
SAT-NET: Satellite Acquisition &Tracking with Network Enabled Telescope
Florida Gulf Cost University
Fort Myers, Florida, USA
http://satnet.fgcu.edu/

Florida Gulf Coast
University

Team Members Dustin Felton dgfelton@eagle.fgcu.edu
 Sean Kerwin spkerwin@eagle.fgcu.edu
 Anders Petersen ahpeters@eagle.fgcu.edu
 Ray Rhode rarhode@eagle.fgcu.edu

Project Mentor Janusz Zalewski, Ph. D zalewski@fgcu.edu
Mentor Assistant Andrew White aswhite@eagle.fgcu.edu

Abstract
 As the population of the world grows and tends much more to travel, we are becoming
increasingly dependent on communication, navigational aide, and weather forecasting. As such,
protection of the infrastructure of these ends becomes irrevocably more important as well. The
SAT-NET system is a means to help in making such protection a reality. SAT-NET allows for
distributed monitoring of communication satellites and other orbiting bodies, thus giving anyone
with a computer and Internet connection the ability to monitor these increasingly important
resources.
 This report documents our experiences in implementing this vision. It quantifies efforts
of the Project Team in creating SAT-NET, with respect to requirements specification, design,
implementation and testing, and summarizes the project status for today:

1) The design methodology applied draws significantly from the IEEE Std 1074-1997
“Developing Software Life-Cycle Processes” and its counterpart ISO/IEC Publication
12207 “Software Lifecycle Processes”, with additional focus on quality assurance
activities according to the IEEE Std 730 “Software Quality Assurance Plans”.

2) The software design architecture applies the David Parnas’ principle of separation of
concerns, which divides software functions based on the I/O responsibilities, regarding
telescope control, web camera control, database interface, and user interface, among
others.

3) The implementation method uses object-oriented technologies, including the latest
available version of Java and design patterns, of which one was created in this project
(Virtual Singleton Pattern).

4) The testing process relies on following IEEE Standards [8] and focuses on performance
measurements, with respect to computational accuracy and server’s robustness.

5) Tools developed during this project, which include a new communication protocol, a new
design pattern, perl package for dumping SQL database contents, and Java package for
command and communication with external devices using serial port, are made available
for the public and may serve general population of designers.

The beta version has been released. It can be accessed from satnet.fgcu.edu and by

making prior email arrangement with team members. Full testing is still being pursued and was
conducted successfully during the FGCU Research Day Student Poster Competition, where the
Team won first price (www.fgcu.edu/orsp/). Further work is needed to fix minor bugs and
coordinate operation of the webcam with telescope control software.

1. System Overview

1.1 Technical Requirements
The objective of the SAT-NET (Satellite Acquisition & Tracking with Network Enabled

Telescope) project is to develop software providing Internet connectivity to a telescope allowing
satellite tracking [9]. SAT-NET can be used by organizations to enhance safety of their air space
and track intruding vehicles. It also allows users around the world to view, track and learn about
satellites from a Java-enabled web browser. Connected by the Internet, the system allows for
expandability, so that many servers can be set up to view a satellite or other space object, utilizing
multiple site locations, as it moves across air space or makes an entire orbit around the Earth.

User

SAT-NET Server

Satellite

Telescope

Figure 1. SAT-NET Overview.

As shown in Figure 1, the basic implementation of SAT-NET is simple. A user, using a Java-
enabled web browser, connects through the Internet onto the SAT-NET server. The server then
relays commands to the telescope, and tracks the satellite. Simultaneously, a web camera sends
the real-time image back to the user for viewing. Specific functional requirements are listed in
Section 2.1. Performance requirements include: accuracy of computations of satellite positions
and server robustness to increasing load. They are defined in Section 2.2.

1.2. Design Methodology

Design methodology follows the logic of IEEE Std 1074-1997 “Developing Software
Life-Cycle Processes” and its counterpart ISO/IEC Publication 12207 “Software Lifecycle
Processes”, with additional focus on quality assurance activities according to the IEEE Std 730
“Software Quality Assurance Plans”, all involving pre-development, development and post-
development activities conducted with object-oriented technologies, as presented in Table 1:

Table 1. Processes and Activities in Design Methodology (adopted from IEEE Std 1074 [8]).

Processes
and Activities

Support Tool Deliverable Quality Assurance

1. Pre-development
a) Mental Preparation Kidder’s book [1] Internal discussion
b) Domain Knowledge
Acquisition

Consulting
experts [2-7]

Record in minutes

c) Team Organization Organizational
theory

Assignment of
responsibilities

d) Feasibility Study IEEE Standards
Collection [8]

Preliminary design
decisions

2. Development
a) Software
Requirements

UML Uses Case
Diagrams

S/W Requirements
Specification

Walkthrough (wrt. clarity,
completeness, correctness,
consistency, traceability,
testability)

b) Software Design UML Class and
Sequence Diag.

S/W Design
Description

Design Review (wrt.
coupling & cohesion)

c) Coding JDK 1.4.2 Code Code Inspection
d) Testing Test Execution Test Plan and Test

Report
Test Review

e) Documentation MS Word User Manual English Faculty
3. Post-development
a) Report Preparation MS Word Final Report
b) Beta Release JDK 1.4.2 Code beta version
c) S/W Modifications UML diagrams &

JDK 1.4.2
Code production
version

d) User Training HTML Web documents

1.3 Technical Innovations

1. Remote operation of a telescope for satellite tracking via the Internet.
Satellite tracking is a rather standard operation in scientific community, but thus far no
system has enabled a telescope with Internet accessibility; SAT-NET is the first to make
this integration.

2. Visual satellite tracking with a real-time video feed.
Real-time satellite tracking is available but on a text-only basis. SAT-NET will allow
visual tracking of a satellite in real time.

3. Potential to track a satellite through the entirety of its orbit.
SAT-NET will allow for tracking of a satellite around the globe, utilizing multiple SAT-
NET stations.

4. Exapandibility, allowing SAT-NET’s inclusion as module of a larger system.
Modularity of the SAT-NET software and its open network protocol permits its use by a
system with full-scale functions of greater importance, such as air traffic control system
or satellite ground control station.

2. Implementation and Engineering Considerations
 The SAT-NET has two functioning modes, a User Mode and a View Mode. The User
Mode logs a user into the system, allows them to schedule time when they can control the
telescope and allows the user to take control of the telescope. The View Mode, allows all viewers
to watch a real-time video stream of a web camera attached to the telescope. The operation of the
SAT-NET software is defined in the Software Requirements Specification (Section 2.1 below).
The Design Description is presented in Section 2.2, followed by the list of major design decisions
and tools developed (Sections 2.3 and 2.4, respectively). Test results are presented in Section 2.5.

2.1 Software Requirements Specification
 Software requirements have been derived with help of Use Case diagrams, which are not
shown here for the lack of space. For better clarity, the requirements are split into Functional
Requirements and Non-functional Requirements (safety, security, and performance).

2.1.1 Functional Requirements

1. The SAT-NET software shall allow free access to satellite viewing for anyone on the Internet

from a computer equipped with a Java enabled browser.
2. The SAT-NET software shall allow scheduled access from the Internet to telescope control,

with registration and verification for regular users.
3. The SAT-NET software shall allow registration based on valid email addresses and only for

email addresses not previously used.
4. The SAT-NET software shall require the following data for user registration: first name, last

name, date of birth, email address.
5. The SAT-NET software shall allow entering optional data, such as occupation, reason for

registering, latitude, longitude, country, city, zip code, and affiliation.
6. The SAT-NET software shall allow users to request their passwords to be emailed to the

address they provide.
7. The SAT-NET Software shall allow clients to connect to the server and view telemetry relating

to the satellite currently being tracked.
8. The SAT-NET software shall allow scheduled access for controlled tracking of the satellite,

based on logon procedures and, after logon, on prioritizing users and first-come-first-served
principle.

9. The SAT-NET Software shall allow connected clients to request authentication: if the
credentials sent correspond to a registered user who is not currently banned, the request shall
be granted and the client shall become a logged-in client; otherwise the authentication request
shall be denied.

10. The SAT-NET Software shall grant control privileges to a single logged-in client at a time,
allowing that client to select a new target for the software to track.

11. The SAT-NET Software shall allow logged-in clients to view a list of currently visible
satellites.

12. The SAT-NET Software shall allow logged-in clients to request a reservation of time at a
future date during which they will have control over the software, which shall be granted if
and only if the requested time period is of duration within specified tolerances, does not
conflict with any preexisting reservations, and does not exceed a specified per-user per-day
time.

13. The SAT-NET Software shall allow logged-in clients to view the time and duration of current
reservations.

14. The SAT-NET Software shall allow logged-in clients to request control at any time, which
shall be granted if either a) the client has a reservation for the current time b) no client
currently has control or c) the client currently in control does not have a reservation and has
been in control for longer than a specified duration; otherwise the client’s request shall be
denied.

15. The SAT-NET software shall allow a superuser access to telescope control with preemption
of other users.

16. The SAT-NET software shall allow superuser assign rights to users, administer user accounts,
and overwrite schedules.

17. The SAT-NET Software shall allow logged-in superuser clients to request control at any time,
which shall be granted if control is not currently granted to a superuser client; otherwise the
superuser client’s request shall be denied.

18. The SAT-NET software shall provide access to explanation of site policies on the front page
of the Satellite Tracker website.

19. The SAT-NET software shall provide guidelines explaining the principles of operation of the
satellite tracker, accessible from the Satellite Tracker website.

20. The User Interface shall allow a regular user to preselect a satellite with predefined Keplerian
elements or enter their own Keplerian elements.

21. The SAT-NET software shall allow all users to view the data from the satellite that is
currently being tracked.

22. The SAT-NET software shall allow all users to view the currently available schedule for the
satellites being tracked.

23. The SAT-NET software shall allow automatic booking of satellite tracking time for regular
users, within available time for the telescope.

2.1.2 Non-functional requirements.

24. Safety. The SAT-NET software shall take precautions against rotating the telescope too far to

cause damage to power cables running from the base of the telescope to the side motor.
25. Security. The User Interface shall be required to verify to the server it is a valid instance of

the interface before it is allowed to send or receive any information
26. Security. User information sent by the User Interface to the server shall be encrypted before

being sent to prevent the interception of personal and login information and, upon receipt by
the server, the information shall be decrypted for verification.

27. Security. All passwords shall be at least six characters long and must contain at least one digit
and one letter.

28. Security. In case a user has failed to login to an account five successive times, the SAT-NET
software shall have the account locked for one hour, during which even if the correct
password is entered the user cannot login.

29. Security. Passwords sent to the server by the client during authentication shall be transmitted
only in an enciphered form such that potential interceptors would be unable to determine the
deciphered form.
Note. The enciphering process should be dependant upon a pseudo-random seed generated by
the server, so as to prevent simple playback for a recorded authentication exchange.

30. Performance. Accuracy of satellite position computations (azimuth, elevation, latitude,
longitude, and range) shall be better than 0.01%.

31. Performance. Responsiveness of SAT-NET server shall not degrade more than 5% per each
10 clients requesting service simultaneously.

2.2 Software Design Description
Overall system architecture is presented in Figure 2, in a form of a context diagram. It

includes all external devices: telescope, web camera, database server, and Internet access to
clients and time server (NTP). From the architectural standpoint, two major components in the
SAT-NET software were distinguished: the Satellite Tracker (playing the role of a SAT-NET
Server), which runs on a server machine and is responsible for telescope interaction, and the
Remote User Interface, which runs as an applet within any browser and handles all human
interaction. These two main components are built out of separate modules, each of which
performs specific functions of the SAT-NET software.

Figure 2. System Architecture/Context Diagram.

The basic software architecture of SAT-NET is based on the principle of separation of
concerns, which divides software functions based on the following I/O responsibilities: user
interface, equipment control, database access, network connectivity, precise time keeping,
webcam control, and internal computations. Accordingly, these functions have been mapped on
their respective modules as follows:

- user interface is handled by a Java Applet executing within a browser, passing login,

telescope scheduling and other information to the Remote User Interaction Negotiator
(RUIN) module, which has access to the database manager

- equipment control (telescope) is handled by Serial Line Access Module (SLAM)
receiving commands from the computational module, Telescope Controller

- database interface is handled by the Database Object Operations Manager (DOOM)
module, which take relevant data from the Java Applet and provide these data, upon
request, to the computational module, Telescope Controller

- computations are concentrated in the Telescope Controller, which is responsible for
calculating satellite positions and interacting with: the Database module to receive and

send data; the SLAM to communicate with the telescope; and the NTP Client to access
precise time information

- time keeping for calculating satellite positions, is handled by the NTP Client,
synchronized with an NTP server and providing time to the Telescope Controller

- network connectivity other than Internet is provided by an External Interface for future
expansion

- webcam broadcast is provided by a public domain version of the QuickTime software.

2.2.1 User Interface Design

The basic appearance of satnet.fgcu.edu website is shown in Figure 3. From
there, the use can register and log on to satellite tracking functions, which is illustrated in Figures
4 and 5, respectively.

Figure 3. Main Webpage for the Satellite Tracking.

Upon browsing to the main SAT-NET interface page, the user is presented with Figure 3.
The left half of the page (referred to as the control pane) is the SAT-NET Java client applet, while
the right half is the live video stream coming from the telescope. The telemetry data on the upper
half of the control pane will be continually updated to reflect the current focus of the telescope.
Upon clicking the ‘Log In…’ button the user will be presented with the ‘Log In’ dialog box.

If the credentials entered are valid, the ‘Log In’ dialog box will close and the control pane

will update. The status message in the upper-right hand corner will change from ‘Not Logged In’
to ‘Logged In’. If the user is logged in with special credentials, e.g. as an administrator or priority
user, that status would be reflected in this message as well.

Figure 4. SAT-NET User Registration Page.

Figure 5. Logging in to SAT-NET to Access the Scheduling and Control Features.

If the user wishes to reserve control time for the SAT-NET system, they may do so by

clicking the ‘Reserve Control Time…’ button on the control pane. This will lead to the
appearance of the reservation window (Figure 6). The user may select a date and time by
manipulating the popup buttons at the top of the window; as these values are altered, the time bar
across the middle of the window will update correspondingly. The blue section of the bar
represents the time the user is currently attempting to reserve, while red sections show times for

which reservations already exist. If the user were to alter the value of the Duration popup to two
hours, the blue box would overlap the rightmost red section. The overlap would be colored in
purple to indicate a conflict, and the ‘Request Reservation’ button would be disabled until the
conflict was removed.

Figure 6. Requesting a Reservation to Control the Telescope at a Future Date and Time.

2.2.2 Class Design

The overall structure of SAT-NET software, as derived from the System Architecture of
Figure 2, is illustrated in a class diagram shown in Figure 6. It represents the relationships
between a main class, BOSS, and other classes controlling, respectively, the telescope (SLAM),
computations (MADAM), user interface (RUIN), database access (DOOM), and time (NTPC).

Figure 7. SAT-NET Class Diagram.

Detailed designs of respective classes are discussed in the following subsections only partially,
due to space limitations.

2.2.2.1 Java Applet Design

A Java applet, named WRAK, is the core of the SAT-NET remote interface. It is
responsible for coordinating the various user interface elements and communicating with the
RUIN (Remote User Interaction Negotiator) module residing in the SAT-NET server. WRAK is
entirely event-driven, receiving both local events generated by the various user interface elements
and remote events originating with the server. It communicates with the server by sending
similar events/messages to the RUIN. State is enforced through the dynamic display/hiding and
enabling/disabling of user interface elements.

The bulk of WRAK’s functionality is controlled by the Java event model; the main
WRAK class is an implementation of the ActionListener interface and is registered to listen to
pertinent UI elements. WRAK also receives events from WRAKComm, the networking module.
Once instantiated, WRAKComm launches a new thread to receive information from the server.
Information received is parsed and, if it represents a known event, relayed to WRAK.

Table 2. Externally-Generated (Network) WRAK Events

Event Name Handling
kREMOTE_CONNECTED 1. Enable log in button

2. Set status display to ‘Not Logged In’
kREMOTE_FAILED 1. Disable all buttons

2. Display alert
3. Construct retry thread and start

kREMOTE_DROPPED 1. Disable all buttons
2. Display alert

kREMOTE_LOGIN_YES 1. Change status display
2. Enable request control button
3. Enable reservation button
4. Enable logout button
5. Dispose WRAKLogin

kREMOTE_LOGIN_NO 1. Call WRAKLogin.credentialsWereInvalid()
kREMOTE_LOGOUT 1. Enable log in button

2. Disable request control button
3. Disable reservation button
4. Disable logout button
5. Set status display to ‘Not Logged In’

kREMOTE_TELEMETRY 1. Call WRAKControl.updateTelemetry()
kREMOTE_CONTROL_YES 1. Instantiate new WRAKTargeting
kREMOTE_CONTROL_NO 1. Display alert

2. Enable request control button
kREMOTE_VISIBLE 1. Call WRAKVisibleDataModel.updateList()

The main class of the WRAK applet, WRAK is created automatically by the web browser
and is tasked with responding to all remote and local events. Unlike most subclasses of Applet
or JApplet, WRAK does not implement its own user interface, instead using the WRAKControl
class for that purpose. As special method is written, as dictated by the ActionListener interface, to
which all buttons in the various user interface components ultimately report. It is implemented as
a large switch statement, with a separate case for each supported event. Corresponding events are
split into internal (generated by user interaction with user interface elements created by one of the
WRAK classes) and external (generated by the WRAKComm module in response to messages
from the server) events. In this report, only external events are presented (see Table 2).

2.2.2.2 RUIN (Remote User Interaction Negotiator) Design

RUIN is the server element of the SAT-NET software. It is tasked with accepting
connections from clients, authenticating clients, and responding to commands and requests from
clients. The design of RUIN is intended to be maximally scalable; care was taken to minimize
per-client resource allocations. Most notably, RUIN makes use of the Java’s newest I/O
facilities, the NIO package, to ensure that the number of threads is constant regardless of client
load (efficient use of Java’s previous I/O facilities often required one thread for each connection).

RUIN contains three threads of execution. The first, the acceptor thread, is tasked with
listening for incoming socket connections. When a connection occurs, the acceptor thread
instantiates a Connection object (a nested class within RUIN) and adds it to a vector member
containing all current connections. Each connection object maintains a buffer of outgoing data,
which is written to that connection’s socket as its write buffer frees space. This writing is
accomplished by the second thread, the I/O service thread. The I/O service thread is also charged
with reading data from sockets as it becomes available, parsing the data into RIP packets using
the RIPUtils class, and handling them appropriately. The final thread maintains a packet
representing a list of the currently visible celestial objects; because this list is request by clients
quite frequently, it is more efficient for it to be done once in a separate thread of execution than to
be done many times as clients enquire.

RUIN communicates only with the MADAM and DOOM modules. The MADAM
module periodically calls RUIN’s sendTelemetry() method, which is used to inform clients of the
currently tracked satellite’s position, and DOOM module is called by RUIN to validate user
credentials, determine visible objects, and retrieve and store information about reservations.

2.2.2.3 BOSS and MADAM

As the name implies, BOSS is the module in charge. It creates and handles all the
instances of all the other modules. All communication between the other modules goes via BOSS
to ensure that there only is one instance of a module, thereby creating a virtual Singleton design
pattern. In addition, BOSS is intended to have several maintenance tasks such as downloading
and parsing TLE files, maintain the database and so forth. Also, reading and parsing the
configuration file is the responsibility of BOSS.

The MADAM () is the heart of the satellite tracking. This is where all the calculations are
done and the data is then forwarded to the user via the RUIN and WRACK. Data is also sent to
SLAM to move the telescope to point at the satellite. It is composed of three threads:

• TelescopeController Thread. As the name implies, this thread is responsible for sending
freshly calculated azimuth and elevation for the satellite currently being tracked. The thread
uses a simplified set of calculations since only azimuth and elevation is needed. SLAMs
receiveCoords() method is then called with azimuth and elevation. As soon as
receiveCoords() returns (after the telescope is done moving), the calculations are
repeated. This goes on continuously.

• RUITelemetry Thread. This thread is responsible for supplying the user with accurate
telemetry data. That means that it is a continuous thread that calculates a full set of data,
azimuth, elevation, range, longitude, latitude, altitude, velocity, orbit number, visibility score,
SLAM error number, calculation model (SDP4, SGP4 - SDP8 and SGP8 future options)),
footprint1). Visibility status (visible, in sunlight, eclipsed), sun azimuth and sun elevation
will most likely be added to the telemetry object sometime in the future. The RUITelemetry
thread will call the outputTelemetry() method in the RUIN at the end of the iteration.

• Prediction Thread. The prediction thread will only run every 24 hours or so (specific times
can be entered in the configuration file). It is recommend that this is scheduled for times
when the server has a light load, as it may require significant resources and time depending
on the number of satellites in the database. It will loop through all the satellite in the
database, and try to calculate when each of these satellites will be visible during the next 7
(can be changed in the configuration file) days. When a visible pass (required score can be
set in the configuration file) is found, DOOMs updatePredictions() method is called
with SatelliteID, OrbitNumber, AOSTime and LOSTime as the parameters.

For all three threads there is a common set of calculations that calculate azimuth,

elevation and range. The specifics of the calculations depend on whether or not the satellite is
considered a deep space satellite. A deep space satellite is defined as a satellite with a period
(time of one orbit) of more than 225 minutes. First, the satellites position (in a Earth-Centered
Inertial (ECI) coordinate system) is calculated based on the data given in in TLE files. These
calculations are quite complex and are explained in detail in [11]. Second, the ECI position of the
ground station (where the telescope is located) is calculated with special care taken to adjust as
the Earth is not a perfect sphere [11]. Third, the difference between these to ECI coordinate sets
is used to calculate azimuth, elevation and range [11]. This is needed to determine if the satellite
could be visible. MADAMs implementation is based on the one used by PREDICT, but a
description of the mathematics used to determine this can be found at [12].

Figure 8. Telemetry and Prediction Threads.

2.2.2.4 DOOM Design

 DOOM, which stands for Database Object Operations Manager, is a passive class
designed to respond to requests for database access. It operates on a number of fields in an SQL
database, which are illustrated in Figure 9. Specifics of each field are omitted due to report space
limitations.

S a te llite ID

Us e r ID

p r e d ic t io n s

S a te llite ID
A O S
L O S
O r b itN u m b e r

s a t e ll it e

ID
B S TA R
Ec c e n tr ic ity
Ep o c h
In c lin a t io n
Is B e in g Tr a c ke d
Is Pe r m a n e n t
Is V is ib le
M e a n A n o m a ly
M e a n M o tio n
M e a n M o tio n F ir s tD e r iv a t iv e
M e a n M o tio n S e c o n d D e r iv a t iv e
N a m e
Pe r ig e e
R A A N
R e v o lu t io n Nu m b e r

s c h e d u le

Us e r ID
S ta r t
e n d

u s e r

Em a il
A f f ilia t io n
B a n n e d U n til
C ity
Co u n tr y
DO B
Fir s tN a m e
Is S u p e r u s e r
L a s tN a m e
L a titu d e
L o n g itu d e
Nu m Tr ie s
O c c u p a tio n
Re a s o n
Z ip Co d e
is V e r if ie d
p a s s w o r d
r e g is te r e d Da te
v e r if ic a t io n K e y

Figure 9. Entity Relationship Diagram for DOOM.

2.2.2.5 SLAM Design

 The SLAM module provides serial communications with the telescope to and from the
server. This is the module, which allows the server and indirectly, the user, to control and operate
the telescope. SLAM uses the standard DB9 pin serial (232) port on the computer to link with the
telescope and issues the commands in A-Synchronous mode. The module accepts input from the
Telescope Control module (MADAM). These inputs are the current azimuth and elevation and
the predicted azimuth and elevation after 5 seconds and the current Right Ascension and
Declination of the satellite. The module is composed of two classes: Slam and PortOperations. A
brief description of module’s functionality provided below.

public void recieveCoords(double azimuth, double elevation)

Whenever a new object of the Slam class is created, it performs the following actions in the
respective order. The actions it takes determine if any action is needed and if so, what action and
then preforms that action. Partial functions include the following:

• Saves the time at invocation in member variable 'startTime'.
• Calls function ChangeState with no arguments, changing variable 'state' to end the

current thread moving the telescope if there is one.
• Calls function GetTelecsopePosition with no arguments, stores the values in TeleAz

and TeleEl
• Determines if the telescope is already moving and or not and if the module is active

or not and moves the telescope if it is not moving is it is active.
• Calls function SendCommand with 1 argument which is the command for current

telescope Azimuth.

Figure 10. Details of SLAM Design (basic flowchart and structure chart).

2.2.3 Major Design Decisions and Optimizations

There were several major design decisions taken during the course of this project, which allowed
for various optimizations. They are listed in Table 3, along with the criteria taken into account.

Table 3. Design Decisions and Optimization.
Design Decision Criterion Disadvantage

Use open source software
(Linux, Java, MySQL, UML)

Portability Java sacrifies speed and ease of
access to hardware.
Linux tends to cause difficulty in
configuring.
UML notation and tools are an
overkill for simpler system.

Follow the principle of
separation of concerns

Modularity May cause undesired over-
simplification for bigger systems.

Apply quality assurance at
each development stage

Various:
SRS - clarity, completeness,
correctness, consistency,
traceability, testability;
Design – cohesion, coupling;
Code – readability,
structuredness.

Extremely time consuming, but very
productive.

New Text-based Internet
Protocol

Ease of implementation Yet another protocol.

New (Virtual Singleton)
Design Pattern for Main
Module Implementation

Simplicity Less robust than regular Singleton
Pattern when reused (full
implementation would require a
friend feature.

Use of UDC Time Accuracy and simplicity Leads to confusion within the project
Manually manage version
control (as opposed to CVS)

Simplifies development Causes confusion, especially during
module integration and testing.

2.2.4 Tools Developed

There were four new tools developed in this project, where a tool is understood as a
vehicle assisting in performing a primary software function during development and operation.
They are listed in Table 4 and the details can be found on project website [10].

Table 4. Description of Four Tools Developed in This Project.
Tool Name Function

Virtual Singleton Design Pattern Extension of a Singleton pattern to make it thread-
safe and enable parameter passing.

Remote Interaction Protocol (RIP) Meta-protocol - an additional transport stream than
can layer atop TCP to provide increased
convenience in implementing basic networking
functionality.

Database Backup Tool Perl script that connects to the MySQL database
using the perl DBI interface to cycle through all the
database and dump its contents.

Java Serial Link Tool Communicates with the serial port devices allowing
issuing all commands it receives to the serial device
as strings.

2.2.5 Software Testing

Testing for this project has been accomplished in the following phases:

- preparation of test plans for each module, addressing specific requirements
- functional testing of each module, according to requirements 1-23
- safety and security testing, according to requirements 24-29, and
- performance testing, according to requirements 30-31.

For the lack of space, in this report we are only including results of performance testing. Results
of other tests are made available from the project website [10].

2.2.5.1 Testing of MADAM Computational Accuracy

An extensive test was conducted on MADAM consisted of collecting a number of
predictions from SAT-NET and comparing it to the baseline program PREDICT [2]. The latest
available TLE file from http://www.qsl.net/kd2bd/predict.tle was used for both
programs. The predictions were set to start at UNIX time 1082426819 (Tue Apr 20 02:06:59
UTC 2004) and calculate for every 5 minutes for 24 hours. The results were written to text files
for later analysis. This analysis proved to be very good news as the only differences seem to be
caused by slight differences in rounding. The largest difference we saw, was for the range. In
some cases this was off by 0.01 km (10 m) and as mentioned, is most likely caused by rounding.
Either way, when the range is in excess of 40,000 km, 10 meters is not bad. Due to the amount of
data collected, we only present here graphs for azimuth and latitude, which show typical
behavioral patterns [2].

OSCAR 10 - Azimuth plot

0,00

50,00

100,00

150,00

200,00

250,00

300,00

350,00

400,00

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

Seconds since start time (UNIX Time 1082426819)

D
e
g

re
e
s

SATNET

PREDICT

Figure 11. Azimuth Test for SATNET compared to PREDICT.

OSCAR 10 - Latitude plot

-30,00

-20,00

-10,00

0,00

10,00

20,00

30,00

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

Seconds since start time (UNIX Time 1082426819)

D
e
g

re
e
s

SATNET

PREDICT

Figure 12. Latitude Test for SATNET compared to PREDICT.

2.2.5.2 Testing Robustness of the Server (RUIN/DOOM Combination)

 The second performance test focused on testing the speed of response (latency) in case of
increasing load due to access from multiple numbers of client. Multiple calls to RUIN were
executed through its RIP protocol, emulating the actual SAT-NET events. The time, in
milliseconds, was recorded it takes RUIN to call DOOM and DOOM to return the results back.
This procedure was repeated for increasing number of clients (from 1 to 10), all making
simultaneous requests. Additionally, artificial resource consumption on the server was added to
test the effect of spurious activities. The resulting graph is shown in Figure 13.

Figure 13. Testing SATNET Robustness: Service Latency vs Number of Users.

3. Summary
 The project was completed successfully and the beta version has been released. It can be
accessed from satnet.fgcu.edu and by making prior email arrangement with team members. Full
testing is still being pursued and was conducted successfully during the FGCU Research Day
Student Poster Competition, where the Team won first price (www.fgcu.edu/orsp/). Further
work is needed to fix minor bugs and coordinate operation of the webcam with telescope control
software.

We consider the outcome of this project to be important in three aspects: technical,
societal, and personal for team members:
Technical. The primary goal of this project was the production of a functioning implementation
of the SAT-NET system. Specifically, we intended to produce a web site at which users may
remotely control FGCU’s telescope and observe the results. Our intention is to leave this system
in place, allowing for global access to this important educational resource.
Societal. Secondly, we aimed to open-source the SAT-NET software so that it is can be easily
downloaded and operated by any organization with the appropriate hardware. SAT-NET’s wide
adoption would represent a significantly broader realization of its potential societal benefits,
especially in improving safety of the air space and in education of the younger generation.
Personal. Thirdly, we hope to win the competition and not only further educational and research
possibilities but increase our own understanding of software development, engineering teamwork,
and professional challenges.
 While being technically innovative, the SAT-NET project will benefit society in several
different ways. In addition to its primary purpose, which is enhancing safety of air space, it will
provide global access for non-scientists to scientific experiments over the Internet, as well as
address the issue of technological underdevelopment in countries without the means to provide
such educational and scientific tools to the population. In particular, the project will:

1. Provide students at all levels (Intermediate School, High School, College Students, etc.)
with access to experimentation using scientific equipment, such as a telescope, which will
result in popularization of Science.

2. Reduce the cost of science education by allowing expensive scientific equipment to be
shared by schools, rather than requiring each school to purchase the equipment or go
without the resource.

3. Allow for an exchange of knowledge and research, which extends throughout the globe to
countries of minimal industrial development and world industrial powers alike.

Project costs are divided into Development Cost, which is incurred only during

development, and Implementation Cost, which is related to every implementation. They did not
exceed the limit set by rules of this Competition.

Development Cost
Satellite Tracking Software for Research $ 50.00
Null Modem Cable $ 15.00
Total Development Cost $ 65.00

Implementation Cost
Serial Cable For Connection with Telescope $ 26.00
Web Camera for Telescope $150.00
Total Implementation Cost $176.00
Total Cost $241.00

4. References
[1] Kidder T., The Soul of a New Machine, Little Brown, Boston, Mass., 1981
[2] Magliacone J.A., Tracking Satellites with PREDICT, Linux J., No. 75, July 2000.
[3] Steidler-Dennison T., Linux, Talon and Astronomy, Linux J., No. 117, January 2004.
[4] Boshart B., Satellite Tracker, Atwood, Ontario, 2003, http://www.heavenscape.com
[5] SatTrack: Real-Time Orbit Simulation Program, http://www.amsat.org/amsat/
[6] Fauerbach M., PhD, College of Arts and Sciences, Florida Gulf Coast University, Ft. Myers,

Florida, January 2004
[7] Johnson R., PhD, Florida Space Institute, UCF, Orlando, Fla., February 2004
[8] IEEE Software Engineering Standards Collection: 2003 Edition. CD-ROM. IEEE, New York,

2003.
[9] Meade Instruments Corporation, Irvine, Calif., 2004, http://www.meade.com
[10] SAT-NET Project Website, Florida Gulf Coast University, Ft. Myers, Florida, 2004,

http://itech.fgcu.edu/faculty/zalewski/COP4931/COP4931projects.html
[11] Celestrak – Center for Space Standards and Innovation, Malvern, Penn.,
http://www.celestrak.com/NORAD/documentation/spacetrk.pdf
[12] Rusin D., Mathematical Sciences, Northern Illinois University, DeKalb, Illinois,
http://www.math.niu.edu/~rusin/

Appendix: Definitions & Acronyms

Authentication – the process whereby a client is verified to represent a registered user and thus
upgraded to a logged-in client.

Client – the remote software used to interface with the SAT-NET server via the internet. Note.
This is not necessarily the official SAT-NET Client software; SAT-NET is designed to
support alternate clients so long as they support the protocol.

Coordinates – latitude, longitude, elevation (from Horizon), azimuth, altitude and velocity.
Footprint - the geographic region on the earth underneath a satellite, which is in the appropriate

range to receive that satellite's information.
Keplerian Elements – a coordinate set derived from Kepler’s equations for celestial bodies.
Logged-In Client – a client which has completed the authentication procedure, verifying that the

current operator of the client corresponds to a registered user.
NTP – Network Time Protocol
Priority User – a user who is allowed to control the telescope and has assigned priority to do so.
Regular User – a user who can control the telescope only if there are no priority users currently

controlling it.
RUI – Remote User Interface
SAT-NET – Satellite Acquisition & Tracking with Network Enabled Telescope
SDP – Simplified Deep Space Perturbations
SGP – Simplified General Perturbations
Superuser – a user in charge of administrative functions for the Software.
TLE – two line element.
User – superuser, priority user, regular user or viewer.
Valid Email - An address of the form username@domain.ext which is capable of receiving

and responding to emails.
Viewer – a user who is allowed to receive images and data from Satellite Tracker, but not

allowed to control the telescope.

	SAT-NET: Satellite Acquisition &Tracking with Network Enabled Telescope
	Abstract
	1. System Overview
	
	
	
	
	Processes
	and Activities

	1.3 Technical Innovations
	2. Implementation and Engineering Considerations
	2.1 Software Requirements Specification
	2.2 Software Design Description
	
	
	
	
	
	Table 2. Externally-Generated (Network) WRAK Events

	3. Summary
	4. References
	
	
	
	
	
	
	Appendix: Definitions & Acronyms

