User's Manual

For

2MA2278

High Performance Microstepping Driver

Version 1.0 2012 All Rights Reserved

Attention: Please read this manual carefully before using the driver!

Easy Commercial Global Technology Co., LTD

*** Savebase ***

ECG Safety Statement

Easy Commercial Global is not liable or responsible for any accidents, injuries, equipment damage, property damage, loss of money or loss of time resulting from improper use of electrical or mechanical or software products sold on this website or other Easy Commercial Global sales resources.

Since Easy Commercial Global basically provide OEM machine builders components to build their machines for their own use or third party use it is their responsibility to maintain certify and comply the end user products built base on our components sold on this website or other Easy Commercial Global sales resources.

Assembling electrical CNC machine component like power supplies, motors, drivers or other electrical components involve dealing with high voltage like AC alternative current or DC direct current which is extremely dangerous and need high attention & essential experience and knowledge of software, electricity, electro-mechanics & or mechanics.

For technical questions please contact us at ebay@savebase.com before purchase.

2012 Easy Commercial Global Technology Corporation Limited All Rights Reserved

1. Introduction, Features and Applications Introduction

The 2MA2278 is a high performance and low noise microstepping driver based on pure-sinusoidal current control technology. It's suitable for driving 2-phase and 4-phase hybrid stepping motors. By using advanced bipolar constant-current chopping technique, the 2MA2278 can output more torque than other drivers at high speed. The microstep capability allows stepping motors to run at higher smoothness, less vibration and lower noise. Its pure-sinusoidal current control technology allows coil current to be well controlled with relatively small current ripple, therefore smaller motor noise and less motor heating can be achieved.

Features

- High quality, cost-effective
- Low motor & driver heating
- Supply voltage from "80V AC to 240V(peak) AC" or "110V DC to 350V(peak) DC"
- Output current from 0.45A (0.32A AVG) to 7.8A (5.57A AVG)
- TTL compatible and opto-isolated inputs
- Automatic idle-current reduction
- Input frequency up to 400 KHz
- 16 microstep resolutions selectable
- Suitable for 2-phase and 4-phase stepping motors
- DIP switch microstep & current settings
- Support PUL/DIR & CW/CCW modes

Applications

Suitable for large and medium automation machines and equipments, such as engraving machines, labeling machines, cutting machines, laser phototypesetting systems, plotting instruments, CNC machines, pick-place devices, and so on. Particularly adapt to the applications desired with low noise, low vibration, high speed and high precision.

2. Specifications

Electrical Specifications $(T_i = 25^{\circ}C/77^{\circ}F)$

Danamatana	NC-2MA2278				
Parameters	Min	Typical	Max	Unit	
Output current	0.45(0.32A avg)	-	7.8(5.57A avg)	A	
Supply voltage	80	180	220	VAC	
Logic signal current	7	10	16	mA	
Pulse input frequency	0	-	400	KHz	
Isolation resistance	500			МΩ	

Operating Environment and other Specifications

Email: ebay@savebase.com

Cooling	Natural Cooling or Forced cooling		
	Environment	Avoid dust, oil fog and corrosive gases	
	Ambient Temperature	0 °C− 50°C (32°F − 122°F)	
Operating Environment	Humidity	40%RH — 90%RH	
	Operating Temperature	70°C (158°F) Max	
	Vibration	5.9m/s ₂ Max	
Storage Temperature	-20 °C − 65°C (-4°F − 149°F)		
Weight	Approx. 1000g		

Mechanical Specifications (unit: mm)

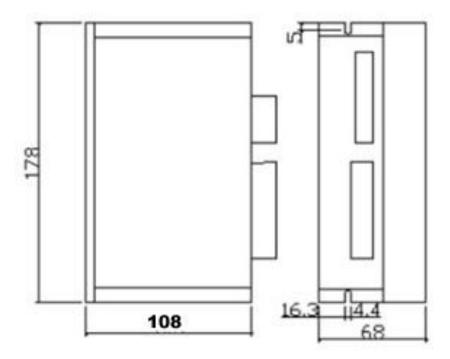


Figure 1: Mechanical specifications

 ${\rm *Recommend\ use\ side\ mounting\ for\ better\ heat\ dissipation\ Elimination\ of\ Heat}$

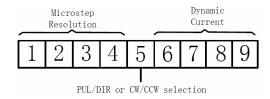
- Driver's reliable working temperature should be $<70^{\circ}\text{C}(158^{\circ}\text{F})$, and motor working temperature should be $<80^{\circ}\text{C}(176^{\circ}\text{F})$;
- It is recommended to use automatic idle-current mode, namely current automatically reduce to 60% when motor stops, so as to reduce driver heating and motor heating;
- It is recommended to mount the driver vertically to maximize heat sink area. Use forced cooling method to cool the system if necessary.

3. Pin Assignment and Description

The 2MA2278 has two connectors, connector P1 for control signals connections, and connector P2 for power and motor connections. The following tables are brief descriptions of the two connectors of the 2MA2278.

Connector P1 Configurations

Pin Function	Details
PUL+	Pulse signal: In single pulse (pulse/direction) mode, this input represents pulse signal; 4-5V when PUL-HIGH,
	0-0.5V when PUL-LOW. In double pulse mode(pulse/pulse), this input represents clockwise (CW) pulse, active
PUL-	at high level or low level (set by inside jumper J1 & J2). For reliable response, pulse width should be longer than
	1.5 µ s. Series connect resistors for current-limiting when+12V or +24V used. The same as DIR and ENA signals.
DIR+	DIR signal: In single-pulse mode, this signal has low/high voltage levels, representing two directions of motor
	rotation; in double-pulse mode (set by inside jumper J1 & J2), this signal is counter-clock (CCW) pulse. For
	reliable motion response, DIR signal should be ahead of PUL signal by 5 µs at least. 4-5V when DIR-HIGH,
DIR-	0-0.5V when DIR-LOW. Please note that motion direction is also related to motor-driver wiring match.
	Exchanging the connection of two wires for a coil to the driver will reverse motion direction.
ENA+	Enable signal: This signal is used for enabling/disabling the driver. High level (NPN control signal, PNP and


ENA-	Differential control signals are on the contrary, namely Low level for enabling.) for enabling the driver and low			
	level for disabling the driver. Usually left UNCONNECTED (ENABLED)			
READY+	Alarm signal positive: READY+ is an opto-coupler output from open-collector circuit, maximum permitted			
	input voltage is 30VDC; maximum output current 20mA. It generally can be serial connected to PLC input			
	terminal.			
READY-	Alarm signal negative.			

Connector P2 Configurations

Pin Function	Details
AC	AC power supply inputs. Recommend use isolation transformers with theoretical output voltage of $80\!\sim\!180$
AC	VAC, leaving room for power fluctuation and back-EMF.
A+, A-	Motor Phase A
B+, B-	Motor Phase B
PE	Ground terminal. Recommend connect this port to the ground for better safety.

4. Selecting Microstep Resolution and Driver Output Current

This driver uses a 9-bit DIP switch to set microstep resolution, motor operating current and control signal mode as shown in the following figure:

Notes: SW5 ON means CW/CCW (pulse/pulse) mode, and SW5 OFF means PUL/DIR mode

Microstep Resolution Selection

Microstep resolution is set by SW1, 2, 3, 4 of the DIP switch as shown in the following table:

Microstep	Steps/rev.(for1.8° motor)	SW1	SW2	SW3	SW4
2	400	ON	ON	ON	ON
2.5	500	OFF	ON	ON	ON
3	600	ON	OFF	ON	ON
4	800	OFF	OFF	ON	ON
5	1000	ON	ON	OFF	ON
6	1200	OFF	ON	OFF	ON
8	1600	ON	OFF	OFF	ON
10	2000	OFF	OFF	OFF	ON
12	2400	ON	ON	ON	OFF
16	3200	OFF	ON	ON	OFF
20	4000	ON	OFF	ON	OFF
25	5000	OFF	OFF	ON	OFF
30	6000	ON	ON	OFF	OFF
32	6400	OFF	ON	OFF	OFF
40	8000	ON	OFF	OFF	OFF
50	10000	OFF	OFF	OFF	OFF

Current Settings

Email: ebay@savebase.com

The latter four bits (SW6, 7, 8, 9) of the DIP switch are used to set the dynamic current. Select a setting closest to your motor's required current.

Dynamic current setting

Peak current(A)	RMS(A)	SW6	SW7	SW8	SW9
0.45	0.32	OFF	OFF	OFF	OFF
0.63	0.45	OFF	OFF	OFF	ON
1.41	1.00	OFF	OFF	ON	OFF
1.88	1.34	OFF	OFF	ON	ON
2.33	1.66	OFF	ON	OFF	OFF
2.85	2.04	OFF	ON	OFF	ON
3.23	2.31	OFF	ON	ON	OFF
3.75	2.68	OFF	ON	ON	ON
4.26	3.04	ON	OFF	OFF	OFF
4.65	3.32	ON	OFF	OFF	ON
5.18	3.70	ON	OFF	ON	OFF
5.55	3.96	ON	OFF	ON	ON
6.15	4.39	ON	ON	OFF	OFF
6.60	4.71	ON	ON	OFF	ON
7.20	5.14	ON	ON	ON	OFF
7.80	5.57	ON	ON	ON	ON

Notes: Due to motor inductance, the actual current in the coil may be smaller than the dynamic current setting, particularly under high speed condition.

Standstill Current

The NC-2MA2278 has automatic idle-current reduction function. The current automatically be reduced to 60% of the selected dynamic current setting 0.2 second after the last pulse. Theoretically, this will reduce motor heating to 36% (due to $P=I_2*R$) of the original value. If the application needs a different standstill current, please contact with us.

Control Signal Mode Setting

Email: ebay@savebase.com

SW5 is used for this purpose. SW5 ON means CW/CCW (pulse/pulse) mode, and SW5 OFF means PUL/DIR mode.

5. Typical Connection

A complete stepping system should include stepping motor, stepping driver, power supply and controller (pulse generator). A typical connection is shown as figure 2.

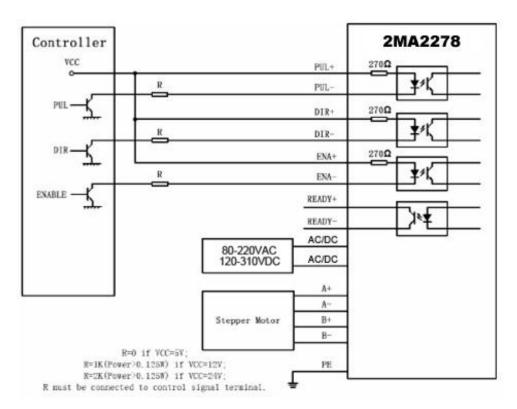


Figure 2: Typical connection