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Preface

The information in this document is believed to be complete and accurate when the document
is issued. However, Tidorum Ltd. reserves the right to make future changes in the technical
specifications of the product Bound-T described here. For the most recent version of this
document, please refer to the web-site http.//www.tidorum.fi/.

If you have comments or questions on this document or the product, they are welcome via
electronic mail to the address info@tidorum.fi or via telephone or ordinary mail to the address
given below.

Please note that our office is located in the time-zone GMT + 2 hours, and office hours are
9:00 - 16:00 local time. In summer daylight savings time makes the local time equal GMT + 3
hours.

Cordially,

Tidorum Ltd.

Telephone: +358 (0) 40 563 9186

Web: http://www.tidorum.fi/

E-mail: info@tidorum.fi

Mail: Tiirasaarentie 32
FI-00200 Helsinki
Finland

Credits
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and his group at the University of Maryland for the Omega system, to Michel Berkelaar for the
Ip-solve program, to Mats Weber and EPFL-DI-LGL for Ada component libraries, and to Ted
Dennison for the OpenToken package. Call-graphs and flow-graphs from Bound-T are displayed
with the dot tool from AT&T Bell Laboratories. Some versions of Bound-T emit XML data with
the XMIL_EZ Out package written by Marc Criley at McKae Technologies.
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1.1

INTRODUCTION

What Bound-T is

Bound-T is a tool for developing real-time software - computer programs that must run fast
enough, without fail.

The main function of Bound-T is to compute an upper bound on the worst-case execution time
(WCET) of a program or subprogram.

The function, “bound time”, inspired the name “Bound-T” pronounced as “bounty” or “bound-

”

tee”.

Real-time deadlines

A major difficulty in real-time programming is to verify that the program meets its run-time
timing constraints, for example the maximum time allowed for reacting to interrupts, or to
finish some computation.

Bound-T helps to answer questions such as

«  What is the maximum possible execution time of this interrupt handler? Is it less than the
required response time?

+ How long does it take to filter a block of input data? Will it be ready before the output
buffer is drained?

To answer such questions, you can use Bound-T to compute an upper bound on the execution
time of the subprogram concerned. If the subprogram cannot be interrupted by other
computations, and this upper bound is less or equal to the time allowed for the subprogram,
we know for sure that the subprogram will always finish in time.

When the program is concurrent (multi-threaded), with several threads or tasks interrupting
one another, the execution time bounds for each thread can be combined to verify the timing
(schedulability) of the program as a whole. Such schedulability analysis is not a function of
Bound-T, but many schedulability analysis tools are available. Some tools are listed at
http://www.tidorum.fi/bound-t/scheduling-tools.html.

Static analysis - all cases covered

Timing constraints are traditionally addressed by measuring the execution time of a set of test
cases. However, it is often hard to be sure that the case with the largest possible execution time
is tested. In contrast, Bound-T analyses the program code statically and considers all possible
cases or paths of execution. Bound-T bounds are sure to contain the worst case.

Static analysis - no hardware required

Since Bound-T analyses rather than executes the target program, target-processor hardware is
not required. With the Bound-T approach, timing constraints can be verified without
complicated test harnesses, environment simulations or other tools that you would need for
really running the target program.

Of course, thorough software-development processes should include testing, but with Bound-T
the timing can be verified early, before the full test environment becomes available. In many
embedded-system development projects the hardware is not available until late in the project,
but Bound-T can be used as soon as some parts of the embedded target program are written.

Bound-T User Guide Introduction 1
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It’s impossible, but we do it with assertions

The task Bound-T tries to solve is generally impossible to automate fully. Finding out how
quickly the target program will finish is harder than finding out if it will ever finish — the
famously unsolvable “halting problem”. For brevity and clarity, this manual generally omits to
mention the possibility of unsolvable cases. So, when we say that Bound-T will do such and
such, it is always with the implied assumption that the problem is analysable and solvable with
the algorithms currently implemented in Bound-T.

For difficult target programs, the user can control and support Bound-T s automatic analysis
by giving assertions. An assertion is a statement about the target program that the user knows
to be true and that bounds some crucial aspect of the program's behaviour, for example the
maximum number of a times a certain loop is repeated.

Approximations

Also bear in mind that Bound-T produces an upper bound for the execution time, which may be
different from the exact worst-case time. Various approximations in Bound-T's analysis
algorithms may give over-estimated, too conservative bounds. However, the bounds can be
sharpened by suitable assertions.

These cautions and remedies are discussed in more detail later in this manual.

Context and place

Figure 1 below illustrates the context in which Bound-T is used. The inputs are the compiled,
linked executable target program, an optional file of assertions, and command-line arguments
and options (not shown in the figure). The outputs are the bounds on execution time and stack
usage (optional), as well as control-flow graphs and call graphs (also optional).

Target program, target processor, target computer

To use Bound-T effectively, you must know the structure of the target program - the program
being analysed. In some cases, you may have to understand the architecture of the target
processor that will run the target program, and perhaps of the target computer — the computer
that contains the target processor plus various peripherals, memories and other devices.

Bound-T is available for several target processors, with a specific version of Bound-T for each
processor. All Bound-T versions are used in the same general way as explained in this User
Guide. Additional information for specific targets is provided in separate Bound-T Application
Notes on which more below.

Host computer

The Bound-T tool itself is installed and executed on a host computer — your PC or workstation.
Since Bound-T works entirely by static analysis, not by measurement or profiling, it needs no
access to the target computer. You can use Bound-T to analyse a target program before the
target computer even exists, and before the target program is complete enough to be executed
on the target computer. All you need is a cross-compiler and linker that can generate the
machine code for the target processor.

Introduction Bound-T User Guide
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Figure 1: Inputs and outputs

Overview of this User Guide

What the reader should know

This User Guide is intended to explain what Bound-T can do and how Bound-T is used. The
reader is assumed to know how to program in some common procedural (imperative)
language, such as C or Ada. Familiarity with real-time and embedded systems is an advantage.
Most examples in the manual are presented in C, but Bound-T is independent of the
programming language, since it works on the executable machine code, not on the source
code.
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1.3

User Guide overview

This document is a User Guide that introduces Bound-T in a tutorial and informal way. The
guide is organised into chapters as follows:

+ Chapter 2 explains how Bound-T is used. It introduces the basic methods, options and
results for execution-time analysis. The next-to-last section tells how to get started with the
analysis of a real program.

- Chapter 3 gives more detail on context-dependent analysis, in which the execution time or
stack usage of a subprogram can depend on actual parameter values or other context
inherited from a particular chain of calls leading to that subprogram.

« Chapter 4 covers the analysis of stack usage. Stack overflow can be fatal to embedded
programs; stack-usage analysis can make sure that overflow never happens.

+ Chapter 5 suggests how to write programs that Bound-T can analyse.

+ Chapter 6 is a glossary of terms and concepts related to Bound-T.

Other Bound-T documentation

This User Guide is not an exhaustive documentation of Bound-T. It is supplemented by other
documents as follows.

Reference Manual

For full and detailed information on command-line options and output formats, look to the
Bound-T Reference Manual at http://www.bound-t.com/ref-manual.pdf. The Reference Manual
also outlines the analysis process and lists and explains the warning and error messages.

Assertion Language manual

Most users of Bound-T need to write assertions to guide and constrain the analysis. Assertions
are written as text. This User Guide gives several examples of assertions, but you should refer
to the Bound-T Asssertion Language manual at http.//www.bound-t.com/assertion-lang.pdf for
the full syntax and meaning of the assertion language. The possible warning and error
messages from the assertion parser are also described there, not in this User Guide nor in the
Reference Manual.

Target-specific Application Notes

This User Guide, the Reference Manual, and the Assertion Language manual describe the
general, target-independent usage and features of Bound-T. For specific target processors there
are usually additional command-line options, perhaps additional forms of analysis and outputs,
additional warning and error messages, and target-specific aspects of the assertion language,
such as the names of the processor registers. All of these are described in the Bound-T
Application Notes for your target processor at http://www.bound-t.com/app_notes.

Introduction Bound-T User Guide
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1.4

Languages, compilers, kernels

Bound-T is largely independent of the programming language and execution environment of
the target program. When necessary, separate Bound-T Application Notes advise on using
Bound-T with specific target languages, compilers, real-time kernels or target operating
systems. Please refer to http.//www.bound-t.com/app notes for the currently available
Application Notes.

Hard Real Time programming model

Bound-T contains special high-level support for target programs that follow the Hard-Real-Time
(HRT) programming model, an architectural style for concurrent, real-time programs originally
defined by the European Space Agency.

For an HRT program, Bound-T can generate so-called execution skeletons with detailed worst-
case execution-time information as required by HRT schedulability analysis.

Using Bound-T's HRT functions is quite optional. Bound-T can be used for non-HRT
applications without knowing anything about the HRT model and how Bound-T supports this
model.

This User Guide describes how Bound-T is used in its basic mode, without the special HRT
features. There is a separate manual that explains how to use Bound-T in HRT mode. See

http://www.bound-t.com/hrt-manual.pdf.

Typographic Conventions

We use the following fonts and styles to show the role of pieces of the text in this guide:

-option A command-line option for Bound-T.

symbol A mathematical symbol or variable.

text Text quoted from a source file or a command.

keyword A keyword (reserved word) in a programming language or in the Bound-T

assertion language.

Bound-T User Guide Introduction 5
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2.1

2.2

USING BOUND-T

Preliminaries

Bound-T is used as an additional tool in a software development environment. It is not a stand-
alone development tool, so you will need the usual kit of program editors, compilers and
linkers to generate executable forms of your programs.

To use Bound-T, you need:

1. The target program for which execution time bounds are wanted. The program must be
provided in an executable form, compiled and linked for the target processor. Source code
for the target program is not absolutely necessary but makes it easier to control Bound-T.

2. A version of Bound-T that supports the specific target processor and executable file format
(e.g. COFF or ELF) and runs on your host platform (e.g. Linux or MS Windows).

3. Usually, knowledge about the processing load of the target-program, such as the maximum
size of data structures, is also required.

If your linker produces a binary format that Bound-T does not support, note that the freely
available GNU tool objcopy, a component of the GNU binutils tool-set, can be used to convert
between various binary formats.

If the target program is concurrent (multi-threaded), a scheduling-analysis tool will also be
useful, but is not required for using Bound-T (nor is one included). Typical scheduling analysis
tools use Rate-Monotonic Analysis (RMA) or Deadline-Monotonic Analysis.

Installing Bound-T

Host and target computers

This section explains briefly and in general how to install Bound-T on your computer. The
computer on which Bound-T is installed and used is known as the host computer. It is usually
not the same as the target computer on which the target program runs or will run. The host
and target computers usually have different types of processor, for example a powerful RISC
processor on the host computer and a small 8-bit microcontroller on the target.

Note that you do not need to have a target computer available in order to use Bound-T, and
even if you have one it does not need to be connected to your host computer. Bound-T works
purely by static analysis of the machine code of the target program, and this static analysis is
done by running Bound-T on the host computer. Bound-T does not use any form of
measurement or execution of the target program on the target computer itself.

Delivery medium and specific instructions

Specific installation instructions for each supported type of host computer and host operating
system are included with each delivery of Bound-T, on the delivery medium or as hard-copy
enclosed with the medium.

On a typical host computer, an installation of Bound-T for one target processor consists of a bin
directory folder with three executable programs: Bound-T itself and two auxiliary programs.
On Unix-like platforms the folder also contains two short executable shell-scripts that assist the
auxiliary programs.

Using Bound-T Bound-T User Guide



2.3

Support for each additional target processor type adds one executable of Bound-T itself to the
bin folder. The auxiliary programs are the same for all targets.

The main steps in the installation are to copy the bin folder to the host computer and to set up
the PATH variable, or an equivalent mechanism, to make the contents of bin available on the
command line.

The dot program for handling the graphical output is not included on the delivery medium.
Install it from http://www.graphviz.org.

Disk space requirements

The disk space consumed by Bound-T depends on the host computer but allowing 30 MB
should be ample for one type of target processor. Each additional target processor type needs
about 15 MB more disk space.

Processor and memory requirements
Bound-T usually places about the same demands on the host computer's processor speed and
memory size as a typical compiler does.

For complex target programs the arithmetic analysis of loop-bounds may require a great deal
of time and memory. However, experience shows that a normal desktop PC can handle many
arithmetic analysis problems, and the larger problems are better dealt with by asserting loop-
bounds manually, or by simplifying the target program.

Host-specific usage instructions

Advice on using Bound-T on various host computers, when necessary, is given in separate host-
specific Application Notes included on the installation medium or enclosed as hard-copy.

Verifying the installation

The installation instructions and host notes show how to get started by using Bound-T on
examples provided with the installation. These examples are sufficient to verify that all
components of Bound-T are functional.

Running Bound-T
Bound-T is started with a command of the form
boundt <options> <target exe file> <subprogram names>

This command requests Bound-T to compute upper bounds for the worst-case execution time
and/or the stack usage of the named subprograms within the given executable target program
file. The Reference Manual describes all the command-line options, but you will see several
examples later in this guide.

This computation can either succeed fully automatically, or succeed only after some additional
assertions are given. The Assertion Language manual describes the full assertion language, but
there are several examples in this guide.

For an HRT-oriented analysis, Bound-T is started with a command of the form

boundt -hrt <more options> <target exe file> <TPOF name>

Bound-T User Guide Using Bound-T 7
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See section 1.3 for more about the HRT analysis mode.

The command name, written just boundt above, usually includes a suffix to indicate the
target processor, for example boundt_avr names the Bound-T version for the Atmel AVR
processor. Please refer to the relevant Application Note for the exact name. When you install
Bound-T you can also change the name, or define an alias or abbreviation for it.

2.4 Easy examples : Loops
At last, some code!
To show what Bound-T can do, consider the following C function that computes the sum of the
elements of a vector of floating-point numbers:
#define VECTOR_LENGTH 100
float sum vector (float vector[])
{ int i;
float sum;
sum = 0.0;
for (i = 0; i < VECTOR_LENGTH; i++)
sum += vector[i];
return sum;
}
Assume that this function is stored in the file sum.c and compiled and linked (together with
some main function, not shown) into an executable program called summer.exe. Then, the
Bound-T command
boundt summer.exe sum vector
will display an upper bound on the worst-case execution time (WCET) of sum_vector as the last
field of the output line:
Wcet:summer.exe:sum.c:sum vector:4-8:1103
The WCET is given as the number of instruction cycles (1103 in this example, when the
function is compiled for the SPARC ERC32 processor). The corresponding number of seconds
or microseconds of real time depends on the particular target processor and its clock frequency,
as explained in the Application Note for this processor.
The numbers in the preceding field, 4 -8, are the source-code line-numbers of the
subprogram. Bound-T gets these line-numbers from the compiler-generated mapping between
code addresses and source-code lines, which often leads to a little fuzziness, for example by
omitting the line numbers for syntactical brackets like the '{' and '}' that enclose the body of
the function.
How did it do that?
How does Bound-T compute the worst-case execution time? To use Bound-T effectively, it helps
to know the general method, although it is not necessary to understand the details.
8 Loop examples Bound-T User Guide



First, Bound-T reads in the executable program and uses the symbolic debugging information
to find the entry point of the code of the sum vector function. Then, Bound-T decodes the
machine instructions to generate the control-flow graph of sum_vector and to locate the loop.
Bound-T analyses the arithmetic of the looping code and infers that the loop is executed 100
times. Bound-T reports this by printing

Loop_Bound:summer.exe:sum.c:sum_vector:7-8:99

(The loop-bound is reported as 99 instead of 100 because Bound-T computes the number of
times the looping code goes back to the start of the loop.) This defines the exact sequence of
machine instructions that are executed in a call of sum_vector, and Bound-T simply adds up
their execution time to give the WCET.

How does it know the execution time of the instructions?

For simple target processors each type of instruction has a fixed execution time — so many
clock ticks. Sometimes the execution time depends on the sort of operands the instruction uses,
for example memory operands taking longer than register operands, and Bound-T takes this
into account.

On pipelined processors the execution time can depend on what other instructions are in the
pipeline. Bound-T models the pipeline state to include this effect.

For some complex instructions, such as multiplication, division or floating point instructions,
the execution time can vary depending on the values of the operands — the numbers being
multiplied, for example. Bound-T usually assumes a worst-case execution time for such
instructions.

Some target processors have several kinds of memory, at different memory addresses and with
different access times. For example, on-chip memory is usually faster than off-chip external
memory. For such processors, Bound-T analyses the address in each memory-accessing
instruction to find the memory areas it can access and thus the access time. If the memory area
remains unknown, Bound-T uses the access time for the slowest type of memory.

Some target processors have cache memory or branch prediction units or other types of
acceleration mechanisms that store execution history and have a large effect on instruction
execution time. Some target processors have several internal functional units that work in
parallel, more or less asynchronously, also affecting the execution time. In its present form,
Bound-T does not support such target processors.

Syntax is only sugar

Since Bound-T works on the binary, executable code and not on the source code, it's not picky
about the way loops are written: for-loops, while-loops, do-while-loops or even goto-loops are
all acceptable, as long as the loop is counter-based. For example, here is sum_vector with a do-
while-loop:

#define VECTOR LENGTH 100

float sum vector (float vector[])
{ int i = 0;
float sum = 0.0;
do {
sum += vector[i];
} while (++i < VECTOR _LENGTH);
return sum;

Bound-T User Guide Loop examples 9



Goto is not harmful

Not only can loops be written with the goto statement, but the goto can also be used in other
ways, for example to exit from a loop in the middle. The same holds for other control-flow
statements such as the C statements continue and break and the Ada exit statement.

Any control structures in the programming language can be used, as long as the loops are
counter-based and nicely nested within each other (in technical terms, the control-flow graph
must be reducible).

2.5 Larger examples : Calls
The root calls its children
In the above examples, the target subprogram did not call any other subprograms. Such calls
are of course allowed, and Bound-T will automatically analyse the call graph and compute
WCET bounds for all called subprograms, and finally for the “root” subprograms named on the
command line.
If the WCET of a subprogram depends on the actual value of a parameter, Bound-T tries to
compute the WCET separately for each call of a subprogram. This can extend progressively to
calls within this call, and so on, as will be explained in Chapter 3. An example follows.
What if vector-length is a parameter?
A flexible vector-summing function should have the vector-length as a parameter, for example
called n:
float sum vec_n (float *vector, int n)
{ int i;
float sum;
sum = 0.0;
for (i = 0; i < n; i++)
sum += vector[i];
return sum;
}
Now the command
boundt summer.exe sum vec_n
will report that sum_vec_n “could not be fully bounded”. The reason is that Bound-T found no
(reasonable) upper bound on the loop-counter i, because there is no (reasonable) upper bound
on the parameter n. Bound-T points to the source of the problem as follows:
sum_vec_n
Loop unbounded at sum.c:17-18, offset 00000014
However, when the target program calls the sum_vec_n function, the call gives an actual value
for the parameter, for example thus:
float sum two (void)
{
10 Call examples Bound-T User Guide



float v1[40], v2[1234];
float suml, sum2;

suml sum _vec_n (vl, 40);
sum2 = sum _vec_n (v2, 1234);

return suml + sum2;

}

If the above function is stored in sum_two.c, then compiled and linked into summer.exe,
the command

boundt summer.exe sum_two
will compute a WCET bound, for example:
Wcet:summer.exe:sum_ two.c:sum two:4-12:9119

Although Bound-T again failed to bound the loop in sum_vec_n as such, it repeated the analysis
for each of the two calls of sum vec n in sum_two. With n known to be 40 or 1234,
respectively, Bound-T could compute loop-bounds and WCET for each call and thus also the
total WCET for sum_two. Chapter 3 explains how such context-dependent analysis works in
more detail.

The results for each call are reported in the following form:

Loop_Bound:summer.exe:sum.c:sum_two@8-=>sum vec n:17-18:39
Loop_Bound:summer.exe:sum.c:sum_two@9-=>sum vec_n:17-18:1233
Wcet Call:summer.exe:sum.c:sum two@8-=>sum vec n:14-18:445
Wcet Call:summer.exe:sum.c:sum_two@9-=>sum vec n:14-18:8647

The fourth colon-delimited field shows the call-path context for each result. For example, the
first Loop Bound is valid when sum_vec_n is called from sum_two at line 8 of sum.c, while the
second Loop_Bound is valid for the call from line 9.

Loops within loops

Nested loops are handled in the same fashion, for example:

float sum matrix (float *matrix[], int m, int n)
{ int i, 3J;

float sum;

sum = 0.0;

for (i = 0; 1 < m; i++) {

for (j = 0; j < n; j++)
sum += (matrix[i])[]];
}

return sum;

}

Since the loop-limits m and n are again parameters, Bound-T cannot compute a WCET for this
subprogram as such. Once m and n are given values in a call of sum_matrix, the WCET can be
computed just as in the earlier example with sum_vec n.
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2.6

Drawing call-graphs and control-flow graphs

DOT drawings

Bound-T does not have a graphical user interface, but it can draw the call-graph and the
control-flow graphs of the subprograms that are analysed.

The graphs are generated as output files that describe the structure of the graphs for the DOT
tool. The DOT tool is a part of the GraphViz suite that you can download from
http://www.graphviz.org/. The DOT tool reads the graph structure file, decides how to lay out
the nodes, edges, and labels in a two-dimensional drawing, and generates the drawing in some
graphical file format, for example PDF or JPEG. You can then view the drawings using a tool
such as Acrobat Reader for PDF files.

The DOT description of a graph is in text form. You can make small tweaks to the graphs by
simple text editing, for example to change from portrait format to landscape format.

Command-line options for graph drawing

To make Bound-T draw call-graphs or flow-graphs, you must
use the option -dot or the option -dot_dir to say where the drawings go, and
-+ use some -draw options to say what the drawings should show.

The -dot option puts all drawings into one file. You write the name of this file after the -do,
separated by whitespace (so it becomes the next argument on the command line). For
example, the following command (where the ... stands for more options and arguments) puts
all the drawings (all the DOT text) into the file graphs.dot:

boundt -dot graphs.dot -draw ...

The -dot_dir option puts each drawing in a separate file of DOT text, and puts these files in one
directory folder. You write the name of the directory folder after the -dot dir, separated by
whitespace. For example, the following command puts each drawing into its own file in the
directory graphdir:

boundt -dot dir graphdir -draw ...

With -dot dir, Bound-T names the drawing files automatically as explained in the Reference
Manual. The names of call-graph drawings start with “cg ” and the names of flow-graph
drawings start with “fg_”. Bound-T tries to include the name of the relevant subprogram in the
name of the drawing file, but it may have to remove or change special characters into ordinary
letters in the file-name, so don't expect a perfect match for all names.

The -draw option is followed by a keyword that selects or excludes a particular form of drawing
or particular information that may be present in a drawing. The Reference Manual explains the
-draw options fully; here we focus on examples.

The most common use of -draw options is probably the simple form -draw total which draws the
call-graph in the default form (each subprogram seen as one node) and one flow-graph for
each analysed subprogram, giving the total number of executions and the total execution time
for each basic block in each subprogram.

12
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First example: sum_vector

For a first example of control-flow graphs, take the subprogram sum_vector from section 2.4
(page 8). Add the -dot and -draw options to the Bound-T command:

boundt -dot grf.dot -draw total summer.exe sum vector

This command puts the call-graph diagram and the flow-graph diagram in the file grf.dot. You
can then convert this file to a PostScript file, for example, with the DOT command:

dot -Tps <grf.dot >grf.ps
Assume, for example, that sum_vector is compiled for the SPARC processor. In this case the call-

graph is trivial because sum vector calls no other subprograms. Figure 2 below shows the
drawing of the flow-graph of sum_vector from this analysis.

sum_wvector

one call

sum.c:4
sum.cB
sum.c:¥
count 1
fime 4

loop #1
sum.c:8
sum.c:?
sum.c:8
sum.c:y
count 100
time &; 800

L1

= 1 fime 4 396

count S8 count 1
time 1,58 fime 4

Figure 2: Flow-graph of sum_vector on SPARC

The flow of execution in flow-graph drawings is mostly top-down. The entry point is identified
by the entry arrow at the top, labelled to show how many calls of the subprogram are included
in the total (because this drawing comes from -draw total, remember). The rectangular nodes
are the basic blocks and are labelled with the source-code lines that correspond to each
instruction in the block. The last two lines in the node-label show the execution count and
execution time of the node. For example, the first node (the entry point) in Figure 2 is
executed once (“count 1”) and takes 4 cycles to execute (“time 47).
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The edges (arcs) represent flow of execution from one node to another, in the direction of the
arrow-head. Edges are labelled with the execution count and with the execution time (if not
zero). The edges on the worst-case execution path are drawn with a greater thickness (bolder)
than other edges. In Figure 2, however, all edges are on the worst-case execution path.

The second node and the lowermost node on the left side of Figure 2 represent the loop in
sum_vector. The node that forms the loop head is labelled with the loop number (“loop #1”).
The “count” labels show that the loop head is executed 100 times while the other node in the
loop is executed only 99 times.

For nodes and edges that are executed more than once the “time” labels show two numbers
separated by a semicolon. The first number is the time for one execution; the second number is
the total time for all executions. For example, the edge that returns to the loop head from the
other node in the loop is labelled “time 4; 396” meaning that one execution of the edge can
take up to 4 cycles, so the 99 executions take up to 4 x 99 = 396 cycles in total. (As an aside,
this edge has such a large time, 4 cycles, because it is a short path from one SPARC floating-
point addition instruction to another such instruction, which may force the program to wait for
the SPARC floating-point unit to complete the first instruction.)

The lowermost node on the right-hand side of Figure 2 is reached when the loop terminates.
There is no edge out from this node, so the subprogram returns after executing this node.

Disassembled code in the flow-graph

The following draw options will show the disassembled machine instructions, instead of the
source-code lines, in the flow-graph:

boundt -dot grf.dot -draw total -draw decode -draw cond
-draw no_line -draw no_count -draw no_time summer.exe sum_vector

The resulting flow-graph drawing for sum_vector on a SPARC is shown in Figure 3 below.

Compared to Figure 2, the source-line references are removed (-draw no_line) and so are the
execution counts and times (-draw no_count and -draw no_time) and instead (-draw decode)
the drawing shows the disassembled SPARC instructions, one per line, in execution order, with
the address of each instruction in the left margin. Thanks to -draw cond the edges are labelled
with the logical condition for taking the edge, which is true for unconditional edges and
otherwise some logical formula using the Z (zero) and N (negative) condition flags from the
SPARC status register.

Call graph of sum_two

Consider again the subprogram sub_two from section 2.5 (page 10). The following command
makes Bound-T analyse it and draw the call-graph and control-flow graphs:

boundt -dot grf.dot -draw total summer.exe sum_two

The call-graph is no longer trivial because sum_two calls sum _vec n (twice, in fact). If the
program is compiled for the Atmel AVR processor, the call-graph looks even more interesting,
as Figure 4 below shows. The AVR has no hardware floating-point unit, so the compilers
instead use library routines to implement floating-point operations. In this example, both
sum_two and sum vec n call the library routine for floating-point addition, ?F ADD_L04,
which is not visible at all in the source code of this program in section 2.5. This library routine
in turn calls three other library routines: ?TEST P LO4 and two anonymous routines that
Bound-T identifies with their entry addresses, 0000E2 and 00002E hex.

14
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sum_vector

one call

400011 BS sethi hifDx40003000), 11
400011BC H [r1+132)0
400011 COmov 0,r13

true

| 4
#1
A0001C 4=l 113,211
A0011CE Id [r8+r1] 1B
40001CC add r3,1,13
400011 DOsubce 1139810
40001104 ble pe-0x10

((N=1) Mu& \N:ﬂ] and (Z=0))

400011 DB fadds f0,§8,10
400011 DB fadds 102,10 400011 0C jmpl r158,r0
40001 ED nop

Figure 3: Flow-graph of sum_vector with SPARC instructions

sum_two
one call from one path
fime BEESCS
s2lf 53, callees BE5516

2 calls from 2 paths
time 865168 =2 * 27221 .. B37947

SUM_wec_n
2calk from 2 paths one call from ocne path
fime BE51E88 = 2° 27221 .. BIT4T time 848

self 39516, calkes B25552

1274 calks from 2 paths
time B25552 = 1274 * 648

F_ADD_LD4
1275 calks from 3 paths
fime B2B200= 1275 * 648
s=if 743325, calkes B2BTS

1275 calls from 3 paths | 1275 calls from 9 paths 1275 calls from 3 paths
time 25500= 1275 " 20 | time &7/ =1275" 21 time 30800= 1275 " 24
TTEST_P_LO4 COo0E2 COo02E
1Z75calks from 3 paths 1275 calks from 9 paths 1275 calls from 3 paths
fime 25600 = 1275° 20 fime 25776 = 1275 * & fime 30800 = 1275 24

Figure 4: Call-graph of sum_two on AVR
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The nodes (rectangles) in the call-graph represent subprograms. The root subprogram,
sum_two in this example, is on the top. The node label gives the name of the subprogram, the
number of calls of this subprogram that are executed on the worst-case execution path, the
number of different call-paths that can lead to these calls, and the total time (upper bound) of
these executions.

For example, Figure 4 shows that sum_two is executed once (“one call”) from one call path,
which is always and naturally the case for the root subprogram. Furthermore, the total time is
the WCET bound for sum_two, 865 909 AVR clock cycles (“time 865909”).

The last line in the label for a subprogram shows the division of the total execution into time
spent in the subprogram itself (“self”) and time spent in other subprograms that are called
from this subprogram (“callees”). For sum_two only 93 cycles of the total time is spent in
sum_two itself, the rest being spent in the callees: sum_vec n and the floating-point routines.

Looking at the lower levels of the call-graph, the library routine ?F ADD L0O4 is called
(executed) 1275 times, along three call paths: firstly, from sum_two directly; secondly, from
sum_two via the first call of sum_vec n; and thirdly, from sum_two via the second call of
sum_vec_n.

When a subprogram is executed more than once, the “time” label shows how the total time is
the product of the number of executions and the time per execution. Thus, the “time” label for
?F ADD L04 shows that the total time, 826 200 cycles, equals the product of 1275 executions
and the time per one execution, 648 cycles. Here each execution of ?F_ADD L04 is given the
same, context-independent, execution time bound; in reality, however, the execution time of
this subprogram depends on the values of the floating-point numbers to be added.

For a subprogram that has context-specific bounds, the time per execution is shown as a range
min .. max. For example, the “time” label for sum_vec_n shows that the total time, 865 168
cycles, comes from 2 executions where the time per execution ranges from 27 221 cycles to
837 947 cycles.

The edges (arcs) in the call-graph represent calls (caller-callee relationships). They point from
the caller subprogram to the callee subprogram. The edge labels show the number of call paths
and the execution time bounds.

Drawing context-dependent execution bounds: the bounds graph

For suprograms with context-dependent execution-time bounds, such as sum_vec_n, you may
like to draw a graph that is like a call-graph but separates the different execution bounds. Use
the option -draw bounds to create such “bounds-graph” drawings. For example:

boundt -dot grf.dot -draw bounds summer.exe sum_two

This command makes a bounds-graph drawing in the file grfdot. It makes no call-graph
drawing (because call-graph and bounds-graph drawings are mutually exclusive options) and
no flow-graph drawings (because the command has no -draw option for them). Figure 5 below
shows the bounds-graph drawing for sum_two on the SPARC target processor.

A call-graph drawing would show sum_vec_n once, covering both calls of this subprogram and
showing a range of execution-time bounds, 445 .. 8647 cycles. In contrast, the bounds-graph
drawing in Figure 5 shows the two calls separately, because they have different bounds on
execution time.
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sum_two
one call from one path
time 14051
==if 27 calless 14024

one call from one path one call from one path

time 445 time 13579
sUm_wvec_n SUM_Vec_n
sum_two@8-==sum_wec_n sum_two@S-==sum_wvec_n
one call from one path one call from one path

fime 445 time 13579

Figure 5: Bounds-graph drawing of sum_two on SPARC

Drawing context-dependent flow-graphs

The earlier examples of flow-graph drawings all use the option -draw total which, for each
subprogram, creates a single flow-graph drawing that summarises all executions of that
subprogram on the analysed worst-case path for the root subprogram. For subprograms with
context-dependent execution-time bounds, such as sum_vec n, you may like to draw a separate
flow-graph for each context or for chosen contexts. Bound-T provides six different -draw
options to choose which flow-graphs to draw. The earlier examples in this section used
-draw total; the example below uses -draw all; the Reference Manual explains the other four
options.

Use the option -draw all to make a separate flow-graph drawing for each context in which a
subprogram has been analysed and given context-specific execution bounds. For example:

boundt -dot grf.dot -draw all summer.exe sum two

This command makes a call-graph drawing in the usual form and then makes flow-graph
drawings for each subprogram in all contexts. For this example, on the SPARC processor, the
only subprogram with context-specific bounds is sum _vec_n, which has two bounds corres-
ponding to the two calls of this subprogram from sum_two. Figure 6 below shows the resulting
two flow-graph drawings, side by side.

In this example, the only difference between the two flow-graph drawings in Figure 6 is the
indication of the call-path, given at the very top and showing that the calls lie on different lines
(numbers 8 and 9) in sum_two, and the execution counts of nodes and edges in the loop,
reflecting the different value of the parameter n in the two calls.

You may wonder why Figure 6 shows that sum_vec n has an execution path that bypasses the
loop entirely, going from the entry node via another node to the return node. There is no if
statement in the source-code (page 10) that could make the loop conditional. However, the
number of loop iterations depends on the parameter n, which may be zero or negative, in
which case the loop should not be executed at all. The compiler inserts a test and branch for
this case because the compiler can then generate a bottom-test loop body (do until) instead of
a top-test (while do). Since the actual value of n in both contexts is positive, this bypass path is
not on the worst-case path and therefore shows zero execution counts in Figure 6 and the
edges on the bypass path are drawn as thin lines.

Bound-T User Guide Drawing graphs 17



sum_two@8-=>sum_wvec_n sum_two@S-=>sum_wec_n
sUm_wec_n sUm_wec_n

one call one call

count 1 count 1
time 4 time 4
1 Q 1 ]
count 1 count 1
time 2 time 2
1 count O 1 count O
time 2,0 time 2,0
loop #1 loop #1
count 40 count 1234
time &; 240 time &; 7404
a9 1233
2 F tmeaiss \ ! Q 1233 F fime 4 4002 § 2
count 39 count 1 count 1233 count 1
time 1; 39 iime 1 time 1; 1233 time 1
1 1
count 1 ocount 1
time 3 time 3

Figure 6: Context-specific flow-graphs for sum_vec_n on SPARC

2.7 Harder examples : Assertions

While-loops may be confusing

Next, consider the more complex C function binary search that looks up a value in a sorted
vector using a divide-and-conquer approach:

int binary_search (int *vector, int val)
{ int low, high, mid;

low = 0;

high = VECTOR_LENGTH - 1;

while (low <= high)

{
mid = low + (high - low) / 2;
if (vector[mid] == val)
return mid;
else if (vector[mid] < val)
low = mid + 1;
else
high = mid - 1;
}
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return -1;

}

If this function is stored in the file bins.c and compiled and linked into the executable
program file bins, the Bound-T command

boundt bins binary search

reports that the subprogram could not be fully bounded because no bounds were found for the
while-loop.

When Bound-T analysed the control and data flow of binary search, it could not find any
variables that act as loop counters with simple initial and final values and simple increments.
For a non-trivial algorithm such as binary search this is not very surprising.

Assertions make it clear

What can be done to work around this problem? The Bound-T user must help out by telling
Bound-T the maximum number of times the loop can repeat. This is done with an assertion
placed in a separate assertion file. The Assertion Language manual explain this fully, but here is
how to do it in this example.

Assuming that VECTOR_LENGTH is 100, the maximum number of iterations is 7. The assertion
takes the form

subprogram "binary search"
loop repeats <= 7 times; end loop;
end "binary search";
If this assertion is placed in a file prog.bta and Bound-T is run with the command
boundt -assert prog.bta bins binary search

the analysis succeeds and Bound-T displays the WCET bound, for example as

Wcet:bins:bins.c:binary search:4-18:129

Counters make it clear, too

Another way to help Bound-T find bounds on loops is to add loop-counters when there are
none to start with. For example, the binary search function could be changed as follows:

int count = 0;

while (low <= high)

{
mid = low + (high - low) / 2;
count += 1;
if (count > 7) break;

}

Now the loop-repeat condition contains an explicit limit on a counter value, and Bound-T can
compute a WCET bound without any help from assertions. The limit can be made a parameter
of the subprogram, of course, instead of a constant (7) as in this example.
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2.8

Eternal loops take a little longer

Much has been said about finding bounds on the number of iterations of loops. But what if the
program contains an eternal loop? We call a loop eternal if it cannot possibly terminate, either
because there is no instruction that could branch out of the loop, or because all such branch
instructions are conditional and the condition has been analysed as infeasible (always false).

Obviously, the execution time of a subprogram that enters an eternal loop is unbounded.
Nevertheless, since real-time, embedded programs are usually designed to be non-terminating,
they usually contain eternal loops. To analyse the execution time of an eternal loop you must
assert an assumed number of repetitions of the loop. The Assertion Language manual has more
to say on eternal loops.

What Bound-T can do

This section outlines Bound-T's current abilities, which are, of course, constantly being
extended. This is generic information, applicable to all target processors. Target-specific
Application Notes define more precisely Bound-T's abilities and limits for each target.

Control flow tracing

Bound-T can decode all target processor instructions. Bound-T can analyse the control-flow
and call-graph of any subprogram that follows the processor's calling standard and where the
destination addresses of each branch are statically defined in the code.

For normal branches, which the compiler generates for conditional or looping statements, or
for calls that give the real name of the callee, the destination address is usually an immediate
literal in the branch instruction, and so is statically defined.

Note that for a conditional branch, although the possible destinations must be known statically,
the condition (boolean expression) that selects the actual destination can be dynamically
computed at run-time, and usually is.

Switches and cases

Large and dense switch-case statements often use a simple form of dynamic destination
addressing in which the case-selector is used as an index to a table that gives the starting
address of the corresponding branch of the switch-case statement. Bound-T contains specific
data-flow analysis to derive static bounds on the value of the case-selector and thus find the
case-address table and the possible destinations of such a branch.

However, the current version of Bound-T is limited in the kind of switch-case code it can
analyse. Refer to the Application Notes for particular target processors and target compilers for
details.

Counter-based loops

As the two examples earlier in this chapter showed, sometimes Bound-T can analyse the target
subprogram well enough to arrive at a WCET bound automatically, but sometimes the user
must provide assertions to guide and constrain the analysis. The most important factor that
decides the need for user assertions is the complexity of the loop-termination conditions.
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2.9

The data-flow and loop-analysis algorithms currently implemented in Bound-T are designed to
handle counter-based loops automatically. A counter-based loop is a loop that always
increments (or decrements) a counter variable on each iteration, and terminates when the
counter becomes greater than (or less than) a limit.

It is not necessary that a counter-based loop is actually written as a for-loop in the target
program source code; what matters is the way the logical exit condition is written, and the way
the counter variable is updated.

The counter's step (increment or decrement) can be positive or negative, but it must have the
same sign for all loop iterations. The absolute value of the step can vary from one iteration to
another, as long its lower bound is nonzero. The initial and final values of the counter need not
be known exactly; as long as they are bounded in suitable directions, Bound-T will compute
the worst-case number of loop iterations, using the value of the step that has minimum
absolute value, and those extreme values of the initial and final values that are farthest from
each other.

To determine a loop-counter's initial value, step, and limit value, Bound-T can follow any
computation in the target program that uses integer addition, subtraction and multiplication
by a constant. Values of parameters are propagated into calls, but not in the other direction
(from callees to callers).

When Bound-T stumbles

As already said, deducing the worst-case execution time of an arbitrary program is unsolvable
in principle, so any tool like Bound-T must fail when the target program is complex enough.
When Bound-T cannot handle a problem automatically, it is usually possible to write assertions
that let Bound-T solve the problem. Of course, in this case the validity of Bound-T's results
depends on the validity of the assertions, which is the user's responsibility.

An alternative solution is to change the target program to make it easier to analyse. For
example, if the target program contains a while-loop that Bound-T cannot find bounds for,
simply adding an iteration counter and limit to the loop will solve the problem (and perhaps
make the target program more robust, too).

Chapter 5 advises on programming styles that help Bound-T analyse the program.

What Bound-T cannot do

The analysis algorithms in Bound-T have been chosen and tuned to handle many forms of
loops and other program structures automatically. However, sometimes the target program is
too complex or inscrutable for these algorithms. Here is a list of things Bound-T cannot
currently do, ordered approximately from the most common to the least common problems.
Fortunately, most problems can be worked around as explained below.

Uncounted loops

Bound-T cannot infer the maximum number of loop repetitions for loops that do not have
explicit counters and limits on the counters. As in the examples in section 2.7, this can be
worked around with assertions or with source-code changes.
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Multiplication, division etc

The method Bound-T uses to analyse the loop-counter computations handles only addition and
subtraction of variables and multiplication by constants. If the computation of a loop-counter's
initial value, step or limit-value involves any arithmetic operation beyond this, such as the
multiplication of two variables, the value may become “unknown” to Bound-T.

The same work-arounds apply as for loops without explicit counters.

Multiple-precision arithmetic

Bound-T bases its analysis on a model of the native instructions in the target processor, using
the native number of bits per value (word length). For processors with a small word length,
such as 8 bits, the compiler (or assembly-language programmer) has to construct wider
arithmetic from two or more 8-bit parts and two or more 8-bit instructions connected by some
form of carry flag. Bound-T usually does not model such multiple-precision arithmetic which
means that it usually cannot bound loops that use multiple-precision counters, for example 16-
bit counters on an 8-bit machine.

The target-specific Application Notes explain the types of arithmetic instructions and operands
that Bound-T supports for the target processor.

Aliasing and pointer chasing

If a variable is not directly assigned within a loop, Bound-T assumes that it is unchanged
(invariant) throughout the loop. This assumption may be wrong if the variable is accessed
indirectly through pointers, that is, via a memory reference with a dynamically computed
address. The pointer-access may be explicit in the source program, or it can result from implicit
aliasing between parameters that are call-by-reference.

Bound-T records which global variables (including processor registers) are directly assigned in
each subprogram. Each call of the subprogram is then considered to assign unknown values to
these global variables, which is important if the call is in a loop that uses this global variable in
its loop-counter computation. However, if the called subprogram assigns the global variable via
a pointer, Bound-T does not include the assignment in the analysis of the loop-counter
arithmetic, which may lead to wrong results.

Although Bound-T has an option (-warn access) to emit a warning messages for all dynamic,
indirect memory accesses that it cannot resolve, most of these are just array accesses and are
usually irrelevant to loop counters. Thus, with the present version of Bound-T, the user is
responsible for avoiding aliasing that could distort the analysis of loop bounds.

Overflow in the target program

The method Bound-T uses to analyse the loop-counter computations assumes that these
computations do not overflow when the target program is executed. If overflow occurs, the
bounds computed by Bound-T may be incorrect, or Bound-T may fail to find bounds at all.

Note that this refers to overflow in some future execution of the target program, not to
overflow in Bound-T's own computations, which are checked against overflow. We believe that
the auxiliary tools, oc and Ip_solve, also contain internal overflow checking.

The only work-around is to change the target program to guard against overflow, and to not
use overflow on purpose in loop-counter computations. It is feasible to extend Bound-T to
consider overflow, and we are studying how to do it efficiently.
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Unsigned arithmetic

The method Bound-T uses to analyse the loop-counter computations assumes that the variables
can take both positive and negative values and that there are no “wrap-around” effects from
unsigned arithmetic. For example, in common programming languages decrementing an
unsigned integer variable that has the value zero gives a large positive value of the form 27— 1
and not the value —1. Such wrap-arounds are similar to overflow and are currently not handled
by Bound-T.

Usually, the work-around is to use only signed variables and signed arithmetic instructions in
the target program's loop counters. However, check with the Application Note for the target
processor as there may be target-specific solutions. It is quite feasible to extend Bound-T to
include unsigned arithmetic and this is planned for future versions. It may already be
implemented for specific target processors; again, please check the Application Note for your
target.

Jumps and calls via pointers

Except for some switch-case statements and some locally dynamic calls, Bound-T cannot
handle a branch to an address that is not known until run-time. The most common cause of
such dynamic branches is calling a subprogram via a pointer. This restriction also excludes
object-oriented programming with dynamically bound methods such as C++ virtual functions.
(Except that some C++ compilers do store enough information in the executable file about the
class hierarchy and virtual functions for Bound-T to discover all possible targets of a given
virtual function call.)

When Bound-T finds a dynamic call that it cannot resolve, it issues an error message and
handles the call as if it took no time and had no effect. If you know which subprograms can
actually be called by this call, you can give Bound-T this information as an assertion, or you
can use Bound-T to find the maximum WCET of these potential callees and add it to the WCET
that Bound-T reports for the caller.

When Bound-T finds a dynamic jump that it cannot resolve, it issues an error message and
handles the jump as if it were a return instruction. That is, the WCET reported for the
subprogram that contains the jump does not include the execution after the jump. If you know
the possible targets of the jump, you may be able to use Bound-T to find the maximum WCET
of the code after the jump and add it to the WCET that Bound-T reports for the subprogram
that contains the jump. However, it is probably easier to change the target program to get rid
of the dynamic jump.

For dynamic calls and jumps, the closest alternative program structure is to write a switch-case
statement or a nest of if-then-else statements in which the various branches contain static calls
or jumps to all the possible callees or jump targets.

Exceptions and traps

Many target processors and some programming languages perform automatic run-time checks
on the computation, for example for numerical errors such as division by zero or for logical
errors such as array index out of bounds. When a check fails the normal program flow is
interrupted and execution continues at the address of the handler routine for the exception or
trap. Execution may or may not return to the original program flow. Obviously this changes the
execution time, perhaps radically.

There are basically two kinds of traps: hardware traps and software traps.

For hardware traps the check and possible branch to a trap handler are an implicit part of
normal instructions. For example, the processor could be designed so that all addition
instructions check and trap on overflow.
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For software traps the check or the branch to the trap handler are programmed by specific
instructions. For example, most processors are designed to that an addition overflow just sets
an overflow flag. To take an overflow trap the addition instruction must be followed by a
conditional branch instruction that branches to the trap handler if the overflow flag is set.

Bound-T generally assumes that no hardware traps occur in the execution under analysis.
Thus, the WCET bound does not include hardware traps.

Software traps, in contrast, appear to Bound-T as normal program flow and are thus included
in the analysis. However, the address of the trap handler is usually not given statically but in
some kind of “trap table” or “vector table” which means that the trap handler is located via a
pointer and Bound-T may be unable to find the handler for analysis.

Irreducible flow graphs

Bound-T can analyse loops only in control-flow graphs that are reducible. A reducible control-
flow graph is one in which each loop is entered at a single point and any two loops are either
nested one within the other or are entirely separate (no shared instructions). It is commonly
observed that nearly all programs are reducible in the source code form, but sometimes the
compilers emit irreducible object code, perhaps due to optimisation. Assembly-language
subprograms such as run-time library routines are sometimes also irreducible, perhaps due to
manual optimisation.

When a subprogram has an irreducible flow-graph Bound-T cannot find the loop structure.
Thus, it cannot find loop repetition bounds by analysis and cannot accept assertions on loop
repetition bounds. This does not hamper stack usage analysis, but it does pose a problem for
execution-time analysis.

There is a work-around, however. If the repeated execution paths in an irreducible flow-graph
always pass through calls, and if you can assert bounds on how many times each such call can
be repeated, then Bound-T may be able to compute execution-time bounds even in the absence
of a reducible loop structure. However, you must specifically tell Bound-T to attempt this, by
asserting that the assertions on the calls are enough for time. Refer to the Assertion Language
manual for details.

Recursion

Bound-T cannot analyse recursive calls. Bound-T builds WCET bounds in a bottom-up way
from the lowest-level subprograms (leaf subprograms) towards higher-level subprograms (root
subprograms). If the subprograms are recursive this bottom-up method does not work and
Bound-T reports an error. However, you can analyse recursive programs by using assertions to
slice the call graphs into non-recursive parts. The method is explained the Assertion Language
manual.

Approximations

When Bound-T computes upper bounds on worst-case execution time, it uses three types of
approximation, corresponding to three sources of unknown variation in execution time.

Instruction-level approximations

The execution time of some instructions in the target processor may be inherently variable. For
example, the time can depend on the data being processed, or on the history of recently
executed instructions and memory accesses. For each instruction Bound-T uses an upper bound
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on the execution time that takes into account some of this variation for the context of this
instruction. The details depend on the target processor but in general the analysis includes
pipeline effects but not cache effects.

Although these dynamic features are increasing strongly in high-end processors, many smaller,
embedded processors are still quite deterministic, with fixed instruction-execution times. The
Application Note for a particular target processor will describe the instruction-level
approximations in detail.

Loop-count approximations

The bounds on loop iterations computed by Bound-T are upper bounds. Early exits (breaks)
from loops can make the real number of iterations smaller.

A similar approximation occurs for “non-rectangular” nested loops where the limits of the
inner loop depend on the index of the outer loop. A typical example is a pair of loops that
process the upper (or lower) triangle of an NxN square matrix. Here the current version of

Bound-T can only give, automatically, an N2 bound on the number of executions of the inner
loop-body. However, the real bound, N(N+1)/2, can be asserted, if the inner loop-body
contains a feature that can be used to identify it.

Feasible path approximations

In a sequence of conditional statements, loops or other control structures, the several
conditional expressions are sometimes correlated so that only a subset of paths can actually
occur. For example, this happens if a conditional of the form “if A” is followed by a conditional
of the form “if not A”, where the value of A is unchanged.

Bound-T is generally not able to correlate the conditions, but will compute the WCET over all
apparently possible paths, allowing any combination of condition values, including logically
impossible combinations. If the branches have very different execution times, a considerable
over-estimate in WCET can result.

In some cases the approximation can be corrected with assertions. For example, if the code is
in a loop, and the branches can be identified by some of their features (such as the calls they
contain), one can assert an execution-count bound on certain branches that is less than the
number of iterations of the loop. This forces Bound-T to “by-pass” these branches for a
selectable fraction of the loop iterations. The Assertion Language manual shows some
examples.

Getting started with a real program

Suppose you have a real target program and want to use Bound-T to find out something about
the program's real-time performance, where do you start? Here is a suggestion.

The suggested sequence of steps, below, assumes that the target program has not been written
with Bound-T in mind, so it does not try a fully automatic analysis. This will also help you
understand how the final WCET values are computed and the assumptions or approximations
that are used.

Here are the suggested steps:

1. Decide which parts of the target program are of interest. The parts could be individual
subprograms, interrupt handlers, threads or tasks. Make a list of the subprograms that will
be used as root subprograms for Bound-T.
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2. To get an overview of each root subprogram, run Bound-T on this subprogram with the
option -no_arithmetic. This option prevents Bound-T from trying to find loop-bounds
automatically, so Bound-T will give you a listing of all the loops in the root subprogram and
any callees.

As an alternative to -no_arithmetic, use the option -max_par_depth 0 to let Bound-T try to find
loop-bounds that depend only on local computatios (context-free bounds). This is often quick
enough for a first look. You will get a listing of the loop-bounds that were found and a listing
of the so-far unbounded loops.

Note, however, that the option -no_arithmetic may prevent the proper analysis of switch-case
statements. If this happens Bound-T should warn you that certain subprograms contain
“unresolved dynamic jumps”. You must then enable arithmetic analysis at least for these
subprograms. The Assertion Language manual explains how to use assertions for that.

When you are studying a particular subprogram the option -alone is useful. This option
restricts the analysis to the subprogram(s) you name on the command line, without going
deeper in the call graph.

3. Inspect the so-far unbounded loops in the source-code of the target program. For each loop,
decide whether to bound it automatically or by an assertion.

If you are familiar with the assembly language of your target processor you can use the option
-trace decode to view the disassembled instructions as Bound-T analyses them.

4. Take each subprogram that has so-far unbounded loops, starting at the leaves of the call-
tree and going on to higher-level subprograms. Write the necessary assertions and run
Bound-T on the subprogram, using the assertions for this subprogram and also the
assertions you wrote earlier for the lower-level subprograms. Verify that the assertions are
sufficient to bound the targeted loops and that Bound-T finds bounds for the other loops
automatically. Change or add assertions when necessary. Possibly write alternative
assertions for different scenarios, for example nominal cases, error cases or different
application "modes" as often occur in embedded programs.

When step 4 reaches the root subprograms, you will have the WCET bound for each root
subprogram and a call-graph that shows how this WCET is built up from the WCETs of the
lower-level subprograms.

For large target programs, it is convenient to implement step 4 as a separate shell-script or
batch command file for each subprogram and perhaps collect these into a Makefile. The shell-
script should combine the necessary assertion files, run Bound-T with the chosen options, and
store the output in a file for browsing. By setting up such shell-scripts, the whole analysis or
any part of it can be re-run easily if the target program or the assertions are changed.

The assertion files and analysis scripts are also useful as a record of how you determined the
time and space bounds for your application. This record can be used as “performance case”
documentation, for example to show to certification authorities as part of the “safety case”
documentation for a critical system.
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3.1

CONTEXT-DEPENDENT ANALYSIS

Introduction

This chapter will talk about subprograms that have context-dependent bounds. It usually talks
about bounds on execution time (WCET) but applies as well to bounds on stack usage. Stack-
usage analysis is described in Chapter 4.

The inputs of a subprogram

Most of your subprograms probably have parameters and the execution time usually depends
more or less strongly on the actual values of those parameters. Perhaps the subprogram also
uses global variables that influence the execution time.

For brevity, we use the term input variables or simply inputs for all the parameters and global
variables that influence the execution bounds of a given subprogram: the bounds on execution
time or stack usage. Some subprograms have no inputs and thus have constant execution
bounds, but most do have some input variables. Take the following Ada subprogram as an
example:

procedure Nundo (X : Integer; N : Integer) is
begin

if X > 10 then
Start_Engine;
end if;

for T in 1 .. N loop
Mark Point (I);
end loop;

end Nundo;

The value of the parameter X influences the execution time of Nundo because the Start Engine
subprogram is called only for some values of X. The value of the parameter N influences the
execution time because it sets the number of iterations of the loop that calls Mark_Point.

Each call of the subprogram may have different input values and may thus have a different
execution time and stack usage. Can Bound-T take this into account? Yes, in some ways, but it
depends a lot on how your program computes and passes parameter values and how the
subprograms use parameters. This section tries to explain how and when Bound-T can find
such input-dependent execution bounds.

Essential inputs

Some inputs to a subprogram are essential for the analysis in the sense that their values must
be known in order to compute execution bounds. Consider again the example subprogram
Nundo above. If the value of N is unknown then the number of loop iterations is unknown and
there is no upper bound on the execution time. (One could argue that N is at most
Integer ' Last, the largest possible value of type Integer, so the loop can repeat at most
Integer ' Last times. But this upper bound is probably a huge overestimate and we ignore it.)

A value (or an upper bound) on N is thus needed to get an upper bound on the execution time
of Nundo. Therefore N is an essential input variable for Nundo.
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The same cannot be said for the X parameter. If the value of X is unknown we can simply
assume the worst case, include the call of Start Engine in the analysis, and get an upper bound
on the execution time of Nundo that is valid for all values of X, even if it is overestimated for
values of X less or equal to 10. Thus X is not an essential input for Nundo.

Bound-T tries to find input-dependent execution bounds for a subprogram only when the
subprogram has some essential inputs. More on this later, also to show that the classification of
inputs into essential or non-essential is not always so clear-cut as in the Nundo example.

Calls, call sites, and call paths

To explain how Bound-T does input-dependent analysis we have to define some terms that
separate the static and dynamic aspects of subprogram calls.

Call sites

In the kind of context-dependency or input-dependency that Bound-T uses, the context is
defined by the call sites, defined as follows:

+ A call site is point (an instruction) in the target program that calls a subprogram (the callee)
from within another subprogram (the caller). When there is no risk of confusion we will use
the shorter term call.

Call sites are a static concept; we are not yet talking of the dynamic execution of the call when
the program is running. A call site is identified by the address of the instruction that transfers
control from the caller to the callee. Each call site has a return point that is usually the next
instruction in the caller.

Why talk about calls and call sites here? Because the calls pass parameter values — inputs — to
the callee subprogram. Different calls (call sites) can pass different values. We can hope that an
analysis of the call, and of the code that leads to the call, will reveal bounds on parameter
values that we can use to find bounds on the execution of the callee. However, different
executions of the same call site can pass different parameter values, so some over-estimation
may remain even for call-site-specific execution bounds.

Call paths

Sometimes parameter values are set in some high-level subprogram and then passed through
several levels of calls until they reach the subprogram for which they are esential inputs. This
motivates:

« A call path is a list of zero or more call sites such that the callee of a call in the list is the
caller of the next call in the list (if any).

+ The depth of a call path is the number of call sites in the list.

A call path is still a static concept; we are not yet talking of the dynamic executions of these
calls. In particular, even if some call on the path lies within a loop and so can be executed
many times the call path does not distinguish between the iterations of the loop.

For example, assume that subprogram A contains a call to subprogram B which contains three
calls, one to subprogram C and two to subprogram D. Assume further that A also calls C and C
also calls D so that the call-graph looks like the diagram in Figure 7. The calls are numbered
calll to call6 for identification.
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Figure 7: Example of calls and call paths

As the figure shows there are four ways to reach subprogram D from subprogram A, depending
on which calls are used:

— from A through calll to B, then through call3 to D,
— from A through calll to B, then through call5 to D,
— from A through calll to B, then through call4 to C, then through call6 to D,
— from A through call2 to C, then through call6 to D.

Note that a call path is certainly not a complete definition of how execution goes from the first
caller to the last callee — from A to D in the example. As already said, the call path concept
ignores looping. It also ignores the fact that there are often several ways (execution paths) to
go from the entry point of a subprogram to a given call within the subprogram - all such ways
give the same call path.

Executions and contexts

In contrast to calls and call paths, the execution of a subprogram is a dynamic concept: during
the execution of the program, control reaches this subprogram, the code in the subprogram is
executed, and the subprogram (usually) returns to its caller. The execution of a call means that
control reaches the call and then passes to the callee which is executed.

Full context

The execution of a call path means that control reaches the first call on the path, passes to the
callee, and in the callee to the second call on the path, and so on until control reaches and
executes the last call on the path. We define:

The full context of a subprogram execution is the call path that was executed to reach the
subprogram, starting from a given root subprogram.

For the example in Figure 7, if subprogram A is taken as the root subprogram then subprogram
D can be executed in four different full contexts:

- (calll, call3)
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—  (calll, call5)
—  (calll, call4, call6)
- (call2, call6).

The main point here is that Bound-T groups subprogram executions by their context. Thus we
can find different execution bounds for each call path leading to the subprogram.

Suffix context

However, we hope to find execution bounds without having to consider the full call path from
the root, and so we define:

+ A suffix context of a subprogram execution is any suffix of the full context. That is, any call
path that ends with a call to this subprogram, or the null call path (a list of no calls).

For the example in Figure 7 the subprogram D has the nine suffix contexts listed in the table
below in order of increasing depth. The table also shows depth of the suffix context and the
full contexts that match the suffix context. Real programs usually have more full contexts per
suffix context than this small example has.

Table 1: Example of suffix contexts and full contexts

Suffix context for D Depth Matching full contexts for D

null call path 0 all full contexts (all executions of D)
call3 1 (calll, call3)

call5 1 (calll, call5)

callé6 1 (call2, call6)

(calll, call4, call6)
(calll, call3)
(calll, call5)
(call2, call6)
(calll, call4, call6)
(calll, call4, call6)

(calll, call3)
(calll, call5)
(call2, call6)
(call4, call6)
(calll, call4, call6)

WIN|IN (NN

The execution bounds that Bound-T computes for a subprogram always come with a suffix
context such that the bounds are valid for all executions of the subprogram in this context.

Thus, if Bound-T computes execution bounds for subprogram D in the example above then the
bounds apply as follows, depending on the suffix context of the bounds:

— If the context is null, the bounds are valid for all executions of D whatever the full context
of the execution. For this reason the null context is also called the universal context and
such bounds are universal bounds or context-free bounds.

— If the context is call3, the bounds are valid for any execution of D from call3. In the
example the only full context that matches this suffix context is (calll, call3).

- If the context is call6, the bounds are valid for any execution of D from call6. In the
example there are two full contexts that match this suffix context: (calll, call4, call6) and
(call2, callb).

30

Context-dependent analysis Bound-T User Guide



3.4

— If the context is (call4, call6) the bounds are valid for any execution of D from call6 within
an execution of C from call4. In the example the only full context that matches this suffix
context is (calll, call4, call6).

- And so on for the other possible contexts of D.

Searching for the necessary context

First we ignore inputs

For each subprogram Bound-T first tries to find execution bounds in the null context — context-
free bounds that apply universally to all executions of the subprogram.

The subprogram is analysed in isolation, not in the context of any particular call or call path.
The values of the inputs are then generally unknown. However, the analysis uses all assertions
that apply to input variables or to variables defined and used within the subprogram, as long
as the assertions apply universally (to all executions of the subprogram and not only to a
particular call).

If that fails, we look deeper ... and deeper ...

When Bound-T cannot find context-free execution bounds on a subprogram it analyses the
subprogram in ever deeper suffix contexts until it finds execution bounds, and then it stops. In
other words, when the subprogram has some essential inputs (with unknown values in the null
context) Bound-T tries deeper contexts until the context defines values (or sufficient bounds)
for the essential inputs at each (feasible) call of the subprogram.

The context-free analysis in Bound-T traverses the call-graph in bottom-up order. That is, we
first analyse the leaf subprograms — those subprograms that do not call other subprograms —
then subprograms that only call leaf subprograms, and so on to higher levels in the call-graph
up to the root subprogram(s). If a callee subprogram has context-free execution bounds these
bounds are thus known when the caller is analysed.

When Bound-T analyses a caller subprogram it finds all calls from this subprogram to callees
that do not have execution bounds (whether context-free bounds or bounds in the context of
this call); these are known as unbounded calls. For each unbounded call Bound-T uses the
analysis of the caller to find bounds on the inputs to the callee. If some such bounds exist
Bound-T re-analyses the callee in the context of these bounds, that is, using these bounds as
the initial state on entry to the callee.

When an unbounded call leads to the re-analysis of the callee Bound-T may find further
unbounded calls in the callee, leading to re-analysis of their callees, and so on. Thus context-
dependent re-analysis spreads top-down in the call-graph.

Call-specific assertions on variable values can help context-specific analysis by directly defining
input values for the subprogram being analysed (when the assertion applies to a call of this
subprogram, the last call in the context) or indirectly by defining values on other variables that
enter the computation of the input values (when the assertion applies to some other call in the
context).

The command-line parameter -max_par _depth defines the largest context depth that Bound-T
tries. If a subprogram has some full context such that Bound-T finds no execution bounds for a
suffix context of depth max_par depth then Bound-T emits an error message and considers
the subprogram's execution unbounded in this context. In other words, max_par_depth sets
an upper bound on the number of call levels through which Bound-T tries to find values or
bounds on essential inputs.
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How it works in the example

This subsection shows step by step how the context-free and context-dependent analysis works
for the example program shown in Figure 7. The description is long; if you feel that you
understand the idea you can skip this subsection.

The analysis of the program in Figure 7 proceeds as follows, assuming that the root
subprogram is A. Subprograms are analysed in bottom-up order in the call-graph. Thus D is the
first subprogram to be analysed, followed by C, B, and finally A.

1.

First Bound-T looks for context-free execution bounds on D. If this succeeds Bound-T uses
these bounds for all calls of D. That is, it uses these context-free bounds on D's execution
time (and/or stack usage) for call3 and call5 in the analysis of subprogram B and for call6 in
the analysis of subprogram C. In this case the analysis of D stops here and Bound-T goes on
to analyse C, B, and A in that order. But the other case is more interesting and the analysis
then proceeds as follows.

. If Bound-T does not find context-free bounds on D it postpones further analysis of D until

the analysis of the direct callers of D: subprograms B and C. That is, Bound-T will re-analyse
D in the suffix contexts call3, call5 and call6, all of depth one.

. Next Bound-T looks for context-free bounds on C. C contains call6 which is an unbounded

call (because the callee, D, has no context-free bounds). Therefore Bound-T tries to find
bounds on the inputs to D at call6. If it finds some such bounds:

+ Bound-T re-analyses D in the context of call6 (a depth-one context). If it finds execution
bounds they become the definitive bounds for call6; Bound-T uses these bounds for all
executions of call6. Assume otherwise, that call6 remains an unbounded call. This
means, firstly, that Bound-T will try deeper contexts for this call (if max_par depth
permits) and secondly that the context-free analysis of C fails. Accordingly Bound-T
postpones further analysis of C (and thus further analysis of call6) until the analysis of
the direct callers of C: subprograms A and B.

. Next Bound-T looks for context-free bounds on B. Here the unbounded calls are call3 and

call5 to D and call4 to C. Assuming that some callee inputs are bounded at each call, then:

« Bound-T re-analyses D in the contexts of call3 and call5 (both are depth-one contexts).
Assume that call3 gets execution bounds but call5 does not. Bound-T then uses these
bounds on call3 as the bounds on all executions of call3, that is, it does not try to analyse
deeper contexts that lead to call3. Since call5 remains unbounded the context-free
analysis of B fails.

+ Bound-T re-analyses C in the context of call4. C contains call6 which is still unbounded,
so Bound-T again tries to find bounds on the inputs for D at call6 within this new
analysis of C; if some bounds are found, Bound-T re-analyses D with these bounds, that
is, in the depth-two context (call4, call6). If this analysis finds execution bounds Bound-T
will use these bounds on D for every execution of D that has the suffix context (call4,
call6). If Bound-T also finds execution bounds on all other parts of C it will use these
bounds on C for every execution of C that has the suffix content call4. But let us again
assume the harder case where call6 remains unbounded which also means that C
remains unbounded in the context call4.

To summarise the situation at this point in the analysis: We found no context-free execution
bounds on B, C, or D. We found execution bounds on D in the context call3 but not in the
contexts call5 and call6. We found no execution bounds on C in the context call4 and have not
yet analysed C in its other depth-one context, call2. We have not yet tried to analyse A, but A is
next in the bottom-up order of the call-graph, so here we go:
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5. The next subprogram to be analysed is A, the root subprogram. Root subprograms can only
have universal, context-free execution bounds (unless there are several root subprograms
and some root calls another root, which is unusual). The unbounded calls within A are calll
and call2. Assuming that Bound-T finds bounds on the inputs for B and C, respectively, at
these calls Bound-T re-analyses the callees in these contexts, so:

B is re-analysed in the context of calll. The unbounded calls in B are call5 and call4.
Assuming that Bound-T finds bounds on the inputs for D and C, respectively, at these
calls, then:

« Bound-T re-analyses D in the context (calll, call5). Assume that it finds execution
bounds on D in this context.

« Bound-T re-analyses C in the context (calll, call4). C contains call6 which is still
unbounded in this context so Bound-T tries to find more bounds on the inputs for
call6, now from the deeper context (calll, call4). Assuming that such bounds are
found:

« Bound-T re-analyses D in the context (calll, call4, call6). Assume that it finds
execution bounds on D in this context. This makes call6 bounded in the context
(calll, call4).

Assume that all other parts of C are also bounded in the context (calll, call4).

Thus all calls in B are bounded in this context (call3 was bounded earlier, in the null
context for B, and call4 and call5 were bounded in the present context, calll).

Assume that all other parts of B are also bounded in this analysis. Thus we have
execution bounds on B in the context calll and so calll is bounded in A.

C is re-analysed in the context of call2. C contains call6 which is still unbounded in this
context (the execution bounds that we found, above, on call6 apply to a different
context (calll, call4) for C). Assuming that Bound-T finds bounds on the inputs for D at
this call:

« Bound-T re-analyses D with all the input bounds collected from the context (call2,
call6). Assume that it finds execution bounds on D in this context.

Assume that all other parts of C are also bounded in this analysis. Thus we have
execution bounds on C in the context call2 and so call2 is bounded in A.

Thus, all calls within A have execution bounds. Assuming that all other parts of A are also
bounded we finally get execution bounds on A, the root subprogram.

This method of re-analysing subprograms in ever deeper contexts is evidently inefficient if
many subprograms need a deep context for their analysis. The method works well enough
when most subprograms get context-free bounds or need only shallow context for their
analysis. But the main importance of the method for you, as a user of Bound-T, is not its
computational efficiency but how the results of the analysis depend on the properties of the
target program under analysis. The rest of this section focusses on that question.

Summary

The main things to remember from the above discussion are:

Bound-T only tries to find context-dependent bounds when it fails to find context-free
bounds, that is, when some essential input values are unknown without context.

Bound-T explores contexts only as far (as deeply) as is necessary to find execution bounds,
that is, until the context defines the essential input values.
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+ However, when Bound-T does make a context-specific analysis it tries to find context-
specific values or bounds on all inputs to the subprogram, not only on the essential inputs,
and uses all such values or bounds in the analysis.

The rest of this chapter tries to explain what this means in terms of the design of the target
program, using examples.

Examples

Examples of essential and non-essential inputs

First some examples to illustrate when inputs are essential and when not. There are some
complex cases in which even this decision may depend on context so the classification of
inputs into essential and non-essential is a simplification of reality.

+ The conditions in if-then(-else) statements are usually not essential.

An input that appears in an if-then(-else) condition can have a large effect on the execution
time when one branch of the conditional statement has a much larger execution time than the
other branch, but this does not make the input essential. For an example, see the Nundo
subprogram, above, and its parameter X.

+ Similarly, the selector (index) of a switch-case statement is usually not essential.

A switch-case selector can have a large effect on the execution time when the different cases
have very different execution times. But this does not make the selector essential.

« An input that controls a conditional statement or a switch-case statement can determine
which other inputs are essential.

For example, consider the following variation of the Nundo procedure where the changes are
shown in bold style:

procedure Nundo2 (X : Integer; N : Integer) is
K : Integer := N;
begin

if X > 10 then
Start_Engine;
K := 55;

end if;

for I in 1 .. K loop
Mark Point (I);
end loop;

end Nundo2;

Here the loop is controlled by the local variable K which is initialized to the parameter N but
changed to 55 when X is greater than 10. In a context-free analysis X is unknown, thus the
loop may have the upper bound N, so N seems essential. However, if we analyse Nundo2 in a
context that provides no bounds on N but implies that X = 13, say, then the analysis may show
that K is necessarily set to 55 which means that the loop is bounded although N is still
unknown.
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Another variation could use a conditional statement to choose which of several parameters
defines the loop bound; if a context defines the choice condition only the chosen parameter is
essential. In yet another variation the parameter-dependent loop is contained within the if-then
statement; if a context makes the choice condition false then the loop cannot be reached in this
context and the parameter that sets the loop-bound is not necessary in this context.

« Inputs that seem essential can be dominated by constants that make them non-essential
(but can cause large over-estimates).

For example, consider this modified form of the Nundo subprogram, again with changes in
bold style:

procedure Nundo3 (X : Integer; N : Integer) is
begin

if X > 10 then
Start_Engine;
end if;

for I in 1 .. Integer'Min (N, 1000) loop
Mark Point (I);
end loop;

end Nundo3;

The only difference with respect to the original Nundo is that the upper bound on the loop
counter I is now defined as the smaller of N and 1000. This means that Bound-T finds an upper
bound of 1000 loop iterations even when the value of N is unknown. Thus N is no longer an
essential input. However, the context-free execution bounds (1000 iterations) may be greatly
over-estimated compared to context-dependent bounds for smaller values of N.

Non-essential inputs can matter

Consider again the Nundo subprogram that was introduced at the start of this section with its
two inputs X (not essential) and N (essential). Assume that the program contains the following
call where Nundo is called with X equal to 7 and N to 31:

Nundo (X => 7, N => 31);

When Bound-T analyses Nundo in the context of this call it uses the essential N value to bound
the loop. However, it also uses the non-essential X value and finds that the condition X > 10 is
false and thus that execution cannot reach the call to Start Engine. This should give very good
execution bounds that apply to the case X = 7, N = 31.

In fact, since Nundo does not use X for any other purpose these bounds apply when N = 31 for
any value of X less or equal to 10, but Bound-T does not make use of this fact. If there is
another call with such X and N values, for example Nundo (X => 5, N => 31), Bound-T will
make a new analysis of this call and will not reuse the execution bounds from the first call.

Now assume that the call defines the value of N but not that of X, as in:
Nundo (X => Y, N => 31);

where Y is some input to the caller and is thus unknown in the context of just this call. When
Bound-T analyses Nundo in the context of this call it uses the essential N value to bound the
loop. It has no bounds on the value of X so it includes a possible call to Start Engine. The
execution bounds thus apply to the case N = 31, for any value of X, and are overestimated for
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values of X less or equal to 10. Since X is not an essential input for Nundo Bound-T is satisfied
with these bounds for this call even if an analysis in a deeper context might set bounds on Y,
thus on X, and thus give tighter execution bounds.

Forcing context-dependent analysis

To repeat: if Bound-T finds context-free execution bounds on a subprogram it uses these
bounds for all calls of this subprogram, even if context-dependent analysis could give better
(sharper) bounds. Similarly, if Bound-T finds execution bounds on a subprogram for a certain
suffix context, it uses these bounds for all calls of this subprogram in matching contexts even if
an analysis in some deeper context could give better (sharper) bounds. At present there is no
way to force Bound-T to look for (deeper) context-dependent bounds in such cases.

The only work-around currently available is to analyse the subprogram separately for each
desired context under assertions that define the inputs for the context. You then feed the
resulting WCET bound for each context into the analysis of the caller as an assertion on the
execution time of the call to the context-dependent subprogram. This is admittedly
cumbersome.
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4.1

STACK USAGE ANALYSIS

Stacks and stack overflow

A stack is an area of memory that holds data that the currently executing subprogram needs,
but that can be discarded when the subprogram ends and returns to its caller. This releases
memory space for use by another subprogram, in its turn.

On the other hand, when the current subprogram itself calls some other subprogram, the stack
data for the calling subprogram remain in the stack, and the new data for the called
subprogram are allocated or “pushed” on “top of” the caller's data. When the called
subprogram returns, its data are discarded or “popped” from the stack. So the “top” of the data
in the stack grows and shrinks dynamically as subprograms are called and return. Space in the
stack is allocated and released in last-in-first-out (LIFO) order.

What is in the stack?

Implementations of procedural languages like C and Ada typically use stacks for:
+ the local variables (“automatic” variables in C) of a subprogram,

+ the parameters of subprograms,

« the return addresses for use by the return instructions,

- intermediate results of computations, and

- other things that may be required by a particular processor and its coding rules, for example
space to save registers when a trap or interrupt happens.

Although most programs use stacks, stacks are not absolutely necessary for most programs. All
types of data listed above could also be kept in processor registers or in statically allocated
data memory (at fixed addresses) — if there are enough registers or enough memory. Stacks
become very useful, perhaps unavoidable, for recursive programs and for subprograms that
must be reentrant.

How much stack space does a subprogram need?

Looking at the C or Ada source-code of a subprogram gives only a rough idea of the amount of
stack space that the subprogram needs. The actual amount depends on how the compiler
allocates memory: which parameters are passed in the stack; which local variables are stored
in the stack; which intermediate results are stored in the stack; and how much stack memory is
used for a value of a given type. In addition, some processors have coding rules that force the
compilers to allocate more stack space, even if the compiler-generated code does not use this
space directly.

Example

Here is a C function that has a parameter and some local variables. The function takes a null-
terminated string as its only parameter, computes the number of times each decimal digit
character '0' .. '9' occurs in the string, and returns the maximum number of occurrences. The
loop counter variable d for short loops (0 .. 9) is declared with a type count_t, defined else-
where as unsigned int or unsigned char depending on the target processor. The source-lines are
numbered in the left margin for reference.
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1 unsigned int max freq (char *str)
2 /* The frequency of the most frequently occurring
3 * digit '0' .. '9' in the string str.
4 */
5 {
6 unsigned int freq[10];
7 unsigned int max;
8 char c;
9 count_t d;
10 char *p = str;
11
12 /* Initialize frequencies to zero: */
13
14 for (d = 0; d <= 9; d++) freq[d] = 0;
15
16 /* Count the frequency of each digit in the string: */
17
18 while (*p)
19 {
20 cC = *p;
21 if ((c >= '0') && (c <= '9')) freq[c-'0"'] ++;
22 pt++;
23 }
24
25 /* Find the maximum frequency: */
26
27 max = freq[0];
28 for (d = 1; d <= 9; d++)
29 {
30 if (freq[d] > max) max = freq[d];
31 }
32
33 return max;
34 }

How much stack space does this function need? On most target processors, the return address
is put in the stack. For a small processor the return address may be only 16 bits, or even less,
while a processor with a larger code memory may need 24, 32, or even 64 bits for the return
address. On most processors the parameter str is passed in a register, but some processors have
very few registers and so may pass it in the stack. Depending on the size of the data memory, a
char* may be only 8 bits, or 16 bits, or even 64 bits.

The cross-compiler can place any one of the local variables freq, max, c, d, p in the stack, or in
statically allocated memory, or in registers (but register allocation is unlikely for an array like
freq). If some of these variables are placed in the stack, the stack space required depends on
the size of the types unsigned int, char, count_t, and char” for the chosen target processor and
the chosen cross-compiler.

Table 2 below shows the stack space that this max freq function needs on some target
processors and cross-compilers.

Some cross-compilers can report the amount of stack space that each subprogram needs. But
all compilers do not do this, and those that do can usually report only the static stack space,
not the context-dependent usage on which more later.

38

Stack-usage analysis Bound-T User Guide



Table 2: Stack space for max_freq on several processors

Stack space

Processor Compiler Remarks
octets
Intel 8051 IAR Systems 7.30B 0 These compilers use the processor stack only for
Intel 8051 Keil C51 8.09 2 return addresses. Data are by default stored in
SDCC (Small Device C statically allocated memory (and by default
Intel 8051 . 2 subprograms are not reentrant).
Compiler)
GCC3.3.1 The stack holds both return addresses and some
Renesas H8/300 o . ) 20 data. The only variable of type count t is held in a
count_t = unsigned int - -
= register.
GCC3.3.1 Stack space is larger than in the case above,
Renesas H8/300 o . 22 although the count_t variable is smaller and is
count_t = unsigned char a1 . -
- still in a register.
Stack space is 70% larger than for the GCC
IAR Systems . I .
Renesas H8/300 . . 34 compiler. However, compilation options may play
count_t = unsigned int . .
a role, and should be investigated.
Renesas H8/300 L1 Systems 32
count_t = unsigned char
Most of the space is a buffer for storing registers
SPARC V7 . in case of a “register file overflow” trap. The
(ERC32) Gaisler Research BCC 144 SPARC programming rules require such a buffer
for most subprograms.
9. SP stack This compiler uses the processor stack (SP) only
Atmel AVR IAR Systems 2;‘ Y stack for return addresses, and uses a compiler-defined

stack (Y) for data.

For most target processors, Bound-T considers the space for the return address as a part of the
stack usage of the calling subprogram, not of the callee. Thus, although the table shows zero
stack space for max_freq on the Intel 8051 processor with the IAR compiler, a call of max_freq
uses 2 octets of stack space for the return address. The non-zero stack usage of max_freq on the
same processor for the Keil and SDCC compilers is due to the return addresses for calls from
max_freq to some compiler-provided library routines. The IAR compiler for the Intel 8051 does
not generate any library calls from max_freq.

The IAR Systems compiler for the AVR processor uses two stacks. The processor's “native” stack
is accessed by the Stack Pointer register (SP) and is automatically used by the call and return
instructions to store and retrieve the return address. For data variables the compiler defines a
“software” stack and uses the AVR register Y as the stack pointer. Either or both of these stacks
can overflow if too little space is allocated for it at link time. Such software stacks are common
for 8-bit processors. For example, both the IAR and Keil compilers for the Intel 8051 use
software stacks when some subprograms must be reentrant.

Context-dependent stack usage

Some programming languages allow local variables, typically arrays, of a dynamic size. That is,
the number of elements of the array is not a static constant, but is computed by a dynamic
expression, perhaps depending on the subprogram's parameters or on the current values of
global variables. If such dynamically sized arrays are stored in the stack (which is not always
the case) the stack space needed by the subprogram becomes dynamic and context-dependent,
too.
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Stack overflow and how to avoid it

The memory area allocated for a stack typically has a fixed size that is set at link-time and
cannot be increased at run-time. Stack overflow happens if the program executes a chain or
nesting of subprogram calls such that the total stack space used by all these subprograms
exceeds the size of the stack area.

Stack overflow often makes the program fail (for example, through a stack-overflow trap) or
behave randomly when non-stack memory is wrongly overwritten and its content destroyed.
You can reduce the risk of stack overflow by allocating a large memory are for the stack.
However, some small processors have stacks of a hardware-defined, fixed size — for example
holding at most six return addresses — and even processors where the stack is set at link-time
may not have memory to waste on safely oversized stacks, especially since each thread usually
needs its own stack area. How can you know what size the stack area should be? If the stack
size is fixed by the hardware, how can you be sure that the size is large enough?

For programs that use the stack in a suitable way, Bound-T can compute a worst-case upper
bound on the stack usage. You can remove the risk of stack overflow by allocating at least this
amount of stack space.

4.2 Stack analysis to avoid stack overflow
This section explains how stack usage analysis works in Bound-T, focusing on general aspects
and leaving the target-specific aspects to the Application Notes for each target processor.
Command line
Stack usage analysis is an optional function of Bound-T and is activated by the command-line
options -stack or -stack_path. Stack usage can be analysed together with execution time (-time,
the default) or separately (-no_time).
For example, the following command analyses (only) the stack usage of the subprogram
max_freq, within the executable file freq.exe, generated by GCC for the the Renesas H8/300
processor, and using the corresponding version of Bound-T:

boundt h8 300 -stack -no_time -lego freg.exe max freq
The option -lego specifies the particular type of H8/300 processor in use. It is not important for
stack usage analysis. The underscore ' ' in front of the subprogram name is added by GCC.
Results
Bound-T reports the stack-usage bounds in output lines that starts with the word Stack. For
example, the following line reports the stack usage bound of the max_freq subprogram:
Stack:freq.exe:freq.c:_max freq:1-33:SP-stack:22

This output line shows that the subprogram max_freq, together with its callees if any, needs at
most 22 units of space on the stack called SP-stack.
The unit of stack usage depends on the target processor but is usally the natural unit for
memory size on that processor. For example, on an octet-oriented processor like the H8/300
the above Stack line means 22 octets of stack space, while on a processor built around 32-bit
words it could mean 22 words = 88 octets. The unit is of course defined in the Application
Note for the target, as are the names of the stacks used on that target.
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How did it do that?

Bound-T finds an upper bound on the stack usage for a subprogram by analysing and
modelling the computations that change the value of the stack pointer — the processor register
that points to the top of the stack. For compiler-defined software stacks the stack pointer is
some compiler-defined global variable that may be held in a register or in memory.

The analysis of changes to the stack pointer is similar to the analysis of loop-counter variables
in the execution-time analysis, but is usually simpler. Constant propagation analysis is often
enough, and it is seldom necessary to invoke the costly Presburger arithmetic analysis.

Still, there are certainly programs that change the stack pointer in ways that are too complex
for Bound-T's current methods of analysis. Bound-T then reports an unbounded stack usage.

The -stack_path option

The examples above used the -stack option to activate stack usage analysis. With this option
Bound-T reports only an upper bound on the stack usage — a single number per subprogram
and stack — but gives little information on how this total amount is consumed by the various
subprograms in the call-graph. The -stack path option also shows the worst-case stack path: the
sequence of calls that would actually use this amount of stack space, if the sequence happens
during execution. We will return to this after more explanation of stack analysis across calls.

Stack usage in loops

Loops must pop as much as they push

You may have noticed that the example above, concerning the stack usage of the max freq
subprogram, did not talk at all about bounds on the loops in max_freq although loop-bounds
are so important in the analysis of execution time. Loop-bounds are not needed for stack-usage
analysis because Bound-T assumes that the repeated execution of a loop body has no net effect on
the stack height.

In other words, while the code in a loop body can push data onto the stack, it must pop the
same amount of data before going back to repeat the loop. Likewise, if the loop body pops data
from the stack, it must push the same amount of data before repeating the loop.

It is very unusual for a compiler to generate a loop body that does not balance pushes with
pops, because then the stack would grow or shrink continuously as the loop runs. Compilers
generally do not know how many times loops repeat, so the compiler would not know the
height of the stack within the loop or after the loop.

Except on the last iteration

However, the last iteration of a loop body - the one that leads to exit and termination of the
loop - can have a net effect on the stack height.

Example of push and pop in loops

Common high-level languages like C and Ada have no statements that (directly) push or pop
the stack, so for such examples we must use an assembly language. The following subprogram
is written in the assembly language for the Atmel AVR processors and contains a loop that
executes push and pop operations. Source-lines are numbered in the left margin, for reference,
and commented in the right margin, after the semicolon ';' sign.
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1 xubaloo: ; The subprogram name and entry point.
2 1di rl6,0 ; Initialize the loop-counter r16 to zero.
3 xloo: ; The start (head) of the loop.
4 push rl ; Push register r1 on the stack.
5 cpi rl6,17 ; Compare the loop-counter rl6 to the literal 17.
6 breq xend ; Ifrl6 equals 17, exit from the loop (go to xend).
7 pop rl ; Pop register r1 from the stack (pushed in line 4).
8 inc rle ; Increment the loop-counter r16.
9 rjmp xloo ; Jump back to repeat the loop once more.

10 xend: ; The loop exits to this point in the code.

11 pop rl ; Pop register r1 (pushed in line 4).

12 ret ; Return from the subprogram xubaloo.

There are no stack operations before the loop, so the loop is started (going from line 2 to line
3) with the local stack height at zero. Disregarding the loop-counting instructions, the loop
body pushes register r1 (line 4), thus increasing the stack height to 1 octet, then pops rl
(line 7), and repeats (going from line 9 to line 3). There is no net effect on the stack height
because the pop balances the push, so this loop is suitable for stack usage analysis in Bound-T.

However, the loop-termination test is placed between the push and the pop, so when the loop
exits, the last push of r1 has not been balanced by a pop. Thus the stack height after the loop
(at line 10) is 1 octet; the net effect of the execution of the loop is to increase the stack height
by one octet. This octet is removed by the last pop (line 11) and the subprogram can return
normally. As already said, Bound-T can analyse loops with such unbalanced exit paths, as long
as pops and pushes balance on all paths that repeat the loop.

This command uses the AVR version of Bound-T to analyse the stack usage of this subprogram:
boundt avr -stack -no_time -at90s8515 prg.exe xubaloo

The result for the processor (SP) stack usage is the following:
Stack:prg.exe:luups.s90:xubaloo:1-12:SP:1

The 1 octet of stack usage for xubaloo consist of the one octet (r1) that is explicitly pushed and
then popped.

Stack usage in calls

The stack height profile

We have spoken of “the” stack usage of a subprogram, but in fact the stack pointer can change
several times during the execution of a subprogram, so the stack usage can vary — and usually
does vary — as execution progresses. Figure 8 below illustrates this for one execution of one
subprogram. The horizontal axis shows execution flow (time) and the vertical axis shows the
height of the stack, relative to its height on entry to the subprogram — the local stack height in
this subprogram. This boxy curve that shows stack height as a function of time is called the
(local) stack-height profile of the subprogram.
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Figure 8: Stack height profile

Let's go through the significant points in Figure 8 in the order they happen — from left to right.
First, on entry to the subprogram the stack height is zero by definition (remember we are
talking about the local stack height, not the total stack usage at this point). Then, after perhaps
executing some other instructions, the subprogram pushes 3 octets on the stack, increasing the
stack height to 3. Later, the subprogram pops 1 octet, decreasing stack height to 2. After a
while, the program again pushes 3 octets to reach a stack height of 5, which is also the
maximum (local) height in this execution of this subprogram. Later still, the subprogram first
pops one octet, leaving a stack height of 4 octets, and then pops 4 more octets, returning the
stack height to zero. When the subprogram finally returns, the return instruction pops the
return address from the stack, leaving a final stack height of -2 octets if we assume that a
return address uses 2 octets of stack space.

In this example we assumed that the subprogram calls no other subprograms. This means that
the largest local stack height, 5 octets, is also the largest total stack usage of this subprogram
(not including the stack used by possible callers).

Stack usage at a call; the take-off height

Now consider another subprogram that calls the subprogram shown in Figure 8. We can
combine, or stack together, the local stack-height profile of the caller and the local stack-height
profile of the callee (from Figure 8) to get their sum, as shown in Figure 9 below. The sum
becomes the stack height and usage profile for the caller.

Going through the significant points in Figure 9 in the same way as above, the first point is the
entry to the caller subprogram, where the local stack height of the caller is zero by definition.
Next the caller pushes 2 octets on the stack, and then calls the subprogram shown in Figure 8.
The call instruction pushes the return address on the stack, which increases the caller's stack
height to 4, and then execution flows from the caller to the callee. The take-off (stack-) height
of the call is defined as the local stack-height in the caller when execution passes to the callee.
In this example it is 4 octets.

While the callee is executing, the total stack usage of the caller and callee is the sum of the
take-off height and the local stack height in the callee. This sum starts from 4 on entry to the
callee, increases to a maximum of 9 (take-off height 4 plus callee maximum stack height 5)
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and decreases to 2 (take-off height 4 plus final callee stack height —2) when the callee executes
a return instruction that pops the return address from the stack. The caller then pops 2 octets
and returns, so the final stack height of the caller is -2 octets.

A enter callee return from callee
take-off height = 4 maximum usage = 9 return height = 2

T e + \% ---------------------- 5
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Figure 9: Stack height and usage over a call

The take-off height and parameter passing

As an aside, note that the take-off height of a call is important not only for stack usage
analysis, but also for any context-dependent analysis of the callee when some inputs are passed
in the stack. The reason is that the take-off height defines the mapping from the caller's stack
frame (offsets relative to local stack-height zero in the caller) to the callee's stack frame (offset
relative to local stack-height zero in the callee).

For this reason, it is generally best if the take-off height for a given call is constant — the same
for any execution of the call during one and the same execution of the callee. The take-off
height can be context-dependent — for example, it can depend on some of the caller's
parameters — but it should not, for example, depend on the loop counter, when the call is in a
loop.

The worst-case stack path

In general a subprogram calls several other subprograms. Each call can have a different take-
off height, and the stack usage of each callee can be different, too. The total stack usage of a
call is the sum of the take-off height and the maximum stack usage of the callee at this call.

Figure 10 below shows the stack-usage profile of a subprogram — let's give it the name A — that
calls other subprograms B, C (twice), D, and E. For clarity the figure omits the profiles of the
callees and instead shows each callee as a rectangle with a height equal to the maximum stack
usage of the callee.

44

Stack-usage analysis Bound-T User Guide



A maximum usage = 9 (or 10)
Ky
K T TSR i 10
B T ] froeereerssnnnnn e 9
DBy DY B T 8
S T RN sy NNl e 7
o 6 [ RN R e Ol g 6
o 5 freeeeeeee B Y CY}-p— sl b P 5
fg) R | [ -1 e CH}--omommmmmomeeneoens 4
g 3 e RN VO e - — e 3
s 2 RN\ 2
R E—y = .. - MEN. 1
AS) N
= 0 |-c---. ANNNANN
2 0 A A A A /\'\\% 0
c -1 N -1
e S S N -2
@ push 2 push 3 push 3 pop 8 f
B (or5) (or 10) call E
ca call C call D callC (tail) ¥
enter return

Execution progress (time)

Figure 10: Stack-usage profile of subprogram A

You can see how the total stack usage of each call depends (is the sum of) the take-off height
and the callee's stack usage. For example, the first call of C causes a total usage of 7 octets,
from a take-off height of 4 octets plus 3 octets in C. The second call of C uses only 6 octets,
from a take-off height of 2 octets plus 4 octets in C — evidently, C has a context-dependent stack
usage. The call with the largest total stack usage is the call to D, using a total of 9 octets: 7
octets for A (including the return address) and 2 octets for D.

Figure 10 shows two different stack-usage profiles. The first (solid) profile happens when the
third push instruction in A pushes only 3 octets; the second (dashed) profile happens when this
instruction pushes 5 octets.

In the first (solid) profile, the highest stack-usage overall is in the call to D, which means that
the call A - D is the first call on the worst-case stack path for A. The next call on this worst-
case path, if any, is found by looking at the stack-usage profile of D, in the same way; if the
maximum usage happens at a call D - F then this is the second call on the worst-case stack
path for A, and so on.

In the second (dashed) stack-usage profile in Figure 10, the highest overall stack-usage does
not happen at a call, but at the third push instruction in A, which increases the local stack
height of A to 10 octets. In this case, the worst-case stack path for A ends at A itself.

In summary, the worst-case stack path for a subprogram shows the sequence of calls starting
from this subprogram that forms the highest point in the stack-usage profile of this sub-
program. The path ends when the highest point comes from local usage, not from a call. There
may of course be several call paths with the same stack usage; they are all called worst-case
stack paths, but Bound-T shows only one of them in its output, and only when you use the
-stack_path option on which more shortly.

Tail calls

The last call shown in Figure 10, the call to subprogram E, may look peculiar because the
return address (shown as a diagonally hatched white rectangle) occupies the same stack
location as the return address for the calling subprogram A. This illustrates a tail call: a call
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that is the last action in the caller and which can be implemented by a simple jump from the
caller to the callee. There is no need to save a return address here, because there is no need to
return to the caller (A). Indeed this means that when the callee (E) returns, execution flows to
the return address of the caller (A), bypassing the caller itself.

Bound-T may not detect tail calls as calls, because in many processors they look exactly like
ordinary jumps, not like calls at all. In Figure 10 the call to E would then be analysed as the
execution, within the caller subprogram A, of all instructions in E, including a push of 3 octets,
a pop of 3 octets, and a return. If a subprogram is called only by (undetected) tail calls, Bound-
T may not even see it as a separate subprogram, only as a part of each caller subprogram.

Example of a nested calls and a worst-case stack path

For an example of nested calls and the worst-case stack path, consider the following C
functions that call each other and the function max_freq shown earlier (page 38):

char* more freq (char *x, char *y)
/* That one of x or y that has the higher max freq. */
{ unsigned int fx, fy;
fx = max_freq (X);
fy = max freq (y);
return (fx > fy ? x : y);
}

unsigned int length (char *s)
/* The length of the string up to a terminating null char. */
{ unsigned int n = 0;

while (*s) {s++; n++; }

return n;

}

unsigned len more (char *a, char *b)
/* The length of that string, a or b, with the higher max freq. */
{ return length (more_ freq (a, b));

}

Figure 11 below shows how these functions call each other, starting from len_more.

ke n_more
one call from one path

Jﬁ;;ﬁﬂ;\ETEﬁﬂh

more_freq kEngth

one mth one path
2 paths

mazx_freq

2 paths

Figure 11: Call graph of len_more and callees
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Suppose we compile these functions for the Renesas H8/300 processor with the GCC compiler,
and then analyse their stack usage with the Bound-T command:

boundt _h8 300 -stack -no_time -lego prg.exe _len more

The resulting stack usage bounds of each subprogram are the following, where the important
data are shown in bold style for clarity:

Stack:tp_um stack _call.exe:subsl.
Stack:tp_um stack _call.exe:subs2.
Stack:tp_um stack _call.exe:subs2.
Stack:tp_um stack _call.exe:subs2.

c: _max_freq:17-46:SP-stack:22
c:_length:25-29:SP-stack:0

c: _more freq:13-20:SP-stack:30

c:_len more:34-36:SP-stack:32

The Stack output line for len_more shows that this subprogram, together with the subprograms
that it calls, needs at most 32 octets of stack space. But it does not show which, if any, of the
callees contributes to this upper bound. For example, if you would like to change the code to
use less stack, you would not know which subprograms to attack first, in other words, which
subprograms are “critical” for the stack usage. In this simple example there are not many
subprograms to choose from, but a real application may have hundreds or thousands of
subprograms and call paths.

The option -stack_path activates stack usage analysis and also shows a worst-case stack path, a
kind of “critical path” for the stack usage. You simply use this option instead of -stack:

boundt h8 300 -stack path -no time -lego freg.exe len more

This produces the same Stack lines as above (with -stack) but also shows the worst-case stacl
path by a sequence of output lines starting with Stack Path, except for the last line, which
starts with Stack Leaf. There will be one Stack Path line for each subprogram (each level) in
the worst-case stack path and these lines traverse the path in top-down order. The lines are
rather long, however:

Stack_Path:freq.exe:freq.c:_ len more@34-35=> more_ freq:34-35:SP-stack:32:2:2:30
Stack_Path:freq.exe:freq.c: more_ freq@lé6=> max_freq:16:SP-stack:30:8:8:22
Stack Leaf:freqg.exe:freq.c: max_freq:17-46:SP-stack:22:22::

The following table formats the important information more legibly; each row corresponds to
one of the above output lines, in the same order, and thus to one call on the worst-case stack
path. The last row represents the last level of the path. There is no deeper callee in that row
because here the maximum local stack height is also the maximum stack usage.

Table 3: Worst-case stack path for len_more on H8/300 with GCC

Caller Callee Stack usage, Max local Tak'e-off Stack usage,
caller height, caller height callee
len_more more_freq 32 2 2 30
more_freq  max_freq 30 8 8 22
max_freq 22 22

Figure 12 below illustrates this worst-case stack path as a stack-usage profile in the same style
as Figure 9. However, for clarity the space used for return addresses is not hatched, and the
vertical axis (stack space) is not to scale.

Bound-T User Guide Stack-usage analysis 47



A maximum usage = 32

S —— 32
}

22 max_freq

10 [esereereneanmenesneaes % ---------------------------------------------------------------------- 10
*

Stack height relative to entry height

more_freq
................................................................................. 2
len_more 0
A ]
......................................................................................... -2
call max_freq more_freq
more_freq max_freq returns returns
| enter len_more
en_more returns
-

Execution progress (time)

Figure 12: Stack-usage profile (worst path) for len_more, H8/300, GCC

The worst-case stack path is often also the longest (deepest) call path, that is, the one with the
largest number of nested calls. Still, a short call path can use a lot of stack space if the
subprograms on the path have many parameters or many or large local variables.

Making the stack usage smaller

You can often reduce the total stack-usage bound of a root subprogram by reducing the stack
usage (local stack heights and take-off heights) in the subprograms on the worst-case stack
path. However, this does not always work on the first try, because the worst-case stack path
that Bound-T shows may be only one of several call-paths that have the same stack-usage
bound. If that happens, and you reduce the stack usage of the worst-case path that Bound-T
shows in the first analysis, a new analysis may give the same stack-usage bound and show
another worst-case path that uses this amount of stack space. You may have to repeat the
reduction and analysis for the new path, to get a real reduction in the overall stack-usage
bound.

Another annoying thing that may happen to you is that you manage to reduce the stack usage
of some subprogram(s) on the worst-case path by a large number, say 95 octets in all, but a
new analysis shows a much smaller reduction of the total bound, for example by only 2 octets.
This happens if there is another call-path that uses only 2 octets less stack space than the
worst-case stack path in the first analysis, and thus this other call-path becomes the new worst-
case stack path in the second analysis. You must now look at the subprograms on this call-path
and try to reduce their stack usage, and so on.
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Worst-case stack paths for several stacks

When the target program uses several stacks, the upper bound on stack usage and the worst-
case stack path is analysed separately for each stack. Some stacks may have the same worst-
case path, others may have different worst-case paths.

Different worst-case paths for time and stack

The worst-case stack path may or may not be the worst-case execution path in terms of
execution time. That is, an execution that reaches the worst-case stack usage may be much
faster than the WCET; vice versa, an execution that reaches the WCET may use much less stack
than the worst-case stack path.

Context-dependent analysis of stack usage

The amount of stack space that a subprogram uses may depend on the input parameters and
thus on the context (the call path). For example, an integer parameter may determine the size
of a local array that the subprogram stores on the stack.

Bound-T supports context-dependent stack-usage bounds in the same way as it supports
context-dependent loop bounds. Bound-T first tries to bound the stack usage without context
information; if this succeeds, this generic bound is used for all calls of the subprogram. If the
context-independent analysis fails, Bound-T tries context-dependent analysis for ever longer
call-path suffixes. When stack usage bounds are found for some context, these bounds are used
for all matching contexts. That is, if Bound-T finds stack bounds for the subprogram B, in the
context A — B, it will use the same bounds for B in all call-paths that end with this call:

Assertions for stack usage

Earlier in this guide you saw how to assert an upper bound for the execution time of a
subprogram when, for some reason, you do not want Bound-T to find the bound by analysing
the subprogram or when Bound-T is unable to analyse the subprogram.

In the same way and for the same reasons you can assert the stack usage of a subprogram,
instead of analysing it. Here is how to assert that the subprogram piler uses at most 71 units of
stack space:

subprogram “piler”
stack usage 71;
end “piler”;

Simple, wasn't it? But wait, that assertion only works when the program has exactly one stack.
For example, a program compiled with the IAR Systems C compiler for the Atmel AVR
processor uses two stacks: the hardware stack, called the “SP” stack, and a compiler-defined
software stack, called the “~Y” stack. Bound-T will then reject the assertion above because the
assertion does not specify which of the two stacks uses 71 units. Not to worry, just add the
name of the stack. If you are talking about the “SP” stack, say:

subprogram “piler”
stack “SP” usage 71;
end “piler”;
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If you are talking about the “~Y” stack, say:

subprogram “piler”
stack “-Y” usage 71;
end “piler”;

But on processors with several stacks, if you want to avoid analysing a subprogram you must
usually assert bounds on both stacks:

subprogram “piler”
stack “SP” usage 12;
stack “-Y” usage 31;
end “piler”;

Assertions on final stack height

It is also possible to assert the final stack height of a subprogram. Such assertions can be
necessary to let Bound-T find the stack-height profile of the callers of this subprogram, because
the final stack height determines the net effect of the call, on the caller's stack height. To assert
the final stack height, simply use the keyword final instead of usage. For example, this says
that the piler subprogram lowers the “SP” stack height by 2 units:

subprogram “piler”
stack “SP” final -2;
end “piler”;
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5.1

5.2

WRITING ANALYSABLE PROGRAMS

Why and how

To get the best results from Bound-T, you should write your programs to make them analysable
by Bound-T, by using suitable styles of design and coding. As you do so, you may well find that
the program becomes clearer also to human readers, and also more robust and predictable.

These design and coding styles (or rules, if you will) have nothing to do with the layout of
source code, or the naming of variables and functions; since Bound-T works on the machine
code, all those source-level issues have no effect. The important points are, rather:

« All loops should have counters, at least “last resort” counters.

+ The initial value, increment, and final value of the counter should be simple (at most first
degree) expressions, and should be passed as single parameters rather than in structures or
arrays.

+ Dynamically computed jumps, such as switch-scase statements, should be avoided, or
limited to forms for which your compiler creates code that Bound-T can analyse.

« Dynamically computed calls, such as calls through function pointers, should be avoided as
much as possible.

We will show examples as we go along.

Count the loops

A loop counter is a variable that grows on each iteration of the loop, such that the loop
terminates when the counter reaches or exceeds some value. Of course, the counter may as
well be decreased on each iteration, and terminate the loop when it reaches or falls below
some value. The former is an up-counter and the latter a down-counter.

An up-counter example in Ada, with i a loop counter:

for i in 1 .. 17 loop
Foo (A, B(i));
end loop;

A down-counter example in C, with j a loop counter:
j=17;
do {
Foo (A, B[]]);
j-=2;
} while (j > 0);

During the arithmetic analysis of a subprogram, Bound-T finds the potential loop counter
variables for each loop and tries to bound the initial value, the step value (increment or
decrement), and the limit (loop-terminating) value of each potential loop counter. If it
succeeds, it bounds the number of repetitions of the loop. If there are several loop counters for
the same loop, Bound-T uses the one that gives the least number of repetitions.
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To be avoided are simple while-loops such as polling loops, for example waiting on an A/D
converter:

Start_AD Conversion (channel);
while AD Is Busy loop

null;
end loop;

Obviously, Bound-T cannot know how many times this loop runs. On the other hand, can you?
For a robust, fault-tolerant program, surely it would be better to place an upper bound, say
100, on the number of polls:

Start_AD Conversion (channel);

polls := 0;

while AD Is Busy and polls < 100 loop
polls := polls + 1;

end loop;

Now polls is an up-counter and Bound-T determines that the loop runs at most 100 times. Note
that the same effect can be had in different ways, one alternative being

Start AD Conversion (channel);

for polls in 0 .. 99 loop
exit when not AD Is_Busy;
end loop;

In nested loops, each level should have its own counter variable. For example, assume that the
program is processing a rectangular image stored as an array pix indexed O .. pixels — 1,
containing a certain number of image rows (scan lines), each with cols pixels. The image could
be scanned by two nested loops in this way:

i = 0;
while i < pixels loop
-- Here pix(i) is the start of a row.
next row := i + cols; -- Start of next row.
while i < next_row loop
process pix(i);
i =1+ 1;
end loop;
end loop;

Bound-T cannot find loop-bounds in the above code because the same counter (i) is used in the
inner loop and the outer loop, and moreover the counter range for the inner loop is different
on each iteration of the outer loop. Instead, use a different counter for the inner loop, and
make its initial and final values independent of the counter of the outer loop:
i = 0;
while i < pixels loop
for j in 0 .. cols — 1 loop
process pix(i + Jj);
end loop;
i =i + cols;
end loop;

In this form of the code Bound-T has a good chance of finding the loop-bounds if it can find
bounds on the values of the variables pixels and cols.
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5.3

5.4

Simple steps and limits

A loop counter is useful for Bound-T only if Bound-T can compute static bounds on the initial
value, the step and the limit value. With the current analysis algorithms, this means that each
of these values should be of one of the following forms:

« aliteral value, such as 123,
+ asimple expression (see below) computed from such values, or

- an independent input parameter (not a component of an array or a record/struct) which is
given such a simple actual parameter value at some call of the subprogram under analysis.

Bound-T propagates literal integer values along the program flow and into calls (for one or
more levels), but not back up from callees to callers.

First degree formulas

While propagating values for loop-counter analysis, Bound-T can only evaluate formulas of
degree 1 in any variable. The reason for this is that Bound-T uses a formalism called
Presburger Arithmetic, which is a solvable subset of integer arithmetic but does not allow
multiplication of variables (which essentially is the reason why it is solvable).

In practice, this means that you should avoid using multiplication in your loop-counting
formulas, except when one or both of the factors are compile-time literals. For example,
assume that you are implementing a C subprogram Sum to the following specification:

float Sum (float image[], int rows, int cols);
/* Computes the sum of the floating point image which is */
/* stored in image[] row-wise with no gaps between rows. */

An optimizing C programmer would probably write this body for Sum:

{ int pixels, i;
float total = 0.0;
pixels = rows*cols;
for (i = 0; i < pixels; i++) {
total += image[i];
}

return total;

}

Bound-T may be unable to bound this loop because it does not know the value of rows*cols,
even if rows and cols are known (from a call). The loop should be written in the nested form:

{ int i, row start, J;

float total = 0.0;

for (i = 0; i < rows; i++) {
row_start = cols*i;
for (j = 0; Jj < cols; j++) {

total += image[row_start + j];

}

}

return total;

}

Although this code also contains a multiplication to compute row_start, this does not influence
the loop counters and so does not hinder the analysis.
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5.5

5.6

For target processors that have a native multiplication instruction Bound-T's constant-
propagation analysis may be able to compute the value of rows*cols when the values of the
factors are known, and then Bound-T should be able to bound the Sum loop in its original
unnested form.

Sign your variables

When a program variable has an unsigned type (C) or modular type (Ada), special arithmetic
wrap-around rules apply if the variable is assigned an expression with a negative value. For
example, if an unsigned 16-bit variable is decremented starting from the value zero, it will get
the value 2'°-1. These rules are similar to overflow rules, and Bound-T currently cannot
handle them in its arithmetic analysis. Thus, loops that use unsigned counter variables or
unsigned counter arithmetic usually cannot be automatically bounded.

Therefore we recommend that all loop-counter variables should be declared as signed variables
and only instructions meant for signed arithmetic and signed comparisons should be applied to
them, as detailed in the target Application Notes. However, for some target processors it may
be better to use unsigned counters, so please refer to the relevant Application Note for your
target.

In the Ada language, loop counters are often of an enumerated type or a non-negative integer
type (type natural or positive) for which the compiler may use unsigned-arithmetic
instructions. We are working to extend Bound-T to handle such code.

Go native by bits

Most programming languages provide integer types of different widths, that is, different
number of bits and different numerical ranges. For example, the C language provides char,
short, int, long and perhaps more types, while the Ada language lets the programmer define
application-specific integer types by stating the required range, as in type counter type is
range O .. 670. For both languages the compiler chooses the actual number of bits in the
physical representation of the type, following some rules laid down in the language standard
and taking into account the word size of the target processor.

Bound-T's arithmetic analysis models the native instructions of the target program which
means that it models arithmetic on the native word size. The analysis of loop bounds thus
works best if the loop counters also use the native word size. When possible you should declare
the loop-counter variables and related quantities (initial and final values and counter steps) to
have the native number of bits. For example, on an 8-bit processor such as the Intel-8051
architecture loop counters should be 8 bits (usually char in C), while on a 32-bit processor
such as the ARM they should be 32 bits (usually int or long in C).

« If a loop counter is declared to be narrower than the native word size, the compiler may
have to insert masking operations to make the code work as the language requires. These
masking operations are usually bitwise logical and instructions and may confuse Bound-T's
analysis of the loop counter.

+ If a loop counter is declared to be wider than the native word size, the compiler has to use
two or more words (registers) to store the variable and has to generate instruction
sequences for each arithmetic operation. For example, a 16-bit addition on an 8-bit machine
is usually implemented by an 8-bit add of the lower octets followed by an 8-bit add-with-
carry of the higher octets. Bound-T is generally unable to deduce that such instruction
sequences represent a 16-bit addition and thus will fail to bound the loop.

54

Writing analysable programs Bound-T User Guide



5.7

5.8

5.9

Using the native word size may be impossible; for example, a loop that repeats 1000 times
cannot use an 8-bit counter. You must then use a counter that is wide enough and assert the
loop bound.

Aliasing, indirection, pointers

Most programming languages support the concept of pointers or access variables. Thus, there
can be an integer variable n, say, and a pointer p that can point to some integer variable.
Assuming that p currently points to n, the value of n can be changed either by a direct
assignment to n, such as n := 5, or by an indirect assignment via p, such as p.all := 5 (Ada) or
*p = 5 (C). The two names, n and p.all or *p, are then aliases for the same integer variable.

Aliasing can also result from parameters that are passed by reference, since the same variable
may then be accessible via several different parameters, and perhaps also directly (as a global).

Bound-T currently does not analyse aliasing (also called "points-to analysis"). Thus, if your
program modifies loop-counting variables (either counters, or limits, or steps) via aliased
references or pointers, Bound-T may give incorrect loop-bounds. It is therefore most important
to avoid such coding practices if you wish to rely on automatic loop bounding.

Bound-T attempts to resolve the true address of all dynamic (indirect, indexed) memory
accesses, and this may reveal some aliases which are then handled correctly. If an address is
not resolved, Bound-T by default does not emit a warning because the failure is usually
harmless: the unresolved addresses usually access arrays and not loop counters. To be quite
certain they should be manually inspected. Use the option -warn access to make Bound-T issue
warnings for all unresolved dynamic memory accesses.

Of course we intend to improve Bound-T in this area.

Switch to ifs

To implement switch-case statements, many compilers use complex code that involves indexed
or sorted tables of addresses. While we try to make Bound-T understand such code, it may be
safer to avoid switch-case statements and instead use a cascade of conditionals (if - else if —
else). Moreover, for many forms of switch-case statements Bound-T must use its most
powerful form of analysis, called “arithmetic” analysis, and this can take a long time.

The Application Note for a specific target processor or target compiler will explain which
switch-case forms are supported. Sometimes the right compiler options can make the compiler
emit analysable switch-case code.

No pointing at functions

A static call is a subprogram call that defines the callee subprogram statically and directly by
giving the actual name or address of the callee. However, many programming languages also
support dynamic calls — subprogram calls where the callee is defined by some form of dynamic
run-time value. The C language provides function pointer variables; the Ada language provides
access-to-subprogram variables; object-oriented languages provide late-bound or “virtual”
methods.

In the machine code, a static call instruction defines the entry address of the callee by an
immediate (literal) operand, while a dynamic call uses a register operand.
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A static call has exactly one callee; every execution of the call invokes the same callee
subprogram. In contrast, a dynamic call may invoke different subprograms on each execution,
depending on the entry address that is computed, so a dynamic call in general has a set of
possible callees.

Bound-T needs to know the callee(s) of each call in order to construct the call graph of the root
subprogram to be analysed. This is obviously much easier for static calls. For dynamic calls
Bound-T can find the callees automatically only in some special cases and only if the
computation of the callee or callees depends only on statically known data in the calling
subprogram (not, for example, on parameters of the calling subprogram or on global
variables). Therefore you should avoid dynamic calls in the target program. The main
alternative is to replace each dynamic call by a control structure that selects between the
equivalent set of static calls — a switch-case structure, or an if-then-else cascade.

If you must use dynamic calls you can use assertions to list the possible callees for each
dynamic call, as explained in the Assertion Language manual.

5.10 Final words
We hope that this guide has explained enough to get you started with Bound-T. If you meet
problems, need more advice, or have suggestions for changes or extensions to Bound-T, do
contact Tidorum; we will be pleased to hear from you.
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6 GLOSSARY

ABI

Arithmetic analysis

Assertion

Basic block

Bounds graph

Branch

Call

Call graph

Application Binary Interface. A definition of how subprogram calls work on a
specific target processor. Usually defines which registers (if any) are used for
passing parameters and return values, which register (if any) is used as a stack
pointer, and how the stack (if any) is laid out in memory.

The (optional) part of a Bound-T analysis that models the computations of the
target program as a set of equations and inequations expressed in Presburger
Arithmetic and then queries the model to find loop counters and bounds on the
number of loop iterations. The Omega Calculator plays an essential part.

An assertion is a statement about the target program that the user knows to be
true and that bounds some crucial aspect of the program's behaviour, for
example the maximum number of a times a certain loop is repeated. An
assertion has two parts, the asserted fact and the context in which the fact
holds. The Assertion Language manual explains the syntax and meaning of
assertions.

The normal meaning is a maximal sequence of consecutive instructions in a
program such that there are no jumps into the sequence or within the
sequence, except possibly in the last instruction. In Bound-T, the meaning is a
maximal sequence of flow-connected steps (see this term) in a control-flow
graph such that the sequence is entered only at the first step and left only after
the last step. Note in particular that a step in the sequence may correspond to
an unconditional jump instruction in the target program. Bound-T also
considers each "call step" (see this term) as its own basic block. In detailed
output from Bound-T the term "node" is often used for basic blocks, as shown in
the Bound-T Reference Manual.

A variant of call-graphs (which see) where each node represents a particular
analysis (execution bounds) of a subprogram. Thus, if a subprogram has
different execution bounds, in different contexts, the subprogram is represented
by as many nodes in the bounds-graph. See section 2.6 (page 16) for an
example.

A jump or a call. Sometimes specifically a conditional jump which has more
than one possible successor instruction, as opposed to an unconditional jump
which has exactly one successor.

1. Static meaning: An instruction that suspends the execution of the current, or
calling subprogram, and directs execution flow to another, or called sub-
program. When the called subprogram finishes it usually returns to the calling
subprogram to continue the execution of the calling subprogram. The return
point is often (but not always) the next instruction in the calling subprogram.
The calling subprogram is also knowns as the caller and the called subprogram
is also known as the callee. See also call site.

2. Dynamic meaning: The execution of a call instruction, transferring execution
control from the call instruction (possibly after some delay instructions) to the
first instruction (the entry point) of the callee.

A graph that represents the flow of execution between subprograms in a
program. The graph nodes represent subprograms and the edges represent calls
(call sites) between subprograms. In other words, the edges represent caller-
callee relationships between subprograms. There is no explicit representation of
returns from calls. It is implicitly assumed that each call returns to the caller, or
to the caller's caller, or to some point even higher in the call-path. Bound-T can
create call-graph drawings. See section 2.6 for examples.
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Call path

Call site

Callee

Caller
Call step

Cell

Constant propagation

Context

Context-free bounds

Control-flow graph

Delay instruction

Destination

DOT

Dynamic call

Dynamic jump

A sequence (list) of calls (more precisely, call sites) such that, for each call in
the list, the callee is the caller in the next call (if any). A call path represents a
chain of nested subprogram calls that can define the context for the analysis of
the callee of the last call in the path.

A point in the program (an instruction) that is a call, in the static meaning of
that term.

The subprogram that is called from another subprogram (the caller).
See call.

A subprogram that calls another subprogram (the callee). See call.

A special step in the control-flow graph of a caller subprogram that models the
execution of a callee. Used to model the effect of a call. See call and step.

See storage cell.

A method of simplifying a sequence of computations by executing any
computation with known (constant) operands and propagating the known
(constant) result to any computation that uses it. The Bound-T Reference
Manual has more to say on constant propagation.

1. The call path (sequence of calls) that leads to a given invocation of a
subprogram. Sometimes the analysis of a subprogram is context-dependent, for
example the loop-bounds and WCET may depend on the context. Section 3
explains how Bound-T uses context information.

2. The part of the target program to which an assertion applies. See the
Assertion Language manual.

Execution bounds (bounds on the execution time and/or stack usage) for a
subprogram that apply to all executions of the subprogram. Such execution
bounds are derived by analysing the subprogram in isolation, without
considering the context of a particular call or call path leading to the
subprogram. Same as universal bounds.

See Flow graph.

An instruction that statically follows a jump or call (that is, the next instruction
in address order after the jump or call) but is executed before the transfer of
control happens. That is, the jump or call takes effect only after the delay
instruction is executed. Delay instructions are used in some pipelined proces-
sors to avoid disrupting the pipeline state. In pipelined processors that lack
delay instructions a jump or call usually flushes the pipeline, discarding some
fetched and perhaps partially (speculatively) executed instructions. This
happens especially for conditional jumps and calls.

The (address of) the instruction that is indicated by a branch instruction as the
next instruction to be executed.

1. A program for drawing graphs; part of the GraphViz package. See section 2.6
in this guide.

2. The textual language for describing graphs for the DOT program. Bound-T
writes the -dot file in this language. See section 2.6 in this guide.

A call in which the destination address (the address of the called subprogram)
is not given statically in the instruction, but is computed at run-time.

A jump in which the destination address (where execution is to continue) is not
given statically in the instruction, but is computed at run-time.
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Entry address

ESF

Essential input

Eternal loop

Executable file

Execution bounds

Execution count

Fact

Final stack height

Flow graph

Frame pointer

Full context

Function

Ghost loop

The machine address of the first instruction in a subprogram - the first
instruction that is executed when a call instruction transfers control to the
subprogram.

Execution Skeleton File. The text file generated by HRT-mode analysis of an
HRT target program and containing the information from the TPOF
supplemented with execution skeletons containing WCET values. See
section 1.3.

A input variable for a subprogram such that bounds on the execution time or
stack usage of the subprogram cannot be found without knowing the value of
this variable, or bounds on the value. See input, context, and Chapter 3.

A loop that cannot possibly terminate, either because there is no branch that
can exit the loop or because all exit branches have been found to be infeasible.
The Bound-T Reference Manual discusses various forms of loops and their
properties.

A file that contains the compiled and linked form of a target program. Such a
file contains the machine-code instructions and the constant data that will be
loaded into the target processor as the initial memory state before the target
program is started. The file usually also contains symbolic debugging infor-
mation that connects source-level entities such as subprogram names and
variable names to the machine-level properties such as the entry address of the
subprogram or the memory address or register number of the variable.

Bounds on the execution time (WCET) and/or the stack usage, for a given
subprogram, and perhaps for a given context. Execution bounds can be derived
by Bound-T or asserted by the user.

The number of times some part (node or edge) of a flow-graph is executed,
usually referring to a worst-case execution path.

When discussing assertions, the condition or relation that is asserted, as
opposed to the context of the assertion. See the Bound-T Assertion Language
manual.

See Stack height, final.

A graph that represents the flow of execution (flow of control) within a
subprogram. Each node in the graph stands for a basic block (which see), and
each edge stands for execution flow, or transfer of control, from one basic block
to another block (or to the same block, for a small loop). Section 2.6 shows
several examples of flow-graphs as drawn by Bound-T.

A register or variable that points to the start of a stack frame, which see.

The call-path that leads all the way from a root subprogram to a particular
execution of another subprogram is the full context of this execution. See also
suffix context and context.

A subprogram that returns a value as the meaning of the call, so that the call
can occur in an expression.

A loop that appears to be repeated for some number of times although it is
never started (entered from outside the loop). In some special cases, Bound-T's
use of the IPET method can create ghost loops in the IPET solution for the
worst-case execution path of a subprogram. To create a ghost loop all the
following conditions must hold: The subprogram contains an unbounded loop
(a loop without loop-repetition bounds); other assertions on the number of
repetitions of parts of the loop body bound the number of executions of the
whole loop body; the loop is in a conditional branch of the flow-graph; the
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Host computer

HRT

ILP

enough for time assertion forces Bound-T to apply the IPET method in spite of
the unbounded loop; and the resulting worst-case execution path does not start
the loop, either because some assertion makes the loop unreachable, or because
the branch with the loop has a smaller execution time (bound) than an
alternative branch. Under these conditions the loop becomes a ghost loop
because the IPET ILP constraints allow a positive execution count for the loop
body even if the loop is not started. The remedy is to add a loop-repetition
assertion, which can be sloppily overestimated without harm.

The computer on which Bound-T is run, as distinct from the target processor
that runs (or eventually will run) the target program under analysis.

Hard Real Time; a principle for real-time program architecture, and a theory
and tool-set for analysing such programs. An HRT program consists of threads
and protected objects. See section 1.3.

Integer Linear Programming is an area of mathematical optimization in which
the unknowns are integer variables, the objective function to be maximized or
minimized is an affine expression of the variables, and the variables are con-
strained by affine equalities or inequalities. Bound-T uses ILE as implemented
in the LP_Solve program, for the IPET stage of the analysis.

Implicit Path Enumeration Technique — see IPET.

Indirect call

Indirect jump

Infeasible code

Infeasible path

Input (variable)

See dynamic call.
See dynamic jump.

A part of a program that cannot be executed because it is conditional and the
condition is always false (in the context under analysis).

An path through a program or subprogram that cannot be executed because it
contains conditional parts and the conditions cannot all be true in the same
execution (in the context under analysis).

A parameter or a global variable such that its value on entry to a subprogram is
used in the subprogram and, in particular, has an effect on the execution time
or stack usage of the subprogram. An input is essential if its value must be
known or bounded in order to find bounds on the execution time or stack usage
of the subprogram.

Integer Linear Programming — see ILP.

IPET

Irreducible

The Implicit Path Enumeration Technique uses ILP to find the worst-case (or
best-case) path in a flow-graph without explicitly trying (enumerating) all
possible paths. IPET generates an ILP problem in which the unknown variables
are the number of times each part (node or edge) of the flow-graph is executed
and the objective function is the total execution time which is the sum of the
times spent in each node or edge. The time spent in a node or edge is the
product of the number of times this node or edge is executed (an unknown)
and the constant worst-case (or best-case) time for one execution of the node
or edge. The unknown execution counts (also called execution frequencies) are
constrained by the structure of the flow-graph, by loop bounds, and by other
computed or asserted conditions on the execution. Solving this ILP problem
gives one set of execution counts that leads to the worst-case (or best-case)
execution time but does not give an explicit execution path; indeed there are
usually many execution paths that give the same execution counts.

A control-flow graph that is not Reducible, which see.
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Jump

Local stack height

Loop

Loop body

Loop counter

Loop, ghost

Loop head

Loop repetition

Loop start

LP_Solve

Natural loop

Necessary input

Node

Non-rectangular loop

An instruction that explicitly specifies the address of the next instruction to be
executed (without implying a suspension of the current subprogram, as in a
call). There may be more than one potential successor instruction, from which
the actual successor is chosen at run-time by a boolean condition or an integer-
valued index expression.

See Stack height, local.

A part of a subprogram that can be executed more than once in a single call of
a subprogram, thanks to a jump “back” to an instruction that was already
executed. In other words, a cycle in the control-flow graph of the subprogram.

All the flow-graph nodes in a loop and all edges between these nodes. Edges
that enter the loop from the outside, or that leave the loop, are not included.

A variable that grows on each iteration of the loop, such that the loop
terminates when the counter reaches or exceeds some value. Of course, the
counter may as well be decreased on each iteration, and terminate the loop
when it reaches or falls below some value. The former is an up-counter and the
latter a down-counter.

See Ghost loop.

In a natural loop, the unique node (basic block) that dominates (in the graph-
theoretic sense) all the other nodes in the loop. Any execution path that enters
the loop does so at the loop-head. See also Reducible.

A loop repeats when execution flows from within the loop back to the loop
head.

A loop starts when execution flows from outside the loop into the loop (for a
natural loop, into the loop head).

A support program that solves Integer Linear Programming (ILP) problems.
Bound-T uses LP Solve for the IPET phase of the WCET analysis. The
executable program is called Ip_solve or Ip_solve.exe.

In a control-flow graph, a set of nodes (basic blocks) that forms a loop with a
loop head. See also Reducible.

See input (variable).
1. In general, any node or vertex in a graph.

2. In a Bound-T control-flow graph, the term node means a basic block, which
see. Such a node contains a sequence of steps, which see.

A loop-nest in which the number of repetitions of the inner loop is not constant
but depends on the current repetition of the outer loop. For erxample, a loop-
nest that traverses the upper (or lower) triangle of a square matrix. Non-
rectangular loops pose problems for Bound-T. The Bound-T Reference Manual
discusses various forms of loops and their analysis.

Non-returning subprogram

Null context

Omega Calculator

A subprogram that never returns to its caller. For example, the C _exit function.
See universal context.

A support program used for the Presburger arithmetic analysis. The Omega
Calculator evaluates expressions and solves queries using systems of equations
and inequations expressed in Presburger Arithmetic. The executable program is
called oc or oc.exe.

Bound-T User Guide Glossary 61



Presburger Arithmetic A form of algebra that deals with affine expressions of integer-valued variables
and thus includes the operations of addition, subtraction and multiplication by
an integer constant but excludes the multiplication of two or more variables
with each other. Expressions can be compared for equality, inequality, less, or
greater. Relations can be combined with conjunction or disjunction. Both
existential and universal quantification are available. Problems in Presburger
Arithmetic are decidable (can be solved in a finite time) but the worst-case
complexity is multiply exponential, as far as is known. Bound-T uses Presburger
Arithmetic, as implemented in the Omega Calculator, for the arithmetic analysis
of loop bounds and other dynamic behaviours (dynamic jumps and calls and
dynamic memory addressing).

Procedure A subprogram which is not a function; it does not return a value as the
meaning of the call, so the call can only occur as a statement, not as an
expression.

Property 1. A target-specific value or configuration setting that can be defined with a

property assertion. See the Assertion Language manual. For example, the
number of wait states to be assumed for memory accesses.

2. A feature or characteristic of a loop or a call that can be used to identify the
loop or call in an assertion. For example, the property that the loop contains a
call to a given subprogram. See the Assertion Language manual.

Protected object A component of an HRT program that is a passive entity and acts as a
communication and synchronisation point for threads. See section 1.3.

Pruning Simplifying a control-flow graph by removing parts (nodes and edges) that are
infeasible (logically unreachable). Bound-T normally prunes all flow-graphs as
one step in the analysis, as explained in the Bound-T Reference Manual.

Rate-Monotonic Analysis

A way to analyse the schedulability of a multi-threaded program where the
threads are periodic and scheduled by priority with pre-emption. Rate-
Monotonic Analysis (RMA) assigns priorities to threads monotonically in order
of thread period so that a short-period, high-rate threads have higher priorities
than long-period, low-rate threads. With such a priority assignment the WCETs
of the threads can be plugged into mathematical formulae that show if the
thread set is schedulable (each thread can execute to completion without
overrunning its period).

Rectangular loop A loop-nest in which the inner loop repeats for the same number of times on
each repetition of the outer loop. For example, a loop-nest that traverses all
elements of a rectangular matrix in order by rows or columns.

Recursion A cyclic chain of calls between subprograms. Bound-T cannot analyse recursive
programs automatically. The Assertion Language manual explains how you can
use assertions to cut the recursion chain into analysable parts.

Reducible A control-flow graph in which any loop is entered only through a unique loop
head node, and any two loops are either nested or entirely separate.

Resolving a jump/call The analysis that determines the possible target addresses of a dynamic jump or
a dynamic call.

RMA See Rate-Monotonic Analysis.

Scheduling The allocation of processor resources (execution time) to the several threads in
a concurrent program. Specifically, the selection of which thread shall be
running at a given time.
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SSA

Stable stack
Stack

Stack frame

Stack height, final

Stack height, local

Stack, stable

Static Single Assignment. See value-origin analysis and the Bound-T Reference
Manual.

See Stack, stable.

An area of data memory in which storage space is allocated in a last-in-first-out
fashion. The memory area for a stack is usually statically created at link-time,
contiguous in the address space, and of a fixed size. At run-time, space in the
stack is usually allocated starting from one end of the area (the bottom of the
stack, although not always the low-address end) and proceeding toward the
other end; a stack pointer shows the boundary between the allocated part and
the unallocated (free) part of the area. Stacks are commonly used for storing
subprogram return addresses and the local variables (“automatic” variables) of
subprograms. Upon a subprogram call a part of the stack is allocated for this
(invocation of the) subprogram; this part is called the stack frame of this
(invocation of the) subprogram. Upon return from the subprogram the stack
frame is usually deallocated, although some compilers delay the deallocation
until a later point. Thus, the amount of space allocated in the stack, or the stack
usage, varies dynamically during a program's execution. Stack overflow happens
when the program tries to allocate more stack space than the stack area can
hold. Stack overflow can make the program abort, compute wrong results, or
fail in some other way. Static program analysis can compute an upper bound on
the stack usage; if the size of the stack area is defined accordingly, stack
overflow is safely avoided.

The section of a stack that is allocated for (an invocation of) a subprogram.
Commonly used to hold the return address and local variables and working
space of the subprogram (invocation). Data in the stack frame is usually
addressed (accessed) by means of a static offset from the (dynamic) stack
pointer. The size of the stack frame for a given subprogram can be static (same
for all invocations of the subprogram) or dynamic (depend in some way on the
parameters or other context of the invocation). When the size of the stack
frame is dynamic programs often use a secondary pointer, the frame pointer,
that points at the start of the stack frame. The stack pointer itself points to the
end (or beyond the end) of the stack frame, and thus the offsets from the stack
pointer to statically placed data in the frame would be dynamic, while offsets
from the frame pointer are still static.

The local stack height (which see) on return from a subprogram. Equals the net
amount of stack space allocated (positive) and deallocated (negative) during
the execution of the subprogram. The execution of a subprogram call changes
the local stack height of the caller by an amount equal to the final stack height
of the callee.

The amount of stack space that is allocated for a particular (invocation of a)
subprogram, at a particular point in the execution of the subprogram. Formally,
the difference between the current value of the stack pointer and the value of
the stack pointer on entry to the current subprogram, counted positive in the
direction of stack growth and expressed in some processor-specific units
(usually octets, on octet-addressed processors). Local stack height usually
excludes stack space used by parameters for this subprogram; that space is
instead counted in the local stack height of the caller, where it is allocated. Vice
versa, stack space for parameters that this subprogram provides to its callees is
usually included in the local stack height measure. See stack and section 4.

A stack is called stable if the final stack height is always zero for this stack, for
any subprogram. In other words, the stack pointer for this stack has the same
value before and after any call to any subprogram. See Stack height, final.
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Stack, unstable A stack is called unstable if it is not a stable stack or, in other words, the final
stack height may be non-zero. See Stack, stable and Stack height, final.

Stack usage The amount of space that is used (allocated) in a stack, at a particular point in
the execution of a program. The stack usage of a subprogram (call) is the largest
amount of space allocated in the stack for this subprogram (call) including
space allocated in lower-level callees but excluding space allocated by higher-
level callers. Also called total stack usage, as opposed to local stack usage which
is another word for local stack height, which see. See stack.

Static Single Assignment — see SSA.

Step A part (a vertex) of a Bound-T control-flow graph that represents the smallest
unit of program flow. A step usually models one machine instruction in the
target program, but some complex instructions may be modelled by several
steps and some special instruction sequences may be combined into one step.
Steps are connected by (step) edges that model the flow of control from one
instruction to the next. A maximal linear sequence of steps that can be entered
only at the first step and left only from the last step is a basic block, often called
a node in Bound-T.

Storage cell A part of the target processor that can store a numeric of Boolean value; a
register, flag, or memory location. Instructions use the values of storage cells to
compute expressions, and may store the computed expressions in the same or
other cells, overwriting the old values of those cells. The values stored in cells
can determine the flow of execution through conditional or dynamic jumps and
calls.

Stub A subprogram that is not analysed and is instead seen as a “black box” that
consumes some execution time, uses some stack space, and may have some
effect on storage cells (variables, registers). A subprogram becomes a stub in
one of three ways: by an unused assertion, by an omit assertion, or by asserting
bounds on the execution time and/or stack usage so that analysis of the
subprogram is not necessary.

Subprogram A callable (closed) subroutine — a function or a procedure — in the target
program.
Suffix context A call path (which see) that leads to a particular subprogram (the callee of the

last call on the path) is a suffix context for this subprogram and, in particular,
for any execution of this subprogram in which the full context (which see) ends
with this call path.

Take-off height The caller’s local stack height at the point of a call. Usually includes all stacked
parameters for the call and also the return address. See section 4.

Target (address) See Destination.

Target processor The processor that will (eventually) run the target program being analysed by

Bound-T. Bound-T, however, is run on the host computer, which is usually
different from the target processor.

Target program The real-time program that runs (or will run) on the target processor. The
execution time or stack usage of the target program are of interest. The target
program may or may not be an HRT program. The program must be compiled
and linked for execution on the target processor and stored in an executable file
before it can be analysed by Bound-T.

Task See thread.
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Thread

TPO file
TPOF

Triangular loop
Universal bounds
Unreachable code

Universal context

Unresolved jump/call

Unstable stack

Value-origin analysis

Variable

WCET

Virtual function

An active component of a program, executing program statements sequentially.
Some programs have a single thread of exection, but many real-time programs
are multi-threaded, i.e. several threads are executing concurrently. The number
of threads that can be (truly) executed in parallel depends on the number of
processors in the target system.

For Bound-T, the usual assumption is that there is one processor, which is
shared among the threads via thread scheduling. See section 1.3.

Threads and Protected Objects File. See TPOF.

Threads and Protected Objects File. The user-supplied text file that lists and
describes the structure of an HRT program, for HRT-mode analysis by Bound-T.
See section 1.3.

A special case of non-rectangular loop, which see.
See context-free bounds.
See infeasible code.

Synonym for null context, applied when a subprogram is analysed in isolation,
without considering the context of a particular call or call path leading to the
subprogram.

A dynamic jump or dynamic call that has not been fully resolved. Thus, Bound-T
may not know all the possible target addresses. Some parts of the target
program may then be missing from the analysis and the analysis results may be
unsafe, for example the WCET bound may be less than the true WCET.

See Stack, unstable.

A form of data-flow analysis that determines the possible origins of the value of
a variable at a point where that variable is used. The origin is often an
instruction that stores the result of some computation in the variable. However,
an instruction that simply copies the value of another variable is not considered
to be the origin of a value (copy propagation is applied). If the variable has no
origin in the current subprogram then the variable is an input to this
subprogram. The Reference Manual explains how Bound-T uses value-origin
analysis. Value-origin analysis is similar to SSA.

A memory location or register in the target processor in which the target
program stores some value. For Bound-T, the same as a storage cell, which see.

Worst-Case Execution Time of a subprogram. The maximum time required to
execute the subprogram in the target processor, when any initial execution state
(parameter values, global values) is allowed.

Although the abbreviation WCET in principle means the true worst-case
execution time, in practice it is often used for an upper bound on the true value.
For example, the number of cycles given in a Wcet output line from Bound-T is
usually an upper bound, not the true value.

It is not defined if the WCET also allows any pattern of interference from
interrupts and thread scheduling. Such interference could affect the perfor-
mance of the processor cache, and increase (or decrease) the subprogram's
execution time, even when the execution time of the interfering threads is
excluded.

In object-oriented programming (and particularly in C++), a function (sub-
program) that is defined with the same name and parameters for a class and its
subclasses (thus inherited from the class to the subclasses), but may have a
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Virtual function call

different implementation (different code) for the class and each of the
subclasses. A subclass may thus override the implementation it inherits from its
superclass.

A call to a virtual function (which see) for an object of a dynamically defined
class. Thus, while the compiler knows the class hierarchy to which the object
belongs (usually identified by the root class), at run-time the object may belong
to any class in that hierarchy (any subclass of the root class). At run-time the
call must therefore dispatch by inspecting the actual class of the object and
invoking the corresponding implementation of the virtual function. In C++ this
is done by associating a virtual function table with each class. At the machine
level a virtual function call becomes some kind of dynamic or indirect call,
which see.

Worst-case execution time — see WCET.

Worst-case stack path

The call-path, starting at a root subprogram, that consumes the largest amount
of stack space when the stack usage of all path levels is included. See
Chapter 4. There can be several different call-paths that consume the same
maximal amount of stack space. For programs that use more than one stack
each stack may have a different worst-case stack path or paths.
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