can apply all the
power of the host language to them. You can hide the SQL under a multitude
of interfaces, and you can embellish its functions in a multitude of ways.

Calling the Database Server
Executing an SQL statement is essentially calling the database server as a sub-
routine. Information must pass from the program to the database server and
information must be returned.

Some of this communication is done through host variables. You can think of
the host variables named in an SQL statement as the parameters of the proce-
dure call to the database server. In the preceding example, a host variable acts
as a parameter of the WHERE clause. Also, as a later section shows, host vari-
ables receive data that is returned by the database server.

The SQL Communications Area
The database server always returns a result code, and possibly other informa-
tion about the effect of the operation, in a data structure known as the SQL
Communications Area (SQLCA). If the database server executes an SQL state-
ment in a stored procedure, the SQLCA of the calling application contains the
values triggered by the SQL statement in the procedure.

The principal fields of the SQLCA are listed in Figure 6-4 and Figure 6-5. The
syntax you use to describe a data structure like the SQLCA, as well as the syn-
tax you use to refer to a field in it, depends on the programming language
you are using.
SQL in Programs 6-7

Calling the Database Server
Figure 6-4 The uses of SQLCODE and SQLERRD

Following successful prepare of a SELECT, UPDATE, INSERT, or DELETE statement, or
after a select cursor is opened, this field contains the estimated number of rows affected.

When SQLCODE contains an error code, this field contains either zero or an additional
error code, called the ISAM error code, that explains the cause of the main error.

Following a successful insert operation of a single row, this field contains the value of a
generated serial number for that row.

Following a successful, multirow insert, update, or delete operation, this field contains
the count of rows processed.

Following a multirow insert, update, or delete operation that ends with an error, this field
contains the count of rows successfully processed before the error was detected.

Following successful prepare of a SELECT, UPDATE, INSERT, or DELETE statement, or
after a select cursor has been opened, this field contains the estimated weighted sum of
disk accesses and total rows processed.

Following an error in a PREPARE statement, this field contains the offset in the statement
text where the error was detected. (The PREPARE statement is discussed under
“Preparing a Statement” on page 6-27.)

Following a successful fetch of a selected row, or a successful insert, update, or delete
operation, this field contains the rowid (physical address) of the last row processed.

array of 6
integers

first

second

third

fourth

fifth

sixth

SQLERRD

Success.

No more data/not found.

Error code.

integer

0

100

negative

SQLCODE

Internal use only.

character
(8) SQLERRP
6-8 SQL in Programs

Calling the Database Server
Figure 6-5 The uses of SQLAWARN

All Other Operations:

Set to W when any other field is set to W.

Set to W when a column value is truncated when it is fetched into a host variable.

Set to W when an aggregate function encounters a null value.

On a select or on opening a cursor, set to W when the number of items in the select list is
not the same as the number of host variables given in the INTO clause to receive them.

After preparing an UPDATE or DELETE statement, set to W when the prepared
statement has no WHERE clause, and so affects an entire table.

Set to W following execution of a statement that does not use ANSI-standard SQL syntax
(provided that the DBANSIWARN environment variable is set).

Not used.

Not used.

When Opening a Database:

Set to W when any field is set to W. If this field is blank, the others need not be checked.

Set to W when the database now open uses a transaction log.

Set to W when the database now open is ANSI-compliant.

Set to W when the database server is IBM Informix OnLine.

Set to W when the database server stores the FLOAT data type in DECIMAL form (done
when the host system lacks support for FLOAT types).

Not used.

Not used.

Not used.

array of 8
characters

first

second

third

fourth

fifth

sixth

seventh

eighth

SQLAWARN

first

second

third

fourth

fifth

sixth

seventh

eighth

Contains the error message.

character
(71) SQLERRM
SQL in Programs 6-9

Calling the Database Server
In particular, the subscript by which you name one element of the SQLERRD
and SQLAWARN arrays differs: array elements are numbered starting with
zero in IBM Informix ESQL/C, but starting with one in the other languages. In
this discussion, the fields are named using unambiguous words like third,
and you must translate into the syntax of your programming language.

The SQLCODE Field
The SQLCODE field is the primary return code of the database server. After
every SQL statement, SQLCODE is set to an integer value as shown in
Figure 6-4. When that value is zero, the statement is performed without
error. In particular, when a statement is supposed to return data into a host
variable, a code of zero means that the data has been returned and can be
used. Any nonzero code means the opposite: no useful data was returned to
host variables.

In 4GL, SQLCODE is also accessible under the name STATUS.

End of Data

The database server sets SQLCODE to 100 when the statement is performed
correctly but no rows were found. For example, after the program fetches all
the rows that a SELECT statement can produce, the database server sets
SQLCODE to 100 to say end of data. In an ANSI-compliant database, if the
WHERE clause of a DELETE, INSERT, or UPDATE statement matches no rows,
100 is set to show that no rows are found.

Negative Codes

When something unexpected goes wrong during a statement, the database
server returns a negative number in SQLCODE to explain the problem. The
meanings of these codes are documented in the IBM Informix Error Messages
manual and in the on-line error message file.

Some error codes that can be reported in SQLCODE reflect general problems,
and the database server can set a more detailed code in the second field of
SQLERRD. This second code reveals the low-level error encountered by the
database server I/O routines or by the underlying operating system.
6-10 SQL in Programs

Retrieving Single Rows
The SQLERRD Array
The integers in the array named SQLERRD are set to different values follow-
ing different statements. The first and fourth elements of the array are only
used in IBM Informix 4GL, IBM Informix ESQL/C, and IBM Informix ESQL/
COBOL. The fields are used as shown in Figure 6-4.

These additional details can be very useful. For example, you can use the
value in the third field to report how many rows were deleted or updated.
When your program prepares an SQL statement entered by the user and an
error is found, the value in the fifth field enables you to display the exact
point of error to the user. (DB-Access and IBM Informix SQL use this feature to
position the cursor when you ask to modify a statement after an error.)

The SQLAWARN Array
The eight character fields in the SQLAWARN array are set to either a blank or
a W to indicate a variety of special conditions. Only the first six are used. Their
meanings depend on the statement just executed.

There is one set of warning flags that appears when a database is just opened,
that is, following a DATABASE or CREATE DATABASE statement. These flags
tell you some characteristics of the database as a whole.

A second set of flags appears following any other statement. These flags
reflect unusual events during the statement, events that might not be reflect-
ed by SQLCODE.

Both sets of SQLAWARN values are summarized in Figure 6-5.

Retrieving Single Rows
You can use embedded SELECT statements to retrieve single rows from the
database into host variables. When a SELECT statement returns more than
one row of data, however, a program must use a more complicated method
to fetch the rows one at a time. Multiple-row select operations are discussed
later in this chapter.
SQL in Programs 6-11

Retrieving Single Rows
To retrieve a single row of data, simply embed a SELECT statement in your
program. Here is an example as it can be written using IBM Informix ESQL/C:

$ select avg (total_price)
into $avg_price
from items
where order_num in

(select order_num from orders
where order_date < date("6/1/91"));

The INTO clause is the only detail that distinguishes this statement from any
example in Chapter 2 or 3. This clause specifies the host variables that are to
receive the data that is produced.

When the program executes an embedded SELECT statement, the database
server performs the query. The example statement selects an aggregate value,
so that it produces exactly one row of data. The row has only a single column,
and its value is deposited in the host variable named avg_price. Subsequent
lines of the program can use that variable.

You can use statements of this kind to retrieve single rows of data into host
variables. The single row can have as many columns as desired. In this
IBM Informix 4GL example, host variables are used in two ways, as receivers
of data and in the WHERE clause:

DEFINE cfname, clname, ccompany CHAR(20)
DEFINE cnumbr INTEGER
LET cnumbr = 104
SELECT fname, lname, company

INTO cfname, clname, ccompany
FROM customer
WHERE customer_num = cnumbr

Since the customer_num column has a unique index (implemented through
a constraint), this query returns only one row. If a query produces more than
one row of data, the database server cannot return any data at all. It returns
an error code instead.

You should list as many host variables in the INTO clause as there are items
in the select list. If, by accident, these lists are of different lengths, the data-
base server returns as many values as it can and sets the warning flag in the
fourth field of SQLAWARN.
6-12 SQL in Programs

Retrieving Single Rows
Data Type Conversion
This example retrieves the average of a DECIMAL column, which is itself a
DECIMAL value. However, the host variable into which it is placed is not
required to have that data type.

$ select avg (total_price) into $avg_price
from items;

The declaration of the receiving variable avg_price in this example of
ESQL/C code is not shown. It could be any one of the following definitions:

$ int avg_price;
$ double avg_price;
$ char avg_price[16];
$ dec_t avg_price; /* typedef of decimal number structure */

The data type of each host variable used in a statement is noted and passed
to the database server along with the statement. The database server does its
best to convert column data into the form used by the receiving variables.
Almost any conversion is allowed, although some conversions cause a loss of
precision. The results of the preceding example differ depending on the data
type of the receiving host variable, as described in the following list:

FLOAT The database server converts the decimal result to FLOAT,
possibly truncating some fractional digits.

If the magnitude of a decimal exceeds the maximum magni-
tude of the FLOAT format, an error is returned.

INTEGER The database server converts the result to integer, truncating
fractional digits if necessary.

If the integer part of the converted number does not fit the
receiving variable, an error occurs.

CHARACTER The database server converts the decimal value to a
character string.

If the string is too long for the receiving variable, it is trun-
cated and the second field of SQLAWARN is set to W.
SQL in Programs 6-13

Retrieving Single Rows
Dealing with Null Data
What if the program retrieves a null value? Null values can be stored in the
database, but the data types supported by programming languages do not
recognize a null state. A program must have some way of recognizing a null
item to avoid processing it as data.

Indicator variables meet this need in the embedded-language products. An
indicator variable is an additional variable that is associated with a host vari-
able that might receive a null item. When the database server puts data in the
main variable, it also puts a special value in the indicator variable to show
whether the data is null.

$ select paid_date
into $op_date:op_d_ind
from orders
where order_num = $the_order;

if (op_d_ind < 0) /* data was null */
rstrdate ("01/01/1900", &op_date);

In this IBM Informix ESQL/C example, a single row is selected and a single
value is retrieved into the host variable op_date. Since the value might be
null, an indicator variable named op_d_ind is associated with the host vari-
able. (It must be declared as a short integer elsewhere in the program.)

Following execution of the SELECT statement, the program tests the indicator
variable for a negative value. A negative number (usually -1) means that the
value retrieved into the main variable is null. If that is the case, this program
uses a C function to assign a default value to the host variable. (The function
rstrdate is part of the IBM Informix ESQL/C product.)

The syntax you use to associate an indicator variable differs with the lan-
guage you are using, but the principle is the same in all. However, indicator
variables are not used explicitly in 4GL or in SPL, since in those languages null
values are supported for variables. In 4GL, the preceding example is written
as follows:

SELECT paid_date
INTO op_date
FROM orders
WHERE order_num = the_order

IF op_date IS NULL THEN
LET op_date = date ("01/01/1900")

END IF
6-14 SQL in Programs

Retrieving Single Rows
Dealing with Errors
Although the database server handles conversion between data types auto-
matically, several things still can go wrong with a SELECT statement. In SQL
programming, as in any kind of programming, you must anticipate errors
and provide for them at every point.

End of Data

One common event is that no rows satisfy a query. This is signalled by a code
of 100 in SQLCODE (or sqlca.sqlcode as it is also known in ESQL/C) follow-
ing a SELECT statement. This code indicates an error or a normal event,
depending entirely on your application. If you are sure that there ought to be
a row or rows—for example, if you are reading a row using a key value that
you just read from a row of another table—then the end-of-data code repre-
sents a serious failure in the logic of the program. On the other hand, if you
are selecting a row based on a key supplied by a user or some other source
that is less reliable than a program, a lack of data can be a normal event.

End of Data with Aggregate Functions
If your database is not ANSI-compliant, the end-of-data return code, 100,
is set in SQLCODE only following SELECT statements. (Other statements,
such as INSERT, UPDATE, and DELETE, set the third element of SQLERRD
to show how many rows they affected; this topic is covered in Chapter 7
of this manual.)

A SELECT statement that selects an aggregate function such as SUM, MIN,
or AVG always succeeds in returning at least one row of data. This is true
even when no rows satisfy the WHERE clause; an aggregate value based
on an empty set of rows is null, but it exists nonetheless.

However, an aggregate value is also null if it is based on one or more rows
that all contain null values. If you must be able to detect the difference
between an aggregate value based on no rows and one based on some
rows that are all null, you must include a COUNT function in the statement
and an indicator variable on the aggregate value. Then you can work out
the following three cases:

Count Value Indicator Case
0 -1 zero rows selected

>0 -1 some rows selected; all were null
>0 0 some non-null rows selected
SQL in Programs 6-15

Retrieving Single Rows
Serious Errors

The database server rarely reports a serious problem. Negative return codes
occur infrequently and at unexpected times, but they cannot be neglected on
that account.

For example, a query can return error -206, meaning table name is not
in the database. This happens if someone dropped the table since the
program was written or if, through some error of logic or mistake in input,
the program opened the wrong database. Such errors can occur, and the pro-
gram must deal with them.

Using Default Values

There are many ways to handle these inevitable errors. In some applications,
there are more lines of code to handle errors than for normal situations. In the
examples in this section, however, one of the simplest methods, the default
value, should work.

avg_price = 0; /* set default for errors */
$ SELECT AVG (total_price)

INTO $avg_price:null_flag
FROM items;

if (null_flag < 0) /* probably no rows */
avg_price = 0; /* set default for 0 rows */

This example deals with the following considerations:

• If the query selects some non-null rows, the correct value is returned and
used. This is the expected and most frequent result.

• If the query selects no rows, or in the much less likely event that it selects
only rows that have null values in the total_price column (a column that
should never be null), the indicator variable is set and the default value is
assigned.

• If any serious error occurs, the host variable is left unchanged; it contains
the default value initially set. At this point in the program, the program-
mer sees no need to trap such errors and report them.
6-16 SQL in Programs

Retrieving Multiple Rows
Here is an expansion of an earlier IBM Informix 4GL example that displays
default values if it cannot find the company the user requests:

DEFINE cfname, clname, ccompany CHAR(20)
DEFINE cnumbr INTEGER
PROMPT "Enter the customer number: " FOR cnumbr
LET cfname = "unknown"
LET clname = "person"
LET ccompany = "noplace"
SELECT fname, lname, company

INTO cfname, clname, ccompany
WHERE customer_num = cnumbr

DISPLAY cfname, " ", clname, " at ", ccompany

This query does not use aggregates, so if there is no row matching the user-
specified customer number, SQLCODE is set to 100 and the host variables
remain unchanged.

Retrieving Multiple Rows
When there is any chance that a query could return more than one row, the
program must execute the query differently. Multirow queries are handled in
two stages. First, the program starts the query. No data is returned immedi-
ately. Then, the program requests the rows of data one at a time.

These operations are performed using a special data object called a cursor. A
cursor is a data structure that represents the current state of a query. The gen-
eral sequence of program operations is as follows:

1. The program declares the cursor and its associated SELECT statement. This
merely allocates storage to hold the cursor.

2. The program opens the cursor. This starts the execution of the associated
SELECT statement and detects any errors in it.

3. The program fetches a row of data into host variables and processes it.

4. The program closes the cursor after the last row is fetched.

These operations are performed with SQL statements named DECLARE,
OPEN, FETCH, and CLOSE.
SQL in Programs 6-17

Retrieving Multiple Rows
Declaring a Cursor
A cursor is declared using the DECLARE statement. This statement gives the
cursor a name, specifies its use, and associates it with a statement. Here is a
simple example in IBM Informix 4GL:

DECLARE the_item CURSOR FOR
SELECT order_num, item_num, stock_num
INTO o_num, i_num, s_num
FROM items

The declaration gives the cursor a name (the_item in this case) and associates
it with a SELECT statement. (Chapter 7 of this manual discusses how a cursor
also can be associated with an INSERT statement.)

The SELECT statement in this example contains an INTO clause. That is one of
two ways in which you can specify the variables that receive data.

The DECLARE statement is not an active statement; it merely establishes the
features of the cursor and allocates storage for it. You can use the cursor
declared in the preceding example to read once through the items table. Cur-
sors can be declared to read both backward and forward (see “Cursor Input
Modes” on page 6-20). This cursor, since it lacks a FOR UPDATE clause, prob-
ably is used only to read data, not to modify it. (The use of cursors to modify
data is covered in Chapter 7 of this manual.)

Opening a Cursor
The program opens the cursor when it is ready to use it. The OPEN statement
activates the cursor. It passes the associated SELECT statement to the database
server, which begins the search for matching rows. The database server pro-
cesses the query to the point of locating or constructing the first row of out-
put. It does not actually return that row of data, but it does set a return code
in SQLCODE. Here is the OPEN statement in IBM Informix 4GL:

OPEN the_item

Since this is the first time that the database server has seen the query, it is the
time when many errors are detected. After opening the cursor, the program
should test SQLCODE. If it contains a negative number, the cursor is not
usable. There may be an error in the SELECT statement, or some other prob-
lem may be preventing the database server from executing the statement.
6-18 SQL in Programs

Retrieving Multiple Rows
If SQLCODE contains a zero, the SELECT statement is syntactically valid and
the cursor is ready for use. At this point, however, the program does not
know if the cursor can produce any rows.

Fetching Rows
The program uses the FETCH statement to retrieve each row of output. This
statement names a cursor, and also can name the host variables to receive the
data. Here is the IBM Informix 4GL example completed:

DECLARE the_item CURSOR FOR
SELECT order_num, item_num, stock_num

INTO o_num, i_num, s_num
FROM items

OPEN the_item
WHILE sqlcode = 0

FETCH the_item
IF sqlcode = 0 THEN

DISPLAY o_num, i_num, s_num
END IF

END WHILE

Detecting End of Data

In this example, the WHILE condition prevents execution of the loop in case
the OPEN statement returns an error. The same condition terminates the loop
when SQLCODE is set to 100 to signal the end of data. However, there is also
a test of SQLCODE (under its 4GL name of status) within the loop. This test is
necessary because, if the SELECT statement is valid yet finds no matching
rows, the OPEN statement returns a zero but the first fetch returns 100, end of
data, and no data. Here is another way to write the same loop:

DECLARE the_item CURSOR FOR
SELECT order_num, item_num, stock_num

FROM items
OPEN the_item
IF sqlcode = 0 THEN

FETCH the_item -- fetch first row
END IF
WHILE sqlcode = 0

DISPLAY o_num, i_num, s_num
FETCH the_item

END WHILE
SQL in Programs 6-19

Retrieving Multiple Rows
In this version the case of zero returned rows is handled early, so there is no
second test of sqlcode within the loop. These versions have no measurable
difference in performance because the time cost of a test of sqlcode is a tiny
fraction of the cost of a fetch.

Locating the INTO Clause

The INTO clause names the host variables that are to receive the data returned
by the database server. It must appear in either the SELECT or the FETCH
statements, but not both. Here is the example reworked to specify host vari-
ables in the FETCH statement:

DECLARE the_item CURSOR FOR
SELECT order_num, item_num, stock_num

FROM items
OPEN the_item
WHILE status = 0

FETCH the_item INTO o_num, i_num, s_num
IF status = 0 THEN

DISPLAY o_num, i_num, s_num
END IF

END WHILE

The second form has the advantage that different rows can be fetched into
different variables. For example, you can use this form to fetch successive
rows into successive elements of an array.

Cursor Input Modes
For purposes of input, a cursor operates in one of two modes: sequential or
scrolling. A sequential cursor can fetch only the next row in sequence. Hence,
it can only read through a table once each time it is opened. A scroll cursor
can fetch the next row or any prior row, so it can read rows multiple times.
Here is a sequential cursor declared in IBM Informix ESQL/C:

EXEC SQL DECLARE pcurs CURSOR FOR
SELECT customer_num, lname, city

FROM customer;
6-20 SQL in Programs

Retrieving Multiple Rows
After it is opened, this cursor can be used only with a sequential fetch that
retrieves the next row of data.

EXEC SQL FETCH p_curs INTO $cnum, $clname, $ccity;

Each sequential fetch returns a new row.

A scroll cursor can be used with a variety of fetch options. The ABSOLUTE
option specifies the rank number of the row to fetch.

EXEC SQL FETCH ABSOLUTE numrow s_curs
+ INTO :nordr, :nodat

This statement fetches the row whose position is given in the host variable
numrow. It is also possible to fetch the current row again, or to fetch the first
row and then scan through the entire list again. However, these features are
obtained at a price, as described in the next section.

The Active Set of a Cursor
Once a cursor is opened, it stands for some selection of rows. The set of all
rows that the query produces is called the active set of the cursor. It is easy to
think of the active set as a well-defined collection of rows, and to think of the
cursor as pointing to one row of the collection. This is a true picture of the sit-
uation as long as no other programs are modifying the same data
concurrently.

Creating the Active Set

When a cursor is opened, the database server does whatever is necessary to
locate the first row of selected data. Depending on how the query is phrased,
this can be very easy to do, or it can require a great deal of work and time.

DECLARE easy CURSOR FOR
SELECT fname, lname FROM customer

WHERE state = "NJ"
SQL in Programs 6-21

Retrieving Multiple Rows
Since this cursor queries only a single table in a simple way, the database
server can very quickly discover whether any rows satisfy the query and find
the first one. The first row is the only row it finds at this time. The rest of the
rows in the active set remain unknown.

DECLARE hard CURSOR FOR
SELECT C.customer_num, O.order_num, sum (items.total_price)

FROM customer C, orders O, items I
WHERE C.customer_num = O.customer_num

AND O.order_num = I.order_num
AND O.paid_date is null

GROUP BY C.customer_num, O.order_num

The active set of this cursor is generated by joining three tables and grouping
the output rows. The optimizer might be able to use indexes to produce the
rows in the correct order (this is discussed in Chapter 4 of this manual), but
in general the use of ORDER BY or GROUP BY clauses requires the database
server to generate all the rows, copy them to a temporary table, and sort the
table, before it can know which row to present first.

In cases where the active set is entirely generated and saved in a temporary
table, the database server can take quite some time opening the cursor. After-
ward, it could tell the program exactly how many rows the active set con-
tains. This information is not made available, however. One reason is that
you can never be sure which method the optimizer uses. If it can avoid sorts
and temporary tables, it does; but very small changes in the query, in the sizes
of the tables, or in the available indexes can change its methods.

The Active Set for a Sequential Cursor

The database server wants to tie up as few resources as possible in maintain-
ing the active set of a cursor. If it can do so, the database server never retains
more than the single row that is fetched next. It can do this for most sequen-
tial cursors. On each fetch, it returns the contents of the current row and
locates the next one.

The Active Set for a Scroll Cursor

All the rows in the active set for a scroll cursor must be retained until the cur-
sor is closed. This is because the database server cannot be sure which row
the program asks for next.
6-22 SQL in Programs

Retrieving Multiple Rows
Most frequently, the database server implements the active set of a scroll cur-
sor as a temporary table. The database server might not fill this table imme-
diately, however (unless it created a temporary table to process the query).
Usually it creates the temporary table when the cursor is opened. Then, the
first time a row is fetched, the database server copies it into the temporary
table and returns it to the program. When a row is fetched for a second time,
it can be taken from the temporary table. This scheme uses the fewest
resources in the event that the program abandons the query before it fetches
all the rows. Rows that are never fetched are not created or saved.

The Active Set and Concurrency

When only one program is using a database, the members of the active set
cannot change. This is the situation in most desktop workstations, and it is
the easiest situation to think about. But some programs must be designed for
use in a multiprogramming system, where two, three, or dozens of different
programs can work on the same tables at the same time.

When other programs can update the tables while your cursor is open, the
idea of the active set becomes less useful. Your program can only see one row
of data at a time, but all other rows in the table can be changing.

In the case of a simple query, when the database server holds only one row of
the active set, any other row can change. The instant after your program
fetches a row, another program can delete the same row or update it so that
if it is examined again, it is no longer part of the active set.

When the active set, or part of it, is saved in a temporary table, there is the
problem of stale data. That is, the rows in the actual tables, from which the
active-set rows are derived, can change. If they do, some of the active-set
rows no longer reflect the current table contents.

These ideas may seem unsettling at first, but as long as your program only
reads the data, there is no such thing as stale data, or rather, all data is equally
stale. No matter when it is taken, the active set is a snapshot of the data as it
is at one moment in time. A row is different the next day; it does not matter
if it is also different in the next millisecond. To put it another way, there is no
practical difference between changes that occur while the program is run-
ning, and changes that are saved and applied the instant the program
terminates.

The only time that stale data can cause a problem is when the program
intends to use the input data to modify the same database; for example, when
a banking application must read an account balance, change it, and write it
back. The next chapter discusses programs that modify data.
SQL in Programs 6-23

Retrieving Multiple Rows
Using a Cursor: A Parts Explosion
When you use a cursor, supplemented by program logic, you can solve prob-
lems that plain SQL cannot solve. One of these is the parts-explosion problem,
sometimes called Bill of Materials processing. At the heart of this problem is
a recursive relationship between objects so that one object contains other
objects (which contain yet others).

The problem is usually stated in terms of a manufacturing inventory. A com-
pany makes a variety of parts. Some parts are discrete, but some are assem-
blages of other parts.

These relationships are documented in a single table, which might be called
contains.The column contains.parent holds the part numbers of parts that
are assemblages. The column contains.child has the part number of a part
that is a component of the parent. If part #123400 is an assembly of nine parts,
there are nine rows with 123400 in the first column and other part numbers
in the second.

PARENT

FK NN

CONTAINS

432100
765899

FK NN

CHILD

123400
432100
6-24 SQL in Programs

Retrieving Multiple Rows
The parts-explosion problem is this: given a part number, produce a list of all
parts that are components of that part. A sketch of one solution, as imple-
mented in IBM Informix 4GL, is shown in Figure 6-6.

DEFINE part_list ARRAY[200] OF INTEGER
FUNCTION boom (top_part)

DEFINE this_part, child_part INTEGER
DEFINE next_to_do, next_free SMALLINT
DECLARE part_scan CURSOR FOR

SELECT child INTO child_part FROM contains
WHERE parent = this_part

LET next_to_do = 1
LET part_list[next_to_do] = top_part
LET next_free = 2

WHILE next_to_do < next_free
this_part = part_list[next_to_do]
FOREACH part_scan

LET part_list[next_free] = child_part
LET next_free = next_free + 1

END FOREACH
LET next_to_do = next_to_do + 1

END WHILE
RETURN next_free - 1

END FUNCTION

Figure 6-6 A breadth-first algorithm to generate a parts explosion

Technically speaking, each row of the contains table is the head node of a
directed acyclic graph, or tree. The function in Figure 6-6 performs a
breadth-first search of the tree whose root is the part number passed as its
parameter. The function uses a cursor named part_scan to return all the rows
with a particular value in the parent column. That is very easy to implement
using the IBM Informix 4GL statement FOREACH, which opens a cursor, iter-
ates once for each row in the selection set, and closes the cursor.

This is the heart of the parts-explosion problem, but it is by no means a com-
plete solution. For example, the program in Figure 6-6 does not allow for
components that appear at more than one level in the tree. Furthermore, a
practical contains table would also have a column count, giving the count of
child parts used in each parent. A program that returns a total count of each
component part is quite a bit more complicated.

The iterative approach described earlier is not the only way to approach the
parts-explosion problem. If the number of generations has a fixed limit, you
can solve the problem with a single SELECT statement using nested, outer
self-joins.
SQL in Programs 6-25

Dynamic SQL
If there can be up to four generations of parts contained within one top-level
part, the following SELECT statement returns all of them:

SELECT a.parent, a.child, b.child, c.child, d.child
FROM contains a

OUTER (contains b,
OUTER (contains c, outer contains d))

WHERE a.parent = top_part_number
AND a.child = b.parent
AND b.child = c.parent
AND c.child = d.parent

This SELECT statement returns one row for each line of descent rooted in the
part given as top_part_number. Null values are returned for levels that do
not exist. (Use indicator variables to detect them.) You can extend this solu-
tion to more levels by selecting additional nested outer joins of the contains
table.You also can revise this solution to return counts of the number of parts
at each level.

 Dynamic SQL
While static SQL is extremely useful, it does require that you know the exact
content of every SQL statement at the time you write the program. For exam-
ple, you must state exactly which columns are tested in any WHERE clause,
and exactly which columns are named in any select list.

This is no problem when you write a program to perform a specific, well-
defined task. But the database tasks of some programs cannot be perfectly
defined in advance. In particular, a program that must respond to an interac-
tive user might need the ability to compose SQL statements in response to
what the user enters.

Dynamic SQL allows a program to form an SQL statement during execution,
so that the contents of the statement can determine user input. This is done
in three steps:

1. The program assembles the text of an SQL statement as a character string,
stored in a program variable.

2. It executes a PREPARE statement, which asks the database server to exam-
ine the statement text and prepare it for execution.

3. It uses the EXECUTE statement to execute the prepared statement.
6-26 SQL in Programs

Dynamic SQL
In this way, a program can construct and then use any SQL statement, based
on user input of any kind. For example, it can read a file of SQL statements
and prepare and execute each.

DB-Access, the utility that you use to explore SQL interactively, is an
IBM Informix ESQL/C program that constructs, prepares, and executes SQL
statements dynamically. For example, it enables its users to specify the col-
umns of a table using simple, interactive menus. When the user is finished,
DB-Access builds the necessary CREATE TABLE or ALTER TABLE statement
dynamically, and prepares and executes it.

Preparing a Statement
In form, a dynamic SQL statement is like any other SQL statement that is writ-
ten into a program, except that it cannot contain the names of any host
variables.

This leads to two restrictions. First, if it is a SELECT statement, it cannot
include the INTO clause. That clause names host variables into which column
data is placed, and host variables are not allowed in a dynamic statement.
Second, wherever the name of a host variable normally appears in an expres-
sion, a question mark is written as a placeholder.

You can prepare a statement in this form for execution with the PREPARE
statement. Here is an example in IBM Informix ESQL/C:

$ prepare query_2 from
"select * from orders

where customer_num = ? and
order_date > ?";

There are two question marks in this example, indicating that when the state-
ment is executed, the values of host variables are used at those two points.

You can prepare almost any SQL statement dynamically. The only ones that
cannot be prepared are the ones directly concerned with dynamic SQL and
cursor management, such as the PREPARE and OPEN statements. After you
prepare an UPDATE or DELETE statement, it is a good idea to test the fifth
field of SQLAWARN to see if you used a WHERE clause (see “The SQLA-
WARN Array” on page 6-11).
SQL in Programs 6-27

Dynamic SQL
The result of preparing a statement is a data structure that represents the
statement. This data structure is not the same as the string of characters that
produced it. In the PREPARE statement, you give a name to the data structure;
it is query_2 in the preceding example. This name is used to execute the pre-
pared SQL statement.

The PREPARE statement does not limit the character string to one statement.
It may contain multiple SQL statements, separated by semicolons. A fairly
complex example in IBM Informix ESQL/COBOL is shown in Figure 6-7.

EXEC SQL
MOVE " BEGIN WORK;

UPDATE account
SET balance = balance + ?

WHERE acct_number = ?;
UPDATE teller

SET balance = balance + ?
WHERE teller_number = ?;

UPDATE branch
SET balance = balance + ?

WHERE branch_number = ?;
INSERT INTO history VALUES(timestamp, values);
COMMIT WORK"

TO :BIG-QUERY.
END-EXEC.

EXEC SQL
PREPARE BIG-Q FROM :BIG-QUERY

END-EXEC.

Figure 6-7 Preparing a string containing five SQL statements

When this list of statements is executed, host variables must provide values
for six place-holding question marks. While it is more complicated to set up
a multistatement list, the performance is often better because fewer
exchanges take place between the program and the database server.
6-28 SQL in Programs

Dynamic SQL
Executing Prepared SQL
Once a statement is prepared, it can be executed any number of times. State-
ments other than SELECT statements, and SELECT statements that return only
a single row, are executed with the EXECUTE statement.

Figure 6-8 shows how IBM Informix ESQL/C prepares and executes a multi-
statement update of a bank account:

$char bigquery[15] = "begin work";
stcat ("update account set balance = balance + ? where ", bigquery);
stcat ("acct_number = ?;", bigquery);
stcat ("update teller set balance = balance + ? where ", bigquery);
stcat ("teller_number = ?;", bigquery);
stcat ("update branch set balance = balance + ? where ", bigquery);
stcat ("branch_number = ?;", bigquery);
stcat ("insert into history values(timestamp, values);", bigquery);
stcat ("commit work;", bigquery);

$PREPARE bigq FROM $bigquery;

$EXECUTE bigq USING $delta, $acct_number, $delta,
$teller_number, $delta, $branch_number;

Figure 6-8 Preparing and executing a multistatement operation in ESQL/C

The USING clause of the EXECUTE statement supplies a list of host variables
whose values are to take the place of the question marks in the prepared
statement.

Using Prepared SELECT Statements

A dynamically prepared SELECT statement cannot simply be executed; it
might produce more than one row of data, and the database server, not
knowing which row to return, produces an error code.
SQL in Programs 6-29

Dynamic SQL
Instead, a dynamic SELECT statement is attached to a cursor. Then, the cursor
is opened and used in the usual way. The cursor to be used with a prepared
statement is declared for that statement name. Here is an example from
IBM Informix 4GL:

LET select_2 = "select order_num, order_date from orders ",
"where customer_num = ? and order_date > ?"

PREPARE q_orders FROM select_2

DECLARE cu_orders CURSOR FOR q_orders

OPEN cu_orders USING q_c_number, q_o_date

FETCH cu_orders INTO f_o_num, f_o_date

The following list identifies the stages of processing in this example:

1. A character string expressing a SELECT statement is placed in a program
variable. It employs two place-holding question marks.

2. The PREPARE statement converts the string into a data structure that can
be executed. The data structure is associated with a name, q_orders.

3. A cursor named cu_orders is declared and associated with the name of
the prepared statement.

4. When the cursor is opened, the prepared statement is executed. The
USING clause in the OPEN statement provides the names of two host vari-
ables whose contents are substituted for the question marks in the
original statement.

5. The first row of data is fetched from the open cursor. The INTO clause of
the FETCH statement specifies the host variables that are to receive the
fetched column values.

Later, the cursor can be closed and reopened. While the cursor is closed, a dif-
ferent SELECT statement can be prepared under the name q_orders. In this
way, a single cursor can be used to fetch from different SELECT statements.
6-30 SQL in Programs

Dynamic SQL
Dynamic Host Variables
In the embedded-language products, which support dynamically allocated
data objects, it is possible to take dynamic statements one step further. It is
possible to dynamically allocate the host variables that receive column data.
This makes it possible to take an arbitrary SELECT statement from program
input, determine how many values it produces and their data types, and allo-
cate the host variables of the appropriate types to hold them.

The key to this ability is the DESCRIBE statement. It takes the name of a pre-
pared SQL statement and returns information about the statement and its
contents. It sets SQLCODE to specify the type of statement, that is, the verb
with which it begins. If the prepared statement is a SELECT or an INSERT, the
DESCRIBE statement also returns information about the selected or inserted
values to a data structure. The data structure is a predefined data structure
allocated for this purpose and known as a system descriptor area. If you are
using IBM Informix ESQL/C, the data structure can be an sqlda pointer
structure.

The data structure that a DESCRIBE statement returns or references for a
SELECT statement includes an array of structures. Each structure describes
the data that is returned for one item in the select list. The program can exam-
ine the array and discover that a row of data includes a decimal value, a char-
acter value of a certain length, and an integer.

Using this information, the program can allocate memory to hold the
retrieved values and put the necessary pointers in the data structure for the
database server to use.

Freeing Prepared Statements
A prepared SQL statement occupies space in memory. With some database
servers, it can consume space owned by the database server as well as space
belonging to the program. This space is released when the program termi-
nates, but in some programs you might want to release it earlier.

You can use the FREE statement to release this space. It takes either the name
of a statement or the name of a cursor that was declared FOR a statement
name, and releases the space allocated to the prepared statement.
SQL in Programs 6-31

Embedding Data Definition
Quick Execution
For simple statements that do not require a cursor or host variables, you can
combine the actions of the PREPARE, EXECUTE, and FREE statements into a
single operation. The EXECUTE IMMEDIATE statement takes a character
string and in one operation prepares it, executes it, and frees the storage.

$ EXECUTE IMMEDIATE "drop index my_temp_index";

This makes it easy to write simple SQL operations. However, since no USING
clause is allowed, the EXECUTE IMMEDIATE statement cannot be used for
SELECT statements.

Embedding Data Definition
Data definition statements, the SQL statements that create databases and
modify the definitions of tables, are not usually put into programs. The rea-
son is that they are rarely performed—a database is created just once, but
queried and updated many times.

The creation of a database and its tables is generally done interactively, using
DB-Access or IBM Informix SQL. These tools can also be driven from a file of
statements, so that the creation of a database can be done with one operating
system command. (This is discussed in Chapter 10 of this manual.)

Embedding Grant and Revoke Privileges
One task related to data definition is done repeatedly: the granting and
revoking of privileges. The reasons for this are discussed in Chapter 11. Since
privileges must be granted and revoked frequently, and since this might be
done by persons who are not skilled in SQL, it can be useful to package the
GRANT and REVOKE statements in programs to give them a simpler, more
convenient user interface.

The GRANT and REVOKE statements are especially good candidates for
dynamic SQL. Each statement takes three parameters:

• A list of one or more privileges

• A table name

• The name of a user
6-32 SQL in Programs

Embedding Data Definition
You probably need to supply at least some of these values based on program
input (from the user, or command-line parameters, or a file) but none of them
can be supplied in the form of a host variable. The syntax of these statements
does not allow host variables at any point.

The only alternative is to assemble the parts of a statement into a character
string and prepare and execute the assembled statement. Program input can
be incorporated into the prepared statement as characters.

Figure 6-9 shows a function in IBM Informix 4GL that assembles a GRANT
statement from the function parameters, then prepares and executes it.

FUNCTION table_grant (priv_to_grant, table_name, user_id)
DEFINE priv_to_grant char(100),

table_name char(20),
user_id char(20),
grant_stmt char(200)

LET grant_stmt = " GRANT ", priv_to_grant,
" ON ", table_name,
" TO ", user_id

WHENEVER ERROR CONTINUE
PREPARE the_grant FROM grant_stmt
IF status = 0 THEN

EXECUTE the_grant
END IF
IF status <> 0 THEN
 DISPLAY "Sorry, got error #", status, "attempting:"

DISPLAY " ",grant_stmt
END IF
FREE the_grant
WHENEVER ERROR STOP

END FUNCTION

Figure 6-9 A 4GL function that builds, prepares, and executes a GRANT statement

The opening statement defines the name of the function and the names of its
three parameters.

FUNCTION table_grant (priv_to_grant, table_name, user_id)
SQL in Programs 6-33

Embedding Data Definition
The DEFINE statement defines the parameters and one additional variable
local to the function. All four are character strings of various lengths.

DEFINE priv_to_grant char(100),
table_name char(20),
user_id char(20),
grant_stmt char(200)

The variable grant_stmt holds the assembled GRANT statement, which is cre-
ated by concatenating the parameters and some constants.

LET grant_stmt ="GRANT ", priv_to_grant,
" ON ", table_name,
" TO ", user_id

In IBM Informix 4GL, the comma is used to concatenate strings. This assign-
ment statement concatenates the following six character strings:

• “GRANT”

• The parameter specifying the privileges to be granted

• “ON”

• The parameter specifying the table name

• “TO”

• The parameter specifying the user.

The result is a complete GRANT statement composed partly of program
input. The same feat can be accomplished in other host languages using dif-
ferent syntax.

WHENEVER ERROR CONTINUE
PREPARE the_grant FROM grant_stmt

If the database server returns an error code in SQLCODE, the default action of
an IBM Informix 4GL program is to terminate. However, errors are quite likely
when you prepare an SQL statement composed of user-supplied parts, and
program termination is a poor way to diagnose the error. In the preceding
code, the WHENEVER statement prevents termination. Then the PREPARE
statement passes the assembled statement text to the database server for
parsing.
6-34 SQL in Programs

Summary
If the database server approves the form of the statement, it sets a zero return
code. This does not guarantee that the statement is executed properly; it only
means that the statement has correct syntax. It might refer to a nonexistent
table or contain many other kinds of errors that can only be detected during
execution.

IF status = 0 THEN
EXECUTE the_grant

END IF

If the preparation is successful, the next step is to execute the prepared state-
ment. The remainder of the function in Figure 6-9 displays an error message
if anything goes wrong. As written, it makes no distinction between an error
from the PREPARE operation and one from the EXECUTE operation, and it
does not attempt to interpret the numeric error code, leaving it to the user to
interpret.

Summary
SQL statements can be written into programs as if they were normal state-
ments of the programming language. Program variables can be used in
WHERE clauses, and data from the database can be fetched into them. A pre-
processor translates the SQL code into procedure calls and data structures.

Statements that do not return data, or queries that return only one row of
data, are written like ordinary imperative statements of the language. Que-
ries that can return more than one row are associated with a cursor that rep-
resents the current row of data. Through the cursor, the program can fetch
each row of data as it is needed.

Static SQL statements are written into the text of the program. However, the
program can form new SQL statements dynamically, as it runs, and execute
them also. In the most advanced cases, the program can obtain information
about the number and types of columns that a query returns, and dynami-
cally allocate the memory space to hold them.
SQL in Programs 6-35

Chapter
7

Programs That
Modify Data
Chapter Overview 3

Using DELETE 3
Direct Deletions 4

Errors During Direct Deletions 4
Using Transaction Logging 5
Coordinated Deletions 6

Deleting with a Cursor 7

Using INSERT 8
Using an Insert Cursor 8

Declaring an Insert Cursor 9
Inserting with a Cursor 10
Status Codes After PUT and FLUSH 11

Rows of Constants 11
An Insert Example 12

Using UPDATE 14
Using an Update Cursor 15

The Purpose of the Keyword UPDATE 15
Updating Specific Columns 16
UPDATE Keyword Not Always Needed 16

Cleaning up a Table 16

Concurrency and Locking 17
Concurrency and Performance 17
Locking and Integrity 18
Locking and Performance 18
Concurrency Issues 18

How Locks Work 20
Kinds of Locks 20
Lock Scope 20
The Duration of a Lock 23
Locks While Modifying 23

Setting the Isolation Level 24
Dirty Read Isolation 24
Committed Read Isolation 25
Cursor Stability Isolation 25
Repeatable Read Isolation 26

Setting the Lock Mode 27
Waiting for Locks 28
Not Waiting for Locks 28
Waiting a Limited Time 28
Handling a Deadlock 29
Handling External Deadlock 29

Simple Concurrency 29
Locking with Other Database Servers 30

Isolation While Reading 30
Locking Updated Rows 31

Hold Cursors 32

Summary 33
7-2 Programs That Modify Data

Chapter Overview
The preceding chapter introduced the idea of putting SQL statements, espe-
cially the SELECT statement, into programs written in other languages. This
enables a program to retrieve rows of data from a database.

This chapter covers the issues that arise when a program needs to modify the
database by deleting, inserting, or updating rows. As in Chapter 6 of this
manual, the aim is to prepare you for reading the manual for the
IBM Informix ESQL or 4GL product you are using.

The general use of the INSERT, UPDATE, and DELETE statements is covered in
Chapter 5 of this manual. This chapter examines their use from within a pro-
gram. It is quite easy to put the statements in a program, but it can be quite
difficult to handle errors and to deal with concurrent modifications from
multiple programs.

Using DELETE
A program deletes rows from a table by executing a DELETE statement. The
DELETE statement can specify rows in the usual way with a WHERE clause,
or it can refer to a single row, the last one fetched through a specified cursor.

Whenever you delete rows, you must consider whether rows in other tables
depend on the deleted rows. This problem of coordinated deletions is cov-
ered in Chapter 5 of this manual; the problem is the same when deletions are
made from within a program.
Programs That Modify Data 7-3

Using DELETE
Direct Deletions
You can embed a DELETE statement in a program. Here is an example using
IBM Informix ESQL/C:

$ delete from items
where order_num = $onum;

You can also prepare and execute a statement of the same form dynamically.
In either case, the statement works directly on the database to affect one or
more rows.

The WHERE clause in the example uses the value of a host variable named
onum. Following the operation, results are posted in the SQLCA, as usual.
The third element of the SQLERRD array contains the count of rows deleted
even if an error occurs. The value in SQLCODE shows the overall success of
the operation. If it is not negative, no errors occurred and the third element
of SQLERRD is the count of all rows that satisfied the WHERE clause and were
deleted.

Errors During Direct Deletions

When an error occurs, the statement ends prematurely. The negative num-
bers in SQLCODE and the second element of SQLERRD explain its cause, and
the count of rows reveals how many rows were deleted. For many errors, that
count is zero because they prevented the database server from beginning the
operation at all. For example, if the named table does not exist, or if a column
tested in the WHERE clause is renamed, no deletions are attempted.

However, certain errors can be discovered after the operation begins and
some rows are processed. The most common of these errors is a lock conflict.
The database server must obtain an exclusive lock on a row before it can
delete that row. Other programs might be using the rows from the table, pre-
venting the database server from locking a row. Since the issue of locking
affects all types of modifications, it is discussed in a separate section later in
this chapter.

Other, rarer types of error can strike after deletions begin, for example, hard-
ware errors that occur while the database is being updated.
7-4 Programs That Modify Data

Using DELETE
Using Transaction Logging

The best way to prepare for any kind of error during a modification is to use
transaction logging. In the event of an error of any kind, you can tell the data-
base server to put the database back the way it was. Here is the preceding
example extended to use transactions:

$ begin work; /* start the transaction*/
$ delete from items

where order_num = $onum;
del_result = sqlca.sqlcode; /* save two error */
del_isamno = sqlca.sqlerrd[1]; /* ...code numbers */
del_rowcnt = sqlca.sqlerrd[2]; /* ...and count of rows */
if (del_result < 0) /* some problem, */
$ rollback work; /* ...put everything back */
else /* everything worked OK, */
$ commit work; /* ...finish transaction */

An important point in this example is that the program saves the important
return values in the SQLCA before it ends the transaction. The reason is that
both the ROLLBACK WORK and COMMIT WORK statements, like all SQL state-
ments, set return codes in the SQLCA. Executing a ROLLBACK WORK state-
ment after an error wipes out the error code; unless it was saved, it cannot be
reported to the user.

The advantage of using transactions is that no matter what goes wrong, the
database is left in a known, predictable state. There is never a question about
how much of the modification is completed; either all of it is, or none of it is.
Programs That Modify Data 7-5

Using DELETE
Coordinated Deletions

The usefulness of transaction logging is particularly clear when you must
modify more than one table. For example, consider the problem of deleting
an order from the demonstration database. In the simplest form of the prob-
lem, you must delete rows from two tables, orders and items, as shown in the
IBM Informix 4GL example in Figure 7-1.

WHENEVER ERROR CONTINUE{do not terminate on error}
BEGIN WORK {start transaction}
DELETE FROM items

WHERE order_num = o_num
IF (status >= 0) THEN{no error on first delete}

DELETE FROM orders
WHERE order_num = o_num

END IF
IF (status >= 0) THEN{no error on either delete}

COMMIT WORK
ELSE {problem on some delete}

DISPLAY "Error ", status, " deleting."
ROLLBACK WORK

END IF

Figure 7-1 A fragment of 4GL that deletes from two tables

The logic of this program is much the same whether or not transactions are
used. But if they are not used, the person who saw the error message has a
much more difficult set of decisions to make. Depending on when the error
occurred, the situation is as follows:

• No deletions were performed; all rows with this order number remain in
the database.

• Some item rows were deleted but not all; an order record with only some
items remains.

• All item rows were deleted, but the order row remains.

• All rows were deleted.

In the second and third cases, the database is corrupted to some extent; it con-
tains partial information that can cause some queries to produce wrong
answers. The user must take careful action to restore consistency to the infor-
mation. When transactions are used, all these uncertainties are prevented.
7-6 Programs That Modify Data

Using DELETE
Deleting with a Cursor
You can also write a DELETE statement through a cursor to delete the row that
was last fetched. In this way, you can program deletions based on conditions
that cannot be tested in a WHERE clause. An example appears in Figure 7-2.

int delDupOrder()
{
$ int ord_num;

int dup_cnt, ret_code;
$ declare scan_ord cursor for

select order_num, order_date
into $ord_num
from orders for update;

$ open scan_ord;
if (sqlca.sqlcode != 0) return (sqlca.sqlcode);

$ begin work;
for(;;)
{

$ fetch next scan_ord;
if (sqlca.sqlcode != 0) break;
dup_cnt = 0; /* default in case of error */

$ select count(*) into dup_cnt from orders
where order_num = $ord_num;

if (dup_cnt > 1)
{

$ delete where current of scan_ord;
if (sqlca.sqlcode != 0) break;

}
}
ret_code = sqlca.sqlcode;
if (ret_code == 100)/* merely end of data */

$ commit work;
else /* error on fetch or on delete */

$ rollback work;
return (ret_code);

}

Figure 7-2 An unsafe ESQL/C function that deletes through a cursor (see Note)

Note: The design of the ESQL/C function in Figure 7-2 is unsafe. It depends for cor-
rect operation on the current “isolation level” (which is discussed later in the
chapter). Even when it works the way it is meant to work, its effects depend on the
physical order of rows in the table, which is not generally a good idea.
Programs That Modify Data 7-7

Using INSERT
The purpose of the function is to delete rows containing duplicate order
numbers. In fact, in the demonstration database, the orders.order_num col-
umn has a unique index, so duplicate rows cannot occur in it. However, a
similar function can be written for another database; this one uses familiar
column names.

The function declares scan_ord, a cursor to scan all rows in the orders table.
It is declared with the FOR UPDATE clause, which states that the cursor can
be used to modify data. If the cursor opens properly, the function begins a
transaction and then loops over rows of the table. For each row, it uses an
embedded SELECT statement to determine how many rows of the table have
the order number of the current row (this is the step that fails without the cor-
rect isolation level, as described in a later section).

In the demonstration database, with its unique index on this table, the count
returned to dup_cnt is always 1. However, if it is greater, the function deletes
the current row of the table, reducing the count of duplicates by one.

Clean-up functions of this sort are sometimes needed, but they generally
need more sophisticated design. This one deletes all duplicate rows except
the last one delivered by the database server. That ordering has nothing to do
with the contents of the rows or their meanings. You might think of improv-
ing the function in Figure 7-2 by adding, perhaps, an ORDER BY clause to the
cursor declaration. However, you cannot use ORDER BY and FOR UPDATE
together. A better approach is sketched later in the chapter.

Using INSERT
You can embed the INSERT statement in programs. Its form and use in a pro-
gram are the same as described in Chapter 5 of this manual, with the addi-
tional feature that you can use host variables in expressions, both in the
VALUES and WHERE clauses. Moreover, a program has the additional ability
to insert rows using a cursor.

Using an Insert Cursor
The DECLARE CURSOR statement has many variations. Most of them are
used to create cursors for different kinds of scans over data, but one variation
creates a special kind of cursor, an insert cursor. You use an insert cursor with
the PUT and FLUSH statements to efficiently insert rows into a table in bulk.
7-8 Programs That Modify Data

Using INSERT
Declaring an Insert Cursor

You create an insert cursor by declaring a cursor to be FOR an INSERT state-
ment instead of a SELECT statement. You cannot use such a cursor to fetch
rows of data; you can only use it to insert them. An example of the declara-
tion of an insert cursor is shown in Figure 7-3.

DEFINE the_company LIKE customer.company,
the_fname LIKE customer.fname,
the_lname LIKE customer.lname

DECLARE new_custs CURSOR FOR
INSERT INTO customer (company, fname, lname)

VALUES (the_company, the_fname, the_lname)

Figure 7-3 A 4GL fragment that declares an insert cursor

When you open an insert cursor, a buffer is created in memory to hold a block
of rows. The buffer receives rows of data as the program produces them; then
they are passed to the database server in a block when the buffer is full. This
reduces the amount of communication between the program and the data-
base server, and it lets the database server insert the rows with less difficulty.
As a result, the insertions go faster.

The minimum size of the insert buffer is set for any implementation of
embedded SQL; you have no control over it (it is typically one or two kilo-
bytes). The buffer is always made large enough to hold at least two rows of
inserted values. It is large enough to hold multiple rows when the rows are
shorter than the minimum buffer size.
Programs That Modify Data 7-9

Using INSERT
Inserting with a Cursor

The code in Figure 7-3 prepares an insert cursor for use. The continuation
shown in Figure 7-4 shows how the cursor can be used. For simplicity, this
example assumes that a function named next_cust returns either information
about a new customer, or null data to signal the end of input.

WHENEVER ERROR CONTINUE {do not terminate on error}
BEGIN WORK
OPEN new_custs
WHILE status = 0

CALL next_cust() RETURNING the_company,the_fname,the_lname
IF the_company IS NULL THEN

EXIT WHILE
END IF
PUT new_custs

END WHILE
IF status = 0 THEN {no problem in a PUT}

FLUSH new_custs {write any last rows}
END IF
IF status = 0 THEN {no problem writing}

COMMIT WORK {..make it permanent}
ELSE

ROLLBACK WORK {retract any changes}
END IF

Figure 7-4 Continuing Figure 7-3, the code that uses the insert cursor

The code in Figure 7-4 calls next_cust repeatedly. When it returns non-null
data, the PUT statement sends the returned data to the row buffer. When the
buffer fills up, the rows it contains are automatically sent to the database
server. The loop normally ends when next_cust has no more data to return.
Then the FLUSH statement is used to write any rows that remain in the buffer,
after which the transaction is terminated.

Examine the INSERT statement in Figure 7-3 once more. The statement by
itself, not part of a cursor definition, inserts a single row into the customer
table. In fact, the whole apparatus of the insert cursor can be dropped from
the example code, and the INSERT statement can be written into Figure 7-4
where the PUT statement now stands. The difference is that an insert cursor
causes a program to run somewhat faster.
7-10 Programs That Modify Data

Using INSERT
Status Codes After PUT and FLUSH

When a program executes a PUT statement, the program should test whether
the row was placed in the buffer successfully. If the new row fits in the buffer,
the only action of PUT is to copy the row to the buffer. No errors can occur in
this case. However, if the row does not fit, the entire buffer load is passed to
the database server for insertion. An error can occur in this case.

The values returned into the SQL Communications Area give the program the
information it needs to sort out all these cases. SQLCODE is set after every PUT
statement—to zero if there is no error and to a negative error code if there is
an error.

The third element of SQLERRD is set to the number of rows actually inserted
into the table: It is set to zero if the new row is merely moved to the buffer; to
the count of rows that were in the buffer, if the buffer load is inserted without
error; or to the count of rows inserted before an error occurs, if one does
occur.

Read the code (Figure 7-4) once again to see how SQLCODE is used. First, if
the OPEN statement yields an error, the loop is not executed (because the
WHILE condition fails), the FLUSH operation is not performed, and the trans-
action is rolled back.

Second, if the PUT statement returns an error, the loop ends (because of the
WHILE condition), the FLUSH operation is not performed, and the transaction
is rolled back. This can only occur if the loop generates enough rows to fill the
buffer at least once; otherwise, the PUT statement cannot generate an error.

The program might end the loop with rows still in the buffer, possibly with-
out inserting any rows at all. Then the SQL status is zero, and the FLUSH oper-
ation is performed. If the FLUSH operation produces an error code, the
transaction is rolled back. Only when all inserts are successfully performed
is the transaction committed.

Rows of Constants
The insert cursor mechanism supports one special case where high perfor-
mance is easy to obtain. This is the case in which all of the values listed in the
INSERT statement are constants—no expressions and no host variables, just
literal numbers and strings of characters. No matter how many times such an
INSERT operation is performed, the rows it produces are identical. In that
case, there is no point in copying, buffering, and transmitting each identical
row.
Programs That Modify Data 7-11

Using INSERT
Instead, for this kind of INSERT operation, the PUT statement does nothing
whatever except to increment a counter. When finally a FLUSH operation is
performed, a single copy of the row, and the count of inserts, is passed to the
database server. The database server creates and inserts that many rows in
one operation.

It is not common to insert a quantity of identical rows. You can do it when
you first establish a database, to populate a large table with null data.

An Insert Example
The preceding section on the DELETE statement contains an example whose
purpose is to look for and delete duplicate rows of a table (see “Deleting with
a Cursor” on page 7-7). A better way to do the same thing is to select the
desired rows, instead of deleting the undesired ones. The IBM Informix 4GL
code in Figure 7-5 shows one way to do this. The example is written in
IBM Informix 4GL to take advantage of some features that make SQL
programming easy.
7-12 Programs That Modify Data

Using INSERT
BEGIN WORK
INSERT INTO new_orders

SELECT * FROM ORDERS main
WHERE 1 = (SELECT COUNT(*) FROM ORDERS minor

WHERE main.order_num = minor.order_num)
COMMIT WORK

DEFINE ord_row RECORD LIKE orders,
last_ord LIKE orders.order_num

DECLARE dup_row CURSOR FOR
SELECT * FROM ORDERS main INTO ord_row.*

WHERE 1 < (SELECT COUNT(*) FROM ORDERS minor
WHERE main.order_num = minor.order_num)

ORDER BY order_date
DECLARE ins_row CURSOR FOR

INSERT INTO new_orders VALUES (ord_row.*)

BEGIN WORK
OPEN ins_row
LET last_ord = -1
FOREACH dup_row

IF ord_row.order_num <> last_ord THEN
PUT ins_row
LET last_ord = ord_row.order_num

END IF
END FOREACH
CLOSE ins_row
COMMIT WORK

Figure 7-5 A 4GL program that re-creates a table without duplicates

This example begins with an ordinary INSERT statement that finds all the
nonduplicated rows of the table and inserts them into another table, presum-
ably created before the program started. That leaves only the duplicate rows.
(Remember, in the demonstration database the orders table has a unique
index and cannot have duplicate rows. This example deals with some other
database.)

In IBM Informix 4GL, you can define a data structure like a table; the structure
is automatically given one element for each column in the table. The ord_row
structure is a buffer to hold one row of the table.

The code in Figure 7-5 then declares two cursors. The first, called dup_row,
returns the duplicate rows in the table. Because it is only for input, it can use
the ORDER BY clause to impose some order on the duplicates other than the
physical record order used in Figure 7-2 on page 7-7. In this example, the
duplicate rows are ordered by their dates (the oldest one is kept), but you can
use any other order based on the data.
Programs That Modify Data 7-13

Using UPDATE
The second cursor is an insert cursor. It is written to take advantage of the
asterisk notation of IBM Informix 4GL; you can supply values for all columns
simply by naming a record, with an asterisk to indicate all fields.

The remainder of the code examines the rows returned through dup_row. It
inserts the first one from each group of duplicates into the new table, and dis-
regards the rest.

This example uses the simplest kind of error handling. Unless told otherwise,
an IBM Informix 4GL program automatically terminates when an error code
is set in SQLCODE. In that event, the active transaction is also rolled back. This
program relies on that behavior; it assumes that if it reaches the end there
were no errors and the transaction can be committed. This kind of error han-
dling is acceptable when errors are unlikely and the program is used by peo-
ple who do not need to know why the program terminates.

Using UPDATE
You can embed the UPDATE statement in a program in any of the forms
described in Chapter 5, with the additional feature that you can name host
variables in expressions, both in the SET and WHERE clauses. Moreover, a
program can update the row addressed by a cursor.

How Many Rows Were Affected? SQLCODE and SQLERRD

When your program uses a cursor to select rows, it can test SQLCODE for
100, the end-of-data return code. This is set to indicate that no rows, or
no more rows, satisfy the query conditions. The end-of-data code is set
in SQLCODE only following SELECT statements; it is not used following
DELETE, INSERT, or UPDATE statements.

A query that finds no data is not a success. However, an UPDATE or
DELETE statement that happens to update or delete no rows is still con-
sidered a success: it updated or deleted the set of rows that its WHERE
clause said it should; however, the set was empty.

In the same way, the INSERT statement does not set the end-of-data code
even when the source of the inserted rows is a SELECT statement and it
selected no rows. The INSERT statement is a success since it inserted as
many rows as it was asked to do (that is, zero).

To find out how many rows are inserted, updated, or deleted, a program
can test the third element of SQLERRD. The count of rows is there, regard-
less of the value (zero or negative) in SQLCODE.
7-14 Programs That Modify Data

Using UPDATE
Using an Update Cursor
An update cursor permits you to delete or update the current row; that is, the
most recently fetched row. Here is an example (in IBM Informix ESQL/
COBOL) of the declaration of an update cursor:

EXEC SQL
DECLARE names CURSOR FOR

SELECT fname, lname, company
FROM customer

FOR UPDATE
END-EXEC

The program that uses this cursor can fetch rows in the usual way.

EXEC SQL
FETCH names INTO :FNAME, :LNAME, :COMPANY

END-EXEC.

If the program then decides that the row needs to be changed, it can do so.

IF COMPANY IS EQUAL TO "SONY"
EXEC SQL

UPDATE customer
SET fname = "Midori", lname = "Tokugawa"
WHERE CURRENT OF names

END-EXEC.

The words CURRENT OF names take the place of the usual test expressions
in the WHERE clause. In other respects, the UPDATE statement is the same as
usual—even including the specification of the table name, which is implicit
in the cursor name but required nevertheless.

The Purpose of the Keyword UPDATE

The purpose of the keyword UPDATE in a cursor is to let the database server
know that the program can update (or delete) any row that it fetches. The
database server places a more demanding lock on rows that are fetched
through an update cursor, and a less demanding lock when fetching a row for
a cursor that is not declared with that keyword. This results in better perfor-
mance for ordinary cursors and a higher level of concurrent use in a multi-
processing system. (Levels of locks and concurrent use are discussed later in
this chapter.)
Programs That Modify Data 7-15

Using UPDATE
Updating Specific Columns

You can declare a cursor to update specific columns. Here is a revision of the
preceding example that uses this feature:

EXEC SQL
DECLARE names CURSOR FOR

SELECT fname, lname, company, phone
INTO :FNAME,:LNAME,:COMPANY,:PHONE FROM customer

FOR UPDATE OF fname, lname
END-EXEC.

Only the fname and lname columns can be updated through this cursor. A
statement such as the following one is rejected as an error:

EXEC SQL
UPDATE customer

SET company = "Siemens"
WHERE CURRENT OF names

END-EXEC.

If the program attempts such an update, an error code is returned and no
update takes place. An attempt to delete using WHERE CURRENT OF is also
rejected, since deletion affects all columns.

UPDATE Keyword Not Always Needed

The ANSI standard for SQL does not provide for the clause FOR UPDATE in a
cursor definition. When a program uses an ANSI-compliant database, it can
update or delete using any cursor.

Cleaning up a Table
A final, hypothetical example of using an update cursor presents a problem
that should never arise with an established database, but could arise in the
initial design phases of an application.

A large table, named target, is created and populated. A character column,
datcol, inadvertently acquires some null values. These rows should be
deleted. Furthermore, a new column, serials, is added to the table (using the
7-16 Programs That Modify Data

Concurrency and Locking
ALTER TABLE command). This column is to have unique integer values
installed. Figure 7-6 sketches the IBM Informix ESQL/C code to accomplish
these things.

$ char[80] dcol;
$ short int dcolint;
$ int sequence;
$ declare target_row cursor for

select datcol
into $dcol:dcolint
from target

for update of serials;
$ begin work;
$ open target_row;
if (sqlca.sqlcode == 0) $ fetch next target_row;
for(sequence = 1; sqlca.sqlcode == 0; ++sequence)
{

if (dcolint < 0) /* null datcol */
$ delete where current of target_row;

else
$ update target set serials = $sequence

where current of target_row;
}
if (sqlca.sqlcode >= 0) $ commit work;
else $ rollback work;

Figure 7-6 Cleaning up a handmade table using an update cursor

Concurrency and Locking
If your database is contained in a single-user workstation, with no network
connecting it to other machines, your programs can modify data freely. But
in all other cases, you must allow for the possibility that, while your program
is modifying data, another program is reading or modifying the same data.
This is concurrency: two or more independent uses of the same data at the
same time.

Concurrency and Performance
Concurrency is crucial to good performance in a multiprogramming system.
When access to the data is serialized so that only one program at a time can
use it, processing slows dramatically.
Programs That Modify Data 7-17

Concurrency and Locking
Locking and Integrity
Just the same, unless there are controls on the use of data, concurrency can
lead to a variety of negative effects. Programs can read obsolete data or mod-
ifications can be lost even though they were apparently completed.

The database server prevents errors of this kind by imposing a system of
locks. A lock is a claim, or reservation, that a program can place on a piece of
data. The database server guarantees that, as long as the data is locked, no
other program can modify it. When another program requests the data, the
database server either makes the program wait or turns it back with an error.

Locking and Performance
Since a lock serializes access to one piece of data, it reduces concurrency; any
other programs that want access to that piece of data must wait. The database
server can place a lock on a single row, on a disk page (which holds multiple
rows), on a whole table, or on an entire database. The more locks it places,
and the larger the objects it locks, the more concurrency is reduced. The fewer
the locks and the smaller the objects, the greater concurrency (and perfor-
mance) can be.

This section discusses how a program can achieve two goals:

• To place all of the locks that are needed to ensure data integrity

• To lock the fewest, smallest pieces of data possible consistent with the
preceding goal

Concurrency Issues
To understand the hazards of concurrency, you must think in terms of multi-
ple programs, each executing at its own speed. Here is an example. Suppose
that your program is fetching rows through the following cursor:

DECLARE sto_curse CURSOR FOR
SELECT * FROM stock

WHERE manu_code = "ANZ"
7-18 Programs That Modify Data

Concurrency and Locking
The transfer of each row from the database server to the program takes time.
During and between transfers, other programs can perform other database
operations. Suppose that, at about the same time your program fetches the
rows produced by that query, another user’s program executes this update:

UPDATE stock
SET unit_price = 1.15 * unit_price
WHERE manu_code = "ANZ"

In other words, both programs are reading through the same table, one fetch-
ing certain rows and the other changing the same rows. There are four possi-
bilities concerning what happens next:

1. The other program finishes its update before your program fetches its
first row.

Your program shows you only updated rows.

2. Your program fetches every row before the other program has a chance to
update it.

Your program shows you only original rows.

3. After your program fetches some original rows, the other program
catches up and goes on to update some rows your program has yet to
read. Then it executes COMMIT WORK.

Your program might return a mixture of original rows and updated rows.

4. Same as number 3, except that after updating the table, the other program
issues ROLLBACK WORK.

Your program can show you a mixture of original rows and updated rows
that no longer exist in the database.

The first two possibilities are harmless. In case 1, the update is complete
before your query begins. It makes no difference whether it finished a micro-
second ago or a week ago.

In case 2, your query is, in effect, complete before the update begins. The
other program might have been working just one row behind yours, or it
might not start until tomorrow night; it does not matter.

The second pair of chances, however, can be very important to the design of
some applications. In case 3, the query returns a mix of updated and original
data. That can be a negative thing in some applications. In others, for instance
one that is taking an average of all prices, it might not matter at all.

In case 4, it can be disastrous if a program returns some rows of data that,
because their transaction was cancelled, can no longer be found in the table.
Programs That Modify Data 7-19

Concurrency and Locking
Another concern arises when your program uses a cursor to update or delete
the last-fetched row. Erroneous results occur for the following reasons:

• Your program fetches the row.

• Another program updates or deletes the row.

• Your program updates or deletes WHERE CURRENT OF names.

You control concurrent events like these using the locking and isolation level
features of the database server.

How Locks Work
The IBM Informix OnLine database server supports a complex, flexible set of
locking features that is described in this section. Other IBM Informix database
servers have simpler locking systems.

Kinds of Locks

IBM Informix OnLine supports three kinds of locks that it uses in different
situations:

shared A shared lock reserves its object for reading only. It prevents
the object from changing while the lock remains. More than
one program can place a shared lock on the same object.

exclusive An exclusive lock reserves its object for the use of a single
program. It is used when the program intends to change the
object.

An exclusive lock cannot be placed where any other kind of
lock exists. Once one has been placed, no other lock can be
placed on the same object.

promotable A promotable lock establishes the intent to update. It can
only be placed where no other lock exists; however, once it
has been placed, other shared locks can join it. Later, it can
be changed to an exclusive lock.

Lock Scope

You can apply locks to entire databases, to entire tables, to disk pages, to sin-
gle rows, or to index-key values. The size of the object being locked is referred
to as the scope of the lock (sometimes called the lock granularity). In general,
the larger the scope of a lock, the more concurrency is reduced but the sim-
pler programming becomes.
7-20 Programs That Modify Data

Concurrency and Locking
Database Locks

You can lock an entire database. The act of opening a database places a shared
lock on the name of the database. A database is opened with the statements
DATABASE or CREATE DATABASE. As long as a program has a database
open, the shared lock on the name prevents any other program from drop-
ping the database or putting an exclusive lock on it.

You can lock an entire database exclusively with the following statement:

DATABASE database name EXCLUSIVE

The statement succeeds if no other program has opened that database. Once
the lock is placed, no other program can open the database, even for reading
(because its attempt to place a shared lock on the database name fails).

A database lock is only released when the database is closed. That can be
done explicitly with the CLOSE DATABASE statement, or implicitly by execut-
ing another DATABASE statement.

Since locking a database reduces concurrency in that database to zero, it
makes programming very simple—concurrent effects cannot happen. How-
ever, you should only lock a database when no other programs need access.
Database locking is often used before applying massive changes to data
during off-peak hours.

Table Locks

You can lock entire tables. In some cases, this is done automatically.
IBM Informix OnLine always locks an entire table while it performs any of the
following statements:

• ALTER INDEX

• ALTER TABLE

• CREATE INDEX

• DROP INDEX

• RENAME COLUMN

• RENAME TABLE

The completion of the statement (or end of the transaction) releases the lock.
An entire table also can be locked automatically during certain queries, as
described later in this section.

You can use the LOCK TABLE statement to lock an entire table explicitly. This
statement allows you to place either a shared lock or an exclusive lock on an
entire table.
Programs That Modify Data 7-21

Concurrency and Locking
A shared table lock prevents any concurrent updating of that table while
your program is reading from it. IBM Informix OnLine achieves the same
degree of protection by setting the isolation level, as described in the next sec-
tion; this allows greater concurrency. However, all IBM Informix database
servers support the LOCK TABLE statement.

An exclusive table lock prevents any concurrent use of the table. This has a
serious effect on performance if many other programs are contending for the
use of the table. Like an exclusive database lock, an exclusive table lock is
often used when massive updates are applied during off-peak hours. For
example, some applications do not update tables during the hours of peak
use. Instead, they write updates to an update journal. During off-peak hours,
that journal is read and all updates are applied in a batch.

Page, Row, and Key Locks

One row of a table is the smallest object that can be locked. A program can
lock one row or a selection of rows while other programs continue to work
on other rows of the same table.

IBM Informix OnLine stores data in units called disk pages (its disk-storage
methods are described in detail in Chapter 10 of this manual). A disk page
contains one or more rows. In some cases, it is better to lock a disk page than
to lock individual rows on it.

The choice between locking by rows or locking by pages is established for a
table when it is created. IBM Informix OnLine supports a clause, LOCK MODE,
to specify either page or row locking. You can specify lock mode in the
CREATE TABLE statement and later change it with ALTER TABLE. (Other
IBM Informix database servers do not offer the choice; they lock by page or by
row, whichever makes the better implementation.)

Page and row locking are used identically. Whenever IBM Informix OnLine
needs to lock a row, it locks either the row itself or the page it is on, depending
on the lock mode established for the table.

In certain cases, the database server has to lock a row that does not exist—in
effect, it locks the place in the table where the row would be if it did exist. The
database server does this by placing a lock on an index-key value. Key locks
are used identically to row locks. When the table uses row locking, key locks
are implemented as locks on imaginary rows. When it uses page locking, a
key lock is placed on the index page that contains the key, or that would con-
tain the key if the key existed.
7-22 Programs That Modify Data

Concurrency and Locking
The Duration of a Lock

The program controls the duration of a database lock. A database lock
remains until it is released by the closing of the database.

The duration of a table lock depends on whether the database uses transac-
tions. If it does not (that is, if there is no transaction log and the COMMIT
WORK statement is not used), a table lock remains until it is removed by the
execution of the UNLOCK TABLE statement.

The duration of table, row, and index locks depends on what SQL statements
are used, and on whether transactions are in use.

When transactions are used, the end of a transaction releases all table, row,
page, and index locks. This is an important point: when a transaction ends,
all locks are released.

Locks While Modifying

When the database server fetches a row through an update cursor, it places a
promotable lock on the fetched row. If this succeeds, the database server
knows that no other program can alter that row. Since a promotable lock is
not exclusive, other programs can continue to read the row. This helps per-
formance because the program that fetched the row can take some time
before it issues the UPDATE or DELETE statement, or it can simply fetch the
next row.

When it is time to modify a row, the database server obtains an exclusive lock
on the row. If it already had a promotable lock, it changes it to exclusive
status.

The duration of an exclusive row lock depends on whether transactions are
in use. If they are not in use, the lock is released as soon as the modified row
is written to disk. When transactions are in use, all such locks are held until
the end of the transaction. This prevents other programs from using rows
that might be rolled back to their original state.

When transactions are in use, a key lock is used whenever a row is deleted.
This prevents the occurrence of the following error:

• Program A deletes a row.

• Program B inserts a row having the same key.

• Program A rolls back its transaction, forcing the database server to restore
its deleted row. What is to be done with the row inserted by B?

By locking the index, the database server prevents a second program from
inserting a row until the first program commits its transaction.
Programs That Modify Data 7-23

Concurrency and Locking
The locks placed while reading are controlled by the current isolation level,
which is the next topic.

Setting the Isolation Level
The isolation level is the degree to which your program is isolated from the
concurrent actions of other programs. IBM Informix OnLine offers a choice of
four isolation levels. It implements them by setting different rules for how a
program uses locks when it is reading.

You set the isolation level using the command SET ISOLATION LEVEL. Not all
database servers support this command, so before executing it in a program,
test to see whether the database server supports it.

The simplest test is to execute the statement and either ignore the return code,
or test the return code and use it as an indication of which database server is
in use. (Error code -513 displays the message Statement not
available with this database engine.)

Dirty Read Isolation

The simplest isolation level, Dirty Read, amounts to virtually no isolation at
all. When a program fetches a row, it places no locks and it respects none; it
simply copies rows from the database without regard for what other pro-
grams are doing.

A program always receives complete rows of data; even under Dirty Read
isolation, a program never sees a row in which some columns have been
updated and some not. However, a program using Dirty Read isolation
sometimes reads updated rows before the updating program ends its trans-
action. If the updating program later rolls back its transaction, the reading
program processed data that never really existed (case 4 in the list of concur-
rency issues on page 7-19).

Dirty Read is the most efficient level. The reading program never waits and
never makes another program wait. It is the preferred level in any of the
following cases:

• All tables are static; that is, concurrent programs only read and never
modify data.

• The database is held in an exclusive lock.

• It is certain that only one program is using the database.
7-24 Programs That Modify Data

Concurrency and Locking
Committed Read Isolation

When a program requests the Committed Read isolation level, IBM Informix
OnLine guarantees that it never returns a row that is not committed to the
database. This prevents the situation in case 4 in the list of concurrency issues
on page 7-18 (reading data that is not committed, and which is subsequently
rolled back).

Committed Read is implemented very simply. Before fetching a row, the
database server tests to determine whether an updating process placed a lock
on the row. If not, it returns the row. Since rows that are updated but not com-
mitted have locks on them, this test ensures that the program does not read
uncommitted data.

Committed Read does not actually place a lock on the fetched row; hence, it
is almost as efficient as Dirty Read. It is appropriate for use when each row of
data is processed as an independent unit, without reference to other rows in
the same or other tables.

Cursor Stability Isolation

The next level is called Cursor Stability. When it is in effect, the database
server places a lock on the latest row fetched. It places a shared lock for an
ordinary cursor, or a promotable lock for an update cursor. Only one row is
locked at a time; that is, each time a row is fetched, the lock on the previous
row is released (unless that row is updated, in which case the lock holds until
the end of the transaction).

Cursor Stability ensures that a row does not change while the program exam-
ines it. This is important when the program updates some other table based
on the data it reads from this row. Because of Cursor Stability, the program is
assured that the update is based on current information. It prevents the use
of stale data.

Here is an example to illustrate this point. In terms of the demonstration
database, Program A wants to insert a new stock item for manufacturer Hero.
Concurrently, program B wants to delete manufacturer Hero and all stock
associated with it. The following sequence of events can take place:

1. Program A, operating under Cursor Stability, fetches the Hero row of the
manufact table to learn the manufacturer code. This places a shared lock
on the row.

2. Program B issues a DELETE statement for that row. Because of the lock, the
database server makes the program wait.

3. Program A inserts a new row in the stock table using the manufacturer
code it obtained from the manufact table.
Programs That Modify Data 7-25

Concurrency and Locking
4. Program A closes its cursor on the manufact table (or reads a different
row of it), releasing its lock.

5. Program B, released from its wait, completes the deletion of the row and
goes on to delete the rows of stock that use manufacturer code HRO,
including the row just inserted by program A.

If program A used a lesser level of isolation, the following sequence could
have happened instead:

1. Program A reads the Hero row of the manufact table to learn the manu-
facturer code. No lock is placed.

2. Program B issues a DELETE statement for that row. It succeeds.

3. Program B deletes all rows of stock that use manufacturer code HRO.

4. Program B ends.

5. Program A, not aware that its copy of the Hero row is now invalid, inserts
a new row of stock using the manufacturer code HRO.

6. Program A ends.

At the end, there is a row in stock that has no matching manufacturer code in
manufact. Furthermore, Program B apparently has a bug; it did not delete the
rows it was supposed to delete. The use of the Cursor Stability isolation level
prevents these effects.

(It is possible to rearrange the preceding scenario so that it fails even with
Cursor Stability. All that is required is for program B to operate on tables in
the reverse sequence to program A. If program B deletes from stock before it
removes the row of manufact, no degree of isolation can prevent an error.
Whenever this kind of error is possible, it is essential that all programs
involved use the same sequence of access.)

Since Cursor Stability locks only one row at a time, it restricts concurrency
less than does a table lock or database lock.

Repeatable Read Isolation

The Repeatable-Read isolation level asks the database server to put a lock on
every row the program fetches. The locks placed are shareable for an ordi-
nary cursor and promotable for an update cursor. The locks are placed one at
a time as rows are fetched. They are not released until the cursor is closed or
a transaction ends.
7-26 Programs That Modify Data

Concurrency and Locking
Repeatable Read allows a program that uses a scroll cursor to read selected
rows more than once, and to be sure that they are not modified or deleted
between readings (scroll cursors are described in Chapter 6 of this manual).
No lower isolation level guarantees that rows still exist and are unchanged
the second time they are read.

Repeatable Read isolation places the largest number of locks and holds them
the longest. Therefore, it is the level that reduces concurrency the most. If
your program uses this level of isolation, you must think carefully about how
many locks it places, how long they are held, and what the effect can be on
other programs.

In addition to the effect on concurrency, the large number of locks can be a
problem. The database server records only a fixed number of locks for all the
programs it serves. If that table fills up, the database server cannot place a
lock and returns an error code. The person who administers an IBM Informix
OnLine system can monitor the lock table and tell you when it is heavily
used.

Repeatable Read is automatically the isolation level in an ANSI-compliant
database. Repeatable Read is required to ensure operations behave in accor-
dance with the ANSI standard for SQL.

Setting the Lock Mode
The lock mode determines what happens when your program encounters
locked data. One of three things occurs when a program attempts to fetch or
modify a locked row:

• The program receives an immediate return from the database server with
an error code in SQLCODE.

• The program is suspended until the lock is removed by the program that
placed it.

• The program is suspended for a time and then, if the lock is not removed,
it receives an error-return code from the database server.

You choose among these results with the command SET LOCK MODE.
Programs That Modify Data 7-27

Concurrency and Locking
Waiting for Locks

If you prefer to wait (and this is the best choice for many applications), exe-
cute the following command:

SET LOCK MODE TO WAIT

When this lock mode is set, your program usually ignores the existence of
other, concurrent programs. When it needs to access a row that another pro-
gram has locked, your program waits until the lock is removed, then pro-
ceeds. The delays are usually imperceptible.

Not Waiting for Locks

The disadvantage of waiting for locks is that the wait might become very
long (although properly designed applications should hold their locks very
briefly). When the possibility of a long delay is not acceptable, a program can
execute the following command:

SET LOCK MODE TO NOT WAIT

When the program requests a locked row, it immediately receives an error
code (for example, error -107, Record is locked), and the current SQL
statement terminates. It is up to the program to roll back its current transac-
tion and try again.

Not waiting is the initial setting when a program starts up. If you are using
SQL interactively and see an error related to locking, set the lock mode to
wait. If you are writing a program, consider making that one of the first
embedded SQL commands the program executes.

Waiting a Limited Time

When you use IBM Informix OnLine, you have an additional choice: you can
ask the database server to set an upper limit on a wait. You can issue the
following command:

SET LOCK MODE TO WAIT 17

This places an upper limit of 17 seconds on the length of any wait. If a lock is
not removed in that time, the error code is returned.
7-28 Programs That Modify Data

Concurrency and Locking
Handling a Deadlock

A deadlock is a situation in which a pair of programs block each other’s
progress. Each program has a lock on some object that the other program
wants to access. A deadlock only arises when all programs concerned set
their lock modes to wait for locks.

IBM Informix OnLine detects deadlocks immediately when they involve only
data at a single network server. It prevents the deadlock from occurring by
returning an error code (error -143 ISAM error: deadlock detected)
to the second program to request a lock. The error code is the one the pro-
gram receives if it sets its lock mode to not wait for locks. Thus, if your pro-
gram receives an error code related to locks even after it sets lock mode to
wait, you know the cause is an impending deadlock.

Handling External Deadlock

A deadlock can also occur between programs at different database servers. In
this case, IBM Informix OnLine cannot instantly detect the deadlock. (Perfect
deadlock detection requires excessive communications traffic between all
database servers in a network.) Instead, each database server sets an upper
limit on the amount of time that a program can wait to obtain a lock on data
at a different database server. If the time expires, the database server assumes
that a deadlock was the cause and returns a lock-related error code.

In other words, when external databases are involved, every program runs
with a maximum lock-waiting time. The maximum is set for the database
server and can be changed by the person who installs it.

Simple Concurrency
If you are not sure which choice to make concerning locking and concurrency,
and if your application is straightforward, have your program execute the
following commands when it is starting up (immediately after the first
DATABASE statement):

SET LOCK MODE TO WAIT
SET ISOLATION TO REPEATABLE READ

Ignore the return codes from both statements. Proceed as if no other pro-
grams exist. If no performance problems arise, you do not need to read this
section again.
Programs That Modify Data 7-29

Concurrency and Locking
Locking with Other Database Servers
IBM Informix OnLine manages its own locking so that it can provide the dif-
ferent kinds of locks and levels of isolation described in the preceding topics.
Other IBM Informix database servers implement locks using the facilities of
the host operating system, and cannot provide the same conveniences.

Some host operating systems provide locking functions as operating system
services. In these systems, database servers support the SET LOCK MODE
statement.

Some host operating systems do not provide kernel-locking facilities. In these
systems, the database server performs its own locking based on small files
that it creates in the database directory. (These files have the suffix .lok.)

You can tell in which kind of system your database server is running by exe-
cuting the SET LOCK MODE statement and testing the error code, as in the fol-
lowing fragment of IBM Informix ESQL/C code:

#define LOCK_ONLINE 1
#define LOCK_KERNEL 2
#define LOCK_FILES 3
int which_locks()
{

int locktype;
locktype = LOCK_FILES;

$ set lock mode to wait 30;
if (sqlca.sqlcode == 0) locktype = LOCK_ONLINE;
else
{

$ set lock mode to wait;
if (sqlca.sqlcode == 0) locktype = LOCK_KERNEL;

}
$ set lock mode to not wait; /* restore default condition */

return(locktype);
}

If the database server does not support the SET LOCK MODE statement, your
program is effectively always in NOT WAIT mode; that is, whenever it tries to
lock a row locked by another program, it receives an error code immediately.

Isolation While Reading

IBM Informix database servers other than IBM Informix OnLine do not nor-
mally place locks when fetching rows. There is nothing comparable to the
shared locks used by IBM Informix OnLine to implement the Cursor Stability
isolation level.
7-30 Programs That Modify Data

Concurrency and Locking
If your program fetches a row with a singleton SELECT statement or through
a cursor that is not declared FOR UPDATE, the row is fetched immediately,
regardless of whether it is locked or modified by an unfinished transaction.

This design produces the best performance (especially when locks are imple-
mented by writing notes in disk files), but you must be aware that the pro-
gram can read rows modified by uncommitted transactions.

You can obtain the effect of Cursor Stability isolation by declaring a cursor
FOR UPDATE, and then using it for input. Whenever the database server
fetches a row through an update cursor, it places a lock on the fetched row. (If
the row is locked already, the program waits or receives an error, depending
on the lock mode.) When the program fetches another row without updating
the current one, the lock on the current row is released and the new row is
locked.

Thus, by fetching through an update cursor, you can be sure that the fetched
row is locked as long as you are using it. (The row cannot become stale.) You
are also assured of fetching only committed data, since locks on rows that are
updated are held until the end of the transaction. Depending on the host
operating system and the database server, you might experience a perfor-
mance penalty for using an update cursor this way.

Locking Updated Rows

When a cursor is declared FOR UPDATE, locks are handled as follows: Before
a row is fetched, it is locked; or if it cannot be locked, the program is made to
wait or an error is returned.

The next time a fetch is requested, the database server notes whether the cur-
rent row is modified (using either UPDATE or DELETE with WHERE CURRENT
OF), and whether a transaction is in progress. If both of these things are true,
the lock on the row is retained. Otherwise, the lock is released.

Thus, if you perform updates within a transaction, all updated rows remain
locked until the transaction ends. Rows that are not updated are locked only
while they are current. Rows updated outside a transaction, or in a database
that does not use transaction logging, are also unlocked as soon as another
row is fetched.
Programs That Modify Data 7-31

Hold Cursors
Hold Cursors
When transaction logging is used, the database server guarantees that any-
thing done within a transaction can be rolled back at the end of it. To do this
reliably, the database server normally applies the following rules:

• All cursors are closed by the ending of a transaction.

• All locks are released by the ending of a transaction.

These rules are normal with all database systems that support transactions,
and for most applications they do not cause any trouble. However, there is a
program design that is possible when transactions are not used that becomes
impractical when transactions are added. The design is sketched in
pseudocode in Figure 7-7.

DECLARE master CURSOR FOR ...
DECLARE detail CURSOR FOR ... FOR UPDATE
OPEN master
LOOP:

FETCH master INTO ...
IF (the fetched data is appropriate) THEN

BEGIN WORK
OPEN detail USING data read from master
FETCH detail ...
UPDATE ... WHERE CURRENT OF detail
COMMIT WORK

END IF
END LOOP
CLOSE MASTER

Figure 7-7 A pseudocode sketch of one common form of database application

In this design, one cursor is used to scan a table. Selected records are used as
the basis for updating a different table. The problem is that when each update
is treated as a separate transaction (as in the sketch in Figure 7-7), the
COMMIT WORK statement following the UPDATE closes all cursors—includ-
ing the master cursor.

The simplest alternative is to move the COMMIT WORK and BEGIN WORK
statements to be the last and first ones, respectively, so that the entire scan
over the master table is one large transaction. This is sometimes possible, but
it may become impractical if there are very many rows to update. The num-
ber of locks can be too large, and they are held for the duration of the
program.
7-32 Programs That Modify Data

Summary
A solution supported by IBM Informix database servers is to add the key-
words WITH HOLD to the declaration of the master cursor. Such a cursor is
referred to as a hold cursor and is not closed at the end of a transaction. The
database server still closes all other cursors, and it still releases all locks, but
the hold cursor remains open until it is explicitly closed.

Before you attempt to use a hold cursor, you must be sure that you under-
stand the locking mechanism described here, and also that you understand
the programs that are running concurrently. The reason is that whenever
COMMIT WORK is executed, all locks are released, including any locks placed
on rows fetched through the hold cursor.

This has little importance if the cursor is used as intended, for a single for-
ward scan over a table. However, you are allowed to specify WITH HOLD for
any cursor, including update cursors and scroll cursors. Before you do this,
you must understand the implications of the fact that all locks (including
locks on entire tables) are released at the end of a transaction.

Summary
A program can execute the INSERT, DELETE, and UPDATE statements just as
they were described in Chapter 5. A program also can scan through a table
with a cursor, updating or deleting selected rows. It also can use a cursor to
insert rows, with the benefit that the rows are buffered and sent to the data-
base server in blocks.

In all of these activities, the program must take pains to detect errors and to
return the database to a known state when one occurs. The most important
tool for doing this is the transaction. Without transaction logging, the
program has a more difficult time recovering from errors.

Whenever multiple programs have access to a database concurrently (and
when at least one of them can modify data), all programs must allow for the
possibility that another program can change the data even as they read it. The
database server provides a mechanism of locks and isolation levels that usu-
ally allow programs to run as if they were alone with the data.
Programs That Modify Data 7-33

Chapter
8

Building a Data
Model
Chapter Overview 3

Why Build a Data Model 3
Extended Relational Analysis 3

Basic Ideas 6
Tables, Rows, and Columns 6
Primary Keys 7
Candidate Keys 7
Foreign Keys (Join Columns) 8

Step 1: Name the Entities 8
Entity Keys 9

User-Assigned Keys 10
Composite Keys 10
System-Assigned Keys 10
Time-Dependent Keys 10

Entity Tables 11
The Address-Book Example 11

 Step 2: Define the Relationships 14
Discover the Relationships 14
Add Relationships to Tables 19

Step 3: List the Attributes 22
Select Attributes 22
Select Attribute Tables 22

Summary 24

8-2 Building a Data Model

Chapter Overview
The first step in creating a database is to construct a data model—a precise,
complete definition of the data to be stored. This chapter contains a cursory
overview of one method of doing this. The chapters that follow describe how
to implement a data model once you design it.

Why Build a Data Model
A data model is a precise, complete definition of the data you plan to store. You
probably already have an intuitive model of the data in mind, but you should
complete it using some type of formal notation. This helps your design in two
ways:

• It makes you think through the data model completely.

A mental model often contains unexamined assumptions; formalizing
the design reveals these points.

• It is easier to communicate your design to other people.

A formal statement makes the model explicit, so that others can return
comments and suggestions in the same form.

Extended Relational Analysis
Different books present different formal methods of modeling data. Most
methods force you to be thorough and precise. If you have already learned
some method, by all means use it.

This chapter presents a summary of Extended Relational Analysis, a modeling
method devised by Relational Systems Corporation. This modeling method
is carried out in three steps:

1. Identify the entities (fundamental objects) that the database describes.

2. Identify the relationships between the entities.
Building a Data Model 8-3

Why Build a Data Model
3. Identify the attributes (intrinsic features) associated with the entities and
relationships.

 Chapter 9 adds a fourth step, specifying the domain (data type) of each
attribute.

The end product of modeling is a set of tables like those in Figure 8-1, which
shows the final set of tables for a personal address book. The personal
address book is an example developed in this chapter. It is used rather than
the stores5 database used in the rest of this book because it is small enough
to be developed completely in one chapter, but large enough to show the
entire method.
8-4 Building a Data Model

Why Build a Data Model
Figure 8-1 The data model of a personal address book

Name

NameString AddressCode BirthDate

 PK UA FK

Gaius C. Caesar 1001 17-03-1990
SPQR, S.A. 1020 (null)

Address

AddressCode Street City StaProv Postcode

 PK SA

1001 2430 Tasso St. #8 St. Louis CA 83267-1048
1020 411 Bohannon Drive Lenaxa Abta. TW2 5AQ

Voice

VceNumber VceType

 PK UA

1-800-274-8184 home
011-49-89-922-030 car

Fax

FaxNumber AddressCode VceNumber OperFrom OperTill

 PK UA FK FK

926-6741 1001 926-6300 0800 0400
61-62-435-143 1020 (null) 1730 1900

NameFax NameVce

NameString FaxNumber NameString VceNumber

 PK FK PK FK PK FK PK FK

Gaius C. Caesar 926-6741 Gaius C. Caesar 1-800-274-8184
SPQR, S.A. 61-62-435-143 SPQR, S.A. 011-49-89-922-030

Modem

MdmNumber NameString VceNumber AddressCode B300 B1200 B2400

 PK UA FK NN FK FK

416-566-7024 Nite Owl BBS 926-6300 1001 Y Y N
33 1 42 70 67 74 CompuServe (null) 1020 Y Y Y
Building a Data Model 8-5

Basic Ideas
Basic Ideas
The following ideas are fundamental to most relational data model methods,
including Extended Relational Analysis.

Tables, Rows, and Columns
You are already familiar with the idea of a table composed of rows and
columns. But you must respect four rules while you are defining the tables of
a formal data model:

• Rows must stand alone.

Each row of a table is independent and does not depend on any other row
of the same table. As a consequence, the order of the rows in a table is not
significant in the model. The model should still be correct even if all the
rows of a table are shuffled into random order.

After the database is implemented, you can tell the database server to
store rows in a certain order for the sake of efficiency, but that does not
affect the model.

• Rows must be unique.

In every row, some column must contain a unique value. If no single col-
umn has this property, the values of some group of columns taken as a
whole must be different in every row.

• Columns must stand alone.

The order of columns within a table has no meaning in the model. The
model should still be correct even if the columns are rearranged.

After the database is implemented, programs and stored queries that use
an asterisk to mean all columns depends on the final order of columns, but
that does not affect the model.

• Column values must be unitary.

A column can contain only single values, never lists or repeating groups.
Composite values must be broken into separate columns. For example, if
at some point you treat a person’s first and last names as separate values,
they must be in separate columns, not in a single name column.

If your previous experience is only with data organized as arrays or sequen-
tial files, these rules might seem unnatural. However, relational database the-
ory shows that you can represent all types of data using only tables, rows,
and columns that follow these rules. With only a little practice, the rules
become automatic.
8-6 Building a Data Model

Basic Ideas
Primary Keys
The primary key of a table is the column whose values are different in every
row. Because they are different, they make each row unique. If there is no one
such column, the primary key is a composite of two or more columns whose
values, taken together, are different in every row.

Every table in the model must have a primary key. This follows automatically
from the rule that all rows must be unique. If necessary, the primary key is
composed of all the columns taken together.

Null values are never allowed in a primary key column. Null values are not
comparable; that is, they cannot be said to be alike or different. Hence, they
cannot make a row unique from other rows. If a column permits null values,
it cannot be part of a primary key.

In a diagram, the primary key columns of a table are flagged with the note
PK, as in this table from Figure 8-1:

The note PK means primary key. The note UA means user assigned. That is, the
values in this primary key come from the real world; they are not codes
assigned by the system. (A system-assigned key is flagged SA.)

Candidate Keys
Sometimes more than one column or group of columns qualifies as the pri-
mary key. Such columns or groups are called candidate keys. Choose the can-
didate with the fewest columns to be the primary key of the table.

All candidate keys are worth noting because their property of uniqueness
makes them predictable in a SELECT operation. When you select the columns
of a candidate key, you know the result can contain no duplicate rows. Some-
times that allows you to predict how many rows are returned. It always
means that the result can be a table in its own right, with the selected candi-
date key as its primary key.

It is optional to flag candidate-key columns as CK in table diagrams.

Modem

MdmNumber

 PK UA

416-566-7024
33 1 42 70 67 74
Building a Data Model 8-7

Step 1: Name the Entities
Foreign Keys (Join Columns)
A foreign key is simply a column or group of columns in one table that contain
values that match the primary key in another table. Foreign keys are used to
join tables; in fact, most of the join columns referred to earlier in this book are
foreign-key columns. Foreign-key columns are flagged FK in the model
tables, as in this portion of Figure 8-1:

Foreign keys are noted wherever they appear in the model because their pres-
ence restricts your ability to delete rows from tables. Before you can delete a
row safely, you should delete all rows that refer to it through foreign keys.
Otherwise, the database is in an inconsistent state; some rows contain foreign
key values that refer to nonexistent data.

When such an inconsistency occurs, that is, when a foreign key value in one
table does not have a match in any primary key, referential integrity has been
violated. You can always preserve referential integrity by deleting all foreign-
key rows before you delete the primary key to which they refer. If you are
imposing referential constraints on your database, the database itself does
not permit you to delete primary keys with matching foreign keys. Nor does
it permit you to add a foreign-key value that does not reference an existing
primary-key value. Using referential constraints when implementing your
model is covered in Chapter 9.

Step 1: Name the Entities
An entity is a type of person, place, or thing to be recorded in the database. If
the data model were a language, entities would be its nouns.

The first step in modeling is to choose the entities to record. Each one
becomes a table in the model.

You probably can list several entities immediately. However, if other people
use the database, you should poll them for their understanding of what kinds
of fundamental things the database should contain.

Fax

FaxNumber AddressCode VceNumber

 PK UA FK FK

926-6741 1001 926-6300
61-62-435-143 1020 (null)
8-8 Building a Data Model

Step 1: Name the Entities
When the list of entities seems complete, prune it by making sure that each
one has the following qualities:

• It is significant.

List only entities that are important to the users of the database and worth
the trouble and expense of computer tabulation.

• It is generic.

List only types of things, not individual instances. For instance, symphony
might be an entity, but Beethoven’s Fifth would be an instance.

• It is fundamental.

List only entities that exist independently, without needing something
else to explain them. Anything you could call a trait, a feature, or a
description is merely an attribute, not an entity. For example, a part num-
ber cannot exist without a more fundamental part entity. Also, do not list
things that you can derive from other entities; avoid, for example, any
sum, average, or other quantity that you can calculate in a SELECT
expression.

• It is unitary.

Be sure that each entity you name represents a single class—that it cannot
be broken down into subcategories each with its own features. In plan-
ning the address book model (see “The Address-Book Example” on page
8-11) an apparently simple entity, the telephone number, turns out to con-
sist of three categories each with different features.

These choices are neither simple nor automatic. To discover the best choice of
entities, you must think deeply about the nature of the data you want to store.
Of course, that is exactly the point of making a formal data model.

Entity Keys
Each entity you choose is represented as a table in the model. The table stands
for the entity as an abstract concept, while each row represents a specific,
individual instance of the entity. For example, if customer is an entity, a
customer table represents the idea of customer; in it, each row represents one
specific customer.

An entity is a table and every table must have a primary key; therefore, your
next task is to specify a primary key for each entity. That is, you must desig-
nate some quantifiable characteristic of the entity that distinguishes each
instance from every other.
Building a Data Model 8-9

Step 1: Name the Entities
User-Assigned Keys

Some entities have ready-made primary keys, such as catalog codes or iden-
tity numbers, defined outside the model. These are user-assigned keys,
flagged UA in the model.

Composite Keys

Other entities lack features that are reliably unique. Different people can have
identical names; different books can have identical titles. You can usually find
a composite of features that work (it is rare for people to have identical names
and identical addresses, or for different books to have identical titles,
authors, and publication dates).

System-Assigned Keys

A system-assigned primary key is usually preferable to a composite key. A
system-assigned key is a number or code that is attached to each instance of
an entity when it is first entered into the database. The easiest system-
assigned keys to implement are serial numbers because the database server
can generate them automatically. However, the people who use the database
might not like a plain numeric code. Other codes can be based on actual data;
for example, an employee identification code can be based on the person’s
initials, combined with the digits of the date they were hired.

Time-Dependent Keys

An entity key can be naturally composite and it can include foreign keys.
Both types of keys are often required when the data involves time. For exam-
ple, a frequently crucial entity is billable time, a span of time that can be
charged to a client. A law office or a marriage counselor might use entities
such as advisor and client; when advisor meets client, an instance of billable
time occurs.

A billable-time entity needs at least three things to make it unique:

• The identity of the advisor (a foreign key referring to the advisor entity)

• The date

• The start time of the service
8-10 Building a Data Model

Step 1: Name the Entities
Entity Tables
After deciding on the primary keys, record your decisions as diagrams. For
each entity, draw the corner of a table as shown in Figure 8-2, noting the
name of the entity and the chosen primary key columns.

Figure 8-2 Diagram of an entity table

The Address-Book Example
Suppose that you create a database that computerizes a personal address
book. The database model must record the names, addresses, and telephone
numbers of people and organizations that its user deals with in the course of
business.

The first step is to define the entities, and the first thing you might do is look
carefully at a page from an address book to see what entities are there (see
Figure 8-3).

Entity (and table) name

Column name

Flags:
PK for primary key
FK for foreign key
SA for system-assigned
UA for user-assigned
NN for never-null

Illustrative values

Name

NameString

PK UA

Gaius C. Caesar

SPQR, S.A.
Building a Data Model 8-11

Step 1: Name the Entities
Figure 8-3 Part of a page from an address book

The physical form of the existing data can be misleading. Do not let the lay-
out of pages and entries in the address book mislead you into trying to spec-
ify an entity that represents one entry in the book—some kind of
alphabetized record with fields for name, number, and address. Remember it
is not the medium you want to model, it is the data.

At first glance, the fundamental data entities recorded in an address book
include

• Names (of persons and organizations)

• Addresses

• Telephone numbers

Do these data entities meet the criteria given earlier? They are clearly signif-
icant to the model and generic.

Are they fundamental? A good test is to ask if an entity can vary in number
independently of any other entity. After thinking about it, you realize that an
address book sometimes lists people who have no number or current address

N

T
S
R
Q
P
O

Catherine Morgan (206)789-5396
429 Bridge Way

Seattle, WA 98103

NAME

ADDRESS
PHONE

PHONE

PHONE (503)776-3428utdoor Supply, Inc.

ik (714)344-9502

2632

Thomas Morrison (503)256-6031
866 Gage Rd.

Klamath F

PHONE

Norman Dearborn (206)598-8189
Morganthaler Industries12558 E. 10th Ave.

Seattle, WA 98102
FAX: 2065986872

NAME

ADDRESS

NAME

ADDRESS

PHONE

Car Phone:

503-776-6941
8-12 Building a Data Model

Step 1: Name the Entities
(people who move or change jobs). An address book also can list both
addresses and numbers that are used by more than one person. All three of
these entities can vary in number independently; that strongly suggests they
are fundamental, not dependent.

Are they unitary? Names can be split into personal names and corporate
names. After thinking about it, you decide that all names should have the
same features in this model; that is, you do not plan to record different infor-
mation about a company than you would about a person. Likewise, you
decide there is only one kind of address; there is no need to treat home
addresses differently from business ones.

However, you also realize that there is not one kind of telephone number, but
three. There are voice numbers that are answered by a person, fax numbers
that connect to a fax machine, and modem numbers that connect to a com-
puter. You decide that you want to record different information about each
kind of number, so these three are different entities.

After you choose primary keys, the diagram of the tables of the model might
look like Figure 8-4.

Figure 8-4 The tables of an address-book model after primary keys are chosen

This diagram reflects some important decisions. First, the name of a person
or organization is being used as a primary key (user-assigned). That would
not be acceptable if two organizations or people could have identical names.
For this exercise, we assume that duplicate names are not a problem, or that
we can make them unique by adding a middle initial or a title.

Name Address

NameString AddressCode

 PK UA PK SA

Gaius C. Caesar 1001
SPQR, S.A. 1020

Voice Fax Modem

VceNumber FaxNumber MdmNumber

 PK UA PK UA PK UA

1-800-274-8184 926-6741 416-566-7024
011-49-89-922-030 61-62-435-143 33 1 42 70 67 74
Building a Data Model 8-13

Step 2: Define the Relationships
Telephone numbers are also shown as user-assigned primary keys.
Addresses, however, are given system-assigned primary keys, because to
make an address unique, the primary key must include all the parts such as
city, street, and house number. That makes an exceedingly cumbersome key.
Addresses are composite keys as well, since parts of an address need to be
treated as separate attributes (columns) later in the design.

 Step 2: Define the Relationships
The model now records the entities, but not the relationships between them.
Relationships are not always obvious, but all of the ones worth recording
must be found. The only way to ensure that all the relationships are found is
to exhaustively list all possible relationships. You must consider every pair of
entities A and B and ask “What is the relationship between an A and a B?”

Discover the Relationships
The most compact way to discover the relationships is to prepare a matrix
that names all the entities on the rows and again on the columns. Figure 8-5
is a matrix that reflects the entities for the personal address book:

Figure 8-5 A matrix that reflects the entities for a personal address book

name

name

number
(voice)

address number
(fax)

number
(modem)

address

number
(voice)

number
(fax)

number
(modem)
8-14 Building a Data Model

Step 2: Define the Relationships
You can ignore the lower triangle of the matrix, as indicated by the shaded
area. You must consider the diagonal cells; that is, you must ask the question
“What is the relationship between an A and another A?” In this model, the
answer is always none. There is no relationship between a name and a name,
or an address and another address, at least none worth recording in this
model.

For all cells for which the answer is clearly none, write none in the matrix.
Now the matrix looks like Figure 8-6.

Figure 8-6 A matrix in which no entities relate to themselves

Although in this model no entities relate to themselves, in other models this
is not always true. A typical example is the employee who is the manager of
another employee. Another example occurs in manufacturing, when a part
entity is a component of another part.

Another decision reflected in the matrix is that there is no relationship
between a fax number and a modem number.

In the remaining cells, you write the kind of relationship that exists between
the entity on the row and the entity on the column. Three kinds of relation-
ships are possible:

• One-to-one (written 1:1), in which there is never more than one entity A for
one entity B, and never more than one B for one A.

• One-to-many (written 1:n), in which there is never more than one entity A,
but there can be several entities B related to it (or vice versa).

name

name

number
(voice)

 none

address number
(fax)

number
(modem)

address

number
(voice)

number
(fax)

number
(modem)

 none

 none

 none

 none

 none
Building a Data Model 8-15

Step 2: Define the Relationships
• Many-to-many (written m:n), in which several entities A can be related to
one B and several entities B can be related to one A.

One-to-many relationships are the most common, but examples of all three
relationships are in the address-book model.

As you can see in Figure 8-6, the first unfilled cell represents the relationship
between names and addresses. What type is this relationship? A name (you
decide) can have zero or one address, but no more than one. You write 0-1
opposite name and below address, as shown in the following diagram:

An address, however, can be associated with more than one name. For exam-
ple, you can know several people at one company, or two or more people
who live at the same address.

Can an address be associated with zero names? That is, should it be possible
for an address to exist when no names use it? You decide that yes, it can.
Below address and opposite name, you write 0-n, as shown in the following
diagram:

If you decided that an address could not exist without being associated with
at least one name, you write 1-n instead of 0-n.

When a relationship is limited on either side to 1, it is a 1:n relationship. The
relationship between names and addresses is a 1:n relationship. Since zero is
a possibility, you must allow nulls when the relationship is encoded as a
column in a table.

name

name

address

 none
0-1

name

name

address

 none 0-n
0-1
8-16 Building a Data Model

Step 2: Define the Relationships
Now consider the next cell, the relationship between a name and a voice
number. How many voice numbers can a name be associated with, one or
more than one? Glancing at your address book, you see that often you have
noted more than one telephone number for a person—for some busy sales-
man you know a home number, an office number, a paging number, and a car
phone. But there also can be names with zero associated numbers. You write
0-n opposite name and below number (voice), as shown in the following
diagram:

What of the other side of this relationship? How many names can be associ-
ated with a voice number? More than one name, certainly; your address book
shows several people at one company for which there is a single number for
incoming calls. Can a number be associated with zero names? No, you
decide; there is no point recording a number unless it is used by somebody
you know. You write 1-m under number (voice) and opposite name. (You
use m to show that this represents a different greater-than-1 quantity than the
n already noted in that cell.)

This is a many-to-many or m:n relationship. On one side, it does not allow
zero, which means that when it is translated to a column definition, no nulls
are allowed.

Fill out the rest of the matrix in the same fashion, as shown in Figure 8-7.

name

name

address

 none 0-n
 0-1

number
(voice)

0-n

name

name

address

 none 0-n
 0-1

number
(voice)

1-m
 0-n
Building a Data Model 8-17

Step 2: Define the Relationships
Figure 8-7 A completed matrix for an address book

The following decisions are reflected in Figure 8-7:

• A name can be associated with more than one fax number; for example, a
company can have several fax machines. Going the other way, a fax num-
ber can be associated with more than one name; for example, several
people can use the same fax number.

• A modem number must be associated with exactly one name. (This is an
arbitrary decree to complicate the example; pretend it is a requirement of
the design.) However, a name can have more than one associated modem
number; for example, a company computer can have several dial-up
lines.

• While there is some relationship between a voice number and an address
in the real world, none needs to be recorded in this model. There already
is an indirect relationship through name.

• There can be more than one modem or fax at a given address; on the other
hand, a given modem or fax has one address and there can be modems or
faxes whose addresses are not known.

• A voice phone can be associated with one fax phone, and vice versa. This
relationship reflects the fact that there is often a voice line to the operator
of one of these machines.

name

name

number
(voice)

 none

address number
(fax)

number
(modem)

address

number
(voice)

number
(fax)

number
(modem)

 none

 none

 none

 none

 none

 0-n
0-1

 1-m
0-n

 1-m
0-n

 1
0-n

 0-1
0-1

 none 0-1
0-n

 0-1
0-n

 none
8-18 Building a Data Model

Step 2: Define the Relationships
You might disagree with some of these decisions (for example, why a rela-
tionship between voice numbers and modem numbers is not supported). If
you do, revise the matrix and the tables that follow.

Add Relationships to Tables
After you discover all the relationships, you record them in the form of new
columns and tables.

You record a 1:n relationship by inserting a new column in one of the tables
that represent entities. Add the column to the table for the entity that associ-
ates with just one other entity. The new column contains the foreign key of
the other entity. For example, consider the 1:n relationship between names
and modem numbers in the following diagram:

A name can associate with n modems, but a modem number associates with
just one name. Therefore, the new column is added to the modem table and
it contains a foreign key to the name table, as shown in the following
diagram:

The flag NN (for never null) documents the decision that a modem must be
associated with a name. If you permitted a modem to have no associated
name, the NN flag is omitted and null values are permitted in this column of
the table.

name

number
(modem)

 1
0-n

Name Modem

NameString MdmNumber Namestring

 PK UA PK UA FK NN

Gaius C. Caesar 416-566-7024 Nite Owl BBS
SPQR, S.A. 33 1 42 70 67 74 CompuServe
Building a Data Model 8-19

Step 2: Define the Relationships
A 1:1 relationship, such as the relationship between voice and fax numbers,
is handled like a 1:n relationship by adding a foreign-key column in the table
of one entity to link it to the other entity. With a 1:1 relationship, you can put
the foreign key in either table. To minimize the space used by the tables, put
it in the table you expect to have fewer rows.

You cannot record an m:n relationship by adding columns to entity tables.
This relationship requires a table of its own. For example, you decided that a
name can have multiple fax numbers and a fax number can serve multiple
names. You must add such a relationship to the model as a two-column table.
Each column is a foreign key to one of the entities involved.

The primary key comprises both columns. Since the columns are part of the
primary key, nulls are not allowed. The NN flag is specified anyway to
emphasize the point.

The entire model so far is shown in Figure 8-1. Look for all the relationships
from the matrix.

Name Fax

NameString FaxNumber

 PK UA PK UA

Gaius C. Caesar 926-6741
SPQR, S.A. 61-62-435-143

NameFax

 NameString FaxNumber

 PK FK NN PK FK NN

Gaius C. Caesar 926-6741
SPQR, S.A. 61-62-435-143
8-20 Building a Data Model

Step 2: Define the Relationships
Figure 8-8 The data model with relationships between entities defined

Name

NameString AddressCode

 PK FK

Gaius C. Caesar 1001
SPQR, S.A. 1020

Address

AddressCode

 PK SA

1001
1020

Voice

VceNumber

 PK UA

1-800-274-8184
011-49-89-922-030

Fax

FaxNumber AddressCode VceNumber

 PK UA FK FK

926-6741 1001 926-6300
61-62-435-143 1020 (null)

NameFax NameVce

NameString FaxNumber NameString VceNumber

 PK FK PK FK PK FK PK FK

Gaius C. Caesar 926-6741 Gaius C. Caesar 1-800-274-8184
SPQR, S.A. 61-62-435-143 SPQR, S.A. 011-49-89-922-030

Modem

MdmNumber NameString VceNumber AddressCode

 PK UA FK NN FK FK

416-566-7024 Nite Owl BBS 926-6300 1001
33 1 42 70 67 74 CompuServe (null) 1020
Building a Data Model 8-21

Step 3: List the Attributes
Step 3: List the Attributes
When all entities and relationships are found, the model contains all the
tables it can have. However, entities have attributes, that is, characteristics,
qualities, amounts, or features. These attributes are added to the model as
new columns.

Select Attributes
In selecting attributes, choose ones that have the following qualities:

• They are significant.

Include only attributes that are important to the users of the database.

• They are direct, not derived.

An attribute that can be derived from existing attributes—for instance,
through an expression in a SELECT statement—should not be made part
of the model. The presence of derived data greatly complicates the main-
tenance of a database.

At a later stage of the design (discussed in Chapter 10), you can consider
adding derived attributes to improve performance, but at this stage you
should exclude them.

Select Attribute Tables
You also must be sure to place each attribute in the correct table. An attribute
can be part of a table only if its value depends solely on the values of the
primary- and candidate-key columns of that table.

To say that the value of an attribute depends on a column means that, if the
value in the column changes, the value of the attribute must also change. The
attribute is a function of the column. The following explanations make this
more specific:

• If the table has a one-column primary key, the attribute must depend on
that key.

• If the table has a composite primary key, the attribute must depend on the
values in all of its columns taken as a whole, not on just one or some of
them.

• If the attribute also depends on other columns, these must be columns of
a candidate key, that is, columns that are unique in every row.
8-22 Building a Data Model

Step 3: List the Attributes
When you follow these rules, the tables of the model are in what E.F. Codd,
the inventor of relational databases, calls third-normal form. When tables are
not in third-normal form, there is either redundant data in the model or there
are problems when you attempt to update the tables.

If you cannot find a place for an attribute that observes these rules, then most
likely you have made one of these errors:

• The attribute is not well-defined.

• The attribute is derived, not direct.

• The attribute is really an entity or a relationship.

• Some entity or relationship is missing from the model.

The following attributes were added to the address-book model to produce
the tables shown in Figure 8-1 at the start of this chapter:

• Street, city, state or province, and postal code were added to the address
entity.

• Birth date was added to the name entity.

• Type was added to the voice entity to distinguish car phones, home
phones, and office phones.

• The hours a fax machine is attended was added to the fax entity.

• Whether a modem supports 300, 1200, or 2400 baud rates was added to
the modem entity.
Building a Data Model 8-23

Summary
Summary
This chapter summarized and illustrated the following three principle steps
of data modeling, as prescribed by Extended Relational Analysis:

1. List the entities that are to be recorded, making sure that they are

• Significant

• Generic

• Fundamental

• Unitary

Then, identify their primary keys and document each entity as a table.

2. Exhaustively list the relationship between each pair of entities, classifying
it as

• None, no relationship

• One-to-one

• One-to-many

• Many-to-many

Then, record each relationship by adding columns to the entity tables or,
for many-to-many relationships, by adding new, two-column tables.

3. Record important attributes of entities or relationships by adding new
columns to the tables.

When the process is done right, you are forced to examine every aspect of the
data not once, but several times.
8-24 Building a Data Model

Chapter
9

Implementing the
Model
Chapter Overview 3

Defining the Domains 3
Data Types 4

Choosing a Data Type 4
Numeric Types 7
Chronological Types 12
Character Types 15
Changing the Data Type 19

Default Values 20
Check Constraints 20
Specifying Domains 21

Creating the Database 23
Using CREATE DATABASE 23

Using CREATE DATABASE with IBM Informix
OnLine 23

Using CREATE DATABASE with Other
IBM Informix Database Servers 25

Using CREATE TABLE 26
Using Command Scripts 28

Capturing the Schema 28
Executing the File 28
An Example 28

Populating the Tables 29

Summary 30

9-2 Implementing the Model

Chapter Overview
Once a data model is prepared, it must be implemented as a database and
tables. This chapter covers the decisions that you must make to implement
the model.

The first step in implementation is to complete the data model by defining a
domain, or set of data values, for every column. The second step is to imple-
ment the model using SQL statements.

The first section of the chapter covers defining domains in detail. The second
section shows how you create the database (using the CREATE DATABASE
and CREATE TABLE commands) and populate it with data.

Defining the Domains
To complete the data model described in Chapter 8 of this book, you must
define a domain for each column. The domain of a column is the set of all data
values that can properly appear in that column.

The purpose of a domain is to guard the semantic integrity of the data in the
model, that is, to ensure that it reflects reality in a sensible way. If a name can
be entered where a telephone number was planned, or a fractional number
where an integer should be, the integrity of the data model is at risk.

You define a domain by first defining the constraints that a data value must
satisfy before it can be part of the domain. Column domains are specified
using the following constraints:

• Data types

• Default values

• Check constraints

In addition, referential constraints can be placed on columns by identifying
the primary and foreign keys in each table. How to identify these keys was
discussed in Chapter 8 of this manual.
Implementing the Model 9-3

Defining the Domains
Data Types
The first constraint on any column is the one that is implicit in the data type
for the column. When you choose a data type, you constrain the column so
that it contains only values that can be represented by that type.

Each data type represents certain kinds of information and not others. The
correct data type for a column is the one that represents all the data values
that are proper for that column, but as few as possible of the values that are
not proper for it.

Choosing a Data Type

Every column in a table must have a data type chosen from the types that the
database server supports. The choice of data type is important for several
reasons:

• It establishes the basic domain of the column, that is, the set of valid data
items the column can store.

• It determines the kinds of operations you can perform on the data. For
example, you cannot apply aggregate functions, such as SUM, to columns
with a character data type.

• It determines how much space each data item occupies on disk. This is
not important for small tables, but if a table has tens of thousands or hun-
dreds of thousands of rows, the difference between a 4-byte and an 8-byte
type can be crucial.

The decision tree shown in Figure 9-1 summarizes the choices among data
types. They are explained in the following sections.
9-4 Implementing the Model

Defining the Domains
Figure 9-1 A diagram of the decisions to be made in choosing a data type (1 of 2)

Data items purely
numeric?

yes

no

Numbers all integral? yes

no

All numbers between
-215 and 215-1?

yes

no

All numbers between
-231 and 231-1?

yes

no

SMALLINT

INTEGER

DECIMAL(p,0)

Number of fractional
digits is fixed?

yes

no

At most 8 significant
digits?

yes

no

At most 16 significant
digits?

yes

no

DECIMAL(p,s)

SMALLFLOAT

FLOAT

DECIMAL(p)
Implementing the Model 9-5

Defining the Domains
Figure 9-1 A diagram of the decisions to be made in choosing a data type (2 of 2)

Data is chronological? yes

no

Span of time, or specific
point in time?

span

point

Precise only to nearest
day?

yes

no

Data is ASCII
characters?

yes

no
No or little variance in
item lengths?

yes

no
Lengths under 32,511
bytes?

yes

no

Length exceeds 255
bytes?

yes

no

INTERVAL

DATETIME

DATE

TEXT

BYTE

VARCHAR(m,r)

CHAR(n)
9-6 Implementing the Model

Defining the Domains
Numeric Types

Informix database servers support eight numeric data types. Some are best
suited for counters and codes, some for engineering quantities, and some for
money.

Counters and Codes: INTEGER and SMALLINT

The INTEGER and SMALLINT data types hold small whole numbers. They are
suited for columns that contain counts, sequence numbers, numeric identity
codes, or any range of whole numbers when you know in advance the max-
imum and minimum values to be stored.

Both types are stored as signed binary integers. INTEGER values have 32 bits
and can represent whole numbers from −231 through 231–1; that is, from
–2,147,483,647 through 2,147,483,647. (The maximum negative number,
–2,147,483,248, is reserved and cannot be used.)

SMALLINT values have only 16 bits. They can represent whole numbers from
–32,767 through 32,767. (The maximum negative number, -32,768, is reserved
and cannot be used.)

These data types have two advantages:

• They take up little space (2 bytes per value for SMALLINT and 4 bytes per
value for INTEGER).

• Arithmetic expressions like SUM and MAX, and sort comparisons, can be
done very efficiently on them.

The disadvantage to using INTEGER and SMALLINT is the limited range of
values they can store. The database server does not store a value that exceeds
the capacity of an integer. Of course, this is not a problem when you know the
maximum and minimum values to be stored.

Automatic Sequences: SERIAL

The SERIAL data type is simply INTEGER with a special feature. Whenever a
new row is inserted into a table, the database server automatically generates
a new value for a SERIAL column. A table can have only one SERIAL column.
Because the database server generates them, the serial values in new rows are
Implementing the Model 9-7

Defining the Domains
always different even when multiple users are adding rows at the same time.
This is a useful service, since it is quite difficult for an ordinary program to
coin unique numeric codes under those conditions.

The sequence of generated numbers always increases. When rows are
deleted from the table their serial numbers are not reused. This means that
rows sorted on a SERIAL column are returned in the order in which they were
created. That cannot be said of any other data type.

You can specify the initial value in a SERIAL column in the CREATE TABLE
statement. This makes it possible to generate different subsequences of
system-assigned keys in different tables. The stores5 database uses this tech-
nique. In stores5, the customer numbers begin at 101, while the order num-
bers start at 1001. As long as this small business does not register more than
899 customers, all customer numbers have three digits and order numbers
have four.

A SERIAL column is not automatically a unique column. If you want to be
perfectly sure there are no duplicate serial numbers, you must apply a unique
constraint (see “Using CREATE TABLE” on page 9-26). However, if you
define the table using the interactive schema editor of DB-Access or
IBM Informix SQL, it automatically applies a unique constraint to any SERIAL
column.

The SERIAL data type has the following advantages:

• It provides a convenient way to generate system-assigned keys.

• It produces unique numeric codes even when multiple users are updating
the table.

• Different tables can use different ranges of numbers.

How Many Serialized Rows?

After inserting 231 rows in a table, the database server uses up all of the
positive serial numbers. Should you be concerned about this? Probably
not, since to make this happen you need to insert a row every second for
68 years. However, if it did occur, the database server would continue gen-
erating new numbers. It would treat the next-serial quantity as a signed
integer. Since it only uses positive values, it would simply wrap around
and start generating integer values beginning with 1.
9-8 Implementing the Model

Defining the Domains
It has the following disadvantages:

• Only one SERIAL column is permitted in a table.

• It can produce only arbitrary numbers (then again, arbitrary numeric
codes might not be acceptable to the database users).

Approximate Numbers: FLOAT and SMALLFLOAT

In scientific, engineering, and statistical applications, numbers are often
known to only a few digits of accuracy and the magnitude of a number is as
important as its exact digits.

The floating-point data types are designed for these applications. They can
represent any numerical quantity, fractional or whole, over a wide range of
magnitudes from the cosmic to the microscopic. For example, they can easily
represent both the average distance from the Earth to the Sun (1.5 × 109

meters) or Planck’s constant (6.625 × 10-27). Their only restriction is their lim-
ited precision. Floating-point numbers retain only the most significant digits
of their value. If a value has no more digits than a floating-point number can
store, the value is stored exactly. If it has more digits, it is stored in approxi-
mate form, with its least-significant digits treated as zeros.

This lack of exactitude is fine for many uses, but you should never use a
floating-point data type to record money, or any other quantity for which it
is an error to change the least significant digits to zero.

There are two sizes of floating-point data types. The FLOAT type is a double-
precision, binary floating-point number as implemented in the C language on
your computer. One usually takes up 8 bytes. The SMALLFLOAT (also known
as REAL) type is a single-precision, binary floating-point number that usually
takes up 4 bytes. The main difference between the two data types is their pre-
cision. A FLOAT column retains about 16 digits of its values, while a SMALL-
FLOAT column retains only about 8 digits.

Altering the Next SERIAL Number

The starting value for a SERIAL column is set when the column is created
(see “Using CREATE TABLE” on page 9-26). You can use the ALTER
TABLE command later to reset the next value, the value that is used for the
next-inserted row.

You cannot set the next value below the current maximum value in the col-
umn because that could lead the database server to generate duplicate
numbers. However, you can set the next value to any value higher than the
current maximum, thus creating gaps in the sequence.
Implementing the Model 9-9

Defining the Domains
Floating-point numbers have the following advantages:

• They store very large and very small numbers, including fractional ones.

• They represent numbers compactly in 4 or 8 bytes.

• Arithmetic functions such as AVG and MIN, and sort comparisons, are
efficient on these data types.

The main disadvantage of floating point numbers is that digits outside their
range of precision are treated as zeros.

Adjustable-Precision Floating Point: DECIMAL(p)

The DECIMAL(p) data type is a floating-point type similar to FLOAT and
SMALLFLOAT. The important difference is that you specify how many signif-
icant digits it retains. The precision you write as p may range from 1 to 32,
from fewer than SMALLFLOAT up to twice the precision of FLOAT.

The magnitude of a DECIMAL(p) number ranges from 10-128 to 10126.

It is easy to be confused about decimal data types. The one under discussion
is DECIMAL(p); that is, DECIMAL with only a precision specified. The size of
DECIMAL(p) numbers depends on their precision; they occupy 1+p/2 bytes
(rounded up to a whole number, if necessary).

DECIMAL(p) has the following advantages over FLOAT:

• Precision can be set to suit the application, from highly approximate to
highly precise.

• Numbers with as many as 32 digits can be represented exactly.

• Storage is used in proportion to the precision of the number.

• Every Informix database server supports the same precision and range of
magnitudes regardless of the host operating system.

The DECIMAL(p) data type has the following disadvantages:

• Arithmetic and sorting are somewhat slower than on FLOAT numbers.

• Many programming languages do not support the DECIMAL(p) data for-
mat the way they support FLOAT and INTEGER. When a program extracts
a DECIMAL(p) value from the database, it may have to convert the value
to another format for processing. (However, IBM Informix 4GL programs
can use DECIMAL(p) values directly.)
9-10 Implementing the Model

Defining the Domains
Fixed-Point Numbers: DECIMAL and MONEY

Most commercial applications need to store numbers that have fixed num-
bers of digits on the right and left of the decimal point. Amounts of money
are the most common examples. Amounts in U.S. and other currencies are
written with two digits to the right of the decimal point. Normally, you also
know the number of digits needed on the left, depending on whose transac-
tions are recorded—perhaps 5 digits for a personal budget, 7 for a small busi-
ness, and 12 or 13 for a national budget.

These numbers are fixed-point numbers because the decimal point is fixed at
a specific place regardless of the value of the number. The DECIMAL(p,s) data
type is designed to hold them. When you specify a column of this type, you
write its precision (p) as the total number of digits it can store, from 1 to 32.
You write its scale (s) as the number of those digits that fall to the right of the
decimal point. (The relation between precision and scale is diagrammed in
Figure 9-2.) Scale can be zero, meaning it stores only whole numbers. When
this is done, DECIMAL(p,s) provides a way of storing integers of up to 32
digits.

Figure 9-2 The relation between precision and scale in a fixed-point number

Like the DECIMAL(p) data type, DECIMAL(p,s) takes up space in proportion
to its precision. One value occupies 1+p/2 bytes, rounded up to a whole
number of bytes.

The MONEY type is identical to DECIMAL(p,s), but with one extra feature.
Whenever the database server converts a MONEY value to characters for dis-
play, it automatically includes a currency symbol.

The advantages of DECIMAL(p,s) over INTEGER and FLOAT are that much
greater precision is available (up to 32 digits as compared to 10 for INTEGER
and 16 for FLOAT), while both the precision and the amount of storage
required can be adjusted to suit the application.

DECIMAL(8,3) 31964.535

scale: 3 digits

precision: 8 digits
Implementing the Model 9-11

Defining the Domains
The disadvantages are that arithmetic is less efficient and that many pro-
gramming languages do not support numbers in this form. Therefore, when
a program extracts a number, it usually must convert it to another numeric
form for processing. (However, IBM Informix 4GL programs can use
DECIMAL(p,s) and MONEY values directly.)

Chronological Types

Informix database servers support three data types for recording time. The
DATE data type stores a calendar date. DATETIME records a point in time to
any degree of precision from a year to a fraction of a second. The INTERVAL
data type stores a span of time; that is, a duration.

Calendar Dates: DATE

The DATE data type stores a calendar date. A DATE value is actually a signed
integer whose contents are interpreted as a count of full days since midnight
on December 31, 1899. Most often it holds a positive count of days into the
current century.

The DATE format has ample precision to carry dates into the far future (58,000
centuries). Negative DATE values are interpreted as counts of days prior to
the epoch date; that is, a DATE of -1 represents the day December 30, 1899.

Since DATE values are integers, Informix database servers permit them to be
used in arithmetic expressions. For example, you can take the average of a
DATE column, or you can add 7 or 365 to a DATE column. In addition, there
is a rich set of functions specifically for manipulating DATE values. (See
Chapter 7 of IBM Informix Guide to SQL: Reference.)

Whose Money? Choosing a Currency Format

Each nation has its own way of punctuating amounts of money. When an
Informix database server displays a MONEY value, it refers to a currency
format defined to the operating system, usually in a variable named
DBMONEY. A currency symbol can precede or follow the amount, and the
decimal delimiter can be set to a period, a comma, or another character.
For details, see Chapter 4 of IBM Informix Guide to SQL: Reference.
9-12 Implementing the Model

Defining the Domains
The DATE data type is compact at 4 bytes per item. Arithmetic functions and
comparisons execute quickly on a DATE column.

Exact Points in Time: DATETIME

The DATETIME data type stores any moment in time in the era beginning
1 A.D. In fact, DATETIME is really a family of 28 data types, each with a dif-
ferent precision. When you define a DATETIME column, you specify its preci-
sion. It may contain any sequence from the list year, month, day, hour, minute,
second, and fraction. Thus, you can define a DATETIME column that stores
only a year, or only a month and day, or a date and time that is exact to the
hour or even to the millisecond. The size of a DATETIME value ranges from 2
to 11 bytes depending on its precision, as shown in Figure 9-3.

The advantage of DATETIME is that it can store dates more precisely than to
the nearest day, and it can store time values. Its only disadvantage is an
inflexible display format, but this can be circumvented (see “Forcing the
Format of a DATETIME or INTERVAL Value” on page 9-15).

Precision Size* Precision Size*
year to year 3 day to hour 3
year to month 4 day to minute 4
year to day 5 day to second 5
year to hour 6 day to fraction(f) 5+f/2
year to minute 7 hour to hour 2
year to second 8 hour to minute 3
year to fraction (f) 8+f/2 hour to second 4
month to month 2 hour to fraction(f) 4+f/2
month to day 3 minute to minute 2
month to hour 4 minute to second 3
month to minute 5 minute to fraction(f) 3+f/2
month to second 6 second to second 2
month to fraction(f) 6+f/2 second to fraction(f) 2+f/2
day to day 2 fraction to fraction(f) 1+f/2

* When f is odd, round the size to the next full byte.

Figure 9-3 All possible precisions of the DATETIME data type, with their sizes in bytes

M/D/Y? D-M-Y? Choosing a Date Format

There are many ways to punctuate and order the components of a date.
When an Informix database server displays a DATE value, it refers to a for-
mat defined to the operating system, usually in a variable named
DBDATE. The numbers for day, month, and year can be shown in any
order, separated by a chosen delimiter. For more information, see
Chapter 4 of IBM Informix Guide to SQL: Reference.
Implementing the Model 9-13

Defining the Domains
Durations: INTERVAL

The INTERVAL data type stores a duration, that is, a length of time. The dif-
ference between two DATETIME values is an INTERVAL that represents the
span of time that separates them. Here are some examples that might help to
clarify the differences:

• An employee began working here on May 21, 1991 (either a DATE or a
DATETIME).

• She worked here 254 days (an INTERVAL, the difference between the
TODAY function and the starting DATE or DATETIME).

• She begins work each day at 0900 hours (a DATETIME).

• She works 8 hours (an INTERVAL) with 45 minutes for lunch (another
INTERVAL).

• Her quitting time is 1745 hours (the sum of the DATETIME when she
begins work and the two INTERVALs).

Like DATETIME, INTERVAL is a family of types with different precisions. An
INTERVAL can represent a count of years and months; or it can represent a
count of days, hours, minutes, seconds, or fractions of seconds: 18 possible
precisions in all. The size of an INTERVAL value ranges from 2 to 8 bytes, as
shown in Figure 9-4.

Precision Size* Precision Size*
year(p) to year 1+p/2 hour(p) to minute 2+p/2
year(p) to month 2+p/2 hour(p) to second 3+p/2
month(p) to month 1+p/2 hour(p) to fraction(f) 3+(p+f)/2
day(p) to day 1+p/2 minute(p) to minute 1+p/2
day(p) to hour 2+p/2 minute(p) to second 2+p/2
day(p) to minute 3+p/2 minute(p) to fraction(f) 2+(p+f)/2
day(p) to second 4+p/2 second(p) to second 1+p/2
day(p) to fraction(f) 4+(p+f)/2 second(p) to fraction(f) 1+(p+f)/2
hour(p) to hour 1+p/2 fraction to fraction(f) 1+f/2

* Round a fractional size to the next full byte.

Figure 9-4 All possible precisions of the INTERVAL data type, with their sizes in bytes

INTERVAL values can be negative as well as positive. You can add or subtract
them, and you can scale them by multiplying or dividing by a number. This
is not true of either DATE or DATETIME. It is reasonable to ask, “What is one-
half the number of days until April 23?” but it is not reasonable to ask, “What
is one-half of April 23?”
9-14 Implementing the Model

Defining the Domains
Character Types

All Informix database servers support the CHAR(n) data type. IBM Informix
OnLine supports three other data types that have special uses.

Character Data: CHAR(n)

The CHAR(n) data type contains a sequence of n ASCII characters. The length
n ranges from 1 to 32,511.

Forcing the Format of a DATETIME or INTERVAL Value

The database server always displays the components of an INTERVAL or
DATETIME value in the order year-month-day hour:minute:second.fraction. It
does not refer to the date format defined to the operating system, as it
does when formatting a DATE.

You can write a SELECT statement that displays the date part of a
DATETIME value in the system-defined format. The trick is to isolate the
component fields using the EXTEND function and pass them through the
MDY() function, which converts them to a DATE. Here is a partial
example:

SELECT ... MDY (
EXTEND (DATE_RECEIVED, MONTH TO
 MONTH),
EXTEND (DATE_RECEIVED, DAY TO DAY),
EXTEND (DATE_RECEIVED, YEAR TO YEAR))
FROM RECEIPTS ...

When you are designing a report using IBM Informix 4GL or IBM Informix
SQL, you have the greater flexibility of the PRINT statement. Select each
component of a DATETIME or INTERVAL value as an expression using
EXTEND. Give each expression an alias for convenience. Combine the
components in a PRINT expression with the desired punctuation.

SELECT ...
EXTEND (START_TIME, HOUR TO HOUR) H,
EXTEND (START_TIME, MINUTE TO MINUTE) M, ...

Then, in the report:

PRINT "Start work at ", H USING "&&", M USING "&&", "hours."
Implementing the Model 9-15

Defining the Domains
Whenever a CHAR(n) value is retrieved or stored, exactly n bytes are trans-
ferred. If an inserted value is short, it is extended with spaces to make up n
bytes. A value longer than n is truncated. There is no provision for variable-
length data in this format.

A CHAR(n) value can include tabs and spaces but normally contains no other
nonprinting characters. When rows are inserted using INSERT or UPDATE, or
when rows are loaded with a utility program, there is no means of entering
nonprintable characters. However, when rows are created by a program
using embedded SQL, the program can insert any character except the null
(binary zero) character. It is not a good idea to store nonprintable characters
in a character column since standard programs and utilities do not expect
them.

The advantage of the CHAR(n) data type is that it is available on all database
servers. Its only disadvantage is that its length is fixed. When the length of
data values varies widely from row to row, space is wasted.

Variable-Length Strings: VARCHAR(m,r)

Often the items in a character column have differing lengths; that is, many
have an average length and only a few have the maximum length. The
VARCHAR(m,r) data type is designed to save disk space when storing such
data. A column defined as VARCHAR(m,r) is used just like one defined as
CHAR(n). When you define a VARCHAR(m,r) column, you specify m as the
maximum length of a data item. Only the actual contents of each item are
stored on disk, with a one-byte length field. The limit on m is 255; that is, a
VARCHAR(m,r) value can store up to 255 characters. If the column is indexed,
the limit on m is 254.

The second parameter, r, is an optional reserve length that sets a lower limit
on the length of an item as stored on disk. When an item is shorter than r,
r bytes are nevertheless allocated to hold it. The purpose is to save time when
rows are updated. (See “Variable-Length Execution Time, Too” on page
9-17.)

The advantages of the VARCHAR(m,r) data type over the CHAR(n) type are as
follows:

• It conserves disk space when the lengths of data items vary widely, or
when only a few items are longer than average.

• Queries on the more compact tables can be faster.
9-16 Implementing the Model

Defining the Domains
 Its disadvantages are as follows:

• It does not allow lengths that exceed 255 characters.

• Updates of a table can be slower in some circumstances.

• It is not available with all Informix database servers.

Variable-Length Execution Time, Too

When the VARCHAR(m,r) data type is used, the rows of a table have vary-
ing lengths instead of fixed lengths. This has mixed effects on the speed of
database operations.

Since more rows fit in a disk page, the database server can search the table
using fewer disk operations than if the rows were of fixed length. As a
result, queries can execute more quickly. Insert and delete operations can
be a little quicker for the same reason.

When you update a row, the amount of work the database server must do
depends on the length of the new row as compared to the old one. If the
new row is the same size or shorter, execution time is not significantly dif-
ferent than it is with fixed-length rows. But if the new row is longer than
the old one, the database server might have to perform several times as
many disk operations. Thus, updates of a table that uses VARCHAR(m,r)
data can sometimes be slower than updates of a fixed-length field.

You can mitigate this effect by specifying r as a size that covers a high pro-
portion of the data items. Then, most rows use the reserve length; only a
little space is wasted in padding, and updates are only slow when a nor-
mal value is replaced with one of the rare, longer ones.
Implementing the Model 9-17

Defining the Domains
Large Character Objects: TEXT

The TEXT data type stores a block of text. It is designed to store self-contained
documents: business forms, program source or data files, or memos.
Although you can store any data at all in a TEXT item, IBM Informix tools
expect that a TEXT item is printable, so this data type should be restricted to
printable ASCII text.

TEXT values are not stored with the rows of which they are a part. They are
allocated in whole disk pages, usually areas away from rows. (See “Locating
Blob Data” on page 10-19.)

How Blobs Are Used

Collectively, columns of type TEXT and BYTE are called Binary Large
Objects, or blobs. The database server only stores and retrieves them. Nor-
mally, blob values are fetched and stored by programs written using
IBM Informix 4GL or a language that supports embedded SQL, such as
IBM Informix ESQL/C. In such a program you can fetch, insert, or update
a blob value in a manner similar to the way you read or write a sequential
file.

In any SQL statement, interactive or programmed, a blob column cannot be
used in the following ways:

• In arithmetic or Boolean expressions

• In a GROUP BY or ORDER BY clause

• In a UNIQUE test

• For indexing, either by itself or as part of a composite index

In a SELECT statement entered interactively, or in a form or report, a blob
can only

• Be selected by name, optionally with a subscript to extract part of it

• Have its length returned by selecting LENGTH(column)

• Be tested with the IS [NOT] NULL predicate

In an interactive INSERT statement, you can use the VALUES clause to
insert a blob value, but the only value you can give that column is null.
However, you can use the SELECT form of the INSERT statement to copy a
blob value from another table.

In an interactive UPDATE statement, you can update a blob column to null
or to a subquery returning a blob column.
9-18 Implementing the Model

Defining the Domains
The advantage of the TEXT data type over CHAR(n) and VARCHAR(m,r) is that
the size of a TEXT data item has no limit except the capacity of disk storage to
hold it. The disadvantages of the TEXT data type are as follows:

• It is allocated in whole disk pages; a short item wastes space.

• There are restrictions on how you can use a TEXT column in an SQL state-
ment. (See “How Blobs Are Used” on page 9-18.)

• It is not available with all Informix database servers.

You can display TEXT values in reports generated with IBM Informix 4GL pro-
grams or the ACE report writer. You can display TEXT values on a screen and
edit them using screen forms generated with IBM Informix 4GL programs or
with the PERFORM screen-form processor.

Binary Objects: BYTE

The BYTE data type is designed to hold any data a program can generate:
graphic images, program object files, and documents saved by any word pro-
cessor or spreadsheet. The database server permits any kind of data of any
length in a BYTE column.

Like TEXT, BYTE data items are stored in whole disk pages in separate disk
areas from normal row data.

The advantage of the BYTE data type, as opposed to TEXT or CHAR(n), is that
it accepts any data. Its disadvantages are the same as those of the TEXT data
type.

Changing the Data Type

You can use the ALTER TABLE command to change the data type assigned to
a column after the table is built. While this is sometimes necessary, you
should avoid it for the following reasons:

• To change a data type, the database server must copy and rebuild the
table. For large tables, that can take a lot of time and disk space.

• Some changes of data type can cause a loss of information. For example,
when you change a column from a longer to a shorter character type, long
values are truncated; when you change to a less-precise numeric type,
low-order digits are truncated.

• Existing programs, forms, reports, and stored queries also might have to
be changed.
Implementing the Model 9-19

Defining the Domains
Default Values
A default value is the value inserted into a column when an explicit value is
not specified. A default value can be a literal character string defined by you
or one of the following SQL null, constant expressions:

• USER

• CURRENT

• TODAY

• SITENAME

Not all columns need default values, but as you work with your data model
you may discover instances where the use of a default value saves data-entry
time or prevents data-entry error. For example, the address-book model has
a State column. While looking at the data for this column, you discover that
more than 50% of the addresses list California as the state. To save time, you
specify the string “California” as the default value for the State column.

Default values also come in handy when a column contains a flag. The
address-book model uses a flag (Y/N) to indicate whether a modem works at
300, 1200, or 2400 baud. You could specify a default value (“N”) for that col-
umn. Then you no longer need to enter a value for those modems that do not
work at certain baud rates.

Check Constraints
Check constraints specify a condition or requirement on a data value before
it can be a part of a domain. You can write a constraint in natural language,
like the previous examples. Or for greater precision, you also can write a con-
straint in the syntax of a WHERE clause. For example, the following require-
ment constrains the values of an integer domain to a certain range:

Customer_Number >= 50000 AND Customer_Number <= 99999

You can express constraints on character-based domains this way using the
MATCHES predicate and the regular-expression syntax it supports. For exam-
ple, the following constraint restricts the Telephone domain to the form of a
U.S. local telephone number:

VceNumber MATCHES "[2-9][2-9][0-9]-[0-9][0-9][0-9][0-9]"
9-20 Implementing the Model

Defining the Domains
However, constraints in this form can be tedious to write and hard to read.
Writing the rule in plain language is easier.

Specifying Domains
One domain can apply to many columns. In the address-book model, there
are several columns whose domain is telephone numbers. You only need to
specify the Telephone domain once.

The final step of creating a data model is to specify the domains needed in the
model. The result is a list of domains with the following columns:

• A name, for ease of reference

• The data type; for instance, INTEGER or CHAR(n).

• The additional rules that constrain data of this kind, written in either
WHERE-clause form or English.

One possible list of domains for the address-book data model is shown in
Figure 9-5.

Domain Data Type Other Constraints
Address code SERIAL 1000<code AND code <10000
Attendant hours DATETIME HOUR TO MINUTE
Birthday DATE birthday <= TODAY
City VARCHAR(40,10)
Name VARCHAR(50,20)
Postal code CHAR(10) only valid postal codes
State/province CHAR(5)
Street address VARCHAR(50,20)
Telephone CHAR(13) only valid phone numbers
True/false CHAR(1) Y = true, N = false,

DEFAULT = N
Voice phone type CHAR(10)

Figure 9-5 The domains needed to complete the address-book data model

When you complete the list, write the names of the domains under the col-
umns that use them in the display of the tables of the model. For instance, you
write the domain Telephone under six columns in five tables of the address-
book model. Figure 9-6 shows the complete model.
Implementing the Model 9-21

Defining the Domains
Figure 9-6 The address-book data model begun in Chapter 8, with domains added

Telephone Name Telephone Address code True/false

Name Telephone Name Telephone

Address code Street address City State/province Postal code

Name Address code Birthday

Telephone Voice phone type

Telephone Address code Telephone Attendant hours

NameString AddressCode BirthDate

 PK UA FK

Gaius C. Caesar 1001 17-03-1990
SPQR, S.A. 1020 (null)

Address

AddressCode Street City StaProv Postcode

 PK SA

1001 2430 Tasso St. #8 St. Louis CA 83267-1048
1020 411 Bohannon Drive Lenaxa Abta. TW2 5AQ

Voice

VceNumber VceType

 PK UA

1-800-274-8184 home
011-49-89-922-030 car

Fax

FaxNumber AddressCode VceNumber OperFrom OperTill

 PK UA FK FK

926-6741 1001 926-6300 0800 0400
61-62-435-143 1020 (null) 1730 1900

NameFax NameVce

NameString FaxNumber NameString VceNumber

 PK FK PK FK PK FK PK FK

Gaius C. Caesar 926-6741 Gaius C. Caesar 1-800-274-8184
SPQR, S.A. 61-62-435-143 SPQR, S.A. 011-49-89-922-030

Modem

MdmNumber NameString VceNumber AddressCode B300 B1200 B2400

 PK UA FK NN FK FK

416-566-7024 Nite Owl BBS 926-6300 1001 Y Y N
33 1 42 70 67 74 CompuServe (null) 1020 Y Y Y
9-22 Implementing the Model

Creating the Database
Creating the Database
Now you are ready to create the data model as tables in a database. You do
this with the CREATE DATABASE, CREATE TABLE, and CREATE INDEX com-
mands. The syntax of these commands is shown in detail in IBM Informix
Guide to SQL: Reference. This section discusses the use of CREATE DATABASE
and CREATE TABLE in implementing a data model. The use of CREATE
INDEX is covered in the next chapter.

You might have to create the same model more than once. However, the com-
mands that create the model can be stored and executed automatically.

When the tables exist, you must populate them with rows of data. You can do
this manually, with a utility program, or with custom programming.

Using CREATE DATABASE
A database is a container that holds all the parts that go into a data model.
These parts include the tables, of course, but also the views, indexes, and syn-
onyms. You must create a database before you can create anything else.
Besides creating the database, the CREATE DATABASE command establishes
the kind of transaction logging to be used. Transaction logging is discussed
in Chapter 7.

The IBM Informix OnLine database server differs from other database servers
in the way that it creates databases and tables. IBM Informix OnLine is cov-
ered first.

Using CREATE DATABASE with IBM Informix OnLine

When the IBM Informix OnLine database server creates a database, it sets up
records that show the existence of the database and its mode of logging. It
manages disk space directly, so these records are not visible to operating
system commands.

Avoiding Name Conflicts

Normally, only one copy of IBM Informix OnLine is running on a machine,
and it manages the databases that belong to all users of that machine. It keeps
only one list of database names. The name of your database must be different
from that of any other database managed by that database server. (It is possi-
ble to run more than one copy of the database server. This is sometimes done,
for example, to create a safe environment for testing apart from the opera-
tional data. In that case, you must be sure you are using the correct database
server when you create the database, and again when you later access it.)
Implementing the Model 9-23

Creating the Database
Selecting a Dbspace

IBM Informix OnLine offers you the option of creating the database in a par-
ticular dbspace. A dbspace is a named area of disk storage. Ask your
IBM Informix OnLine administrator whether you should use a particular
dbspace. The administrator can put a database in a dbspace to isolate it from
other databases, or to locate it on a particular disk device. (Chapter 10 dis-
cusses dbspaces and their relationship to disk devices.)

Some dbspaces are mirrored (duplicated on two different disk devices for high
reliability); your database can be put in a mirrored dbspace if its contents are
of exceptional importance.

Choosing the Type of Logging

IBM Informix OnLine offers the following four choices for transaction log-
ging:

• No logging at all. This choice is not recommended; if the database is lost
to a hardware failure, all data alterations since the last archive are lost.

CREATE DATABASE db_with_no_log

When you do not choose logging, BEGIN WORK and other SQL statements
related to transaction processing are not permitted in the database. This
affects the logic of programs that use the database.

• Regular (unbuffered) logging. This is the best choice for most databases.
In the event of a failure, only uncommitted transactions are lost.

CREATE DATABASE a_logged_db WITH LOG

• Buffered logging. If the database is lost, a few of the most recent alter-
ations are lost, or possibly none. In return for this small risk, performance
during alterations is slightly improved.

CREATE DATABASE buf_log_db WITH BUFFERED LOG

Buffered logging is best for databases that are updated frequently (so that
speed of updating is important), but the updates can be re-created from
other data in the event of a crash. You can use the SET LOG statement to
alternate between buffered and regular logging.
9-24 Implementing the Model

Creating the Database
• ANSI-compliant logging. This is the same as regular logging, but the
ANSI rules for transaction processing are also enforced. (See the discus-
sion of ANSI SQL in Chapter 1.)

CREATE DATABASE std_rules_db WITH LOG MODE ANSI

The design of ANSI SQL prohibits the use of buffered logging.

The IBM Informix OnLine administrator can turn transaction logging on and
off later. For example, it can be turned off before inserting a large number of
new rows.

Using CREATE DATABASE with Other IBM Informix Database Servers

Other Informix database servers create a database as a set of one or more files
managed by the operating system. For example, under the UNIX operating
system, a database is a small group of files in a directory whose name is the
database name. (See the manual for your database server for details on how
it uses files.) This means that the rules for database names are the same as the
rules the operating system has for file names.

Choosing the Type of Logging

Other database servers offer the following three choices of logging:

• No logging at all. This choice is not recommended; if the database is lost
to a hardware failure, all data alterations since the last archive are lost.

CREATE DATABASE not_logged_db

When you do not choose logging, BEGIN WORK and other SQL statements
related to transaction processing are not permitted in the database. This
affects the logic of programs that use the database.

• Regular logging. This is the best choice for most databases. If the database
is lost, only the alteration in progress at the time of failure is lost.

CREATE DATABASE a_logged_db WITH LOG IN "a-log-file"

You must specify a file to contain the transaction log. (The form of the file
name depends on the rules of your operating system.) This file grows
whenever the database is altered. Whenever the database files are
Implementing the Model 9-25

Creating the Database
archived, you should set the log file back to an empty condition so it
reflects only transactions following the latest archive.

• ANSI-compliant logging. This is the same as regular logging, but the ANSI
rules for transaction processing are also enabled. (See the discussion of
ANSI-compliant databases in Chapter 1.)

CREATE DATABASE std_rules_db WITH LOG IN "a-log-file" MODE
ANSI

You can add a transaction log to a nonlogged database later using the START
DATABASE statement. Once you apply logging you cannot remove it. (Only
IBM Informix OnLine allows logging to be turned on and off.)

Using CREATE TABLE
Use the CREATE TABLE statement to create each table you designed in the
data model. This statement has a complicated form, but it is basically a list of
the columns of the table. For each column, you supply the following
information:

• The name of the column

• The data type (from the domain list you made)

• If the column (or columns) is a primary key, the constraint PRIMARY KEY

• If the column (or columns) is a foreign key, the constraint FOREIGN KEY

• If the column is not a primary key and should not allow nulls, the con-
straint NOT NULL

• If the column is not a primary key and should not allow duplicates, the
constraint UNIQUE

• If the column has a default value, the constraint DEFAULT

• If the column has a check constraint, the constraint CHECK
9-26 Implementing the Model

Creating the Database
In short, the CREATE TABLE statement is an image in words of the table as
you drew it in the data model diagram. Figure 9-7 shows the statements for
the address-book model whose diagram is shown in Figure 9-6 on page 9-22.

CREATE TABLE NAME
(
NameString VARCHAR(50,20) PRIMARY KEY,
AddressCode INTEGER,
BirthDate DATE
FOREIGN KEY (AddressCode) REFERENCES ADDRESS (AddressCode)
);

CREATE TABLE ADDRESS
(
AddressCode SERIAL(1000) PRIMARY KEY,
Street VARCHAR(50,20),
City VARCHAR(40,10),
StaProv CHAR(5),
PostCode CHAR(10)
);

CREATE TABLE VOICE
(
VceNumber CHAR(13) PRIMARY KEY,
VceType CHAR(10)
);

CREATE TABLE FAX
(
FaxNumber CHAR(13) PRIMARY KEY,
AddressCode INTEGER,
VceNumber CHAR(13),
OperFrom DATETIME HOUR TO MINUTE,
OperTill DATETIME HOUR TO MINUTE
FOREIGN KEY (AddressCode) REFERENCES ADDRESS (AddressCode),
FOREIGN KEY (VceNumber) REFERENCES VOICE (VceNumber)
);

CREATE TABLE NAMEVCE
(
NameString VARCHAR(50,20),
VceNumber CHAR(13),
PRIMARY KEY (NameString, VceNumber),
FOREIGN KEY (NameString) REFERENCES NAME (NameString),
FOREIGN KEY (VceNumber) REFERENCES VOICE (VceNumber)
);

CREATE TABLE NAMEFAX
(
NameString VARCHAR(50,20),
FaxNumber CHAR(13),
PRIMARY KEY (NameString, FaxNumber),
FOREIGN KEY (NameString) REFERENCES NAME (NameString),
FOREIGN KEY (FaxNumber) REFERENCES FAX (FaxNumber)
);

CREATE TABLE MODEM
(
MdmNumber CHAR(13) PRIMARY KEY,
NameString VARCHAR(50,20) NOT NULL,
VceNumber CHAR(13),
AddressCode INTEGER,
B300 CHAR(1) DEFAULT "N",
B1200 CHAR(1) DEFAULT "N",
B2400 CHAR(1) DEFAULT "N",
FOREIGN KEY (NameString) REFERENCES NAME (NameString),
FOREIGN KEY (VceNumber) REFERENCES VOICE (VceNumber),
FOREIGN KEY (AddressCode) REFERENCES ADDRESS (AddressCode)
);

Figure 9-7 The CREATE TABLE statements for the address-book data model
Implementing the Model 9-27

Creating the Database
Using Command Scripts
You can create the database and tables by entering the statements interac-
tively. But what if you have to do it again, or several more times?

You might have to do it again to make a production version after a test ver-
sion is satisfactory. Or you might have to implement the same data model on
several machines. To save time and reduce the chance of errors, you can put
all the commands to create a database in a file, and execute them
automatically.

Capturing the Schema

You can write the statements to implement your model into a file yourself.
However, you can also have a program do it for you. See the manual for your
database server. It documents the dbschema utility, a program that examines
the contents of a database and generates all the SQL statements required to re-
create it. You can build the first version of your database interactively, mak-
ing changes until it is exactly as you want it. Then you can use dbschema to
generate the SQL statements necessary to duplicate it.

Executing the File

DB-Access or IBM Informix SQL, the programs you use to enter SQL state-
ments interactively, can be driven from a file of commands. The use of these
products from the operating system command line is covered in the
DB-Access or IBM Informix SQL manuals. You can start DB-Access or
IBM Informix SQL and have them read and execute a file of commands pre-
pared by you or by dbschema.

An Example

Most IBM Informix products are delivered with a demonstration database
called stores5 (the one used for most of the examples in this book). The
stores5 database is delivered as an operating system command script that
calls IBM Informix products to build the database. You can copy this com-
mand script and use it as the basis for automating your own data model.
9-28 Implementing the Model

Creating the Database
Populating the Tables
For your initial tests, it is easiest to populate the tables interactively by typing
INSERT statements to DB-Access or IBM Informix SQL. Or, if you are preparing
an application program in IBM Informix 4GL or another language, you can
use the program to enter rows.

Often, the initial rows of a large table can be derived from data held in tables
in another database or in operating system files. You can move the data into
your new database in a bulk operation. If the data is in another IBM Informix
database, you can retrieve it in several ways.

If you are using IBM Informix OnLine, you can simply select the data you
want from the other database as part of an INSERT statement in your data-
base. With other database servers, you must export the data to a file. You can
use the UNLOAD command of DB-Access, IBM Informix SQL, or IBM Informix
4GL, or you can write a report in ACE or IBM Informix 4GL and direct the out-
put to a file.

When the source is another kind of file or database, you must find a way to
convert it into a flat ASCII file; that is, a file of printable data in which each
line represents the contents of one table row.

Once you have the data in a file, you can load it into a table using the dbload
utility. Read about dbload in the documentation for your database server.
The LOAD command of DB-Access, IBM Informix SQL, or IBM Informix 4GL
can also load rows from a flat ASCII file.

Inserting hundreds or thousands of rows goes much faster if you turn off
transaction logging. There is no point in logging these insertions anyway,
because in the event of a failure you can easily re-create the lost work. Here
are the steps of a large bulk-load operation:

• If there is any chance that other users are using the database, exclude
them with the DATABASE EXCLUSIVE statement.

• If you are using IBM Informix OnLine, ask the administrator to turn off
logging for the database.

The existing logs can be used to recover the database to its present state,
while the bulk insertion can be run again to recover those rows if they are
lost soon after.

• Perform the statements or run the utilities that load the tables with data.
Implementing the Model 9-29

Summary
• Archive the newly loaded database.

If you are using IBM Informix OnLine, either ask the administrator to per-
form a full or incremental archive, or else use the tbunload utility to make
a binary copy of your database only.

If you are using other database servers, use operating system commands
to back up the files that represent the database.

• Restore transaction logging and release the exclusive lock on the
database.

You can enclose the steps of populating a database in a script of operating
system commands. You can automate the IBM Informix OnLine administrator
commands by invoking the command-line equivalents to DB-Monitor.

Summary
This chapter covered the work you must do to implement a data model:

• Specify the domains, or constraints, that are used in the model, and com-
plete the model diagram by assigning constraints to each column.

• Use interactive SQL to create the database and the tables in it.

• If you must create the database again, write the SQL statements to do so
into a script of commands for the operating system.

• Populate the tables of the model, first using interactive SQL and then by
bulk operations.

• Possibly write the bulk-load operation into a command script so you can
repeat it easily.

You can now use and test your data model. If it contains very large tables, or
if you must protect parts of it from certain classes of users, there is more work
to do. That is the subject of the next chapter.
9-30 Implementing the Model

Chapter
10

Tuning the Model
Chapter Overview 3

IBM Informix OnLine Disk Storage 4
Chunks and Pages 4
Dbspaces and Blobspaces 5
Disk Mirroring 5
Databases 6
Tables and Spaces 6

Exploiting Mirroring 6
Sharing Temporary Space 6
Assigning Dedicated Hardware 7
Assigning Additional Access Arms to a Table 7

Tblspaces 8
Extents 8

Choosing Extent Sizes 9
Upper Limit on Extents 10

Defragmenting Tables 11

Calculating Table Sizes 13
Estimating Fixed-Length Rows 13
Estimating Variable-Length Rows 15
Estimating Index Pages 16
Estimating Blobpages 18
Locating Blob Data 19

Managing Indexes 20
Space Costs of Indexes 20
Time Costs of Indexes 21
Choosing Indexes 22

Join Columns 22
Selective Filter Columns in Large Tables 22
Order-By and Group-By Columns 23

Duplicate Keys Slow Index Modifications 23

Dropping Indexes 24
Clustered Indexes 25

Denormalizing 27
Shorter Rows for Faster Queries 27
Expelling Long Strings 27

Using VARCHAR Strings 27
Changing Long Strings to TEXT 28
Building a Symbol Table of Repeated Strings 28
Moving Strings to a Companion Table 29

Splitting Wide Tables 29
Division by Bulk 29
Division by Frequency of Use 29
Division by Frequency of Update 29
Costs of Companion Tables 30

Splitting Tall Tables 30
Redundant and Derived Data 31

Adding Derived Data 31
Adding Redundant Data 32

Maximizing Concurrency 33
Easing Contention 33
Rescheduling Modifications 33

Using an Update Journal 34
Isolating and Dispersing Updates 35

Splitting Tables to Isolate Volatile Columns 35
Dispersing Bottleneck Tables 35

Summary 36
10-2 Tuning the Model

Chapter Overview
The preceding chapters summarized the steps of creating and implementing
a data model that is theoretically sound. Normally, the resulting database
also yields adequate performance. If it does, the job is done.

However, some applications have more stringent performance requirements.
Some databases contain extremely large tables, others must be usable by
many programs concurrently or by programs that operate under tight
requirements for response time, and others must be extremely reliable.

You can tune your database design to meet such requirements. In some cases,
you might have to sacrifice theoretical correctness in the data model to get the
performance you need.

Before you make any changes, however, make sure that the queries are as effi-
cient as possible. Study Chapter 4, “Optimizing Your Queries,” to see what
you can do to improve performance without changing the data model.

The remainder of this chapter contains discussions on the following topics:

• The disk storage methods used by IBM Informix OnLine and their impli-
cations for performance and reliability

• The methods for calculating the sizes of tables and indexes, and using
those numbers to estimate query-execution time

• The benefits and costs of adding indexes

• The ways you can “denormalize” the data model, that is, spoil its theoret-
ical purity to improve performance

• Suggestions for increasing concurrency among multiple programs
Tuning the Model 10-3

IBM Informix OnLine Disk Storage
IBM Informix OnLine Disk Storage
IBM Informix OnLine manages disk storage directly. To the greatest extent
possible, it bypasses the host operating system and works with the raw disk
space. (The extent to which this is possible depends on the operating system.)

Figure 10-1 The relationship between chunks and dbspaces

Its methods of disk management are not complicated. However, several dif-
ferent terms are used for different amounts of space in different contexts: the
chunk, the dbspace (or blobspace), the page, the extent, and the tblspace.

Chunks and Pages
The basic unit of physical storage is the chunk. A chunk is a unit of disk stor-
age that is dedicated to IBM Informix OnLine. Usually it is a physical device,
that is, a disk drive. However, a chunk can be part of one disk, or simply a
file. In any case, a chunk is a unit of space that can be identified to the oper-
ating system as being in the exclusive control of IBM Informix OnLine.

The page is the basic unit of disk input/output (I/O). All space in every chunk
is divided into pages. All I/O is done in units of whole pages. The size of a
page is the same in all chunks used for tables. It is set when an IBM Informix
OnLine system is installed.

device 0x7f

device 0x7e

blobspace rasters

dbspace root

host file system

device 0x7c

device 0x7d

dbspace temps

dbspace large
10-4 Tuning the Model

IBM Informix OnLine Disk Storage
Dbspaces and Blobspaces
A space always comprises one or more complete chunks. Often a space con-
tains exactly one chunk, so that the space and the chunk are identical. How-
ever, when a space comprises more than one chunk, IBM Informix OnLine
makes the multiple chunks appear to be a single sequence of pages.

A space is either a dbspace or a blobspace, depending on its use. If a space con-
tains databases and tables, it is a dbspace. If it is dedicated to holding Binary
Large Objects (the blob data types TEXT and BYTE), it is a blobspace. Chunks
are assigned to a space when it is created. Chunks also can be added to a
space later.

One dbspace, the root dbspace, is the first created; it always exists. It is the
most important space because it holds the control information that describes
all other spaces and chunks.

Parts of a single database can appear in two or more dbspaces. However, a
single table is always completely contained in one dbspace.

Disk Mirroring
Individual spaces can be mirrored. The chunks of a mirrored space are paired
with other chunks of equal size. Whenever a page is written to one of the
chunks, it is also written to the mirror chunk. When one chunk suffers a hard-
ware failure, the database server uses its mirror to continue processing with-
out interruption. When the broken chunk is restored to service (or when a
substitute chunk is assigned), IBM Informix OnLine automatically brings it
back to equality with the working chunk and continues operations.

When any dbspaces are mirrored, the root dbspace also should be mirrored.
Otherwise, if it is lost to hardware failure, all IBM Informix OnLine data is
unusable regardless of mirrors.

If your database has extreme requirements for reliability in the face of hard-
ware failure, you should arrange for it to be placed in a mirrored dbspace. As
indicated in the following paragraphs, it is possible to locate individual
tables in particular dbspaces. Hence, you can place some tables in mirrored
spaces and other tables in normal spaces.
Tuning the Model 10-5

IBM Informix OnLine Disk Storage
Databases
A database resides initially in one dbspace. It is placed there by a parameter
of the CREATE DATABASE statement. The following example creates a data-
base in the dbspace named dev0x2d:

CREATE DATABASE reliable IN dev0x2d WITH BUFFERED LOG

When no dbspace is specified, a database is placed in the root dbspace. When
a database is in a dbspace it means only that

• Its system catalog tables are stored in that dbspace

• That dbspace is the default location for tables that are not explicitly
created in other dbspaces

Tables and Spaces
A table resides completely in one dbspace. (Its blob values can reside in sep-
arate blobspaces.) If no dbspace is specified, a table resides in the dbspace
where its database resides. The following partial example creates a table in
the dbspace named misctabs:

CREATE TABLE taxrates (…column specifications…) IN misctabs

You can achieve many different aims by placing a table in a specific dbspace.
Some of these aims are explored in the following paragraphs.

Exploiting Mirroring

Place all the tables used by a critically important application in a mirrored
dbspace. Alternatively, create the database in the mirrored dbspace and let
the important tables reside there by default. Tables that are part of the data-
base, but which are not used by the critical programs, can be located in non-
mirrored spaces.

Sharing Temporary Space

When databases are large and disk space is in short supply, the normal
dbspaces might not have enough room for those large temporary tables that
can be helpful in improving query performance. However, a temporary table
10-6 Tuning the Model

IBM Informix OnLine Disk Storage
only exists for the life of the program that creates it—even less time if the pro-
gram drops the table promptly. Set up a single dbspace for temporary tables.
It can be used repeatedly by many programs.

Assigning Dedicated Hardware

A dbspace can equal a chunk, and a chunk can equal a device. Thus, you can
place a table on a disk device that is dedicated to its use. When disk drives
have different performance levels, you can put the tables with the highest fre-
quency of use on the fastest drives.

By giving a high-use table a dedicated access arm, you can reduce contention
with applications that use other tables. This does not reduce contention
between programs using the same table unless the table itself is spread across
multiple devices, as suggested in the next paragraph.

Assigning Additional Access Arms to a Table

A dbspace can comprise multiple chunks, and each chunk can represent a
different disk. This permits you to assign multiple disk-access arms to one
table. Figure 10-2 shows an example in graphical terms.

Figure 10-2 A dbspace distributed over three disks

The dbspace named three_arms comprises chunks on three different disks.
Each chunk is approximately one-third the size of an important, heavily used
table. (The third chunk is larger to allow for growth.) When multiple pro-
grams query the table, their I/O operations are distributed over the three
disks, reducing contention for the use of the hardware.

In an arrangement like this, the multiple disks can act as mirrors for each
other. For example, device 0x21 can be mirrored on 0x27, 0x27 on 0x22, and
0x22 on 0x21. As long as any two devices are operational, the dbspace is

device 0x21 device 0x22device 0x27

dbspace three_arms
Tuning the Model 10-7

IBM Informix OnLine Disk Storage
usable. (However, if a single piece of hardware, such as a disk controller, is
common to all three disks, this type of mirror arrangement is still vulnerable
to failure of that component.)

Tblspaces
The total of all disk space allocated to a table is the tblspace of the table. The
tblspace includes pages allocated to data (rows of that table) and pages allo-
cated to indexes. It also includes pages used by blob columns that are located
in the tblspace, but not pages used by blob data in a separate blobspace. (This
choice is discussed under “Locating Blob Data” on page 10-19.)

The tblspace is an accounting entity only; it does not correspond to any par-
ticular part of a dbspace. The indexes and data extents that make up a table
can be scattered throughout the dbspace.

The tbcheck utility (with the -pt option) returns information on the status of
tblspaces, including the counts of pages allocated and in use for each one.
You can use this information to monitor the growth of a table over time.

Extents
As you add rows to a table, IBM Informix OnLine allocates disk space to it in
units called extents. Each extent is a block of physically contiguous pages
from the dbspace. Even when the dbspace comprises more than one chunk,
extents are always allocated entirely within a single chunk to remain contig-
uous.

Contiguity is important to performance. When the pages of data are contig-
uous, disk-arm motion is minimized when the database server reads the
rows sequentially. The mechanism of extents is a compromise between the
following competing requirements:

• Most dbspaces are shared among several tables.

• The size of some tables is not known in advance.

• Tables can grow at different times and different rates.

• All the pages of a table should be adjacent for best performance.

Since table sizes are not known, table space cannot be preallocated. There-
fore, extents are added only as they are needed, but all the pages in any one
extent are contiguous for better performance.
10-8 Tuning the Model

IBM Informix OnLine Disk Storage
Choosing Extent Sizes

When you create a table, you can specify the size of the first extent as well as
the size of the extents to be added as the table grows. You can change the size
of added extents later with the ALTER TABLE statement. The following partial
example creates a table with a half-megabyte initial extent and 100-kilobyte
added extents:

CREATE TABLE big_one (…column specifications…)
IN big_space
EXTENT SIZE 512
NEXT SIZE 100

The following example changes the next-extent size of the table to 50 kilo-
bytes. This has no effect on extents that already exist.

ALTER TABLE big_one MODIFY NEXT SIZE 50

The next-extent sizes of the following kinds of tables are not very important
to performance:

• A small table has only one extent (otherwise it would not be small). If it is
heavily used, large parts of it are buffered in memory anyway.

• An infrequently used table is not important to performance no matter
what size it is.

• A table that resides in a dedicated dbspace always receives new extents
that are adjacent to its old extents. The size of these extents is not impor-
tant because, being adjacent, they perform like one large extent.

When you assign an extent size to these kinds of tables, the only consider-
ation is to avoid creating large numbers of extents. A large number of extents
causes the database server to spend a small amount of extra time on book-
keeping. Also, there is an upper limit on the number of extents allowed. (This
is covered in the section “Upper Limit on Extents” on page 10-10.)

Next-extent sizes become important when two or more large and growing
tables share a dbspace. Because the extents added to the different tables are
interleaved, each new extent represents another long seek that must be made
when reading sequentially. It also extends the total distance over which the
disk arm must range when reading nonsequentially.
Tuning the Model 10-9

IBM Informix OnLine Disk Storage
There is no upper limit on extent sizes except the size of the dbspace. When
you know the final size of a table (or confidently can predict it within 25%),
allocate all its space in the initial extent. When tables grow steadily to
unknown size, assign them next-extent sizes that let them share the dbspace
with a small number of extents each. Here is one possible approach:

• Decide on the ratio in which the dbspace is shared between the tables. For
example, you might divide the dbspace among three tables in the ratio
0.4 : 0.2 : 0.3 (reserving 10% for small tables and overhead).

• Give each table one-fourth of its share of the dbspace as its initial extent.

• Assign each table one-eighth of its share as its next-extent size.

Monitor the growth of the tables regularly using tbcheck.

What happens if, as the dbspace fills up, there is not enough contiguous
space to create an extent of the size you specified? In that case, IBM Informix
OnLine allocates the largest contiguous extent that it can.

Upper Limit on Extents

No table should be allowed to acquire a large number of extents. But it can
happen, and there is an upper limit on the number of extents allowed. Trying
to add an extent after the limit is reached causes ISAM error -136 (No more
extents) to follow an INSERT request.

The upper limit depends on the page size and the table definition. To learn
the upper limit on extents for a particular table, calculate a series of values as
follows:

pagesize = the size of a page (reported by tbstat -c under the head
BUFFSIZE)

colspace = 4 × the number of columns in the table

ixspace = 12 × the number of indexes on the table

ixparts = 4 × the number of columns named in each index

extspace = pagesize - (colspace + ixspace + ixparts + 84)

The table can have no more than extspace/8 extents. When the page size is
2,048, the customer table from the demonstration database can have no more
than 234 extents, as calculated in Figure 10-3.

To help ensure that the limit is not exceeded, IBM Informix OnLine checks the
number of extents each time it creates a new one. If the extent being created
is the 64th or a multiple of 64, the next-extent size for the table is automati-
cally doubled.
10-10 Tuning the Model

IBM Informix OnLine Disk Storage
Variable Value Basis
pagesize 2,048 output of tbstat
colspace 40 ten columns
ixspace 36 three indexes
ixparts 12 one column in each index
extspace 1,876 2,048 - (40 + 36 + 12 + 84)
limit 234 extspace/8

Figure 10-3 Values used to determine upper limit on extents

Defragmenting Tables
Query performance can suffer after many extents are added to a table. This
can only be the case when two or more large, growing tables share a dbspace.
When tables grow at the same time, their new extents and index pages are
interleaved, creating large gaps between the extents of any one table. This sit-
uation is diagrammed in Figure 10-4.

Figure 10-4 A fragmented dbspace

The figure also shows gaps of unused space, perhaps created by tables that
existed when extents were allocated but which have since been dropped.

Disorganization such as that depicted in Figure 10-4 hurts performance in
two ways. During sequential access to any table, several long seeks must be
made. For nonsequential access to any table, the disk might have to seek
across the entire width of the dbspace. It is possible to rebuild a dbspace so
that tables are compact once again, as shown in Figure 10-5. The relative
order of the reorganized tables within the dbspace is not important; all that
matters is that the pages of each are together. When reading a table sequen-
tially, there are no long seeks. When reading a table nonsequentially, the disk
arm ranges only over the space occupied by that table.

table 1

table 2

table 3
Tuning the Model 10-11

IBM Informix OnLine Disk Storage
.

Figure 10-5 A dbspace reorganized to make tables compact

Use the following steps to reorganize a dbspace:

• Copy the tables in the dbspace to tape individually, using the tbunload
utility.

• Drop all the tables in the dbspace.

• Re-create the tables using the tbload utility.

The tbload utility re-creates the tables with the identical properties they had
before, including the same extent sizes. When a new extent is created adja-
cent to the previous extent, the two are treated as a single extent.

You can also unload a table using the UNLOAD command of DB-Access,
IBM Informix SQL, or IBM Informix 4GL, and reload the table using the com-
panion LOAD command or the dbload utility. However, these operations
convert the table into character form, while tbload and tbunload work with
binary copies of disk pages.

There are two more ways to reorganize a single table. If you use the ALTER
TABLE command to add or drop a column or to change the data type of a col-
umn, the table is copied and reconstructed. If you create a clustered index or
alter an index to cluster, the table is sorted and rewritten. (See “Clustered
Indexes” on page 10-25.) In both cases, the table is written on other areas of
the dbspace. However, if other tables are in the dbspace, there is no guarantee
that all the new extents are adjacent.

table 1

table 2

table 3
10-12 Tuning the Model

Calculating Table Sizes
Calculating Table Sizes
This section discusses methods for calculating the approximate sizes of tables
and indexes in disk pages. Like the previous sections, it applies only to
IBM Informix OnLine. Estimates of this kind are useful when you are plan-
ning the layout of a database on disk.

These calculations aim to estimate the number of disk pages that are used to
hold different parts of a table. If the table already exists, or if you can build a
demonstration table of realistic size using simulated data, you do not have to
make estimates. You can run tbcheck and obtain exact numbers.

You can calculate a series of values to produce the estimates. You need the fol-
lowing values in all estimates. Let the values be as follows:

estrows = the number of rows you estimate the table has when it reaches
its normal size.

pagesize = the size of a page (reported by tbstat -c under the head
BUFFSIZE).

pageuse = pagesize - 28 (the space available for data on a disk page).

In the calculations in this chapter, floor(x) means the largest integer smaller
than x, while ceiling(x) means the smallest integer larger than x.

Estimating Fixed-Length Rows
When a table contains no VARCHAR columns, its rows all have the same size.
Calculate the following additional variables. Let the values be as follows:

rowsize = the sum of the sizes of all columns in the table, plus 4 bytes.
Sizes of different data types are discussed in Chapter 9. Treat
TEXT and BYTE columns as having size 56.

homerow = if (rowsize ≤ pageuse) then rowsize
else 4 + remainder (rowsize/pageuse)

If a row is larger than a page, as many full pages as possible are
removed from the end of the row and stored in separate expan-
sion pages. Let homerow be the size of the leading part, which is
Tuning the Model 10-13

Calculating Table Sizes
kept on the home page. The value homerow is simply rowsize if
a row fits a page.

overpage = if (rowsize ≤ pageuse) then 0
else floor (rowsize/pageuse)

Let overpage be the number of expansion pages needed for each
row; it is zero when a row fits on a page.

datrows = min(255,floor (pageuse/homerow))

Let datrows be the number of rows (or leading parts of rows)
that fits on one page. There is an upper limit of 255 rows per
page, even when rows are very short.

datpages = ceiling (estrows/datrows)

expages = estrows × overpage

The table requires approximately datpages + expages disk pages for rows.
(Additional pages for TEXT and BYTE columns are estimated in “Estimating
Blobpages” on page 10-18.) An estimate for the customer table is shown in
Figure 10-6.

Variable Estimate Basis of Estimate
estrows 1,500 company business plan
pagesize 2,048 output of tbstat
pageuse 2,020 pagesize - 28
rowsize 138 sum of 4+ column data type size

customer_num SERIAL 4
fname CHAR(15) 15
lname CHAR(15) 15
company CHAR(20) 20
address1 CHAR(20) 20
address2 CHAR(20) 20
city CHAR(15) 15
state CHAR(2) 2
zipcode CHAR(5) 5
phone CHAR(18) 18

homerow 134 rowsize ≤ pageuse
overpage 0 rowsize ≤ pageuse
datrows 14 floor (pageuse/homerow)
datpages 108 ceiling (estrows/datrows)
expages 0 estrows × overpage

Figure 10-6 Estimating the size of the customer table
10-14 Tuning the Model

Calculating Table Sizes
Estimating Variable-Length Rows
When a table contains one or more VARCHAR columns, its rows have varying
lengths. This introduces uncertainty. You must form an estimate of the typical
size of each VARCHAR column, based on your understanding of the data.

When IBM Informix OnLine allocates space to rows of varying size, it consid-
ers a page to be full when there is not room for an additional row of the max-
imum size. This can limit the allocation of rows to pages. Calculate the
following variables:

maxrow = the sum of the maximum sizes of all columns in the table, plus
4 bytes. Treat TEXT and BYTE columns as having size 56.

typrow = the sum of the estimated typical sizes of all columns in the
table, plus 4 bytes.

homerow = if (typrow ≤ pageuse) then typrow
else 4 + remainder (typrow/pageuse)

Let homerow be the amount of a typical row that fits on the
home page; it is typrow if one page is sufficient.

overpage = if (typrow ≤ pageuse) then 0
else floor (typrow/pageuse)

Let overpage be the number of expansion pages needed for
the typical row; it is zero when a typical row fits on a page.

homemax = if (maxrow ≤ pageuse) then maxrow
else 4 + remainder (maxrow/pageuse)

Let homemax be the reserve requirement of the database
server.

datrows = floor ((pageuse − homemax)/typrow)

Let datrows be the number of typical rows that fits on a page
before the database server decides the page is full.

datpages = ceiling (estrows/datrows)

expages = estrows × overpage

The table requires approximately datpages + expages disk pages for rows.
(Additional pages for TEXT and BYTE columns are estimated in “Estimating
Blobpages” on page 10-18.) An estimate for the catalog table is shown in
Figure 10-6.
Tuning the Model 10-15

Calculating Table Sizes
Variable Estimate Basis of Estimate
estrows 5,000 company business plan.
pagesize 2,048 output of tbstat
pageuse 2,020 pagesize -28
maxrow 381 sum of 4+:

column data type max size typical
catalog_num SERIAL 4 4
stock_num SMALLINT 2 2
manu_code CHAR(3) 3 3
cat_descr TEXT 56 56
cat_picture BYTE 56 56
cat_adv VARCHAR(255,65) 256 66

typrow 191
homerow 191 typrow ≤ pageuse
overpage 0 typrow ≤ pageuse
homemax 381 maxrow ≤ pageuse
datrows 8 floor ((pageuse - homemax)/typrow)
datpages 625 ceiling (estrows/datrows)
expages 0 estrows × overpage

Figure 10-7 Estimating the size of the catalog table

Estimating Index Pages
The tblspace includes index pages as well as pages of data, and index pages
can be a significant fraction of the total.

An index entry consists of a key and a pointer. The key is a copy of the indexed
column or columns from one row of data. The pointer is a 4-byte value used
to locate the row containing that key value.

A unique index contains one such entry for every row in the table. It also con-
tains some additional pages of pointers that create the B+ tree structure.
(Index structure is described in “The Structure of an Index” on page 4-28.)
When an index allows duplicates, it contains fewer keys than pointers; that
is, one key can be followed by a list of pointers.

If this were the whole story on indexes, it would be simple to estimate their
space requirements. However, the index leaf pages use a technique called key
compression, which allows the database server to put more keys on a page
than would otherwise fit. The space saved by key compression varies with
the content of the keys, from page to page and index to index.
10-16 Tuning the Model

Calculating Table Sizes
To estimate the size of a compact index (disregarding space saved by key
compression), let the values be as follows:

keysize = the total width of the indexed column or columns.

pctuniq = the number of unique entries you expect in this index, divided
by estrows.

For a unique index, or one with only occasional duplicate val-
ues, use 1.0. When duplicates are present in significant num-
bers, let pctuniq be a fraction less than 1.0.

entsize = (keysize × pctuniq) + 4

pagents = floor (pageuse/entsize)

There are approximately pagents entries on each index page.
leaves = ceiling (estrows/pagents)

There are approximately leaves leaf pages in the index.
branches = ceiling (leaves/pagents)

There are approximately branches nonleaf pages.

The index contains approximately leaves + branches pages when it is compact.
Estimates for two indexes in the customer table are carried out in Figure 10-8
on page 10-18.

As rows are deleted and new ones inserted, the index can become sparse; that
is, the leaf pages might no longer be full of entries. On the other hand, if key
compression is effective, the index might be smaller. The method given here
should yield a conservative estimate for most indexes. If index space is
important, build a large test index using real data and check its size with the
tbcheck utility.
Tuning the Model 10-17

Calculating Table Sizes
Variable Estimate Basis for Estimate
estrows 1,500 company business plan
pagesize 2,048 output of tbstat
pageuse 2,016 pagesize

keysize 4 customer_num is 4 bytes
pctuniq 1.0 unique index
entsize 12 4 x 1.0 + 8
pagents 168 floor (2,016/12)
leaves 9 ceiling (1,500/168)
branches 1 ceiling (9/168)

keysize 2 state is CHAR(2)
pctuniq 0.033 50 states among 1,500 rows
entsize 8.066 2 x 0.033 + 8
pagents 249 floor (2,016/8.066)
leaves 7 ceiling (1,500/249)
branches 1 ceiling (7/168)

Figure 10-8 Estimating the size of two indexes from the customer table

Estimating Blobpages
BYTE and TEXT data items that are stored on magnetic disk are stored in sep-
arate pages, either interspersed among the row and index pages in the
tblspace or in a separate blobspace. Each blob data item occupies a whole
number of pages. For each blob column, let the values be as follows:

typage = the number of whole pages required to store an item of
typical size.

nnpart = the fraction of rows in which this column has a non-null
value.

totpage= typage × estrows × nnpart.

The values for the column occupy approximately totpage pages. In the catalog
table (see Figure 10-6 on page 10-14) there are two blobpages. Their estimates
can be imagined as follows:

For the cat_descr column, the text of a description is, at most, a double-
spaced page, which is 250 words or approximately 1,500 characters, so
typage = 1. There is a description for every entry, so nnpart = 1.0. Thus,
totpage = 1 × 5,000 × 1.0 = 5,000 pages of data.
10-18 Tuning the Model

Calculating Table Sizes
The cat_picture column contains line art in a computer-readable form. Exam-
ination of a few of these pictures reveals that they vary widely in size but a
typical file contains about 75,000 bytes of data. Thus typage = 38. The market-
ing department estimates that they want to store a picture with one entry in
four: nnpart = 0.25. Therefore totpage = 38 × 5,000 × 0.25 = 47,500 pages of data.

After a table is built and loaded, you can check the usage of blobpages with
the tbcheck utility -ptT option.

Locating Blob Data
When you create a column of type BYTE or TEXT on magnetic disk, you have
the option of locating the data of the column in the tblspace or in a blobspace.
In the following example, a TEXT value is located in the tblspace and a BYTE
value is located in a blobspace named rasters.

CREATE TABLE examptab
(
pic_id SERIAL,
pic_desc TEXT IN TABLE,
pic_raster BYTE IN rasters
)

A TEXT or BYTE value is always stored apart from the rows of the table. Only
a 56-byte descriptor is stored with the row. However, the value itself occupies
at least one disk page.

When blob values are stored in the tblspace, the pages of their data are inter-
spersed among the pages containing rows. The result is to inflate the size of
the table. The blobpages separate the pages containing rows and spread them
out on the disk. When the database server reads only the rows and not the
blob data, the disk arm must move farther than it would if the blobpages
were stored apart. The database server scans only the row pages on any
SELECT operation that retrieves no blob column, and whenever it tests rows
using a filter expression.

Another consideration is that disk I/O to and from a dbspace is buffered.
Pages are held in storage in case they are needed again soon; and, when
pages are written, the requesting program is allowed to continue before the
actual disk write takes place.

However, disk I/O to and from blobspaces is not buffered. Blobspace pages
are not retained in buffers to be read again, and the requesting program is not
allowed to proceed until all output to them is complete. The reason is that
blobspace input and output are expected to be voluminous. If these pages are
Tuning the Model 10-19

Managing Indexes
passed through the normal buffering mechanisms, they could monopolize
the buffers, driving out index pages and other pages useful to good
performance.

For best performance, then, you should locate a TEXT or BYTE column in a
blobspace in either of these circumstances:

• When single data items are larger than one or two pages each; if kept in
the dbspace, their transfer dilutes the effectiveness of the page buffers.

• When the number of pages of blob data is more than half the number of
pages of row data; if kept in the dbspace, the table is inflated and queries
against it are slowed.

For a table that is both relatively small and nonvolatile, you can achieve the
effect of a dedicated blobspace by the following means: Load the entire table
with rows in which the blob columns are null. Create all indexes. Row pages
and index pages are now contiguous. Update all the rows to install the blob
data. The blob pages follow the pages of row and index data in the tblspace.

Managing Indexes
An index is necessary on any column (or composition of columns) that must
be unique. However, as discussed in Chapter 4, the presence of an index can
also allow the query optimizer to speed up a query in several ways. The opti-
mizer can use an index as follows:

• To replace repeated sequential scans of a table with nonsequential access

• To avoid reading row data at all when processing expressions that name
only indexed columns

• To avoid a sort (including building a temporary table) when executing the
GROUP BY and ORDER BY clauses

As a result, an index on the right column can save thousands, tens of thou-
sands, or in extreme cases even millions of disk operations during a query.
However, there are costs associated with indexes.

Space Costs of Indexes
The first cost of an index is disk space. An estimating method is given in
“Estimating Index Pages” on page 10-16. Loosely, an index contains a copy
of every unique data value in the indexed columns, plus a 4-byte pointer for
every row in the table. This information can add many pages to the table
space requirements; it is easy to have as many index pages as row pages.
10-20 Tuning the Model

Managing Indexes
Time Costs of Indexes
The second cost of an index is time while the table is modified. The descrip-
tions that follow assume that approximately two pages must be read to locate
an index entry. That is the case when the index consists of a root page, one
intermediate level, and leaf pages, and the root page is already in a buffer.
The index for a very large table has two intermediate levels, so roughly three
pages are read when an entry is looked up.

Presumably, one index has been used to locate the row being altered. Its index
pages are found in the page buffers. However, the pages for any other
indexes that need altering must be read from disk.

Under these assumptions, index maintenance adds time to different kinds of
modifications as follows:

• When a row is deleted from a table, its entries must be deleted from all
indexes.

The entry for the deleted row must be looked up (two or three pages in)
and the leaf page must be rewritten (one page out), for a total of three or
four page accesses per index.

• When a row is inserted, its entries must be inserted in all indexes.

The place for entry of the inserted row must be found (two or three pages
in) and rewritten (one page out), for a total of three or four page accesses
per index.

• When a row is updated, its entries must be looked up in each index that
applies to a column that was altered (two or three pages in). The leaf page
must be rewritten to eliminate the old entry (one page out); then the new
column value must be located in the same index (two or three more pages
in) and the row entered (one more page out).
Tuning the Model 10-21

Managing Indexes
Insertions and deletions change the number of entries on a leaf page. In vir-
tually every pagents operation, some additional work must be done because
a leaf page has either filled up or emptied. However, since pagents is usually
greater than 100, this occurs less than 1% of the time and can be disregarded
for estimating.

In short, when a row is inserted or deleted at random, allow three to four
added page I/O operations per index. When a row is updated, allow six to
eight page I/O operations for each index that applies to an altered column.
Bear in mind also that if a transaction is rolled back, all this work must be
undone. For this reason, rolling back a transaction can take a long time.

Since the alteration of the row itself requires only two page I/O operations, it
is clear that index maintenance is the most time-consuming part of data mod-
ification. One way to reduce this cost is discussed under “Dropping Indexes”
on page 10-24.

Choosing Indexes
Indexes are required on columns that must be unique and are not specified
as primary keys. In addition, you should add an index in three other cases:

• Columns used in joins that are not specified as foreign keys

• Columns frequently used in filter expressions

• Columns frequently used for ordering or grouping

Join Columns

As discussed in Chapter 4, at least one column named in any join expression
should have an index. If there is no index, the database server usually builds
a temporary index before the join and discards it afterward; that is almost
always faster than performing a join by repeated sequential scans over a
table.

When both columns in a join expression have indexes, the optimizer has
more options when it constructs the query plan. As a general rule, you should
put an index on any column that is used in a join expression more than occa-
sionally that is not identified as a primary or foreign key.

Selective Filter Columns in Large Tables

If a column is often used to filter the rows of a large table, consider placing an
index on it. The optimizer can use the index to pick out the desired columns,
avoiding a sequential scan of the entire table. One example might be a table
10-22 Tuning the Model

Managing Indexes
that contains a large mailing list. If you find that a postal-code column is often
used to filter a subset of rows, you should consider putting an index on it
even though it is not used in joins.

This strategy yields a net savings of time only when the selectivity of the col-
umn is high; that is, when only a small fraction of rows holds any one
indexed value. Nonsequential access through an index takes several more
disk I/O operations than sequential access, so if a filter expression on the col-
umn passes more than a fourth of the rows, the database server might as well
read the table sequentially. As a rule, indexing a filter column saves time in
the following cases:

• The column is used in filter expressions in many queries or in slow
queries.

• The column contains at least 100 unique values.

• Most column values appear in fewer than 10% of the rows.

Order-By and Group-By Columns

When a large quantity of rows must be ordered or grouped, the database
server must put the rows in order. One way the database server does this is
to select all the rows into a temporary table and sort the table. But (as dis-
cussed in Chapter 4) if the ordering columns are indexed, the optimizer
sometimes plans to read the rows in sorted order through the index, thus
avoiding a final sort.

Since the keys in an index are in sorted sequence, the index really represents
the result of sorting the table. By placing an index on the ordering column or
columns, you can replace many sorts during queries with a single sort when
the index is created.

Duplicate Keys Slow Index Modifications
When duplicate keys are permitted in an index, the entries that have any sin-
gle value are grouped in a list. When the selectivity of the column is high,
these lists are generally short. But when there are only a few unique values,
the lists become quite long and, in fact, can cross multiple leaf pages.

For example, in an index on a column whose only values are M for married
and S for single, all the index entries are contained in just two lists of dupli-
cates. Such an index is not of much use, but at least it works for querying; the
database server can read out the list of rows that have one value or the other.
Tuning the Model 10-23

Managing Indexes
When an entry must be deleted from a list of duplicates, the database server
must read the whole list and rewrite some part of it. When it adds an entry,
the database server puts the new row at the end of its list. Neither operation
is a problem when the list is short, as is normal. But when a list fills many
pages, the database server must read all the rows to find the end. When it
deletes an entry, it typically must update and rewrite half the pages in the list.

Thus, an index on a column that has a small number of distinct values, in a
table that has a large number of rows, can drastically reduce the speed of
updating. An example is a column whose values are the names or abbrevia-
tions of states or provinces. If there are 50 unique values in a mailing list of
100,000 rows, there are an average of 2,000 duplicates per value. But real data
is never so well distributed; in such a table the more common values likely
have 10,000 or more duplicates, and their lists might approach 50 pages in
length.

When the database server inserts or deletes an entry in such a list, it is busy
for a long time. Worse still, it has to lock all the affected index pages while it
does the work, greatly reducing concurrent access to the table.

You can avoid this problem in a fairly simple way at some cost in disk space.
The trick is to know that the database server uses the leading column of a
composite index in the same way as it uses an index on that column alone. So
instead of creating an index on a column with few unique values, create a
composite index on that column followed by one other column that has a
wide distribution of values.

For example, change the index on the column whose only values are M and S
into a composite index on that column and a birthdate column. You can use
any second column to disperse the key values as long as its value does not
change, or changes at the same time as the real key. The shorter the second
column the better, since its values are copied into the index and expand its
size.

Dropping Indexes
In some applications, the majority of table updates can be confined to a single
time period. Perhaps all updates are applied overnight or on specified dates.

When this is the case, consider dropping all non-unique indexes while
updates are being performed, then creating new indexes afterward. This can
have two good effects.
10-24 Tuning the Model

Managing Indexes
First, since there are fewer indexes to update, the updating program can run
faster. Often, the total time to drop the indexes, update without them, and re-
create them afterward is less than the time to update with the indexes in
place. (The time cost of updating indexes is discussed under “Time Costs of
Indexes” on page 10-21.)

Second, newly made indexes are the most efficient ones. Frequent updates
tend to dilute the index structure, causing it to contain many partly full leaf
pages. This reduces the effectiveness of an index and wastes disk space.

As another timesaving measure, make sure that a batch-updating program
calls for rows in the sequence defined by the primary-key index. That
sequence causes the pages of the primary-key index to be read in order and
only one time each.

The presence of indexes also slows down the population of tables when you
use the LOAD command or the dbload utility. Loading a table that has no
indexes at all is a very quick process (little more than a disk-to-disk sequen-
tial copy), but updating indexes adds a great deal of overhead.

The fastest way to load a table is as follows:

1. Drop the table (if it exists).

2. Create the table without specifying any unique constraints.

3. Load all rows into the table.

4. Alter the table to apply the unique constraints.

5. Create the non-unique indexes.

If you cannot guarantee that the loaded data satisfies all unique constraints,
you must create the unique indexes before you load the rows. It saves time if
the rows are presented in the correct sequence for at least one of the indexes
(if you have a choice, make it the one with the largest key). This minimizes
the number of leaf pages that must be read and written.

Clustered Indexes
The term clustered index is a misnomer. There is nothing special about the
index; it is the table that is modified so that its rows are physically ordered to
agree with the sequence of entries in the index.

When you know that a table is ordered by a certain index, you can take
advantage of the knowledge to avoid sorting. You can also be sure that when
the table is searched on that column, it is read (effectively) in sequential order
instead of nonsequentially. These points are covered in Chapter 4.
Tuning the Model 10-25

Managing Indexes
In the stores5 database, the orders table has an index, zip_ix, on the zip code
column. The following command causes the database server to put the rows
of the customer table into descending order by zip code:

ALTER INDEX zip_ix TO CLUSTER

To cluster a table on a nonindexed column, you must create an index. The fol-
lowing command reorders the orders table by order date:

CREATE CLUSTERED INDEX o_date_ix ON orders (order_date ASC)

To reorder a table, the database server must copy the table. In the preceding
example, the database server reads all rows of the table and constructs an
index. Then it reads the index entries in sequence. For each entry, it reads the
matching row of the table and copies it to a new table. The rows of the new
table are in the desired sequence. This new table replaces the old table.

Clustering is not preserved when you alter a table. When you insert new
rows, they are stored physically at the end of the table regardless of their con-
tents. When you update rows and change the value of the clustering column,
the rows are nevertheless written back into their original location in the table.

When clustering is disturbed by updates, it can be restored. The following
command reorders the table to restore the physical sequence:

ALTER INDEX o_date_ix TO CLUSTER

Reclustering is usually quicker than the original clustering because reading
out the rows of a nearly clustered table is almost a sequential scan.

Clustering and reclustering take a lot of space and time. You can avoid some
clustering by building the table in the desired order in the first place. The
physical order of rows is their insertion order, so if the table is initially loaded
with ordered data, no clustering is needed.
10-26 Tuning the Model

Denormalizing
Denormalizing
Extended Relational Analysis, the method of data modeling described in
Chapter 8, produces tables that contain no redundant or derived data; tables
that are well-structured by the tenets of relational theory.

Sometimes, to meet extraordinary demands for high performance, you might
have to modify the data model in ways that are undesirable from a theoretical
standpoint. This section describes some modifications and their associated
costs.

Shorter Rows for Faster Queries
As a general principle, tables with shorter rows yield better performance
than ones with longer rows. This is because disk I/O is performed in pages,
not in rows. The shorter the rows of a table, the more rows there are on a page.
The more rows per page, the fewer I/O operations it takes to read the table
sequentially, and the more likely it is that a nonsequential access can be
satisfied from a buffer.

Extended Relational Analysis had you put all the attributes of one entity into
a single table for that entity. For some entities, this can produce rows of awk-
ward length. There are some ways to shorten them. As the rows get shorter,
query performance should improve.

Expelling Long Strings
The most bulky attributes are often character strings. If you can remove them
from the entity table, the rows become shorter.

Using VARCHAR Strings

Since the VARCHAR data type is relatively new with IBM Informix OnLine, an
existing database might contain CHAR columns that can be converted profit-
ably to VARCHAR. VARCHAR columns shorten the average row when the
average value in the CHAR column is at least 2 bytes shorter than the existing,
fixed width of the column.

This substitution does not harm the theoretical characteristics of the model.
Furthermore, VARCHAR data is immediately compatible with most existing
programs, forms, and reports. (Forms must be recompiled. Forms and
reports should, of course, be tested on a sample database.)
Tuning the Model 10-27

Denormalizing
Changing Long Strings to TEXT

When the typical string fills half a disk page or more, consider converting it
to a TEXT column in a separate blobspace. The column within the row page
is only 56 bytes long, which should put many more rows on a page. However,
the TEXT data type is not automatically compatible with existing programs.
The code for fetching a TEXT value is more complicated than the code for
fetching a CHARACTER value into a program.

Building a Symbol Table of Repeated Strings

If a column contains strings that are not unique in each row, you can remove
those strings to a table in which only unique copies are stored.

For example, the customer.city column contains city names. Some city names
are repeated down the column, and most rows have some trailing blanks in
the field. Using the VARCHAR data type eliminates the blanks but not the
duplication.

You can create a table named cities, as follows:

CREATE TABLE cities
(
city_num SERIAL PRIMARY KEY,
city_name VARCHAR(40) UNIQUE
)

Then you can change the definition of the customer table so that its city col-
umn becomes a foreign key that references the city_num column in the cities
table.

You must change any program that inserts a new row into customer to insert
the city of the new customer into cities. The database server return code in
the SQLCODE field can indicate that the insert failed because of a duplicate
key. It is not a logical error; it simply means that some existing customer is
located in that city. (However, a 4GL program must use the WHENEVER com-
mand to trap errors; otherwise the negative value in SQLCODE terminates the
program.)

Besides changing programs that insert data, you also must change all pro-
grams and stored queries that retrieve the city name. They must use a join
into the new cities table to obtain their data. The extra complexity in pro-
grams that insert rows and the extra complexity in some queries is the cost of
giving up theoretical correctness in the data model. Before you make the
change, be sure it returns a reasonable savings in disk space or execution
time.
10-28 Tuning the Model

Denormalizing
Moving Strings to a Companion Table

Strings less than half a page long waste disk space if you treat them as TEXT,
but you can remove them from the main table to a companion table. The use
of companion tables is the subject of the next section.

Splitting Wide Tables
Consider all the attributes of an entity whose rows are too wide for good per-
formance. Look for some theme or principle on which they can be divided
into two groups. Split the table into two, a primary table and a companion
table, repeating the primary key in each one. The shorter rows allow each
table to be queried or updated more quickly.

Division by Bulk

One principle on which you can divide an entity table is bulk: move the bulky
attributes, which are usually character strings, to the companion table. Keep
the numeric and other small attributes in the primary table. In the demon-
stration database, you can split the ship_instruct column from the orders
table. You can call the companion table orders_ship. It has two columns, a
primary key that is a copy of orders.order_num and the original
ship_instruct column.

Division by Frequency of Use

Another principle for division of an entity is frequency of use. If a few
attributes are rarely queried, they can be moved out to a companion table. In
the demonstration database, it could be that the ship_instruct, ship_weight,
and ship_charge columns are queried only in one program. In that case, you
can move them out to a companion table.

Division by Frequency of Update

Updates take longer than queries, and the updating programs lock index
pages and rows of data, slowing down the programs that only query. If cer-
tain attributes of an entity are updated frequently, while many others are
changed only rarely or not at all—and if many queries select the latter and do
not need the former—you can split the volatile columns to a companion
table. The updating programs contend for the use of that table, while the
query programs use the primary table.
Tuning the Model 10-29

Denormalizing
Costs of Companion Tables

Splitting a table consumes extra disk space and adds complexity. There are
two copies of the primary key for each row, one copy in each table. There are
also two primary-key indexes. You can use the methods described in earlier
sections to estimate the number of pages added.

You must modify existing programs, reports, and forms that use SELECT *
because fewer columns are returned. Programs, reports, and forms that use
attributes from both tables must perform a join to bring them together.

When you insert or delete a row, two tables must be altered instead of one. If
you do not coordinate the alteration of the two tables (by making them
within a single transaction, for example), semantic integrity is lost.

Splitting Tall Tables
A large table poses large management problems. The 400-megabyte table
takes a long time to query, of course, but it also takes a long time to back up
or restore. Sorting becomes radically slower because the sort goes to three or
more merge levels; sorting can even become impossible because too much
disk space is required. Indexes become less effective because the index struc-
ture has three or more intermediate levels.

Consider splitting such a table into segments. Each segment has the same
arrangement of columns, indexes, and constraints, but a different subset of
rows. The division into groups of rows should be based on the value of an
attribute that appears in most queries (probably the primary key) so that a
program or user can easily tell in which subtable a row belongs. For example,
if the primary key is a number, rows can be allocated to ten subtables based
on a middle digit.

If rows include a time or date attribute, it might be useful to split a table into
segments by age, especially if recent rows are used more often than older
ones.

The benefits of splitting a large table are that the segments can be treated sep-
arately for copying, sorting, indexing, archiving, and restoring. All these
operations become easier. The segments can be assigned to tblspaces in dif-
ferent ways to make the best use of disk devices. And, as long as most queries
are based on the attribute used for segmenting, queries should be dramati-
cally faster.
10-30 Tuning the Model

Denormalizing
The drawback of splitting a table is that operations that apply to the whole
table become much more complicated. If a query cannot be directed to one
subtable, it must be written in the form of a UNION of many subqueries, each
on a different subtable. This greatly complicates the design of reports and
browsing programs.

Redundant and Derived Data
The data model produced by the methods of Chapter 8 contains no redun-
dant data (every attribute appears in just one table) and no derived data (data
that can be computed from existing attributes is selected as an expression
based on those attributes).

These features minimize the amount of disk space used and make updating
the tables as easy as possible. However, they can force you to use joins and
aggregate functions often, and that may take more time than is acceptable.

As an alternative, you can introduce new columns that contain redundant or
derived data, provided you understand the risks.

Adding Derived Data

In the stores5 database, there is no column in the orders table for the total
price of an order. The reason is that the information can be derived from the
rows of the items table. A program that wants to report the date and total
price of order number 1009 can obtain it with the following query:

SELECT order_date, SUM (total_price)
FROM orders, items
WHERE orders.order_num = 1009

AND orders.order_num = items.order_num
GROUP BY orders.order_num, orders.order_date

While the join to the items table only reads three or four additional pages,
that might be too much time for an interactive program. One solution is to
add an order-total column to the orders table.

The costs of derived data are in disk space, complexity, and data integrity.

The disk space devoted to an order-total column is wasted because the same
information is stored twice. Also, the presence of the column makes the rows
of the table wider; there are fewer of them in a page and querying the table
becomes slower. Most important, any program that updates the base
Tuning the Model 10-31

Denormalizing
attributes must be changed to also update the derived column. Inevitably,
there are times when the derived column is wrong, when it does not contain
the right derived value.

Derived data is not reliable data. In the example of a derived order price, the
unreliability occurs while an order is being entered. While rows are being
added to the items table, there are times when the order total in orders is not
equal to the sum of the corresponding rows from items. In general, before
you allow derived data to appear in the database, you must define its accu-
racy as carefully as possible. Actually, you should define as closely as possi-
ble the conditions under which the derived column is unreliable.

Adding Redundant Data

A correct data model avoids redundancy by keeping any attribute only in the
table for the entity it describes. If the attribute data is needed in a different
context, you make the connection by joining tables. But joining takes time. If
a frequently used join hurts performance, you can eliminate it by duplicating
the joined data in another table.

In the demonstration database, the manufact table contains the names of
manufacturers and their delivery times. (In a real database, it would contain
many other attributes of a supplier, such as address, sale representative
name, and so on.)

The contents of manufact are primarily a supplement to the stock table. Sup-
pose that a time-critical application frequently refers to the delivery lead time
of a particular product, but to no other column of manufact. For each such
reference, the database server must read two or three pages of data to per-
form the lookup.

You can add a new column, lead_time, to the stock table and fill it with cop-
ies of the lead_time column from the corresponding rows of manufact. That
eliminates the lookup, speeding the application.

Like derived data, redundant data takes space and poses an integrity risk. In
the example, there is not one extra copy of each manufacturer’s lead-time,
there are many. (Each manufacturer can appear in stock many times.) The
programs that insert or update a row of manufact must be changed to update
multiple rows of stock as well.

The integrity risk is simply that the redundant copies of the data might not
be accurate. If a lead time is changed in manufact, the stock column will be
out of date until it, too, is updated. As with derived data, you should take
pains to define the conditions under which the redundant data might be
wrong.
10-32 Tuning the Model

Maximizing Concurrency
Maximizing Concurrency
Some databases are used by only one program at a time; others are used con-
currently by multiple programs. Two factors make concurrent programs
inherently slower than doing the same amount of work serially.

• Multiple programs interfere with each other’s use of buffers and disk
drives. The pages read for one program might be driven from the buffers
by the next program’s query, and might have to be read again. Disk I/O
for one query displaces the disk-access arm, slowing another program’s
sequential access.

• Programs that modify data lock pages, delaying all other programs that
use the same data.

Easing Contention
Contention is inevitable between programs using the same resources. You
can deal with it in three general ways:

1. Make programs use fewer resources, either by making them do less work,
or by making them work more efficiently.

2. Arrange the resources better, for instance, by allocating tables to dbspaces
to minimize contention.

3. Supply more resources: more memory, more and faster disk drives, more
and faster computers.

The first point is the subject of Chapter 4, which deals with making queries
faster. Sometimes you also must consider making queries do less, that is,
reducing the functions available to on-line users. You can look for any
allowed transaction that entails scanning an entire large table: any kind of
summation, average, or management report, especially if it requires a join.
Consider removing such transactions from on-line programs. Instead, offer a
new facility that interactively schedules an off-peak job, with the output
returned the next day.

Rescheduling Modifications
To the greatest extent possible, schedule modifications for times when no
interactive users are using the database. One reason for this is that concurrent
modifications must be done with all indexes in place; that means they incur
all the time costs noted earlier. Another reason is that modifications not only
lock table rows, they lock index pages as well. That increases the number of
locks in use and the number of lock delays for all users.
Tuning the Model 10-33

Maximizing Concurrency
The means of rescheduling modifications depend entirely on the details of
your application.

Using an Update Journal

Instead of performing updates as the data becomes available, consider creat-
ing an update journal. This is a table that contains rows that represent pending
updates. Its rows contain the following information:

• Data items to be changed in some base table, with null meaning no
change

• Audit information that allows an erroneous update to be traced back to
the transaction that entered the row

It is usually much faster to insert a new row in an update journal than actu-
ally to perform the update on one or more base tables. For one thing, the jour-
nal has at most one index to update, while the base tables usually have
several. For another, locking delays are almost nil, since inserting a row in a
table with no indexes requires only a lock on the inserted row. Another pro-
gram can insert its row even before the first program commits its transaction.

Also, since no updates are performed on the primary tables, their pages are
not locked. This allows query programs to run without delays.

After peak-usage hours (perhaps after close of business), you run a batch pro-
gram to validate and apply the updates, row by row as they were inserted.
You obviously would want to take pains to see that no update is forgotten or
applied twice, regardless of possible system failures.

One way to update the base table is to use two cursors. The first cursor is a
hold cursor; it is used to scan the rows of the journal. (See “Hold Cursors” on
page 7-32.) For each row of the journal, the program goes through the
following steps:

1. Issue the BEGIN WORK command.

2. Fetch the rows from the tables being updated using an update cursor.
(This locks only these rows.)

3. Validate the update information from the journal against the data in the
target rows.

4. Apply the updates to the target tables.

5. Update the journal row in some way to mark it as finished.

6. Issue the COMMIT WORK command (or the ROLLBACK WORK command,
if an error is found).
10-34 Tuning the Model

Maximizing Concurrency
You run a different program to drop and re-create the journal table only after
every journal row is validated, applied, and marked.

The obvious disadvantage of an update journal is that the base tables do not
reflect the most current data. If it is essential that updates be instantly visible,
a journal scheme does not work.

The great advantages of reduced I/O and reduced locking delays during
peak hours are a powerful argument in favor of an update journal. Deferred
updates are accepted in many applications. For example, no bank promises
to know your account balance more precisely than as of the close of business
the preceding day, and for exactly this reason: the bank records transactions
in a journal during the day and applies the updates overnight.

Isolating and Dispersing Updates
If updates really must be performed interactively during peak hours, you
must find a different way to isolate queries from updates.

Splitting Tables to Isolate Volatile Columns

This idea was covered in an earlier section. If it is necessary to perform
updates during peak hours, examine the structure of the tables. Can you sep-
arate the columns into volatile ones that are updated constantly, and static
ones that are rarely updated? If so, consider splitting the tables so that the
volatile columns are isolated in a companion table.

Depending on the mix of operations, and on the priorities of the users, you
can then put either the static or the volatile subtable on your fastest disk
drive.

Dispersing Bottleneck Tables

Small tables are sometimes used for summaries, usage records, and audits.
For example, your interactive programs can maintain a table with a row for
each authorized user. Each time the user starts or ends a program, it updates
that user’s row to show time on, time off, number of transactions, or other
work-monitoring data.

Small tables that are only read do not cause performance problems, but small
tables that are the subject of concurrent updates do. Any small table that must
be updated on every transaction can become a bottleneck in which every on-
line program queues up and waits.
Tuning the Model 10-35

Summary
To eliminate the problem, either use a journal with off-peak updates as
described earlier, or disperse the bottleneck by creating many tables. To mon-
itor users, create a one-row table for each user.

Summary
When tables are moderate in size and only one user at a time accesses the
database, carefully applied relational theory is sufficient to produce good
performance.

When both the number of tables and the number of users become larger and
the response time begins to degrade, you must turn to practical solutions.

The first step is to understand and take advantage of the tools that
IBM Informix OnLine offers you. It permits you to arrange your tables on the
hardware for maximum benefit. Then, one step at a time and always measur-
ing, you can begin complicating the structure of the data model and the pro-
grams that use it.
10-36 Tuning the Model

Chapter
11
Security, Stored
Procedures, and
Views
Chapter Overview 3

Controlling Access to Databases 3
Securing Database Files 4

 Multiuser Systems 4
 Single-User Systems 4

Securing Confidential Data 5

Granting Privileges 5
Database-Level Privileges 6

Connect Privilege 6
Resource Privilege 7
Database Administrator Privilege 7

Ownership Rights 7
Table-Level Privileges 8

Access Privileges 9
Index, Alter, and References Privileges 10
Column-Level Privileges 10

Procedure-Level Privileges 13
Automating Privileges 13

Automating with IBM Informix 4GL 14
Automating with a Command Script 15

Using Stored Procedures 16
Creating and Executing Stored Procedures 16
Restricting Reads of Data 18
Restricting Changes to Data 19

Monitoring Changes to Data 19
Restricting Object Creation 20

Using Views 21
Creating Views 22

Duplicate Rows from Views 23
Restrictions on Views 24
When the Basis Changes 24

Modifying Through a View 25
Deleting Through a View 26
Updating a View 26
Inserting into a View 27
Using WITH CHECK OPTION 27

Privileges and Views 29
Privileges When Creating a View 29
Privileges When Using a View 30

Summary 32
11-2 Security, Stored Procedures, and Views

Chapter Overview
In some databases, all data is accessible to every user. In others, this is not the
case; some users are denied access to some or all of the data. You can restrict
access to data at these five levels:

1. When the database is stored in operating system files, you can sometimes
use the file-permission features of the operating system.

This level is not available when IBM Informix OnLine holds the database.
It manages its own disk space and the rules of the operating system do
not apply.

2. You can use the GRANT and REVOKE statements to give or deny access to
the database or to specific tables, and you can control the kinds of uses
that people can make of the database.

3. You can use the CREATE PROCEDURE statement to write and compile a
stored procedure that controls and monitors which users can read, mod-
ify, or create database tables.

4. You can use the CREATE VIEW statement to prepare a restricted or modi-
fied view of the data. The restriction can be vertical, excluding certain
columns, or horizontal, excluding certain rows, or both.

5. You can combine GRANT and CREATE VIEW statements to achieve precise
control over the parts of a table a user can modify and with what data.

These points are the subject of this chapter.

Controlling Access to Databases
The normal database-privilege mechanisms are based on the GRANT and
REVOKE statements. They are covered in the section “Granting Privileges” on
page 11-5. However, you can sometimes use the facilities of the operating
system as an additional way to control access to a database.
Security, Stored Procedures, and Views 11-3

Controlling Access to Databases
Securing Database Files
Database servers other than IBM Informix OnLine store databases in operat-
ing system files. Typically, a database is represented as a number of files: one
for each table, one for the indexes on each table, and possibly others. The files
are collected in a directory. The directory represents the database as a whole.

 Multiuser Systems

You can deny access to the database by denying access to the database direc-
tory. The means by which you can do this depend on your operating system
and your computer hardware. Multiuser operating systems have software
facilities such as the Access Control List of VMS or the file permissions of
UNIX.

Note: In UNIX, the database directory is created with group identity informix, and
the database server always runs under group identity informix. Thus, you cannot
use group permissions to restrict access to a particular group of users. You can only
remove all group permissions (file mode 700) and deny access to anyone except the
owner of the directory.

You also can deny access to individual tables in this way; for example, by
making the files that represent those tables unavailable to certain users, while
leaving the rest of the files accessible. However, the database servers are not
designed with tricks of this kind in mind. When an unauthorized user tries
to query one of the tables, the database server probably returns an error mes-
sage about not being able to locate a file. This may confuse users.

 Single-User Systems

Typical single-user systems have few software controls on file access; you can
only make a database inaccessible to others by writing it on a disk that you
can detach from the machine and keep locked.

None of these techniques apply when you use the IBM Informix OnLine data-
base server. It controls its own disk space at the device level, bypassing the
file-access mechanisms of the operating system.
11-4 Security, Stored Procedures, and Views

Granting Privileges
Securing Confidential Data
No matter what access controls the operating system gives you, when the
contents of an entire database are highly sensitive you might not want to
leave it on a public disk fixed to the machine. You can circumvent normal
software controls when the data must be secure.

When the database is not being used by you or another authorized person, it
does not have to be available on-line. You can make it inaccessible to every-
one in several ways, with varying degrees of inconvenience:

• Detach the physical medium from the machine and take it away. If the
disk itself is not removable, the disk drive might be removable.

• Copy the database directory to tape and take possession of the tape.

• Copy the database files using an encryption utility. Keep only the
encrypted version.

In the latter two cases, after making the copies you must remember to erase
the original database files using a program that overwrites an erased file with
null data.

Instead of removing the entire database directory, you can copy and then
erase the files that represent individual tables. However, do not overlook the
fact that index files contain copies of the data from the indexed column or col-
umns. Remove and erase the index files as well as the table files.

Granting Privileges
The authorization to use a database is called a privilege. For example, the
authorization to use a database at all is called the Connect privilege, while the
authorization to insert a row into a table is called the Insert privilege. You
control the use of a database by granting these privileges to other users, or by
revoking them.
Security, Stored Procedures, and Views 11-5

Granting Privileges
Privileges are designed in two groups: one group affects the entire database
and the other group relates to individual tables.

Database-Level Privileges
The three levels of database privilege provide an overall means of controlling
who accesses a database.

Connect Privilege

The least of the privilege levels is Connect, which gives a user the basic ability
to query and modify tables. Users with Connect privilege can perform the
following functions:

• Execute the SELECT, INSERT, UPDATE, and DELETE statements, provided
that they have the necessary table-level privileges.

• Execute a stored procedure, provided that they have the necessary table-
level privileges.

• Create views, provided that they are permitted to query the tables on
which the views are based.

• Create temporary tables and create indexes on the temporary tables.

Connect privilege is necessary before users can access a database at all. Ordi-
narily, in a database that does not contain highly sensitive or private data,
you GRANT CONNECT TO PUBLIC shortly after creating the database.

The Users and the Public

Privileges are granted to single users by name, or to all users under the
name of PUBLIC. Any grant to the public serves as a default privilege.

Prior to executing a statement, the database server determines whether
the user has the necessary privileges. (The information is in the system
catalog; see “Privileges in the System Catalog” on page 11-9.)

The database server looks first for privileges granted specifically to the
requesting user. If it finds such a grant, it takes that information and stops.
If there has been no grant to that user, the database server looks for privi-
leges granted to public. If it finds a relevant one, it uses that.

Thus, you can set a minimum level of privilege for all users by granting
privileges to public. You can override that in specific cases by granting
higher individual privileges to users
11-6 Security, Stored Procedures, and Views

Granting Privileges
If you do not grant Connect privilege to public, the only users who can access
the database through the database server are those to whom you specifically
grant the Connect privilege. If only certain users should have access, this is
your means of providing it to them and denying it to all others.

Resource Privilege

The Resource privilege carries the same authorization as the Connect privi-
lege. In addition, users with the Resource privilege can create new, perma-
nent tables, indexes, and stored procedures, thus permanently allocating disk
space.

Database Administrator Privilege

The highest level of database privilege is Database Administrator, or DBA.
When you create a database, you are automatically the administrator. Hold-
ers of the DBA privilege can perform these functions:

• Execute the DROP DATABASE, START DATABASE, and ROLLFORWARD
DATABASE commands.

• Alter the NEXT SIZE (but no other attribute) of the system catalog tables,
and insert, delete, or update rows of any system catalog table except
systables.

Warning: Although users with DBA privilege can modify the system catalog tables,
it is strongly recommend that you do not update, delete, or alter any rows in the sys-
tem catalog tables. Modifying the system catalog tables can destroy the integrity of
the database.

• Drop or alter any object regardless of who owns it.

• Create tables, views, and indexes to be owned by other users.

• Grant database privileges, including DBA privilege, to another user.

Ownership Rights
The database, and every table, view, index, procedure, and synonym in it, has
an owner. The owner of an object is usually the person who created it,
although a user with DBA privilege can create objects to be owned by others.

The owner of an object has all rights to that object, and can alter or drop it
without needing additional privileges.
Security, Stored Procedures, and Views 11-7

Granting Privileges
Table-Level Privileges
You can apply seven privileges, table by table, to allow non-owners the priv-
ileges of owners. Four of them—the Select, Insert, Delete, and Update privi-
leges—control access to the contents of the table. The Index privilege controls
index creation. The Alter privilege controls the authorization to change the
table definition. The References privilege controls the authorization to spec-
ify referential constraints on a table.

In an ANSI-compliant database, only the table owner has any privileges. In
other databases, the database server, as part of creating a table, automatically
grants all table privileges—except Alter and References—to public. This
means that a newly created table is accessible to any user with Connect priv-
ilege. If this is not what you want—if there are users with Connect privilege
who should not be able to access this table—you must revoke all privileges
on the table from public after you create the table.
11-8 Security, Stored Procedures, and Views

Granting Privileges
Access Privileges

Four privileges govern how users can access a table. As the owner of the
table, you can grant or withhold these privileges independently:

• Select privilege allows selection, including selecting into temporary
tables.

• Insert privilege allows a user to add new rows.

• Update privilege allows a user to modify existing rows.

• Delete privilege allows a user to delete rows.

Select privilege is necessary for a user to retrieve the contents of a table. How-
ever, Select privilege is not a precondition for the other privileges. A user can
have Insert or Update privileges even when lacking Select privilege.

Privileges in the System Catalog

Privileges are recorded in the system catalog tables. Any user with Con-
nect privilege can query the system catalog tables to determine what
privileges have been granted and to whom.

Database privileges are recorded in the sysusers table, in which the pri-
mary key is user-id and the only other column contains a single character
C, R, or D for the privilege level. A grant to the keyword of PUBLIC is
reflected as a user name of public (lowercase).

Table-level privileges are recorded in systabauth, which uses a compos-
ite primary key of the table number, grantor, and grantee. In the tabauth
column, the privileges are encoded in a six-letter list as follows:

A hyphen means an ungranted privilege, so that a grant of all privileges
is shown as su-idxar while -u------ shows a grant of only Update.
The code letters are normally lowercase, but they are uppercase when the
keywords WITH GRANT OPTION are used in the GRANT statement.

When an asterisk appears in the third position, some column-level priv-
ilege exists for that table and grantee. The specific privilege is recorded in
syscolauth. Its primary key is a composite of the table number, the
grantor, the grantee, and the column number. The only attribute is a
three-letter list showing the type of privilege: s, u, or r.

su-idxarunconditional Select

unconditional Update

* if column privilege granted

Insert

Delete

Index

Alter
References
Security, Stored Procedures, and Views 11-9

Granting Privileges
For example, your application might have a usage table. Every time a certain
program is started, it inserts a row into the usage table to document that it
was used. Before the program terminates, it updates that row to show how
long it ran and perhaps to record counts of work performed by its user.

You want any user of the program to be able to insert and update rows in this
usage table, so you grant Insert and Update privileges on it to public. How-
ever, you might grant Select privilege on it to only a few.

Index, Alter, and References Privileges

Index privilege permits its holder to create and alter indexes on the table.
Index privilege, like Select, Insert, Update, and Delete privileges, is granted
automatically to public when a table is created.

You can grant Index privilege to anyone, but to exercise the ability the user
must also hold the Resource database privilege. So, although the Index priv-
ilege is granted automatically (except in ANSI-compliant databases), users
who only have Connect privilege to the database are not able to exercise their
Index privilege. This is reasonable since an index can fill a large amount of
disk space.

Alter privilege permits its holder to use the ALTER TABLE statement on the
table, including the power to add and drop columns, reset the starting point
for SERIAL columns, and so on. You should grant Alter privilege only to users
who understand the data model very well, and whom you trust to exercise
their power very carefully.

The References privilege allows you to impose referential constraints on a
table. As with Alter, you should only grant the References privilege to users
who understand the data model very well.

Column-Level Privileges

You can qualify the Select, Update, and References privileges with the names
of specific columns. This allows you to grant very specific access to a table:
you can permit a user to see only certain columns, you can allow a user to
update only certain columns, or you can allow a user to impose referential
constraints on certain columns.
11-10 Security, Stored Procedures, and Views

Granting Privileges
Using IBM Informix OnLine (so that table data only can be inspected through
a call to the database server), this feature solves the problem posed earlier:
that only certain users should know the salary, performance review, or other
sensitive attributes of an employee. To make the example specific, suppose
there is a table of employee data defined as shown in Figure 11-1.

CREATE TABLE hr_data
(
emp_key INTEGER,
emp_name CHAR(40),
hire_date DATE,
dept_num SMALLINT,
user-id CHAR(18),
salary DECIMAL(8,2)
performance_level CHAR(1),
performance_notes TEXT
)

Figure 11-1 A table of confidential employee information

Since this table contains sensitive data, you execute the following statement
immediately after creating it:

REVOKE ALL ON hr_data FROM PUBLIC

For selected persons in the Human Resources department and for all manag-
ers, you execute a statement such as this one:

GRANT SELECT ON hr_data TO harold_r

In this way, you permit certain users to view all columns. (The final section
of this chapter discusses a way to limit the view of managers to only their
own employees.) For the first-line managers who carry out performance
reviews, you could execute a statement like the following one:

GRANT UPDATE (performance_level, performance_notes)
ON hr_data TO wallace_s, margot_t
Security, Stored Procedures, and Views 11-11

Granting Privileges
This statement permits the managers to enter their evaluations of their
employees. Only for the manager of the Human Resources department, or
whoever is trusted to alter salary levels, would you execute a statement such
as this one:

GRANT UPDATE (salary) ON hr_data to willard_b

For the clerks in the Human Resources department, you could execute a
statement like this one:

GRANT UPDATE (emp_key, emp_name, hire_date, dept_num)
ON hr_data TO marvin_t

This statement gives certain users the ability to maintain the nonsensitive col-
umns but denies them authorization to change performance ratings or sala-
ries. The person in the MIS department who assigns computer user-ids is the
beneficiary of a statement such as this one:

GRANT UPDATE (user_id) ON hr_data TO eudora_b

On behalf of all users who are allowed to connect to the database but who are
not authorized to see salaries or performance reviews, you execute state-
ments such as this one to permit them to see the nonsensitive data:

GRANT SELECT (emp_key, emp_name, hire_date, dept_num, user-id)
ON hr_data TO george_b, john_s

 Such users can perform queries such as this one:

SELECT COUNT(*) FROM hr_data WHERE dept_num IN (32,33,34)

However, any attempt to execute a query like the following one produces an
error message and no data:

SELECT performance_level FROM hr_data
WHERE emp_name LIKE "*Smythe"
11-12 Security, Stored Procedures, and Views

Granting Privileges
Procedure-Level Privileges
You can apply the Execute privilege on a procedure to authorize non-owners
to run a procedure. If you create a procedure in a database that is not ANSI-
compliant, the default procedure-level privilege is Public; you do not need to
grant Execute privilege to specific users unless you have first revoked it. If
you create a procedure in an ANSI-compliant database, no other users have
Execute privilege by default; you must grant specific users Execute privilege.
The following example grants Execute privilege to the user orion so that
orion can use the stored procedure named read-address:

GRANT EXECUTE ON read_address TO orion;

Procedure-level privileges are recorded in the sysprocauth system catalog
table. The sysprocauth table uses a primary key of the procedure number,
grantor, and grantee. In the procauth column, the execute privilege is indi-
cated by a lowercase letter “e.” If the execute privilege was granted with the
WITH GRANT option, the privilege is represented by an uppercase letter “E.”

Automating Privileges
It might seem that this design forces you to execute a tedious number of
GRANT statements when you first set up the database. Furthermore, privi-
leges require constant maintenance as people change their jobs. For example,
if a clerk in Human Resources is terminated, you want to revoke the Update
privilege as soon as possible; otherwise you risk the unhappy employee exe-
cuting a statement like the following one:

UPDATE hr_data
SET (emp_name, hire_date, dept_num) = (NULL, NULL, 0)

Less dramatic, but equally necessary, changes of privilege are required daily
or even hourly, in any model that contains sensitive data. If you anticipate
this need, you can prepare some automated tools to help in the maintenance
of privileges.
Security, Stored Procedures, and Views 11-13

Granting Privileges
Your first step should be to specify privilege classes that are based on the jobs
of the users, not on the structure of the tables. For example, a first-line man-
ager needs the following privileges:

• Select and limited Update privilege on the hypothetical hr_data table

• Connect privilege to this and other databases

• Some degree of privilege on several tables in those databases

When the manager is promoted to a staff position or sent to a field office, you
must revoke all those privileges and grant a new set of privileges.

Define the privilege classes you support, and for each class specify the data-
bases, tables, and columns to which you must give access. Then devise two
automated procedures for each class: one to grant the class to a user, and one
to revoke it.

Automating with IBM Informix 4GL

The mechanism you use depends on your operating system and other tools.
If you are a programmer, the most flexible tool is probably IBM Informix 4GL.
4GL makes it quite easy to program a simple user interaction, as in this
fragment:

DEFINE mgr_id char(20)
PROMPT "What is the user-id of the new manager? " FOR mgr_id
CALL table_grant ("SELECT", "hr_data", mgr_id)

Unfortunately, although IBM Informix 4GL allows you to mix GRANT and
REVOKE statements freely with other program statements, it does not permit
you to create parameters from them from program variables. To customize a
GRANT statement with a user-id taken from user input, the program must
build the statement as a string, prepare it with a PREPARE statement, and exe-
cute it with an EXECUTE statement. (These statements are discussed in detail
in Chapter 6, where the following example is analyzed in detail.)
11-14 Security, Stored Procedures, and Views

Granting Privileges
Figure 11-2 shows one possible definition of the 4GL function table_grant()
that is invoked by the CALL statement in the preceding example.

FUNCTION table_grant (priv_to_grant, table_name, user_id)
DEFINE priv_to_grant char(100),{may include column-list}

table_name CHAR(20),
user_id CHAR(20),
grant_stmt CHAR(200)

LET grant_stmt =" GRANT ", priv_to_grant,
" ON ", table_name,
" TO ", user_id

WHENEVER ERROR CONTINUE
PREPARE the_grant FROM grant_stmt
IF status = 0 THEN

EXECUTE the_grant
END IF
IF status <> 0 THEN

DISPLAY "Sorry, got error #", status, "attempting:"
DISPLAY " ", grant_stmt

END IF
WHENEVER ERROR STOP

END FUNCTION

Figure 11-2 A 4GL function that builds, prepares, and executes a GRANT statement

Automating with a Command Script

Your operating system probably supports automatic execution of command
scripts. In most operating environments, DB-Access and IBM Informix SQL,
the interactive SQL tools, accept commands and SQL statements to execute
from the command line. You can combine these two features to automate
privilege maintenance.

The details depend on your operating system and the version of DB-Access
or IBM Informix SQL that you are using. In essence, you want to create a com-
mand script that performs the following functions:

• Takes as its parameter a user-id whose privileges are to be changed

• Prepares a file of GRANT or REVOKE statements customized to contain
that user-id

• Invokes DB-Access or IBM Informix SQL with parameters that tell it to
select the database and execute the prepared file of GRANT or REVOKE
statements

In this way, you can reduce the change of the privilege class of a user to one
or two commands.
Security, Stored Procedures, and Views 11-15

Using Stored Procedures
Using Stored Procedures
A stored procedure is a program written using the Informix Stored Procedure
Language (SPL). Once you create a procedure, it is stored in an executable for-
mat in the database. It is a database object like a table, so anyone with appro-
priate privileges on the procedure can execute it. Stored procedures add
value to the simple SQL code that they contain. Once written, they are simple
to execute. They are also very efficient since they are stored in executable
format.

You can use a stored procedure to control access to individual tables and col-
umns in the database. You can accomplish various degrees of access control
through a procedure. A powerful feature of SPL is the ability to designate a
stored procedure as a DBA-privileged procedure. Writing a DBA-privileged
procedure, you can allow users who have few or no table privileges to have
DBA privileges when they execute the procedure. In the procedure, users can
carry out very specific tasks with their temporary DBA privilege. The DBA-
privileged feature allows you to accomplish the following tasks:

• You can restrict how much information individual users can read from a
table.

• You can restrict all the changes made to the database and ensure that
entire tables are not emptied or changed accidentally.

• You can monitor all of a certain class of changes made to a table, such as
deletions or insertions.

• You can restrict all object creation (data definition) to occur within a
stored procedure so that you have complete control over how tables,
indexes, and views are built.

Creating and Executing Stored Procedures
To write a stored procedure, put the SQL statements that you want to be run
as part of the procedure inside the CREATE PROCEDURE statement. You can
also use the additional SPL statements to control the flow of operation within
the statement. These additional statements include IF THEN ELSE, FOR, and
others. (Stored Procedures and SPL are described fully in the IBM Informix
Guide to SQL: Reference.)
11-16 Security, Stored Procedures, and Views

Using Stored Procedures
For example, if you want a user to be able to read the name and address of a
customer, your stored procedure looks something like the one shown in
Figure 11-3.

CREATE PROCEDURE read_address (lastname CHAR(15))
RETURNING CHAR(15), CHAR(15), CHAR(20), CHAR(15),CHAR(2), CHAR(5);

DEFINE p_lname,p_fname, p_city CHAR(15);
DEFINE p_add CHAR(20);
DEFINE p_state CHAR(2);
DEFINE p_zip CHAR(5);

SELECT fname, lname, address, city, state, zipcode
INTO p_fname, p_lname, p_city, p_state, p_zip
FROM customer
WHERE lname = lastname;

RETURN p_fname, p_lname, p_city, p_state, p_zip;

END PROCEDURE;

Figure 11-3 Procedure to read from the customer table

Stored procedures can simplify things for database users; they do not have to
learn some of the complicated parts of SQL. Instead, the complicated activi-
ties can be simplified by someone who knows SQL—someone who writes a
stored procedure to take care of an activity and lets others know that the pro-
cedure is stored in the database and that they can execute it. You can use pro-
cedures to your advantage by hiding the SQL functionality inside them and,
in addition, controlling what happens to the database and the data in the
database.

To execute, or run, a procedure, you use the EXECUTE PROCEDURE statement
from DB-Access or from an embedded SQL program. To run the read_address
procedure to see the full name and address of a customer named “Putnam,”
you use the following statement:

EXECUTE PROCEDURE read_address ("Putnum");

The following sections describe four ways to control access to data using a
stored procedure.
Security, Stored Procedures, and Views 11-17

Using Stored Procedures
Restricting Reads of Data
The procedure in Figure 11-3 hides the SQL syntax from users, but it requires
that users have SELECT privilege on the customer table. If you want to restrict
what users can select, you can write your procedure to work in the following
environment:

• You are the DBA of the database.

• The users have CONNECT privilege to the database. They do not have
SELECT privilege on the table.

• Your stored procedure (or set of stored procedures) is created using the
DBA keyword.

• Your stored procedure (or set of stored procedures) reads from the table
for users.

If you want users only to read the name, address, and telephone number of a
customer, you can modify the procedure in Figure 11-3 as shown in
Figure 11-4.

CREATE DBA PROCEDURE read_customer(cnum INT)
RETURNING CHAR(15), CHAR(15), CHAR(18);

DEFINE p_lname,p_fname CHAR(15);
DEFINE p_phone CHAR(18);

SELECT fname, lname, phone
INTO p_fname, p_lname, p_phone
FROM customer
WHERE customer_num = cnum;

RETURN p_fname, p_lname, p_phone;

END PROCEDURE;

Figure 11-4 Stored procedure to restrict reads on customer data
11-18 Security, Stored Procedures, and Views

Using Stored Procedures
Restricting Changes to Data
Using stored procedures, you can restrict changes made to a table. Simply
channel all changes through a stored procedure. The stored procedure makes
the changes, rather than users making the changes directly. If you want to
limit users to deleting one row at a time to ensure that they do not acciden-
tally remove all the rows in the table, set up the database with the following
privileges:

• You are the DBA of the database.

• All the users have Connect privilege to the database. They may or may
not have Resource privilege. They do not have Delete (for this example)
privilege on the table being protected.

• Your stored procedure is created using the DBA keyword.

• Your stored procedure performs the deletion.

Write a stored procedure similar to the one in Figure 11-5, which deletes
rows from the customer table using a WHERE clause with the customer_num
provided by the user.

CREATE DBA PROCEDURE delete_customer(cnum INT)

DELETE FROM customer
WHERE customer_num = cnum;

END PROCEDURE;

Figure 11-5 Stored procedure to delete a row

Monitoring Changes to Data
Using stored procedures, you can create a record of changes made to a data-
base. You can record changes made by a particular user, or you can make a
record of each time a change is made.

You can monitor all the changes made to the database by a single user. Simply
channel all changes through stored procedures that keep track of changes
made by each user. If you want to record each time the user acctclrk modifies
the database, set up the database with the following privileges:

• You are the DBA of the database.

• All of the other users have Connect privilege to the database. They may
or may not have Resource privilege. They do not have Delete (for this
example) privilege on the table being protected.

• Your stored procedure is created using the DBA keyword.
Security, Stored Procedures, and Views 11-19

Using Stored Procedures
• Your stored procedure performs the deletion and records that a change
has been made by a certain user.

Write a stored procedure similar to the one in Figure 11-6, which updates a
table using a customer number provided by the user. If the user happens to
be acctclrk, a record of the deletion is put in the file “updates.”

CREATE DBA PROCEDURE delete_customer(cnum INT)

DEFINE username CHAR(8);

DELETE FROM customer
WHERE customer_num = cnum;

IF username = "acctclrk" THEN
SYSTEM "echo Delete from customer by acctclrk >> /mis/records/updates" ;

ENF IF
END PROCEDURE;

Figure 11-6 Stored procedure to delete rows and record changes made by a certain user

You can monitor all the deletions made through the procedure by removing
the IF statement and making the SYSTEM statement more general. If you
change the procedure in Figure 11-6 to record all deletions, it looks like the
procedure in Figure 11-6.

CREATE DBA PROCEDURE delete_customer(cnum INT)

DEFINE username CHAR(8);
LET username = USER ;
DELETE FROM tbname WHERE customer_num = cnum;

SYSTEM
"echo Deletion made from customer table, by "||username ||">>/hr/records/deletes";

END PROCEDURE;

Figure 11-7 Stored procedure to delete rows and record user

Restricting Object Creation
To put restraints on what and how objects are built, use stored procedures
within the following setting.

• You are the DBA of the database.

• All the other users have Connect privilege to the database. They do not
have Resource privilege.

• Your stored procedure (or set of stored procedures) is created using the
DBA keyword.
11-20 Security, Stored Procedures, and Views

Using Views
• Your stored procedure (or set of stored procedures) creates tables,
indexes, and views however you defined them. You might use such a pro-
cedure to set up a training database environment.

Your procedure might include the creation of one or more tables and associ-
ated indexes, as shown in Figure 11-8.

CREATE DBA PROCEDURE all_objects()

CREATE TABLE learn1 (intone SERIAL, inttwo INT NOT NULL, charcol CHAR(10))
CREATE INDEX learn_ix ON learn1 (inttwo).
CREATE TABLE toys (name CHAR(15) NOT NULL UNIQUE,

description CHAR(30), on_hand INT);
END PROCEDURE;

Figure 11-8 DBA-mode procedure that adds tables and indexes to the database

To use the all_objects procedure to control additions of columns to tables,
revoke Resource privilege on the database from all users. When users try to
create a table, index, or view using an SQL statement outside your procedure,
they are not able to do so. When users execute the procedure, they have tem-
porary DBA privilege so the CREATE TABLE statement, for example, succeeds,
and you are guaranteed that every column added has a constraint placed on
it. In addition, objects created by users are owned by that user. For the
all_objects procedure, the two tables and the index are owned by whoever
executed the procedure.

Using Views
A view is a synthetic table. You can query it as if it were a table, and in some
cases you can update it as if it were a table. However, it is not a table, rather,
it is a synthesis of the data that exists in real tables and other views.

The basis of a view is a SELECT statement. When you create a view, you define
a SELECT statement that generates the contents of the view at the time the
view is accessed. A user also queries a view using a SELECT statement. The
database server merges the SELECT statement of the user with the one
defined for the view and then actually performs the combined statements.

The result has the appearance of a table; it is enough like a table that a view
even can be based on other views, or on joins of tables and other views.
Security, Stored Procedures, and Views 11-21

Using Views
Since you write a SELECT statement that determines the contents of the view,
you can use views for any of these purposes:

• To restrict users to particular columns of tables

You name only permitted columns in the select list in the view.

• To restrict users to particular rows of tables

You specify a WHERE clause that returns only permitted rows.

• To constrain inserted and updated values to certain ranges

You can use the WITH CHECK OPTION (discussed on page 11-27) to
enforce constraints.

• To provide access to derived data without having to store redundant data
in the database

You write the expressions that derive the data into the select list in the
view. Each time the view is queried, the data is derived anew. The derived
data is always up to date, yet no redundancies are introduced into the
data model.

• To hide the details of a complicated SELECT statement

You hide complexities of a multitable join in the view so that neither users
nor application programmers need to repeat them.

Creating Views
The following example creates a view based on a table in the demonstration
database:

CREATE VIEW name_only AS
SELECT customer_num, fname, lname FROM customer

The view exposes only three columns of the table. Because it contains no
WHERE clause, the view does not restrict the rows that can appear.

The following example is based on the join of two tables:

CREATE VIEW full_addr AS
SELECT address1, address2, city, state.sname, zipcode

FROM customer, state
WHERE customer.state = state.code
11-22 Security, Stored Procedures, and Views

Using Views
The table of state names reduces the redundancy of the database; it permits
lengthy names such as Minnesota to be stored only once. This full_addr view
lets users retrieve the address as if the full state name were stored in every
row. The following two queries are equivalent:

SELECT * FROM full_addr WHERE customer_num = 105

SELECT address1, address2, city, state.sname, zipcode
FROM customer, state
WHERE customer.state = state.code

AND customer_num = 105

However, you must use care when you define views that are based on joins.
Such views are not modifiable; that is, you cannot use them with UPDATE,
DELETE, or INSERT statements. (Modifying through views is covered begin-
ning on page 11-25.)

The following example restricts the rows that can be seen in the view:

CREATE VIEW no_cal_cust AS
SELECT * FROM customer WHERE NOT state = "CA"

This view exposes all columns of the customer table, but only certain rows.
The next example is a view that restricts users to rows that are relevant to
them:

CREATE VIEW my_calls AS
SELECT * FROM cust_calls WHERE user_id = USER

All the columns of the cust_calls table are available, but only in those rows
that contain the user-ids of the users who execute the query.

Duplicate Rows from Views

It is possible for a view to produce duplicate rows, even when the underlying
table has only unique rows. If the view SELECT statement can return dupli-
cate rows, then the view itself can appear to contain duplicate rows.

You can prevent this problem in two ways. One way is to specify DISTINCT
in the select list in the view. However, that makes it impossible to modify
through the view. The alternative is to always select a column or group of
Security, Stored Procedures, and Views 11-23

Using Views
columns that is constrained to be unique. (You can be sure only unique rows
are returned if you select the columns of a primary key or of a candidate key.
Primary and candidate keys are discussed in Chapter 8.)

Restrictions on Views

Since a view is not really a table, it cannot be indexed, and it cannot be the
object of such statements as ALTER TABLE and RENAME TABLE. The columns
of a view cannot be renamed with RENAME COLUMN. To change anything
about the definition of a view, you must drop the view and re-create it.

Because it must be merged with the user’s query, the SELECT statement on
which a view is based cannot contain any of the following clauses:

INTO TEMP The user’s query might contain INTO TEMP; if the view con-
tains it also, the data would not know where to go.

UNION The user’s query might contain UNION; indeed the query on
the view might appear in a UNION clause in the user’s query.
No meaning has been defined for nested UNION clauses.

ORDER BY The user’s query might contain ORDER BY. If the view con-
tains it also, the choice of columns or sort directions could be
in conflict.

When the Basis Changes

The tables and views on which a view is based can change in several ways.
The view automatically reflects most of the changes.

When a table or view is dropped, any views in the same database that depend
on it are automatically dropped.

The only way to alter the definition of a view is to drop and re-create it. There-
fore, if you change the definition of a view on which other views depend, you
must also re-create the other views (since they all have been dropped).

When a table is renamed, any views in the same database that depend on it
are modified to use the new name. When a column is renamed, views in the
same database that depend on that table are updated to select the proper col-
umn. However, the names of columns in the views themselves are not
changed. For an example of this, recall the following view on the customer
table:

CREATE VIEW name_only AS
SELECT customer_num, fname, lname FROM customer
11-24 Security, Stored Procedures, and Views

Using Views
Now suppose that the customer table is changed in the following way:

RENAME COLUMN customer.lname TO surname

To select last names of customers directly, you must now select the new col-
umn name. However, the name of the column as seen through the view is
unchanged. The following two queries are equivalent:

SELECT fname, surname FROM customer

SELECT fname, lname FROM name_only

When you alter a table by dropping a column, views are not modified. If they
are used, error -217 (Column not found in any table in the query)
occurs. The reason views are not dropped is that you can change the order of
columns in a table by dropping a column and then adding a new column of
the same name. If you do this, views based on that table continue to work.
They retain their original sequence of columns.

IBM Informix OnLine permits you to base a view on tables and views in exter-
nal databases. Changes to tables and views in other databases are not
reflected in views. Such changes might not be apparent until someone que-
ries the view and gets an error because an external table changed.

Modifying Through a View
It is possible to modify views as if they were tables. Some views can be mod-
ified and others not, depending on their SELECT statements. The restrictions
are different depending on whether you use DELETE, UPDATE, or INSERT
statements.

No modification is possible on a view when its SELECT statement contains
any of the following features:

• A join of two or more tables

Many anomalies arise if the database server tries to distribute modified
data correctly across the joined tables.

• An aggregate function or the GROUP BY clause

The rows of the view represent many combined rows of data; the data-
base server cannot distribute modified data into them.
Security, Stored Procedures, and Views 11-25

Using Views
• The DISTINCT keyword or its synonym UNIQUE

The rows of the view represent a selection from among possibly many
duplicate rows; the database server cannot tell which of the original rows
should receive the modification.

When a view avoids all these things, each row of the view corresponds to
exactly one row of one table. Such a view is modifiable. (Of course, particular
users can only modify a view if they have suitable privileges. Privileges on
views are discussed beginning on page 11-29.)

Deleting Through a View

A modifiable view can be used with a DELETE statement as if it were a table.
The database server deletes the proper row of the underlying table.

Updating a View

You can use a modifiable view with an UPDATE statement as if it were a table.
However, a modifiable view can still contain derived columns, that is, col-
umns that are produced by expressions in the select list of the CREATE VIEW
statement. You cannot update derived columns (sometimes called virtual
columns).

When a column is derived from a simple arithmetic combination of a column
with a constant value (for example, order_date+30), the database server
can, in principle, figure out how to invert the expression (in this case, by sub-
tracting 30 from the update value) and perform the update. However, much
more complicated expressions are possible, most of which cannot easily be
inverted. Therefore, the database server does not support updating any
derived column.

Figure 11-9 shows a modifiable view that contains a derived column, and an
UPDATE statement that can be accepted against it.

CREATE VIEW call_response(user_id,received,resolved,duration)AS
SELECT user_id,call_dtime,res_dtime,res_dtime-call_dtime

FROM cust_calls
WHERE user_id = USER

UPDATE call_response SET resolved = TODAY
WHERE resolved IS NULL

Figure 11-9 A modifiable view and an UPDATE statement
11-26 Security, Stored Procedures, and Views

Using Views
The duration column of the view cannot be updated because it represents an
expression (the database server cannot, even in principle, decide how to dis-
tribute an update value between the two columns named in the expression).
But as long as no derived columns are named in the SET clause, the update
can be performed as if the view were a table.

A view can return duplicate rows even though the rows of the underlying
table are unique. You cannot distinguish one duplicate row from another. If
you update one of a set of duplicate rows (for example, by using a cursor to
update WHERE CURRENT), you cannot be sure which row in the underlying
table receives the update.

Inserting into a View

You can insert rows into a view provided that the view is modifiable and con-
tains no derived columns. The reason for the second restriction is that an
inserted row must provide values for all columns, and the database server
cannot tell how to distribute an inserted value through an expression. An
attempt to insert into the call_response view shown in Figure 11-9 would
fail.

When a modifiable view contains no derived columns, you can insert into it
as if it were a table. However, the database server uses null as the value for
any column that is not exposed by the view. If such a column does not allow
nulls, an error occurs and the insert fails.

Using WITH CHECK OPTION

It is possible to insert into a view a row that does not satisfy the conditions of
the view; that is, a row that is not visible through the view. It is also possible
to update a row of a view so that it no longer satisfies the conditions of the
view.

If this is improper, you can add the clause WITH CHECK OPTION when you
create the view. This clause asks the database server to test every inserted or
updated row to ensure that it meets the conditions set by the WHERE clause
of the view. The database server rejects the operation with an error if the con-
ditions are not met.
Security, Stored Procedures, and Views 11-27

Using Views
In Figure 11-9, the view named call_response was defined as follows:

CREATE VIEW call_response(user_id,received,resolved,duration)AS
SELECT user_id,call_dtime,res_dtime,res_dtime-call_dtime

FROM cust_calls
WHERE user_id = USER

It is possible to update the user_id column of the view, as in this example:

UPDATE call_response SET user_id = "lenora"
WHERE received BETWEEN TODAY AND TODAY-7

The view requires rows in which user_id equals USER. If this update is per-
formed by a user named tony, the updated rows vanish from the view. How-
ever, you can create the view as shown in this example:

CREATE VIEW call_response(user_id,received,resolved,duration)AS
SELECT user_id,call_dtime,res_dtime,res_dtime-call_dtime

FROM cust_calls
WHERE user_id = USER

WITH CHECK OPTION

Then the preceding update by tony is rejected as an error.

You can use the WITH CHECK OPTION feature to enforce any kind of data
constraint that can be stated as a Boolean expression. For example, create a
view of a table in which all the logical constraints on data are expressed as
conditions of the WHERE clause. Then require all modifications to the table to
be made through the view.

CREATE VIEW order_insert AS
SELECT * FROM orders O

WHERE order_date = TODAY -- no back-dated entries
AND EXISTS -- ensure valid foreign key

(SELECT * FROM customer C
WHERE O.customer_num = C.customer_num)

AND ship_weight < 1000 -- reasonableness checks
AND ship_charge < 1000

WITH CHECK OPTION

Because of EXISTS and other tests, all of which are expected to be successful
when retrieving existing rows, this is a most inefficient view for displaying
data from orders. However, if insertions to orders are made only through this
11-28 Security, Stored Procedures, and Views

Privileges and Views
view (and you are not already using integrity constraints to constrain data),
it is impossible to insert a backdated order, an invalid customer number, or
an excessive shipping weight and shipping charge.

Privileges and Views
When you create a view, the database server tests your privileges on the
underlying tables and views. When you use a view, only your privileges with
regard to the view itself are tested.

Privileges When Creating a View
When you create a view, the database server tests to make sure that you have
all the privileges needed to execute the SELECT statement in the view defini-
tion. If you do not, the view is not created.

This test ensures that users cannot gain unauthorized access to a table by cre-
ating a view on the table and querying the view.

After you create the view, the database server grants you, the creator and
owner of the view, at least Select privilege on it. No automatic grant is made
to public as is the case with a newly created table.

The database server tests the view definition to see if the view is modifiable.
If it is, the database server grants you Insert, Delete, and Update privileges
on the view, provided that you also have those privileges on the underlying
table or view. In other words, if the new view is modifiable, the database
server copies your Insert, Delete, and Update privileges from the underlying
table or view, and grants them on the new view. If you had only Insert privi-
lege on the underlying table, you receive only Insert privilege on the view,
and so on.

This test ensures that users cannot use a view to gain access to any privileges
that they did not already have.

Since you cannot alter or index a view, the Alter and Index privileges are
never granted on a view.
Security, Stored Procedures, and Views 11-29

Privileges and Views
Privileges When Using a View
When you attempt to use a view, the database server only tests the privileges
you have been granted on the view. It does not also test your right to access
the underlying tables.

If you created the view, your privileges are the ones noted in the preceding
paragraph. If you are not the creator, you have the privileges that were
granted to you by the creator or someone who had privileges WITH GRANT
OPTION.

The implication of this is that you can create a table and revoke public access
to it. Then you can grant limited access privileges to the table through views.
This can be demonstrated through the previous examples using the hr_data
table. Its definition is repeated in Figure 11-10.

CREATE TABLE hr_data
(
emp_key INTEGER,
emp_name CHAR(40),
hire_date DATE,
dept_num SMALLINT,
user-id CHAR(18),
salary DECIMAL(8,2)
performance_level CHAR(1)
performance_notes TEXT
)

Figure 11-10 A table of confidential employee information (duplicate of Figure 11-1)

In Figure 11-10, the example centered on granting privileges directly on this
table. The following examples take a different approach. Assume that when
the table was created, the following statement was executed:

REVOKE ALL ON hr_data FROM PUBLIC

(This is not necessary in an ANSI-compliant database.) Now you create a
series of views for different classes of users. For those who should have read-
only access to the nonsensitive columns, you create the following view:

CREATE VIEW hr_public AS
SELECT emp_key, emp_name, hire_date, dept_num, user_id

FROM hr_data
11-30 Security, Stored Procedures, and Views

Privileges and Views
Users who are given Select privilege for this view can see nonsensitive data
and update nothing. For the clerks in the Human Resources department who
must enter new rows, you create a different view:

CREATE VIEW hr_enter AS
SELECT emp_key, emp_name, hire_date, dept_num

FROM hr_data

You grant these users both Select and Insert privileges on this view. Because
you, the creator of both the table and the view, have Insert privilege on the
table and the view, you can grant Insert privilege on the view to others who
have no privileges on the table.

On behalf of the clerk in the MIS department who enters or updates new user-
ids, you create still another view:

CREATE VIEW hr_MIS AS
SELECT emp_key, emp_name, user_id

FROM hr_data

This view differs from the previous view in that it does not expose the depart-
ment number and date of hire.

Finally, the managers need access to all columns and need the ability to
update the performance-review data for their own employees only. These
requirements can be met in the following way:

The table hr_data contains a department number and a computer user-id for
each employee. Let it be a rule that the managers are members of the depart-
ments that they manage. Then the following view restricts managers to rows
that reflect only their employees:

CREATE VIEW hr_mgr_data AS
SELECT * FROM hr_data

WHERE dept_num =
(SELECT dept_num FROM hr_data

WHERE user_id = USER)
AND NOT user_id = USER
Security, Stored Procedures, and Views 11-31

Summary
The final condition is required so that the managers do not have update
access to their own row of the table. It is, therefore, safe to grant Update priv-
ilege to managers for this view, but only on selected columns, as in this
statement:

GRANT SELECT, UPDATE (performance_level, performance_notes)
ON hr_mgr_data TO peter_m

Summary
In a database that contains public material, or one that is used only by you
and trusted associates, security is not an important consideration and few of
the ideas in this chapter are needed. But as more and more people are
allowed to use and modify the data, and as the data becomes more and more
confidential, you must spend more time and be ever more ingenious at con-
trolling the way people can approach the data.

The techniques discussed here can be divided into the following two groups:

• Keeping data confidential.

When the database resides in operating system files you can use features
of the operating system to deny access to the database. In any case, you
control the granting of Connect privilege to keep people out of the
database.

When different classes of users have different degrees of authorization,
you must allow them all Connect privilege. You can use table-level priv-
ileges to deny access to confidential tables or columns. Or, you can use a
stored procedure to provide limited access to confidential tables or col-
umns. In addition, you can deny all access to tables and allow it only
through views that do not expose confidential rows or columns.

• Controlling changes to data and database structure.

You safeguard the integrity of the data model by restricting grants of
Resource, Alter, References, and DBA privileges. You ensure that only
authorized persons modify the data by controlling the grants of Delete
and Update privileges, and by granting Update privilege on as few col-
umns as possible. You ensure that only consistent, reasonable data is
entered by granting Insert privilege only on views that express logical
constraints on the data. Alternatively, you can control the insertion and
modification of data, or the modification of the database itself, by limiting
access to constrictive stored procedures.
11-32 Security, Stored Procedures, and Views

Chapter
12

Networks and
Distribution
Chapter Overview 3

Network Configurations 3
The Local Area Network 4
Networking the Database Server 5
Network Transparency 7

Connecting to Data 7
Connecting in the LAN 7
Connecting Through IBM Informix NET 8

The Role of IBM Informix NET 8
Opening a Database 8
Explicit Locations Using File Specifications 9
Explicit Location by Database Server Name 10
Implicit Database Locations 10

Distributed Data 11
Naming External Tables 12
Using Synonyms with External Tables 13
Synonym Chains 14
Modifying External Tables 15

Summary 15

12-2 Networks and Distribution

Chapter Overview
It is easiest to think of the application, the database server, and the data as all
being located in the same computer. But many other arrangements are possi-
ble. In some, the application and the database server are in different comput-
ers, and the data is distributed across several others.

This chapter discusses the possible arrangements at a conceptual level and
points out some of their effects on performance and usability. It covers three
kinds of networks:

• Local area networks (LANs)

• General networks in which applications work with database servers run-
ning in other (generally UNIX) machines.

• Distributed queries as implemented by IBM Informix STAR.

To make a practical computer network work, you must master a multitude of
technical details regarding hardware and software. There are far too many of
these details, and they change too fast, to cover them in this book. Refer to the
manual that accompanies the IBM Informix client server product that you
use.

Network Configurations
Figure 12-1 shows a diagram of the simplest database configuration. The
components of the system are as follows:

• An application program, which includes any program that issues a query.
Besides programs written in IBM Informix 4GL or another language with
embedded SQL, it includes compiled screen forms and reports.

• A database server that receives SQL statements from the application, and
returns selected rows of data to it.

• An operating system that manages the computer file system. Some data-
base servers manage disk space directly.

• A disk device where the tables are actually stored
Networks and Distribution 12-3

Network Configurations
.

Figure 12-1 A simple database configuration

Figure 12-1 describes a wide range of systems. For example, the operating
system could be PC-DOS or MS-DOS, the database server could be
IBM Informix SE, and the program could be written in IBM Informix 4GL.

Or, with one minor change, Figure 12-1 could depict either the UNIX or the
NetWare operating system and the IBM Informix OnLine database server. The
change is the depiction of not one but several application programs running
concurrently, all receiving service from a corresponding database server.

The common theme in these configurations is that all the components run in
the same computer. However, you can divide the system at either of the
points marked A and B in the diagram, insert a layer of software and hard-
ware, and thereby distribute the system to two or more computers.

The Local Area Network
One configuration, in which the division occurs at point A in Figure 12-1, is
the local area network (LAN). In a LAN, users have a computer that contains
an operating system, a database server, and an application. However, the
disks that contain the tables are attached to other computers called file servers,
as shown in Figure 12-2.

The file servers dispense disk files on request to the other machines. The LAN
software makes it seem, for all practical purposes, that the disks of the file
server are attached directly to each user’s computer. The Informix database
engine for PC-DOS and MS-DOS supports this configuration.

The advantage of a LAN is that the database tables are held in a single place
but are still accessible to all users on the network. A LAN can be extended to
serve more users easily and economically.

Operating
System

Database
Server

Application
Program

AB
12-4 Networks and Distribution

Network Configurations
Figure 12-2 Configuration of a LAN

The LAN configuration is at a disadvantage in performance. Any data that
the database server reads must pass over the network from a file server. This
procedure is always slower than access to a local disk. Moreover, the requests
for disk I/O from all users must pass over the network and through the file
server, which can lead to delays when several users are busy at once.

Networking the Database Server
An obvious answer to the problems of the LAN is to split Figure 12-1 at the
point marked B; that is, to move the database server away from the applica-
tion and into the computer to which the disks are attached. That way, only
the processed data—the selected rows that satisfy the query—pass over the
network.

The IBM Informix NET products support this configuration. There are several
IBM Informix NET products, each one for a different type of network. A typi-
cal configuration is depicted in Figure 12-3.

Database
Server

Application
Program

Operating
System

File
Server

Database
Server

Application
Program

Operating
System
Networks and Distribution 12-5

Network Configurations
A network can include one or more computers that contain database servers.
Figure 12-3 shows one computer. It contains a database server that might be
IBM Informix SE or IBM Informix OnLine. It is possible to have different data-
base servers on a network in different machines. It is also possible to have
more than one copy of each database server on the network, in the same
machine, or in different machines.

Each database server is a network service. The way a network service is
defined and made available to the network depends on the type of
client/server software in use.

Figure 12-3 Typical configuration of IBM Informix NET products

Figure 12-3 depicts two machines that contain application programs. The
upper one contains several applications. This machine, since it supports mul-
tiple concurrent programs, must be running an operating system such as
UNIX.

Application
Program

Application
Program

•
•
•

Application
Program

IBM Informix NET

Client/Server

IBM Informix NET
 Product

IBM Informix
Database Server

Product

 IBM Informix

Product

Product
12-6 Networks and Distribution

Connecting to Data
The lower machine in Figure 12-3 contains only one application. It can be
running PC-DOS or MS-DOS. All of these configurations are supported by a
version of IBM Informix NET.

Network Transparency
It is important to realize that in all of these network configurations the appli-
cation programs are basically unchanged. There is nothing special about a
report, form, or program that works with a network database.

Except for one possible change discussed in the next section (the use of data-
base server names when referring to databases), it is possible to run an appli-
cation against a local database and later run the identical application against
a database in another machine. The program runs equally well in either case.
In fact, as long as the data model is the same, a program cannot tell the dif-
ference between a local database server and a distant one.

Connecting to Data
When the application and its data are moved to separate computers, two
questions immediately arise: How can they be connected again? How does
the application find its data that is now somewhere else?

Connecting in the LAN
The LAN is designed to make the disks attached to file servers appear to be
attached to the user’s machine. As a result, databases and tables are found
just as they normally are, by specifying the disk and directory where they are
kept.

The database server uses an environment variable named DBPATH to find a
database. If the path to a database specifies a disk that is elsewhere on the net-
work, the database server uses it just the same and never knows the
difference.
Networks and Distribution 12-7

Connecting to Data
Informix DOS engines allow you to create tables in specific locations, as in the
following example:

CREATE TABLE net_tab
(
col_1 integer,
col_2 float
)
IN "F:\tables"

This feature gives you the ability to place a table on a specific disk. You can,
for instance, put different tables on different file servers to balance network
load.

Note: The IBM Informix UNIX database servers allow you to create a table in a par-
ticular pathname (IBM Informix SE) or dbspace (IBM Informix OnLine), but all
tables must be on disks attached to the computer in which the database server is
running.

Connecting Through IBM Informix NET
IBM Informix NET products support a variety of network types, operating
systems, and database servers. While the basic method for connecting an
application to its data is constant, there are special cases for every combina-
tion of operating system, network, and database server. Only the basic ideas
are covered here. Consult the document for the IBM Informix NET product
you are using for details.

The Role of IBM Informix NET

When an application begins execution, it uses an environment variable to
find the database server to use. Before IBM Informix NET is installed, the
application finds a database server. Afterward, it finds IBM Informix NET
instead. IBM Informix NET monitors the requests of the application and
passes them to the actual database server. The application is not aware of this
extra layer of software.

Opening a Database

Before it can do anything else, an application must open a database. This is
most often done by executing the DATABASE statement. More rarely, it is
done with the CREATE DATABASE statement, which creates a database and
then opens it. Only a few other SQL statements, such as DROP DATABASE, can
be executed until a database is opened.
12-8 Networks and Distribution

Connecting to Data
At the moment of opening a database, IBM Informix NET determines the loca-
tion of the database and finds the database server that controls it. From infor-
mation in the DATABASE or CREATE DATABASE statement, and from the
contents of the DBPATH environment variable, IBM Informix NET deduces
whether the database is located in the same machine as the application, or in
a different machine. If it is in a different machine, IBM Informix NET estab-
lishes communication with a database server in that machine, and then acts
as a conduit to pass requests and data between the application and the data-
base server.

Explicit Locations Using File Specifications

You can write the location of a database as part of the database name. The fol-
lowing example might be written in an application running on a DOS
machine:

DATABASE "D:\DBS\TESTDB"

Here is a similar example from a UNIX-based application. (You can tell
because the slashes lean the other way.)

DATABASE "/usr/maxtel/testdb"

The database is probably local. IBM Informix NET starts a copy of the
IBM Informix SE database server in this machine, and the application uses
that database server.

On some UNIX systems, a DATABASE statement with the identical form can
point to a different machine, as follows:

DATABASE "/subtle/dbdir/testdb"

In this example, you must suppose that the UNIX file system named subtle is
physically attached to a different machine. It is mounted to the application
machine using the Network File System (NFS) feature or the Remote File
Sharing (RFS) feature. Nothing in the file specification reflects that fact. How-
ever, IBM Informix NET recognizes that the file system is not local to the appli-
cation machine. It starts a copy of IBM Informix SE in the machine that owns
subtle and passes the requests of the application to it.
Networks and Distribution 12-9

Connecting to Data
Two slashes at the start of a database file specification introduce the name of
a network machine. They are always forward slashes, even when used in a
DOS application. Here is an example:

DATABASE "//avignon/usr/maxtel/testdb"

The double slash at the start of the pathname tells IBM Informix NET that the
database is located on a different machine—in this case, the machine known
to the network as avignon. Since a complete file specification follows,
IBM Informix SE must manage the database. (IBM Informix OnLine does not
use the normal file system.) IBM Informix NET starts a database server in
machine avignon and acts as a conduit between it and the application.

Explicit Location by Database Server Name

When the complete file specification is not required, you can specify the loca-
tion of the database in a different form, as in this example:

DATABASE telefonen@munchen

The database name is telefonen; it is located in the machine known to the net-
work as munchen. You use this method to specify the location of a database
when the database is managed by the IBM Informix OnLine database server.

You can use the same form of the statement with the CREATE DATABASE and
DROP DATABASE commands. However, when you write an explicit location
into one of these commands, you limit the application to that location. It must
be changed to use a database at a different location.

Implicit Database Locations

Quite often the database name in the command consists of nothing but an
identifier, giving no clue as to location. This is the best way to write the
DATABASE, CREATE DATABASE, and DROP DATABASE statements because
you do not need to change the application when the database location
changes.

When the application tries to open a database giving only a name,
IBM Informix NET looks at the DBPATH environment variable for informa-
tion.
12-10 Networks and Distribution

Distributed Data
This environment variable lists all the locations where a database might be
found. When a network is not used, the contents of the variable tell
IBM Informix SE the file directories where a database might be found.

If no DBPATH variable is defined, IBM Informix NET takes a default action. If
IBM Informix OnLine is installed on this machine, it is used. Otherwise the
database is managed by IBM Informix SE and is located in the current direc-
tory.

When DBPATH exists, IBM Informix NET consults the contents of the variable
to find where the database is located. Three kinds of items can be listed in
DBPATH:

• A local directory

If the named database appears there, the local IBM Informix SE is used to
access it.

• In a UNIX system, the path to a directory mounted by NFS or RFS

If the named database appears there, a copy of IBM Informix SE is started
on the machine that owns the file system, and it is used for access.

• The name of a remote server, preceded by a double slash

IBM Informix NET queries that network site to find out which kind of
database server it is, and whether it can open a database of the specified
name.

In this way, it is possible to take an application written for a local database
and, by changing the environment variable DBPATH, make it work with a
database located in a different computer.

Distributed Data
While a LAN or other network allows you to separate the application from
the data, the application still is limited to the contents of a single database.
With most database servers, you only can query or modify tables in the cur-
rent database.

The IBM Informix OnLine database server allows you to query data in any
database that it controls. That is, you can query and modify tables in data-
bases other than the current database, as long as those other databases are
managed by the same IBM Informix OnLine database server (and as long as
IBM Informix STAR also resides on the same machine as the OnLine database
server).
Networks and Distribution 12-11

Distributed Data
When the IBM Informix STAR product is added to IBM Informix OnLine, it
becomes possible to query and modify tables in databases that are managed
by any IBM Informix OnLine database server anywhere in your network.

When the IBM Informix TP/XA feature is added to IBM Informix OnLine (with
IBM Informix ESQL/C), you can create global transactions that span multiple
computer systems and even multiple XA-compliant database systems from
different vendors.

Naming External Tables
The database that is opened by the DATABASE or CREATE DATABASE state-
ment is the current database. Any other database is an external database. To
refer to a table in an external database, you include the database name as part
of the table name.

SELECT name, number FROM salesdb:contacts

The external database is salesdb. The table in it is named contacts. You can
use the same notation in a join. When there is more than one external table,
the long table names can become cumbersome unless you use aliases to
shorten them.

SELECT C.custname, S.phone
FROM salesdb:contacts C, stores:customer S
WHERE C.custname = S.company

You can qualify a database name with a server name, the name of a network
machine where another IBM Informix OnLine database server is running.
That is how you specify an external database that is managed by a different
database server.

SELECT O.order_num, C.fname, C.lname
FROM masterdb@central:customer C, sales@boston:orders O
WHERE C.customer_num = O.Customer_num
INTO TEMP mycopy

In the example, two external tables are being joined. The joined rows are
being stored in a temporary table in the current database. The external tables
are located in two different database servers. One is named central, the other
boston.
12-12 Networks and Distribution

Distributed Data
It is always permissible to overspecify a table name or database name. That is,
even if the current database is masterdb and the current database server is
central, it is permissible in a query to refer to a table named
masterdb@central:customer.

Using Synonyms with External Tables
A synonym is a name that you can use in place of another name. The main use
of synonyms is to make it more convenient to refer to external tables. You can
also use synonyms to disguise the location of external tables.

Here is the preceding example, revised to use synonyms for the external
tables:

CREATE SYNONYM mcust FOR masterdb@central:customer;

CREATE SYNONYM bords FOR sales@boston:orders;

SELECT bords.order_num, mcust.fname, mcust.lname
FROM mcust, bords
WHERE mcust.customer_num = bords.Customer_num
INTO TEMP mycopy

The CREATE SYNONYM statement stores the synonym name in the system
catalog table syssyntable in the current database. The synonym is available
to any query made within that database.

A short synonym makes it easier to write queries, but synonyms can play
another role. They allow you to move a table to a different database, or even
to a different computer, while leaving your queries the same.

Suppose you have a number of queries that refer to the table names customer
and orders. The queries are embedded in programs, forms, and reports. The
tables are part of database stores5, which is kept on database server avignon.

Now the decision is made that the same programs, forms, and reports are to
be made available to users of a different computer on the network (database
server nantes). Those users have a database that contains a table named
orders containing the orders at their location, but they need access to the
table customer at avignon (or else the table has to be duplicated, which cre-
ates problems of maintenance).
Networks and Distribution 12-13

Distributed Data
To those users, the customer table is external. Does this mean you must pre-
pare special versions of the programs and reports, versions in which the
customer table is qualified with a database server name? A better solution is
to create a synonym in the users’ database:

DATABASE stores5@nantes;
CREATE SYNONYM customer FOR stores5@avignon:customer

When the stored queries are executed in your database, the name customer
refers to the actual table. When they are executed in the other database, the
name is translated through the synonym into a reference to the external table.

Synonym Chains
To continue the preceding example, suppose that a new computer is added
to your network. Its name is db_crunch. The customer table and other tables
are moved to it to reduce the load on avignon. You can reproduce the table
on the new database server easily enough, but how can you redirect all
accesses to it? One way is to install a synonym to replace the old table.

DATABASE stores5@avignon EXCLUSIVE;
RENAME TABLE customer TO old_cust;
CREATE SYNONYM customer FOR stores5@db_crunch:customer;
CLOSE DATABASE

When you execute a query within stores5@avignon, a reference to table
customer finds the synonym and is redirected to the version on the new com-
puter. This is also true of queries executed from database server nantes. The
synonym in the database stores5@nantes still redirects references to
customer to database stores5@avignon; however, the new synonym there
sends the query to database stores5@db_crunch.

Chains of synonyms can be useful when, as in this example, you want to redi-
rect all access to a table in one operation. However, as soon as possible you
should update all users’ databases so their synonyms point directly to the
table. There is extra overhead in handling the extra synonyms and, if any
computer in the chain is down, the table cannot be found.
12-14 Networks and Distribution

Summary
Modifying External Tables
The following example shows how you can modify external tables:

DATABASE stores5@nantes;
BEGIN WORK;
UPDATE stores5@avignon:customer

SET phone = "767-8592"
WHERE customer_num = 149;

COMMIT WORK

You can modify more than one table in the same transaction. However, the
same IBM Informix OnLine database server (if you are not using OnLine with
IBM Informix STAR or IBM Informix TP/XA) must manage all the tables in a
single transaction. In the preceding example, an external table at database
server avignon is updated. You also can modify other tables at avignon in the
same transaction. However, you cannot modify a table in the current data-
base, since the current database is managed by nantes.

Summary
The simplest network, the LAN, lets multiple workstations share a disk. Each
workstation has its application program and its own copy of the database
server, but the tables it uses can be located on disks attached to one or more
computers. Multiple workstations share the data, but all input and output
travels over the network and that can cause a performance problem.

The more general form of network supported by IBM Informix NET (and
IBM Informix STAR) products separates the application from the database
server. The application runs in one machine, while the database server oper-
ates in the computer to which the data is physically attached. There are many
possible combinations of network software, operating systems, and database
servers, and each has its subtleties that must be mastered.

In general networking, the crucial moment occurs when the application
opens a database. At that moment, based on information in the command or
in an environment variable, the network software locates the database and
sets up communication to the database server that manages it.

When you use IBM Informix OnLine with the IBM Informix STAR feature
installed, you can query and modify tables from multiple databases managed
by multiple IBM Informix OnLine database servers. You can use synonyms to
disguise the locations of these tables.
Networks and Distribution 12-15

A
Appendix
Notices
IBM may not offer the products, services, or features discussed
in this document in all countries. Consult your local IBM repre-
sentative for information on the products and services currently
available in your area. Any reference to an IBM product,
program, or service is not intended to state or imply that only
that IBM product, program, or service may be used. Any
functionally equivalent product, program, or service that does
not infringe any IBM intellectual property right may be used
instead. However, it is the user’s responsibility to evaluate and
verify the operation of any non-IBM product, program, or
service.

IBM may have patents or pending patent applications covering
subject matter described in this document. The furnishing of this
document does not give you any license to these patents. You can
send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information,
contact the IBM Intellectual Property Department in your
country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any
other country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not
apply to you.

This information could include technical inaccuracies or typographical
errors. Changes are periodically made to the information herein; these
changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the
program(s) described in this publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for
this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information which has been exchanged, should contact:

IBM Corporation
J46A/G4
555 Bailey Avenue
San Jose, CA 95141-1003
U.S.A.

Such information may be available, subject to appropriate terms and condi-
tions, including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer
Agreement, IBM International Program License Agreement, or any equiv-
alent agreement between us.
A-2 IBM Informix Guide to SQL: Tutorial

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environ-
ments may vary significantly. Some measurements may have been made on
development-level systems and there is no guarantee that these measure-
ments will be the same on generally available systems. Furthermore, some
measurements may have been estimated through extrapolation. Actual
results may vary. Users of this document should verify the applicable data for
their specific environment.

Information concerning non-IBM products was obtained from the suppliers
of those products, their published announcements or other publicly available
sources. IBM has not tested those products and cannot confirm the accuracy
of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be
addressed to the suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to
change or withdrawal without notice, and represent goals and objectives
only.

All IBM prices shown are IBM’s suggested retail prices, are current and are
subject to change without notice. Dealer prices may vary.

This information contains examples of data and reports used in daily
business operations. To illustrate them as completely as possible, the
examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names
and addresses used by an actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:
This information contains sample application programs in source language,
which illustrate programming techniques on various operating platforms.
You may copy, modify, and distribute these sample programs in any form
without payment to IBM, for the purposes of developing, using, marketing
or distributing application programs conforming to the application
programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested
under all conditions. IBM, therefore, cannot guarantee or imply reliability,
serviceability, or function of these programs. You may copy, modify, and
distribute these sample programs in any form without payment to IBM for
the purposes of developing, using, marketing, or distributing application
programs conforming to IBM’s application programming interfaces.
Notices A-3

Trademarks
Each copy or any portion of these sample programs or any derivative work,
must include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived
from IBM Corp. Sample Programs. © Copyright IBM Corp. (enter the
year or years). All rights reserved.

If you are viewing this information softcopy, the photographs and color illus-
trations may not appear.

Trademarks
AIX; DB2; DB2 Universal Database; Distributed Relational Database
Architecture; NUMA-Q; OS/2, OS/390, and OS/400; IBM Informix;
C-ISAM; Foundation.2000TM; IBM Informix 4GL; IBM Informix

DataBlade Module; Client SDKTM; CloudscapeTM; CloudsyncTM;
IBM Informix Connect; IBM Informix Driver for JDBC; Dynamic
ConnectTM; IBM Informix Dynamic Scalable ArchitectureTM (DSA);
IBM Informix Dynamic ServerTM; IBM Informix Enterprise Gateway
Manager (Enterprise Gateway Manager); IBM Informix Extended Parallel
ServerTM; i.Financial ServicesTM; J/FoundationTM; MaxConnectTM; Object
TranslatorTM; Red Brick Decision ServerTM; IBM Informix SE;
IBM Informix SQL; InformiXMLTM; RedBack; SystemBuilderTM; U2TM;
UniData; UniVerse; wintegrate are trademarks or registered trademarks
of International Business Machines Corporation.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and other
countries.

Windows, Windows NT, and Excel are either registered trademarks or trade-
marks of Microsoft Corporation in the United States and/or other countries.

UNIX is a registered trademark in the United States and other countries
licensed exclusively through X/Open Company Limited.

Other company, product, and service names used in this publication may be
trademarks or service marks of others.
A-4 IBM Informix Guide to SQL: Tutorial

Index

Bookname
August 23, 2002 1
Index
A

Access control. See Privilege.
Active set

definition of 2-27
of a cursor 6-21

Aggregate function
and GROUP BY clause 3-5
description of 2-47
in ESQL 6-12
in subquery 3-32
null value signalled 6-11
restrictions in modifiable view 11-25

Alias
to assign column names in temporary table 3-12
with external tables 12-12
with self-join 3-11

Alias for table name 2-70
ALL keyword

beginning a subquery 3-29
ALTER INDEX statement

creating clustered index 10-26
locks table 7-21

Alter privilege 11-10
ALTER TABLE statement

changing column data type 9-19
LOCK MODE clause 7-22
NEXT SIZE clause 10-9
privilege for 11-10
restrictions 11-24

American National Standards Institute. See ANSI.
AND logical operator 2-33
ANSI 1-16
ANSI compliance

level Intro-21
1:50 am

2 Index

Bookname
August 23, 2002 1
ANSI-compliant database
buffered logging restricted in 9-25
description of 1-17
FOR UPDATE not required in 7-16
nonstandard syntax in SQLAWARN

6-9
Repeatable Read isolation standard in

7-27
signalled in SQLAWARN 6-11
table privileges 11-8

ANY keyword
beginning a subquery 3-31

Application
common features 1-19
description of 1-18
design of order-entry 5-21
handling errors 6-15
in network 12-7
performance analysis of 4-5
report generator 1-18
screen forms 1-18
user-written 1-19

Archiving
description of 1-12, 5-23
IBM Informix OnLine methods 5-25
transaction log 5-24

Arithmetic operator, in expression 2-41
Asterisk (*)

use in SELECT 2-12
Attribute 8-22
Automatic type conversion. See Data

type conversion.
AVG function

as aggregate function 2-47

B
Backup. See Archive.
bcheck utility 4-34
BEGIN WORK statement

specifies start of a transaction 5-22
BETWEEN operator 2-30
Binary Large Object (BLOB)

choosing location for 10-19
disk storage for 10-5, 10-6
estimating disk space for 10-18

blobspace 10-5, 10-19
Boldface type Intro-11
Boolean expression

and logical operator 2-33
Buffered logging 9-24
BYTE data type

choosing location for 10-19
description of 9-19
disk storage for 10-5
estimating disk space for 10-18
restrictions with GROUP BY 3-6
restrictions with LIKE or MATCHES

2-34
restrictions with relational expression

2-27

C
Candidate key

attribute depends on 8-22
description of 8-7

Cartesian product
basis of any join 2-62
description of 2-60

CHAR data type 9-15
in relational expressions 2-27
replacing with TEXT 10-28
replacing with VARCHAR 10-27
subscripting 2-39
substrings of 2-25
truncation signalled 6-11

Check constraint
definition of 5-19

Chunk
description of 10-4
mirrored 10-5

CLOSE DATABASE statement
effect on database locks 7-21

Clustered index
description of 10-25

COBOL 6-6
Codd, E.F. 1-12
Column

defining 8-6
in relational model 1-13, 8-6
label on 3-42
1:50 am

Bookname
August 23, 2002 1
Column filter. See Filter expression.
Column number 2-23
Column-level privilege 11-10
Command script, creating database 9-28
COMMIT WORK statement

closes cursors 7-32
releases locks 7-23, 7-32
sets SQLCODE 7-5

Committed Read isolation level 7-25
Comparison condition

description of 2-27
Compliance

with industry standards Intro-21
Composite index

use 4-33
Composite key 8-10
Compound query 3-37
Concurrency

Committed Read isolation 7-25
Cursor Stability isolation 7-25
database lock 7-21
deadlock 7-29
description of 5-25, 7-17
Dirty Read isolation 7-24
effect on performance 7-17
isolation level 7-24
kinds of locks 7-20
lock duration 7-23
lock scope 7-20
maximizing 10-33, 10-36
Repeatable Read isolation 7-26
SERIAL values 9-7
table lock 7-21

Connect privilege 11-6
Constraint

defining domains 9-3
optimizer uses 4-15

Contact information Intro-22
Contention

for bottleneck tables 10-35
for disk access arms 10-7
reducing 10-33, 10-36

Conventions
example code Intro-16
syntax Intro-11
typographical Intro-11

Coordinated deletes 7-6
Correlated subquery

definition of 3-29
example of 3-33

COUNT function
and GROUP BY 3-6
as aggregate function 2-47
count rows to delete 5-5
use in a subquery 3-33, 5-6
with DISTINCT 2-48

CREATE DATABASE statement
and dbspace 10-6
in command script 9-28
sets shared lock 7-21
SQLAWARN after 6-11
using with

IBM Informix NET 12-8
IBM Informix OnLine 9-23
IBM Informix SE 9-25

CREATE INDEX statement
locks table 7-21

CREATE SYNONYM statement 12-13
CREATE TABLE statement

description of 9-26
EXTENT SIZE clause 10-9
IN clause 12-8
in command script 9-28
locating BLOB column 10-19
LOCK MODE clause 7-22
NEXT SIZE clause 10-9
sets initial SERIAL value 9-8

CREATE VIEW statement
restrictions on 11-24
using 11-22

Current database
definition of 12-12

CURRENT function
4GL example 4-6
comparing column values 2-49

Cursor
active set of 6-21
closing 7-32
declaring 6-18
for insert 7-8
for update 7-15, 7-23
hold 7-32
opening 6-18, 6-21
retrieving values with FETCH 6-19
scroll 6-20
sequential 6-20, 6-22
Index 3

1:50 am

4 Index

Bookname
August 23, 2002 1
with
prepared statements 6-29

WITH HOLD 7-32, 10-34
Cursor Stability isolation level 7-25

D
Data definition statements 6-32
Data integrity 5-21 to 5-23
Data model

address-book model 8-5, 8-11
attribute 8-22
defining relationships 8-14
denormalizing 10-27 to 10-32
description of 1-3, 8-3
domains 9-22
entity 8-8
many-to-many relationship 8-16, 8-20
one-to-many relationship 8-15, 8-19
one-to-one relationship 8-15, 8-20
See also Relational model.

Data type
automatic conversions 6-13
BYTE 9-19
CHAR 9-15
character data 9-15
choosing 9-19
chronological 9-12
conversion 5-8, 6-13
DATE 9-12
DATETIME 9-13
DECIMAL 9-10, 9-11
fixed-point 9-11
floating-point 9-9
INTEGER 9-7
INTERVAL 9-14
MONEY 9-11
numeric 9-7
REAL 9-9
SERIAL 9-7
SMALLFLOAT 9-9
TEXT 9-18
VARCHAR 9-16

Database
application 1-17
archiving 1-12
concurrent use 1-9
current 12-12
defined 1-3
external 12-12
management of 1-11

mission-critical 1-12
naming unique to engine 9-23
populating new tables 9-29
relation to dbspace 10-5
server 1-17
stores5 Intro-6

Database administrator (DBA) 11-7
Database lock 7-21
Database server, definition of 1-17
DATABASE statement

exclusive mode 7-21
explicit pathname 12-9
explicit sitename 12-10
locking 7-21
SQLAWARN after 6-11
with

IBM Informix NET 12-8
Database-level privilege

description of 5-15
See also Privilege.

DATE data type
description of 9-12
display format 9-13
functions in 2-49
in ORDER BY sequence 2-14

DATE function
as time function 2-49
use in expression 2-54

DATETIME data type
4GL example 4-6
description of 9-13
displaying format 2-54, 9-15
functions on 2-49
in

ORDER BY sequence 2-14
relational expressions 2-27

precision and size 9-13
DAY function

as time function 2-50
use

as time function 2-49
DBANSIWARN environment variable

6-9
DBDATE environment variable 5-8, 9-13
dbload utility

loading data into a table 9-29, 10-12
1:50 am

Bookname
August 23, 2002 1
DBMONEY environment variable 9-12
DBPATH environment variable 12-10,

12-11
dbschema utility 9-28
dbspace

definition of 10-5
division into extents 10-8
for temporary tables 10-6
mirrored 10-5
multiple access arms in 10-7
on dedicated device 10-7
relation to tblspace 10-8
root 10-5
selecting with CREATE DATABASE

9-24
Deadlock detection 7-29
DECIMAL data type

fixed-point 9-11
floating-point 9-10
signalled in SQLAWARN 6-11

DECLARE statement
description of 6-18
FOR INSERT clause 7-8
FOR UPDATE 7-15
WITH HOLD clause 7-33

Default value
description of 5-19

Delete privilege 11-9, 11-29
DELETE statement

all rows of table 5-4
and end of data 7-14
applied to view 11-26
coordinated deletes 7-6
count of rows 7-4
description of 5-4
embedded 6-6, 7-3 to 7-8
number of rows 6-11
preparing 6-27
privilege for 11-6, 11-9
time to update indexes 10-21
transactions with 7-5
using subquery 5-6
WHERE clause restricted 5-6
with cursor 7-7

Demonstration database
copying Intro-7
installation script Intro-6
overview Intro-6

Denormalizing 10-27
Derived data

introduced for performance 10-31
produced by view 11-22

DESCRIBE statement
describing statement type 6-31

Dirty Read isolation level 7-24
Disk access

chunk 10-4
cost to read a row 4-23
dbspace 10-5
latency of 4-24
nonsequential 4-25
nonsequential avoided by sorting 4-37
performance 4-24 to 4-26, 4-32
reducing contention 10-7
seek time 4-24
sequential 4-24, 4-32
sequential forced by query 4-32, 4-35
using rowid 4-25

Disk buffer. See Page buffer.
Disk contention

effect of 4-23
multiple arms to reduce 10-7

Disk extent 10-8
Disk mirroring 10-5
Disk page

buffer for 4-23, 4-25
size of 4-23, 10-4

Display label
in ORDER BY clause 2-46

DISTINCT keyword
relation to GROUP BY 3-4
restrictions in modifiable view 11-26
use

in SELECT 2-20
with COUNT function 2-48

Distributed data 12-11 to 12-15
Distributed deadlock 7-29
Documentation notes Intro-21
Documentation, types of

documentation notes Intro-21
machine notes Intro-21
release notes Intro-21

DROP INDEX statement
locks table 7-21
releasing an index 4-32
Index 5

1:50 am

6 Index

Bookname
August 23, 2002 1
Duplicate index keys 10-23
Dynamic SQL

cursor use with 6-29
description of 6-5, 6-26
freeing prepared statements 6-31

E
Embedded SQL

defined 6-4
languages available 6-4

End of data
signal in SQLCODE 6-10, 6-15
signal only for SELECT 7-14
when opening cursor 6-18

Entity
integrity 5-18
naming 8-8
represented by a table 8-9

Environment variables Intro-11
Equals (=) relational operator 2-28, 2-62
Equi-join 2-62
Errors

after DELETE 7-4
codes for 6-10
dealing with 6-15
detected on opening cursor 6-18
during updates 5-21
inserting with a cursor 7-11
ISAM error code 6-11

ESQL
cursor use 6-17 to 6-25
DELETE statement in 7-3
delimiting host variables 6-6
dynamic embedding 6-5, 6-26
error handling 6-15
fetching rows from cursor 6-19
host variable 6-6, 6-7
indicator variable 6-14
INSERT in 7-8
overview 6-3 to 6-35, 7-3 to 7-33
preprocessor 6-4
scroll cursor 6-20
selecting single rows 6-11
SQL Communications Area 6-7
SQLCODE 6-10
SQLERRD fields 6-11
static embedding 6-5
UPDATE in 7-14

Estimating
blobpages 10-18
maximum number of extents 10-10
size of index 10-16
table size with fixed-length rows

10-13
table size with variable-length rows

10-15
Exclusive lock 7-20
EXECUTE IMMEDIATE statement

description of 6-32
EXECUTE statement

description of 6-29
EXISTS keyword

in a WHERE clause 3-29
use in condition subquery 11-28

Expression
date-oriented 2-49
description of 2-41
display label for 2-44

EXTEND function
with DATE, DATETIME and

INTERVAL 2-49, 2-54
Extended Relational Analysis

basic ideas 8-6
overview 8-3
steps defined 8-8 to 8-24, 9-19 to 9-22
table diagram format 8-11

Extent
description of 10-8
sizes of 10-9
upper limit on 10-10

EXTENT SIZE keywords 10-9
External database 12-12
External table, use of synonyms 12-13

F
FETCH statement

ABSOLUTE keyword 6-21
description of 6-19
sequential 6-21
with

sequential cursor 6-22
File

compared to database 1-3
permissions in UNIX 11-4
server 12-4

Filter expression
effect on performance 4-10, 4-35
1:50 am

Bookname
August 23, 2002 1
evaluated from index 4-16, 4-33
optimizer uses 4-10, 4-15
selectivity estimates 4-17

Fixed point 9-11
FLOAT data type

description of 9-9
Floating point 9-9
FLUSH statement

count of rows inserted 7-11
writing rows to buffer 7-10

FOR UPDATE keywords
conflicts with ORDER BY 7-8
not needed in ANSI-compliant

database 7-16
specific columns 7-16

Foreign key 5-19
Fragmentation 10-11
FREE statement

freeing prepared statements 6-31
FROM keyword

alias names 2-70
Function

aggregate 2-47
date-oriented 2-49
in SELECT statements 2-47

G
GRANT statement

automated 11-13
database-level privileges 11-5
in 4GL 11-14
in embedded SQL 6-32 to 6-35
table-level privileges 11-7

GROUP BY keywords
column number with 3-7
composite index used for 4-33
description of 3-4
indexes for 4-16, 4-31
restrictions in modifiable view 11-25
sorting rows 4-18

H
HAVING keyword

description of 3-8
Hold cursor

definition of 7-32
Host variable

delimiter for 6-6

description of 6-6
dynamic allocation of 6-31
fetching data into 6-19
in DELETE statement 7-4
in INSERT 7-8
in UPDATE 7-14
in WHERE clause 6-12
INTO keyword sets 6-12
null indicator 6-14
restrictions in prepared statement

6-27
truncation signalled 6-11
type conversion of 6-13
with EXECUTE 6-29

I
IBM Informix 4GL

detecting null value 6-14
example of dynamic SQL 11-14
indicator variable not used 6-14
program variable 6-5
STATUS variable 6-10
terminates on errors 6-34, 7-14
timing operations in 4-6
using SQLCODE with 6-10
WHENEVER ERROR statement 6-34

IBM Informix NET 4-26, 12-5, 12-8
IBM Informix OnLine

allows views on external tables 11-25
archiving 5-25
controls own disk space 11-4
disk access by 4-24
disk page size 4-23
disk storage methods 10-4 to 10-12
in network 12-5
optimizer input with 4-15
querying other databases 12-11
signalled in SQLAWARN 6-11
when tables are locked 7-21

IBM Informix SE
creating database 9-25
in network 12-5

IBM Informix STAR 4-26, 12-12
Icon, explanation of Intro-13
IN keyword

locating BLOB column 10-19
use

in CREATE DATABASE 10-6
in CREATE TABLE 10-6, 10-9
Index 7

1:50 am

8 Index

Bookname
August 23, 2002 1
IN relational operator 3-29
Index

adding for performance 4-32, 10-22
clustered 10-25
composite 4-33
disk space used by 4-32, 10-16, 10-20
dropping 10-24
duplicate entries 10-16, 10-23
in GROUP BY 4-16
in ORDER BY 4-16
managing 10-20
optimizer 4-33
optimizer uses 4-12, 4-15
performance effects 4-25
physical order and 4-13
time cost of 10-21
updating affects 4-34
utility to test or repair 4-34
when not used by optimizer 4-32, 4-35

Index privilege 11-10
Indicator variable

definition of 6-14
Industry standards, compliance with

Intro-21
Informix SQL

creating database with 6-32, 9-28
UNLOAD statement 9-29

Insert cursor
definition of 7-8
use of 7-11

Insert privilege 11-9, 11-29
INSERT statement

and end of data 7-14
constant data with 7-11
count of rows inserted 7-11
duplicate values in 5-7
embedded 7-8 to 7-14
inserting

multiple rows 5-9
rows 5-6
single rows 5-7

null values in 5-7
number of rows 6-11
privilege for 11-6, 11-9
SELECT statement in 5-9
time to update indexes 10-21
VALUES clause 5-7
with

a view 11-27

Inserting rows of constant data 7-11
INTEGER data type

description of 9-7
Interrupted modifications 5-21
INTERVAL data type

description of 9-14
display format 9-15
in relational expressions 2-27
precision and size 9-14

INTO keyword
choice of location 6-20
in FETCH statement 6-20
mismatch signalled in SQLAWARN

6-11
restrictions in INSERT 5-10
restrictions in prepared statement

6-27
retrieving multiple rows 6-18
retrieving single rows 6-12

INTO TEMP keywords
description of 2-73
restrictions in view 11-24

ISAM error code 6-11
Isolation level

Committed Read 7-25
Cursor Stability 7-25
Dirty Read 7-24
Repeatable Read 7-26
setting 7-24

J
Join

associative 2-67
creating 2-62
definition of 2-9
effect of large join on optimization

4-14
equi-join 2-62
multiple-table join 2-68
natural 2-65
outer join 3-19
restrictions in modifiable view 11-25
self-join 3-11
sort merge 4-13
1:50 am

Bookname
August 23, 2002 1
Join column. See Foreign key.
Journal updates 10-34

K
Key lock 7-22

L
Label 2-44, 3-42
LAN. See Local Area Network.
Latency 4-24
LENGTH function

on TEXT 2-56
on VARCHAR 2-56
use in expression 2-55

LIKE relational operator 2-34
LIKE test 4-35
Local Area Network (LAN) 12-4
LOCK MODE keywords

specifying page or row locking 7-22
LOCK TABLE statement

locking a table explicitly 7-21
Locking

affects performance 7-18
and concurrency 5-25
and integrity 7-18
deadlock 7-29
description of 7-20
lock duration 7-23
lock mode not-wait 7-28
lock mode wait 7-28
lock modes 7-27
locks released at end of transaction

7-32
scope of lock 7-20
setting lock mode 7-27
types of locks

database lock 7-21
exclusive lock 7-20
key lock 7-22
page lock 7-22
promotable lock 7-20, 7-23
row lock 7-22
shared lock 7-20
table lock 7-21

with
DELETE 7-4
update cursor 7-23

Logical operator
AND 2-33
NOT 2-33
OR 2-33

M
Machine notes Intro-21
MATCHES relational operator

character class 2-37
in WHERE clause 2-34

MAX function
as aggregate function 2-47

MDY function
as time function 2-49

Message file for error messages Intro-18
MIN function

as aggregate function 2-47
Mirror. See Disk mirroring.
MODE ANSI keywords

ANSI-compliant database 1-17
ANSI-compliant logging 9-25
specifying transactions 5-22

Model. See Data model.
MONEY data type 9-12

description of 9-11
display format 9-12
in INSERT 5-8

MONTH function
as time function 2-49

N
Natural join 2-65
Network

data sent over 4-27
performance of 4-26
simple model of 4-27

Network File System (NFS) 12-9
Networking

configurations 12-3
connecting to data 12-7
description of 12-3
distributed data 12-11
file server 12-4
Local Area Network (LAN) 12-4

NEXT SIZE keywords
specifying size of extents 10-9
Index 9

1:50 am

10 Index

Bookname
August 23, 2002 1
NFS. See Network File System.
Nonsequential access. See Disk access,

nonsequential.
NOT logical operator 2-33
NOT NULL keywords

use
in CREATE TABLE 9-26

NOT relational operator 2-30
Not-equals relational operator 2-29
NULL relational operator 2-33
Null value

detecting in ESQL 6-14
in INSERT statement 5-7
restrictions in primary key 8-7
testing for 2-33
with logical operator 2-33

O
Online

files Intro-21
help Intro-21

OPEN statement
activating a cursor 6-18
opening select or update cursors 6-18

Opening a cursor 6-18, 6-21
Optimizer

and GROUP BY 4-13, 4-16, 4-18
and ORDER BY 4-13, 4-16, 4-18
and SET OPTIMIZATION statement

4-14
autoindex path 4-33
composite index use 4-33
description of 4-8
disk access 4-22
display query plan 4-19
filter selectivity 4-17
index not used by 4-32, 4-35
index used by 4-15
methods of 4-14
query plan 4-8
sort merge join 4-13
sorting 4-18
specifying high or low level of

optimization 4-14
system catalog use 4-9, 4-15
when index not used 4-35

Optimizing
techniques 4-3

OR logical operator 2-33
OR relational operator 2-31
ORDER BY keywords

ascending order 2-14
DESC keyword 2-15, 2-25
display label with 2-46
indexes for 4-16, 4-31
multiple columns 2-15
relation to GROUP BY 3-6
restrictions in INSERT 5-10
restrictions in view 11-24
restrictions with FOR UPDATE 7-8
select columns by number 2-23
sorting rows 2-14, 4-18

Outer join
description of 3-19
nested 3-25

Ownership 11-7

P
Page 10-4
Page buffer

cost of nonsequential access 4-25
description of 4-23
effect on performance 4-23
restrictions with BLOB data 10-19

Page lock 7-22
Parts explosion 6-24
Performance

adding indexes 4-32
assigning table to dedicated disk 10-7
bottleneck tables 10-35
buffered log 9-24
clustered index 10-25
defragmenting a dbspace 10-11
depends on concurrency 7-17
disk access 4-22, 4-24, 4-32
disk access by rowid 4-25
disk arm motion 10-8
disk latency 4-24
dropping indexes to speed

modifications 10-24
duplicate keys slow modifications

10-23
effect of BLOB location 10-19
effect of correlated subquery 4-34
effect of filter expression 4-10, 4-35
effect of index damage 4-34
effect of indexes 4-12, 10-22 to 10-23
effect of locking 7-18
1:50 am

Bookname
August 23, 2002 1
effect of optimizer 4-8
effect of regular expressions 4-35
effect of table size 4-26, 4-32
effect of updates 4-34
filter selectivity 4-17
fragmentation 10-11
“hot spots,” finding 4-7
how indexes affect 4-25
improved by specifying optimization

level 4-14
improved with temporary table 4-36
improving 4-29
index time during modification 10-21
journal updates 10-34
measurement 4-6
multiple access arms per table 10-7
network access 4-26
nonsequential access 4-25
of a LAN 12-5
optimizing 4-3 to 4-42
references to other books 4-3
row access 4-23
seek time 4-24
sequential access 4-24, 4-32
sorting replaces nonsequential access

4-37
splitting tall tables 10-30
splitting wide tables 10-29
time costs of query 4-20
use of derived data 10-31
use of redundant data 10-32

Performance analysis
“80-20 rule” 4-7
measurement 4-6
methods 4-29 to 4-31
nonsequential access 4-37 to 4-40
optimizing techniques 4-4
setting up test environment 4-29
timing

from 4GL program 4-6
from command script 4-6
from watch 4-6

using query plan 4-30
verifying problem 4-4

Populating tables 9-29
PREPARE statement

description of 6-27
error return in SQLERRD 6-11
missing WHERE signalled 6-9
multiple SQL statements 6-28
preparing GRANT 11-14

Primary key constraint
attribute depends on 8-22
composite 8-10
definition of 5-20, 8-7
restrictions with 8-7

Privilege
Alter 11-10
and views 11-29 to 11-32
automating grants of 11-13
column-level 11-10
Connect 11-6
DBA 11-7
Delete 11-9, 11-29
displaying 5-16
encoded in system catalog 11-9
granting 11-5 to 11-15
Index 11-10
Insert 11-9, 11-29
needed

to create a view 11-29
to modify data 5-15

on a view 11-30
overview 1-9
Resource 4-32, 11-7
Select 11-9, 11-10, 11-29
Update 11-9, 11-10, 11-29

Projection 2-7
Promotable lock 7-20, 7-23
PUBLIC keyword

privilege granted to all users 11-6
PUT statement

constant data with 7-11
count of rows inserted 7-11
sends returned data to buffer 7-10

Q
Query

improving performance of 4-29 to
4-40

performance of 4-3 to 4-42
stated in terms of data model 1-7
time costs of 4-20

Query optimizer. See Optimizer.
Query plan

autoindex path 4-33
chosen by optimizer 4-17
description of 4-8
display with SET EXPLAIN 4-19
indexes in 4-12
use in analyzing performance 4-30
Index 11

1:50 am

12 Index

Bookname
August 23, 2002 1
Question (?) mark
as placeholder in PREPARE 6-27

R
Redundant data, introduced for

performance 10-32
Referential constraint

definition of 5-20
Referential integrity 5-19, 8-8
Regular expression, effect on

performance 4-35
Relational model

attribute 8-22
denormalizing 10-27
description of 1-12, 8-6 to 8-24
entity 8-8
join 2-9
many-to-many relationship 8-16
normal form 8-22
one-to-many relationship 8-15
one-to-one relationship 8-15
operations of 1-14
projection 2-7
selection 2-5

Relational operator
BETWEEN 2-30
equals 2-28
EXISTS 3-29
IN 3-29
in a WHERE clause 2-27 to 2-40
LIKE 2-34
NOT 2-30
not-equals 2-29
NULL 2-33
OR 2-31

Release notes Intro-21
Remote File Sharing (RFS) 12-9
RENAME COLUMN statement

restrictions 11-24
RENAME TABLE statement

restrictions 11-24
Repeatable Read isolation level

description of 7-26
Report generator 1-18
Resource privilege 4-32, 11-7
Restricting access, using file system 11-4
REVOKE statement

granting privileges 11-5 to 11-15

in embedded SQL 6-32 to 6-35
with a view 11-30

RFS. See Remote File Sharing.
ROLLBACK WORK statement

cancels a transaction 5-23
closes cursors 7-32
releases locks 7-23, 7-32
sets SQLCODE 7-5

ROLLFORWARD DATABASE
statement

applies log to restored database 5-24
Root dbspace, definition of 10-5
Row

cost of reading from disk 4-23
defining 8-6
deleting 5-4
in relational model 1-13, 8-6
inserting 5-6
size of fixed-length 10-13

Row lock 7-22
Rowid 3-15, 3-18
Rowid function 4-25

S
Schema. See Data Model.
Scroll cursor

active set 6-22
definition of 6-20

Security
constraining inserted values 11-22,

11-27
database-level privileges 11-5
making database inaccessible 11-5
restricting access to columns 11-22
restricting access to rows 11-22, 11-23
restricting access to view 11-29
table-level privileges 11-10
using host file system 11-4
using operating system facilities 11-3
with stored procedures 11-3

Seek time 4-24
Select cursor

use of 6-18
Select list

asterisk in 2-12
display label 2-44
expressions in 2-41
functions in 2-47 to 2-58
labels in 3-42
1:50 am

Bookname
August 23, 2002 1
literal in 3-43
order of columns 2-13
selecting all columns 2-12
selecting specific columns 2-19
specifying a substring in 2-25

Select privilege
column level 11-10
definition of 11-9
with a view 11-29

SELECT statement
active set 2-27
aggregate functions in 2-47
alias names 2-70
asterisk in 2-12
compound query 3-37
cursor for 6-17, 6-18
date-oriented functions in 2-49
description of advanced 3-3 to 3-49
description of simple 2-3 to 2-73
display label 2-44
DISTINCT keyword 2-20
embedded 6-12 to 6-14
external tables 12-12
for joined tables 2-60 to 2-73
for single tables 2-12 to 2-58
functions 2-47 to 2-58
in modifiable view 11-25
INTO TEMP clause 2-73
join 2-62 to 2-69
natural join 2-65
ORDER BY clause 2-14
outer join 3-19 to 3-28
privilege for 11-6, 11-9
rowid 3-15, 3-18
SELECT clause 2-12 to 2-26
selecting a substring 2-25
selecting expressions 2-41
selection list 2-12
self-join 3-11
singleton 2-27
subquery 3-29 to 3-37
UNION operator 3-37
using

for join 2-9
for projection 2-7
for selection 2-5

Self-join
assigning column names with INTO

TEMP 3-12
description of 3-11

Semantic integrity 5-19, 9-3
Sequential access. See Disk access,

sequential.
Sequential cursor

definition of 6-20
SERIAL data type

description of 9-7
generated number in SQLERRD 6-11
inserting a starting value 5-8

SET clause 5-14
Set difference 3-47
SET EXPLAIN statement

interpreting output 4-30
writes query plan 4-19

Set intersection 3-45
SET ISOLATION statement

controlling the effect of locks 5-26
restrictions 7-24

SET keyword
use in UPDATE 5-12

SET LOCK MODE statement
controlling the effect of locks 5-26
description of 7-27

SET LOG statement
buffered vs. unbuffered 9-24

Singleton SELECT 2-27
Site name

in table name 12-12
with DATABASE statement 12-10

SITENAME function
use

in SELECT 2-55, 2-58, 3-18
SMALLFLOAT data type

description of 9-9
SMALLINT data type

description of 9-7
SOME keyword

beginning a subquery 3-29
Sort merge join 4-13
Sorting

avoiding nonsequential access 4-37
avoiding with temporary table 4-36
effect on performance 4-31
nested 2-15
optimizer estimates cost 4-18
sort merge join 4-13
time costs of 4-22
with ORDER BY 2-14
Index 13

1:50 am

14 Index

Bookname
August 23, 2002 1
SPL
program variable 6-5

SQL
ANSI standard 1-16
cursor 6-17
description of 1-15
error handling 6-15
history 1-16
Informix SQL and ANSI SQL 1-16
interactive use 1-18
optimizing. See Optimizer.
standardization 1-16

SQL Communications Area (SQLCA)
altered by end of transaction 7-5
description of 6-7
inserting rows 7-11

SQLAWARN array
description of 6-11
syntax of naming 6-10
with PREPARE 6-27

SQLCODE field
after opening cursor 6-18
description of 6-10
end of data on SELECT only 7-14
end of data signalled 6-15
set by DELETE 7-4
set by DESCRIBE 6-31
set by PUT, FLUSH 7-11

SQLERRD array
count of deleted rows 7-4
count of inserted rows 7-11
count of rows 7-14
description of 6-11
syntax of naming 6-10

START DATABASE statement
adding a transaction log 9-26

Static SQL 6-5
STATUS variable (4GL) 6-10
Stored procedure

security purposes 11-3
stores5 database

copying Intro-7
creating on IBM Informix OnLine

Intro-7
creating on IBM Informix SE Intro-8
overview Intro-6

Structured Query Language. See SQL.
Subquery

correlated 3-29, 3-33, 4-34
in DELETE statement 5-6

in SELECT 3-29 to 3-37
in UPDATE-SET 5-13
in UPDATE-WHERE 5-12
performance of 4-34
restrictions with UPDATE 5-13

Subscripting 2-39
Substring 2-25
SUM function

as aggregate function 2-47
Symbol table 10-28
Synonym 12-13 to 12-14

chains of 12-14
Syntax diagram

conventions Intro-11
elements of Intro-15

System catalog
number of rows in a table 4-9
privileges in 5-16, 11-9
querying 5-16
syscolauth 11-9
systabauth 5-16, 11-9
systables 4-9
sysusers 11-9
used by optimizer 4-9

T
Table

bottleneck 10-35
contained in one dbspace 10-5
creating

a table 9-26
dedicated device for 10-7
defragmenting 10-11
diagram format 8-11
extent sizes of 10-9
fixed-length rows 10-13
fragmentation 10-11
in mirrored storage 10-6
in relational model 1-12, 8-6
lock 7-21
multiple access arms for 10-7
ownership 11-7
primary key in 8-7
recording relationships in 8-19
relation to dbspace 10-6
represents an entity 8-9
variable-length rows 10-15

Table name
qualified by site name 12-12
use of synonyms 12-13
1:50 am

Bookname
August 23, 2002 1
Table size
calculating 10-13, 10-20
cost of access 4-26, 4-32
with fixed-length rows 10-13
with variable-length rows 10-15

Table-level privilege
column-specific privileges 11-10
definition and use 11-8

tbcheck utility 4-34, 10-8, 10-13
tbload utility 5-25, 10-12
tblspace

description of 10-8
used for BLOB data 10-19

tbstat utility 10-13
tbunload utility 5-25, 10-12
Temporary table

and active set of cursor 6-22
assigning column names 3-12
example 5-11
shared disk space for 10-6
using to speed query 4-36

TEXT data type
choosing location for 10-19
description of 9-18
disk storage for 10-5
estimating disk space for 10-18
restrictions

with GROUP BY 3-6
with LIKE or MATCHES 2-34
with relational expression 2-27

used for performance 10-28
with LENGTH function 2-56

TODAY function
use

in constant expression 2-55, 5-8
Transaction

cursors closed at end 7-32
description of 5-21
example with DELETE 7-5
locks held to end of 7-23
locks released at end 7-23, 7-32
transaction log 5-22, 5-24
transaction log required 9-24
use signalled in SQLAWARN 6-11

Transaction logging
buffered 9-24
establishing with CREATE

DATABASE 9-23
IBM Informix OnLine methods of 9-24
turning off for faster loading 9-29

turning off not possible 9-26
Truncation, signalled in SQLAWARN

6-11
Typographical conventions Intro-11

U
UNION operator

description of 3-37
display labels with 3-42
restrictions in view 11-24

UNIQUE keyword
constraint in CREATE TABLE 9-26
restrictions in modifiable view 11-26

UNLOAD statement
exporting data to a file 9-29

Update cursor
definition of 7-15

Update journal 10-34
Update privilege

column level 11-10
definition of 11-9
with a view 11-29

UPDATE statement
and end of data 7-14
applied to view 11-26
description of 5-11
embedded 7-14 to 7-17
missing WHERE signalled 6-9
multiple assignment 5-14
number of rows 6-11
preparing 6-27
privilege for 11-6, 11-9
restrictions on subqueries 5-13
time to update indexes 10-21

USER function
use

in expression 2-55, 2-56, 3-17
USING keyword

use
in EXECUTE 6-29

Utility program
dbload 9-29, 10-12
dbschema 9-28
tbcheck 10-8, 10-13
tbload 5-25, 10-12
tbstat 10-13
tbunload 5-25, 10-12
Index 15

1:50 am

16 Index

Bookname
August 23, 2002 1
V
VALUES keyword

use
in INSERT 5-7

VARCHAR data type
description of 9-16
effect on table size 10-15
used for performance 10-27
with LENGTH function 2-56

View
deleting rows in 11-26
description of 11-21
dropped when basis is dropped 11-24
effect of changing basis 11-24
effect on performance 4-31
inserting rows in 11-27
modifying 11-25 to 11-29
null inserted in unexposed columns

11-27
privilege when accessing 11-30
privileges 11-29 to 11-32
produces duplicate rows 11-23
restrictions on use 11-24
updating duplicate rows 11-27
using CHECK OPTION 11-27
virtual column 11-26

W
WEEKDAY function

as time function 2-49, 2-53
WHERE CURRENT OF keywords

use
in DELETE 7-7
in UPDATE 7-15

WHERE keyword
Boolean expression in 2-33
comparison condition 2-27 to 2-40
date-oriented functions in 2-53
enforcing data constraints 11-28
host variables in 6-12
in DELETE 5-4 to 5-6
null data tests 2-33
prevents use of index 4-32, 4-35
range of values 2-30
relational operators 2-27
selecting rows 2-26
subqueries in 3-29
testing a subscript 2-39
use

with NOT keyword 2-30

with OR keyword 2-31
wildcard comparisons 2-34

Wildcard comparison
character class 2-37
in WHERE clause 2-34 to 2-39

WITH CHECK OPTION keywords 11-27
WITH HOLD keywords

declaring a hold cursor 7-33, 10-34

X
X/Open compliance level Intro-21

Y
YEAR function

as time function 2-49
1:50 am

	IBM Informix Online Documentation
	Table of Contents
	Introduction
	In This Introduction
	About this Manual
	Organization of this Manual
	IBM Informix Products That Use SQL
	Products Covered in This Manual
	The Demonstration Database
	Creating the Demonstration Database on IBM Informix OnLine
	Creating the Demonstration Database on IBM�Informix SE

	New Features in IBM Informix Server Products, Version�5.x
	Document Conventions
	Typographical Conventions
	Syntax Conventions
	Example Code Conventions

	Additional Documentation
	Online Manuals
	Error Message Files
	The finderr Script
	The rofferr Script

	Documentation Notes, Release Notes, Machine Notes

	Compliance with Industry Standards
	IBM Welcomes Your Comments

	Database Fundamentals
	Chapter Overview
	Databases: What and Why?
	The Data Model
	Storing Data
	Querying Data
	Modifying Data

	Concurrent Use
	Centralized Management
	Group and Private Databases
	Essential Databases

	Important Database Terms
	The Relational Model
	Tables
	Columns
	Rows
	Tables, Rows, and Columns
	Operations on Tables

	Structured Query �Language
	Standard SQL
	Informix SQL and ANSI SQL
	ANSI-Compliant Databases

	The Database Software
	The Database Server
	The Applications
	Interactive SQL
	Reports and Forms
	General �Programming
	Applications and Database Servers

	Summary

	Simple SELECT Statements
	Chapter Overview
	Introducing the SELECT Statement
	Some Basic Concepts
	Privileges
	Relational Operations
	Selection and Projection
	Joining

	What This Chapter Contains
	The Forms of SELECT
	Special Data Types

	Single-Table SELECT Statements
	Selecting All Columns and Rows
	Using the Asterisk
	Reordering the Columns
	Sorting the Rows

	Selecting Specific Columns
	Selecting Substrings

	Using the WHERE Clause
	Creating a Comparison Condition
	Using Variable Text Searches
	Using Exact Text Comparisons
	Using a Single-Character Wildcard
	Comparing for Special Characters

	Expressions and Derived Values
	Arithmetic Expressions
	Sorting on Derived Columns

	Using �Functions in SELECT �Statements
	Aggregate �Functions
	Time Functions
	Other Functions and Keywords

	Multiple-Table SELECT Statements
	Creating a �Cartesian �Product
	Creating a Join
	Equi-Join
	Natural Join
	Multiple-Table Join

	Some Query Shortcuts
	Using Aliases
	The INTO TEMP Clause

	Summary

	Advanced SELECT Statements
	Chapter Overview
	Using the GROUP BY and HAVING Clauses
	Using the GROUP BY Clause
	Using the HAVING Clause

	Creating Advanced Joins
	Self-Joins
	Outer Joins
	Simple Join
	Simple Outer Join on Two Tables
	Outer Join for a Simple Join to a Third Table
	Outer Join for an Outer Join to a Third Table
	Outer Join of Two Tables to a Third Table

	Subqueries in SELECT Statements
	Using ALL
	Using ANY
	Single-Valued Subqueries
	Correlated Subqueries
	Using EXISTS

	Set Operations
	Union
	Intersection
	Difference

	Summary

	Optimizing Your Queries
	Chapter Overview
	Optimizing Techniques
	Verifying the Problem
	Considering the Total System
	Understanding the Application
	Measuring the Application
	Manual Timing
	Time from �Operating System Commands
	Time from the �Programming Language

	Finding the Guilty Functions
	Keeping an Open Mind

	The Query Optimizer
	The Importance of Table Order
	A Join Without �Filters
	A Join with Column Filters
	Using Indexes
	The Sort-Merge Join Technique

	How the Op�timizer Works
	Selecting an Optimization Level
	Providing Input
	Assessing Filters
	Selecting Table-Access Paths
	Selecting the Query Plan

	Reading the Plan

	Time Costs of a Query
	Activities in Memory
	Disk-Access Management
	Disk Pages
	Page Buffers

	The Cost of Reading a Row
	The Cost of Sequential Access
	The Cost of Nonsequential Access
	The Cost of Rowid Access
	The Cost of Indexed Access
	The Cost of Small Tables
	The Cost of Network Access

	Making �Queries Faster
	Preparing a Test Environment
	Studying the Data Model
	Studying the Query Plan
	Rethinking the Query
	Rewriting Joins Through Views
	Avoiding or Simplifying Sorts
	Eliminating �Sequential Access to Large Tables
	Using Unions to Avoid Sequential Access
	Replacing Autoindexes with Indexes
	Using Composite Indexes
	Using tbcheck on �Suspect Indexes
	Dropping and Rebuilding Indexes After Updates
	Avoiding Correlated Subqueries
	Avoiding Difficult �Regular �Expressions
	Avoiding Noninitial Substrings

	Using a Temporary Table to Speed Queries
	Using a Temporary Table to Avoid Multiple Sorts
	Substituting Sorting for Nonsequential Access

	Summary

	Statements That Modify Data
	Chapter Overview
	Statements That Modify Data
	Deleting Rows
	Deleting All Rows of a Table

	Deleting a Known Number of Rows
	Deleting an Unknown Number of Rows
	Complicated Delete Conditions

	Inserting Rows
	Single Rows
	Multiple Rows and Expressions

	Updating Rows
	Selecting Rows to Update
	Updating with Uniform Values
	Impossible Updates
	Updating with Selected Values

	Database Privileges
	Displaying Table Privileges

	Data Integrity
	Entity Integrity
	Semantic Integrity
	Referential Integrity

	Interrupted Modifications
	The Transaction
	The Transaction Log
	Specifying Transactions

	Archives and Logs
	Archiving Simple Databases (IBM Informix SE)
	Archiving IBM Informix OnLine

	Concurrency and Locks
	Summary

	SQL in Programs
	Chapter Overview
	SQL in �Programs
	Static �Embedding
	Dynamic �Statements
	Program Variables and Host Variables

	Calling the Database Server
	The SQL Communications Area
	The SQLCODE Field �
	End of Data
	Negative Codes

	The SQLERRD Array
	The SQLAWARN Array

	Retrieving Single Rows
	Data Type �Conversion
	Dealing with Null Data
	Dealing with Errors
	End of Data
	Serious Errors
	Using Default Values

	Retrieving Multiple Rows
	Declaring a Cursor
	Opening a �Cursor
	Fetching Rows
	Detecting End of Data
	Locating the INTO Clause

	Cursor Input Modes
	The Active Set of a Cursor
	Creating the Active Set
	The Active Set for a Sequential Cursor
	The Active Set for a Scroll Cursor
	The Active Set and Concurrency

	Using a Cursor: A Parts �Explosion

	Dynamic SQL
	Preparing a Statement
	Executing Prepared SQL
	Using Prepared SELECT Statements

	Dynamic Host Variables
	Freeing Prepared Statements
	Quick Execution

	Embedding Data �Definition
	Embedding Grant and Revoke Privileges

	Summary

	Programs That Modify Data
	Chapter Overview
	Using �DELETE
	Direct Deletions
	Errors During Direct �Deletions
	Using Transaction Logging
	Coordinated �Deletions

	Deleting with a Cursor

	Using �INSERT
	Using an Insert Cursor
	Declaring an Insert Cursor
	Inserting with a �Cursor
	Status Codes After PUT and FLUSH

	Rows of Constants
	An Insert Example

	Using �UPDATE
	Using an Update Cursor
	The Purpose of the Keyword UPDATE
	Updating Specific Columns
	UPDATE Keyword Not Always Needed

	Cleaning up a Table

	Concurrency and Locking
	Concurrency and Performance
	Locking and I�ntegrity
	Locking and �Performance
	Concurrency Issues
	How Locks Work
	Kinds of Locks
	Lock Scope
	The Duration of a Lock
	Locks While �Modifying

	Setting the I�solation Level
	Dirty Read �Isolation
	Committed Read Isolation
	Cursor Stability �Isolation
	Repeatable Read Isolation

	Setting the Lock Mode
	Waiting for Locks
	Not Waiting for Locks
	Waiting a Limited Time
	Handling a Deadlock
	Handling External Deadlock

	Simple Concurrency
	Locking with Other Database Servers
	Isolation While Reading
	Locking Updated Rows

	Hold Cursors
	Summary

	Building a Data Model
	Chapter Overview
	Why Build a Data Model
	Extended �Relational Analysis

	Basic Ideas
	Tables, Rows, and Columns
	Primary Keys
	Candidate Keys
	Foreign Keys (Join Columns)

	Step 1: Name the Entities
	Entity Keys
	User-Assigned Keys
	Composite Keys
	System-Assigned Keys
	Time-Dependent Keys

	Entity Tables
	The Address-Book Example

	Step 2: D�efine the Relationships
	Discover the Relationships
	Add Relationships to Tables

	Step 3: List the Attributes
	Select Attributes
	Select Attribute Tables

	Summary

	Implementing the Model
	Chapter Overview
	Defining the Domains
	Data Types
	Choosing a Data Type
	Numeric Types
	Chronological Types
	Character Types
	Changing the Data Type

	Default Values
	Check Constraints
	Specifying Domains

	Creating the Database
	Using CREATE DATABASE
	Using CREATE DATABASE with IBM�Informix OnLine
	Using CREATE DATABASE with Other IBM�Informix Database Servers

	Using CREATE TABLE
	Using Command Scripts
	Capturing the Schema
	Executing the File
	An Example

	Populating the Tables

	Summary

	Tuning the Model
	Chapter Overview
	IBM�Informix OnLine Disk Storage
	Chunks and Pages
	Dbspaces and Blobspaces
	Disk Mirroring
	Databases
	Tables and Spaces
	Exploiting Mirroring
	Sharing Temporary Space
	Assigning Dedicated Hardware
	Assigning Additional Access Arms to a Table

	Tblspaces
	Extents
	Choosing Extent Sizes
	Upper Limit on Extents

	Defragmenting Tables

	Calculating Table Sizes
	Estimating Fixed-Length Rows
	Estimating Variable-Length Rows
	Estimating Index Pages
	Estimating Blobpages
	Locating Blob Data

	Managing Indexes
	Space Costs of Indexes
	Time Costs of Indexes
	Choosing Indexes
	Join Columns
	Selective Filter �Columns in Large Tables
	Order-By and Group-By Columns

	Duplicate Keys Slow Index Modifications
	Dropping Indexes
	Clustered Indexes

	Denormalizing
	Shorter Rows for Faster �Queries
	Expelling Long Strings
	Using VARCHAR Strings
	Changing Long Strings to TEXT
	Building a Symbol Table of Repeated Strings
	Moving Strings to a Companion Table

	Splitting Wide Tables
	Division by Bulk
	Division by Frequency of Use
	Division by Frequency of Update
	Costs of Companion Tables

	Splitting Tall Tables
	Redundant and Derived Data
	Adding Derived Data
	Adding Redundant Data

	Maximizing Concurrency
	Easing �Contention
	Rescheduling Modifications
	Using an Update Journal

	Isolating and Dispersing Updates
	Splitting Tables to �Isolate Volatile �Columns
	Dispersing Bottleneck Tables

	Summary

	Security, Stored Procedures, and Views
	Chapter Overview
	Controlling Access to Databases
	Securing �Database Files
	Multiuser Systems
	Single-User �Systems

	Securing Confidential Data

	Granting Privileges
	Database-Level Privileges
	Connect Privilege
	Resource Privilege
	Database Administrator Privilege

	Ownership Rights
	Table-Level Privileges
	Access Privileges
	Index, Alter, and References Privileges
	Column-Level �Privileges

	Procedure-Level Privileges
	Automating Privileges
	Automating with IBM�Informix 4GL
	Automating with a Command Script

	Using Stored Procedures
	Creating and Executing Stored Procedures
	Restricting Reads of Data
	Restricting Changes to Data
	Monitoring Changes to Data
	Restricting Object Creation

	Using Views
	Creating Views
	Duplicate Rows from Views
	Restrictions on Views
	When the Basis Changes

	Modifying Through a View
	Deleting Through a View
	Updating a View
	Inserting into a View
	Using WITH CHECK OPTION

	Privileges and Views
	Privileges When Creating a View
	Privileges When Using a View

	Summary

	Networks and Distribution
	Chapter Overview
	Network Configurations
	The Local Area Network
	Networking the Database Server
	Network Transparency

	Connecting to Data
	Connecting in the LAN
	Connecting Through IBM�Informix NET
	The Role of IBM�Informix NET
	Opening a Database
	Explicit Locations Using File �Specifications
	Explicit Location by Database Server Name
	Implicit Database Locations

	Distributed Data
	Naming External Tables
	Using Synonyms with External Tables
	Synonym Chains
	Modifying External Tables

	Summary

	Notices
	Index

