wikNet

Web Server

User's Guide

Version 3

First Printing: November 27, 1998
Last Printing: September 15, 2005

Manual Order Number: PN303-9W

Copyright © 1997 - 2005

KADAK ProductsLtd.
206 - 1847 West Broadway Avenue
Vancouver, BC, Canada, V6J 1Y5

Phone: (604) 734-2796
Fax: (604) 734-8114







TECHNICAL SUPPORT

KADAK Products Ltd. is committed to technical support for its software products. Our
programs are designed to be easily incorporated in your systems and every effort has
been made to eliminate errors.

Engineering Change Notices (ECNs) are provided periodically to repair faults or to
improve performance. Y ou will automatically receive these updates during the product's
initial support period. For technical support beyond the initial period, you must purchase
a Technical Support Subscription. Contact KADAK for details. Please keep us informed
of the primary user in your company to whom update notices and other pertinent
information should be directed.

Should you require direct technical assistance in your use of this KADAK software
product, engineering support is available by telephone, fax or email. KADAK reserves
the right to charge for technical support services which it deems to be beyond the normal
scope of technical support.

We would be pleased to receive your comments and suggestions concerning this product
and its documentation. Y our feedback helpsin the continuing product evolution.

KADAK Products Ltd.
206 - 1847 West Broadway Avenue
Vancouver, BC, Canada, V6J 1Y5

Phone:  (604) 734-2796
Fax: (604) 734-8114
e-mail: amxtech@kadak.com

KwikNet Web Server Option sxKADAK



Copyright © 1997-2005 by KADAK ProductsLtd.
All rightsreserved.

No part of this publication may be reproduced, transmitted, transcribed,
stored in aretrieval system, or trandated into any language or computer
language, in any form or by any means, electronic, mechanical,
magnetic, optical, chemical, manua or otherwise, without the prior
written permission of KADAK Products Ltd., Vancouver, BC, CANADA.

DISCLAIMER

KADAK Products Ltd. makes no representations or warranties with
respect to the contents hereof and specifically disclaims any implied
warranties of merchantability and fitness for any particular purpose.
Further, KADAK Products Ltd. reserves the right to revise this
publication and to make changes from time to time in the content
hereof without obligation of KADAK Products Ltd. to notify any
person of such revision or changes.

TRADEMARKS

AMX in the stylized form and KwikNet are registered trademarks of KADAK Products Ltd.
AMX, AMX/FS, InSight, KwikLook and KwikPeg are trademarks of KADAK Products Ltd.
UNIX isaregistered trademark of AT&T Bell Laboratories.

Microsoft, MS-DOS and Windows are registered trademarks of Microsoft Corporation.
All other trademarked names are the property of their respective owners.

FEKADAK KwikNet Web Server Option



KwikNet Web Server User's Guide
Table of Contents

Page

1. KwikNet Web Server Overview 1
00 A g 1 oo 1 (o o OOV 1
1.2 General OPEratioN ......cc.coeverereieeereeeeseeseesesee e ssesseeeeseesseseessessessens 3
HTTP REQUESES......cee ettt n 3
HTTP REPIES. ...ttt 4
HTTP DOCUMENES ...ttt 5
Executable (CGI) DOCUMENES .....ccuvvvereeeeeeereenie e sieseeseeseeseeeesee e e 5
Common Gateway Interface (CGI) ....cooovvvreeeereeerere e 6
Server Side INCIUdES (SSI) ..cuververeireienereeeeee e 7

1.3 KwikNet Web Server Configuration...........ccoceveeerieerenesesene e 8
L4 FilE SEIVICES. ....eieiiiie ittt sttt e st 10
Virtual File System (VFS) ..o 10
User AdMINISEFAiON.......c.coiiieie e s 11
Directory Access by Web Server ... 11

1.5 WED SEIVEr TaSK ... covieveeistesieeeie et e st sttt 12
Multitasking OPEration .........cccererereienere e e 12
Single Threaded OPEration ..........cccvveeereeeereerene e seeee s 13

2. KwikNet Web Server Applications 15
2.1 Web Server Sample Program ........ccccecevereseneseeseeneseeseseseesessesee s 15
= 1 o 16
Web Browser OPEratioN..........cevieeeereereseseesreseeseeseessessessesseesessseseens 17
WED Server OPEratioN........cccvveeereeriereseseseessesseeseeseessessessessessessseseens 18
TESE FEBIUINES ...ttt b 18
SHULAOWN ...t 18
KwikNet and Web Server Logging........cccoererererierieeneeseseesieseeeeneens 19
WED BrowSer LOGOING ....cuvevereerrrririeeeereesieseesseseeseeseessessessesseesesssesenns 19
FIleS fOr BrOWSING. .. ccueeeeieiereeetese et se e s 20
VIieWiNg the FIlES........oiiee e 21
Running the Sample Program ... 22

2.2 Making the WEB Sample Program.........cccoceveeenienieeienenie e 23
WEB Sample Program DireCtOries ........ccoereerererenieneseereeie s 24
WEB Sample Program FIleS.........ccoieiiiineneeeee e 25
WEB Sample Program Parameter File..........ccooevevivvenivnie s 26
WEB Sample Program KwikNet Library.........ccoceevveveniniienienienieenns 26
The WEB Sample Program Make Process..........cccceeceveevvnieneseeseeeenns 27

2.3 Adding the Web Server to Your Application.........cccceevvievenecceesennienn, 28
KWIKNEL LiDIary ......coeeeiie et 28

YT 000 g A2 1 o = 1 o o R 28
WED SEIVEN TASK .. .cuiivereeiiiie ettt 29
Reconstructing Y our KwikNet Application.........c.cccoeveveienienieeienneens 30
AMX CONSIAEIALIONS .....veneeeiriiieierie e e 30
Performance CONSIAErationS ..........covereeerenieiene e 31

KwikNet Web Server Option



KwikNet Web Server User's Guide
Table of Figures

Figure 1.2-1 KWikNet HTTP REQUESES ..c.vevvvvevierieiecieeececee e

Page

KwikNet Web Server Option



1. KwikNet Web Server Overview

1.1 Introduction

The HyperText Transfer Protocol (HTTP) is a standard protocol used for transferring
documents between machines over TCP/IP based networks, the most common being the
Internet. HTTP is often referred to as the World Wide Web (WWW) protocol sinceit is
used to manipulate interconnected documents around the globe. Each document is
ultimately retrieved from a web server operating on some computer with access to the
document. The term document is used loosely to reference any type of data, be it text,
graphics, sound or video.

The KwikNet” Web Server implements the HTTP protocol on top of the kwikNet TCP/IP
Stack, a compact, reliable, high performance TCP/IP stack, well suited for use in
embedded networking applications.

The KwikNet Web Server is best used with a real-time operating system (RTOS) such as
KADAK's AMX™ Real-Time Multitasking Kernel. However, the kwikNet Web Server
can also be used in a single threaded environment without an RTOS. The KwikNet Porting
Kit User's Guide describes the use of KwikNet with your choice of RT/OS. Note that
throughout this manual, the term RT/OS is used to refer to any operating system, be it a
multitasking RTOS or a single threaded OS.

Y ou can readily tailor the KwikNet stack to accommodate your web server HTTP needs by
using the KwikNet Configuration Builder, a Windows® utility which makes configuring
KwikNet a snap. Y our KwikNet stack will only include the HTTP features required by your
application.

This manual makes no attempt to describe the HyperText Transfer Protocol (HTTP),
what it is or how it operates. It is assumed that you have a working knowledge of the
HTTP protocol as it applies to your needs. Reference materials are provided in
Appendix A of the KwikNet TCP/IP Stack User's Guide.

Note

The KwikNet HTTP option is founded upon the HTTP web
server from Treck Inc. Hence you must become familiar
with the HTTP application programming interface (API)
described in the Treck Web Server User Manual.

KwikNet Web Server Overview FEKADAK



The purpose of this manual is to provide the system designer and applications
programmer with the information required to properly configure and implement a
networking system using the KwikNet TCP/IP Stack and HTTP. It is assumed that you are
familiar with the architecture of the target processor.

KwikNet and its options are available in C source format to ensure that regardless of your
development environment, your ability to use and support KwikNet is uninhibited. The
source program may also include code fragments programmed in the assembly language
of the target processor to improve execution speed.

The C programming language, commonly used in real-time systems, is used throughout
this manual to illustrate the features of KwikNet and its Web Server.

IEKADAK KwikNet Web Server Overview



1.2 General Operation

The HyperText Transfer Protocol (HTTP) is a standard protocol used for transferring
documents between machines over TCP/IP based networks such as the Internet. HTTP
version 1.1 is formally defined by the IETF document RFC-2616. The KwikNet Web
Server is compliant with that specification. The RFC should be consulted for any
detailed questions concerning the HTTP protocol. The KwikNet Web Server implements
the subset of HTTP features typically required for use in embedded applications.

HTTP is a client-server protocol. One machine, the client, initiates a document transfer
by contacting another machine, the server. The most common HTTP client is the familiar
web browser. The term web browser will be used throughout this document instead of
the more cumbersome term HTTP client. The web browser issues an HTTP request to
the web server in order to access a document. The server must be operating before the
browser initiates its requests. Generdly, a browser communicates with one server a a
time while most servers are designed to work concurrently with multiple browsers.

The KwikNet Library provides al of the services necessary to implement one or more
KwikNet Web Servers. Although multiple servers can coexist and operate concurrently,
most applications will implement only a single KwikNet Web Server.

HTTP Requests

When a browser contacts a web server, a TCP connection is established between the two
machines as follows. The web server listens on a TCP socket (usually port 80) for
connection requests from potential browsers. The browser attempts to connect its own
TCP socket to the server's socket. If the browser requests that HTTP version 1.0 be used,
the connection, once established, is used for only one browser request. The connection is
broken by the server once the requested document has been sent to the browser.

To improve network performance, HTTP version 1.1 permits a persistent connection to
be established for as long as the browser requires access to the server, provided both the
web server and browser support this feature. The KwikNet Web Server supports persistent
connectionswhen HTTP version 1.1 is used.

An HTTP request is an ASCII string which always includes a request line followed by
zero or more lines of text which provide additional information about the request. All of
these text lines are terminated by a two character, end of line sequence consisting of a
carriage return (ASCII 13, oxoD, ' \r' ) followed by alinefeed (ASCII 10, 0x0A, '\ n' ).

The request line includes a Universa Resource Identifier (URI) which identifies the
document of interest. The request line also identifies the operation (called a method) to
be performed using that document. Figure 1.2-1 lists the HTTP method strings which the
KwikNet Web Server supports. The request line also indicates the HTTP version being
used by the browser making the request.

KwikNet Web Server Overview FEKADAK



HTTP Replies

The web server reply is an ASCII string which always includes a status line followed by
zero or more lines of text which provide additional information about the reply. The
requested document, if any, then follows as the body of the reply. Note that some
requests can be handled by the web server without any document data being returned to
the browser.

The status line indicates the HTTP version being used by the server in its response.
A 3 digit decima status code followed by some explanatory text completes the status
line. Generally, status codes in the 200 range indicate success and codes in the 500 range
indicate failures. See the RFC for a complete guide to status codes.

Request Purpose

OPTI ONS * Determine features supported by the web server

GET Retrieve a document or other identified entity

HEAD Respond as though to a GET request but do not transfer
the actual document or other identified entity

TRACE * Echo the HTTP request in the body of the response

PCST Provide server with additional document information

PUT * Provide server with anew document or other entity

DELETE * Delete adocument or other identified entity

Note * Request not supported by KwikNet Web Server

Figure 1.2-1 KwikNet HTTP Requests

IEKADAK KwikNet Web Server Overview



HTTP Documents

The documents presented by a web server to a browser are usualy just files which reside
on the same computer as the web server. These files, once delivered to the browser, are
then rendered by the browser as screen images for viewing by the browser's user.

The most common documents are text files written using the HyperText Markup
Language (HTML). Each HTML page specifies what is to appear on the screen image
which the browser will produce. Often thisisjust text contained in the HTML document.

An HTML page can specify that another document actually defines what is to be
presented at a particular point within the screen image described by the HTML page. For
example, agraphic image can be inserted on the page smply by referencing the name and
location of the file containing the image data. As the browser processes the HTML page,
it retrieves the graphic image document from the web server which has access to that
document.

The rea power of the web browser comes from its interpretation of hyperlinks within the
HTML page. A hyperlink isamethod of connecting one document to another. When the
browser detects that its user has selected a hyperlinked region within the screen image
being generated by the browser, it fetches the document referenced by the hyperlink and
shows its content to the user.

Executable (CGI) Documents

Not all HTTP documents are files. Recall that a document is simply the "thing"
referenced by a Universal Resource Identifier (URI) in an HTTP request. The
interpretation of the URI is up to the web server. It isthis characteristic of HTTP that is
of specia significance in embedded applications.

The web server can interpret a URI to be anything, including some application or
function which can execute on the same processor on which the web server operates.
Such a function is called a Common Gateway Interface (CGI) function, sometimes
referred to as a CGlI script.

If aURI references a CGI function, what does the browser get in response to its request?
The answer depends on the CGI function executed by the web server. In some cases, the
browser gets nothing other than a reply indicating that the requested operation was
performed. In other cases, the browser will get document datathat is created dynamically
by the function when it executes. It is aso possible for the browser to get area HTTP
document, the particular document being determined by the CGI function according to its
anaysis of parameters provided in the browser's request.

KwikNet Web Server Overview FEKADAK



Common Gateway Interface (CGI)

Applications which need to adapt their web server's response to a browser request can do
so by way of the Common Gateway Interface (CGI). This interface is aso commonly
used to present an embedded application with configuration information or operating
parameters from an HTML form.

Recall that the web server can interpret a Universal Resource Identifier (URI) to be
anything. In particular, aURI can identify a function which the web server must execute.
The kKwikNet Web Server treats any URI which resembles a file name with a specific file
path as a CGlI reference to a function to be executed whenever a browser tries to access
that URI. The specid file path is called the CGlI directory. The default CGI directory is
"/ cgi-bin". You can specify your own CGlI directory when you start your web server.

When the KwikNet Web Server receives an HTTP request which references a file in the
CGl directory, it calls an application HTTP event handler to service the request. The
event handler is a function which you must provide and register with a call to service
proceduret f Ht t pdUser Set Event Handl er () . It isthisfunction which must interpret the
CGl request in an application dependent manner and generate the appropriate response.

Your HTTP event handler must be written according to the specifications provided in the
Treck Web Server User Manual. Function t f Ht t pdUser Get Conl nf o() can be called to
get the full path and name of the CGI file and the parameters provided by the browser in
its request. The event handler can use the file name to further qualify or identify the
specific action which it must perform.

The HTTP event handler can call function tf Ht t pdUser SendBuf f er () to present data
for delivery to the browser. Alternatively, it can call function t f Ht t pdUser SendFi | e()
to send afile to the browser.

The web server generates its HTTP reply to the browser and the file or data, if any,
provided by the HTTP event handler is returned in the body of the reply.

IEKADAK KwikNet Web Server Overview



Server Sidelncludes (SSl)

Some applications may have a number of HTML documents, each of which repesats
common information. For example, every document may have a common banner, title or
copyright statement. In an embedded system in which all documents are kept in memory
as virtual files, the memory used to replicate such information in each file may be
significant.

The KwikNet Web Server implements a server dependent HTML enhancement which
addresses this issue. The feature, caled the Server Side Include (SSI), permits one
HTML document to include another. The feature is analogous to the use of the #i ncl ude
directive within C files to include other C header files.

A specia form of HTML tag is used to identify an SSI document. You must register
your SSI tag by calling function tf Htt pdUser Regi st er Ssi Tag() to specify the tag
string and the application function to be called to service each occurrence of the tag in
documents presented by the web server to the browser.

It is recommended that a variant of the HTML comment tag be used to identify the
document to be included. For example, assume that the following HTML comment tag is
present in a document being delivered by the web server.

<l--#include file="fil enane" -->

If you have registered the string "' ! - - #i ncl ude fil e=" asyour SSI tag, then any HTML
tag beginning with the string " <! - - #i ncl ude file=" will be presented in its entirety to
your SSI handler function for service. Your SSI handler will receive a pointer to the full
tag string exactly as it appears above. The handler can decode the text in the SSI tag
string to further qualify or identify the specific action which it must perform. In this
example, your handler would have to parse the tag string to isolate the name of the file to
be sent to the browser in place of the SSI tag.

Your SSI handler must be written according to the specifications provided in the Treck
Web Server User Manual. Function t f Ht t pdUser Get Conl nf o() can be called to get
access to the HTTP connection information. The SSI handler must ignore CGlI related
parameters which this function may return.

The SSI handler can call function tfHttpdUser SendBuffer() to present data for
delivery to the browser. Alternatively, it can call function t f Ht t pdUser SendFi | e() to
send afile to the browser.

When the KwikNet Web Server returns afile to a browser, it must scan the file for SSI tags
in order to replace an SSI tag with the document generated by your SSI handler for that
tag. To optimize performance, the web server only scans files which match the file
selection criteria which you specify with calls to tf Htt pdUser Set Ssi Fi l eFil ter ().
For example, you can specify that all files with extension STM or in a directory named
SSI TAG are to be subject to SSI tag replacement.

KwikNet Web Server Overview FEKADAK



1.3 KwikNet Web Server Configuration

You can readily tailor the KwikNet stack to support an HTTP web server by using the
KwikNet Configuration Builder to edit your KwikNet Network Parameter File. The KwikNet
Library parameters are edited on the Options property page. The layout of the window is

shown below.

Note that the TCP protocol and a file system are prerequisites for the HTTP web server.
Y ou must include these components in your KwikNet Network Parameter File in order to

use the web server.

METCFG.up - KwikMet ¥3 Configuration Manager
File Edit Help

S|

] o= o e et o e

bl il

FamikM et
Librany Header
File

For Help, press F1

Telnet | TFTP | SMTP | SNMP | Secuity | File System | Debug | Metworks |
Target | 05 | General | IPva | IPvE | TCP | Ethemet| PPP/SLIP Options

~DMNS
[ DMS Client

£ Blacking

W ot cache enties:

H afreties:

A

Eet imeaut [sec];

Mperatingmede: & Hanblacking

— Other Optional Components
[~ POP3 Client
™ MIME encoding suppart

[ FTP Client | ower S5L
[~ FTP Server

[ wieb Server HTTF)
[v CGIl support
[v 551 support

[wiklet Metwork Parameter File

KwikNet Web Server Overview



Web Server Parameters (continued)

Web Server (HTTP)

Check this box if your application will include a web server to provide network access to
your target system. Otherwise, leave this box unchecked.

CGlI Support

Check this box if your HTTP server application will include support for dynamically
generated web pages. Otherwise, leave this box unchecked.

SSI Support

Check this box if your HTTP server application will include support for web pages with

dynamically generated embedded content. Otherwise, leave this box unchecked. CGI
support must be enabled before SSI support can be enabled.

KwikNet Web Server Overview FEKADAK



10

1.4 File Services

The HyperText Transfer Protocol (HTTP) is a standard protocol used for transferring
documents between a web browser and a web server. In most cases, documents are
simply files sent from the web server to the browser. Consequently, the web server
requires access to a file system for the actual retrieval and storage of files.

KwikNet includes a file system interface which provides the kwikNet Web Server with
access to one of the supported file systems: the AMX/FS File System, the KwikNet Virtual
File System, standard C file 1/0O, a user defined file system, the Treck RAM file system or
the Treck ROM file system. Thisfile system interface is described in Appendix C of the
KwikNet TCP/IP Stack User's Guide.

KADAK's AMX/FS File System is ready for use with the AMX Real-Time Multitasking
Kernel. Since AMX/FS includes a RAM disk driver, it is well suited for use with the
KwikNet Web Server in embedded applications.

The standard C file I/O library from the C compiler vendor can be used if it is available
for the target processor. Unfortunately, few C libraries provide file services for
embedded targets.

Special considerations apply when using AMX 86 which can coexist with MS-DOS®.
AMX 86 includes a component caled the PC Supervisor which permits tasks running
under AMX 86 to concurrently access the MS-DOS file system using standard C file I/0O
calls. Hence, when using AMX 86, the KwikNet Web Server can connect to the standard
Cfilel/Olibrary.

Virtual File System (VFS)

For embedded systems which may not need a full-featured file system, KwikNet offers a
very simple Virtual File System (VFS) which can provide access to a limited set of read-
only files built into the application. The Virtual File System can be used with or without
ared file system. It will forward file requests which it is not equipped to handle, to the
underlying file system, if one exists.

Using the KwikNet VFS Generator, you can create compressed HTML files for use with
the KwikNet Web Server. These files will be automatically decompressed by the KwikNet
Virtual File System prior to use by the web server.

The KwikNet Virtual File System and its VFS Generator are described in Chapter 7 of the
KwikNet TCP/IP Stack User's Guide.

Note

The file system must be ready for use before the KwikNet
Web Server is started. See Appendix C of the KwikNet
TCP/IP Stack User's Guide for details.

IEKADAK KwikNet Web Server Overview



User Administration

If you are using the KwikNet Virtua File System, the AMX/FS File System or a custom
file system that is accessed via the KwikNet Universal File System interface, then the web
server must log in with avalid user name and password to gain access to the underlying
file system services.

Most operating systems used in embedded applications are not like UNIX; they do not
require or support user names and passwords. The KwikNet Administration interface
resolves this dilemma by allowing you to define the users which will be permitted access
to your system. Follow the instructions presented in Appendix D of the kwikNet TCP/IP
Stack User's Guide.

Once the file system is initialized and ready for use, your web server must call function
t f FSUser Logi n() tolog in for file system access. Unless altered by you, the user name
treck and password t r eck defined in the KwikNet Administration interface will allow the
web server full access to the underlying file system services. The log in provides a user
handle, an identifier which the web server must present when accessing any file system
service. Once the web server has started, it must call tf Ht t pdUser Set FSpar an() to
register the user handle.

Directory Access by Web Server

The web server "user” can be given a unique base directory which will be the default
current working directory established when the web server logs in. The definition of the
user base directory must be afull path, including driveif required by the file system.

The extent to which the web server user is permitted to traverse directories is determined
by the visibility access right granted in the user's definition. Unless the user has been
granted full visibility, the user will only be alowed to traverse directories forward from
the user's default directory.

Note

User names, passwords and access rights are handled by the
KwikNet Administration interface which is described in
Appendix D of the KwikNet TCP/IP Stack User's Guide.

KwikNet Web Server Overview FEKADAK

11



12

1.5 Web Server Task

The KwikNet Web Server option includes a set of services which can be used to
implement a web server. The web server is an application program which makes use of
these services to communicate with one or more web browsers.

Before your web server can use any KwikNet services, the underlying file system must be
initialized and ready for use. All disk drives which the web server will be permitted to
access must be mounted and ready for use. If you are using the KwikNet Virtua File
System, KwikNet will automatically initialize the VFS when KwikNet isfirst started.

Y our web server can provide a specific IPv4 address and port which browsers must use to
connect to the web server. Alternatively, the web server can accept all HTTP requests
received on any of the operational (open) network interfaces which KwikNet services,
provided that the requests are directed to the well known HTTP port number 80.

The WEB Sample Program provided with the KwikNet Web Server includes a fully
functional web server. It isdescribed in Chapter 2.1.

Multitasking Operation

When used with a real-time operating system (RTOS) such as KADAK's AMX Real-
Time Multitasking Kernel, the web server operates as an application task. Such atask is
referred to as a web server task. Although more than one web server task is allowed,
rarely isthere such a need.

Before any web server task can operate, KwikNet must have been successfully started and
your application must have called function t f Ht t pdUser I ni t () once, and only once, to
initialize KwikNet's HT TP services.

A web server task is created and started just like any other application task. When ready
to begin operation, the server task simply calls procedure tfHtt pdUserStart() to
establish a web server session. If you are using a file system that requires a user log in,
the web server task must call function t f FSUser Logi n() to log in for file system access.
In this case, the web server must then call tf Ht t pdUser Set FSpar an() to register the
user handle.

Finaly, the web server task callstf Ht t pdUser Execut e() to begin service. Although a
web server session can be created to operate in non-blocking mode, it is more usual to
operate in blocking mode. In that case, there is no return from procedure
tf Htt pdUser Execut e() until the server isforced to stop.

Note

In multitasking systems, the kKwikNet Web Server task
MUST execute at a priority below that of the KwikNet Task.

IEKADAK KwikNet Web Server Overview



The web server task will operate until some unrecoverable error condition is detected or
until some other application task calls procedure tf Htt pdUser St op() requesting the
server to stop. The web server task will abort all of its active HTTP sessions and resume
execution following theinitial call tot f Ht t pdUser Execut e() .

Single Threaded Operation

When used with a single threaded operating system, the web server operates in the
KwikNet domain in the context of the kwikNet Task as described in Chapter 1.2 of the
KwikNet TCP/IP Stack User's Guide.

Before any web server session can operate, KwikNet must have been successfully started
and your application must have called function tfHttpdUserinit() once, and only
once, to initialize KwikNet's HT TP services.

When your App-Task calls KwikNet procedure tfHttpdUserStart(), a web server
session is established. The web server must be started to operate in non-blocking mode.

If you are using afile system that requires a user log in, the web server must call function
t f FSUser Logi n() tologin for file system access. In this case, the web server must then
call t f Ht t pdUser Set FSpar an() to register the user handle.

Once the web server has been started, you must periodically call procedure
tf Htt pdUser Execut e() to alow the server to service its clients. The easiest way to do
thisis to use KwikNet procedure kn_addser ver () to add a server function to the KwikNet
server queue. Thereafter, the KwikNet Task will call your server function at the periodic
interval specified by you in your call to kn_addser ver ().

When a web server function is added to the KwikNet server queue, the function is referred
to as a web server task. Although more than one web server task is allowed, rarely is
there such aneed.

The WEB Sample Program implements server function webs_servi ce() which calls
tf Ht t pdUser Execut e() at the specified serviceinterval until the server is stopped.

Once the web server is operational, your App-Task must regularly call KwikNet procedure
kn_yi el d() tolet KwikNet and all server tasks, including your web server task, operate.

The web server task will operate until some unrecoverable error condition is detected or
until your App-Task calls procedure t f Ht t pdUser St op() requesting the server to stop.
The web server task will abort all of its active HTTP connections and remove itself from
the KwikNet server queue as illustrated by service function webs_servi ce() inthe WEB
Sample Program.

KwikNet Web Server Overview FEKADAK

13



14

This page left blank intentionally.

KwikNet Web Server Overview



2. KwikNet Web Server Applications

2.1 Web Server Sample Program

A WEB Sample Program is provided with the KwikNet Web Server option to illustrate the
use of a primitive web browser and the KwikNet Web Server. The sample program is
ready for use with the AMX Real-Time Multitasking Kernel and the Treck RAM File
System. The sample program can aso be used with any of the porting examples provided
with the KwikNet Porting Kit.

With smple modifications to the configuration and link process, the kKwikNet WEB
Sample Program can also be adapted to use the Treck ROM File System, the KwikNet
Virtual File System, the AMX/FS File System or your own custom file system. The
AMX 86 sample can be adapted to use the PC Supervisor to access MS-DOS® file
Services.

The sample configuration supports a single network interface. The network uses the
KwikNet Ethernet Network Driver. Because the sample must operate on all supported
target processors without any specific Ethernet device dependence, KwikNet's Ethernet
Loopback Driver is used. Use of this driver allows the sample's web browser and the
KwikNet Web Server to be tested even if network hardware is not available. Once the
WEB Sample Program has been tested in loopback fashion, you can replace the Ethernet
Loopback Driver with your own network device driver. Then real web browsers will be
able to access the KwikNet Web Server.

The KwikNet TCP/IP Stack requires a clock for proper network timing. The examples
provided with the KwikNet Porting Kit all illustrate the clock interface. If you are using
KwikNet with AMX, you must provide an AMX clock driver. If you have ported the
AMX Sample Program to your hardware platform, you can use its AMX Clock Driver.

The sample includes a web server task and a primitive web browser task. The browser
uses the KwikNet console driver to provide a command line interface with a user. The
console driver can be configured as described in Chapter 1.8 of the kwikNet TCP/IP Stack
User's Guide to use any of several possible terminal devices as an interactive terminal. |If
you are using KwikNet with AMX and have ported the AMX Sample Program to your
hardware platform, you can useits serial UART driver for console I/O.

The sample also uses the KwikNet data logging and message recording services to record
messages generated by the KwikNet TCP/IP Stack as it operates. These services are
described in Chapters 1.6 and 1.7 of the KwikNet TCP/IP Stack User's Guide. The
messages are recorded into an array of strings in memory. The web browser's interactive
durmp command can be used to list these messages on the console device and empty the
recording array.

KwikNet Web Server Applications sxKADAK

15



16

Startup

The manner in which the KwikNet WEB Sample Program starts and operates is completely
dependent upon the underlying operating system with which KwikNet is being used. All
sample programs provided with KwikNet and its optional components share a common
implementation methodology which is described in Appendix E of the KwikNet TCP/IP
Stack User's Guide. Both multitasking and single threaded operation are described.

When used with AMX, the sample program operates as follows. AMX is launched from
the mai n() program. Restart Procedure rrproc() starts the print task, creates the web
server task and then creates and starts the web browser task. The web server task remains
idle until started by the browser task as will be described.

Once the AMX initialization is complete, the high priority print task executes and waits
for the arrival of AMX messages in its private mailbox. Each AMX message includes a
pointer to alog buffer containing a KwikNet message to be recorded.

Once the print task is ready and waiting, the web browser task finally begins to execute.
It starts KwikNet at its entry point kn_ent er (). KwikNet Self starts and forces the KwikNet
Task to execute. Because the KwikNet Task operates at a priority above all tasks which
use its services, it temporarily preempts the browser task. The KwikNet Task initializes
the network and its associated loopback driver and prepares the IP and TCP protocol
stacks for use by the sample program.

Once the KwikNet initialization is complete, the web browser task resumes execution.

ZEKADAK KwikNet Web Server Applications



Web Browser Operation

Once the KwikNet initialization is complete, the web browser task resumes execution. It
initializes the KwikNet console driver and generates a signon message on the console
device.

The web browser generates a command line prompt " kwi kNet HTTP>" and waits for a
user to enter a lower case directive and any parameters required by that directive. The
directive isterminated by the Enter key (' \ r' character).

The web browser decodes the directive and performs the requested action. Since every
web browser HTTP request is exercised by the web browser task, its code can serve as an
excellent programming model for your own web browser software.

Each HTTP reply is echoed by the web browser to its terminal device. The HTTP
response line, header information and entity body, if any, is echoed. Binary data, if
present, will be echoed without graphical rendering and will usually appear as gibberish
on the terminal device.

The following complete list of directives will be presented if either hel p or ? is entered
as the command line directive.

Conmands:
help - Display this text.
exit - Term nate this sanple program

it - Send a literal request.

get <renote file path> - Get afile fromthe server.

head <renpte file path> - Sense a file on the server.
The file content will NOT be retrieved.

form<remote file path> - Post a formto the server.

query <renote file path> - Post a query to the server.

serv - Start the Kwi kNet Web Server on this machine.
stop - Stop the Kw kNet Web Server.
open <server |Pv4 address> <port>
open6 <server |Pv6 address>[ %<scope id>] <port>
Identify a web server.
If port is O, web server port 80 will be used.
user <username> - Specify user nane.
For no authorization, omt user nane.
ver - Toggle HITP version.
dunp [stat] - Dunp Kwi kNet recorded | og [and statistics].

gl ossary:
<text> - String you nust provide.
[optional] - Parameter(s) within [] can be onmitted.

(omt the <,> [ and ] characters).

KwikNet Web Server Applications sxKADAK

17



18

Web Server Operation

The web browser cannot connect to a web server unless such a server exists on the
network. Unless you have replaced the Ethernet Loopback Driver with a real device
driver, the WEB Sample Program has no direct network connection. Hence no web
server is accessible.

If you give the web browser the ser v directive, it will start the KwikNet Web Server task
which will immediately begin operation since it is of higher priority than the browser
task. After starting the server task, the browser task pauses briefly and then fetches the
web server task's IP address and port number. Armed with this information, the web
browser is then able to converse with the KwikNet Web Server across the network even
though both are executing on the same processor.

The web browser task displays the server's IP address and port number giving you, the
user, the chance to see that a server now exists. If you have modified the sample program
to include a real network interface, you will be able to use any web browser on your
network to access the KwikNet Web Server using this IP address.

By default the web browser uses HTTP version 1.1 in its requests. You can use the ver
directive to toggle between version 1.1 and 1.0.

At any time, you can enter the st op directive which causes the web browser to call
KwikNet proceduret f Ht t pdUser St op() requesting the web server task to stop execution.

Test Features

The open directive can be used to alter the IP address and port number which the web
browser uses to identify the web server to which its HTTP requests are to be directed.
Thisdirective isintended for KADAK use only.

The user directive can be used to specify a user name for the web browser. When
prompted, you will aso have to provide a password for the web browser. The web
browser will send this user name and password in the header of every HTTP request that
it sendsto aweb server. Thisdirectiveisintended for KADAK use only.

Shutdown

When the web browser task decodes the exi t directive, it prepares to shut down. If the
web server task is still operating, the web browser task requestsit to stop.

Next, the web browser task generates a signoff message and relinquishes use of the
KwikNet console driver. It then calls procedure kn_exit() to stop operation of the
KwikNet TCP/IP Stack.

Finaly, after pausing briefly, it initiates a shutdown of the underlying operating system
(if possible) and areturn to the mai n() procedure.

ZEKADAK KwikNet Web Server Applications



KwikNet and Web Server Logging

The WEB Sample Program uses the simple KwikNet message recording service to log text
messages. The recorder saves the recorded text strings in a 30,000 byte memory buffer
until either 500 strings have been recorded or the memory buffer capacity is reached.

The WEB Sample Program directs messages to this recorder by calling the KwikNet log
procedure kn_dpri ntf (). This procedure operates similarly to the C printf () function
except that an extra integer parameter of value 0 must precede the format string. The
web browser task uses this feature to record a shutdown message. The web server task
also uses this feature to record errors as they are detected.

KwikNet formats the message into a log buffer and passes the buffer to an application log
function for printing. Log function samrecord() in the KwikNet Application OS
Interface serves this purpose.

In a multitasking system the log buffer is delivered as part of an RTOS dependent
message to a print task. The print task calls kn_l ognsg() in the KwikNet message
recording module to record the message and rel ease the log buffer.

In a single threaded system, the log function samrecord() can usualy cal
kn_l ogmsg() to record the message and release the log buffer. However, if the message
is being generated while executing in the interrupt domain, the log buffer must be passed
to the KwikNet Task to be logged. The sample programs provided with the KwikNet
Porting Kit illustrate this process.

Since the recorded strings are just stored in memory, they are not readily visible. To
overcome this restriction, you can use the web browser's interactive dunp command to
list al of the recorded messages on the console device and empty the recording array.

Alternatively, if adebugger is used to control execution of the WEB Sample Program, the
program can be stopped and the strings can be viewed in text form in a display window
by viewing the array variable kn_r ecordl i st[] in module KNRECORD. C.

Web Browser Logging

The WEB Sample Program's browser task logs messages directly to the console terminal
which it uses for its command line user interface.

KwikNet Web Server Applications sxKADAK

19



20

Filesfor Browsing

The WEB Sample Program is ready for use with the Treck RAM File System. The web
browser task in the WEB Sample Program dynamically creates the following collection
of files, placing them in the root directory of the RAM drive.

| NDEX. HTM Main HTML document with hyperlinksto
SS| TEST. STM, COUNTER. STMand PARAMS. CG
SSI TEST. STM HTML document which tests the SSI feature
SSI TXT. SSI Text inserted into the SSI TEST. STMpage using SSI
COUNTER. STM HTML document which tests the SSI feature

If the KwikNet Library is configured to use the AMX/FS File System, the sample's web
browser task dynamically creates the same collection of files in the root directory of the
AMX/FS RAM drive.

If the KwikNet Virtual File System is used, an identical set of VFSfileswill be used. The
virtual files are located in the VFS Data File KN\VEBVFS. C provided with the WEB Sample
Program. This C file is compiled to create the VFS Data File object module which is
linked with the WEB Sample Program. The virtua files are in directory VFs.

The web server task registers function wsam event cb() as the HTTP event handler
which services each browser connection as it is opened and closed. The function also
decodes and services CGI related events.

The event handler function wsam event cb() decodes CGI requests using its CGI lookup
array path_to_cgi _array[]. For example, the event handler trandates any reference to
file/ cgi - bi n/ par ams. cgi asarequest to execute the CGI function wsam par ams() .

The WEB Sample Program configures the web server to handle any request for afilein
directory "/ cgi - bi n" asaCGl reference.

File 1 NDEX. HTMuses a reference to file" / cgi - bi n/ par ans. cgi " to invoke the execution
of CGI function wsam parans() to generate a text page which displays the query
parameters specified by the CGI hyperlink.

The WEB Sample Program configures the web server to allow SSI tagsin any file with
extenson STM The SSI tag is defined to be ! --#ssi". The SSI tag is serviced by
function wsam ssi proc() which uses the array tag_to_ssi[] to identify the SSI
handler function to be called for a particular use of the tag.

File ssI TEST. STMuses an SSI tag to include file SSI TXT. sSI in place of the tag.
File COUNTER. STMuses an SSI tag to replace the tag with the current value of a counter.

ZEKADAK KwikNet Web Server Applications



Viewing the Files

The web browser provided with the WEB Sample Program cannot render an HTML page
as would a conventional browser. It can only display the HTML page in source form as
raw text. Hence, you can use the sample'sget command to actually view the source code
of any of thefileslisted above.

To view the sample HTML pages and actually exercise the features of the KwikNet Web
Server, you must use a real browser and for that, you will have to replace the KwikNet
Ethernet Loopback Driver with areal network connection.

To view the VFSfiles, browse addressht t p: //192. 168. 0. 3/ VFS/ i ndex. ht m
To view the RAM drive files, browse addressht t p: //192. 168. 0. 3/ i ndex. ht m

Replace the IP address 192. 168. 0. 3 with the actual 1Pv4 address assigned to the KwikNet
Web Server and reported by the sample's web browser.

Note

An aternate set of VFS files is provided with the KwikNet
Virtual File System. For a description of these files and
their use, browse the HTML file VFS_USE. HTM in the
KwikNet installation directory VFSGEN\ VFS_I NFO.

KwikNet Web Server Applications sxKADAK

21



22

Running the Sample Program

The KwikNet WEB Sample Program requires that your target hardware include an
interface to aconsole terminal. The web browser task will use its command line interface
to interact with you at that terminal. You are therefore the real user behind the web
browser task.

Each action which you initiate using a command line directive will generate a response
on the terminal as the browser task handles your request. The web server task will only
run if you use the serv directive to start it. The WEB Sample Program runs until you
issuetheexi t directiveto shut it down.

KwikNet includes a number of debug features (see Chapter 1.9 of the KwikNet TCP/IP
Stack User's Guide) which can assist you in using the WEB Sample Program. With
KwikNet's debug features enabled, you can place a breakpoint on procedure kn_bphi t ()
to trap all errors detected by KwikNet. Of course, if you are using AMX, it is always wise
to execute with a breakpoint on the AMX fatal exit procedure cj ksfatal (ajfatl for
AMX 86).

The web server task uses the KwikNet message recording service to log messages
concerning its operation. KwikNet also records selected debug and trace information if
any of these features are enabled. Unless you have modified the KwikNet recording
method, these messages are ssimply saved in memory and are therefore not visible.
However, you can use the web browser's interactive dunp command to list al of the
recorded messages on its console device and empty the recording array.

Note

To use a rea browser to view the files provided with the
WEB Sample Program, you must replace the KwikNet
Ethernet Loopback Driver with your own network device
driver. Use the KwikNet Configuration Manager to edit the
Network Parameter File KNVEBLI B. UP to use your driver.

ZEKADAK KwikNet Web Server Applications



2.2 Making the WEB Sample Program

The sheer volume of detail necessary to understand and use HTTP with TCP/IP may at
first be daunting. However, constructing the KwikNet WEB Sample Program is actually a
fairly simple process made even simpler by the KwikNet Configuration Manager, a
Windows™ utility provided with KwikNet.

The WEB Sample Program includes all of the components needed to build the sample
application for a particular target processor and file system. You can take these
components and, with minor modifications, adapt them for your particular target
processor and devel opment environment.

As delivered, the kwikNet WEB Sample Program uses the Treck RAM File System.
Alternatively, the sample can be configured to use the Treck ROM File System or the
KwikNet Virtual File System (VFS).

The sample can aso be used with AMX or AMX 86 and the AMX/FS File System, with
or without the VFS. For PC targets with AMX 86, it can be used with MS-DOS® file
services, with or without the VFS.

Use the kwikNet Configuration Manager to edit the sample Network Parameter File to
select the alternate file system and, if necessary, link the file system modules with the
sample.

Note

The KwikNet WEB Sample Program for a particular target
processor family is provided ready for use on one of the
development boards used at KADAK for testing.

KwikNet Web Server Applications sxKADAK

23



24

WEB Sample Program Directories

When KwikNet and its Web Server Option are installed, the following subdirectories on
which the sample program construction process depends are created within directory
KNTnnn.

TCPI P KwikNet header and source files,
Ethernet Network Driver
Ethernet and Serial Loopback Drivers

CFGBLDW KwikNet Configuration Builder; template files
ERR Construction error summary

MAKE KwikNet Library make directory

TOOLXXX Toolset specific files

TOOLXXX\ DRI VERS  KwikNet device drivers and board driver

TOOLXXX\ LI B Toolset specific KwikNet Library will be built here

TOOLXXX\ SAM MAKE ~ Sample program make directory
TOOLXXX\ SAM VEB  KwikNet WEB Sample Program directory
TOOLXXX\ SAM COW  Common sample program source files

One or more toolset specific directories TOOLXXX will be present. There will be one such
directory for each of the software development toolsets which KADAK supports. Each
toolset vendor is identified by a unique two or three character mnemonic, Xxx. The
mnemonic UU identifies the tool set vendor used with the KwikNet Porting Kit.

ZEKADAK KwikNet Web Server Applications



WEB Sample Program Files

To build the KwikNet WEB Sample Program using make file KN\EBSAM MAK, each of the
following source files must be present in the indicated destination directory.

Source Destination File Purpose

File Directory

*, % CFGBLDW KwikNet Configuration Builder; template files
KwikNet source directories containing:

KN_API . H TCPI P KwikNet Application Interface definitions

KN _OSI F. H TCPI P KwikNet OS Interface definitions

KN_VFS. H TCPI P KwikNet Virtual File System definitions

KN FILES.H TCPIP KwikNet Universal File System definitions

KNFSUSER H  TCPI P KwikNet User File System definitions

KN_SOCK. H TCPI P KwikNet Socket Interface definitions

Toolset root directory containing:

KN_OSI F. INC  TOOLXXX OS Interface Make Specification
KNZZZCC. I NC  TOOLXXX Tailoring File (for use with make utility)
KNzZzCC. H TOOLXXX Compiler Configuration Header File

KwikNet WEB Sample Program directory containing:
KNVEBSAM MAK TOOLXXX\ SAM WVEB  WEB Sample Program makefile
KNVEBSAM C ~ TOOLXXX\ SAM WEB  WEB Sample Program
KNVEBVFS. C TOOLXXX\ SAM WeB  WEB Sample Program VFS DataFile
KNZZZAPP. H  TOOLXXX\ SAM WEB  WEB Sample Program Application Header
KNWEBLI B. UP TOOLXXX\ SAM WEB  Network Parameter File

KNWEBSAM LKS TOOLXXX\ SAM WEB  Link Specification File (toolset dependent)
Other toolset dependent files may be present.

KNVEBSCF. UP TOOLXXX\ SAM WEB  User Parameter File (for use with AMX)

KNVEBTCF. UP  TOOLXXX\ SAM WEB ~ Target Parameter File (for use with AMX)

Common sample program source files:
KNSAMOS. C TOOLXXX\ SAM COW  Application OS Interface
KNSAMOS. H TOOLXXX\ SAM COWN  Application OS Interface header file
KNRECORD. C ~ TOOLXXX\ SAM COWN Message recording services
KNCONSOL. C ~ TOOLXXX\ SAM COMN  Console driver
KNCONSOL. H  TOOLXXX\ SAM COW Console driver header

Console driver serial 1/O support:

KN8250S. C TOOLXXX\ SAM COW  INS8250 (NS16550) UART driver

KN_BOARD. C  TOOLXXX\ DRI VERS  Board driver for target hardware

KwikNet Web Server Applications IEKADAK 25



26

WEB Sample Program Parameter File

The Network Parameter File KN\VEBLI B. UP describes the KwikNet and HT TP options and
features illustrated by the sample program. This file is used to construct the KwikNet
Library for the WEB Sample Program.

The Network Parameter File KNVEBLI B. UP also describes the network interfaces and the
associated device drivers that the sample program needs to operate.

WEB Sample Program KwikNet Library

Before you can construct the KwikNet WEB Sample Program, you must first build the
associated KwikNet Library.

Use the KwikNet Configuration Builder to edit the sample program Network Parameter
File KN\VEBLI B. UP. Use the Configuration Builder to generate the Network Library Make
File KN\VEBLI B. MAK.

Look for any KwikNet Library Header File KN_LI B. H in your toolset library directory
TOOLXXX\ LI B. If the file exists, delete it to ensure that the KwikNet Library is rebuilt to
match the needs of the WEB Sample Program.

Then copy files KN\VEBLI B. UP and KNVEBLI B. MAK into the MAKE directory in the KwikNet
installation directory KNTnnn. Use the Microsoft make utility and your C compiler and
librarian to generate the KwikNet Library. Follow the guidelines presented in Chapter 3.2
of the KwikNet TCP/IP Stack User's Guide.

Note

The KwikNet Library must be built before the WEB Sample
Program can be made. If file KN_LIB. H exists in your
toolset library directory TOOLXXX\ LI B, delete it to force the
make process to rebuild the KwikNet Library.

ZEKADAK KwikNet Web Server Applications



The WEB Sample Program M ake Process

Each KwikNet sample program must be constructed from within its own directory in the
KwikNet toolset directory. Hence, the KwikNet WEB Sample Program must be built in
directory TOOLXXX\ SAM V\EB.

All of the compilers and librarians used at KADAK were tested on a Windows®
workstation running Windows NT, 2000 and XP. However, you can build each KwikNet
sample program using any recent version of Windows, provided that your software
development tools operate on that platform.

To create the KwikNet WEB Sample Program, proceed as follows. From the Windows
Start menu, choose the MS-DOS Command Prompt from the Programs folder. Make the
KwikNet toolset TOOL XXX\ SAM WEB directory the current directory.

To use Microsoft's NMAKE utility, issue the following command.

NMAKE - f KNEBSAM MAK " TOOLSET=XXX" " TRKPATH=t r eckpat h"
" OSPATH=your ospat h" " TPATH=t ool pat h" " FSPATH=af spat h"

The make symbol TOOLSET is defined to be the toolset mnemonic xxx used by KADAK
to identify the software tools which you are using.

The symbol TRKPATH is defined to be the string t r eckpat h, the full path (or the path
relative to directory TOOLXXX\ SAM VEB) to your Turbo Treck TCP/IP instalation
directory.

The symbol OsSPATH is defined to be the string your ospat h, the full path (or the path
relative to directory TOOLXXX\ SAM WEB) to the directory containing your RT/OS
components (header files, libraries and/or object modules). When using AMX, string
your ospat h isthe path to your AMX installation directory.

The symbol TPATH is defined to be the string t ool pat h, the full path to the directory in
which your software development tools have been installed. For some toolsets, TPATH iS
not required. The symbol isonly required if it isreferenced in file KNzzzCC. | NC.

If you are using KwikNet with AMX and the AMX/FS File System, you must define the
symbol FSPATH to be the string af spat h, the full path (or the path relative to directory
TOOLXXX\ SAM VEB) to the directory in which you installed AMX/FS. If you are not using
the AMX/FS File System, omit the definition of symbol FSPATH.

The KwikNet WEB Sample Program load module KNWEBSAM xxx is created in toolset
directory TOOLXXX\ SAM VEB. The file extension of the load module will be dictated by
the toolset you are using. The extension, such as OW, ABS, EXE, EXP or HEX, will match
the definition of macro XexT in the tailoring file.

The final step is to use your debugger to load and execute the KwikNet WEB Sample
Program load module KNVEBSAM x xx.

KwikNet Web Server Applications sxKADAK

27



28

2.3 Adding the Web Server to Your Application

Before you can add the KwikNet Web Server to your application, there are a number of
prerequisites which your application must include. You must have a working KwikNet
TCP/IP stack operating with your RT/OS and afile system. It isimperative that you start
with atested TCP/IP stack and file system with functioning device drivers before you add
the web server. If these components are not operational, the KwikNet Web Server cannot
operate correctly.

KwikNet Library

Begin by deciding which HTTP features must be supported. Review the Web property
page described in Chapter 1.3. In particular, omit CGI and SSI support unless you
actually have such aneed. The memory savings are significant.

Read Appendix C of the KwikNet TCP/IP Stack User's Guide to see how the KwikNet file
system interface will have to be configured to operate with the file system you have
chosen.

If you use a file system that is accessed via the KwikNet Universal File System (UFS),
your web server will require a user name and password to gain access to the file system
services. Read Appendix D of the KwikNet TCP/IP Stack User's Guide to see how the
KwikNet Administration interface must be adapted to define such a user name and
password. If necessary, edit the administration file KN_ADM N. C to revise the default user
name and password provided for web server use.

Use the KwikNet Configuration Manager to edit your application's KwikNet Network
Parameter File to support a file system and to include the KwikNet Web Server. Armed
with your modified files (if any), rebuild your KwikNet Library. The library extension
may be. Aor. LI B or some other extension dictated by the toolset which you are using.

Memory Allocation

Each web server task requires one socket for listening for requests from potential web
browsers (clients). Each browser session will require an additional socket for control
(commands) and data transfer. Additional memory is allocated for each browser session
managed by your web server.

To meet these requirements, you may have to edit your KwikNet Network Parameter File
to increase the memory available for alocation.

ZEKADAK KwikNet Web Server Applications



Web Server Task

Y ou must provide one task for each web server which you wish to incorporate into your
application. Usually only one web server task is required. Rarely are two or more web
servers required.

In a multitasking system, you may have to increase the total number of tasks allowed by
your RTOS in order to add the web server task.

A stack size of 4K to 8K bytes is considered adequate for the web server task when used
with most file systems and device drivers. The stack size can be trimmed after your web
server task has been tested and actual stack usage observed using your debugger.

In a multitasking system, each web server task must be of lower execution priority than
the KwikNet Task. If your application also includes a web browser task, it is usua to
make the web server task of higher priority than the web browser task.

To incorporate aweb server task, you need only create a web server task procedure which
begins operation as described in Chapter 1.5.

The web server task C source module must be compiled just like any other KwikNet
application module. The compilation procedure is described in Chapter 3.4 of the
KwikNet TCP/IP Stack User's Guide.

KwikNet Web Server Applications sxKADAK

29



30

Reconstructing Your KwikNet Application

Since you are adding a web server to an existing KwikNet application, there is little to be
done.

To meet the memory demands of your web server, you may have to edit your KwikNet
Network Parameter File to increase the memory available for alocation. If you do so,
you must then rebuild your KwikNet Library.

Your application link and/or locate specification file must include the KwikNet Library
which you built with support for a web server. The object module for your web server
task and any support modules that it might require must also be included in your link
specification together with your other application object modules.

With these changes in place, you can link and create an updated KwikNet application with
web server support included.

AMX Considerations

When reconstructing a KwikNet application which uses the AMX Real-Time Multitasking
Kernel, adapt the procedure just described to include the following considerations.

You may have to edit your AMX User Parameter File to increase the maximum number
of tasks allowed in order to add a web server task.

A web server task can be predefined in your AMX User Parameter File or it can be
created dynamically at run-time as is done in the KwikNet WEB Sample Program. Such a
task isasimple AMX trigger task without message queues.

A stack size of 4K to 8K bytes is considered adequate for use with most file systems and
device drivers. The stack size can be trimmed after your web server task has been tested
and actual stack usage observed using your debugger.

The web server task priority must be lower than that of the KwikNet Task. If your
application also includes a web browser task, it is usual to make the web server task of
higher priority than the web browser task. If you are using AMX 86 to access MS-DOS®
file services, the PC Supervisor Task should be below the web server task in priority.

If you edit your AMX User Parameter File, you must then rebuild and compile your
AMX System Configuration Module. If you are using the AMX/FS File System, you
should also rebuild and compile your AMX/FS File System Configuration Module.

No changes to your AMX Target Configuration Module are required to support HTTP
unless your web server task requires specia device support which is not already part of
your application.

ZEKADAK KwikNet Web Server Applications



Perfor mance Consider ations

A meaningful discussion of all of the issues which affect the performance of aweb server
or browser are beyond the scope of this document. Factors affecting the performance of
the KwikNet Web Server include the following:

processor speed

memory access speed and caching effects

file system performance and disk access times

competing disk accesses for different users

network type (Ethernet, SLIP, PPP)

network device driver implementation (buffering, polling, DMA support, etc.)
TCP protocol effects (window size adaptations)

| P packet fragmentation

network hops required for connection

operation of the remote (foreign) connected browser

KwikNet TCP/IP Stack configuration (clock, memory availability, sockets, etc.)

Of all these factors, only the last one can be easily adjusted. Increasing the fundamental
clock rate for the KwikNet TCP/IP Stack beyond 50Hz will have little effect and will
adversely affect systems with slow processors or memory. Increasing the memory
available for use by the TCP/IP stack will help if high speed Ethernet devices are in use
and the processor is fast enough to keep up.

KwikNet Web Server Applications sxKADAK

31



32

This page left blank intentionally.

KwikNet Web Server Applications



	Cover
	Table of Contents
	1.  KwikNet Web Server Overview
	1.1  Introduction
	1.2  General Operation
	HTTP Requests
	HTTP Replies
	HTTP Documents
	Executable (CGI) Documents
	Common Gateway Interface (CGI)
	Server Side Includes (SSI)

	1.3  KwikNet Web Server Configuration
	1.4  File Services
	Virtual File System (VFS)
	User Administration
	Directory Access by Web Server

	1.5  Web Server Task
	Multitasking Operation
	Single Threaded Operation


	2.  KwikNet Web Server Applications
	2.1  Web Server Sample Program
	Startup
	Web Browser Operation
	Web Server Operation
	Test Features
	Shutdown
	KwikNet and Web Server Logging
	Web Browser Logging
	Files for Browsing
	Viewing the Files
	Running the Sample Program

	2.2  Making the WEB Sample Program
	WEB Sample Program Directories
	WEB Sample Program Files
	WEB Sample Program Parameter File
	WEB Sample Program KwikNet Library
	The WEB Sample Program Make Process

	2.3  Adding the Web Server to Your Application
	KwikNet Library
	Memory Allocation
	Web Server Task
	Reconstructing Your KwikNet Application
	AMX Considerations
	Performance Considerations



