
XPenelope User Guide

for XPenelope Version 3.1

Technical Report

Hermann de Meer, HanaŠev̌cı́ková

November 1996

Department of Computer Science
University of Hamburg

demeer@informatik.uni-hamburg.de
sevcikov@ro2.informatik.uni-hamburg.de

Abstract

XPENELOPE provides a user-friendly X window environment
for PENELOPE. It supports the tasks of model creation, speci-
fication and control of series of experiments, and visualization of
the results.
PENELOPE provides numerical and simulative methods based on
the theory of Markov decision processes that are applicable for
the optimization of performability measures. The optimization
paradigm is based on the concept reconfigurability.Transientas
well as stationary control strategiesandperformance functions
can be computed.

Contents

1 Introduction 1

1.1 Extended Markov Reward Models . 1

1.2 Features of PENELOPE . 1

1.3 Platforms . 3

2 XPenelope User Guide 3

2.1 Invocation . 3

2.2 The Model Index . 4

2.3 The Parameter Set Index . 5

2.4 The Experiment Index . 6

2.5 The Model Editor . 7

2.5.1 The File Menu . 8

2.5.2 The Edit Menu . 8

2.5.3 The Options Menu . 11

2.5.4 Arithmetic Expressions . 11

2.5.5 The Forward Declaration Dialog . 13

2.6 The Parameter Set Editor . 13

2.7 The Experiment Editor . 14

2.8 The Strategy Index . 18

2.8.1 The Strategy Editor . 19

2.9 The Graph Parameters Dialog . 20

2.9.1 The Forward Experiment Dialog . 24

2.9.2 Change Graph Dialog . 26

2.10 Resources . 26

3 Examples 29

3.1 Example 1 . 29

3.2 Example 2 . 35

i

4 Conclusion 38

References 39

ii

List of Figures

1 Model index. 4

2 Parameter set index. 5

3 Experiment index. 6

4 Model editor. 7

5 “Macros” dialog box. 9

6 “Parameters” dialog. 10

7 Macro parameters dialog. 11

8 “Forward Declaration” dialog. 13

9 Parameter set editor. 14

10 Experiment editor. 15

11 “Parameter Sets” dialog. 15

12 “Working...” dialog. 17

13 “Info” window. 17

14 Strategy index. 18

15 Strategy editor. 19

16 “Graph Parameters” dialog. 20

17 “Value”, “Difference Values” and “Which rewards” dialogs. 20

18 “Parameter Set” dialog. 22

19 “Which Experiment” dialog. 22

20 “Dif.Exp.Parameter” dialog. 22

21 A plot program displaying a strategy. 24

22 Forward Experiment dialog for equidistant mode. 24

23 Forward Experiment dialog for multiple mode. 25

24 “Change Graph” and “Change Lines” dialog. 26

25 A simple model . 29

26 Model editor containing six Markov states and one branching state 30

27 States and transitions. 31

iii

28 The completed model. 32

29 The parameter set editor. 33

30 The results of the experiment. 40

31 Model of the Erlang-k distribution . 40

32 Recursive nature of the Erlang-k distribution 41

33 Macro for the Erlang-k distribution . 41

34 TheConnectmacro . 41

35 TheErlang macro . 42

36 A simple model with an invocation of theErlang macro 42

iv

1 Introduction

PENELOPE is a software tool for the “dependability evaluation and theoptimization of
performability”. PENELOPE is based on the theory ofextended Markov reward models
[DEME 92]. The primary task of PENELOPE is the optimization of performability measures.
The user may interact with PENELOPE either through a graphical user interface or through a
command line interpreter.

1.1 Extended Markov Reward Models

Let Z = fZ(t); t � 0g denote a continuous time Markov chain with finite state spaceS. To
each states 2 S a real-valuedreward rater(s), r : S! IR, is assigned, such that if the Markov
chain is in stateZ(t) 2 S at timet, then theinstantaneous reward rateof the Markov chain at
timet is defined asX(t) = rZ(t). In the time horizon[0; :::t) thetotal rewardY (t) = R t0 X(�)d�
is accumulated. Note thatX(t) andY (t) depend onZ(t) and on an initial state. The distribution
function	(y; t) = P (Y (t) � y) is called theperformability. A Markov chainZ, for which a
reward functionr has been defined, is called aMarkov reward model. For ergodic models the
instantaneous reward rate and the time averaged total reward converge inthe limit to the same
overall reward ratelimt!1 E[X(t)] = limt!1 1tE[Y (t)] = E[X].
For each unit of time in which the system is in a certain state, the corresponding number of
reward unitsX(t) is added to the total reward

R t0 X(�)d� . Thus, it is possible to define a “yield
measure” or a “loss measure” for the system by using appropriate reward rates.

Extended Markov reward models(EMRMs) enrich Markov reward models by the feature of
reconfiguration edges: Whenever the system is in a state in which a reconfiguration edge origi-
nates, a decision must be made whether or not to switch to the target state of thereconfiguration
edge. The optimal decision may be time dependent. Additionally, the Markov rewardmo-
dels are extended by so-calledbranching states. These are states in which the system does not
spend any time. With the help of branching states, it is possible to assign reward values to state
transitions (so-calledpulse rewards).

EMRMs were derived in order to provide an abstraction from Markov decisiontheory. EMRMs
are a marriage between performability modeling techniques and Markov decision theory and
provide a general framework for the dynamic optimization ofreconfigurable, dependable sys-
tems.

1.2 Features of PENELOPE

Reconfiguration edges denote options to reconfigure from one state to another. At every instant
of time a different decision is possible for each reconfiguration edge. A strategyS(t) comprises
the set of all possible decisions at a particular instant of timet, 0 � t � T . Strategies can
be time dependent or stationary. In the latter case the parametert can be dropped:S = S(t).
A strategyŜ(t) is consideredoptimal if the performance of the system under strategyŜ(t) is
better or equals than the performance of the system under any other strategyS(t).

1

PENELOPE offers two types of methods for the computation ofoptimal strategiesandper-
formance functions:� Transient Optimization:

The system is investigated for a finite period of time, the so-calledmission timeT . Op-
timal strategieŝS(t) are computed for every instant of timet, 0 � t � T . The results
are depicted aŝS(t0), which is a function of theremaining time t0, t0 = T � t, wheret
denotes theelapsedtime. In addition, the expected accumulated rewardE[Yi(t)] is also
computed forall initial statesi, provided the optimal strategies were applied.� Stationary Optimization:
The optimization is performed for an infinite time horizon. A strategyŜ is op-
timal if no other strategyS exists such that the time averaged mean total rewardE[Xi] = limT!1 1TE[Yi(t)] gained under strategyS exceeds the one gained underŜ.E[Xi] can be dependent or independent of statei. In the latter caseE[X] = E[Xi] for
all i, is called the (optimal) overall reward rate. The optimization itself is performed by
the deployment of standard methods from Markov decision theory [TIJM 86]. The adap-
tation of these methods to the analysis of EMRMs is out of the scope of this reference
manual. More details can be found in [KÄTK 92].

In addition, PENELOPE offers procedures for computations underfixed deliberately eligible
strategies:� Simulation

Under a fixed strategy, the behavior of the system is simulated. The mean total accumu-
lated reward for an arbitrary initial state is computed.� Transient Analysis
The transient analysis is carried out under a fixed strategy that can be deliberately speci-
fied. The strategy can be either of a transient or a stationary type.� Stationary Analysis
The stationary analysis is carried out under a fixed strategy. The strategy can only be of a
stationary type.

PENELOPE offers two possibilities for the user to interact with the system:� The extended Markov reward models are defined by using a model description language.
These models can be analyzed and optimized by invoking appropriate commands from
the PENELOPE command line interpreter. The computed strategies are returned in a
textual format with a clearly defined syntax. This enables automated preprocessing and
postprocessing of model/strategy data.� Using the graphical user interface XPenelope [MUNK 93], the models are created inter-
actively. In this case, the user is working with familiar symbols such ascircles (for states)
and arrows (for state transitions).

2

Additionally, the graphical user interface offers a lot of extra functionality:� Automated execution of experiment series.� Graphical preparation of experiment results.� Automated checking of model consistency.� Definition and evaluation of hierarchical and iterative models, using a special macro
mechanism.� Definition of model parameters and an arbitrary number of parameter sets per model.� Preparation of computed strategies.� Operating system independent data management:

– model data base

– parameter set data base

– experiment and results data base

– strategy data base� Printing of models and results for documentation purposes.

1.3 Platforms

XPENELOPE runs under the following architectures:� Sun 4 with SunOS 4� Sun 4 with SunOS 5 (Solaris)

XPENELOPE requires an existence of the X Window System release 11 version4 or higher
and of the OSF/Motif GUI system version 1.1 or higher.

2 XPenelope User Guide

2.1 Invocation

XPenelope is invoked by executing the command

xpenelope

3

from the command line. This will bring up the model index (see section 2.2).

If xpenelope is called for the first time, the model database will be created and some sample
models will be copied into the user’s database. Normally, the location for the model database is
the directory

$HOME/.xpenelope

This may be overridden by setting the environment variablePENELOPEDBto the desired path
name.

2.2 The Model Index

Figure 1: Model index.

The model index is a list of all predefined models and macros (see Fig. 1). Macros are marked
with the suffix “<M>”. One of the following buttons may be pressed:

Create Creates a new model. The model editor is opened (see Sec. 2.5).

Copy yMakes a copy of the selected model. Type in the desired model name in response
to the prompt “Name of copy:”, and pressOK . Then the whole model together
with its parameter sets, experiment definitions and results of experiment series, and
strategies is copied.

Rename yRenames a model. Type in the desired model name in response to the prompt “New
model name:”, and pressOK .

Delete yDeletes a model together with its parameter sets, experiment definitions andresults
of experiment series, and strategies.

Open yBrings up a pull-down menu, which offers the following choices:

Model Editor... Opens the model editor (see Sec. 2.5).

Parameter Index... Shows/Edits the list of all parameter sets defined for the
model (see Sec. 2.3).

4

Experiment Index... Shows/Edits the list of all experiment definitions (see
Sec. 2.4).

Print yPrints the model as a PostScript file. A dialog with the following choices appears:

Send to printer: Sends the PostScript file to the indicated printer.

Send to file: Stores the PostScript graphics in the specified file.

Quit Quits the program.

All operations marked withy require that a model (or a macro) has been previously selected
from the list.

A double-clicking of a list item performs theOpen— Model Editor... action.

2.3 The Parameter Set Index

Figure 2: Parameter set index.

The parameter set index (see Fig. 2) is a list of all parameter sets available for the selected
model. One of the following buttons may be selected:

Create Creates a new parameter set. The parameter set editor is opened (see Sec. 2.6).

Copy yMakes a copy of the selected parameter set. Type in the desired parameter set name
in response to the prompt “Name of copy:” and then pressOK .

Copy To yMakes a copy of the selected parameter set to an arbitrary model. Type in the
desired parameter set name in response to the prompt “Name of copy:” and then
pressOK . Then the name of the model is prompted for.

Rename yRenames a parameter set. Type in the desired parameter set name in response to
the prompt “New parameter set name:” and then pressOK .

Delete yDeletes the selected parameter set.

5

Open yOpens the parameter set editor (see Sec. 2.6) for the selected parameter set.

Cancel Leaves the parameter set index.

All operations marked withy require that a parameter set has been previously selected from the
list.

A double-clicking of a list item will perform theOpenaction.

2.4 The Experiment Index

Figure 3: Experiment index.

The experiment index (see Fig. 3) is a list of all experiments available for theselected model.
One of the following buttons may be selected:

Create Creates a new experiment. A name of the new experiment is asked for. Then the
experiment editor is opened (see Sec. 2.7).

Copy yMakes a copy of the selected experiment. Type in the desired experiment name
in response to the prompt “Name of copy:” and then pressOK . Then copies of the
experiment definition and of the results of this experiment are made.

Copy To yMakes a copy of the selected experiment to an arbitrary model. Type in the desired
experiment name in response to the prompt “Name of copy:” and then pressOK .
Then a name of the model is asked for.

Rename yRenames an experiment. Type in the desired experiment name in response to the
prompt “New experiment name:” and then pressOK .

Delete yDeletes the selected experiment.

Open yOpens the experiment editor (see Sec. 2.7) for the selected experiment.

Cancel Exits the experiment index.

6

All operations marked withy require that an experiment has been previously selected from the
list.

A double-clicking of a list item will perform theOpenaction.

2.5 The Model Editor

Figure 4: Model editor.

The model editor (see Fig. 4) is a “canvas” on which state-transition diagrams can be rendered.
The following symbolism is used within the model editor:

Object Representation

Markov State

Branching State
Transition
Reconfiguration Edge

Macro Terminator

Macro

Missing Parameters ?

Inconsistent Macro

The arrows inside the macro symbols are called “sockets”. They point inward (outward), if the
attached transition or reconfiguration edge is entering (leaving) the macro.

7

The menu bar of the model editor offers four choices:

File Loading, saving, and printing models.

Edit Creating, modifying, and deleting objects.

Options Grid and node name operations.

Help Currently, only the menu itemHelp on Version is offered. It displays the version
number of the program.

The following sections discuss the individual menus.

2.5.1 The File Menu

New... Creates a new model.

Open... Loads a new model that is selected from the model index.

Save Saves the model. If the model has been previously saved, the same file name will
be used. Otherwise, a file name is asked for.

Save As...Saves the model under a new file name. The file name is asked for.

Print... Prints the model as a Postscript file. Options are available to save the fileor to send
it directly to a printer.

Exit Leaves the model editor.

2.5.2 The Edit Menu

The first eight choices of the edit menu determine which action is performed if the left mouse
button is pressed (the “select button”) within the model editor. A indicator tothe left of the
menu items shows which item currently is enabled.

Markov State Activates the Markov state mode. In this mode, a new Markov state is
created if the select button is pressed.

Branch State Activates the branch state mode. In this mode, a new branching state is
created if the select button is pressed.

Transition Activates the transition mode. In this mode, the following steps have to
be performed in order to create a transition:

1. Click at the start node.

8

2. If no intermediate vertex is needed, goto step 3, otherwise click
anywhere in the canvas (except over other objects) in order to cre-
ate a new vertex. Repeat this step until all intermediate vertices
have been created.

3. Click at the target node. Now the transition will be displayed.

Reconfiguration Edge Activates the reconfiguration edge mode. In this mode, an equivalent
procedure as in the transition mode is used in order to create a reconfi-
guration edge.

Macro Terminator Activates the macro terminator mode. In this mode, a new macro termi-
nator is created if the select button is pressed. Models containing macro
terminators are called “macros”; a macro terminator is the connection
of the inside world of the macro to the outside world. If a macro is
invoked by using theMacro item of theEdit menu, the macro termi-
nators will be shown as little arrows (“sockets”) within a larger frame.
The direction of an arrow indicates the direction of the transition which
is attached to the corresponding terminator.

Macro Activates the macro mode. In this mode, a new macro invocation is
created if the select button is pressed.

Figure 5: “Macros” dialog box.

Having theMacro menu item selected, the “Macros” dialog box pops
up (see Fig. 5). It contains a list of available macros; select one of the
list items and then pressOK . PressCancel if the operation should be
aborted.

If a recursive macro definition is to be created a macro which has not
yet been defined has to be used. TheForward... button can be selected
in order to create a macro forward declaration (see Sec. 2.5.5).

If a macro invocation and a macro definition don’t match, the macro
invocation will be displayed as a crossed-out box. In this case, the in-
consistent macro invocation must be deleted and a new consistent invo-
cation has to be created.

9

Set Parameters Activates the parameter modification mode. In this mode, any object
may be selected in order to modify its parameters. (This does not apply
to reconfiguration edges, which are parameterless.) If an object has
been newly created, a question mark (“?”) is displayed on top of the
object; this indicates that there are still parameters to be set.

Figure 6: “Parameters” dialog.

If an object is selected a dialog box will appear allowing to change the
object parameters (see Fig. 6). TheOK button must be pressed in order
to apply the new parameters to the object. No changes are made if the
Cancelbutton is pressed.� A Markov state or a branching state has the following parameters:

Name: Name of state. A state name must start with a letter
and may contain any of the characters A. . .Z, a. . . z,
0. . . 9, , (,), ’, [and].

Reward: Reward rate; any arithmetic expression may be en-
tered in this field (see Sec. 2.5.4).� A transition has one of the following parameters:

Rate: State transition rate (applies only to transitions
originating in a Markov state).

Probability: Probability of the transition (applies only to tran-
sitions originating in a branching state).

Any arithmetic expression may be entered.� A macro terminator has the following parameters:

Name: Name of the terminator.� A macro invocation has the following parameters (see Fig. 7):

Name: Name of the macro invocation.

Class: Class of the invoked macro; this is the model name
assigned to the macro definition.

Condition: Any arithmetic expression. If the expression is
zero, the macro invocation will be ignored. Other-
wise, the macro invocation will be substituted by
its definition (at experiment execution time). This
field is initialized with1:0.

Parameters: A list of all parameters that appears in the macro
definition. Each parameter may be substituted by

10

Figure 7: Macro parameters dialog.

an arithmetic expression; the substitution is per-
formed at experiment execution time. Initially,
each parameter is substituted by itself.

The names of all states, terminators, and macro invocations in a model
must be unique.

Delete Activates the delete mode. In this mode, the select button may be
pressed over an object in order to delete it.

Clear Erases the whole model.

2.5.3 The Options Menu

The options menu consists of five toggle buttons:

Show Grid Makes the grid visible/invisible.

Snap to Grid Activates/deactivates grid-snap mode. In this mode, all newly createdob-
jects will be centered with respect to the nearest intersection of the grid.

Show Node NamesShows/Hides the names of states and terminators.

Show Node RewardsShows/Hides the reward values of states.

Show Transition Rates Shows/Hides the rates of transitions.

2.5.4 Arithmetic Expressions

An arithmetic expression consists of numbers, parameter names, operators, and function calls.
The operators obey the usual precedence rules for arithmetic operators:

11

Operator Precedence Meaning
- 1 (highest) unary minus
ˆ 2 exponentiation
* 3 multiplication
/ 3 division
+ 4 addition
- 4 subtraction
< 5 less-than comparison
> 5 greater-than comparison

<= 5 less-than-or-equal comparison
>= 5 greater-than-or-equal comparison
= 5 test for equality

<> 5 (lowest) test for inequality

Parentheses may be used to override the default precedence rules.

If the comparison succeeds the comparison operators on precedence level 5 return1:0 otherwise
they return0:0. The comparison operators are generally only useful in the “Condition” field of
the “Macro” dialog box.

The following functions are defined:

Function Meaning
SQRT(x) square root:

px
EXP(x) power to the basee: ex
LN(x) natural logarithm:lnx

A number is a sequence of digits with an optional embedded decimal point. An exponent suffix
may be appended, i.e., the lettere, an optional sign, and a sequence of digits.

Examples:

3
3.14

0.0314e2
314e-2

A parameter is a sequence of characters starting with a letter; the parameter name may contain
letters, digits and underscores (“”). The actual value of a parameter is defined in the parameter
set editor (see Sec. 2.6).

Examples: (1 + x)3 (1 + x) ˆ 32 � a � e1�x 2 * a * EXP (1-x)q1+x1�x SQRT ((1+x)/(1-x))

12

2.5.5 The Forward Declaration Dialog

Figure 8: “Forward Declaration” dialog.

The purpose of the forward declaration dialog (see Fig. 8) is to declare a macrowhich has not
yet been defined. The following information has to be provided:

Class The name of the model that will contain the macro definition.

Socket names The names of the macro terminators. Use the buttonInsert to insert new
socket names and the buttonDelete to delete the selected socket names.
The radio buttonsIn andOut determine the direction of the socket.

Parameters The names of the macro parameters. Use the buttonInsert to insert new
parameter names and the buttonDelete to delete the selected parameter
names.

Press theOK button in order to create the forward declaration, or pressCancel to abort the
operation.

2.6 The Parameter Set Editor

The parameter set editor (see Fig. 9) is used to assign concrete values to the model parame-
ters. Each parameter may have one or more values. For all possible value combinations one
experiment will be executed.

The numbers entered in the parameter set editor consist of digits, an optional embedded deci-
mal point, and an optional exponent suffix. For example, both3.14 and0.314e2 are valid
numbers.

Each number is rounded to twenty digits: 1e-21 = 0.

Select a parameter from the parameter index and activate one of the following radio buttons:

13

Figure 9: Parameter set editor.

1 Value There is exactly one value for this parameter (fieldValue).

N Equidistant Values The values for this parameter are taken from the setfxjx = a+ s � i; i = 0 : : : N � 1g
wherea is the value from the fieldStart Value, s from the fieldStep
Width andN from the fieldNumber of Steps.

N Arbitrary Values The values are taken from the fieldValues. This field can hold an arbi-
trary number of values. Each number must be in a separate line.

N Logarithmic Equidistant Values The values for this parameter are taken from the setfxjx = a � f i; i = 0 : : : N � 1g
wherea is the value from the fieldStart Value, f from the fieldFactor
andN from the fieldNumber of Steps.

Press theSavebutton in order to save the parameter set, or pressCancel to exit the parameter
set editor.

2.7 The Experiment Editor

The experiment editor (see Fig. 10) is used to create experiment definitions, to run experiments,
to save experiment definitions and results, to display results, and to save computed strategies.

An experiment definition requires the following information:

14

Figure 10: Experiment editor.

Figure 11: “Parameter Sets” dialog.

Parameter Set The name of the associated parameter set. Press this button in order to
display the “Parameter Sets” dialog (see Fig. 11). One of the available pa-
rameter sets may be selected. PressOK to return to the experiment editor.

Mode One of the modesTransient Optimization , Stationary Optimization , Si-
mulation, Transient Analysis, or Stationary Analysiscan be selected.

Mission Time A mission time must be specified for the transient optimization, transient
analysis, and for the simulation.

Strategy A fixed strategy may be specified for the transient and stationary analysis
and for the simulation. It can be loaded in the Strategy Index (see Sec. 2.8
– Load). The strategy is considered as afixed strategy for this experiment,
no optimization will be performed.

Step Width The step width for the transient optimization and the transient analysis de-
termining the accuracy can be specified.

15

Taylor Degree The values 0, 1, 2 or 3 are possible. The default Taylor degree is 1.

Start State The start state of the simulation.

Number of Runs The number of runs for the simulation.

Iteration Mode Strategy Iteration or Value Iteration may be selected for the stationary
optimization.

Absorbing States Click at this button if the model contains absorbing states for the appro-
priate computation method to be performed for the stationary optimization
and stationary analysis.

Iterations Number of iterations to be performed.

Value Iter. Eps. Termination criterion for Value Iteration. Default:10�5.
Method Available methods for the solution of linear equations:Gauss, Power,

Gauss-Seidel, or SOR.

Method Iter. Number of iterations for the iterative methods (Power, Gauss-Seidel, SOR).

Epsilon Termination criterion for iterative methods for the solution of linear equa-
tions. Default:10�6.

Omega Relaxation parameter for SOR method. Default: 1.2.

Max. difference In the strategy iteration, two valuesa and b are considered as equal ifja� bj < d, whered is the value of theMax. difference field. Default:10�5.
Info The toggle buttonModel determines whether the info file should contain

the model description or not.
The toggle buttonStructure Analysis determines whether a structure ana-
lysis of the model should be provided or not.
If the toggle buttonTrace is on a trace of the computation is provided for
the given time steps. Default:20. In the menuWhat, one can specify the
tracing states to be traced.

Meaning of the buttons:

Save Strategy This button may be pressed if the experiment was run in the former and
computed strategies exist. A strategy name is asked for.

Strategy Index Shows/Edits the list of all strategies saved for this model (see Sec. 2.8).

Load Results If the results of the experiment were previously saved they can be loaded
(resp. reloaded) from the experiment database by clicking at this button.

Save Saves the experiment definition, and the results of this experiment if there
are any.

16

Figure 12: “Working...” dialog.

Save As Saves the experiment definition, and the results of this experiment if there
are any under a new name. The experiment name is asked for.

Run Starts the experiment. While the experiment is performed, a “Working...”
dialog appears (see Fig. 12). The experiment may be aborted with the
Abort button of the “Working...” dialog.

Figure 13: “Info” window.

Info Shows information on the performed experiment (see Fig. 13). The Info
file contains:� Parameter combinations.� yModel (in PENELOPE’s model description language).� yStructure analysis of the model.� yOutput of the trace function on defined states.� Optimal strategies.� Accumulated rewards.� State probabilities.� Error messages of PENELOPE.

All informations marked withy require that the corresponding Info toggle
button is set on (see bellow).
The Info is displayed using the UNIXless program.

17

Show Shows the results of the experiment. The “Graph Parameters” dialog pops
up (see Sec. 2.9).

Cancel Leaves the experiment editor.

2.8 The Strategy Index

Figure 14: Strategy index.

The strategy index (see Fig. 14) is a list of all strategies available for the selected model. One
of the following buttons may be pressed:

Create Creates a new strategy. A new strategy name is asked for. Then the strategy editor
is opened (see Sec. 2.8.1).

Load yLoads the selected strategy in the experiment definition. The name of the loaded
strategy appears in the experiment editor. If the selected strategy is of atransient
type the mission time of this strategy appears in the widget “Mission Time” in the
experiment editor.

Copy yMakes a copy of the selected strategy. A name of the copy is asked for.

Copy To yMakes a copy of the selected strategy to an arbitrary model. Type in the desired
strategy name in response to the prompt “Name of copy:” and then pressOK . Then
a name of the model is asked for.

Rename yRenames a selected strategy. Type in the desired strategy name in response to the
prompt “New strategy name:”, and then pressOK .

Delete yDeletes the selected strategy.

Open yOpens the strategy editor for the selected strategy (see Sec. 2.8.1).

Cancel Exits the strategy index.

All operations marked withy require that a strategy has been previously selected from the list.

A double-clicking of a list item will perform theOpenaction.

18

2.8.1 The Strategy Editor

Figure 15: Strategy editor.

The strategy editor (see Fig. 15) is used to create, modify, and display strategies.

It contains:� Toggle buttonsTransient Strategy andStationary Strategy which determine a type of
the selected strategy.� Mission time. The mission time is used only for transient strategies.� A list of Parametercombinations. Each combination is represented by names and values
of the varying parameters. Both, name and value, can be modified in the text widget
NameandValue. By clicking at theup arrow (resp.down arrow), the previous (resp.
next) parameter of the selected parameter combination appears. The buttonOK next to
the arrows must be pressed in order to apply the parameter modification to the parameter
combination list.

To create a new parameter of the selected combination click at the toggle button New
Parameter, write a name, and a value and then press OK.

To create a new combination click at the toggle buttonNew Parameter Combination,
write a name, and a value of the first parameter in the new combination and then press
OK. New combination is created. The remaining parameters of this combinationcan be
put in by clicking atNew Parameter.

19

� Strategy. This text widget contains a strategy of the selected parameter combination. For
the syntax see [MAUS 90]. Both, transient and stationary syntax, are valid. The strategies
can be modified by the user. Each line must be terminated with new line character.

In the text widgetStrategy for all combinations, write a line that is equal for all para-
meter combinations. By pressing the buttonOK next to this text widget, strategies for all
parameter combinations are modified in the line with the same reconfiguration state.

Meaning of the buttons:

Save Saves the strategy editor.

Save As Saves the strategy editor under a new name. The strategy name is asked for.

View Shows the current strategy. The “Graph Parameters” dialog pops up (see Sec.2.9).

Cancel Leaves the strategy editor.

2.9 The Graph Parameters Dialog

Figure 16: “Graph Parameters” dialog.

Figure 17: “Value”, “Difference Values” and “Which rewards” dialogs.

XPenelope uses 2D-plot programs to display the results of the experiments. The “Z-Axis” of
the graph parameters dialog (see Fig. 16) represents the capability to plot multiple data sets per
graph.

Select a kind of graph by clicking at one of toggle buttons:

20

Strategy Graph The three lists “X-Axis”, “Y-Axis” and “Z-Axis” contain the possible axis
labels “<Time>”, “<Strategy>” and names of the parameters with more than one
value.

Performance Graph By selecting the toggle buttonpositive the values of reward rates will
be displayed as positive values. By selecting the toggle buttonnegativethe values
of reward rates will be displayed as negative values. The three lists “X-Axis”, “Y-
Axis” and “Z-Axis” contain the possible axis labels “<State>”, “<Reward>” and
names of the parameters with more than one value.

In the text widgets under each list, the user may change description of the axis.

If the model has more than one varying parameter, then fixed values must be selected for the
parameters. This is done by clicking at one of the buttons marked with the parameter name, and
by selecting one or more of the possible values from the “Values” dialog (see Fig. 17). Default
value is the first value in the list of the possible values. If more than one valueis selected the
parameter gets a variable mode. No more than one parameter may have the variable mode.

In the Driver menu, a plot program can be selected. By default, the following drivers are
installed:

XGraph Driver for thexgraph program (a freely distributable plot program).

Gnuplot Driver for thegnuplot program (also freely distributable).

Text Driver for a textual representation of the results; the text is displayed usingthe
UNIX view program.

ACE/GR Driver for the ACE/GR program (a freely distributable plot program) [TURN 92].

XGadd Driver for thexgadd program, which has been developed for the PEPSY tool at
the University of Erlangen-Nürnberg [MEIT 92].

In the Scalemenu can be specified if the X (or Y) axis should have a linear or a logarithmic
scale. There are four possibilities:

Lin/Lin X axis: linear; Y axis: linear.

Lin/Log X axis: linear; Y axis: logarithmic.

Log/Lin X axis: logarithmic; Y axis: linear.

Log/Log X axis: logarithmic; Y axis: logarithmic.

In theMode menu can be chosen between a graph (Graph) or a bar chart (Histogram). The
menusMode andScaledo not apply to theText driver.

The toggle buttonSuppress 0sdetermines whether strategy changes which always happen at
time 0 should be suppressed or not. The default is to suppress these strategy changes.

21

Figure 18: “Parameter Set” dialog.

The toggle buttonShow Parameter Setdetermines whether a window containing graph in-
formations (see Fig. 18) is shown by pressing the OK button or not. This window is for a
documentation purpose. This information can be saved in a data file by clicking at the button
Save. Then a file name is asked for.

In the text widgetExperiment Name the inscription of the resulting graph may be changed.

Figure 19: “Which Experiment” dialog.

Figure 20: “Dif.Exp.Parameter” dialog.

The toggle buttonDifference graphdetermines whether the resulting graph a difference graph
is or not.

The choices in theDiff. after menu:

Param. By clicking at one of the buttons marked with the parameter name the “Dif-
ference Values” dialog will appear (see Fig. 17). Select one value from the

22

list labeledA, and one or more values from the list labeledB. The toggle
buttonsA-B andB-A determine the subtrahend and minuend. The result
lines are created as the difference between any two lines with the same
name.

Rewards Choose exactly two rewards which the difference line is made from.

Experiments By clicking at this button the “Which Experiment” dialog (see Fig. 19) with
a list of all possible experiments for this model appears. Choose one of the
experiments and then press OK. If the selected experiment contains more
than one varying parameter the “Dif.Exp.Parameter” dialog (see Fig. 20)
pops up. By clicking at one of the buttons marked with the parameter name
select a fixed value for each parameter. The result lines are createdas the
difference between any two lines with the same name. The subtrahend
lines belong to the current experiment, the minuend lines belong to the
experiment selected in the “Which Experiment” dialog.

The Rewards menu specifies if the reward axis has nominal scale (Nominal) or normalized
(Time average).

The choices in theWhich menu:

all The runs of all reward/strategy lines are displayed.

part Choose rewards/strategies from the “Which” dialog (see Fig. 17) theirs run should
be displayed.

The choices in theExperiment menu:

one The results of one experiment (i.e. the current experiment) should be displayed.

more Choose one or more additional experiments from the “Experiments” dialog; the
reward or strategy functions of the additional experiments will be displayed, together
with the reward or strategy functions of the current experiment.

The toggle buttonAggregated Rewardsdetermines whether the rewards selected in the
“Which” menu are aggregated or not.

Meaning of the buttons:

OK Displays the graph (see Fig. 21).

Forward Runs the experiment in another interval (see Sec. 2.9.1).

Change The user can change explicitly the result lines of a strategy graph (see
Sec. 2.9.2).

Cancel Leaves the graph parameters dialog.

23

Figure 21: A plot program displaying a strategy.

In the graph, strategies are labeled asNode1->Node2 , which means that the reconfiguration
edge starting inNode1 and ending inNode2 is active.

A nodeN that appears in a macro namedMis designatedM/N. Node names such asM/M/M/N
will automatically be abbreviated toMˆ3/N .

If one of the varying parameters has a variable mode the line labels in the graph contain the
value of this parameter in parentheses.

If the “Experiments” menu is set to “more” the line labels in the graph containa number in
parentheses that determines which experiment the lines belong to. The labels without such
number determine lines from the current experiment.

2.9.1 The Forward Experiment Dialog

Figure 22: Forward Experiment dialog for equidistant mode.

24

Figure 23: Forward Experiment dialog for multiple mode.

There are three different forward experiment dialogs depending on the parameter mode
(equidistant, log. equidistant or multiple values) of the parameter selected in one of the axis
lists.

Equidistant Mode The “Forward Experiment” dialog appears (see Fig. 22). The first three
lines give an information about the selected parameter (name, mode, and interval
of values) where the experiment had already run. Active one of the following radio
buttons:

Backwards: value The parameter values are taken from the setfxjx = a� s � i; i = 0 : : : N � 1g
wherea is theStart Value, s is theStep Width andN Number of Steps.
TheValueis the first possible parameter value (i=0). If value< 0 the radio
button is made unvisible. The value in fieldNumber of Stepsis accepted ifN > 1 andx � 0 for i=N � 1.

Forwards: value The value is the start value for the new interval. The value in
field Number of Stepsis accepted ifN > 1.

Logarithmic Equidistant Mode The “Forward Experiment” dialog appears. The informa-
tions in the first three lines is equal to the Forward Experiment dialog in the equidis-
tant mode. If the “Backwards” radio button is selected the parameter values are
taken from the set fxjx = a=f i; i = 0 : : : N � 1g
wherea is theStart Value, f is theFactor andN is theNumber of Steps. The
value in fieldNumber of Stepsis accepted ifN > 1.

Multiple Mode The “Forward Experiment” dialog appears (see Fig. 23). There are two text
widgets. In the upper one, there are values which the experiment had already run
for. This text widget is not editable. In the second one, new values may be inserted.
At least two values have to be inserted. Each number must be in a separate line.

Press the buttonRun to run the experiment for the new values. Then the “Forward Experiment”
and “Graph Parameters” dialog disappears and a “Working...” dialog (see Fig.12) is shown.
After the experiment is performed the new results can be seen in the “Graph Parameters” dialog

25

(see Sec. 2.9). Now, if the button “Forward” is pressed the new results canbe joined with the
previous by clicking at the buttonJoin in the “Forward Experiment” dialog, or they can be
deleted by clicking at the buttonDelete. To exit the “Forward Experiment” dialog the button
Cancelmust be pressed.

2.9.2 Change Graph Dialog

Figure 24: “Change Graph” and “Change Lines” dialog.

The user has a possibility to change interactively the course of strategy linesin the result graph.
The “Change Graph” dialog (see Fig. 24) is a list of all strategies in the experiment. Select a
strategy its line should be changed. By clicking at the buttonOK , the “Change Lines” dialog
(see Fig. 24) appears.

Press the buttonCancelto leave the change graph dialog.

Change Lines Dialog The Change Lines Dialog contains an editable text widget. Each curve
in the graph is represented by a co-ordinate set in the text widget. The user may change this co-
ordinates. Each line must be terminated with new line character. Between every two co-ordinate
sets is an empty line.

Press the buttonOK to change the graph. To leave the Change Lines dialog without any change
is done click at the buttonCancel.

By clicking at the button Save in the Experiment Editor all changes are saved.

2.10 Resources

Some attributes of XPenelope can be customized by the user. In order to do this, entries must
be made in the file

$HOME/.Xdefaults

and subsequently the X server must be restarted or the command

26

xrdb -load $HOME/.Xdefaults

must be executed.

Here is a list of the customizable resources, their default values, and their meaning:

XPen.geometry: +100+100

Position of the model index after invocation.

XPen.background: Gray90

Background color.

XPen.foreground: Black

Foreground color.

XPen.printCommand: lpr -P%s

Command to print a file;%s is a placeholder for the file name andmust appear in
the resource string.

XPen.PrinterName.value: psr0

Default printer name.

XPen.plotDrivers: \
XGraph,xgraph.driver,LB \n\
Text,text.driver,XY

Available plot drivers.

TheplotDrivers resource contains an arbitrary number of driver specifications. Each spe-
cification is separated by a newline character. A specification has the general format

Title , Driver , Capabilities

whereTitle is the text that appears in theDriver menu of the graph parameters dialog.Driver is
the name of the program which will be called to display the data.Capabilitiesis a string which
contains any of the following characters:

L The driver is able to display logarithmically scaled axes.

B The driver is able to display barcharts.

27

X The driver is able to display alphanumerical strings as tick labels on the X axis.

Y The driver is able to display alphanumerical strings as tick labels on the Y axis.

Several arguments are passed to the driver program:

$1 Name of input file.

$2 Title.

$3 Name of X-axis.

$4 Name of Y-axis.

Additionally, the following options may be passed to the driver:

–xalpha Alphanumerical tick labels on the X axis.

–yalpha Alphanumerical tick labels on the Y axis.

–logx Logarithmically scaled X axis.

–logy Logarithmically scaled Y axis.

–bar Display bar chart instead of graph.

The input file contains XY-pairs, one for each line. The X and Y values are separated by
one space character. The XY-pairs are grouped by their Z value; a line indicatingthe Z-value
precedes the corresponding XY-pairs; this line starts with the character “:”.

Example:

:N1->N1
0.1 10
0.2 30
0.4 60
:N1->N2
0.1 15
0.2 40
0.4 80

This file stands for the XYZ-pairs (0.1,10,N1->N1), (0.2,30,N1->N1), ..., (0.4,80,N1->N2).

28

3 Examples

This section contains two step-by-step examples which show how to create anduse models and
macros with XPenelope.

3.1 Example 1

δ

2γ

β

α

δ

γ

γ

c

1-c

N2

RC

RB

N1 N0

R1

Cov

Figure 25: A simple model (from [DEME 92, p. 52])

The first example shows how to create the model depicted in figure 25. The followingreward
rates shall be assigned to the states:

State Reward rate
N0 0
N1 1
R1 1
N2 1
RB 0
RC 0
Cov 0

Phase 1: Create the states

Step 1: Invoke XPenelope by entering the command

xpenelope

on the command line. After a few seconds, the model index should appear on the
screen.

Step 2: Press theCreatebutton in order to create a new model.

29

Step 3: Select the itemMarkov State from theEdit menu. This activates theMarkov
state mode; in this mode, every mouse click in the drawing area produces a new
Markov state.

Step 4: For every Markov state in figure 25, click the left mouse button at the correspond-
ing position in the drawing area. For every mouse click, a circle with a question
mark appears on the screen.

Step 5: Select the itemBranch State from theEdit menu. This activates theBranch
state mode; in this mode, every mouse click in the drawing area produces a new
branching state.

Step 6: Make one mouse click in the drawing area in order to create the stateCov. The
drawing area should now look like figure 26.

Figure 26: Model editor containing six Markov states and one branching state

Phase 2: Assign names and rewards to the states

Step 7: Select the itemSet Parametersfrom theEdit menu. This activates theSet pa-
rameters mode; in this mode you may click at any object in order to modify its
parameters.

Step 8: The question marks displayed on top of each state signal that the parameters for
the states have not yet been entered. Thus, click at the stateN2 (the leftmost
state). The “Parameters...” dialog appears. Enter the node name “N2” in thefield
Name; enter the reward rate “1” in the fieldReward. Press theOK button.

Step 9: Repeat step 8 for each state.

Phase 3: Create the transitions and reconfiguration edges

Step 10: Select the itemTransition from theEdit menu. This activates theTransition
mode; in this mode, you may click at two states in order to create a transition
between these states.

30

Step 11: First, we will create the transition between stateN2 and stateCov: click at state
N2, then at stateCov. A transition with a question mark on top of it appears.

Step 12: Repeat step 11 for each transition. If you create the transition fromR1 to N2,
you probably don’t want to connect the states by a straight line. Therefore, you
may proceed like this: click at stateR1, then click somewhere between stateR1
andN2, and finally click at stateN2. This will produce a transition consisting of
two line segments.

Step 13: Select the itemReconfiguration Edgefrom theEdit menu. This activates the
Reconfiguration edge mode; in this mode, you may click at two states in order to
create a reconfiguration edge between these states.

Step 14: The example model contains only the reconfiguration edge between stateN1 and
R1. Thus, first click at stateN1 and then at stateR1. A reconfiguration edge
between the two states appears. The drawing area should now look like figure 27.

Figure 27: States and transitions.

Phase 4: Assign transition rates and probabilities to the edges

Step 15: Select the itemSet Parametersfrom theEdit menu.

Step 16: Click at the transition between stateN2 and stateCov. The “Parameters...” dialog
appears.

Step 17: Enter the transition rate “2 * gamma” in the fieldRate. Press theOK button.

Step 18: Repeat step 17 for each transition. If you click at a transition originating in a
branching state, the “Parameters...” dialog will contain a fieldProbability . In
this field you have to enter the probability of the transition (“c” or “1-c” in our
example). The drawing area should now look like figure 28.

31

Figure 28: The completed model.

Phase 5: Save the model

Step 19: Select the itemSavefrom theFile menu. A dialog appears which prompts you
for a model name. Enter “SimpleExample” and press theOK button.

Step 20: A message dialog with the text “Model saved” appears. Press theOK button.

Phase 6: Create a parameter set
We will now assign concrete values to the individual model parameters. The values we will
choose are:

Model parameter Value(s)
alpha 0.01
beta 0.1

c 0.99
delta 0.01
gamma 10�5,10�4,10�3,10�2,10�1

Step 21: Select the item “SimpleExample” in the model editor and press theOpenbutton.
A pop-up menu appears; select the itemParameter Index.... The parameter
index appears.

Step 22: Press theCreatebutton of the parameter index in order to create a new parameter
set. The parameter set editor shown in figure 29 appears.

32

Figure 29: The parameter set editor.

Step 23: Click at the item “alpha” and enter the value “0.01” in the fieldValue.

Step 24: Repeat step 23 for the parameters “beta”, “c” and “delta”.

Step 25: Select the item “gamma” and press the buttonN Arbitrary Values . Now enter
the values “1e-5”, “1e-4”, “1e-3”, “1e-2” and “1e-1” in the fieldValues, one
value per line.

Step 26: Press theSavebutton.

Step 27: A dialog appears prompting you for the “Parameter Set Name”. Enter “PSet”
and press theOK button. A message dialog with the text “Parameter Set Saved”
appears; press theOK button.

Phase 7: Create the experiment definition

Step 28: Select the item “SimpleExample” in the model editor and press theOpenbutton.
A pop-up menu appears; select the itemExperiment Index.... The experiment
index appears.

Step 29: Press theCreate button of the experiment index in order to create a new experi-
ment definition.

Step 30: A dialog appears prompting you for the “Experiment Name”. Enter “Exp” and
press theOK button. The experiment editor appears.

33

Step 31: Press the buttonParameter Set, which currently has the label???. The “Para-
meter Sets” dialog appears, which shows a list of the available parameter sets.
Currently only the parameter set “PSet” is available. Select this parameter set
and press theOK button. The label of theParameter Setbutton has changed to
“PSet” to reflect the currently selected parameter set.

Step 32: Enter the value “500” in the fieldMission Time.

Step 33: Enter the value “0.1” in the fieldStep Width.

Step 34: Make sure that the radio button labeledTransient Optimization is active.

Phase 8: Start the experiment

Step 35: Press theRun button. The “Working...” dialog appears. Wait until this dialog
disappears from the screen. Then the experiment has finished.

Step 36: Press theSavebutton. A message dialog with the text “Experiment Saved” ap-
pears; press theOK button.

Phase 9: Show the results

Step 37: Press theShowbutton. The “Graph Parameters” dialog appears.

Step 38: Make sure that the program “XGraph” has been selected in theDriver menu.

Step 39: Select the itemLog/Lin from theScalemenu in order to scale the X-axis loga-
rithmically.

Step 40: Press theOK button. After a few seconds, the graph shown in figure 30 appears.

Step 41: Interpret the results: The curve labeled “N1!R1” indicates that above this
curve the reconfiguration edge from stateN1 to stateR1 is active. E.g. for
gamma = 0.001 the reconfiguration edge is active from the start of the mission
until 41.8 time units before the end of the mission.

Step 42: Remove the graph window by pressing theClosebutton.

Step 43: You may now modify the settings of the “Graph Parameters” dialog in order to
modify the appearance of the graph. For example, you might select “<Time>”
from theX-Axis list and “<Strategy>” from the Y-Axis list. If you now press
theOK button, the graph appears with the X- and Y-axes swapped.

Step 44: Click at the radio buttonPerformance Graph in the “Graph Parameters” dialog.

Step 45: You may select one or more performance curves by selecting the “part” item in
theWhich menu. The “Which” dialog appears. Select one or more items in the
list of model states and pressOK .

Step 46: Press theOK button in the “Graph Parameters” dialog. A performance graph for
the selecting states appears.

34

Figure 30: The results of the experiment.

3.2 Example 2

In
O

ut
A

1
A

2
A

k
kµ

kµ
kµ

Figure 31: Model of the Erlang-k distribution

The second example shows how to create and use macros. In this example a macrowhich
models the Erlang-k distribution shall be created.

Figure 31 shows the model of the Erlang-k distribution: it consists of a chain ofk Markov states
with a transition rate ofk��. Erlang-k distributions are generally used to model non-exponential
distributions with a small variance.

An Erlang-k distribution can be thought of as one Markov state which is connected to an Erlang-
k-1 distribution (see figure 32). This means that a model for the Erlang-k distribution can be
built using a recursive macro.

The macro for the Erlang-k distribution is depicted in figure 33. The macro contains a parameter
N, which is incremented by one with each recursion step. The macro invokes itself if N<k;

35

In
O

ut
A

k
E

rla
ng

-k
-1

kµ
Figure 32: Recursive nature of the Erlang-k distribution

E
rla

ng
-(

N
-1

)
C

on
ne

ct

In O
ut

O
utIn

In

O
ut

A C
om

C
on

d.
: N

<
k

C
on

d.
: N

=
k

1

re
w

0

kµ
kµ

Figure 33: Macro for the Erlang-k distribution

otherwise the macroConnectis called. Connectis a macro which simply connects the input
with the output. The branching stateComis needed to connect the outputs of the two macros
with Out, because it isn’t allowed to connect more than one edge to a macro terminator.

The following paragraphs show how to create the Erlang macro.

Phase 1: Create the Connect macro

Step 1: Invoke XPenelope and press theCreatebutton of the model index.

Step 2: Select the itemMacro Terminator from theEdit menu. This activates theMacro
terminator mode; in this mode, every mouse click in the drawing area produces a
new macro terminator.

Step 3: Click the left mouse button twice in the drawing area in order to produce the
terminatorsIn andOut.

Step 4: Select the itemSet Parametersfrom theEdit menu.

36

Step 5: Click at the first macro terminator. The “Set Parameters...” dialogappears. Enter
“In” in the field Nameand press theOK button.

Step 6: Repeat step 5 for the second macro terminator (name: “Out”).

Step 7: Select the itemTransition from theEdit menu.

Step 8: Click at the terminatorIn and then at the terminatorOut. A transition between
the two terminators will appear (see figure 34).

Figure 34: TheConnectmacro

Step 9: Select the itemSavefrom theFile menu and save the macro under the name
“Connect”.

Phase 2: Create the nodes of the Erlang macro

Step 10: Create the terminatorsIn andOutof the Erlang macro as shown in steps 2 to 5.

Step 11: Create the Markov stateA and the branching stateComas shown in example 1.

Step 12: Select the itemMacro from theEdit menu. This activates theMacro mode; in
this mode, every mouse click in the drawing area produces a new macro invoca-
tion.

Step 13: The “Macros” dialog box appears. Select the item “Connect” from the list and
press theOK button.

Step 14: Click the left mouse button while the cursor is in the drawing area. An invocation
of theConnectmacro will appear.

Phase 3: Create a forward declaration for the Erlang macro
At this point, we have the problem that we need to use the Erlang macro. This macro,however,
has not yet been defined. Thus, we have to create a forward declaration, which informs the
model editor about the names of the macro sockets and the names of the macro parameters. The
parameters of the Erlang macro are:

Parameter Meaning
k Number of phases

mu Transition rate
N Recursion depth

rew Reward rate

37

Step 15: Select the itemMacro from theEdit menu. The “Macros” dialog box appears.

Step 16: Press theForward... button. The “Forward Declaration” dialog appears.

Step 17: Enter “Erlang” into theClassfield.

Step 18: Click at theIn button and enter “In” in theSocket namefield. Then press the
Insert button. This inserts the input socket “In” into theSocket nameslist.

Step 19: Click at theOut button and enter “Out” in theSocket namefield. Then press the
Insert button. This inserts the output socket “Out” into theSocket nameslist.

Step 20: Enter “k” in theParameter namefield and press theInsert button. This inserts
the parameter “k” in into theParameterslist.

Step 21: Repeat step 20 for the parameters “mu”, “N” and “rew”.

Step 22: Press theOK button.

Step 23: Click the left mouse button while the cursor is in the drawing area. An invocation
of theErlang macro will appear.

Phase 4: Edit the macro parameters

Step 24: Select the itemSet Parametersfrom theEdit menu.

Step 25: Click at the invocation of theConnectmacro. The “Macro” dialog appears.

Step 26: Enter the node name “C” in theNamefield.

Step 27: Enter the condition “N=k” in theCondition field. The meaning of this condition
is that this macro must not be invoked ifk andN are not equal.

Step 28: Press theOK button.

Step 29: Click at the invocation of theErlang macro. The “Macro” dialog appears.

Step 30: Enter the node name “E” in theNamefield.

Step 31: Enter the condition “N<k” in the Condition field.

Step 32: Change the content of the fieldN from “N” to “N+1”. This means thatN is
incremented with each recursion step.

Step 33: Press theOK button.

Phase 5: Complete the macro definition

Step 34: Select the itemTransition from theEdit menu.

Step 35: Create all necessary transitions as shown in figure 33.

38

Figure 35: TheErlang macro

Step 36: Save the macro under the name “Erlang”. It is important that this name is the
same as the name that has been specified in the forward declaration dialog. The
completed macro definition should look like figure 35.

Phase 6: Use the Erlang macro

Step 37: Select the itemMacro from theEdit menu. The “Macros” dialog appears.

Step 38: Select the item “Erlang” from the list and press theOK button.

Step 39: Click the left mouse button while the cursor is in the drawing area. An invocation
of theErlang macro appears.

Step 40: Select the itemSet Parametersfrom theEdit menu.

Step 41: Click at the macro invocation. The “Macro” dialog appears.

Step 42: Enter a node name.

Step 43: Enter the value “1” in the fieldN in order to initialize the recursion depth counter.

Step 44: Modify the parameters “mu”, “rew” and “k” to suit your application.

Step 45: Build your model around this macro invocation. An example is shown in fig-
ure 36.

4 Conclusion

The combination of the tools Penelope and XPenelope enables a fast and comfortable creation
and optimization of extended Markov reward models.

39

Figure 36: A simple model with an invocation of theErlang macro

Penelope contains algorithms for the analysis and optimization of statically anddynamically
reconfigurable systems. XPenelope supports the model creation, the experiment management
and the visualization of the results. The macro mechanism of XPenelope makes itpossible to
split large models into smaller and simpler submodels.

The user-friendly X window interface, the operating system independent database,permanently
executed consistency checks, and many other features make XPenelope a versatile working
environment for the modeling and optimization of reconfigurable systems. Many application
examples can be found in [DEME 94].

40

References

[K ÄTK 92] Kätker, S.: “Entwicklung und Implementation ausgewählter Algorithmender
stochastischen Optimierung zur Erweiterung von PENELOPE”; Master thesis,
University of Erlangen-Nürnberg, 1992.

[M AUS 90] Mauser, H.: “Implementierung eines Optimierungsverfahrens für rekonfigurier-
bare Systeme”; Diplomarbeit, University of Erlangen-Nürnberg, 1990.

[DEME 92] de Meer, H.: “Transiente Leistungsbewertung und Optimierung rekonfigurier-
barer fehlertoleranter Rechensysteme”;Arbeitsberichte des IMMD der Univer-
sität Erlangen-Nürnberg, Vol. 25, No. 10, October 1992.

[DEME 94] de Meer, H., Kishor S. Trivedi, and Mario Dal Cin: “Guarded
Repair of Dependable Systems”;Theoretical Computer Science, Spe-
cial Issue on Dependable Parallel Computing, Vol. 129, July 1994
(http://www.informatik.uni-hamburg.de/TKRN/rohomed.htm).

[M EMA 92] de Meer, H.; Mauser, H.: “A Modeling Approach for Dynamically Reconfig-
urable Systems”;Proceedings of the 2nd Int. Workshop on Responsive Com-
puter Systems, Kamifukuaoka, Saitama, Japan, 1992.

[M EIT 92] Meitinger M.: “Entwurf und Implementierung eines Programms zur graphi-
schen Aufbereitung von Analyseergebnissen unter X-Windows”; Master thesis,
University of Erlangen-Nürnberg, 1992.

[M UNK 93] Munkert, F.: “Entwicklung und Implementierung einer benutzerfreundlichen
X-Window-Oberfläche für das Leistungsbewerte- und Optimierungstool
PENELOPE”; Master thesis, University of Erlangen-Nürnberg, 1993.

[T IJM 86] Tijms, Henk C.: “Stochastic modelling and analysis : a computational ap-
proach”; Chichester : Wiley, 1986.

[TURN 92] Turner, P.J.: “ACE/gr User’s Manual”; Oregon Graduate Institute of Science
and Technology, Beaverton, Oregon, 1992.

41

