
Miscellaneous METAPOST Macros

Matej Koš́ık

April 15, 2011

Abstract

Technical communication with people is critical, and harder than communicating with the
machines. METAPOST is a high-level declarative and macro programming language. Due to
its unusual domain (drawing pictures) bare code fragments often look like cryptic gibberish.
In this document we try to prove that it is possible to write comprehensible METAPOST

code1.

Contents

1 Various constants 2

2 tanforward(expr p, t, d) 2

3 tanbackward(expr p, t, d) 3

4 perpright(expr p, t, d) 3

5 perpleft(expr p, t d) 4

6 drawkarrow expr path text t 5

7 drawtwowaykarrow expr path text t 10

8 drawinfinite expr path text t 11

9 drawhatched closedpath text t 13

Copyright and License

1 〈misc.mp 1〉≡ 2a ⊲

% Additional macros for use with METAPOST

% Copyright (C) 2007 Matej Kosik <kosik@fiit.stuba.sk>

1Disclaimer: I do not explain METAPOST language here. You can refer for example to [1, 3].

1



April 15, 2011 misc.nw 2

%

% This program is free software; you can redistribute it and/or modify

% it under the terms of the GNU General Public License as published by

% the Free Software Foundation; either version 2 of the License, or

% (at your option) any later version.

%

% This program is distributed in the hope that it will be useful,

% but WITHOUT ANY WARRANTY; without even the implied warranty of

% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

% GNU General Public License for more details.

%

% You should have received a copy of the GNU General Public License along

% with this program; if not, write to the Free Software Foundation, Inc.,

% 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.

1 Various constants

2a 〈misc.mp 1〉+≡ ⊳ 1 10a ⊲

color yellow, cyan;

yellow := red + green;

cyan := green + blue;

2 tanforward(expr p, t, d)

The purpose of this macro is illustrated on figure below:

z0 = point t of p

z1 = tanforward(p, t, 1cm)

p

If we have a path p and we choose some time t, then z0 are coordinates of a point along the
curve p in time t. The tanforward macro computes coordinates of the point z1. Point z1 is on
a tangent constructed in point z0. It is in 1cm distance from point z0.

2b 〈misc.mp 2b〉+≡ 3a ⊲

def tanforward(expr p, t, d) =

(d,0) rotated (angle direction t of p) shifted (point t of p)

enddef;



April 15, 2011 misc.nw 3

3 tanbackward(expr p, t, d)

The tanforwardmacro returns coordinates along the tangent in positive direction, this tanbackward
macro returns coordinates of a point in the opposite direction. See the figure below:

z0 = point t of p

z1 = tanbackward(p, t, 1cm)

p

3a 〈misc.mp 2b〉+≡ ⊳ 2b 3b ⊲

def tanbackward(expr p, t, d) =

(d,0) rotated (180 + angle direction t of p) shifted (point t of p)

enddef;

4 perpright(expr p, t, d)

The purpose of this macro is illustrated on figure below:

z0 = point t of p

z1 = perpright(p, t, 1cm)

p

If we have a path p and we choose some time t, then z0 are coordinates of a point along the
curve p in time t. The perpright macro computes coordinates of the point z1. Point z1 is at
the end of an abscissa beginning in point z0 which has length l and it is perpendicular to the
path p.

3b 〈misc.mp 2b〉+≡ ⊳ 3a 4 ⊲

def perpright(expr p, t, l) =

(l,0) rotated ((angle direction t of p) - 90) shifted (point t of p)

enddef;



April 15, 2011 misc.nw 4

5 perpleft(expr p, t d)

It is very similar to perpright except coordinates in the opposite direction are returned. See
the figure below:

z0 = point t of p

z1 = perpleft(p, t, 1cm)

p

4 〈misc.mp 2b〉+≡ ⊳ 3b 5 ⊲

def perpleft(expr p, t, l) =

(l,0) rotated ((angle direction t of p) + 90) shifted (point t of p)

enddef;



April 15, 2011 misc.nw 5

6 drawkarrow expr path text t

This macro draws an arrow similar to the arrows found in [2]. It can be used in the same way as
the original drawarrow macro which is part of the plain format. Here are some example usages:

u := 1cm;

drawkarrow (0,0)--(-u,u)--(-2u,0);

drawkarrow (0,0)--(0,2u) withcolor red;

drawkarrow (0,0)..(u,u)..(2u,0);

drawkarrow (0,0)--(0,-2u) dashed withdots scaled .25;

That is, as you can see, the text after the drawkarrow has analogous meaning as the text after
the original drawarrow macro. It only draws arrowhead in a different way.

Implementation of this macro is fairly delicate, so we will explain things in detail. Let us first
enlarge the arrow and depict its distinct points:

beginpoint

endpoint

middlepositive

beginpositive

middlenegative

beginnegative

The arrow begins in beginpoint and ends in endpoint. These two points are are determined
by the path which is given to this macro as a parameter. Coordinates of all the other points are
computed.

The length of the arrowhead is influenced by the karrowheadlength variable. Its default value
is 8 points.

5 〈misc.mp 2b〉+≡ ⊳ 4 7a ⊲

karrowheadlength := 8pt;



April 15, 2011 misc.nw 6

The following figure illustrates the karrowheadlength.

karrowheadlength = 8pt

beginpoint endpoint

beginpositive

beginnegative

karrowheadlength / 2

beginpoint

endpoint

middlepositive

middlenegative

The karrowheadangle determines the angle shown in the figure below:

endpoint

beginpositive

beginnegative

karrowheadangle



April 15, 2011 misc.nw 7

7a 〈misc.mp 2b〉+≡ ⊳ 5 7b ⊲

karrowheadangle := 45; % Default head angle of the end point.

The karrowheadmiddleangle determines the angle shown in the figure below:

endpoint

middlepositive

middlenegative

karrowheadmiddleangle

7b 〈misc.mp 2b〉+≡ ⊳ 7a 7c ⊲

karrowheadmiddleangle := 25; % Default head angle of the middle point.

Auxiliary variables used for passing values between the main macro and its continuation.

7c 〈misc.mp 2b〉+≡ ⊳ 7b 7d ⊲

path _mainpath, _positivearrowpath, _negativearrowpath;

7d 〈misc.mp 2b〉+≡ ⊳ 7c 8 ⊲

def drawkarrow expr p =

begingroup

save subp, endpoint, beginpoint, beginpositive, middlepositive,

beginnegative, middlenegative;

path subp;

pair endpoint, beginpoint, beginpositive, middlepositive,

beginnegative, middlenegative;

〈Compute mainpath, positivearrowpath and negativearrowpath 9〉
endgroup;

_drawkarrowcontinuation

enddef;



April 15, 2011 misc.nw 8

Continuation of the drawkarrowmacro. It will use the computed mainpath, positivearrowpath

and negativearrowpath. It will also use (several times) the text which follows the path expres-
sion that follows the drawkarrow macro invocation. That is, consider the following statement:

drawkarrow (0,0)--(0,-2u) dashed withdots scaled .25;

When drawkarrow macro is expanded, the drawkarrow (0,0)--(0,-2u) tokens are removed
from the input stream. Immediately before invocation of the drawkarrowcontinuation, the
input stream looks as follows:

dashed withdots scaled .25;

And this rest (up to the nearest semicolon) is consumed by the drawkarrowcontinuationmacro
and this text will be within this macro available under name t.

8 〈misc.mp 2b〉+≡ ⊳ 7d 10b ⊲

def _drawkarrowcontinuation text t =

draw _mainpath t;

draw _positivearrowpath t;

draw _negativearrowpath t

enddef;



April 15, 2011 misc.nw 9

beginpoint

endpoint

middlepositive

beginpositive

middlenegative

beginnegative

The code below computes the distinct points shown in the figure above. The value of subp path
is denoted in green.

9 〈Compute mainpath, positivearrowpath and negativearrowpath 9〉≡ (7d)

endpoint := point length p of p;

subp := p cutbefore fullcircle

scaled (2*karrowheadlength)

shifted endpoint;

middlepositive :=

point (.5*length subp)

of (subp rotatedaround(endpoint, (.5*karrowheadmiddleangle)));

beginpositive :=

point 0

of (subp rotatedaround(endpoint, (.5*karrowheadangle)));

middlenegative :=

point (.5*length subp)

of (subp rotatedaround(endpoint, (-.5*karrowheadmiddleangle)));

beginnegative :=

point 0

of (subp rotatedaround(endpoint, (-.5*karrowheadangle)));

_mainpath := p;

_positivearrowpath := beginpositive..middlepositive..endpoint;

_negativearrowpath := beginnegative..middlenegative..endpoint;



April 15, 2011 misc.nw 10

7 drawtwowaykarrow expr path text t

This macro has a very similar effect as the drawkarrow except for that the arrowhead is drawn
not only at the end of a given path but also at the beginning of that path. For example this
code:

drawtwowaykarrow (0,0)..(7.5mm,7.5mm)..(15mm,0) withcolor red;

produces a following two-way arrow:

The implementation is lazy. We actually draw two k-arrows. On the original path and on the
reversed path.

The value passed from the main macro to the continuation (the mainpath identifier is already
taken).

10a 〈misc.mp 1〉+≡ ⊳ 2a

path __mainpath;

The main macro (which consumes the path expression) followed by its continuation which swal-
lows the rest of the text up to the first semicolon.

10b 〈misc.mp 2b〉+≡ ⊳ 8 11 ⊲

def drawtwowaykarrow expr p =

__mainpath := p;

drawtwowaykarrowcontinuation

enddef;

def drawtwowaykarrowcontinuation text t =

drawkarrow __mainpath t;

drawkarrow reverse __mainpath t

enddef;



April 15, 2011 misc.nw 11

8 drawinfinite expr path text t

This macro can be used for drawing paths whose middle (mid-time) contains a mark which tells
the reader that it is “infinite” or it was not drawn in its entirety. This macro can be used in a
similar way as normal draw macro which is part of the plain format. With expression such as:

drawinfinite (0,0)--(3cm,0);

you can produce the following:

Let us enlarge the mark in the middle of this kind of path and denote distinct points:

middlepointz0

z1

z2

z3

11 〈misc.mp 2b〉+≡ ⊳ 10b 13 ⊲

inflen := .2cm; % The length (along the line/curve) of the sign.

infwidth := .4cm; % The width (perpendicularly to the line/curve).

% Auxiliary variables used for passing values between the main macro

% and its continuation.

path _mainpath, _firstpath, _secondpath;

def drawinfinite expr p =

save middlepoint, middletime, tangent, pathlength,_middlepath,

middlepathlength;

pair middlepoint;

path tangent, _middlenondrawncircle, _firsthalfpath, _secondhalfpath,

_middlepath;

save z; pair z[];

pathlength := length p;

middlepathlength := pathlength / 2;

middlepoint := point middlepathlength of p;

_firsthalfpath := subpath (0, middlepathlength) of p;

_secondhalfpath := subpath (middlepathlength, pathlength) of p;

_middlenondrawncircle := fullcircle scaled inflen shifted middlepoint;

z0 = _firsthalfpath intersectionpoint _middlenondrawncircle;



April 15, 2011 misc.nw 12

z1 = _secondhalfpath intersectionpoint _middlenondrawncircle;

_middlepath := z0--z1;

middlepathlength := length _middlepath;

z2 = perpleft(_middlepath, middlepathlength / 4, infwidth / 2);

z3 = perpright(_middlepath, middlepathlength * 3 / 4, infwidth / 2);

_middlepath := z0--z2--middlepoint--z3--z1;

_drawinfinitecontinuation

enddef;

def _drawinfinitecontinuation text t =

draw _firsthalfpath cutafter _middlenondrawncircle t;

draw _middlepath t;

draw _secondhalfpath cutbefore _middlenondrawncircle t

enddef;



April 15, 2011 misc.nw 13

9 drawhatched closedpath text t

This macro enables you to hatch interior of a given closed path. Example:

drawhatched (0,0)..(0,30)..{dir 45}(30,60){dir -45} ..(60,30)..(60,0)--cycle;

produces the following image

The text after the path expression influences the drawing of particular hatches. I.e.

drawhatched (0,0)..(0,30)..{dir 45}(30,60){dir -45} ..(60,30)..(60,0)--cycle

withcolor red withpen pencircle scaled 2pt;

produces the following figure:

Auxiliary variables used for passing values between the main macro and its continuation. The
underscore was prepended before their identifiers in the attempt to avoid name clashes2.

13 〈misc.mp 2b〉+≡ ⊳ 11 14 ⊲

path _pictureboundary;

picture _unclippedhatches;

path _boundingrectangle;

pair _lowerleft, _lowerright, _upperleft, _upperright;

2Which are, unfortunately, not excluded.



April 15, 2011 misc.nw 14

14 〈misc.mp 2b〉+≡ ⊳ 13

def drawhatched expr p =

_unclippedhatches := nullpicture;

_boundingrectangle := bbox p;

% Reveal dimensions of the bounding rectangle of a given path.

_lowerleft = llcorner _boundingrectangle;

_lowerright = lrcorner _boundingrectangle;

_upperleft = ulcorner _boundingrectangle;

_upperright = urcorner _boundingrectangle;

save width, height;

width = xpart _lowerright - xpart _lowerleft;

height = ypart _upperleft - ypart _lowerleft;

% Find smallest square to which that rectangle fits.

if width < height:

_lowerright := _lowerleft + (height,0);

_upperleft := _lowerleft + (0,height);

_upperright := _lowerleft + (height,height);

width := height;

else:

_lowerright := _lowerleft + (width,0);

_upperleft := _lowerleft + (0,width);

_upperright := _lowerleft + (width,width);

height := width;

fi;

_pictureboundary := p;

drawhatchedcontinuation

enddef;

def drawhatchedcontinuation text t =

% Draw the hatches.

for i=width step -.15cm until -width:

addto _unclippedhatches contour _lowerleft+(0,i)--_upperright-(i,0)--cycle withpen pencircle

endfor

clip _unclippedhatches to _pictureboundary;

draw _unclippedhatches

enddef;



April 15, 2011 misc.nw 15

References

[1] John D. Hobby. A User’s Manual for METAPOST, April 1994.

[2] Donald E. Knuth. The Art of Computer Programming: Fundamental Algorithms, volume 1.
Addison-Wesley Publishing Co., Reading, Massachusetts, 2 edition, 1973.

[3] Urs Oswald. METAPOST: A Very Brief Tutorial, October 2002.


