
User’s Manual

The Blob Analyzer

Microsoft, Windows, Windows NT, Windows 2000, Windows XP, Visual Basic, Microsoft
.NET, Visual C++, Visual C#, and ActiveX are either trademarks or registered trademarks of
Microsoft Corporation.

All other nationally and internationally recognized trademarks and tradenames are hereby rec-
ognized.

Copyright c© 2001-2008 by MVTec Software GmbH, München, Germany MVTec Software GmbH

Edition 1 September 2001 (ActivVisionTools 2.0)
Edition 2 November 2002 (ActivVisionTools 2.1)
Edition 3 January 2005 (ActivVisionTools 3.0)
Edition 4 February 2006 (ActivVisionTools 3.1)
Edition 5 May 2008 (ActivVisionTools 3.2)

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without prior written permission of the publisher.

More information about ActivVisionTools can be found at:

http://www.activ-vision-tools.com

How to Read This Manual

This manual explains how to use ActivFeatureCalc to analyze the objects extracted by Activ-
BlobFinder. It describes the functionality of ActivFeatureCalc and its cooperation with other
ActivVisionTools with Visual Basic examples. Before reading this manual, we recommend to
read the manual Getting Started with ActivVisionTools, which introduces the basic concepts of
ActivVisionTools, the User’s Manual for ActivView to learn how to load and display images,
and the User’s Manual for ActivBlobFinder, which explains how to extract the objects you want
to analyze.

To follow the examples actively, first install and configure ActivVisionTools as described in
the manual Getting Started with ActivVisionTools. For each example in this manual, there is
a corresponding Visual Basic project; these projects can be found in the subdirectory exam-
ples\manuals\activfeaturecalc of the ActivVisionTools base directory you specified dur-
ing installation (default: C:\Program Files\MVTec\ActivVisionTools). Of course, you
can also create your own Visual Basic projects from scratch.

We recommend to create a private copy of the example projects because by experimenting !
with the projects, you also change their state, which is then automatically stored in the so-called
description files (extension .dsc) by ActivVisionTools. Of course, you can restore the state of
a project by retrieving the corresponding description file from the CD.

Contents

1 About ActivFeatureCalc 1

1.1 Introducing ActivFeatureCalc . 2

1.2 The Sub-Tools of ActivFeatureCalc . 15

2 Using ActivFeatureCalc 17

2.1 Extracting Objects . 18

2.2 Selecting Features . 20

3 Combining ActivFeatureCalc with other ActivVisionTools 23

3.1 Converting Results to Other Units . 24

3.2 Evaluating Results . 26

3.3 Output of Results . 28

4 Tips & Tricks 31

4.1 Customizing the Two Execution Modes . 32

4.2 Accessing Results Via the Programming Interface 34

A Mathematical Background of the Features 47

A.1 Basic Moments . 48

A.2 The Equivalent Ellipse . 48

A.3 Complex Moments . 49

A.4 Gray Value Moments . 49

A.5 Gray Value Features . 50

A.6 Texture Features . 50

Chapter 1

About ActivFeatureCalc

This chapter will introduce you to the features and the basic concepts of ActivFeatureCalc. It
gives an overview about ActivFeatureCalc’s master tool and its support tools, which are de-
scribed in more detail in chapter 2 on page 17.

1.1 Introducing ActivFeatureCalc . 2
1.1.1 The World of Features . 2

1.1.2 Converting Features to Other Units 13

1.1.3 ActivFeatureCalc and ActivAlignment 13

1.2 The Sub-Tools of ActivFeatureCalc . 15

1

A
ct

iv
Fe

at
ur

eC
al

c

2 About ActivFeatureCalc

1.1 Introducing ActivFeatureCalc

With the help of ActivFeatureCalc you can inspect the blobs extracted by ActivBlobFinder by
analyzing various shape and gray value features of the blobs. These features describe the ap-
pearance of a blob, and thereby the corresponding object, from various “point of views”: For
example, features like Mean or Contrast describe the texture of an object, while features like
Center Row and Center Column describe its position.

The currently available features are described in section 1.1.1; section 1.1.2 on page 13 shows
which features can be converted to other units besides pixels, while section 1.1.3 on page 13
takes a closer look at what happens if you use ActivFeatureCalc together with ActivAlignment.

The results of ActivFeatureCalc, i.e., the values of the calculated features for each blob can
be displayed using ActivDataView or ActivFeatureHistogram and then further evaluated using
ActivDecision, before you output them via ActivFile, ActivSerial, or ActivDigitalIO; further-
more, you can access results via the programming interface (see section 4.2 on page 34).

1.1.1 The World of Features

Position

In ActivFeatureCalc, the position of a blob can be calculated by determining the center of gravity
of the corresponding area in the image, i.e., the features Center Column and Center Row. In
figure 1.1 the position of nine elements of a ball grid array (BGA) is calculated; the wrong
position of the ball in the lower right corner clearly shows up in the column coordinate. Please
note that the accuracy of the calculated center of gravity depends on the number of pixels of the
blob; see below for similar features which can be used for small objects.

Size and Extent

The size or Area of a blob is typically calculated by determining the number of pixels within
the blob region; if the blob has holes, the corresponding pixels do not contribute to the overall
area. For the feature Area Convex the area of its convex hull around the blob is determined,
including all holes. See figure 1.2 for an example.

ActivFeatureCalc allows to measure the extent of a blob in different ways: The features Height
and Width correspond to the extent along the image axes (see figure 1.3a on page 4). These
features are easy to calculate, but are affected by the orientation of the blob. In other words, if
the inspected object rotates slightly, Height and Width may change significantly.

Alternatively, ActivFeatureCalc calculates the features Major Extent and Minor Extent,
which correspond to the extent of the smallest rectangle surrounding the blob (see figure 1.3b

ActivFeatureCalc / 2008-04-23

1.1 Introducing ActivFeatureCalc 3

columns

rows

ROI 1 ROI 2 ROI 3

Figure 1.1: The center of gravity.

a) b)

Figure 1.2: The (a) area and (b) convex area of a blob.

on page 4). These features are more robust against changes of blob orientation. However, small
changes in the distribution of pixels (like small “hairs”) may “tilt” the rectangle; for example,
the rectangles surrounding the two zeroes in figure 1.3b on page 4 have a different orientation
though the zeros look similar to the human eye.

A third method to calculate the extent first determines the equivalent ellipse and returns its
radii in the features Major Radius and Minor Radius. The equivalent ellipse has the same
moments of inertia as the blob, i.e., offers the same resistance to being rotated around the two
principal axes; its center is the center of mass (see appendix A on page 47 for the mathematical
background). These features are robust against changes of the blob orientation and of the
distribution of pixels (compare the zeroes in figure 1.3b and figure 1.3c). Please note that the
accuracy of the ellipse parameters depends on the number of pixels of the blob; see below for
similar features which can be used for small objects.

Finally, ActivFeatureCalc offers to calculate the radius of the smallest surround-
ing circle (Radius Outer Circle) and of the largest circle fitting inside the blob

ActivVisionTools 3.2 – Your Fast Track to Solutions

A
ct

iv
Fe

at
ur

eC
al

c

4 About ActivFeatureCalc

width

height

outer circle

inner circle

major radius

minor radius

major extent

minor extent

a)

d)

c)

b)

Figure 1.3: The extent of a blob: (a) along the image axes; (b) the extent of its smallest surround-
ing rectangle; (c) the radii of its equivalent ellipse; (d) its inner and outer circle.

(Radius Inner Circle), as depicted in figure 1.3d.

Orientation

In fact, a blob by itself has no orientation; however, ActivFeatureCalc lets you determine the
orientation with the help of two intermediate constructs: the smallest surrounding rectangle and
the equivalent ellipse. In figure 1.4, these two methods are used to determine the orientation
(Orientation Ellipse and Orientation Rectangle, respectively) of characters on the cir-
cular rim of a part. In both methods, the orientation is 0 if the major axis of the rectangle or

ActivFeatureCalc / 2008-04-23

1.1 Introducing ActivFeatureCalc 5

ϕ

ϕ

a)

b)

Figure 1.4: The orientation of (a) the smallest surrounding rectangle and of (b) the equivalent
ellipse.

ellipse is parallel to the horizontal axis.

The example in figure 1.4 was chosen on purpose to show that neither method is “perfect” in the
sense that it yields the desired results in all cases. Thus, Orientation Rectangle “fails” for
the digit 6, Orientation Ellipse for the digit 1. The reason for this behavior is (obviously)
not that the methods are poorly implemented, but more fundamental: The digits in question are
not described well by the smallest surrounding rectangle or equivalent ellipse, respectively.

Because of their symmetry, both the smallest surrounding rectangle and the equivalent ellipse
only calculate angles in the range +/-90◦. In contrast, the feature Orientation allows to cal-
culate angles in the range +/-180◦. For this, the underlying algorithm computes the equivalent
ellipse; furthermore, it determines the point on the contour with the biggest distance to the cen-
ter of gravity and uses it as a sort of reference point. Note that this method only works well for
objects which are roughly symmetrical to their major axis but not symmetrical to their minor
axis, like the plugs examined in figure 1.5.

Contour

To describe the contour of a blob, i.e., its boundary, ActivFeatureCalc calculates the Con-

ActivVisionTools 3.2 – Your Fast Track to Solutions

A
ct

iv
Fe

at
ur

eC
al

c

6 About ActivFeatureCalc

ϕ

Figure 1.5: Calculating the orientation in the range +/-180◦ .

tour Length. The distance between two neighboring contour points parallel to the coordinate
axes is rated as 1, the distance along the diagonal as

√
2. Note that only the “outer” boundary

is analyzed; holes within the blob are disregarded.In figure 1.6, the feature Contour Length is
used to analyze fuse wires in different types of car fuses.

1) 2)

4)3)

Figure 1.6: The length of the contour.

Shape

ActivFeatureCalc provides several features which describe the shape of the blob. The features
Compactness, Circularity, Anisometry, and Bulkiness have in common that they de-
scribe how similar the blob is to a circle. The feature Convexity describes how convex a blob
is. Figure 1.7 shows the resulting values for an example image of pills.

ActivFeatureCalc / 2008-04-23

1.1 Introducing ActivFeatureCalc 7

0

2

3
4

5

8

6

7
9

1

Figure 1.7: Calculating different shape features.

The Compactness of a blob is calculated as

Compactness =
Contour Length2

4πArea

For a perfect circle it becomes 1, while getting > 1 for other. In the example, pill no. 4 is most
similar to a circle as it has no “dent”, the two pills lying on their edge (no. 0 and 8) are the most
dissimilar.

The Circularity of a blob is calculated as

Circularity =
Area

R2
maxπ

with Rmax being the largest distance from the center of mass to the contour (not to be confused
with Major Radius!). Thus, for a perfect circle it becomes 1, while getting < 1 for other
shapes. In the example, all pills except no. 0, 3, and 8 have a value of 1. Because only the
largest distance to the contour is examined, the small “dents” do not influence the result in this
example.

ActivVisionTools 3.2 – Your Fast Track to Solutions

A
ct

iv
Fe

at
ur

eC
al

c

8 About ActivFeatureCalc

The Anisometry of a blob is calculated as

Anisometry =
Major Radius

Minor Radius

It describes how “elongated” a blob is. For a perfect circle it becomes 1, while getting > 1 for
other shapes; the more “elongated” a blob is the larger its Anisometry. In the example, the
blobs are ordered similarly to the feature Compactness.

The Bulkiness of a blob is calculated as

Bulkiness =
π · Major Radius · Minor Radius

Area

It describes how much the blob “bulges”. For a perfect circle or ellipse it becomes 1, while
getting > 1 for other shapes. In the example, the blobs are ordered similarly to before, however
without large difference, as none of the blobs “bulges”.

The Convexity of a blob is calculated as

Convexity =
Area

Area Convex

It describes how much the blob differs from its convex hull. For a perfectly convex shape, e.g.,
a circle or polygon, it becomes 1, while getting < 1 for concave shapes or blobs with holes. In
the example, pill no. 4 is the most convex, the “dents” in the pills no. 1, 2, 5, 6, 7, and 9 show
up as concavities.

In figure 1.8, some of the pills have holes, which is signalled by the feature Number of Holes.
Note that pill no. 7 has no hole but an indentation. In the following, the effect of holes on the
different shape features is described.

The Compactness of a blob increases with holes as its area decreases. Thus, pills no. 2, 5, 6,
and 8 have a significantly larger compactness in comparison with figure 1.7 on page 7; pill no.
7 has no hole, but a new concavity, thus the contour length is increased as well. The position of
the hole has no influence.

The Circularity of a blob decreases with holes as its area decreases. Pill no. 7 shows the same
decrease as the others, as holes and concavities have the same influence on the Circularity.
The position of the hole has no influence.

The Anisometry of a blob is only influenced by holes if they affect the features Minor Radius
and Major Radius in a different way. This is the case for pills no. 7 and 2; their Minor Radius
decreases significantly, while the Major Radius remains almost constant.

The Bulkiness is affected more by a hole than the Anisometry, as it depends not only on
Minor Radius and Major Radius but also on the blob area which decreases with each hole.
Another difference is that the influence of a hole is larger if it affects the features Minor Radius
and Major Radius in a similar way. Therefore, pills no. 5 and 6 are affected most because the
hole is in the middle, leading to an increase both of Minor Radius and of Major Radius.

ActivFeatureCalc / 2008-04-23

1.1 Introducing ActivFeatureCalc 9

0

2

3
4

5

8

6

7
9

1

Figure 1.8: How holes affect the shape features.

The Convexity of a blob decreases with holes as with concavities.

Figure 1.9 shows how an irregular contour affects the shape features. In the example, this was
provoked by using a low threshold for the blob extraction (compare with figure 1.7 on page 7).
The blobs are ordered according to their Anisometry.

The Compactness increases quadratically with the length of its contour, therefore especially
pills no. 9 and 6 show a marked increase; as a consequence, the “bad” pills (no. 0, 3, and 8)
cannot be distinguished by this feature anymore.

The Convexity decreases as the irregular contour forms concavities. “Good” and “bad” pills
cannot be distinguished by this feature anymore.

The Anisometry rises for most pills, but the “bad” pills still show significantly higher values.

The Bulkiness increases for most pills as the irregular contour forms “bulges”. “Good” and
“bad” pills cannot be distinguished by this feature anymore.

The Circularity is affected most by the irregular contour. Only pill no. 4 still appears as
being circular. “Good” and “bad” pills cannot be distinguished by this feature anymore.

ActivVisionTools 3.2 – Your Fast Track to Solutions

A
ct

iv
Fe

at
ur

eC
al

c

10 About ActivFeatureCalc

0

2

3
4

5

8

6

7
9

1

Figure 1.9: How irregular contours affect the shape features.

Moments

ActivFeatureCalc provides various features based on moments: The normalized 2nd moments
2nd Moments 02 and 2nd Moments 20, the normalized 3rd moments 3rd Moments 30,
3rd Moments 21, 3rd Moments 12, and 3rd Moments 03, and the more complex
moments 2nd Moments Phi 1, 2nd Moments Phi 2, Central Moments Psi 1, Cen-
tral Moments Psi 2, Central Moments Psi 3, and Central Moments Psi 4. These
features can be used in classification applications. The mathematical background is given in
appendix A on page 47.

Gray Values

The features described so far are based on spatial information about the blob, i.e., only the (rel-
ative) position of the pixels of a blob counts, not their gray values. In contrast, this section and
the following one describe features which evaluate the distribution of the gray values occurring
in the blob.

ActivFeatureCalc provides 6 basic gray value features: The smallest and the largest occurring
gray value (Min, Max) and the corresponding gray value Range, the Mean gray value and the
Deviation from it (see appendix A.5 on page 50 for the mathematical background), and the
so-called Median which we will focus on below. In figure 1.10, these features are calculated for
two types of capacitors. All capacitors have an identical smallest gray value because this value
was used as threshold for the blob extraction. As you can see, the two capacitor types (0 & 1
vs. 2 & 3) can be easily distinguished by their mean gray value; furthermore, capacitors 0 and 1
have a larger range and deviation of occurring gray values.

ActivFeatureCalc / 2008-04-23

1.1 Introducing ActivFeatureCalc 11

0 1

32

0 1

32

a)

b)

Figure 1.10: Basic gray value features; (a) with hole, (b) without hole.

In figure 1.10b, the hole corresponding to the dark “stain” on capacitor no. 1 was closed, result-
ing in a clear change in the feature Min. Furthermore, the feature Mean decreases by more than
one gray value, even though only a small number of pixels have been added. This shows that the
feature Mean is sensitive to small disturbances if their gray value differs significantly because
each pixel contributes equally. In contrast, the Median is calculated by sorting the gray values
of all pixels in ascending order and then determining the gray value of the element in the exact
middle of the list. As you can see in figure 1.10, the Median stays constant with or without the
hole.

Texture

ActivFeatureCalc provides six gray level features describing the texture of a blob. Figure 1.11
shows their values together with the basic gray level features for two types of capacitors, each
one once with print and once without. For the mathematical background please refer to ap-
pendix A on page 47.

The feature Entropy is a measure for the “disorder” of the gray values in the blob. Entropy
is high if many different gray values occur with a similar frequency; it becomes 0 if only one
gray value occurs and 8 if all (256) gray values occur with the same frequency.In figure 1.11, it

ActivVisionTools 3.2 – Your Fast Track to Solutions

A
ct

iv
Fe

at
ur

eC
al

c

12 About ActivFeatureCalc

0 1

32

Figure 1.11: Gray value features describing the texture.

is lowest for capacitor no. 2, which is quite homogeneous; its Range and Deviation are low as
well.

The feature Anisotropy, which lies between -1 and 0, describes how much of the disorder
stems from the darker half of the blob’s pixels. It becomes -0.5 if dark and light pixels are
equally “disorderly”; values between -0.5 and 0 signal that the lighter part of the blob is more
homogeneous, values smaller than -0.5 that the dark part is more homogeneous. If the Entropy
is 0, the Anisotropy is 0 as well.

In the features described above, the pixels were examined one by one. The following features
examine how frequently two gray values occur next to each other, the neighborhood being eval-
uated horizontally, vertically, and along the two diagonals.The feature Energy is high if a few
gray value combinations dominate. It becomes 1 if there is only one combination, i.e., if the
gray value is constant over the blob; the Energy of a perfect chessboard pattern is 0.5. In
figure 1.11, capacitor no. 2 has the largest Energy as it has the most homogeneous gray value
distribution.

The feature Homogenity is large if the absolute gray value differences between neighboring
pixels are small. It becomes 1 for blobs with a constant gray value and 0.5 if the average gray
value difference is 1, which is the case for capacitor no. 2.

In contrast, the feature Contrast increases quadratically with the absolute gray value differ-
ences between neighboring pixels, becoming 0 for blobs with a constant gray value. For fig-
ure 1.11, the illumination has been chosen such that the capacitors of the same type have a
similar Mean gray value with or without print; however, they can be easily distinguished by
looking at their Contrast.

ActivFeatureCalc / 2008-04-23

1.1 Introducing ActivFeatureCalc 13

The feature Correlation is a measure of the homogeneity of all neighborhood relations, with
values lying between -1 and 1. A large value signals that large parts of the blob have an identical
gray value (each); in figure 1.11 for example, this is the case for capacitor no. 0. A negative value
signals that pixels have neighbors with a very different gray value. For a chessboard pattern the
Correlation becomes 0, because the (negative) values for the horizontal and vertical neighbors
and the (positive) values for the diagonal neighbors “cancel out”.

Using Gray Values for the Equivalent Ellipse

In the sections above, the equivalent ellipse was determined from the blob region alone, i.e.,
without using the gray values. This may lead to problems in the case of small objects like the
balls in figure 1.12: When using a high threshold only few pixels are extracted (see figure 1.12a);
a single pixel more or less can thus influence the calculation significantly and lead to inaccurate
results. By using a lower threshold as in figure 1.12b the calculations get more stable, however
the extent of the equivalent ellipse is now larger than desired.

The solution is to include the gray values when calculating the center of gravity and the equiv-
alent ellipse. The corresponding features are called Gray Center Column, Gray Center Row,
Gray Orientation, Gray Major Radius, and Gray Minor Radius. The principal idea is that
the contribution of a pixel is weighted by its gray value, i.e., bright pixels influence the result
more than dark pixels (for the mathematical background see appendix A.4 on page 49). As you
can see in figure 1.12c, the calculated ellipse fit the balls better than in figure 1.12b.

Note that the feature Gray Area was intentionally omitted in the example because it is not a
more accurate version of Area but something completely different: The Gray Area is calculated
as the sum over all gray values in the blob; it can be interpreted as the gray value volume of the
blob.

1.1.2 Converting Features to Other Units

You can convert features representing spatial information, i.e., the position and size and contour
length, from pixels into other units if you calibrated your vision system using ActivGeoCalib or
AVTViewCalibration (see the User’s Manual for ActivGeoCalib and section 3.1 on page 24
for more information about these tools).

1.1.3 ActivFeatureCalc and ActivAlignment

Using ActivAlignment you can align the regions of interest (ROIs) of ActivBlobFinder/ AFea-
ture to a certain part in the image. The main reason for aligning an ROI for blob extraction is
to assure that all objects to be extracted and analyzed lie inside the ROI even if the inspected
part moves. Most of the features are not influenced by the position or orientation of a blob; the

ActivVisionTools 3.2 – Your Fast Track to Solutions

A
ct

iv
Fe

at
ur

eC
al

c

14 About ActivFeatureCalc

0 12

6 7 8

3 4 5

0 12

3 4 5

6 7 8

0 1

3 4

765

2

a)

b)

c)

Figure 1.12: Comparing standard and gray value moments: (a) standard ellipse, high threshold;
(b) standard ellipse, low threshold; c) gray value ellipse, low threshold.

exceptions are of course the position and orientation of the blob themselves. ActivAlignment
offers to transform these features back into the so-called reference image (see the User’s Manual
for ActivAlignment for more information). This mechanism is useful if you want to inspect the
position or orientation of blobs relative to a fixed point in the image.

Please note that the features Height and Width cannot be transformed back into the refer-!
ence image!

ActivFeatureCalc / 2008-04-23

1.2 The Sub-Tools of ActivFeatureCalc 15

1.2 The Sub-Tools of ActivFeatureCalc

Besides its master tool, ActivFeatureCalc provides 4 support tools. In figure 1.13 on page 16
they are depicted together with other ActivVisionTools that you will use in a typical Activ-
FeatureCalc application.

AVTFeatureCalc is the master tool of ActivFeatureCalc. Note that this ActiveX control does
not have a graphical user interface; thus, it is represented by its icon at design time and invisible
at run time. If you forget to add AVTFeatureCalc to the form and only add the support tools,
they are disabled.

AVTFeatureCalcBasic is a support tool of ActivFeatureCalc. It allows you to select which
basic features are to be calculated.

AVTFeatureCalcShape is a support tool of ActivFeatureCalc. It allows you to select which
shape features are to be calculated.

AVTFeatureCalcMoments is a support tool of ActivFeatureCalc. It allows you to select which
moments are to be calculated.

AVTFeatureCalcGray is a support tool of ActivFeatureCalc. It allows you to select which gray
value features are to be calculated.

How to use the support tools is described in section 2.2 on page 20.

ActivVisionTools 3.2 – Your Fast Track to Solutions

A
ct

iv
Fe

at
ur

eC
al

c

16 About ActivFeatureCalc

(ActivView) AVTFeatureCalcBasic

(ActivBlobFinder)

(ActivDataView)

AVTFeatureCalcShape

AVTFeatureCalcMoments AVTFeatureCalcGray

Figure 1.13: The sub-tools of ActivFeatureCalc together with suitable other tools.

ActivFeatureCalc / 2008-04-23

Chapter 2

Using ActivFeatureCalc

This chapter explains how to select the features you want to be calculated. Before this, it briefly
shows how to extract the blobs which form the input for ActivFeatureCalc.

2.1 Extracting Objects . 18
2.2 Selecting Features . 20

17

A
ct

iv
Fe

at
ur

eC
al

c

18 Using ActivFeatureCalc

2.1 Extracting Objects Using

Before calculating blob features, the blobs must be extracted, of course. This section gives a
brief overview of how to do this using AVTBlobFinder, the master tool of ActivBlobFinder,
and AVTViewROI, which is a support tool of ActivView. Please consult the User’s Manual for
ActivBlobFinder for detailed information.

Visual Basic
Example

Preparation for the following example:

2 Open the project extracting\feature_extracting.vbp. Alternatively, create
a new project and place AVTView, AVTViewROI, and AVTBlobFinder on the form
by double-clicking the icons , , and , respectively, with the left mouse
button.

2 Execute the application (Run . Start or via the corresponding button). Open AVT-
ViewFG by clicking into AVTView with the right mouse button and selecting Im-
age Acquisition in the popup menu. Select the image bga\bga_01 in the combo
box Input File.

The following steps are visualized in figure 2.1.

1© First, you have to tell AVTViewROI to create an ROI for ActivBlobFinder by selecting
the corresponding entry in the combo box ActivVisionTool. In this box, all Activ-
VisionTools are listed that have been placed upon the form. By default, the tools are
referenced by the name of the corresponding ActiveX control plus a counter to distin-
guish between multiple instances of a control on the form. In our example, there is only
one item in the combo box, AVTBlobFinder1.

2© Next, select the desired shape of the ROI, for example a rectangle.

3© To draw the ROI, move the mouse in the image while keeping the left mouse button
pressed. Please experiment at this point with the different shapes.

4© You can now move the ROI by dragging its pick point in the middle. By dragging the
outer pick points you modify its shape. Again, please experiment to get familiar with
the ROIs.

5© Select the extraction method in the combo box Threshold Method, e.g.,
’Global Fixed’ to use one global threshold.

6© In the combo box Blob Type, select whether the blobs to be extracted are darker or
lighter than the background; to extract the balls, select ’Light’.

ActivFeatureCalc / 2008-04-23

2.1 Extracting Objects 19

1

2

3

4

5

7

6

select a shape for the ROI

select AVTBlobFinder1 in the combo box

edit the ROI by dragging the pick−points

left mouse button and moving the mouse

draw the ROI in the image by pressing the

select the extraction method

modify the threshold

specify the blob type

Figure 2.1: Extracting blobs.

7© As the default value for the threshold is suited to this image, the blobs corresponding to
the balls in the image are already extracted, without any action on your part. Experiment
with different thresholds by using the slider Threshold or by specifying a value in the
text field beside it.

ActivVisionTools 3.2 – Your Fast Track to Solutions

A
ct

iv
Fe

at
ur

eC
al

c

20 Using ActivFeatureCalc

2.2 Selecting Features Using

You can select which features are to be calculated for each extracted blob using the support
tools of ActivFeatureCalc. AVTFeatureCalcBasic contains basic shape features like the Area
of a blob, AVTFeatureCalcShape more complex shape features like the Compactness or
the Number of Holes, AVTFeatureCalcMoments higher moments, and AVTFeatureCalc-
Gray gray value features like Mean or Contrast and mixed gray value shape features like
Gray Major Radius.

Visual Basic
Example

Preparation for the following example:

2 If you worked on the previous example, you may continue using this project. At
design time, add AVTFeatureCalc, AVTFeatureCalcBasic, and AVTDataView to
the form by double-clicking , , and with the left mouse button. Note that
AVTFeatureCalc is only represented by its icon on the form!

Otherwise, open the project selecting\feature_selecting.vbp.

2 Execute the application (Run . Start or via the corresponding button) and load the
image bga\bga_01.

There are two things to note about AVTFeatureCalc , the master tool of ActivFeatureCalc:!
First, it does not have a graphical user interface; thus, it is represented by its icon at design time
and invisible at run time. If you forget to add it to the form and only add the support tools, they
are disabled (and do not calculate any features). Secondly, if you have more than one instance of
ActivBlobFinder on the form, you can select to which one AVTFeatureCalc is to be connected
via AVTViewConnections (see the User’s Manual for ActivView, section 3.5 on page 36).

The following steps are visualized in figure 2.2.

1© While experimenting with parameters concerning blob extraction it is useful to switch
off the update of results in AVTDataView via the corresponding check box!

2© You can select features to be calculated by checking their box.

3© At run time, you can open the other sub-tools of ActivFeatureCalc by clicking into AVT-
View or AVTBlobFinder with the right mouse button and selecting the corresponding
entry in the popup menu.

4© Select the ROIs whose results you want to examine in ActivDataView by checking their
box. Their results are then displayed in a table, the columns corresponding to the se-
lected features.

ActivFeatureCalc / 2008-04-23

2.2 Selecting Features 21

3 2

1 4

select the features to be calculatedopen other sub−tools of ActivFeatureCalc via the

context menu of AVTView or AVTBlobFinder

switch of updating while experimenting

with parameters!

select the ROIs you are interested in

Figure 2.2: Selecting the features which are to be calculated.

You can also display the distribution of the calculated feature values in a histogram using Ac-
tivFeatureHistogram, which can be opened by clicking on AVTView with the right mouse button
and selecting Feature Histogram in the appearing context menu..

ActivVisionTools 3.2 – Your Fast Track to Solutions

A
ct

iv
Fe

at
ur

eC
al

c

22 Using ActivFeatureCalc

ActivFeatureCalc / 2008-04-23

Chapter 3

Combining ActivFeatureCalc
with other ActivVisionTools

While the previous chapter explained how to select the features to be calculated, this chapter
focuses on how to further process them by converting them into other units, and how to evaluate
and output the results using other ActivVisionTools. How to access results and evaluations via
the programming interface is described in chapter 4 on page 31.

In the corresponding Visual Basic projects, the task is to inspect a ball grid array (BGA).

3.1 Converting Results to Other Units . 24
3.2 Evaluating Results . 26
3.3 Output of Results . 28

23

A
ct

iv
Fe

at
ur

eC
al

c

24 Combining ActivFeatureCalc with other ActivVisionTools

3.1 Converting Results to Other Units Using

In section 2.2 on page 20, positions and extents were calculated in image coordinates, i.e., pixels.
Using AVTViewCalibration, you can convert these features into other units. Note that for a
more accurate calibration you should employ ActivGeoCalib (and possibly rectify the image as
described in User’s Manual for ActivGeoCalib, section 4.2 on page 26).

The main idea behind AVTViewCalibration is that the user draws a line in the image and tells
ActivVisionTools that the length of this line is in a certain unit. From this information, AVT-
ViewCalibration calculates the size of a pixel (i.e., its height as square pixels are assumed)
in this unit, which in its turn can be used to convert features from pixels into the new unit. Note
that this conversion only works if the measured objects lie in the same plane, i.e., at the same
distance from the camera, as the line whose length was specified.

Visual Basic
Example

Preparation for the following example:

2 If you worked on the example in the previous chapter, you may continue using this
project. At design time, add AVTViewCalibration to the form by double-clicking

with the left mouse button. You may remove AVTFeatureCalcBasic and AVT-
DataView.

Otherwise, open the project units\feature_units.vbp.

2 Execute the application (Run . Start or via the corresponding button) and load the
image bga\bga_01.

The following steps are visualized in figure 3.1 (not shown: AVTBlobFinder).

1© You create the line of known length using AVTViewROI. First, select AVTViewCalibra-
tion1 in the combo box ActivVisionTool.

2© To start creating the line, click .

3© To draw the line, move the mouse in the image while keeping the left mouse button
pressed.

4© You can modify the line by dragging the pick points; to position it precisely we recom-
mend to zoom the image using the scrollbars of AVTView. Place the ROI as shown in
the figure; this distance corresponds to 2.7 cm.

5© Now, switch your attention to AVTViewCalibration. Select the desired unit (cm) in
the combo box Unit. The labels below denoting the unit will automatically switch to
the selected unit.

ActivFeatureCalc / 2008-04-23

3.1 Converting Results to Other Units 25

1

2

3

4

5

6

7

select AVTViewCalibration1

click to create a line−shaped ROI

to draw the line in the image, move

the mouse while pressing the left button

edit the line by dragging the pick points

specify the length of the line;

the computed pixel size is displayed

select a unit in the combo boxresults are converted automatically

into the selected unit

Figure 3.1: Converting measurements into other units.

6© Then, specify the length of the line (2.7) in the text box Length Line and press
Enter . AVTViewCalibration now calculates the height of a pixel in mm and dis-

plays it in the text box Pixel Height.

7© Automatically, all calculated positions and extents are converted into the selected unit.

ActivVisionTools 3.2 – Your Fast Track to Solutions

A
ct

iv
Fe

at
ur

eC
al

c

26 Combining ActivFeatureCalc with other ActivVisionTools

3.2 Evaluating Results Using

In the former examples, you have employed ActivVisionTools to calculate features for blobs.
In the following, we show how to use ActivDecision to evaluate these results by formulating
conditions the features have to meet in order to be “okay”. For a detailed description of Activ-
Decision please consult the User’s Manual for ActivDecision.

In the example task, the extracted balls must be circular (measured by the feature Compactness)
with a radius of at least 0.25 mm (measured by the features Area, Major Radius, resultFea-
tureMinorEllExtent). Surface disturbances can be detected by analyzing the Mean gray value.
Note that only a part of the BGA is inspected; each ROI should contain 4 balls.

Visual Basic
Example

Preparation for the following example:

2 If you worked on the previous example, you may continue using this project. At
design time, add AVTDecision to the form by double-clicking with the left
mouse button.

Otherwise, open the project decisions\feature_decisions.vbp.

2 Execute the application and load the image sequence bga\bga1.seq.

The following steps are visualized in figure 3.2 (not shown: AVTView, AVTBlobFinder).

1© The main functionality of ActivDecision is presented by its support tools, which can
be opened via clicking on AVTDecision with the right mouse button. The master tool
displays the overall evaluation of the application.

2© To view the current feature and evaluation results check √ Enable Update in AVT-
DecisionViewResults.

3© ActivDecision lets you compare the value of an individual object, ROI, or tool feature
with two boundary values, a minimum and a maximum value. You can formulate con-
ditions for features by specifying values in the columns Min and Max and selecting a
comparison mode in the column Operation. If you select None, the feature is not
evaluated.

4© Those features which meet their condition appear in green, the others in red. If at least
one feature is “not okay”, the whole object, ROI, or tool is evaluated as “not okay” as
well. Analogously, the overall evaluation of application, which is visualized by AVT-
Decision, depends on the tool evaluations.

Figure 3.2 shows suitable conditions for the example task. Step through the image se-
quence and examine the evaluations; in some of the images, balls are defect or missing.

ActivFeatureCalc / 2008-04-23

3.2 Evaluating Results 27

1 3

2 4

6 5

context menu (right mouse click)

open the support tools via the

or tools

formulate conditions for objects, ROIs

check this box to show the used parameters specify default conditions

first, enable the update of results the evaluations are displayed immediately

Figure 3.2: Formulating conditions to evaluate results.

5© If many similar objects are extracted which all should meet the same conditions, you can
specify default conditions using AVTDecisionViewDefaults. Defaults can be set per
tool or per ROI; ROI defaults override tool defaults, and individual conditions override
defaults.

6© If you check √ Substitute Default, the entries marked Default are substituted by
their actual content.

ActivVisionTools 3.2 – Your Fast Track to Solutions

A
ct

iv
Fe

at
ur

eC
al

c

28 Combining ActivFeatureCalc with other ActivVisionTools

3.3 Output of Results Using

Using ActivFile, you can write the results and the evaluations to a log file. How to access results
via the programming interface is described in section 4.2 on page 34, how to output them via a
serial interface or a digital I/O board in the User’s Manual for ActivSerial and the User’s Manual
for ActivDigitalIO, respectively.

Visual Basic
Example

Preparation for the following example:

2 If you worked on the previous example, you may continue using this project. At
design time, add AVTOutputFile by double-clicking .

Otherwise, open the project output\feature_output.vbp.

2 Execute the application and load the image sequence bga\bga1.seq.

The following steps are visualized in figure 3.3 (not shown: AVTView and AVTDecision).

1© By clicking on Select , you can open a file selector box to choose a file name for
the log file, which will then appear in the text field beside the button. By pressing
Clear File , you can clear the content of the selected file.

2© By checking √ Enable Writing you enable the writing mode.

3© You can open the ActivFile’s two dialogs DialogFileOptions and DialogOutput-
DataSelect by clicking File Options and Data Selection , respectively.

4© In DialogFileOptions, you can choose between two file formats: Standard text files
(suffix .txt) and the so-called comma-separated values (suffix .csv) which can be
used as an input to Microsoft Excel. Furthermore, you can select a delimiter.

5© In the same dialog you can limit the size of the log file in form of the number of cycles
that are to be recorded. A cycle corresponds to one processing cycle from image input
to the evaluation and output of results. If you use this option, ActivFile creates two log
files and switches between them, thus assuring that you can always access (at least) the
results of the last N cycles, N being the specified number of cycles.

6© By pressing Estimate , you can let ActivFile estimate the size of one cycle. Note that
you must first select the output data in order to get meaningful results!

7© In the left part of DialogOutputDataSelect, you can navigate through the result hi-
erarchy similarly to ActivDecision.

ActivFeatureCalc / 2008-04-23

3.3 Output of Results 29

3 6

2

1

5

4

7 8

click to open the dialogs estimate the file size for one cycle

check to enable writing limit the file to a number of cycles

select the name of the log file select file format and delimiter

navigate through the results select the output data

Figure 3.3: Customizing log files.

8© In the right part of DialogOutputDataSelect, choose the output data by checking the
corresponding boxes. You may output different items depending on the evaluation of an
object. By clicking on the column labels with the right mouse button you can check or
uncheck all boxes in the column; similarly, you can check or uncheck whole rows or all
rows of a certain tool.

If you now step through the image sequence by clicking Single in AVTViewFG, the log file is
created. Figure 3.4 shows part of an example log file.

ActivVisionTools 3.2 – Your Fast Track to Solutions

A
ct

iv
Fe

at
ur

eC
al

c

30 Combining ActivFeatureCalc with other ActivVisionTools

09/10/04 11:50:29

AVTFeatureCalc1 no

Bad ROIs no 2 0 = Max

Rectangle1_1 no

Objects ROI yes 4 4 = Max

Bad Objects ROI no 1 0 = Max

0 yes

Area yes 0.260819

Major Radius yes 0.300935

Minor Radius yes 0.275264

Compactness yes 1.000000

Mean yes 226.041667

1 no

Area no 0.173879 0.215000 0.305000 Inside

Major Radius yes 0.305259 0.250000 0.325000 Inside

Minor Radius no 0.211016 0.250000 0.325000 Inside

Compactness no 1.219212 1.000000 1.100000 Inside

Mean no 192.750000 200.000000 255.000000 >= Min

2 yes

Area yes 0.271686

Major Radius yes 0.313434

Minor Radius yes 0.271718

Compactness yes 1.000000

Mean yes 222.800000

3 yes

Area yes 0.239084

Major Radius yes 0.299839

Minor Radius yes 0.252878

Compactness yes 1.000000

Mean yes 224.000000

Figure 3.4: Part of an example log file.

ActivFeatureCalc / 2008-04-23

Chapter 4

Tips & Tricks

This chapter contains additional information that facilitates working with ActivFeatureCalc,
e.g., how to customize the appearance of an ActivFeatureCalc application in the two execution
modes. Furthermore, it shows how to access the calculated features and the evaluations directly
via the programming interface of ActivVisionTools.

4.1 Customizing the Two Execution Modes . 32
4.2 Accessing Results Via the Programming Interface 34

4.2.1 Calculated Features . 35

4.2.2 Evaluation Results . 41

31

A
ct

iv
Fe

at
ur

eC
al

c

32 Tips & Tricks

4.1 Customizing the Two Execution Modes Using

In an ActivVisionTools application you can switch between two execution modes: the config-
uration mode and the application mode. The former should be used to setup and configure an
application, the latter to run it. ActivView’s support tools AVTViewExecute and AVTView-
ConfigExec allow you to switch between the two modes and to customize the behavior of an
ActivVisionTools application in the two execution modes, e.g., display live images only in the
configuration mode to setup your application, but then switch it off in the application mode to
speed up the application. A third sub-tool, AVTViewExecuteSimple, provides a single button
to start/stop the application.

With the help of AVTViewStatus, another support tool of ActivView, you can inspect the cur-
rent status of your application.

Visual Basic
Example

Preparation for the following example:

2 If you worked on the example in the previous chapter, you may continue using this
project. At design time, add AVTViewExecuteSimple and AVTViewStatus to the
form by double-clicking the icons and .

Otherwise, open the project usermodes\feature_usermodes.vbp.

2 Execute the application and load the image sequence bga\bga1.seq.

The following steps are visualized in figure 4.1 (not shown: AVTBlobFinder).

1© Open AVTViewExecute and AVTViewConfigExec by clicking on AVTView with the
right mouse button and selecting Execution and Execution Parameters.

2© Switch between the two execution modes via AVTViewExecute’s combo box Mode.

3© To execute one cycle, press Single . With the other two buttons you can let the appli-
cation run continuously and stop it again. By default, AVTViewExecuteSimple starts
and stops an application; how to change its behavior to a single-step button is described
in the User’s Manual for ActivView, section 3.4 on page 34.

4© For each of the two execution modes, you can choose what is to be displayed by checking
the corresponding boxes in AVTViewConfigExec. Please refer to the User’s Manual
for ActivBlobFinder, section 4.1 on page 34, for more information about adapting the
display, e.g., how to choose colors for ROIs and results. Furthermore, you can specify
if images can be dragged to the image window and whether ROIs can be modified in
the two modes; by default, this is disabled in the application mode to prevent you from
accidentially moving or deleting an ROI.

ActivFeatureCalc / 2008-04-23

4.1 Customizing the Two Execution Modes 33

5 6 7

43

21

current execution mode space for messagesprocessing time or speed

and whether ROIs can be edited

select what is to be displayedexecute a single cycle or start/stop the application

switch between the two modesopen the sub−tools via AVTView

Figure 4.1: Customizing and switching between the two execution modes.

5© In AVTViewStatus, an icon indicates the current execution mode of the application.
In the mode , the application does not perform any processing and waits for your
interaction. If you start the continuous mode the cogwheels rotate; any interaction on
your part is stored in the event queue and processed after the current cycle is finished.
If the cursor gets “busy”, ActivVisionTools has started a particularly time-consuming
operation, e.g., connecting to an image acquisition device. Any interaction on your part
is then deferred to the end of this operation.

6© AVTViewStatus also shows the number of processed cycles and the time needed for the
last processing cycle.

7© AVTViewStatus display two types of messages: Informative messages describe, e.g.,
what the application is doing while it is “busy”, while error messages indicate errors that
prevent the application from working correctly, e.g., the failure to connect to an image
acquisition device. If AVTViewStatus is not added to an application, error messages
are displayed in popup dialogs.

More information about AVTViewStatus, e.g., how to modify its appearance, can be found in
the User’s Manual for ActivView, section 3.3 on page 32.

ActivVisionTools 3.2 – Your Fast Track to Solutions

A
ct

iv
Fe

at
ur

eC
al

c

34 Tips & Tricks

4.2 Accessing Results Via the Programming Interface

The previous chapters and sections showed how to use ActivVisionTools interactively, i.e., via
the graphical user interfaces presented by the underlying ActiveX controls. In this mode, you
can develop the image processing part of your machine vision application rapidly and easily,
without any programming. However, there is more to ActivVisionTools than the graphical user
interfaces: Because ActivVisionTools comes as a set of ActiveX controls, it provides you with
an open programming interface, thereby offering full flexibility.

In this section, we show how to access the blob features and evaluation results via the program-
ming interface. With this, you can, e.g., realize an application-specific graphical user interface,
perform additional processing on the results, or send results to a special output device. Detailed
information about the programming interface can be found in the Reference Manual.

As in the previous sections, the examples stem from Visual Basic 6.0; if the (ActivVisionTools-
specific) code differs in Visual Basic .NET, the corresponding lines are also shown (for the first
appearance only). For other .NET languages or C++, please refer to the Advanced User’s Guide
for ActivVisionTools, section 1.2.3 on page 5 and section 1.3.4 on page 28, respectively. Please
note that we assume that readers of this part have at least a basic knowledge of Visual Basic.

To work with the programming interface, in VB 6.0 you must first add the ActivVisionTools!
type library to the project’s references by checking the box labeled ActivVisionTools
Type Library in the menu dialog Project . References. In Visual Basic .NET, the ref-
erence is added automatically.

ActivFeatureCalc / 2008-04-23

4.2 Accessing Results Via the Programming Interface 35

4.2.1 Accessing Calculated Features

The principal idea behind accessing the results of an ActivVisionTool is quite simple: When a
tool has finished its execution, it raises an event called Finish, sending its results as a parameter.
If you want to access the results, all you have to do, therefore, is to create a corresponding event
procedure which handles the event.

Within the Visual Basic environment, you can create event procedures very easily as shown in
figure 4.2: In the header of the form’s code window there are two combo boxes. Select the
instance of AVTFeatureCalc (by default called AVTFeatureCalc1) in the left combo box.
The right combo box then lists all events available for this object; when you select Finish, the
event procedure is created automatically. Within this procedure, the measurement results are
now accessible via the object variable atToolResults.

Figure 4.2: Creating a procedure to handle the event Finish .

atToolResults contains the result data for all ROIs of your instance of AVTFeatureCalc.
The current number of ROIs can be queried via

Dim iNumROIs As Integer

iNumROIs = atToolResults.ROINum

In Visual Basic .NET , the event handler has a different signature:

Private Sub _

AxAVTFeatureCalc1_Finish(ByVal sender As Object, _

ByVal e As _

AxActivVTools.__AVTFeatureCalc_FinishEvent) _

Handles AxAVTFeatureCalc1.Finish

A first difference is that tool names start the prefix Ax, i.e., AVTFeatureCalc becomes AxAVT-
FeatureCalc. The main difference, however, is that the tool results are not directly passed;
instead, they are encapsulated in the parameter e. From there, they can be extracted with the
following lines:

Dim atToolResults As AVTToolResult

atToolResults = e.atToolResults

To use classes like ACTIVVTOOLSLib.AVTToolResult without the namespace ACTIVVTOOL-

ActivVisionTools 3.2 – Your Fast Track to Solutions

A
ct

iv
Fe

at
ur

eC
al

c

36 Tips & Tricks

SLib as in the code above, you must import this namespace by inserting the following line at
the very beginning of the code (more information about importing namespaces can be found in
the Advanced User’s Guide for ActivVisionTools in section 1.2.4.5 on page 12):

Imports ACTIVVTOOLSLib

The results of a certain ROI can be accessed by specifying its name in a call to the method
ROIResult, or by specifying its index in a call to the method ROIResults. The following code
uses the latter method to access the first ROI of AVTFeatureCalc1:

Dim atROIResult As AVTROIResult

Set atROIResult = atToolResults.ROIResults(0)

Now, we can, e.g., query the number of objects extracted in the ROI via

Dim iNumObjects As Integer

iNumObjects = atROIResult.ObjectNum

Actual results for an object, i.e., the calculated values of features like Major Extent or Area,
can be accessed by specifying the feature of interest and the ID of the object in a call to the
method ObjectValue of ACTIVVTOOLSLib.AVTROIResult. The feature handles are available
as methods of the corresponding tool, e.g., AVTFeatureCalc.FeatureHandleArea being the
handle for the calculated area.

The following code fragment uses another method of ACTIVVTOOLSLib.AVTROIResult, Ob-
jectValues, which returns the values of all objects for the specified feature in an array, to
calculate the mean blob area:

Dim handleArea As Integer, i As Integer

Dim vAreaArray As Variant

Dim dSumArea As Double, dMeanArea As Double

handleArea = AVTFeatureCalc1.FeatureHandleArea

vAreaArray = atROIResult.ObjectValues(handleArea)

dSumArea = 0

For i = 0 To iNumObjects - 1

dSumArea = dSumArea + vAreaArray(i)

Next

dMeanArea = dSumArea / iNumObjects

ActivFeatureCalc / 2008-04-23

4.2 Accessing Results Via the Programming Interface 37

Figure 4.3: Accessing and displaying the calculated features.

A general difference in Visual Basic .NET is that instead of the type Variant you must use
Object when accessing multiple values:

Dim vAreaArray As Object

The ActivVisionTools distribution includes the example Visual Basic project resultac-
cess\feature_resultaccess.vbp, which uses the methods described above to inspect
BGAs similarly to the application introduced in the previous chapter. The task is to calcu-
late the mean area of all balls; on contrast to the previous chapter only one ROI is used here (see
figure 4.3). The example project is already configured, just start it and click the button Run in
AVTViewExecute.

Besides accessing the calculated features, the project code contains additional functionality
which is explained briefly in the following. Note that the code is only shown for Visual Ba-
sic 6.0; a Visual Basic .NET application with result access can be found in the directory exam-
ples\dotnet\vb\blob_results.

First of all, the calculated area is only to be read and displayed if all balls have the correct size
and extent:

ActivVisionTools 3.2 – Your Fast Track to Solutions

A
ct

iv
Fe

at
ur

eC
al

c

38 Tips & Tricks

For i = 0 To iNumObjects - 1

dArea = atROIResult.ObjectValue(handleArea, i)

dMajorRadius = atROIResult.ObjectValue(handleMajorRadius, i)

dMinorRadius = atROIResult.ObjectValue(handleMinorRadius, i)

If dArea >= 0.215 And dArea <= 0.305 And _

dMajorRadius >= 0.25 And dMajorRadius <= 0.325 And _

dMinorRadius >= 0.25 And dMinorRadius <= 0.325 Then

’ sum Area

dSumArea = dSumArea + dArea

Else

TextMeanArea.Caption = "---"

Call SetAlarm

Exit Sub

End If

Next

dMeanArea = dSumArea / iNumObjects

TextMeanArea.Caption = Format(dMeanArea, "Fixed")

If the conditions are not met, the function SetAlarm stops the application by setting AVTView’s
property RunState to ’False’ and switches the color of the element beside the number of
good cycles to red. The function ClearAlarm resets the color to green.

Private bIsError As Boolean

Private Function SetAlarm()

AVTView1.RunState = False

Light.BackColor = vbRed

bIsError = True

End Function

Private Function ClearAlarm()

Light.BackColor = vbGreen

bIsError = False

End Function

As a further condition, the correct number of balls must be present.

iNumObjects = atROIResult.ObjectNum

If Not (iNumObjects = 5 * 4) Then

TextMeanArea.Caption = "---"

Call SetAlarm

Exit Sub

End If

Below the mean area, the number of BGAs which passed the inspection is to be displayed. For
this one has to keep in mind that AVTFeatureCalc is executed not only when the next image is
grabbed but also whenever you modify its ROI (s) or parameters. To distinguish the two cases

ActivFeatureCalc / 2008-04-23

4.2 Accessing Results Via the Programming Interface 39

an event raised by AVTView at the start of each execution cycle can be used to set a variable
called bIsNewCycle:

Private bIsNewCycle As Boolean

Private Sub AVTView1_CycleStart()

bIsNewCycle = True

End Sub

Before increasing the counter of good cycles within the handler for AVTFeatureCalc’s event
Finish, this variable is checked (and immediately reset). You can test this behavior by modi-
fying the blob extraction parameters of AVTBlobFinder or AVTBlobFinderProcess: The new
mean area is displayed, while the number of good cycles remains constant.

If bIsNewCycle = True Then

iNumGoodCycles = iNumGoodCycles + 1

bIsNewCycle = False

TextNumCycles.Caption = iNumGoodCycles

End If

When using the programming interface of ActivVisionTools, you leave the safe world of the
graphical user interfaces where all input is checked for validity automatically. In contrast,
if you try to access a non-existent object or result via the programming interface, a run-time
error is caused which terminates your application! To avoid this, you can use the Visual Basic
error handling mechanisms, i.e., set up an error handler which examines any occurring error
and reacts in a suitable way. In the example project, if an error is caused by the result access, a
dialog with the error description pops up and the function SetAlarm is called.

Private Sub AVTFeatureCalc1_Finish(atToolResults As _

ACTIVVTOOLSLib.IAVTToolResult)

’ variable declarations

On Error GoTo ErrorHandler

’ procedure body

Exit Sub

ErrorHandler:

Dim sTitle As String

If Left(Err.Source, 11) = "ActivVTools" Then

sTitle = "ActivVisionTools Error"

Else

sTitle = "Runtime Error " & CStr(Err.Number)

End If

Call MsgBox(Err.Description, vbExclamation, sTitle)

Call SetAlarm

End Sub

To view the effect of the error handler, de-select the feature Area in AVTFeatureCalcBasic.

ActivVisionTools 3.2 – Your Fast Track to Solutions

A
ct

iv
Fe

at
ur

eC
al

c

40 Tips & Tricks

By placing the following code at the beginning of AVTFeatureCalc1_Finish, the actual result
access is restricted to the application mode. With this mechanism you can setup the vision part
of your application in the configuration mode without having to worry about run-time errors.

If Not AVTView1.ExecutionMode = eApplicationMode Then

TextMeanArea.Caption = "---"

Exit Sub

End If

ActivFeatureCalc / 2008-04-23

4.2 Accessing Results Via the Programming Interface 41

4.2.2 Accessing Evaluation Results

The evaluation results can be accessed similarly to the measurement results; in fact, they are
even stored in the same object. However, to access the evaluation results you now have to wait
for ActivDecision to finish, i.e., create the following event procedure:

Private Sub AVTDecision1_Finish(atToolResults As Collection)

End Sub

Note that you will get a run-time error if you try to access evaluation results before Activ- !
Decision has finished (e.g., in the handler for AVTFeatureCalc’s event Finish!

Because ActivDecision can evaluate the results of more than one tool, the event handler provides
you with a Collection of tool results. The following code fragment searches the collection for
the results of AVTFeatureCalc1 and “stores” them in atFeatureResult, or exits if no results
are found:

Dim atToolResult As AVTToolResult

Dim atFeatureResult As AVTToolResult

Dim bFeatureResultsFound As Boolean

bFeatureResultsFound = False

For Each atToolResult In atToolResults

If atToolResult.Name = "AVTFeatureCalc1" Then

Set atFeatureResult = atToolResult

bFeatureResultsFound = True

End If

Next

If bFeatureResultsFound = False Then

Exit Sub

End If

In Visual Basic .NET , the event procedure has the following signature:

Private Sub AxAVTDecision1_Finish(ByVal sender As System.Object, _

ByVal e As _

AxActivVTools.__AVTDecision_FinishEvent) _

Handles AxAVTDecision1.Finish

Again, the tool results are encapsulated in the parameter e. They can be extracted as follows;
note the use of VBA.Collection instead of Collection!

Dim atToolResults As VBA.Collection

atToolResults = e.atToolResults

As already remarked in the previous section, tool names are prefixed with Ax, thus you must

ActivVisionTools 3.2 – Your Fast Track to Solutions

A
ct

iv
Fe

at
ur

eC
al

c

42 Tips & Tricks

search for the results of AxAVTFeatureCalc1:

If atToolResult.name = "AxAVTFeatureCalc1" Then

You can query the overall evaluations at different levels, tool, ROI, or object:

Dim atROIResult As AVTROIResult

Dim bToolIsOK As Boolean, bROIIsOK As Boolean, bObjIsOK As Boolean

Set atROIResult = atFeatureResult.ROIResults(0)

bToolIsOK = atFeatureResult.Evaluation

bROIIsOK = atROIResult.Evaluation

bObjIsOK = atROIResult.ObjEvaluation(0)

Furthermore, you can access the evaluation of individual features like the measured area of the
blob with the ID 0, but also of tool features (e.g., the evaluation of the number of “bad” ROIs)
or of ROI features (e.g., the evaluation of the number of objects) via the corresponding feature
handle. In contrast to object features, the handles for tool and ROI features are available as
properties of ACTIVVTOOLSLib.AVTToolResult.

Dim handleArea As Integer, handleBadROIs As Integer

Dim handleObjectsInROI As Integer

Dim bAreaIsOK As Boolean, bBadROIsIsOK As Boolean

Dim bObjectsInROIIsOK As Boolean

Debug.Print "Object 0 OK? " & bObjIsOK

handleArea = AVTFeatureCalc1.FeatureHandleArea

handleBadROIs = atFeatureResult.FeatureHandleBadROIs

handleObjectsInROI = atFeatureResult.FeatureHandleObjectsROI

bAreaIsOK = atROIResult.ObjFeatureEvaluation(handleArea, 0)

bBadROIsIsOK = atFeatureResult.FeatureEvaluation(handleBadROIs)

bObjectsInROIIsOK = atROIResult.FeatureEvaluation(handleObjectsInROI)

The ActivVisionTools distribution includes the example Visual Basic project evalac-
cess\feature_evalaccess.vbp, which uses these methods to extend the application de-
scribed in the previous section. Now, ActivDecision is used to check the extent of the extracted
balls as described in section 3.2 on page 26. The task is to stop the application in case the overall
evaluation shows an error and to display the cause of the error (see figure 4.4). The example
project is already configured, just start it and click the button Run in AVTViewExecute.

Besides accessing the evaluation results, the project code contains additional functionality which
is explained briefly in the following (again only for Visual Basic 6.0!). First of all, the main If -
Then - Else clause around the display of calculated features now tests the overall evaluation

ActivFeatureCalc / 2008-04-23

4.2 Accessing Results Via the Programming Interface 43

Figure 4.4: Accessing and displaying the evaluation results.

of AVTFeatureCalc1:

If atFeatureResult.Evaluation = True Then

’ access and display the mean area

Else

’ examine cause of error more closely

End If

First, the program checks whether the application contains 5 ROIs. Otherwise, the application
is stopped and an error message is displayed. Test this behavior by creating an additional ROI.

iNumROI = atFeatureResult.ROINum

If Not iNumROI = 5 Then

TextMeanArea.Caption = "---"

sErrMsg = "Cycle " & iNumCycles & ": Corrupt application!"

Call DisplayMessage(sErrMsg)

’ evaluation of Activfeature corrupt -> exit

Call SetAlarm

Exit Sub

End If

ActivVisionTools 3.2 – Your Fast Track to Solutions

A
ct

iv
Fe

at
ur

eC
al

c

44 Tips & Tricks

If the overall evaluation of AVTFeatureCalc1 is “not okay”, the cause of error is investigated
by checking the evaluations in a loop over all ROIs:

Dim atROIResult(5) As AVTROIResult

For i = 0 To 4

Set atROIResult(i) = atFeatureResult.ROIResults(i)

Next

For i = 0 To 4

If atROIResult(i).Evaluation = False Then

’ check cause of error

End If

Next

The first possible cause of an error is that the ROI contains the wrong number of balls:

If atROIResult(i).FeatureEvaluation(handleObjectsInROI) = False Then

sErrMsg = "Cycle " & iNumCycles & _

": wrong number of balls (" & _

atROIResult(i).Value(handleObjectsInROI) & _

") in ROI " & sROINames(i)

Call DisplayMessage(sErrMsg)

End If

Independently of this possible cause of error, features of the individual objects can have been
evaluated as “not okay” (only one feature shown below). Note how you can access the indices
of all objects evaluated as “not okay”:

Dim badObject As Variant

For Each badObject In atROIResult(i).BadObjectIndices

’ check evaluation of features

If atROIResult(i).ObjFeatureEvaluation(handleMinorRadius, _

badObject) = False Then

sErrMsg = "Cycle " & iNumCycles & _

": ball " & badObject & " on ROI " & sROINames(i) & _

" has wrong minor radius (" & _

atROIResult(i).ObjectValue(handleMinorRadius, _

badObject) & ")"

Call DisplayMessage(sErrMsg)

End If

’ check other features

Next

The error message also contains the number of the cycle in which the error occurred. The
corresponding counter is incremented in the handler for AVTView’s event CycleStart which
was introduced already in the previous section:

ActivFeatureCalc / 2008-04-23

4.2 Accessing Results Via the Programming Interface 45

Private iNumCycles As Integer

Private Sub AVTView1_CycleStart()

iNumCycles = iNumCycles + 1

End Sub

ActivVisionTools 3.2 – Your Fast Track to Solutions

A
ct

iv
Fe

at
ur

eC
al

c

46 Tips & Tricks

ActivFeatureCalc / 2008-04-23

Appendix A

Mathematical Background of
the Features

This chapter contains the equations for the more complex features.

A.1 Basic Moments . 48
A.2 The Equivalent Ellipse . 48
A.3 Complex Moments . 49
A.4 Gray Value Moments . 49
A.5 Gray Value Features . 50
A.6 Texture Features . 50

47

A
ct

iv
Fe

at
ur

eC
al

c

48 Mathematical Background of the Features

A.1 Basic Moments

The (j,k)th moment of a blob B, denoted Mjk is defined as

Mjk =
∑

(r,c)∈B

rjck (A.1)

with r and c being the row and column coordinates of the pixels. The moment M00(B) is
identical with the area A of the blob B:

A = M00 =
∑

(r,c)∈B

1 (A.2)

The center of gravity (r, c) is calculated from the zeroeth and first moments:

r =
M10

M00
c =

M01

M00
(A.3)

Typically, higher moments are calculated relative to the center of gravity to make them trans-
lation invariant; these moments are then called centralized moments. The centralized (j,k)th
moment of a blob B, denoted mjk is defined as

mjk =
∑

(r,c)∈B

(r − r)j · (c− c)k (A.4)

To make moments scale invariant as well they can be divided by the blob area A and are then
called normalized moments. The normalized (j,k)th moment of a blob B, denoted as µjk is
defined as

µjk =
1

Aj+k
·mjk =

1
Aj+k

·
∑

(r,c)∈B

(r − r)j · (c− c)k (A.5)

A.2 The Equivalent Ellipse

The parameters of the equivalent ellipse, i.e., the major radius Rmaj , the minor radius Rmin,
and the orientation ϕE , are calculated from the normalized central moments as follows:

Rmaj =

√
2A · (µ20 + µ02 +

√
(µ20 − µ02)2 + 4 · µ2

11) (A.6)

Rmin =

√
2A · (µ20 + µ02 −

√
(µ20 − µ02)2 + 4 · µ2

11) (A.7)

ϕE = arctan

(
−2µ11

µ20 − µ02 +
√

(µ20 − µ02)2 + 4 · µ2
11

)
(A.8)

ActivFeatureCalc / 2008-04-23

A.3 Complex Moments 49

A.3 Complex Moments

Based on the basic moments, ActivFeatureCalc provides more complex moments which are
invariant under other affine transformations, e.g., rotation or stretching.

2nd Moments Phi 1 = µ20 + µ02 (A.9)
2nd Moments Phi 2 = (µ20 − µ02)2 + µ11 (A.10)

Central Moments Psi 1 = µ20 · µ02 − µ2
11 (A.11)

Central Moments Psi 2 = A2 · ((µ30µ03 − µ21µ12)2 − (A.12)
4 · (µ30µ12 − µ2

21)(µ21µ03 − µ2
12))

Central Moments Psi 3 = A · (µ20 · (µ21µ03 − µ2
12)− µ11 · (µ30µ03 − (A.13)

µ21µ12) + µ02 · (µ30µ12 − µ2
21))

Central Moments Psi 4 = A · (µ2
30µ

3
02 − 6µ30µ21µ11µ

2
02 + (A.14)

6µ30µ12µ02(2µ2
11 − µ20µ02) + µ30µ03(6µ20µ11µ02 −

8µ3
11) + 9µ2

21µ20µ
2
02 − 18µ21µ12µ20µ11µ02 +

6µ21µ03µ20(2µ2
11 − µ20µ02) + 9µ2

12µ
2
20µ02 −

6µ12µ03µ11µ
2
20 + µ2

03µ
3
20)

A.4 Gray Value Moments

The moments mixing spatial and gray value information, called gray value moments are defined
in analogy to the basic moments in appendix A.1 on page 48, but now the gray value of a pixel,
denoted as g(r, c), is included in the calculation. To avoid a confusion with their “standard”
counterparts, the gray value moments and the derived features are marked with a small ’g’ in the
upper left corner.

gMjk =
∑

(r,c)∈B

rjck · g(r, c) (A.15)

Therefore, the gray value area gA of the blob B is calculated as:

gA = gM00 =
∑

(r,c)∈B

g(r, c) (A.16)

and the gray value center of gravity (gr, gc) as:

gr =
gM10
gM00

gc =
gM01
gM00

(A.17)

ActivVisionTools 3.2 – Your Fast Track to Solutions

A
ct

iv
Fe

at
ur

eC
al

c

50 Mathematical Background of the Features

The normalized (j,k)th gray value moment of a blob B, denoted as gµjk is defined as

gµjk =
1

gA
·
∑

(r,c)∈B

(r − gr)j · (c− gc)k · g(r, c) (A.18)

From this, the parameters of the equivalent ellipse are calculated as follows:

gRmaj =

√
2 · (gµ20 + gµ02 +

√
(gµ20− gµ02)2 + 4 ·

2
gµ11) (A.19)

gRmin =

√
2 · (gµ20 + gµ02−

√
(gµ20− gµ02)2 + 4 ·

2
gµ11) (A.20)

gϕE = arctan

(
−2 gµ11

gµ20− gµ02 +
√

(gµ20− gµ02)2 + 4 · gµ11
2

)
(A.21)

A.5 Gray Value Features

Gray value features evaluate the gray value of the pixels of a blob B, denoted as g(r, c), with
r and c being the row and column coordinates of the pixels. The mean gray value g and the
deviation σ from it are calculated as follows:

g =
1
A
·
∑

(r,c)∈B

g(r, c) (A.22)

σ =

√√√√ 1
A
·
∑

(r,c)∈B

(g(r, c)− g)2 (A.23)

A.6 Texture Features

The texture features Entropy and Anisotropy are determined from the histogram of gray value
frequencies h(f(g)) as follows:

Entropy = −
255∑
g=0

h(f(g)) · log2(h(f(g))) (A.24)

Anisotropy =

∑k
g=0 h(f(g)) · log2(h(f(g)))

Entropy
(A.25)

with k being the smallest gray value for which
∑k

g=0 h(f(g)) ≥ 0.5.

ActivFeatureCalc / 2008-04-23

A.6 Texture Features 51

The texture features Energy, Correlation, Homogenity, and Contrast are determined from
the gray level co-occurrence matrix Cooc(g1, g2). This matrix stores the relative frequencies
with which two gray values occur as neighbors in the blob B. The neighborhood is evaluated in
the directions 0◦, 45◦, 90◦, and 135◦.

Energy =
∑

(g1,g2)inCooc

Cooc(g1, g2)2 (A.26)

Correlation =

∑
(g1,g2)inCooc(g1 − g) · (g2 − g) · Cooc(g1, g2)

σ2
(A.27)

Homogenity =
∑

(g1,g2)inCooc

Cooc(g1, g2)
1 + (g1 − g2)2

(A.28)

Contrast =
∑

(g1,g2)inCooc

(g1 − g2)2 · Cooc(g1, g2) (A.29)

ActivVisionTools 3.2 – Your Fast Track to Solutions

A
ct

iv
Fe

at
ur

eC
al

c

	1 About ActivFeatureCalc
	1.1 Introducing ActivFeatureCalc
	1.1.1 The World of Features
	1.1.2 Converting Features to Other Units
	1.1.3 ActivFeatureCalc and ActivAlignment

	1.2 The Sub-Tools of ActivFeatureCalc

	2 Using ActivFeatureCalc
	2.1 Extracting Objects
	2.2 Selecting Features

	3 Combining ActivFeatureCalc with other ActivVisionTools
	3.1 Converting Results to Other Units
	3.2 Evaluating Results
	3.3 Output of Results

	4 Tips & Tricks
	4.1 Customizing the Two Execution Modes
	4.2 Accessing Results Via the Programming Interface
	4.2.1 Calculated Features
	4.2.2 Evaluation Results

	A Mathematical Background of the Features
	A.1 Basic Moments
	A.2 The Equivalent Ellipse
	A.3 Complex Moments
	A.4 Gray Value Moments
	A.5 Gray Value Features
	A.6 Texture Features

