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Preface 

This document is a collection of end-user guidelines for the ALMA tool chain. The 
user perspective for most parts of the ALMA tool flow components will be presented. 
It provides advice for an optimal use of the ALMA tool chain to create faster 
applications on Multiprocessor and Multicore systems.  

  

Abstract 

The ALMA project main product is the ALMA tool chain that is an end-to-end tool 
chain from a high-level program representation directly to embedded Multiprocessor 
System-on-Chip (MPSoC) platforms. The ALMA tool chain is not tailored to a specific 
platform, but rather abstracts the underlying parallel hardware architecture by the 
introduction of the Architecture Description Language. Various intermediate code 
representation optimizations, including polyhedral analysis and control and data flow 
graph optimization are introduced, before the parallel code is presented to the 
platform specific tools. This document provides end-user guidelines towards 
extracting the best performance from applications created using the ALMA tool chain. 
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CAS Cycle Accurate Simulator 

CDFG Control and Data Flow Graph 

CLI Command Line Interface 

DDL Data Description Language 

ELF Executable and Linking Format  

GeCoS Generic Compiler Suite 

ILP Instruction Level Pipelining 

IR Intermediate Representation 

ISS Instruction Set Simulator 

KAHRISMA KArlsruhe's Hypermorphic Reconfigurable-Instruction-Set Multi-
grained-Array Processor 

LTI Linear Time-Invariant 

MPSoC Multiprocessor System on Chip 

SCoP Static Control Part 

SIMD Single Instruction Multiple Data 

SoC System-on-Chip 

SSA Static Single Assignment 

SWP Sub-Word Parallelism 
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1 Introduction  
This document presents guidelines specific to the ALMA methodology and how the 
ALMA tool chain can be effectively used for the design and development of 
applications for embedded computing systems relying on multicore architectures. 
The ALMA tool chain receives a special Scilab-based [1] dialect and produces 
binaries for the designated Multicore Parallel System-on-Chip (MPSoC) platform.  

The following section presents a high-level overview of the whole ALMA framework; 
more information about the ALMA framework can be obtained in [3,4,5,6]. A design 
methodology specific for the ALMA tool chain follows, which summarizes the 
guidelines presented in this document. Front-end tools, the input language and 
intermediate code optimizations are presented next. Guidelines for the two big 
optimization engines, the fine grain parallelism engine and the coarse grain 
parallelism engine, are presented in the following sections. These sections give a 
user-level overview for the engines as well as advice for a better exploitation of those 
engines. The ALMA multicore simulator is presented afterwards. The simulator 
participates in an internal optimization loop to improve the results of the optimization 
engine and is also available to the end users in order to benchmark and profile their 
applications. A demonstrator on the use of the ALMA components follows. In the 
document annex, the ALMA Toolchain User Guide and the Matrix Frontend User 
Guide are provided for reference. 

2 The ALMA Framework 
The ALMA framework offers a platform agnostic tool flow from Scilab [1] input code 
directly to Multiprocessor System-on-Chip (MPSoC) architectures. The Scilab 
language subset supported by the ALMA tools is described in D4.2 [7]. It also 
provides a detailed technical description of the tool chain. 
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Figure 1: ALMA tool flow from the user perspective 
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Figure 2: ALMA tool chain architecture 

 

A user perspective of the ALMA tool flow is presented in Figure 1. The components 
of the ALMA tool chain are presented in Figure 2. The inputs to the ALMA tool flow 
are the program code in Scilab and the architecture definition given in the 
Architecture Description Language (ADL) format. The primary output of the tool flow 
is a set of binaries for the parallel application, ready to run optimised on the MPSoC 
described in the ADL input. Front-end tools initially process the Scilab input in order 
to convert it in a convenient C Intermediate Representation (IR) and perform static 
code analysis and optimization. Following this step, two different optimization 
approaches extract available parallelism from the application. The two optimization 
approaches are implemented within the GeCoS Generic Compiler Suite [2]. The fine 
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grain optimization focuses on nested loops and performs polyhedral analysis type 
optimizations, while the coarse grain optimization considers the application control 
and data flow graphs and performs graph-based optimizations. Based on the result of 
the above optimizations, a parallel version of the intermediate code representation is 
generated. This code is provided to the platform specific tool-chain, where further 
platform specific optimizations occur. The resulting application is profiled and 
benchmarked by the platform simulator. The results are used in a feedback loop with 
the coarse grain parallelization, which creates an improved version of the program. 
This feedback cycle can be repeated until the user considers the results satisfactory 
in terms of performance. 

3 Design methodology 
Although the ALMA tool flow does not expose the user to the parallel programing 
challenges and requires only sequential programming, it is useful to present an 
overview for the typical parallel programming workflow in order to achieve application 
performance. 

The first step towards a parallel application usually involves the creation of an 
equivalent sequential application. This step is not redundant, since it allows the 
developers to understand the problem at hand, identify potential bottlenecks and 
opportunities for parallelization and most important, establish reference results in 
order to validate the final application components. These sequential application 
prototypes are usually implemented in a high level language like Scilab or Matlab, 
while the parallel applications are typically implemented in C/C++. 

When a sequential reference application is implemented, profiling and benchmarking 
are crucial to identify real performance bottlenecks. If the sequential application is 
implemented in the same language as the parallel one, the same code base can be 
reused and a set of experiments with different parallelization strategies can be 
performed. This code evolution strategy has the advantage, that a correct application 
exists, but it should be noted that it is not always feasible, as parallel algorithms 
might require substantially different data structures and approaches. The set of 
alternative parallelization strategies to different sections of the application are 
evaluated for performance through profiling and benchmarking. The developers will 
decide, the appropriate alternative strategies that are going to be part of the final 
application. The development process finishes when the application satisfies 
operational requirements.  

In the ALMA tool flow, the user provides a high level sequential implementation and 
the ALMA tool chain is responsible to perform the necessary transformations in order 
to generate an equivalent parallel version that uses the underlying multicore 
architecture. As mapping and scheduling decisions are made at compile time, user 
supplied input should be as representative as possible, as the tool chain uses this to 
perform optimizations that are based on feedback from performance measurements. 
As a result, parallel programs that exhibit high performance fluctuations to different 
inputs can be heavily affected, if real world input examples are not provided to the 
ALMA toolchain by the end user. A large set of supplied inputs will lead to slow 
compilation times for the tool chain, but will steer the generated parallel code to more 
robust performance. The end user is advised to balance between fast exploratory 
builds with a limited number of input data sets and slow release builds with extended 
number of input datasets. In addition, the user can perform additional application 
benchmarking and profiling with direct use of the platform simulator.  
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Although the goal of the tool chain is to free the application designer from 
parallelization details, specific source code features can result in substantial 
performance benefits, as it is analysed in this document. Specifying accuracy 
constraints on variables enables the optimizing tools to exploit sub-word parallelism 
(SWP). Specifying loop nests as Static Control Parts (SCoP) enable fine grain 
parallelism optimizations. Defining reusable code fragments as functions helps the 
coarse grain parallelism tool to treat them as candidate independent tasks. As 
mentioned before, providing representative program inputs enhances the available 
information for the coarse grain simulation-based optimization and thus higher quality 
parallel programs are generated. Balancing computation workload between 
alternative paths of execution in the sequential code also allows for more predictable 
execution and better use of the available resources of the underlying architecture. 
Code sections, for which the coarse grain optimization has problems to predict 
execution times, like recursive functions or loops whose limits depend on the input, 
can pose a significant challenge for the coarse grain optimization module, which 
relies on simulator profiling. Defining variables as scalars instead of vectors can 
increase performance. 

4 ALMA flow frontend tools 
 The Matrix Frontend (MFE) is a source-to-source translation utility that converts the 
Scilab language into static C code. The documentation of the MFE is available within 
the Matrix Frontend User Guide. A copy of this document is available in the Appendix 
of this report. 
The frontend comprises a generic pragma interface. The interface is used by the 
ALMA Toolchain to define ALMA-specific pragma to drive the parallelization 
approach. In the following section, this interface is specified for the end users in 
addition to the MFE documentation (provided in the Annex to this document). 

4.1 ALMA pragma support 
The frontend supports three function-like pragmas, that will generate #pragma 
instructions within the C code. A pragma can be either attached to an instruction 
(mfe_pragma), a block (mfe_pragma + if), a variable (mfe_pragma_var) or a function 
(mfe_pragma_func). It depends on the type of pragma, what methods should be 
used. 
In the following, a list of ALMA-specific pragmas and their usage in the front end is 
given: 

4.1.1 alma_task_cluster 

This pragma enforces the coarse-grain scheduling to assign the annotated block to 
one processor only.  
Usage: 

//MFE?: mfe_pragma('alma_task_cluster'); 

if (1) 

… 

end 

4.1.2 alma_task_alloc 

This pragma manually assigns the annotated block to a given processor. The 
processor is give as a processor id.  
Usage: 

//MFE?: mfe_pragma('alma_task_alloc <id>'); 
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if (1) 

… 

end 

4.1.3 gcs_scop_ignore 

The part of the code is ignored for polyhedral optimization within the fine- and 
coarse-grain optimization stage of the ALMA tool flow. In general, polyhedral 
optimization offers some performance benefits coming with the price of increased C 
code complexity and size. The pragma allows skipping this optimization for parts of 
an application that is not relevant for optimization. 

 
Usage: 

//MFE?: mfe_pragma('gcs_scop_ignore'); 

if (1) 

… 

end 

 
Deactivates polyhedral optimizations within the if-block. 
 

function […] = myfunc(…) 

//MFE?: mfe_pragma_func('gcs_scop_ignore'); 

 

 … 

end 

 
Deactivates polyhedral optimizations within the function. 
 

4.1.4 gcs_scop_cg_schedule 

This pragma allows to specific parameters for the polyhedral coarse-grain 
optimization. The parameters are valid for the given block if it is amenable to 
polyhedral analysis. 
 
Usage: 

//MFE?: mfe_pragma('gcs_scop_cg_schedule [numbertasks <int>] 

[fixedtasks <id*>] [tileSizes <int*>]'); 

if (1) 

… 

end 

 
numbertasks specifies the number of concurrent tasks that will be extracted during 
the coarse-grain pass. If not specified, the global value is used as defined in the 
compilation script (cs). 
fixedtasks specifies a concrete allocation of tasks to processors. The processors are 
given as ids in a comma separated list. That is independent from the number of tasks 
extracted. For tasks a processor ID is provided, the concrete allocation is performed 
by alma_task_alloc, otherwise alma_task_clusters is used. 
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tileSizes specifies the tile size parameter for each loop in a loop nest. The first 
parameter is used for the outermost loop. The second for the loops within the 
outermost loop, etc. If there exists more nested loops than parameters, the last 
parameter is used for the remaining loops without parameter.See section 5.2 for 
more information about the effect of tile size. 

4.1.5 GCS_PURE_FUNCTION 

This pragma allows the specification of pure functions. Pure functions are 
deterministic functions without side effects i.e. that do not modify global variables. It 
is allowed to call the function simultaneously from different threads without breaking 
the semantic. Function calls to pure function can be analysed using polyhedral 
analysis. 
Usage: 

function […] = myfunc(…) 

//MFE?: mfe_pragma_func('GCS_PURE_FUNCTION'); 

 

 … 

end 

4.2 Best practice for writing interface code 
The developed applications are used for two cases: 
 

1. For the simulator to generate profiling results that drive the parallelization 
process. 

2. For the hardware to generate the product code. 
 
For both cases, the code differs only in the interface code. For the simulator, the 
interface code includes loading the test data and is directly specified within the 
frontend. For the hardware, the interface code must be replaced by hardware-specific 
code. 
 
A real-time application typically runs in an infinite loop. The basic idea is to express 
the infinite loop within Scilab and include function calls to the interface code. Within 
the frontend, also an implementation of the interface function is available that is used 
for profiling the application within the simulator as well as defines the interface of the 
function in C code. The implementation of the interface function is generated into a 
separate C file. For the hardware, the C file can be replaced by a custom 
implementation that accesses the hardware interfaces to get the data in and out. 
 
In the following example, a best practice skeleton in combination with data in/out 
functions is provided: 

function runs = interface_numruns() 

 //MFE?: mfe_func_noinline(); 

 //MFE?: mfe_func_file('interface.c'); 

 

 runs = 2; 

end 

 

 

function [A,B] = interface_indata(run, N) 
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 //MFE?: mfe_func_noinline(); 

 //MFE?: mfe_func_file('interface.c'); 

 

 A = int32(eye(N,N)); 

 A(1,2) = -3; 

 A(2,1) = run; 

  

 B = int32(matrix(1:N^2,N,N)); 

end 

 

function interface_outdata(run, C) 

 //MFE?: mfe_func_noinline(); 

 //MFE?: mfe_func_file('interface.c'); 

 

 disp(C); 

end 

 

 

N = 4; 

runs = interface_numruns(); 

 

//MFE?: mfe_pragma('alma_infinite_loop'); 

for run = 1:runs  

 //MFE?: mfe_pragma('alma_task_alloc 0'); 

 if (1) 

  [A,B] = interface_indata(run, N); 

 end 

 

 C = A*B; 

 

 //MFE?: mfe_pragma('alma_task_alloc 0'); 

 if (1) 

  interface_outdata(run, C); 

 end 

end 

 
The interface code consists of three functions: 
 
interface_numruns returns the number of runs the “infinite” loop should run. For 
simulation, that is set to 2 in the example. In the manual implementation of the 
interface code for hardware, the function can return a very high number to keep the 
application running in the infinite loop. 
interface_indata reads data. In this example, two matrices are generated for 
simulation and profiling. 
interface_outdata writes data. In this example, the resulting matrix is displayed for 
simulation. 
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The code uses several pragmas and attributes. For each interface function, the 
mfe_func_noinline is specified that prevents constant values from being propagated 
out of the function. This is important since the functions are completely replaced in 
the product code. Also for each interface function, the output C file is specified. The 
generated interface.c file can be used for simulation, for the product code a separate 
file can be implemented. 
The main loop is tagged as an infinite loop, to hit the coarse-grain extraction to use 
task-level pipelining. 
The calls to the interface functions are pinned to processor 0 that should perform the 
IO. 
 

5 Fine grained Optimizations Flow 
Obtaining an efficient implementation requires not only to efficiently distribute the 
original program execution on several processors, but also to ensure that the code 
executed on each core is highly optimized with respect to its target architecture.  

In this section, we present an overview of the fine-grain optimization flow, integrated 
in the ALMA tool chain. We then provide some user guidelines to efficiently exploit 
this flow. The reader is invited to refer to ALMA deliverable D3.6 [10] for technical 
details. 

5.1 Overview 

The fine-grain optimizations flow provides a 
transformation toolbox including: 

 Several loop transformations to enhance data 
locality and reuse 

 Automatic SIMD (Single Instruction Multiple 
Data) vectorization to leverage SWP (Sub-
Word Parallelism) capabilities of target 
architectures 

 Floating-point to Fixed-point conversion.  

Figure 3 presents an overview of the fine-grain 
optimization flow. Guidelines about these 
optimizations are presented in the following sections. 

5.2 Loop Transformations 

Register Level Tiling is applied in order to enhance 
data locality. This transformation is done within the 
polyhedral framework, so it is only applicable on 
Static Control Parts (SCoP) of the application. This 
transformation also annotates full tile basic blocks 
(kernels) within loop bodies. Only these basic blocks 
will be considered for later optimization, since they 
usually represent the largest part of the loop nest 
computations. For non-polyhedral parts, basic blocks 
can be manually annotated using pragma 
“__RLT_INSET__”.  

Figure 3: Fine-grain Flow 
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The next optimization, Array Scalarization, exposes data reuse. It can be applied on 
any basic block, though in the fine-grain flow it is only applied on annotated kernels. 

5.2.1 Specifying Register Level Tile sizes 

Register Level Tile sizes can be specified either using  

 a global parameter specified in the GeCoS script 

 or via pragma annotations in the Scilab code using pragma 
“gscop_fg_schedule  tileSizes=[sizes…]”. 

 If no tile size is given then the default size is used. Default tile size is 2 

When choosing a tile size, the user must keep in mind that this will determine the 
size of the generated kernel (after point loop unrolling). This consequently 
determines the number of required registers to do the computation, it also control the 
amount of exposed SWP. Therefore, tile size should be big enough so that enough 
SWP is exposed, yet small enough to avoid register spilling. Intuitively, bigger tile 
sizes yield larger kernels (basic block), which contain more computations, 
consequently more SWP opportunities are potentially exposed but more registers 
may be required. Detailed information about Register Level Tiling is available in 
ALMA deliverable D3.6 section 6. 

5.2.2 Understanding SCoPs 

Our loop transformations can only operate on a subset of programs known as Static 
Control Part (SCoP). The end user must hence understand what SCoP are and how 
to make sure their scilab programs/kernels fall in this category.  

SCoPs consist of perfectly or imperfectly nested for-loops with statements that 
access arrays or scalar variables. In a SCoP both loop bounds and arrays indexing 
functions must be affine (i.e. linear) expressions1 of dimension indices and on some 
parameters. The dimension indices correspond to all the loop indices enclosing a 
given statement. Parameters are variables that may not be known at compile time, 
but which remain constant during the SCoP execution (the size of an array is a good 
example of such parameters).  

For example the expression 2*j may be affine if j is an enclosing loop index (or, more 
unlikely, a parameter). However N*j is not affine as neither j nor N are compile-time 
constants.  

Below, we provide four examples illustrating the previous definition. 

 

 

for i=1:10 

  x(P+i-1)=i; 

for(j=1:P) 

   if(j+i<10) 

        z(j)=x(i+j)+x(j); 

     end 

  end 

end 

 

for i=1:10  

  x(size_x-1)=i; 

  for j=1:Z 

    z(j) = x(j) + x(j); 

  end 

  Z = … ; 

end 

 

                                                
1 The notion of affine expression and/or constraints needs to be understood in a 
broader way than usual, as it also comprises quasi-affine expressions (involving integer 
division by a constant). Such quasi-affine expressions are simply rewritten using affine 
expressions (usually with one or more extra variable). 
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(a) The example above is a SCoP, as 
it only consists of affine array 
indexing function and affine loop 
bound. 

(b) This loop nest is not a SCoP, as 
variable Z is modified in the outer 
loop and is used as a bound in the 
inner loop.  

  

for i=1:N 

  x(size_x-1)=i; 

  for j=1:10 

    z(j*N+i)=x(j)+x(j); 

  end 

end 

 

for i=1:N 

x(size_x-1)=i; 

if x(i)>0 

    for j=1:10 

      z(j,i)=x(j)+x(i); 

    end 

end 

end 

(c) This loop nest is not a SCoP, as 
array z[] is indexed using a non affine 
function. 

(d) This loop nest is not a SCoP, as 
the innermost loop execution is 
guarded by a data-dependant 
condition.  

The SCoP identification and extraction stage in ALMA is performed using a 
combination of syntactic pattern matching and program transformations. It is able to 
detect most SCoPs in a program. 

However, there are situations where a program subset is not a SCoP (syntactically 
speaking) but behaves like a SCoP.  For example, it is obvious for a programmer, 
that in the example (e), the recursive expression used for indexing array A is an 
affine expression of the loop index. Inferring this information (in the general case) 
from source code is challenging and is not supported in the flow. As a general 
guideline, array access expression should always be explicit affine expression of loop 
indices and parameters as in example (f). 

tmp=0; 

for i=1:10 

   tmp = tmp +3 

   A = A (tmp); 

end 

for i=1:10 

   A = A (3*i); 

end 

(e) Implicit affine array index 
expression 

(f) Explicit affine array index 
expression  

More generally, it is often the case, that the SCoP detection is hindered by only one 
or two statements in a loop nest, even if the loop contains several tens of such 
statements. Similarly, some kernels do expose a small/local data dependant 
behaviour, which would not prevent the loop to be (at least conceptually) modelled as 
a SCoP, but cause the program to be flagged as non SCoP. 

A simple solution to this problem is to perform minor program modifications to hide 
complex behaviour within side-effect free external functions as shown in the 
examples (g) and (h). 

for i in 1:10 

   if A(i)*X(i)>1.0 

     sum = sum +1; 

     for j in 1:10 

       A(j) = A(j)*X(i) 

     end 

function [res,newA] update(sum,i,A,X)  

   newA=A; res = sum; 

   if A(i)*X(i)>1.0 

     res = sum +1; 

     for j in 1:10 

       newA(j) = newA(j)*X(i) 
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   end; 

end; 

     end; 

   end; 

end 

... 

 

for i in 1:10 

   [sum, A] =update(sum,i, A,X); 

end; 

(g) This loop nest is not a 
SCoP kernel since there is a 
data-dependant guard 
enclosing the innermost loop. 

(h) This loop is now a SCoP, we have hidden 
the data-dependant behaviour within a 
function. Note however the resulting SCoP is 
a single loop (the j loop is not part of the 
SCoP, as it is hidden in the function) 

 

5.3 Floating-point to Fixed-point Conversion 

In a first step, this transformation aims at obtaining a valid fixed-point specification for 
each floating-point data/operator in the original program. Then, it generates the 
corresponding fixed-point c code using native c integer types and shift operations to 
properly perform the required scaling. The first step can be performed either:  

 automatically (blue section in Figure 3), only supported for a sub-class of 
programs as described below 

 manually in the Scilab/Matlab code using fixed-point types which can be 
created by Matlab-like function fi (see Matrix Frontend User Guide). 

5.3.1 Applicability of Automatic fixed-point specification 

An automatic fixed-point specification can be obtained for programs that satisfy the 
following criteria: 

 All loop bounds and guard conditions must be known at compile time 

 Accessing data using pointers is not supported 

 The underlying system must be LTI (Linear Time-Invariant) 

 All system input variables must be annotated with their dynamic range using 
pragma annotation “DYNAMIC [min, max]” 

 The system output variable must be annotated with pragma “OUTPUT” 

 System delay variables can be specified using pragma “DELAY” 

When these criteria are respected the tool can automatically explore the fixed-point 
design space using WLO (Word-Length Optimization) algorithms. It tries to minimize 
the implementation cost (execution time) subject to an accuracy constraint. In this 
case the user must provide an accuracy constraint, that is the maximum accepted 
SQNR (Signal to Quantization Noise Power), measured in dB,at the system output. 

5.3.2 Specifying Accuracy Constraint 

The accuracy constraint can be specified in the GeCoS script as a string. It 
represents the maximum noise power, given in dB, allowed at the system’s output. 
The floating-point to fixed-point conversion process makes sure that the noise power 
of the selected fixed-point solution is less than or equal the accuracy constraint 
value.  Smaller values represent a stricter accuracy constraint. 
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5.4 SIMD Vectorization 
Although, SIMD vectorization can be applied on any basic block, we only apply it on 
those blocks annotated with pragma “__RLT_INSET__”. This annotation is set 
automatically for SCoPs and can also be set manually in Scilab code as described 
previously. 
A higher vectorization factor can be achieved, when the data word-length is 
narrower. So the user is advised to use smallest possible data types. 

5.5 General Scilab Coding Guidelines 

The coding style used in the Scilab program specification may influence the 
efficiency of the fine-grain optimization stages. In the following, we provide simple 
guidelines to help end user to write adequate Scilab programs. 

Whenever possible, the end user should use constant (static) size matrices /vectors 
in the program. When this is not possible, the number of statements, which alter the 
shape of an object, should be minimized (ideally the object size is defined in an 
initialisation statement which is visible to all program execution paths). For example, 
for the two examples below that perform the same operation, the formulation (b) is 
likely to hinder the SWP kernel extraction stage. 

 

A = zero (10,10); 

for i in 1:10 

   A(i) = x(i) 

end; 

for i in 1:10 

   A = [ x(i) A ] 

end; 

(a) Runtime constant array size (b) Runtime dependant array size 

 

6 Coarse grain parallelism extraction 
This section provides a high level overview of the coarse grain parallelism extraction 
pass and describes parameters that can be controlled by the user to fine tune the 
performance of the applications. 

6.1 Overview   
This pass extracts parallelism, that is available in loops using loop tiling 
transformations. Loop tiling was initially proposed to improve locality in loops. Loop 
tiling changes the order of execution to enable re-use of data. This transformation 
basically partitions the iteration space into several blocks, called tiles, and these 
blocks are executed one after another. One important property of these tiles is that 
they can be considered as “atomic” entities. Hence, these tiles can receive all the 
data required by the tile at the beginning of the execution and send the data once the 
execution is complete. In other words, the tiles can be treated as a coarse-grained 
communication entity. 
 
Another interesting property of these tiles is, that they exhibit wave-front parallelism 
i.e. all the tiles in the anti-diagonal can be executed in parallel. This property is used 
to extract the required amount of parallelism. The tiles are distributed in a block-cyclic 
manner to the required number of parallel tasks. More technical details regarding this 
transformation can be found in ALMA Deliverable D3.5 [9]. 
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6.2 Parameters controlled by user 

Tile size and the number of parallel tasks are the two important parameters, that can 
be controlled to tune the performance of the applications. In the following section, we 
present few guidelines to choose these two parameters. 

6.2.1 Number of parallel tasks 

One of the guiding factors for choosing the number of parallel tasks could be based 
on the number of processors available on the hardware. The number of processors 
available places an upper limit on the number of parallel tasks that have to be 
extracted. Other important factors include the latency of communication and the 
problem size. 

6.2.2 Tile size 

Choosing the right tile size is an important factor, that determines the efficiency of 
this optimization. Since tiles are treated as a communication entity, the size of the tile 
determines the amount of data that needs to be communicated. In other words, the 
size of the tile determines the compute to communication ratio. Thus, the size of the 
tile is influenced by the communication latency and also the complexity of 
computation inside a loop. Also, to enable the reuse of data within a tile, the cache 
should be able to hold the data required by each tile. Thus, cache size is another 
factor that influences the choice of the tile size. Hence, choosing the right tile size is 
a difficult task. 
 
However, as a general rule, small tile sizes (less than 16) are not efficient, since the 
communication has to be performed very frequently, which affects the overall 
performance. The tile size also determines the maximum number of parallel tasks 
that can be extracted. Thus, the maximum tile size can be computed based on the 
number of parallel tasks required. If the number of parallel tasks required is n and the 
number of iterations in a particular dimension is S, thenthe tile size should be less 
than S/n. For example, for a matrix multiplication example with 512 X 512 array size, 
if we need 4 processors, the maximum tile size can be 128 X 128. However, it is 
preferable, that the tile size is not more than 64 X 64 to have more parallelism. 
 
The number of parallel tasks and the tile size are set to a default value of 4 and 16 
respectively. These values can be controlled by passing them as parameters when 
invoking this pass. They can be also controlled from the Scilab application by 
specifying pragmas. These pragmas give the user more control over these 
parameters. Using pragmas, these parameters can be set to different values for 
different portions of the code. 

7 Coarse grain parallelism optimization 
During the coarse grain parallelism extraction and optimization (CGPEO) phase, the 
program Control and Data Flow Graph (CDFG) is modelled and optimized for 
minimum total execution time. This section attempts to provide an user overview of 
the whole phase, so that the user will be able to assist the CGPEO tools. CGPEO 
tools receive C source code that is produced by the MFE.  

The CDFG representation of a program includes sets of program instructions that 
have single control input and output connections, named basic blocks. A pre-
processing step identifies procedure calls and splits basic blocks accordingly, in 
order for procedure calls to be identified as single blocks. As a result, procedure calls 
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define starting points for the CGPEO process. Another pre-processing step splits 
basic blocks, where instructions do not have data dependencies between them and, 
as a result, can be executed in parallel. 

Following the pre-processing steps, the CDFG is converted to a Hierarchical Task 
Graph (HTG). In the HTG form, the blocks that have occurred after the pre-
processing steps form an interconnected set of Directed Acyclic Graphs (DAG). In 
order to remove cycles from the CDFG, single blocks are considered as leaf nodes. 
All other nodes that contain complex structures define a complex node, and contain a 
new hierarchical layer in the HTG, which itself is a DAG that contains leaf or complex 
nodes. For every DAG that has nodes that refer to a loop body, a procedure call or 
an if/else block, a new lower hierarchical layer is defined and the corresponding DAG 
that represent the aforementioned constructs are moved to the new level. The 
process continues iteratively until only simple nodes exist in the lower layer DAG 
graphs. Alternative multicore schedules are then created for every DAG and the 
program is constructed from lower to upper HTG layers in order to optimize total 
execution time. In other words, for every user program function, a set of alternative 
functions will be generated, corresponding to the alternative schedules used in the 
program. For the lower layers, a secondary goal is to favour larger contiguous idle 
time for processors.  

In order to exploit the CGPEO, a user should consider the following guidelines: 

 Instruction order is not important. For every layer in the HTG, the data 
dependences are considered and an equivalent parallel implementation of the 
source program is constructed. This equivalent program is optimized for 
execution time as well as to favour compact schedules. A set of alternative 
solutions is generated in order to use the most appropriate solution for the 
whole program. 

 In order to mark a program fragment as a potential independent parallel task, 
create a function. Function calls are separated early, before the optimization 
process. The CGPEO creates a set of alternative equivalent programs for 
every function and from this set, the most appropriate program is selected for 
each function call case. 

 Balance computational workload for “if” and “else” blocks. When a conditional 
is encountered, two alternative blocks are defined and hence, two different 
DAG in the HTG at a lower layer. The CGPEO will attempt to estimate how 
many cycles are needed for each of the blocks and for the whole conditional 
loop. If the workload for the two alternative paths is highly imbalanced, the 
execution time estimates for the node that represents them at a higher level 
will be inaccurate and the resulting solution will suffer from this inaccuracy. As 
only one of them will be used at run time, the resources required can not be 
estimated and a conservative approach is to allocate the maximum required 
resources. 

 Provide realistic test inputs. Future versions for CGPEO will improve 
execution time estimates by feedback information from cycle-accurate 
simulation. The CGPEO will rely heavily on the quality of this information, and 
whenever a static analysis estimate fails to give result – i.e. a loop with 
variable number of iterations or a recursive function – the simulation feedback 
will be heavily utilized. In order to assist this feedback loop, as realistic test 
inputs as possible should be provided. 
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 Avoid code with difficult to measure complexity. The CGPEO tools cannot 
directly estimate the execution time of recursive functions and will have 
problems to estimate the execution time for loop structures, that do not have 
a fixed number of iterations. In those situations, it will fall back to use the 
simulator feedback heavily. If the number of iterations or the number of 
recursive calls varies significantly when specific input variables change, 
CGPEO will finally provide an optimal solution to satisfy the test inputs. 

 Provide conditionals to generate alternative schedules for different input size 
regions. As each function call and each layer in the hierarchical task graph 
are scheduled individually, conditionals can guide CGPEO to consider 
alternative program schedules for input size regions. In addition, the input 
data instances should cover the alternative regions, in order for the optimizer 
to be able to simulate the different alternatives and obtain execution times.  

 Avoid heavy computations for specific blocks. The conditional statement for 
an “if” block, the “start”, “iteration” and “finish” statements for the “for” block 
and the conditional statement for the “while” block are not optimized during 
the CGPEO. As a result, computational intensive statements should be 
avoided in those statements. Another possibility is the replacement of such 
statements with procedure calls as the procedure call will be placed in a 
separate block during pre-processing and will be considered for optimization 
by the CGPEO. 

7.1 Optimization method options and trade-offs 
CGPEO provides several alternative parallelization algorithmic strategies as “modes”. 
The modes are in fact combinations of heuristic and exact solution strategies. The 
available modes are listed in the ALMA toolchain User Guide, available in the 
appendix, as configuration option gr.teimes.alma.coarsegrain.mode in the 

CoarseGrain pass. 

The key concept of the solution is the single layer in the HTG, which corresponds to 
a single control structure scope in the C representation of the code. For each layer, 
parallel schedules are produced based either on exact or heuristic methods. Exact 
methods, based on Mathematical Programming (specifically Integer Programming) 
provide provable optimal schedules, with respect to the program and cost model 
used, but the solution process is significantly slow. Heuristic methods apply local 
rules to provide scheduling decisions and are very fast, but the quality of the 
produced schedule is not guaranteed. Most available modes described in the ALMA 
tool flow manual are mixed, with a strategy to fall back to heuristic when an exact 
method is taking too long to respond, in order to guarantee the production of a result. 

It is expected, that a user would use a mix of the above methods during 
development. Heuristics based methods provide performance estimates and 
functional correctness verification in an interactive development process. Exact 
methods provide programs optimized for performance and would be used for 
“milestone” releases (i.e. daily, or weekly). 

8 Multicore Simulator 
The ALMA Multicore Simulator enables the simulation of architectures specified with 
the ALMA System ADL. The simulator takes a System ADL file and one or multiple 
application files as input. 
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The simulator is implemented as SystemC classes representing the specified ADL 
modules stored in a module library. These classes can implement different simulation 
modes, either on behavioural level, e.g. Instruction Set Simulator (ISS), or on cycle 
accurate level with Cycle Accurate Simulation (CAS). The application file is then 
directly loaded in the simulator modules. The simulator components and inputs are 
presented in Figure 4. 

 

Multicore Simulator

Architecture 
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  SystemC Module Library

Behavioral 
Modules

Application

Structural architecture 
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  Cycle
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Multicore Simulation

+

 

Figure 4: Multicore Simulator 

 

8.1 Command line interface 
The simulation framework can be controlled using command line parameters or 
configuration files. The configuration file can be used to summarize multiple 
command line parameters. Via special commands, the multicore framework is able to 
modify properties of an architecture description and forward command line 
arguments to specified simulation modules and instances. This feature allows the 
system simulation framework to forward application arguments to the core simulation 
modules, where the arguments can be consumed by the application. 
The multicore simulator is available as command line interface utility (CLI) and is 
called "systemsim". The simulator is controlled by various command line arguments 
that are separated in a global section and a module specific section.   

systemsim.exe --sadl <ADL-File> [#Module <elf-file> --cmd <cmd_arg>] 

Table 8-1: Command line argument list for systemsim 

8.1.1 Global Command Line Arguments 

The global section describes parameters that are used in the base simulator. 
The identifier "--" is used as separator in front of a command, the argument list 
depends on the command and is a space separated list. Therefore all commands in 
this section are defined as follows:  
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--cmd <cmd_arg> 

Table 8-2: Command line argument format 

Table 8-3 shows the currently available command line arguments: 
Command Argument Description 

--sadl <ADL-file> 

Specifies the path  and the name of 
the System ADL file to use in the 
simulation. This argument is 
mandatory for every simulation run, 
but can be included in config-files. 

--cfg <config-files> 

Specifies one or more paths to a 
simulator configuration file, that 
contains further command line 
arguments. Multiple files can be 
defined using the vector operator 
v(). 

--set <string> 

Enables the use of Data Description 
Language (DDL) code as preset to 
the specified ADL file. Useful for 
predefining variables. 

--quiet  Turns off system simulator output. 

--ssim-profile <out-prefix> 

Enables the profiling of 
instrumented applications. The 
generated Output is in JSON 
format. 

--ssim-stats <out-prefix> 

Turns on the generation of a 
systemsim statistic file, containing 
global simulation statistics and 
statistics per module. The 
generated Output is in JSON 
format. 

--ssim-trace   
<out-prefix> 
[ProfilingTypeName=["Paraver 
Config File"]] 

Generates trace files for profiling 
types of instrumented applications. 
If no configuration file is specified a 
default file is used. Use "ALL" as 
ProfilingTypeName to trace all 
profiling types. The generated 
Output is in JSON format. 

Table 8-3: Available systemsim commands 

 

8.1.2 Module Specific Command Line Arguments 

 Command line arguments and commands can be forwarded to modules defined in 
the ADL. In this way, a SystemC simulation module developer is able to define 
module-specific command line arguments without having to modify the simulators 
base modules. As identifier, "#" is used in combination with the module name within 
the general command line to separate modules. The format is as follows:  

#Module_Name [arguments] 

Table 8-4: Descriptor for module-specific command line arguments 
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The SystemC Module also defines the format of the module specific command 
argument list. All commands are forwarded to all the instances of the specified 
module. A parsing function in the base class of all Simulator Modules enables the 
correct forwarding of the parameter list to the specified module.  Parameter names 
may begin with any character, number or special character except "#". As "#" is 
interpreted as separator, the definition of an escape character is necessary to enable 
the use of "#" as first character in arguments or options. The use of a second "#" in 
front of an argument is defined as such escape character. The following example 
shows the usage of an argument called "#argument" in a module-specific argument 
list. 

#Module_Name ##argument [arguments] 

Table 8-5: Escape character for module-specific descriptor 

8.1.3 Instance-Specific Command Line Arguments 

Instance-specific command line arguments work the same as module-specific with 
the difference that they are forwarded to the defined instance only. The Identifier 
used for instances is ‘@’. The format is as follows:  

@Instance_Name [arguments] 

Table 8-6: Descriptor for instance-specific command line arguments 

An escape character is defined using two ‘@’.  

@Instance_Name @@argument [arguments] 

Table 8-7: Escape character for instance-specific descriptor 

8.1.4 Providing Application files 

The application files depend on the architecture and the implementation of the 
simulation class, that simulates the module the application will run on. Therefore, an 
application file has to be provided in the module specific section to the module that 
will load the application into memory.  

8.2 Configuration Files 
The simulator supports the use of configuration files for command line argument 
definition. Configuration files can be used to replace command. The command line 
argument “--cfg <filename>" can be used to specify a path to a configuration file that 
will be used instead or in combination with other configuration files or command line 
arguments. As the simulation framework requires at least one definition of an ADL 
file, either the command line or a configuration file must hold an argument for 
defining the ADL file.  
The content of the configuration file is separated into three blocks. The "Global" block 
holds the global command line arguments, a "Modules" block may hold module-
specific options, and an "Instances" block holds instance-specific options. The 
construction of a configuration file is shown in Table 8-8 below. Options do not need 
any prefix in configurations files. The configuration file allows the use of argument 
lists as vectors with the command "v(argument list)".  
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[Global] = {  
 [sadl] = <ADL-FILE>;  
 [cfg] = v(config-file-1, ... , config-file-n); 
}; 
[Modules] = {  
 [Module_Name] = {   //Module Specific options }; 
}; 
[Instances] = { 
  [Instance_Name] = {   //Instance-specific options }; 
}; 

Table 8-8: Configuration file format 

As multiple configuration files can be used, each block is optional. Configuration files 
can also be used in combination with additional command line arguments. They will 
be parsed and stored in a vector with the command line arguments. The options 
defined by configuration files will be stored at the beginning of the vector and 
command line arguments at the end. 

8.2.1 Kahrisma Specific Options 

This section provides a short overview on commonly used options for the Kahrisma 
architecture. The Kahrisma architecture is controlled by the Kahrisma Run Time 
System (RTS) Module. The command line arguments must be forwarded to the 
Kahrisma RTS Module using ‘#Kahrisma_RTS_Module’. 
 

#Kahrisma_RTS_Module <elf-file> [--opt <opt_args>] [--args <arguments>] 

 

The Kahrisma RTS Module supports multiple commands defined as argument list. At 
least one of the arguments must be a valid path to an application file in elf-file format. 
The position is recommended to be at the beginning of the argument list, but can be 
placed between options with respect to the required arguments by each option. 

The available options generate information about application execution and 
architecture usage. Other options forward arguments to the application file or control 
the output of the simulator. Generally the generated information is stored in files but 
can be printed to the user output as described in Table 8-9. 

 

Option Argument Description 

--quiet  Suppress all simulator output 

-  Forward all output to std:out 

--args  Forward all following arguments to the 
application file 

| <program> “pipe”: open the defined program and 
redirect the output to it 

--trace <filename> Output detailed trace-information to a file 

--simpletrace <filename> Output a simplified trace information file 
optimized for human readability 

--alltrace <filename> Output all tracing modes to multiple files 

--stats <filename> Generate simulation statistics file 

--asmstats <filename> Generate assembler statistics file 

--funcstats <filename> Generate function statistics file 

--allstats <filename> Output all available statistics to multiple files 

--crashdump <filename> Create a long crash dump file 
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--callgraph <filename> Generate an application call-graph 

Table 8-9: Kahrisma specific simulator options 

 
The following example of the ‘pipe’ usage forwards the simulation output to gzip and 
creates a zipped output file. 
 

|gzip - -o <filename>.gz 

 

8.2.2 Xentium Specific Options 

This section gives a brief overview of the most important options available for 
simulating and profiling programs on the Xentium architecture. More details can be 
found in the user guides for the Xentium simulator [1] and the Xentium profiler [2]. 
The simulator provides a number of options to generate information about the 
execution of a program as shown in Table 8-10. Some options will generate 
information directly to the user about the cycle counts, Instruction Level Parallelism 
(ILP) utilization and execution traces. Other options will generate profiling information 
that can be fed to the xentium-profiler for a more detailed account of the cycle usage 
and function call graph of the simulated program. Table 8-11 lists the most important 
options of the xentium-profiler. 

 
Option Argument Description 

--trace  Display trace information 

--cycles  Display cycle count 

--simulation-time  Display how much time the simulation 
took 

--average-ilp  display the average Instruction Level 
Parallelism of the simulated program, i.e. 
the average number of functional units 
used in parallel per cycle 

--trace-file <filename> Output trace information to file 

--profile <filename> Generate profile information in file 

Table 8-10:  Extract of Xentium simulator options. 

 
Option Argument Description 

--callgraph  Display the call graph of the simulation 

--flat-profile  Display the flat profile of the simulation 

Table 8-11:  Extract of Xentium profiler options. 

 

9 ALMA flow demonstration 
The ALMA tool flow components are connected using GeCoS compiler scripts. In this 
section, the tool components usage will be demonstrated using a simple parallel 
matrix multiplication code, which is written in order to expose parallelism. 

The Scilab matrix multiplication code is presented in Figure 5. 
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N = 128; 
N4 = int32(N/4); 
A= eye(N,N); 
A(1,2) = -3; 
A(2,1) = %pi;
 
 
B = ones(N,N)*3 - eye(N,N); 
C1 = A(N4*0+1:N4*1,:) * B; 
C2 = A(N4*1+1:N4*2,:) * B; 
C3 = A(N4*2+1:N4*3,:) * B; 
C4 = A(N4*3+1:N4*4,:) * B; 
 
C = [C1;C2;C3;C4]; 
 
//A 
//B 
//C 

Figure 5: Parallel Matrix Multiplication Scilab Code – File 
matrixmul_parallel.sce 

9.1 Front End – Generating C code 

The first step in the ALMA flow is to perform source-to-source compilation from 
Scilab input to ALMA C code. The first line in the GeCoS script shown in Figure 6 
produces C code in directory matrixfe_output for the file 

matrixmul_parallel.sce. The following lines include certain necessary front-end 

transformations to simplify the produced code by moving arrays to global scope and 
remove unecessary casts. The last line produces C code from the IR in the GeCoS 
project type variable named project. The simplified code is generated in the 

directory simplify.  

 

project = MatrixWrapper("matrixfe_output", "matrixmul_parallel.sce"); 
 
MoveArrays2Global(project); 
RemoveUnnecessaryCasts(project); 
CGenerator(project,"simplify");
 

Figure 6: GeCoS Script matrixmul_parallel.cs: First part, Front End 

 

9.2 Coarse and Fine Grain Parallelism Extraction 
The next step of the flow is to perform loop transformations to expose coarse and 
fine grain parallelism. These two passes are performed as one single step, since they 
both use a polyhedral model and operate on SCoPs. It is not always possible to 
extract SCoPs after the application of coarse grain loop transformations. In such a 
case this would prevent fine grain transformations, therefore we apply both coarse 
and fine grain loop transformations at once.  
 
The first line in Figure 7 performs this step. The first parameter is the project that is 
created by the earlier step. The second parameter is the number of parallel tasks that 
have to be extracted by the coarse grain parallelism extraction pass. The third 
parameter is the tile size, that has to be used by the coarse grain pass and the last 
parameter is the tile size that has to be used by the fine grain optimization pass. 



D3.8 ALMA design framework guidelines for multicore systems (final version) ALMA 

 

 

29 

 

Version: v1.02 / FINAL Public (PU) 

 

The second line in the script generates the parallel code in the directory called CG-
output. 

 

UR1OptimizationFlowModule(proj,numberOfParallelTasks, cgTileSize, 
fgTileSize); 
 
Cgenerator(project,"CG-output"); 

Figure 7: GeCoS Script: Coarse grain parallelism extraction and fine grain parallelism 
optimization 

 

9.3 Coarse Grain Parallelism Optimization 
The coarse grain parallelism optimization consists of pre-requisite passes and two 
separate major passes. As the process is an iteration that involves a parallel program 
generation, profiling of that program and repeating with the additional knowledge of 
the profiling information, the coarse grain optimization process is tightly related with 
parallel code generation.  
The main coarse grain parallelism optimization process happens in the CoarseGrain 

pass, whose responsibility is to append the profiling information of the last program 
execution to the annotated profiling information and to produce an optimizing parallel 
solution based on the profiling information, instrumented with profiling annotations for 
various code segments of interest. In order to initially produce profiling information, 
the CoarseGrainFirstPass produces a sequential program profiling of the 

sequential code. 
The main parts that involve the coarse grain parallelism optimization loop are shown 
in Figure 8. A number of pre-requisite passes prepare the code for the coarse grain 
parallelism optimization. The BBCallSplit splits blocks that contain function calls in 

order to expose function calls as separate tasks, in line 4. ProcedureDuplicator, in 

line 5, duplicates procedure bodies in order to allow different schedules for each 
procedure call. The ForInitSimplifier (line 7) converts for loops that are complex 

for control flow duplication, annotated by ForLoopAnalyzer, to a variant that is like a 

while loop. The passes that follow in lines 8 through 14, convert the IR in SSA form to 
expose data dependencies and extract the Hierarchical Task Graph in the 
AlmaTaskExtractor and ExtendTaskDependencies passes. The coarse grain 

parallelism optimization passes are configured using name-value properties files, as 
further discussed in the ALMA toolset user manual (in the appendix). 
MakespanReporter is used to produce reports about the solution. The whole IR is 

saved in a file named beforecoarse and is loaded again after the execution of the 

parallel code generation, since the IR is restructured during the code generation After 
saving the IR before the coarse-grain optimization pass in line 16, 
CoarseGrainFirstPass produces a sequential version of the code in line 19. Lines 

19-21 involve the parallel code generation and the simulator execution for profiling. 
The original IR, before the coarse-grain optimization passes is loaded again and 
MakespanReporter associates profiling information to IR objects. The same 

procedure occurs in lines 24-28, but this time with the CoarseGrain module that 

produces optimized parallel solutions. . Lines 24-28 are supposed to be executed in 
an iterative manner, as presented in the coarsegrain.cs file used in the samples. 

This iteration is not presented here for readability.  
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1. p = CreateGecosProject(project_name);
 
2. CDTFrontend(p); 
3.  
4. BBCallSplit(p); 
5. ProcedureDuplicator(p); 
6. ForLoopAnalyzer(p); 
7. ForInitSimplifier(p); 
8.  
9. ComputeSSAForm(p); 
10. AlmaTaskExtractor(p,20); 
11. ExtendTaskDependencies(p); 
12. FixBlockNumbering(p); 
13. ClearControlFlow(p); 
14. BuildControlFlow(p); 
15.  
16. SaveGecosProject(p,"beforecoarse");
 
17.  
18. CoarseGrainFirstPass(p, "coarsegrain-firstpass.properties");
 
19. ParallelCodeGeneration(p, "CodeGenInitalRun.cfg", architecture, 1); 
20. RunSimulator(architecture, 1, "src-regen", "ssim_profile", 2, 2); 
21.  
22. p = LoadGecosProject("beforecoarse.gecosproject");
 
23. MakespanReporter(p,1, "coarsegrain.properties"); 
 
24. CoarseGrain(p,  numberOfProcessors, "../../coarsegrain.properties"); 
25. ParallelCodeGeneration(p, "CodeGenInitalRun.cfg", architecture, 1); 
26. RunSimulator(architecture, 1, "src-regen", "ssim_profile", 2, 2); 
27. p = LoadGecosProject("beforecoarse.gecosproject");
 
28. MakespanReporter(p,1, "coarsegrain.properties");
 

Figure 8: GeCoS Script demonstrating the use of CoarseGrain 

 
The CoarseGrain pass produces Direct Acyclic Graphs (DAG) for each layer of the 
HTG Intermediate Representation for the C representation of the input program. 
Figure 9 presents the DAG for the top-level task for the matrixmul_parallel 

example, and  Figure 10 presents the processor assignment for a two-processor 
allocation. 
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Figure 9: The top level HTG layer for matrixmul_parallel 

 

 Figure 10: The parallel processor assignment for the top level HTG layer for 
matrixmul_parallel (processors are encoded as colours) 
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9.4 Parallel Code Generation 
After the coarse-grain parallelization, the C code for the target compilers has to be 
created. Before the final pass CGenerator can be called, the intermediate 

representation has to be prepared for the parallel execution. After the coarse-grain 
passes, the application is still sequential, but each task is assigned to a specific 
processor. In Figure 11, line 1, the pass CreateCommunication resolves all data 

dependencies that span more than one processor. The parameter “com_mode” can 
be used to control the placement of communication instructions in the C code. More 
complex modes like “estimate” and “useSchedule” take into account the control flow 
of the application and the scheduling information from the coarse-grain passes to 
improve the execution time of the application. Simpler modes like “afterDef” should 
only be used if the execution time of the tool-chain is relevant; they have no other 
benefits. 
Lines 2 and 3 handle the insertion of profiling instructions for the feedback loop to the 
coarse-grain pass. The options affect the search algorithms of these passes and 
should always be set to the same values as the passes around them. After the 
insertion of profiling instructions, the SSA form is removed in line 4, as it is not 
necessary for the next passes. 
DuplicateCFlow, line 5, ensures that each processor has its own continuous control 

flow so that the application can be split into individual processes in the pass 
ProcessGeneration (line 6). The argument “architecture” here can be set to either 

“kahrisma” or “x2014”. 
Finally, the pass CGenerator in line 7is called which uses some extensions to 

generate C code for the target architectures. 
 

1. CreateCommunication(project, com_mode); 
2. AddCommProfilingInstructions(project, numberOfProcessors, 1, com_mode); 
3. AddProfilingInstructions(project, 1); 
4. RemoveSSAForm(project); 
5. DuplicateCFlow(project,numberOfProcessors); 
6. ProcessGeneration(project,numberOfProcessors,architecture); 
7. CGenerator(project,"src-regen"); 

Figure 11: GeCoS Script matrixmul_parallel.cs: parallel code generation 

Instead of calling all the passes individually, a single ParallelCodeGeneration 

pass can be used. It can be called with different arguments, a common way can be 
seen in Figure 12. All options can be used as described in the individual passes. 
 

ParallelCodeGeneration(project,architecture,numberOfProcessors, comMode); 
CGenerator(project,"src-regen"); 

Figure 12: GeCoS Script matrixmul_parallel.cs: parallel code generation 

 

9.5 Simulating the Generated Program 
After the parallel code generation, the application will be simulated for performance 
evaluation and iterative optimization of the parallelization process. Therefore, the 
RunSimulator pass takes care of compiling the application source code and 
simulating the application. The pass expects the following parameters: 

 Architecture (string) describes the architecture that will be used for execution 
of the application. Currently “kahrisma" and “x2014” are supported. 

 processors (integer) describes the number of processors within the 
architecture 
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 source_dir (string) defines the directory with the application source files 

 command (string) allows the use of architecture specific command line 
options, e.g. ssim_trace_kahrisma, which enables profiling and tracing of the 
Kahrisma architecture during simulation 

 olevel (integer) defines the optimization level of the compiler 

 verbosity (integer) defines the output types printed to the console. Available 
are “0” for no output, “1” for printing only error messages and “2” for printing 
error and standard out messages. Nevertheless, all output is saved to files, 
independent from the level of verbosity. 

The call to run the simulator can be found within the coarsegrain.cs script and is 
defined as follows. 
 

        
RunSimulator(architecture, processors, source_dir, command, olevel, verbosity); 

 

Figure 13: GeCoS Script: compiling and simulating the application 

 

10 Conclusions 
The ALMA tool chain presents an end-to-end tool chain from a Scilab subset 
language directly to multicore embedded platforms. In order to remain platform 
agnostic, the tool chain introduces an Architecture Description Language (ADL). The 
tool chain consists of a front end with static code analysis optimizations, polyhedral 
analysis type optimizations and graph-based optimizations before the code reaches 
the platform specific tools. The accuracy for the optimizations is further enhanced by 
simulator feedback. This document describes the various tool chain components 
from a user point of view, provides tools demonstration and provides guidelines on 
how to better guide the optimization processes towards end-product performance. 
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Annex –User Manuals 
 
The ALMA Toolchain User Guide and the Matrix Frontend User Guide documents 
are provided in this Annex. 
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Chapter 1

Toolchain Usage

This chapter describes the usage of the ALMA toolchain starting with the Scilab/Matlab code
up to the generation of the target C code for the simulator/architecture.

1.1 Project Creation

The project "‘scilab_template"’ can be used as a basis for own Scilab applications. To create a
new project, copy the folder and rename all occurrences of "‘template"’ in the "‘template.cs"’
file by the project name. The source file needs to be placed in the folder "‘00_matlab_input"’.
For better clarity, the *.sce and *.cs should be renamed to the project name.

To run the tool-chain, right-click on the *.cs file and choose "‘Run As → Compiler Scipt"’
in the menu.

1.2 Folder Structure

The folder "‘00_matlab_input"’ contains the used Scilab or Matlab source file. The Ma-
trixFrontend generates the sequential C code into the folder "‘01_matrixfe_output"’. The
folders "‘02_raw_output"’ and "‘03_simplify"’ contain some intermediate steps of the UR1
optimization pass which will output the C code with exposed parallelism into the folder "‘CG-
output"’.

After the execution of a compiler script, the folder "‘solutions"’ contains all important files
for each pass whereas the init pass is a sequential pass and all following are parallel passes.

The file "‘perfEst.html"’ that is generated directly in the project folder contains some
statistic about the execution times among the different steps of the optimiuation.

1.3 Summary of GeCoS Compiler Scripts Options

When using scripts based on the template (named "‘_almaflow"’ in the WP3-integration-
tests"), the following options can easily be changed:

• projectName: name of the project, should be the same name as the input file without
the extension.

• sourceFile: path to the source file. Using the same structure is recommended.
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• architecture: currently the two architectures "‘kahrisma"’ and "‘x2014"’ are supported.

• steps: the number of iteration steps of the coarse-grain pass with the simulator feedback
loop.

• numberOfActors: the number of processors the loop tiling is targetting for. Should be
the same as numberOfProcessors.

• tileSize: the target size for arrays the loop tiling is aiming for. Is used for two dimensions
in the script (e.g. as 2, 2 for tileSize 2). ToDo: UR1: check if description is correct

• comMode: placement mode for the communication of the parallel code generation. "‘es-
timate"’ tries to minimize the the number of necessary communication by estimating the
number of executions by the control structure. "‘oldImp"’ places the communication di-
rectly after the definition of the variable, but uses optimization to avoid communication
inside of loops. "‘afterDef"’ is emulating the "‘oldImp"’ behavior with the "‘estimate"’
pass by assigning the lowest cost to the position after the definition.

• stacksize and ramsize: size of the RAM and the stack in Megabyte for the Kahrisma
architecture. Can be kept at the default values (64 and 128) for X2014.

3



Chapter 2

Fine Grain Parallelization

The Fine-Grain optimizations flow provides several loop transformations exposing Sub-Word
Parallelism (SWP) and enhancing data reuse. It also provides an automatic Basic-Block
level SIMD Vectorizer. Furthurmore, the fine-grain optimization flow includes a floating-point
to fixed-point conversion framework. All these transformations are implemented within the
GeCoS framwork. It consists of the following GeCoS modules accessible through the GeCoS
compiler script:

UR1OptimizationFlowModule Performs fine-grain loop transformations in addition along
with coarse-grain loop transformations.

AlmaFloat2FixConversion Performs floating-point to fixed-point conversion whenever pos-
sible.

AlmaSIMDVectorizer Performs SIMD Vectorization on all basic blocks annotated with
__RLT_INSET__.

CGeneratorSetSIMDArchitecture Set the target architecture to be used for SIMD Vec-
torization.

2.1 UR1OptimizationFlowModule

UR1OptimizationFlowModule first detects and extracts polyhedral parts (SCoP) of the appli-
cation, it then applies a set of coarse and fine graine loop transformations to help exposing
parallelsim and enhacing data locality and reuse. It will also automatically annotate some
basic blocks with __RLT_INSET__. This module can be used in a GeCoS script as follows:

p = CreateGecosProject(project_name); # create a project
AddSourceToGecosProject(p, source_file); # add source files
CDTFrontend(p); # launch the c front-end

UR1OptimizationFlowModule(p, [unrollFactor], [CGTileSizes], [FGTileSizes])

All but the first argument are optional.

• [unrollFactor] should be a positive integer value.
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• CGTileSizes should be a list of integer values representing the desired size of coarse
grain tiles.

• FGTileSizes similar to CGTileSizes but for fine grain tiles.

2.2 AlmaFloat2FixConversion

To use AlmaFloat2FixConversion, you first need to create a float to fixed project as shown
below:

fixProj = CreateIDFixProject(p, "output_dir"); # create a float to fix project
AlmaFloat2FixConversion(fixProj, AccuracyConstraint); # apply float to fixed conversion

AccuracyConstraint should be a string representing the maximun Noise Power allowed
at the system’s output

2.3 AlmaSIMDVectorizer

To perform SIMD Vectorization on a GeCoS project, the following modules should be used:

CGeneratorSetSIMDArchitecture(targetArchitecture); # set the target architecture
AlmaSIMDVectorizer(p); # Apply SIMD vectorization
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Chapter 3

Coarse Grain Optimization

The Coarse-Grain Optimization involves the identification of parallelism at the Hierarchical
Task Graph level. Coarse-Grain Optimization involves two main GeCoS modules, the Coarse
Grain First Pass and the Coarse Grain, and several supportive modules. The GeCoS modules
related to Coarse-Grain Optimization follow, in the order they appear in GeCoS compiler
scripts:

BBCallSplit Separates procedure calls at the Intermediate Representation level in order for
procedure calls to be available as individual atoms for parallelism.

ForInitSimplifier Converts general case of for loops (loops that are not a simple iteration
over a variable without continue or break instructions in the body) into simpler struc-
tures, like while, that are more efficiently analyzable.

CoarseGrainFirstPass Fist Pass for coarse grain optimization, produces a sequential solu-
tion and task profiling instructions, in order to prepare for the subsequent Coarse Grain
Optimization passes.

CoarseGrain The main part of Coarse Grain Optimization, produces a sequential solution
and task profiling instructions, in order to prepare for the subsequent Coarse Grain
Optimization passes.

MakespanReporter Collects data about the last run and produces graphs specific to the
last profiled execution.

3.1 BBCallSplit

BBCallSplit, or Basic Block Call Splitter, splits basic blocks that contain procedure calls in a
manner such that, a procedure is the single instruction in the block. In addition, BBCallSplit
duplicates procedure bodies each time a new procedure call to the same procedure is met, thus
allowing Coarse Grain Optimization to produce different schedules for each different case of
procedure body.

BBCallSplit as a GeCoS module receives a GecosProject object as its parameter, as
shown in the example below.

p = CreateGecosProject(project_name);
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AddSourceToGecosProject(p, source_file);
CDTFrontend(p);

BBCallSplit(p);

3.2 ForInitSimplifier

For loops can be simple loops that iterate over a variable and not include break or continue
statements. For loops that are not of the above simple, canonical form, ForInitSimplifier
converts them into a simpler structure that exposes dependencies in the HTG.

During ForInitSimplifier, a loop of the general form:

for( {init}; {test}; {step} )
{body}

Is converted to the equivalent:

{init}
for( ; {test}; ) {

{body}
{step}

}

ForInitSimplifier as a GeCoS module receives a GecosProject object as its parameter,
as shown in the example below.

p = CreateGecosProject(project_name);
AddSourceToGecosProject(p, source_file);
CDTFrontend(p);

ForInitSimplifier(p);

3.3 CoarseGrainFirstPass

CoarseGrainFirstPass produces a sequential solution instrumented with task profiling an-
notations, in order to prepare for the subsequent Coarse Grain Optimization passes.

The CoarseGrainFirstPass as a GeCoS module receives a GecosProject object and a
configuration file name as a parameter, as shown in the example below.

p = CreateGecosProject(project_name);
AddSourceToGecosProject(p, source_file);
CDTFrontend(p);

...

CoarseGrainFirstPass(p, "../../coarsegrain-firstpass.properties");

Alternatively, default values for configuration options may be used:
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p = CreateGecosProject(project_name);
AddSourceToGecosProject(p, source_file);
CDTFrontend(p);

...

CoarseGrainFirstPass(p, "../../coarsegrain-firstpass.properties");

The available options for the configuration file are presented in section 3.6.

3.4 CoarseGrain

The CoarseGrain module is the main part of the Coarse Grain Optimization process.
It is assumed that CoarseGrain is executed after CoarseGrainFirstPass or CoarseGrain

and after Parallel Code Generation and Simulator/Profiler.
The CoarseGrain as a GeCoS module receives a GecosProject object, an integer with the

number of processors to use and a configuration file name as parameters.

CoarseGrain(p, 6, "../../coarsegrain.properties");

It is possible to use default parameters instead of the configuration file:

CoarseGrain(p, 8);

The default number of processors is 4:

CoarseGrain(p);

The available options for the configuration file are presented in section 3.6.

3.5 MakespanReporter

The CoarseGrain module provides information on the program as generated by a previous
CoarseGrain pass and simulated in the profiler. The information includes the total running
time, as well as colored DOT files according to the processor allocation.

The MakespanReporter as a GeCoS module receives a GecosProject object, an integer
with the number of processors used and a configuration file name as parameters.

MakespanReporter(p, 6, "../../coarsegrain.properties");

It is possible to use default parameters instead of the configuration file:

MakespanReporter(p, 8);

The available options for the configuration file are presented in section 3.6.
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3.6 Configuration file

The configuration file for CoarseGrainFirstPass, CoarseGrain and MakespanReporter has the
same structure. The general format is that of Java Properties file (java.util.Properties).
In order to provide context, the Java package or fully-qualified class name is used as property
name prefix.

The available parameters are presented below:

gr.teimes.alma.coarsegrain.mode=4

The mode property dictates the solution method. In case of a random invalid mode, the
CoarseGrain pass outputs the available modes.

The available modes are:

mode 0 Single Processor solution

mode 1 Random parallel solution

mode 2 HEFT

mode 3 MPM

mode 4 Heuristics Multisolver

mode 5 MPM MultiSover

seed

Random generator seed, in order to produce repeatable results.

gr.teimes.alma.coarsegrain.shouldProduceDots=true
gr.teimes.alma.coarsegrain.dotsDirectory=dot
gr.teimes.alma.coarsegrain.enableDetailedDots=true

Property shouldProduceDots controls if the module should produce DOT files in order to
visualize the HTG. The dot files are produced in the dotsDirectory directory, which should
exist before the execution of the module. The enableDetailedDots enables the inclusion of
extra information in the DOT files.

The DOT files have special annotations in order to enable linking between Hierarchical
Tasks. When the DOT files are converted to SVG and viewed in complying viewers like Mozilla
Firefox, a user is able to click on Hierarchical Task references and see the corresponding DAG.
The conversion from DOT to SVG can be performed using the dot processor:

dot -Tsvg file.dot -o file.svg

gr.teimes.alma.coarsegrain.exportDebugGraph=true

The exportDebugGraph property enables the production of a file htg.dot that visualizes
the whole program HTG in a tree structure.

gr.teimes.alma.coarsegrain.SolutionExporter.disableTaskProfiling=false
gr.teimes.alma.coarsegrain.SolutionExporter.disableTaskDependencyProfiling=false
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The above properties control the use of profiling instructions. In normal operation, those
parameters are set to false.

gr.teimes.alma.coarsegrain.mpm.solver=ORTOOLS-SCIP

The solver specifies the mathematical solver used to solve subproblems. The available
options are:

ORTOOLS-CBC (default) CBC Open Source MILP solver using Google OR-tools

ORTOOLS-GLPK GLPK Open Source Solver using Google OR-tools

ORTOOLS-SCIP SCIP Solver, Free for non-commercial and academic use, using Google
OR-tools

GUROBI GUROBI commercial solvert

CPLEX IBM CPLEX commercial solver

gr.teimes.alma.coarsegrain.exportSVGSolution=true
gr.teimes.alma.coarsegrain.SVG.clusterHTasks = boolean

Property exportSVGSolution controls wether a visualization of the whole parallel program
execution will be generated as SVG.

Property clusterHTasks when set enables the clustering of the tasks for a single processor
in the SVG output in order to reduce visual clutter. Default value is true.

gr.teimes.alma.coarsegrain.mpm.timeout=6000

Property timeout limits the execution time of mathematical solver for a subproblem, time
given in seconds.

gr.teimes.alma.coarsegrain.timeLimit=6000

Property timeLimit was intended to be a limit for the whol CoarseGrain iteration. Not
used.

gr.teimes.alma.spmf.factory.LateAcceptanceFactory.lfa=100
gr.teimes.alma.spmf.factory.SimulatedAnnealingFactory.coolRate=0.01
gr.teimes.alma.spmf.factory.SimulatedAnnealingFactory.endTemp=0.1
gr.teimes.alma.spmf.factory.SimulatedAnnealingFactory.plateauSteps=10
gr.teimes.alma.spmf.factory.MetaheuristicFactory.timeLimit=1500
gr.teimes.alma.spmf.factory.MetaheuristicFactory.stepsLimit=1800
gr.teimes.alma.spmf.factory.MetaheuristicFactory.failedStepsLimit=11000
gr.teimes.alma.spmf.factory.SimulatedAnnealingFactory.startTemp=100.0

SPMF parameters. Not used.
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Logger.gr.teimes.alma.coarsegrain.CoarseGrainCLI=INFO,
Logger.gr.teimes.alma.coarsegrain.ReturnBlockFinder=INFO,
Logger.gr.teimes.alma.coarsegrain.SymbolScales=INFO,
Logger.gr.teimes.alma.coarsegrain.CoarseGrainConfig=INFO,
Logger.gr.teimes.alma.coarsegrain.SolutionExport=INFO,
Logger.gr.teimes.alma.coarsegrain.CoarseGrainFirstPass=INFO,
Logger.gr.teimes.alma.coarsegrain.CoarseGrainPass=INFO,
Logger.gr.teimes.alma.coarsegrain.DefUseEdgeProducer=INFO,
Logger.gr.teimes.alma.coarsegrain.HTGProxy=INFO,
Logger.gr.teimes.alma.coarsegrain.MakespanReporter=INFO,
Logger.gr.teimes.alma.coarsegrain.CoarseGrain=INFO,
Logger.gr.teimes.alma.coarsegrain.TaskDependencyValidator=INFO,

Logger.gr.teimes.alma.coarsegrain.model.iterators.BottomUpHTGIterator=INFO,
Logger.gr.teimes.alma.coarsegrain.model.base.RelocatableDagSchedule=INFO,
Logger.gr.teimes.alma.coarsegrain.model.base.TaskFactory=INFO,
Logger.gr.teimes.alma.coarsegrain.model.perfestimation.PerformanceEstimator=INFO,
Logger.gr.teimes.alma.coarsegrain.model.PartialSVG=INFO,
Logger.gr.teimes.alma.coarsegrain.model.GenericSolutionSVG=INFO,
Logger.gr.teimes.alma.coarsegrain.model.ModelPackageInfo=INFO,
Logger.gr.teimes.alma.coarsegrain.model.HTGSchedule=INFO,
Logger.gr.teimes.alma.coarsegrain.model.extended.PartialHTGManipulator=INFO,
Logger.gr.teimes.alma.coarsegrain.model.ScheduleTimeline=INFO,
Logger.gr.teimes.alma.coarsegrain.model.base.MakespanEvaluator=INFO,
Logger.gr.teimes.alma.coarsegrain.model.base.DagLegalityChecker=INFO,
Logger.gr.teimes.alma.coarsegrain.model.HierarchicalTaskGraph=INFO,
Logger.gr.teimes.alma.coarsegrain.model.base.MapDagSchedule=INFO,
Logger.gr.teimes.alma.coarsegrain.model.HTGFactory=INFO,
Logger.gr.teimes.alma.coarsegrain.model.tool.SolutionIO=INFO,
Logger.gr.teimes.alma.coarsegrain.model.tool.EdgeCollectVisitor=INFO,
Logger.gr.teimes.alma.coarsegrain.model.PartialTimeline=INFO,
Logger.gr.teimes.alma.coarsegrain.model.tool.HTGConsistencyValidator=INFO,
Logger.gr.teimes.alma.coarsegrain.model.perfestimation.ProfiledRun=INFO

Logger.gr.teimes.alma.coarsegrain.heuristicsolvers.mpm.DagSolution=INFO,
Logger.gr.teimes.alma.coarsegrain.heuristicsolvers.mpm.MPLinExpr=INFO,
Logger.gr.teimes.alma.coarsegrain.heuristicsolvers.MultiSolSolverAgent=INFO,
Logger.gr.teimes.alma.coarsegrain.heuristicsolvers.mpm.SolverAgent=INFO,
Logger.gr.teimes.alma.coarsegrain.heuristicsolvers.MultiSolversStrategy=INFO,
Logger.gr.teimes.alma.coarsegrain.heuristicsolvers.mpm.SolutionConverter=INFO,
Logger.gr.teimes.alma.coarsegrain.heuristicsolvers.simple.RandomParallelSolutionGenerator=OFF,
Logger.gr.teimes.alma.coarsegrain.heuristicsolvers.mathmodeler.MathAgent=INFO,
Logger.gr.teimes.alma.coarsegrain.heuristicsolvers.mpm.MathSolver=INFO,
Logger.gr.teimes.alma.coarsegrain.heuristicsolvers.BasicDAGHeuristicSolver=INFO,
Logger.gr.teimes.alma.coarsegrain.heuristicsolvers.mpm.DagConverter=INFO,
Logger.gr.teimes.alma.coarsegrain.heuristicsolvers.mpm.RandomDag=INFO,
Logger.gr.teimes.alma.coarsegrain.heuristicsolvers.mpm.CompositeTaskScheduleAgent=INFO,
Logger.gr.teimes.alma.coarsegrain.heuristicsolvers.MultiSolTest=INFO,
Logger.gr.teimes.alma.coarsegrain.heuristicsolvers.HeuristicSolversPackageInfo=INFO

The above properties control the various loggers. Each logger is set to a level and a level
enables all messages of this and upper levels. Each logger corresponds to a specific fully
qualified java class name in the source code. The available levels are, in descending order, are:

OFF Disable all messages
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ERROR Enable only error messages

WARN Enable warn messages and above

INFO Enable info messages and above

DEBUG Enable debug messages and above

FINE Enable fine messages and above

ALL Enable all messages

There are more loggers available from sub-modules as the heuristic solvers and model
packages. The logger names are organized in a hierarchical manner.

gr.teimes.alma.coarsegrain.performanceEstimator.simulatorEnvironment=build
gr.teimes.alma.coarsegrain.performanceEstimator.simulatorJsonFilename=
simrun.profiling.stats
gr.teimes.alma.coarsegrain.performanceEstimator.datafile=perfdata.dat

The above options control the interface between the CoarseGrain module and the profiler.
In general, they should not be modified.

The default behavior of the Coarse Grain passes is to produce the effective configuration in
the gr.teimes.alma.coarsegrain.CoarseGrainFirstPass logger as an INFO level message.

3.7 RunSimulator

The module RunSimulator builds the executables for the target architecture and profiles them
using the platform toolchain.

The RunSimulator as a GeCoS module receives the target architecture as a string, the
number of processors as an integer, the source directory as a string, the makefile target to run
as a string and verbosity as an integer, as follows.

RunSimulator(architecture, processors, source\_dir, command, verbosity);

The architecture valid options are:

"kahrisma" For Kahrisma

"x2014" For Recore X2014

The command, for kahrisma is "ssim_trace_kahrisma". For X2014, this is ignored.
The verbosity level has integer values and the result for different values makes the RunSimulator

module to output the following things in its output:

0 quiet

1 Standard error

2 Both standard error and standard output
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In any case, standard error and standard output are also saved to files for future reference.
It is also possible to define the optimization level of the compiler, using the olevel integer

parameter. The olevel parameter corresponds to the compiler optimization parameter, i.e.
0 corresponds to compiler parameter -O0, 1 corresponds to -O1, etc. The optimization level
is set according to the following RunSimulator compiler script line:

RunSimulator(architecture, processors, source\_dir, command,
olevel, verbosity);

It is also possible to define architecture stack and RAM sizes, as follows:

RunSimulator(architecture, no_of_processors, sourcedir, command,
stacksize, ramsize, olevel, verbosity);

For stacksize, ramsize, olevel and verbosity, a value of -1 means the default value,
as specified in the Makefile for the specific architecture. Default verbosity is 1.
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Chapter 4

Parallel Code Generation

The parallel code generation takes the mapped and scheduled output from the coarse-grain
passes and generates C code for the target architectures. I a GeCoS script there are the
following passes:

CreateCommunication Resolves the data dependencies and inserts communication func-
tions where necessary.

AddCommProfilingInstructions Add profiling instructions to the communication func-
tions according to the dependencies marked in the coarse-grain pass. Also generates
map files to match dependency IDs to communication IDs.

AddProfilingInstructions Inserts profiling instructions for task nodes into the C code.

DuplicateCFlow Ensures that each processor has its own continuous control flow.

ProcessGeneration Creates a sequential task process for each processor.

CGenerator Uses some extensions to generate C code conforming to the ALMA API.

4.1 CreateCommunication

The pass CreateCommunication has two important functions: distribution of processor as-
signments and insertion of communication functions. The processor assignment takes the
information from the tasks which were assigned to processors in the coarse-grain paralleliza-
tion and annotates all variables, functions and blocks. All variables which are needed on more
than one processor are duplicated and each processor gets its own version with the prefic
"‘_pn"’ where n stands for the processor number. The communication is inserted where
needed to fulfill all data dependencies. The pass is called like this:

CreateCommunication(p, com_mode);

The first parameter is a gecos project, the second is the communication mode as a string.
The supported modes are:
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oldImp This was the first implementation of the communication placement. The commu-
nication is placed directly after the definition of a variable. The only optimization is
to check if this would place the communication inside a loop. When the usage of the
variable is not in that loop, the communication will be placed after the loop. This
implementation should always work but rarely finds the best placement.

estimate This is a more advanced placement. At first, all possible positions are looked for.
Then, the positions are evaluated by the estimated number of times they are executed.
This is done using the following scheme: a normal basic block is called once, either
branch of a condition is taken half the time and a loop is called 10 times. The position
with the lowest number of executions will be chosen.

afterDef This mode uses the same algorithm to search for the positions, but weighs the early
positions higher so that the behavior is similar to oldImp.

useSchedule This mode uses the same algorithms as estimate to find all positions. From
all positions with the lowest numbers of execution, the ones best fitting the scheduling
information from the coarse-grain pass are chosen.

4.2 AddCommProfilingInstructions

This pass adds the profiling function calls to the communication according to the annotated
task dependencies from the coarse-grain pass. As arguments, only the GeCoS project and the
number of processors is needed. The pass also generates two files:

Profiling Map The file profiling_map.json contains all communications functions listed by
their communication ID. It includes information about the sending processing element
(sender_PE), the receiver PE, the corresponding annotated task dependencies, the IDs
of the tasks with the definition, the usage and the transfer of the variable, the symbol
name and the size of the data. An example can be seen in Listing 4.1

1 [’2’] = {
2 [’SenderPE ’] = 0;
3 [’ReceiverPE ’] = 1;
4 [’TaskDepAnno ’] = v(210, 228);
5 [’DefTaskID ’] = 22;
6 [’UseTaskID ’] = 84;
7 [’CommTaskID ’] = 18;
8 [’Symbol ’] = "temp";
9 [’DataSize ’] = 4;

10 };

Listing 4.1: Example profiling map

Dependencies The file dependencies.ddl contains information about the task dependencies.
For each communication belonging to a dependency the sending PE, the task ID, the
tasks including the definition and the usage of the variable as well as the sending and
the receiving tasks are listed. An example can be seen in Listing 4.2.

1 [’219’] = {
2 [’SenderPE ’] = 1;
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3 [’TaskID ’] = 0;
4 [’defTaskID ’] = 63;
5 [’useTaskID ’] = 62;
6 [’startTask ’] = 88;
7 [’endTask ’] = 123;
8 };
9 [’266’] = {

10 [’SenderPE ’] = 1;
11 [’TaskID ’] = 0;
12 [’defTaskID ’] = 62;
13 [’useTaskID ’] = 56;
14 [’startTask ’] = 123;
15 [’endTask ’] = 88;
16 };

Listing 4.2: Example dependencies.ddl file

4.3 AddProfilingInstructions

This pass adds the profiling instructions to all annotated tasks in the given GeCoS project. All
start and end function calls are inserted into LeafTaskNodes. For annotated hierarchical task
nodes, start is inserted as first instruction into the first leaf task and end as last instruction
into the last leaf task.

4.4 Duplicate Control Flow

The pass DuplicateCFlow duplicates all necessary control structures so that each processor
gets a continuous control flow. The only parameters necessary are the GeCoS project and the
number of cores.

4.5 Process Generation

This pass distributes the control flow into tasks for the individual processors. The only
necessary argument is the GeCoS project.

4.6 Parallel Code Generation

Instead of calling all passes one after the other, it is possible to only use the pass Parallel-
CodeGeneration. The configuration of all individual passes can be done using a configuration
file whereas the arguments architecture, number of cores and communication mode (in that
order, at least with 2 arguments) can be used to override the settings in the configuration file.
A sample configuration can be seen in Listing 4.3.

1 debug=false
2 numCores =4
3 maxPositions =5
4 defaultPE =0
5 outputDir=src -regen
6 architecture=kahrisma
7 communicationMode=estimate
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8 profilingMode=all
9 singleMain=false

Listing 4.3: Example configuration file for parallel code generation

The settings in detail:

debug Enables a debug mode with more output.

numCores The number of processing cores.

maxPositions The maximum number of positions that should be taken into account for the
communication placement. Default value is 5. Higher numbers may lead to much higher
running time.

defaultPE Sets the default processing element when information was not set by coarse-grain
pass or pragmas in the code.

outputDir Set the output directory where the C files should be generated.

architecture Currently only the architectures kahrisma and x2014 are supported.

communicationMode Set the mode for the placement of the communication instructions.
Currently supported: oldImp, afterDef, estimate and useSchedule.

profilingMode Defines which profiling instructions should be added to the code: none, all,
tasks or comm.

singleMain When enabled, all main functions for the processors are included in one single
main file. Otherwise, the individual main functions are called from one main function.
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Chapter 1

Input Language

1.1 Language Features

1.1.1 [] Operator

Known limitation: Only supporting two dimensions

1.1.2 Global Variables

Global variables are supported by the frontend.

1.1.3 Matrix Frontend Comments

The Matrix Frontend support special comments that are comments in Scilab/Matlab but
regular code in Matrix Frontend or vice versa. This is useful e.g. to keep compatibility of your
application to Matlab/Scilab when adding matrix-frontend-speci�c commands. This can be
used to hide any mfe_ functions from Scilab/Matlab since these functions are only available
within the Matrix Frontend.

1.1.3.1 Comments in Matlab/Scilab, Regular Code in MFE

Since the comment style within Matlab and Scilab are di�erent, there exists also a di�erent
Matlab or Scilab syntax for the Matrix Frontend Comments for Matlab and Scilab. In Scilab
code the MFE comments start with //MFE?: and in Matlab with %MFE?:. In the following
example, the mfe_fixedsize function call is protected by an MFE comment.

I Scilab I

//MFE?: mfe_fixedsize(a);
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I Scilab I
I Matlab I

%MFE?: mfe_fixedsize(a);

I Matlab I

1.1.3.2 Regular Code in Matlab/Scilab, Comments in MFE

The MFE-comments can also be used to construct comments that are only ignored within the
Matrix Frontend but not within Matlab/Scilab. The idea is to combine the MFE-comments
with multi-line comments. In the following code, the debug output is only used within Scil-
ab/Matlab.

I Scilab I

//MFE?: /*
show(a);
//MFE?: */

I Scilab I
I Matlab I

% Not supported yet

I Matlab I

1.2 Functions

1.2.1 Construct Functions

1.2.1.1 zeros

Create array of all zeros.

Syntax

y=zeros() returns the scalar 0.
y=zeros(sz1,sz2) creates a (m1,m2) matrix �lled with zeros.
y=zeros(sz1,az2,..,szn) creates a (m1,m2,..,mn) matrix �lled with zeros.
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I Matlab I

X = zeros returns the scalar 0.
X = zeros(n) returns an n-by-n matrix of zeros.
X = zeros(’like’,p) returns a scalar 0 with the same data type, sparsity,

and complexity (real or complex) as the numeric vari-
able, p.

X = zeros(n,’like’,p) returns an n-by-n array of zeros like p.
X = zeros(sz1,...,szN,’like’,p) returns an sz1-by..-by-szN array of zeros like p.
x = zeros(sz,’like’,p) returns an array of zeros like p where the size vector,

sz, de�nes size(X).

I Matlab I
I Scilab I

X = zeros(n) for a matrix of same size of A.

I Scilab I

Arguments

sz1,...,szN Two or more integer specifying the size of the dimension.

1.2.1.2 ones

Create array of all Ones.

It creates arrays of all ones on behalf of zeros in the section Please refer to section 1.2.1.1 for
documentation of the syntax.

1.2.1.3 rand

Uniformly distributed pseudorandom numbers

It creates array of Uniformly distributed pseudorandom numbers on behahalf of zeros and
operational syntaxes are same as zeros.

Please refer to section 1.2.1.1 for documentation of the syntax.
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1.2.1.4 eye

eye Identity matrix.

X = eye() eye() produces a identity matrix with unde�ned dimensions. Dimensions will
be de�ned when this identity matrix is added to a matrix with �xed dimensions.

eye(n,m) returns an n-by-m matrix with ones on the main diagonal and zeros elsewhere.

I Matlab I

X = eye eye returns the scalar, 1.
X = eye(n) returns an n-by-n identity matrix with ones on the main diagonal

and zeros elsewhere.
X = eye(sz) returns an array with ones on the main diagonal and zeros else-

where. The size vector, sz, de�nes size(I). For example, eye([2,3])
returns a 2-by-3 array with ones on the main diagonal and zeros
elsewhere.

X = eye(’like’,p) returns a scalar, 1, with the same data type, sparsity, and com-
plexity (real or complex) as the numeric variable, p.

X = eye(n,’like’,p) returns an n-by-n identity matrix like p.
x = eye(sz,’like’,p) returns a matrix like p where the size vector, sz, de�nes size(I).

I Matlab I
I Scilab table syntax I

X = eye(n) According to its arguments de�nes an mxn matrix with 1 along the main
diagonal or an identity matrix of the same dimension as A . Caution: eye(10)
is interpreted as eye(A) with A=10 i.e. 1. (It is a ten by ten identity matrix!)If
A is a linear system represented by a syslin list, eye(A) returns an eye matrix
of appropriate dimension: (number of outputs x number of inputs).

I Scilab table syntax I

1.2.1.5 diag

Get diagonal elements or create diagonal matrix

D = diag(v,k) places the elements of vector v on the kth diagonal. k=0 represents the
main diagonal, k>0 is above the main diagonal, and k<0 is below the
main diagonal.
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I Matlab table syntax I

D = diag(v) returns a square diagonal matrix with the elements of vector v on the
main (k=0) diagonal.

x = diag(A) returns a column vector of the main (k=0) diagonal elements of A.
x = diag(A,k) diag(A,k) returns a column vector of the elements on the kth diagonal of

A.

I Matlab table syntax I

1.2.1.6 rot90

Rotate array 90 degrees

I Matlab table syntax I

B = rot90(A) rot90(A) rotates array A counterclockwise by 90 degrees. For multi-
dimensional arrays, rot90 rotates in the plane formed by the �rst and
second dimensions.

B = rot90(A,k) rotates array A counterclockwise by k*90 degrees, where k is an integer.

I Matlab table syntax I

1.2.1.7 �ip

Flip order of elements
I Matlab table syntax I

B = flip(A) returns array B the same size as A, but with the order of the elements
reversed. The dimension that is reordered in B depends on the shape
of A:
If A is vector, then �ip(A) reverses the order of the elements along the
length of the vector.
If A is a matrix, then �ip(A) reverses the elements in each column.
If A is an N-D array, then �ip(A) operates on the �rst dimension of A
in which the size value is not 1.

B = flip(A,dim) reverses the order of the elements in A along dimension dim. For ex-
ample, if A is a matrix, then �ip(A,1) reverses the elements in each
column, and �ip(A,2) reverses the elements in each row.

I Matlab table syntax I
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1.2.1.8 reshape (Matlab) / matrix (Scilab)

Reshape array

I Matlab table syntax I

B = reshape(A,m,n) returns the m-by-n matrix B whose elements are taken
column-wise from A. An error results if A does not have
m*n elements.

B = reshape(A,m,n,p,...) returns an n-dimensional array with the same elements as
A but reshaped to have the size m-by-n-by-p-by-.... The
product of the speci�ed dimensions, m*n*p*..., must be
the same as numel(A).

B = reshape(A,[m n p ...]) returns an n-dimensional array with the same elements as
A but reshaped to have the size m-by-n-by-p-by-.... The
product of the speci�ed dimensions, m*n*p*..., must be
the same as numel(A).

B = reshape(A,...,[],...) calculates the length of the dimension represented by the
placeholder [], such that the product of the dimensions
equals numel(A). The value of numel(A) must be evenly
divisible by the product of the speci�ed dimensions. You
can use only one occurrence of [].

I Matlab table syntax I
I Scilab syntax I

y=matrix(v,n,m) For a vector or a matrix with n x m entries, the command
y=matrix(v,n,m) or similarily y=matrix(v,[n,m]) transforms the v
vector (or matrix) into an nxm matrix by stacking columnwise the
entries of v.

y=matrix(v, sizes) For an hypermatrix such as prod(size(v))==prod(sizes), the com-
mand y=matrix(v,sizes) (or equivalently y=matrix(v,n1,n2,...nm))
transforms v into an matrix or hypermatrix by stacking "colum-
nwise" (�rst dimension is varying �rst) the entries of v.
y=matrix(v,sizes) results in a regular matrix if sizes is a scalar or a
2-vector.

I Scilab syntax I

1.2.2 Basic Functions

1.2.2.1 size

an array or n-D array (constant, polynomial, string, boolean, rational)
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b=size(a) it returns b = [3 2] as the size of the matrix a.

I Matlab table syntax I

[m,n] = size(X) returns the size of matrix X in separate variables m and n.
m = size(X,dim) returns the size of the dimension of X speci�ed by scalar dim.

I Matlab table syntax I
I Scilab table syntax I

y=size(x [,sel]) a matrix (constant, polynomial, string, boolean, rational) x, with only
one lhs argument size returns a 1x2 vector [number of rows, number
of columns]. Called with LHS=2,

[nr,nc]=size(x) returns nr,nc = [number of rows, number of columns]. sel may be used
to specify what dimension to get.

I Scilab table syntax I

1.2.2.2 length

Length of vector or largest array dimension

N=length(m) returns the number of elements along the largest dimension of an array. array
is an array of any MATLAB data type and any valid dimensions. number
Of Elements is a whole number of double class.

1.2.2.3 ndims

Number of array dimensions

N = ndims(A) returns the number of dimensions in the array A. The number of dimensions
is always greater than or equal to 2. The function ignores trailing singleton
dimensions, for which size(A,dim) = 1.

1.2.3 Mathematic Functions

1.2.3.1 sqrt

Square root

y=sqrt(r) returns the square root of each element of the array X.
y=sqrt(c) returns the square root of each element of the array X. For the elements of X

that are negative or complex, sqrt(X) produces complex results.

12



1.2.3.2 sum

Sum of array elements

y=sum(x) returns in the scalar y the sum of all the elements of x.
S = sum(A,dim) sum(A,dim) sums the elements of A along dimension dim. The dim input

is a positive integer scalar.

I Matlab syntax I

S = sum(___,type) accumulates in and returns an array in the class speci�ed by type,
using any of the input arguments in the previous syntaxes. type can
be 'double' or 'native'.

I Matlab syntax I
I Scilab syntax I

y=sum(x,outtype) The outtype argument rules the way the summation is done.

I Scilab syntax I

1.2.3.3 prod

Product of array elements

y=prod(x) prod(A) returns the product of the array elements of A.
S = prod(A,dim) prod(A,dim) returns the products along dimension dim. For example,

if A is a matrix, prod(A,2) is a column vector containing the products
of each row.

I Matlab syntax I

S =prod(___,type) and returns an array in the class speci�ed by type, using any of the
input arguments in the previous syntaxes. type can be 'double' or
'native'.

I Matlab syntax I
I Scilab syntax I

y=prod(x,outtype) The outtype argument rules the way the summation is done.

I Scilab syntax I
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1.2.3.4 abs

absolute value, magnitude

B = abs(r) returns the absolute value of the elements of x.
B = abs(c) returns the absolute value of the elements of x. When x is complex, abs(x) is

the complex modulus (magnitude) of the elements of x.

1.2.3.5 complex

Create complex array

z = complex(x) returns the complex equivalent of x, such that isreal(z) returns logical
0 (false).

z = complex(a,b) creates a complex output, z, from two real inputs, such that z = a +
bi.

1.2.3.6 conj

Complex conjugate

C = conj(Z) returns the complex conjugate of the elements of Z.

1.2.3.7 real

Real part of complex number

C = real(Z) returns the real part of the elements of the complex array Z.

1.2.3.8 imag

Imaginary part of complex number

C = imag(Z) returns the imaginary part of the elements of array Z.

1.2.3.9 log

Natural logarithm

Y = log(r) returns the natural logarithm of each element in array X. The function accepts
real inputs. For real values of X in the interval (0, Inf), log returns real values
in the interval (-Inf ,Inf).

Y = log(c) returns the natural logarithm of each element in array X. The function accepts
both real and complex inputs. For real values of X in the interval (0, Inf),
log returns real values in the interval (-Inf ,Inf).
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1.2.3.10 log10

logarithm

Y = log10(r) returns the base 10 logarithm of the elements of X.
Y = log10(c) returns the base 10 logarithm of the elements of X. The function accepts

both real and complex inputs. For real values of X in the interval (0, Inf),
log10 returns real values in the interval (-Inf ,Inf).

1.2.3.11 log2

Base 2 logarithm and dissect �oating-point numbers into exponent and mantissa

y=log2(x) computes the base 2 logarithm of the elements of X.
Y = log2(c) returns the base 2 logarithm of the elements of X. The function accepts both

real and complex inputs. For real values of X in the interval (0, Inf), log10
returns real values in the interval (-Inf ,Inf).

1.2.3.12 exp

element-wise exponential

Y = exp(r) returns the exponential for each element of array X. The function accepts real
and inputs. For real values of X in the interval (-Inf, Inf), exp returns real
values in the interval (0,Inf).

Y = exp(c) returns the exponential for each element of array X. The function accepts
both real and complex inputs. For real values of X in the interval (-Inf, Inf),
exp returns real values in the interval (0,Inf).

1.2.3.13 ceil

Round toward positive in�nity

B = ceil(A) rounds the elements of A to the nearest integers greater than or equal to
A. For complex A, the imaginary and real parts are rounded independently.
Special case: where front end does not support in complex numbers

1.2.3.14 �oor

round down

B = floor(r) rounds the elements of A to the nearest integers less than or equal to A.
B = floor(c) rounds the elements of A to the nearest integers less than or equal to A.

For complex A, the imaginary and real parts are rounded independently.
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1.2.3.15 �x

Round toward zero

B = fix(r) rounds the elements of A to the nearest integers less than or equal to A.
B = fix(c) rounds the elements of A to the nearest integers less than or equal to A. For

complex A, the imaginary and real parts are rounded independently.

1.2.3.16 round

rounding

y=round(x)

round(x) rounds the elements of x to the nearest integers.

y=round(r) rounds the elements of X to the nearest integers. Positive elements with
a fractional part of 0.5 round up to the nearest positive integer. Negative
elements with a fractional part of -0.5 round down to the nearest negative
integer.

y=round(c) rounds the elements of X to the nearest integers. Positive elements with a frac-
tional part of 0.5 round up to the nearest positive integer. Negative elements
with a fractional part of -0.5 round down to the nearest negative integer. For
complex X, the imaginary and real parts are rounded independently.

1.2.3.17 mod (Matlab), modulo (Scilab)

Modulus after division

I Matlab syntax I

B = mod(x,y) returns the modulus after division of X by Y.
B = rem(x,y) returns the remainder after division of X by Y.

I Matlab syntax I
I Scilab syntax I

B = modulo(x,y) returns the modulus after division of X by Y.
B = pmodulo(x,y) returns the positive arithmetic remainder modulo B.

I Scilab syntax I
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1.2.3.18 sin

Sine of argument in radians

Syntax

Y = sin(r) returns the sine of the elements of X. The sin function operates element-wise
on arrays.

Y = sin(c) returns the sine of the elements of X. The sin function operates element-wise
on arrays. The function accepts both real and complex inputs. For real values
of X in the interval [-Inf, Inf], sin returns real values in the interval [-1 ,1].
For complex values of X, sin returns complex values. All angles are in radians

1.2.3.19 cos

Cosine of argument in radians

Syntax

Please refer to section 1.2.3.18 for documentation of the syntax.

1.2.3.20 tan

[t]=tan(x)

The elements of t are the tangent of the elements of x

Syntax

Please refer to section 1.2.3.18 for documentation of the syntax.

1.2.3.21 min

Smallest elements in array

m=min(A , B) returns A for two parameter version for a real vector or matrix.

I Matlab syntax I

C = min(A,[],dim) returns the smallest elements along the dimension of A speci�ed
by scalar dim. For example, min(A,[],1) produces the minimum
values along the �rst dimension of A.

C = [C,I] = min(...) �nds the indices of the minimum values of A, and returns them
in output vector I. If there are several identical minimum values,
the index of the �rst one found is returned.
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I Matlab syntax I
I Scilab syntax I

[m [,k]]=min(A,’c’) For A, a real vector or matrix, min(A) is the largest ele-
ment A. [m,k]=min(A) gives in addition the index of the
minimum. A second argument of type string 'r' or 'c' can
be used : 'r' is used to get a row vector m such that m(j)
contains the minimum of the j th column of A (A(:,j)), k(j)
gives the row indice which contain the minimum for column
j. 'c' is used for the dual operation on the rows of A. 'm'
is used for compatibility with Matlab.

[m [,k]]=min(A1,A2,...,An) where all the Aj are matrices of the same sizes,returns a
vector or a matrix m of size size(m)=size(A1) such that
m(i)= min( Aj(i)), j=1,...,n.

I Scilab syntax I

1.2.3.22 max

Largest elements in array

Same as the min syntax but it returns largest elements in an array behalf of smallest array in
an array.

1.2.4 Data Type Functions

1.2.4.1 boolean

Boolean evaluation

MATLAB Compatibility:

This functionality does not run in Matlab

Scilab Compatibility:

Scilab Objects, boolean variables and operators

1.2.4.2 double

1.2.4.3 int8, int16, int32, int64

Convert to n-bit signed integer, where n=8,16,32,64
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z = int8(x) converts the elements of an array into signed 8-bit (1-byte) integers of class
int8.

z = int16(x) converts the elements of an array into signed 16-bit (2-byte) integers of
class int16.

z = int32(x) converts the elements of an array into signed 32-bit (4-byte) integers of
class int32.

z = int64(x) converts the elements of an array into signed 64-bit (8-byte) integers of
class int64.

1.2.4.4 uint8, uint16, uint32, uint64

Convert to n-bit unsigned integer, where n=8,16,32,64.

z = uint8(x) converts the elements of an array into unsigned 8-bit (1-byte) integers of
class uint8.

z = uint16(x) converts the elements of an array into unsigned 16-bit (2-byte) integers of
class uint16.

z = uint32(x) converts the elements of an array into unsigned 32-bit (4-byte) integers of
class uint32.

z = uint64(x) converts the elements of an array into unsigned 64-bit (8-byte) integers of
class uint64.

1.2.4.5 complex

create a complex number

z = complex(x) returns the complex equivalent of x, such that is real(z) returns logical
0 (false).

z = complex(a,b) creates a complex output, z, from two real inputs, such that z = a +
bi.

1.2.4.6 �

create a �xed-point number

19



a = fi is the default constructor and returns
a � object with no value, 16-bit word
length, and 15-bit fraction length.

a = fi(v) returns a signed �xed-point object with
value v, 16-bit word length, and best-
precision fraction length.

a = fi(v,s) returns a �xed-point object with value
v, Signed property value s, 16-bit
word length, and best-precision fraction
length. s can be 0 (false) for unsigned
or 1 (true) for signed.

a = fi(v,s,w) returns a �xed-point object with value
v, Signed property value s, word length
w, and best-precision fraction length.

a = fi(v,s,w,f) returns a �xed-point object with value
v, Signed property value s, word length
w, and fraction length f. Fraction
length can be greater than word length
or negative.

a = fi(...,F) returns a �xed-point object with a �-
math object F.

a = fi(...,T) returns a �xed-point object with a nu-
merictype object T.

a = fi(...,’PropertyName’,PropertyValue...) allow you to set �xed-point objects for
a � object by property name/property
value pairs.

1.2.5 Output Functions

1.2.5.1 disp

Displays variable

I Matlab syntax I

disp(X) Disp(X) displays the contents of X without printing the variable name. Disp
does not display empty variables

I Matlab syntax I
I Scilab equivalent table syntax I

disp(x1,[x2,...xn]) displays xi with the current format. xi s are arbitrary objects (ma-
trices of constants, strings, functions, lists, ...)

I Scilab equivalent table syntax I
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1.2.5.2 mfe_save

This function saves a variable to a �le. The variable can be loaded again using the mfe_load

function.

mfe_save(’filename’, var) Save variable to �le )

1.2.5.3 mfe_load

This function loads a variable from a �le created by mfe_save. The variable to load to has to
be initialized with the correct dimension sizes. The variable has to be of type double.

mfe_load(’filename’, var) Load variable from �le

Example:

a = double(zeros(10, 10));
mfe_load(’file.dat’, a);

1.2.5.4 mfe_read_image

This function reads an image from a �le. Supported formats by this function are jpg, png and
bmp. The width and height must be provided as additional parameter. The image can be
optionally loaded as greyscale.

The type of the resulting variable is uint8. In greyscale mode, the resulting variable has 2
dimensions. In colored mode, the resulting variable has 3 dimensions and the size of 3rd
dimension is 3 to contain the color channels.

The size of the loaded image must be provided in the 2nd and 3rd parameter. Each of the
parameter could be either a constant or a constant range. If the loaded image has a di�erent
shape than provided by the parameters, the behavior of the function is unde�ned.

mfe_read_image(’filename’, xsize, ysize) Load colored image from �le
mfe_read_image(’filename’, xsize, ysize, ’Greyscale’) Load greyscale image from

�le

Example:

a = mfe_read_image(’test.bmp’, 10:64, 10:64);
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1.2.5.5 mfe_write_image

This function writes an image into a �le. Supported formats by this function are jpg, png and
bmp.

The data type of the variable is irrelevant. If the variable has 2 dimensions, a greyscale image
is saved. If the variable has 3 dimensions, the 3rd dimension contains the color parts and a
colored image is saved.

mfe_write_image(’filename’, var) Write image to �le

Example:

var = rand(100, 50) * 255;
mfe_write_image("test.bmp", var);

1.2.6 Size Inference Functions

1.2.6.1 mfe_�xedsize

This function indicates that the size of variable is not changed anymore. This is helpful to
hint the frontend that any array accesses to the variable won't a�ect their size.

mfe_fixedsize(var) Set variable into �xed size mode

1.2.6.2 mfe_size

This function sets the size of the dimensions of a variable to intervals and/or constant values.

mfe_size(var, dim_1, ..., dim_n) Set size of one variable

Example:

mfe_size(a, 3, 3, 1:10);

1.2.6.3 mfe_size_noscalar

This functions sets the size of the dimensions of a variable to intervals and/or constant values.
Additionally, it indicates that the variable should never interpreted as a scalar. That is
especially for the type inference system important. The operator type often changes if one
expression is a scalar or not. For growing variables, the size of a variable could be theoretically
a scalar (1x1) and that could cause the operator type to become undecidable without this
function.

mfe_size_noscalar(var, dim_1, ..., dim_n) Set size of one variable and declare to
never thread it as a scalar
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Example:

mfe_size_noscalar(a, 1:10, 1:10);

1.2.6.4 mfe_dynamic

This function indicates that the size of a variable should be automatically calculated by the
frontend. That is the default mode of a variable. It can be used to reset any previous setting
from other size inference functions.

mfe_dynamic(var) Set variable to dynamic mode.

1.2.7 Special Functions

1.2.7.1 mfe_pragma

This functions added pragmas to Matlab or Scilab statements. In the C output code, a #pragma
directive is added before the statement code.

mfe_pragma(string) Adds a parama to the successive directive.

Example

The following Matlab code

mfe_pragma(’omp parallel for’);
a = zeros(3,3);

adds the pragma to the C code:

#pragma omp parallel for
for (v1 = 0; v1 < 3; ++v1) {
for (v0 = 0; v0 < 3; ++v0) {
a_data[v1][v0] = 0;

}
}

1.2.7.2 mfe_pragma_var

This functions added pragmas to Matlab or Scilab variables. In the C output code, a #pragma

directive is added before the variable declaration.

mfe_pragma_var(var,str) Adds a pragma to the variable.
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1.2.7.3 mfe_pragma_func

This functions added pragmas to Matlab or Scilab variables. In the C output code, a #pragma

directive is added before the function declaration.

mfe_pragma_func(var) Adds a pragma to the containing function.

1.2.7.4 mfe_func_�le

This special directive controls the C output �le name for the function that contains the
directive. Per default, each function is written to the output C �le speci�ed by the command
line parameter.

mfe_func_file(filename) Set the output �le name for the containing function.

Example

function [out1] = f()
mfe_func_file(’func_f.c’);

out1 = rand();
end

out1 = f();

1.2.7.5 mfe_func_noinline

This special directive controls deactivates inlining for the function that contains the directive.
No constant propagation is performed over the function boundary if noinline is speci�ed.

mfe_func_noinline() Deactivates inlining for the containing function.

Example

function [out1] = f()
mfe_func_noinline();

out1 = 2;
end

a = f()

for i = 1:a
i

end

Prevents the variable a to be replaced by 2.
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1.3 Type Inference

The Matlab or Scilab language is a scripting language that features dynamic typing. That
means that the types and operator are checked at run time and are not �xed. For an e�cient
compilation, it is important that the data types and operators are static and known at compile
time.

Therefore, the Matrix Frontend comprises an advanced type inference engine that tries to
calculate the data type and maximum size for each variable. If the type inference fails, an
error message is generated. In that case, the user can annotate additional type information
to �x the problem.

1.3.1 Static Variable States

The variable states comprises several �ags of a variable:

• Global state (set by Global statement)

• Size state (set by size inference functions, see 1.2.6)

The �ags are propagated within a function through the possible control �ow. The control �ow
refers to the order in which the individual statements are executed. For every variable usage,
the state of a variable must be non-ambiguous.

In the following example, the variable is changed to global within an if-then-else statement.
After the statement, the global state of the variable is ambiguous. It depends on the run-time
value of x whether the variable a is global or not. So it is at compile-time undecidable and
would produce an error.

a = 1; % Local (default at beginning of a function)
if (x)

a = 2; % Local
global a;
a = 3; % Global

else
a = 4; % Local

end
a = 5; % Ambiguous

In the following example, the variable is changed to global within the for loop. At the beginning
of the for loop, the variable is local in the �rst iteration and global in any other iteration,
and therefore ambiguous. After the for loop, it is also ambiguous since a for loop could be
executed 0 times.

a = 1; % Local (default at beginning of a function)
for i = 1:10

a = 2; % Ambiguous
global a;
a = 3; % Global

end
a = 4; % Ambiguous
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1.3.2 Size Inference

During size inference, the shape of a matrix is calculated.

1.3.2.1 Example: Array Access in Loops

In this example, the maximum size of variable a cannot be interfered. The maximum size of
a depends on the maximum value of i2 and that could currently not calculated.

i2=1;
a=[];
for i=1:10

a(1,i2) = i;
i2 = i2 + 1;

end

One solution to �x the problem is the mfe_fixedsize function. This function indicates that
the size of variable a is not changed after initialization.

i2=1;
a=zeros(1,10);
%MFE?: mfe_fixedsize(a);
for i=1:10

a(1,i2) = i;
i2 = i2 + 1;

end

1.3.2.2 Example: Rede�ne Variable in Loops

TODO: Problem of this example

a = zeros(16, 16);

for i=1:1:3
b = size(a, 1)
a = zeros(b/2, 16);

end

One Solution to �x this problem is the mfe_size function. This function sets the size of
variable a to a de�ned interval or constant.

a = zeros(16, 16);

for i=1:1:3
%MFE?: mfe_size(a, 2:16, 16);
b = size(a, 1)
a = zeros(b/2, 16);

end
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1.4 Errors, Warnings and Notes

1.4.1 E00001 � Error � Incompatible data types

The data types are not compatible and cannot be combined.

Example

10 + ’xx’;

1.4.2 WP00002 � Performance Warning � Consider using ceil or �oor in-
stead of �x function

The performance of the �x function is worse in contrast to ceil or �oor. This warning is raised
when the �x function is used.

Example

fix(4.4);

1.4.3 WI00003 � Incompatibility Warning � Negative sqrt does not result
in a complex number

The warning is automatically raised, when a sqrt is used.

Example

sqrt(1);

To make your code Matlab and Scilab compatible, please use

real(sqrt(1))

for a real square root and

sqrt(complex(1))

to perform a complex square root.

1.4.4 WP00004 � Performance Warning � Consider using ceil or �oor in-
stead of round function

The performance of the round function is worse in contrast to ceil or �oor. This warning is
raised when the round function is used.
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Example

round(4.4);

1.4.5 E00005 � Error � Matrix division: Cannot determine if right matrix
is scalar

It must be clear at compile time, if the right side of a matrix division is scalar or not. The
error indicates that this is not decidable by the front end.

Example

a = rand(3,3)
b = rand(1,1)
mfe_size(b, 1:2, 1:2)
a / b

1.4.6 E00006 � Error � function $funcname: Function with $paracount
parameters not supported

The error indicates, that the built-in function with a speci�c number of parameters is not
supported.

Example

sqrt(10,10,10)

1.4.7 W00007 � Warning � Cannot check matrix multiplication consistency

The matrix multiplication is de�ned only, if the number of columns in the left matrix is equal
to the number of rows in the right matrix. If that is not decidable at compile time, a warning
is raised to indicate a potential run-time error.

Example

a = rand(3,3);
b = rand(3,3);
mfe_size(b, 1:3, 3);
a*b;
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1.4.8 E00008 � Error � Inconsistent matrix multiplication

The matrix multiplication is de�ned only, if the number of columns in the left matrix is equal
to the number of rows in the right matrix. The error is raised if the condition is not met.

Example

rand(3,3) * rand(2,2)

1.4.9 E00009 � Error � Matrix multiplication not de�ned for hypermatrices

The matrix multiplication is de�ned only for 2 dimensional matrices and not for hypermatrices.
The error is raised if it is used on hypermatrices.

Example

rand(3,3,3) * rand(3,3,3)

1.4.10 E00010 � Error � Transpose is not de�ned for hypermatrices

The transpose operator is de�ned only for 2 dimensional matrices and not for hypermatrices.
The error is raised if it is used on hypermatrices.

Example

rand(3,3,3)’

1.4.11 E00011 � Error � One-dimensional reduction: Not supported for
hypermatrices

The reduction into one dimension (max, min, sum, prod) is not supported for hypermatrices
right now.

Example

b = max(rand(3,3,3))
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1.4.12 E00012 � Error � One-dimensional reduction: Cannot detect a�ect-
ing dimension

The reduction into one dimension (max, min, sum, prod) is performed into the �rst dimension
that is not 1. The detection of the dimension must be compile time constant. The error is
raised if it cannot be determined.

Example

a = rand(3,3);
mfe_size(a, 1:3, 3);
max(a)

1.4.13 W00013 � Warning � $object has multiple references.

Internal error, please report to development team.

1.4.14 E00014 � Error � Variable or function $var is not de�ned.

A variable is used but not de�ned. For each variable usage, there must be a de�nition on any
possible control-�ow path.

Example

if (rand())
a = 1;

end
b = a

In this example, the variable a is de�ned only if the condition is met.

1.4.15 E00015 � Error � Unknown constant '$name'

Scilab only: A unknown constant is used.

Example

%xyz

1.4.16 E00016 � Error � Invalid lvalue element

A lvalue is the term on the left side of a equal sign. On the left side, only variables and array
of variables are allowed. Any other expression will result in this error.
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Example

rand(3,3) = 10;

1.4.17 E00017 � Error � Linear array indexing not supported yet. Please
rewrite a(x) to a(1,x) or a(x,1).

Linear index of matrices is not supported yet. This will be added in future.

Example

a = rand(3,3);
a(1)

1.4.18 E00018 � Error � Multiple values on the left side of the assignment
is not supported.

Multiple values on the left side of the assignment for buildin functions is not supported yet.
This will be added in future.

Example

a = rand(3,3);
[x,y] = size(a);

This example show one typical case that uses multiple values on the left side. This can be
easily rewritten to

a = rand(3,3);
x = size(a,1);
y = size(a,2);

1.4.19 E00019 � Error � Array access: Cannot detect if dimension $dim is
1.

For matrix indexing, it is sometimes required to decide if the access to one dimension has one
element. If that is not decidable at compile time, an error is raised.

Example

a = 1:10;
mfe_size(a,1:10,1);
b = rand(10,10,10);
b(1,1,a)
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1.4.20 E00020 � Error � Could not interfere shape for variable $var.

Example

a = [];
x = 1;
for i=1:10

a(x,1) = i;
x = x+1;

end

1.4.21 N00021 � Note � Setting variable access to �xed size for variable:
'$var'.

A note is output for every variable access that is set to �xed size.

Example

mfe_fixedsize(a);
a = rand(3,3);
a(2,2) = 1;

1.4.22 E00022 � Error � Variable $var: Cannot assign di�erent number of
dimensions.

It is not possible to assign arrays with di�erent numbers of dimensions to one variable. See
limitation in section 1.5.2;

Example

a = zeros(3,3);
a = zeros(1,2,3);

1.4.23 E00023 � Error � Invalid function type

Syntax error.

1.4.24 E00024 � Error � Matrix multiplication: Cannot determine if left
or right matrix is scalar

It must be clear at compile time, if the right side or left side of a matrix multiplication is
scalar. The error indicates that this is not decidable by the front end.
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Example

a = rand(3,3);
b = rand(1,1);
mfe_size(b, 1:3, 1);
a * b;

1.4.25 E00025 � Error � Function diag is not de�ned for hypermatrices

The function diag is not de�ned for hypermatrices.

Example

diag(rand(3,3,3));

1.4.26 E00026 � Error � Function diag: Cannot determine if input is a
vector

The function diag cannot determine at compile time if the parameter is a vector.

Example

a = rand(3,3);
mfe_size(a, 1:3, 1:3);
diag(a);

1.4.27 E00027 � Error � $funcname function: Expecting parameter $paramno
to be constant

Some functions must have a constant parameter.

Example

a = 1;
b = rand(3,3);
size(b, a);

1.4.28 E00028 � Error � $funcname function: Invalid parameter $paramno

A parameter of a function is invalid.
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Example

a = rand(3,3);
flip(a, (-4));

1.4.29 E00029 � Error � Lexer error: Invalid character '$char'

A invalid character is found in the input �le.

Example

"Matlab does not allow double quoted strings"

1.4.30 E00030 � Error � Variable '$var' is already global.

A variable is de�ned as global multiple times.

Example

global a;
global a;

1.4.31 E00031 � Error � Global state of variable '$var' is ambiguous.

The global state of a variable on each variable usage must be decidable at compile time. See
section 1.3 for more information about the propagation of type information at compile time.

Example

if (rand())
global a;

end
a = 1;

1.4.32 N00032 � Note � Setting variable access to interval/constant size
for variable: '$var'.

The mfe_size function allows to bypass the automatic size inference system and manually
sets the size for a variable. The note indicates to which variable usage the manual size
information are applied.
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Example

mfe_size(a, 1:10, 1:10);
a = 1;

1.4.33 E00035 � Error � Di�erent data types for variable $var ($dt1 vs.
$dt2)

It is not possible to set the di�erent data types to the same variable. Please use multiple
variables.

Example

a = 1;
a = uint8(2);

1.4.34 E00036 � Error � break/continue statement only possible within a
loop

Break and continue statement are only legal within a loop.

Example

break;

1.4.35 W00037 � Warning � Lexer warning: Use comma instead of space
to separate expressions.

The Matlab and Scilab language is a space-sensitive language. The current implementation
of the front end does not support space-sensitive parsing. If a space-sensitive expression is
found, this warning is generated. Please rewrite your code and separate your expressions by
comma instead of spaces.

Example

[2 3 4]

1.4.36 E00038 � Error � MFE size of variable '$var' is ambiguous.

The size state of a variable on each variable usage must be decidable at compile time. See
section 1.3 for more information about the propagation of type information at compile time.
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Example

a = 1;

if (a)
mfe_size(a, 2, 2);

else
mfe_size(a, 3, 3);

end

b = a;

1.4.37 E00039 � Error � Syntax: Unexpected end or $

The end (Matlab) or $ (Scilab) keyword is only allowed within an array access.

Example

a = (end);

1.4.38 N00040 � Note � MFE size of variable set here.

This note appears in combination with error E00038 and indicates where the size of a variable
was set.

1.4.39 E00041 � Error � $funcname function: Expecting parameter $paramno
to be a variable

Some functions require a parameter to be a variable.

Example

mfe_fixedsize(1);

1.4.40 E00042 � Error � $funcname function: Expecting parameter $paramno
to be a string

Some functions require a parameter to be a string.

Example

mfe_pragma(1);
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1.4.41 E00043 � Error � Number of output parameters does not match to
function declaration

The number of output parameter does not match to the number of output parameter of a
user-de�ned function.

Example

function [out1] = f()
out1 = rand();

end

[out1, out2] = f();

1.4.42 E00044 � Error � Number of input parameters does not match to
function declaration

The number of input parameter does not match to the number of input parameter of a user-
de�ned function.

Example

function f(in1)
disp(in1);

end

f(1, 2);

1.4.43 E00045 � Error � Binary operator $op: Cannot determine if left or
right element could be scalar

It must be clear at compile time, if the right side or left side of a binary operator is a scalar.
The error indicates that this is not decidable by the front end.

Example

a = rand(3,3);
b = rand(1,1);
mfe_size(b, 1:3, 1);
a + b;

1.4.44 N00046 � Note � Frontend is built in debug mode ... performance
could be slow!

Internal note, should not appear is release code.
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1.4.45 E00047 � Error � $funcname function: Expecting parameter $paramno
to be a constant range

Some functions require a constant or constant range as parameter.

Example

mfe_read_image(’test.png’, ’this should be a constant range’, 1:10);

1.4.46 E00048 � Error � Array access must match the number of dimen-
sions of the variable.

The number of elements used for an array access must match the number of dimensions of the
variable.

Example

a = zeros(3,3,3)
b = a(5,5)

1.4.47 W00049 � Warning � $funcname function: Function call is depre-
cated

The function or the function variant is deprecated. Please refer to section 1.2 to get a list of
up to date functions.

1.4.48 W00050 � Warning � Constant propagation for operator '$operator'
not implemented

Internal warning to indicate a missing feature.

1.4.49 W00051 � Warning � Condition couldn't be determined

Internal warning.

1.4.50 W00052 � Warning � Propagation of array access result not imple-
mented

Internal warning.

1.4.51 W00053 � Warning � Variable $var not used.

Variable is de�ned but is never used.
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Example

a = 1;

1.4.52 W00054 � Warning � Reading and writing the same variable in one
statement could result in wrong behavior

Reading and writing the same variable in one statement could result in wrong behavior. See
section 1.6.4 for more details.

Example

a = 1:5;
a(1,2:5) = a(1,1:4) % Warning, produces wrong code

b = 1:5;
b(1,1:4) = b(1,2:5) % Warning, produces correct code

c = ones(3,3);
c = c*c % Warning, produces wrong code

c = 1:10;
c(1,[1,2]) = c(1,[2,1]) % Warning, produces wrong code

1.5 Limitations

1.5.1 Assigning di�erent data types to one variable

It is not allowed to assign di�erent data types to the one variable:

a = int32(1);
a = double(1);

Solution: Rewrite your code and insert a new variable.

1.5.2 Assigning di�erent number of dimensions to one variable

It is not allowed to assign di�erent number of dimensions to one variable:

a = ones(3,3);
a = ones(3,3,3);

Solution: Rewrite your code and insert a new variable.

Please note that in Matlab and Scilab a scalar is a two dimensional matrix of size 1x1. For
that reason, the following code is working:
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a = 5;
a = ones(3,3);

1.6 Limitations (planned to be �xed)

1.6.1 Non-deterministic functions are duplicated

In this example, the rand function is duplicated into the for loop. As result, the for loop
iterates not until the value a.

a = rand(1) * 10
t = 0
for j=1:a

t = j
end

1.6.2 Support complex numbers in matlab

In Matlab mode the constant i and j is not supported. Matlab allows to override the i variable
by other de�nitions. Supporting the i/j variable would require to add a more sophisticated
analysis.

Constant number de�nition in the form 10i is supported. Please rewrite the constant i and j
by 1i.

1.6.3 User de�ned function: Modifying a parameter inside a function af-
fects the calling variable

function myfunc(in)
in = 5

end

a = 10
myfunc(a);

a

1.6.4 Reading and writing the same variable in one statement may produce
wrong results

The front end generates loop nests out of each Matlab or Scilab statement. Thereby, it does
not check if one element overrides another element of an array. In that case, a temporary
variable would be required.

In most cases, where no indexing or matrix multiplication is used, the correct result is gener-
ated. Otherwise, a temporary variable should be inserted by the end users.
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1.6.4.1 Example 1 � Copying parts of an array

In the following example, parts of array a is copied to a. The problem is here that the indexes
2 : 6 are greater than 1 : 5.

a = 1:10;
a(1,2:10) = a(1,1:9)

=> 1 1 1 1 1 1 1 1 1 1

The resulting C code look like this

for (v3 = 0; v3 < 9; ++v3) {
a_data[(1 + v3)] = a_data[v3];

}

and there the element 2 is overwritten in the �rst iteration. In the second iteration a wrong
data from element 2 is read.

1.6.4.2 Example 2 � Matrix multiplication

a = rand(3,3);
a = a*a

Matrix multiplication requires 3 loops in the �nal C code.

for (v7 = 0; v7 < 3; ++v7) {
for (v6 = 0; v6 < 3; ++v6) {
v8 = 0;

for (v9 = 0; v9 < 3; ++v9) {
v8 = (v8 + (a_data[v9][v6] * a_data[v7][v9]));

}

a_data[v7][v6] = v8;
}

}

As soon as one element in a is changed, the remaining algorithm works with the wrong data
and produces wrong results.

1.6.4.3 Example 3 � Exchange

a = 1:10;
a(1,2:10) = a(1,1:9)

=> 2 2 3 4 5 6 7 8 9 10
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Chapter 2

Usage

2.1 Command Line Parameters

Usage:

matrix-frontend [options] <input-file> <output-file>

Command Info
--help Show help message
--language <lang> Specify input language (matlab, scilab, auto)
--print=<0|1> Print result of statements
--printall=<0|1> Print all variables at the end of each function
--simplify=<0|1> Enable simplify pass (default 1)
--debug-parse=<0|1> Enable debug for parser pass (default 0)
--debug-format=<0|1|2> Enable debug for format pass (default 0)
--frontendlibpath Output path to frontend library

2.1.1 Language

The frontend support Matlab and Scilab intput language. Per default, the input language is
detected from the �le name extension of the input �le. .m �les are Matlab and .sce/.sci �les
are Scilab. The input language can be manually set the �language command line option.

2.2 Test Directory

The installation of the Matrix Frontend includes a Test directory containing several test cases
of Matlab/Scilab. The test cases are separated into subdirectories. Simple contains small test
cases that tests speci�c parts and language features of the frontend. Apps contains application
test cases.

The Test directory include one Make�le that can be used by the make command line utility.
The Make�le includes a conviencient way to execute one or multiple test cases.
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Within that directory you can run a test case by writing make <test>.show in the command
line, whereby <test> represents the corresponding .m/.sce/.sci �le. .show means here to pass
the .m/.sci/.sce �le through the frontend, generate a C �le, compile the C �le with gcc and
execute the resulting application for generating the script output.

All make�le options are described in the follow table:

Command Info
make help Output make�le help
make <test>.show Run frontend to general C �le, compile the C �le and execute applica-

tion
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