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System modelling

Indirect modelling
MODULE main

VAR a : boolean;
b : 0..4;

ASSIGN init(a):= TRUE;
next(a):= !a;
init(b):= {0,2,4};
next(b):= case

next(a) : {0,2,4};
!next(a) : {1,3}; 

esac;

CTLSPEC AG(a -> b in {0,2,4})

INVARSPEC (!a -> b in {1,3})

Direct modelling
MODULE main

VAR a : boolean;
b : 0..4;

INIT a = TRUE &
b in {0,2,4};

TRANS next(a) = !a;
TRANS next(b) in case

next(a) : {0,2,4};
!next(a) : {1,3}; 

esac;

CTLSPEC AG(a -> b in {0,2,4})

INVARSPEC (!a -> b in {1,3})
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System modelling

Indirect modelling
● Behaviour of an automaton is defined by specifying initial and 

next values of state variables.

● Example:

ASSIGN init(a):= TRUE;
next(a):= !a;
init(b):= {0,2,4};
next(b):= case

next(a) : {0,2,4};
!next(a) : {1,3};

esac;

● Operator init defines the initial value of a variable.

● Operator next defines the value of a variable in the next state.
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System modelling

Indirect modelling
● If the initial value of a variable is not given, it will get any value 

from its range of values.
(There exists at least 1 initial state.)

● If the next value of a variable is not given, it will get any value 
from its range of values.

(There exists at least 1 next state for every state.)

Remark
● Every model defined indirectly can be defined directly.

● Not every model defined directly can be defined indirectly. 
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System modelling

Direct modelling
● Behaviour of an automaton is defined by logic expressions.

● Logic expressions express:
● initial states,

● reachable states,

● transitions between states.

● Results of lack of expressions or of their mutual contradiction:
● an empty set of initial states,

● unreachable states,

● lack of reachable states.
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Direct modelling
● Specification of initial values of variables:

INIT logic_expression

● The expression given after INIT describes initial values of variables.

● Example of specification of values of variables a and b:

INIT a = TRUE &
b in {0,2,4}

● If the initial value of a variable is not given,
it will get any value from its range of values.

● If an untrue expression is given, then there are no initial states 
(model verification may be incorrect).

● Using the operator next is not allowed.

System modelling
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System modelling

Direct modelling
● Specification of reachable states by state invariants:

INVAR logic_expression

● The expression given after INVAR describes the values of variables,
that characterise every state.

● Example of specification of values of variables a and b:

INVAR a=TRUE | a=FALSE

INVAR !a -> b in {1,3}

● If an untrue expression is given, then there are no reachable 
states (model verification may be incorrect).

● Invariant definitions are not mandatory.

● Using the operator next is not allowed.
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System modelling

Direct modelling
● Specification of allowed transitions between states:

TRANS logic_expression

● The expression given after TRANS describes allowed values of variables 
in the next state.

● Example of specification of next values of variables a and b:

TRANS next(a) = !a;
TRANS next(b) in case

next(a) : {0,2,4};
!next(a) : {1,3};

esac;

● If an untrue expression is given, then there may be no next 
state (model verification may be incorrect).
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System modelling

Direct modelling
● INVAR or INIT combined with TRANS?

● 1st way – invariantly a = 1:

INVAR a=1

● 2nd way – in the initial and every following state a = 1:

INIT a=1
TRANS next(a)=1

● The effect seems to be the same, but the 1st way is more effective.

– In this situation it is recommended to use an invariant.
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System modelling

FAIRNESS constraints
● Constraint JUSTICE expression

● Alternatively: FAIRNESS expression

● Model verification consists of these paths only, where the expression is 
true infinitely many times, e.g.:

VAR a : boolean;
JUSTICE !a

● It corresponds to the formula AG(AF((a))).

● Using the operator next in the expression is not allowed.
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System modelling

FAIRNESS constraints
● Constraint COMPASSION (expression1,expression2)

● Model verification consists of these paths only, where:

– if the expression1 is true infinitely many times,
– then the expression2 is also true infinitely many times

on the same paths, e.g.:

VAR a : boolean;
b : boolean;

COMPASSION (!a,!b)

● It corresponds to the formula AG(AG(AF((a)))  AG(AF((b)))).

● Using the operator next in the expressions is not allowed.

● NuSMV does not fully support the COMPASSION yet.
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Synchronous and asynchronous model of a system
● In the synchronous model, in one step:

● a change of state of every module takes place in parallel

– a simultaneous change of values of variables (according to the 
specification) in every module.

● In the asynchronous model, in one step:
● a change of state of one module (process) takes place

– a change of values of variables (according to the specification)
in one module.

● Sequence of processes is random.

● Variables of other processes remain unchanged in this step.

● Processes are nod used now (they are “deprecated”).

System modelling
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System modelling

Nondeterminism
● Definition of a variable requires to give a set of its values, e.g.:

VAR
a : 0..10;
b : {s1, s2, s3};

● If no instruction assigns any value to a variable,
then the variable gets a random value of the range of its values.

● If an instruction assigns a subset of a variable's set of values to 
the variable, then the variable gets a random value of this 
subset, e.g.:

a := {s1,s3}
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System modelling

Example: aircraft–intruder model
● Description of the situation:

● A runway intersects a taxiway.

● An aircraft begins moving before the intersection, accelerating.

● The aircraft, accelerating, reaches the V1 velocity (after time 6..8),
and then takes off (after time 1..3).

● The take-off of the aircraft may happen before, on or after the intersection.

● An intruder may appear on the intersection at any moment.

● The intruder, when appears on the intersection, does not disappear from it.

● If the aircraft accelerates  before, on, or after the intersection, where the 
intruder appears, it decelerate, if its velocity < V1.

● Decelerating aircraft stops (after time 3..4) before, on, or after the intersection.

● If the aircraft and the intruder are on the intersection, a collision may happen.

● Final states: the aircraft takes off, the aircraft stands, there is a collision.
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System modelling

MODULE main

VAR
--location of the aircraft
--in relation to the intersection
location : {before, on, after};
--kind of a movement of the aircraft
movement: {accelerating, decelerating, standing, taking_off};
--time of the movement (reset to zero at the moment
--of the beginning of a new movement kind)
t : 0..9;
--intruder on the intersection
intruder : boolean;
--collision with the intruder
collision : boolean;
--aircraft's velocity >= v1 (deceleration is forbidden)
v1 : boolean;
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System modelling

--INITIAL STATE

INIT
--the aircraft is before the intersection
location = before &
--the aircraft is accelerating
movement = accelerating &
--the time of acceleration begins
t = 0 &
--there is no intruder on the intersection
intruder = FALSE &
--there is no collision
collision = FALSE &
--the aircraft's velocity < v1
v1 = FALSE
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System modelling

--BEHAVIOUR OF THE CLOCK t

TRANS next(t) in case
--resetting the clock when taking-off starts
movement = accelerating & next(movement) = taking_off : 0;
--resetting the clock when decelerating start
movement = accelerating & next(movement) = decelerating : 0;
--resetting the clock when standing starts
movement = decelerating & next(movement) = standing : 0;
--in other case, with any automaton state change,
--one time unit passes
TRUE : (t + 1) mod 10; esac;
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System modelling

--BEHAVIOUR OF THE INTRUDER

TRANS next(intruder) in case
--the intruder may appear at any moment
!intruder : {FALSE,TRUE};
--the intruder cannot disappear from the intersection,
--if it already is there
TRUE : intruder; esac;
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System modelling

--BEHAVIOUR OF THE v1 VELOCITY

TRANS next(v1) in case
--the v1 cannot be reached in the time t < 6
!v1 & movement = accelerating & t<6 : FALSE;
--the v1 may be reached in the time t < 8
!v1 & movement = accelerating & t<8 : {TRUE,FALSE};
--the v1 is reached at most in the time t = 8
!v1 & movement = accelerating & t=8 : TRUE;
--once reached, the v1 velocity does not get smaller
TRUE : v1; esac;
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System modelling

--BEHAVIOUR OF THE COLLISION

--the collision is impossible, if there is no intruder
--or the aircraft is before the intersection
INVAR !intruder | location = before -> !collision;

TRANS next(collision) in case
--if there is the collision, it will not pass away
collision : TRUE;
--if there is no collision, it is possible then,
--if the intruder and the aircraft are on the intersection
intruder & location = on : {FALSE, TRUE};
--other states do not affect the collision
TRUE : collision; esac;
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System modelling

--BEHAVIOUR OF THE LOCATION OF THE AIRCRAFT

TRANS next(location) in case
--the standing or taking-off aircraft does not change
--its location (final state)
movement = standing | movement = taking_off : location;
--the aircraft being before the intersection may enter it
location = before : {before, on};
--the aircraft being on the intersection may leave it
location = on : {on, after};
--the aircraft being after the intersection does not change
--its location
location = after: after; esac;
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System modelling

--BEHAVIOUR OF THE MOVEMENT OF THE AIRCRAFT (1)

TRANS next(movement) in case
--the aircraft accelerating with the velocity >= v1
--cannot take off if there is the collision
--(no change of movement kind)
movement = accelerating & v1 & collision : accelerating;
--the aircraft accelerating with the velocity >= v1
--cannot take off in time t < 1
movement = accelerating & v1 & t<1 : accelerating;
--the aircraft accelerating with the velocity >= v1
--may take off in time t < 3 (if there is no collision)
movement = accelerating & v1 & t<3 :

{accelerating, taking_off};
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System modelling

--BEHAVIOUR OF THE MOVEMENT OF THE AIRCRAFT (2)

-- ...
--the aircraft accelerating with the velocity >= v1 takes off
--at last in the time t = 3 (if there is no collision)
movement = accelerating & v1 & t=3 : taking_off;
--the aircraft accelerating with the velocity < v1
--still accelerates, if there is no intruder
movement = accelerating & !v1 & !intruder : accelerating;
--the aircraft accelerating with the velocity < v1
--decelerates, if there is the intruder on the intersection
movement = accelerating & !v1 & intruder : decelerating;
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System modelling

--BEHAVIOUR OF THE MOVEMENT OF THE AIRCRAFT (3)

-- ...
--the decelerating aircraft cannot stop in the time t < 3
movement = decelerating & t < 3 : decelerating;
--the decelerating aircraft may stop in the time t < 4
movement = decelerating & t < 4 : {decelerating, standing};
--the decelerating aircraft will stop at last in the time t=4
movement = decelerating & t = 4 : standing;
--the standing or taking off aircraft does not change
--its kind of movement
movement = standing | movement = taking_off : movement;
--other states do not affect the movement
TRUE : movement; esac;
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Mistakes in system 
modelling

● Different definitions of a variable

● Recursive definition of a variable

● Mutual dependency of variables

● Contradictions in expressions INIT, INVAR and TRANS
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Mistakes in system modelling

Different definitions of a variable
● Every variable should have one definition only, that defines its 

value for a given state:
● wrong: init(a) := TRUE;

init(a) := FALSE;

● wrong: b := a;
b := a+1;

● wrong: init(c) := a;
c := b;

● good: init(a) := {TRUE,FALSE};



32

Mistakes in system modelling

Recursive definition of a variable
● Value of a variable cannot depend on its value from the same 

state:
● wrong: a := a+1;

● wrong: next(a) := next(a)+1;

● But it may depend on its value from the next state:
● good: next(a) := a+1;
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Mistakes in system modelling

Mutual dependency of variables
● Values of variables in the same state cannot be mutually 

dependent:
● wrong: a := b+1;

b := a-1;

● wrong: next(a) := next(b);
next(b) := next(a);

● But values of variables in different states may be mutually 
dependent:

● good: next(a) := b;
next(b) := a;

● good: next(a) := next(b);
next(b) := a;
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Mistakes in system modelling

Contradictions in expressions INIT, INVAR and TRANS

● If an untrue expression INIT is given,
then there are no initial states.

● If an untrue expression INVAR is given,
then there are no reachable states.

● If an untrue expression TRANS is given,
then there may not be a next state.

● These mistakes are reported by NuSMV.

● These mistakes may lead to an incorrect model verification.
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System verification

● Possibilities

● Property kinds to verify

● Counting a minimal and maximal path of states

● Example for the aircraft–intruder model
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System verification

Possibilities
● Verification is automatic.

● Specification of a system is given by temporal logic formulas.

● Available logics: LTL, CTL, LTL–, RTCTL (with upper and lower 
bounds for temporal operators) and PSL.

● All well–formed formulas are allowed.

● Every formulas is verified independently of the others.

● Verification of a formula returns true or false.

● The false result is returned with a counterexample (a path of states),
if it can be generated.

● Length of minimal and maximal path between two determined states 
can by counted.
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System verification

Property kinds to verify
● Properties described in LTL logic (dealing with linear time):

LTLSPEC LTL_formula
● Properties described in CTL logic (dealing with branching time):

CTLSPEC CTL_formula
● Properties described in logics LTL–, PSL, RTCTL.

● Invariants (dealing with every state of the model):

INVARSPEC logic_expression
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System verification

Counting a minimal and maximal path of states
● Expression COMPUTE counts length of a path (number of states) 

between two specified states.

● Specification of a state is a logic expression expressing values 
of selected state variables in this state.

● Counting the minimal path:

COMPUTE MIN[state1,state2]

● Counting the maximal path:

COMPUTE MAX[state1,state2]

● The result is a number of states or INFINITY.
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System verification

Example for the aircraft–intruder model

Verification of correct behaviour of the clock:

-- Incrementation of the clock with every state change (mod 10)
CTLSPEC AG(t=0 -> AX(t=1))
CTLSPEC AG(t=9 -> AX(t=0))
COMPUTE MIN[t=0,t=1] --should be 1
COMPUTE MAX[t=0,t=1] --should be 1

-- Change of a kind of movement of the aircraft resets the clock
--(e.g. change from decelerating to standing)

CTLSPEC AG(movement=decelerating & AX(movement=standing)
-> AX(t=0))

CTLSPEC AG(movement=decelerating & AX(movement=standing)&t!=0
-> AX(t=0))
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System verification

Example for the aircraft–intruder model

Verification of behaviour of the velocity V1:

--Accelerating aircraft reaches the v1 velocity
--after time 6..8

CTLSPEC EF(!v1 & movement=accelerating -> EX v1)
CTLSPEC AG(!v1 & movement=accelerating & t=8 -> AX v1)
CTLSPEC AG(!v1 & movement=accelerating & t<6 -> AX !v1)
CTLSPEC AG(!v1 & movement=accelerating & t>=6 & t<8

-> EX !v1) --correct
CTLSPEC AG(!v1 & movement=accelerating & t>=6 & t<8

-> AX !v1) --incorrect
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Interactive work

● Initial operations

● Model verification

● Model simulation

● Restart and end of work

● Executions of a script with operations

● Description of operations performed by NuSMV
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Interactive work

Initial operations
The order of the operations is optimal.

● Start working with a .smv file in the interactive mode:

NuSMV -int file

● Read the model of a system:

read_model

● Create modules and processes:

flatten_hierarchy

● Show a list of input variables and state variables:
(optional)

show_vars
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Interactive work

Initial operations
● Show variables that are dependent on a given expression:

(optional)

show_dependencies -e expession

● Create variables to compile the model into BDD (binary 
decision diagrams):

encode_variables

● Write the order of variables to a file:
(optional)

write_order

● Compile the model into BDD:

build_model
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Interactive work

Initial operations
● Initialise the system ready to be verified:

go

● Read and compile the model into BDD, verify the model and 
count a set of reachable states:

process_model

● Count a set of reachable states:

compute_reachable

● Show reachable states:

print_reachable_states -v
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Interactive work

Model verification
● Show all properties:

show_property

● Add a property of a given kind to the verification:

add_property -kind -p ”formula”

● Add the property to verification in the context of a given module:

add_property -kind -p ”formula IN module”

Kind: c (CTL formula), l (LTL formula), s (PSL formula), i (invariant),
q (counting a path).
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Interactive work

Model verification
● Verify a CTL specification of a given number:

check_ctlspec -n number

● Verify a given formula with a CTL specification:

check_ctlspec -p ”formula”

● Verify a given formula with a CTL specification
in the context of a given module:

check_ctlspec -p ”formula IN module”

Similarly for LTL specification: check_ltlspec
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Interactive work

Model verification
● Check possibility of a deadlock of the system:

check_fsm

● Count length of a path between given states
(for a given number of an expression):

check_compute -n number

● Count the minimal path between given states:

check_compute -p ”MIN[state1,state2]”

● Count the maximal path between given states
in the context of a given module:

check_compute -p ”MAX[state1,state2] IN module”
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Interactive work

Model verification
● Verify an invariant of a given number:

check_invar -n number

● Verify a given invariant:

check_invar -p ”invariant”

● Verify a given invariant in the context of a given module:

check_invar -p ”invariant IN module”
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Interactive work

Model simulation
● Choose an initial state randomly:

pick_state -r

● Choose an initial state from the list of available states:

pick_state -i
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Interactive work

Model simulation
● Make a simulation from a chosen state:

simulate [-p|-v] [-r|-i] [-k number_of_states]

● show changed state variables: -p

● show all state variables: -v

● randomly choose from available states: -r

● manually choose from available states: -i

● give length of path of states (e.g. 4): -k 4

(The simulation consists of 10–state paths by default.)

● Examples:

simulate -p -r -k 5
simulate -v -i
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Interactive work

Model simulation
A chosen path of states analysis:

● Paths of states are created in result of a negative verification of 
a formula, and in result of a simulation.

● Show generated paths:
● all: show_traces -v -a

● a chosen one: show_traces -v path_number

● a chosen one with states (from – to):
show_traces -v 
path_number.from_state_number:to_state_number

● Show a number of generated paths:

show_traces -t



52

Interactive work

Model simulation
A chosen path of states analysis:

● Go to a chosen state of a chosen path:

goto_state path_number.state_number

● Show description of the current state of the current path:

print_current_state -v
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Interactive work

Restart and end of work

● Restart of work (reset of adjustments):

reset

● End of work (reset of adjustments):

quit
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Interactive work

Executions of a script with operations
● Automatically make a given sequence of operations from a file:

NuSMV -source file

● If an error occurs, further operations cannot be executed.

Description of operations performed by NuSMV
● Set verbosity of operations performed by NuSMV:

NuSMV -v N -int file

(N – level of verbosity: from 0 (nothing) to 4)



The end
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