Y2 SensaWave

SENSAWAVE Manual

Version 1.0.2
Copyright (©) 2008 SensaWave Technology Inc.
SENSAWAVE, SENSAWAVE Computing Base, and the SensaWave logo are trademarks of

SensaWave Technology Inc. All other product or service names are the property of their
respective owners.

Table of Contents

1 Introduction............................... 1
Welcome to the SENSAWAVE Computing Base 1
1.2 SENSAWAVE features and benefits........................... 1
1.2.1 Fast execution speed, 1
1.2.2 Scientific repository ... 1
1.2.3 Advanced visualization................... 1
1.2.4 Cross-platform development 2
1.2.5 Choice of programming language......................... 2
2 Installation.................. 3
2.1 Imstallation from CDROM, 3
2.1.1 Installing on Windows 3
2.1.2 Installingon MAC OS Xo 3
2.1.3 Installing on Linux........... ... 3
2.1.4 Installing on OpenBSD........ 4
2.2 Installing from the Internet 4
2.3 Changing the system PATH environment...................... 4
2.4 Host system dependencies.o i 4
2.5 Uninstalling SENSAWAVE, 5
2.6 Further Questions.......... 5
3 QuickTour..............iiiiiiiiiinnnn.. 6
3.1 What is SENSAWAVE? 6
3.2 Running SENSAWAVE 6
3.3 Basic command line syntax 6
3.4 Numerical operations, 7
3.5 Vectors, matrices and the Scientific Repository 8
3.6 Graphics in SENSAWAVE 10
3.7 Reading and writing data files................ 13
3.8 Writing SENSAWAVE programs.oooii.... 14
3.8.1 Example: Fourier approximation to a square wave........ 14
3.8.2 Example: linear regression.............................. 16
3.9 Compiling SENSAWAVE programs 17

3.10 Further reading 18

4 Console Editing 19
4.1 Command line completion 19
4.2 Command history i 19
4.3 Result history.......... . 19
4.4 Console editing commands ..., 19
4.5 Console on-line help 20

4.6 Console debugging and further reading....................... 20

5 Scientific Repository 21

5.1 BLAS examples 21
5.2 LAPACK examples.o 24
5.3 SLATEC examplesirr e 27
54 QUADPACK examples ... 28
5.5 NSWCLIB examples. ... 30
5.6 Other packages in the repository 31
5.6.1 ARPACK 31

5.6.2 CDFLIB 31

5.6.3 FFTPACK and DFFTPACK 31

5.6.4 FEISPACK and SEISPACK...... 31

5.6.5 LINPACK. 31

5.6.6 MINPACK 31

5.6.7 ODEPACK and SODEPACK 32

5.6.8 RANLIB 32

5.6.9 REGRIDPACK. 32
5.6.10 STARPAC 32
5.6.11 TOEPLITZ and STOEPLITZ 32

5.7 Further reading 32

6 Fontsand Colors 34
6.1 Fonts..o 34
6.2 COlOTS . .ottt 35

7 Framebuffers............................. 37
7.1 Framebuffer fundamentals................ 37
7.2 Example: 2D Plotting Primitives............................ 38
7.3 Example: 3D plotting primitives............, 39

8 Graphs........... ... i, 42
8.1 Example 1: Linear graph 42
8.2 Example 2: Semi-logarithmic graph.......................... 44
8.3 Example 3: Double-logarithmic graph........................ 46
8.4 Example 4: 2D image graph............. 48
8.5 Quick data visualization 50

9 OpenGL 52
9.1 Further reading 54

10 RS232 Interfacing 55

11 Additional functionality.................. 56
111 Pregexp oot e 56
11.1.1 pregexp copyright statement 56

11.2 schelog 56
11.2.1 schelog copyright i 56

11.3 ssax-sxml. 56
11.4 Third party module disclaimer 56
12 Copyright Information................... 57
12,1 Gambit-Co 57
12.2 MIinGW ..o 57
12.3 PDF Library ... o7
12.4 GLFEW Library 57
12.5 GIFPlot library ... 58
12.6 The Portable Network Graphics library 59
12.7 The zlib compression library 61
12.8 Scientific repository packages. 61
12.9 Trademarks........ ... 61
13 License Terms...............ccevvuunn... 63
13.1 SENSAWAVE Evaluation License........................... 63
13.2 SENSAWAVE Single User License 64
13.3 SENSAWAVE Site and Deployment License 64

iii

Chapter 1: Introduction 1

1 Introduction

Welcome to the SENSAWAVE Computing Base

Thank you for your interest in the SENSAWAVE Computing Base, a powerful system for
rapid prototyping of scientific and engineering applications, to which this manual serves
both as an informal introduction and in-depth reference.

New users are encouraged to read Chapter 3 [quicktour|, page 6, executing the examples in
an interactive SENSAWAVE session to quickly gain an understanding of the SENSAWAVE
fundamentals. Experienced users can find detailed information about the language syntax
in the remainder of the manual.

We invite you to contact us with any questions or comments related to this manual or
the SENSAWAVE program. Please visit our website for complete contact information:
http://www.sensawave.com/contact.html

We hope that the SENSAWAVE Computing Base will prove useful to you.
The SensaWave Team, 2008.

1.2 SENSAWAVE features and benefits

The SENSAWAVE Computing Base is a powerful and flexible interactive programming
environment tailored for scientific and technical computationally intensive applications.

SENSAWAVE bridges the gap between rapid prototyping and direct interfacing to high per-
formance scientific libraries. Applications benefit both from an easy-to-use general purpose
multi-threaded language with sophisticated debugging facilities and a thin interface to an
extensive repository of pre-compiled scientific libraries.

1.2.1 Fast execution speed

SENSAWAVE can compile applications to portable C language, and native machine code
is generated using an efficient C compiler on the host computer. This enables very high
execution speeds to be obtained. Compiled and interpreted code can be mixed freely for
maximum flexibility.

1.2.2 Scientific repository

SENSAWAVE provides a complete interface to a large repository of industry standard nu-
merical and scientific code, including the ARPACK, BLAS, EISPACK, FFTPACK, LA-
PACK, LINPACK and SLATEC packages. A total of 33 such packages are provided, giving
technical computing developers unprecedented choice of implementation, and full control
behind the scenes.

1.2.3 Advanced visualization

SENSAWAVE provides a number of powerful systems optimized for creating high-quality vi-
sualizations in scientific computing applications. This includes a device independent graph-
ing system, frame buffers operating on of 32 bit image data arrays, as well as both 2D
and 3D engines providing graphics primitives in real-world coordinates. Direct OpenGL

http://www.sensawave.com/contact.html

Chapter 1: Introduction 2

rendering is also supported, and input event callbacks allow complex interactive graphical
applications to be developed.

1.2.4 Cross-platform development

SENSAWAVE provides maximum freedom to developers by supporting a wide range of op-
erating systems and offering multi-platform licenses. Code runs unaltered on all supported
platforms, and can be compiled to native binaries on each system.

1.2.5 Choice of programming language

SENSAWAVE applications can be written in two different programming styles: functional
(prefix) or C/Java (infix). Experienced users will find that the functional style is the most
terse and effective, but the C style alternative allows new users to start writing applications
right away in a familiar syntax. The two programming styles can be mixed freely.

Chapter 2: Installation 3

2 Installation

This chapter describes the software installation process. All files of the SENSAWAVE
Computing Base resides in a single directory.

2.1 Installation from CDROM

When you purchased the Software you received a CDROM containing a licensed copy of
the SENSAWAVE Computing Base. The CDROM contains the following files:

sensawave-1.0-win32.exe
Self-extracting installer for Windows platforms

sensawave—1.0-macosx.dmg
Disk image for MAC OS X (universal) installations

sensawave-1.0-linux.tar.gz
Linux (ix86) installation archive

sensawave-1.0-openbsd.tar.gz
OpenBSD (ix86) installation archive

license.bin

The SENSAWAVE license key

These files can be used to install SENSAWAVE Computing Base on the supported platforms.
The version on the CDROM is the most current at the time of purchase. To install, simply
select the installation file that matches your host system and follow the instructions below
to extract the distribution directory. Once the installation directory has been created, the
license key must be copied into it, in order to activate the program.

2.1.1 Installing on Windows

To install on Windows, open the CDROM and double click on the executable Windows
installer. The installer will by default create a directory on the desktop containing the
SENSAWAVE files. Once the installer is finished, drag a copy of license.bin from the
CDROM into the new directory.

2.1.2 Imstalling on MAC OS X

To install on MAC OS X, simply double click on the macosx disk to mount it. Inside the
image is a directory containing the SENSAWAVE files. Copy this to a location of your
choice. Drop a copy of 1icense.bin from the CDROM into the new directory.

2.1.3 Installing on Linux
To install on Linux, extract the SENSAWAVE tar archive with the following command
$ tar -zxf sensawave-1.0-linux.tar.gz

in the location where you want the SENSAWAVE directory to appear. Drop a copy of
license.bin from the CDROM into the new directory.

Chapter 2: Installation 4

2.1.4 Installing on OpenBSD
To install on OpenBSD, extract the SENSAWAVE tar archive with the following command
$ tar -zxf sensawave-1.0.2-openbsd.tar.gz

in the location where you want the SENSAWAVE directory to appear. Drop a copy of
license.bin from the CDROM into the new directory.

2.2 Installing from the Internet

The files described in Section 2.1 [cdrom], page 3 can also be downloaded from the Sen-
saWave website: http://sensawave.com. The exception is your license key, which can only
be found on the distribution CDROM. This key must then be dropped into the distribution
directory after the installation of the downloaded files. Your license key will work with all
maintenance releases of the major release for which it was purchased. This allows you to
benefit from the later revisions of that release.

2.3 Changing the system PATH environment

SENSAWAVE can be run from within its directory with no further actions. However, on
systems with a command line interface, in particular Linux and OpenBSD, you will benefit
from having the SENSAWAVE directory added to the PATH environment to allow the system
to be started from anywhere on the host. This can be accomplished like this (in bash/korn
shell):

$ PATH=$PATH:/path/to/sensawave
$ export PATH

where /path/to/sensawave is the fully qualified path of the SENSAWAVE directory. The
above command can be added to the appropriate startup files to make the change perma-
nent. Please refer to your host system for the information about how to do that.

The above is not normally needed on Windows, unless you plan to call the SENSAWAVE
executable from the command prompt. In that case you can do the following:

1. Open the System Properties under the Control Panel.

2. On the Advanced tab click on Environment Variables, select the existing variable Path,
and click Edit.

3. Add the SENSAWAVE directory to the path and click OK:

c:\your current path setting\;c:\path\to\sensawave

2.4 Host system dependencies

The only dependency that SENSAWAVE has on the host system is that the gcc compiler
is needed when generating native binaries. Windows does not have this dependency, since
the SENSAWAVE Windows distribution ships with its own gcc compiler suite for your
convenience. On Mac OS X the gcc compiler is found in X code developer suite that can
be obtained for free from Apple. Linux and OpenBSD distributions are likely to have the
compiler installed by default. If not, it can be installed from a separate standard package.

Please note that gcc is only needed if you intend to compile SENSAWAVE programs to
binaries. Normal operation does not require the compiler to be present.

http://sensawave.com

Chapter 2: Installation 5)

2.5 Uninstalling SENSAWAVE
Uninstalling simply involves deleting the SENSAWAVE directory from your computer.

2.6 Further Questions

In case of any problems or questions, please contact SensaWave Technology Inc. by email
to support@sensawave.com, or call us at 1-604-322-9029 (pacific standard time). Please
have your order number at hand.

mailto:support@sensawave.com

Chapter 3: Quick Tour 6

3 Quick Tour

3.1 What is SENSAWAVE?

SENSAWAVE is a rapid prototyping environment for scientific and engineering applications.
It is capable of performing a wide range of advanced scientific, statistical and mathematical
operations, and contains extensive visualization capabilities.

SENSAWAVE provides a simple and thin interface to the underlying computa-
tion/visualization libraries, getting in the developers way as little as possible. For example,
rather than providing a restrictive higher level interface to the underlying scientific
libraries, SENSAWAVE gives access to all functions in the libraries, including auxiliary
and intermediate routines. This makes SENSAWAVE a unique environment for building
new applications with a high technology content.

Unlike most other technical computing environments, SENSAWAVE is built on a full-fledged
multi-threaded general-purpose language, and is capable of compiling code to native binaries
through the use of an efficient C compiler. This enables applications to achieve execution
speeds rivaling C. Compiled and interpreted code can be mixed freely, and external C code
can easily be integrated through an efficient foreign function interface.

3.2 Running SENSAWAVE

On systems that support command line interfaces, SENSAWAVE can be started by typing
sensawave at the command prompt. Systems with graphical user interfaces can activate

SENSAWAVE by clicking on the SENSAWAVE program icon.

Once SENSAWAVE is started, you will see a message followed by an input prompt, like
this:
GH D N G U I VAN A
DN N BN D VAN VAN VAN VAR B
SENSAWAVE Computing Base ver. 1.0.2
Copyright (C) 2008 SensaWave Technology Inc. All rights reserved.
See user manual for full copyright statement and terms of use.
[/home/doe/sensawave-1.0.2-win32]
Single User License #1234567890 ACME Inc.
Use (exit) to terminate, (demo) for graphical demonstration.
>

The SENSAWAVE input prompt accepts commands, expressions, debugging commands etc.
Each time you press enter the SENSAWAVE engine will process your command, and print
a result.

> (display "hello world\n")

"hello world"

3.3 Basic command line syntax

SENSAWAVE is built on top of Gambit-C, a powerful implementation of the functional
language Scheme. By default, the command prompt follows the Scheme prefix syntax.
Expressions are usually of the following format:

Chapter 3: Quick Tour 7

(proc [argl [arg2 ...]11)

This calls the function proc with the provided arguments. For example:

> (min 3 1 5 2 4)

1

> (string-append "A" "B" "C")
"ABC"

> > 21

#t

> (string=7 "apples" "oranges")
#f

> (123 (+123))

36

Variables are bound using the define command, and the bindings can be changed with

set!:

3.4

> (define x 1.23)

> X

1.23

> (set! x "test")

> X

"test"

> (define (myfunction x) (+ x 10.))
> (myfunction 2.3)

12.3

Numerical operations

SENSAWAVE features a powerful numerical subsystem that supports complex, rational and

exact

numbers:

> (complex? 1+1.01i)

#t

> (sin (x 1.2+2.4i 0+1.61))
2.240067903791034-2.5558335585424428i
> (+ 1/214 1/128)

171/13696

> (rationalize M_PI 1e-6)
355/113

> (rational? 1/2)

#t

> (exact? 1)

#t

> (exact? 1.0)

#f

The fundamental data structure in SENSAWAVE is the list:

> (define a (list 1 3 2 4))
> (list-ref a 0)
1

Chapter 3: Quick Tour 8

> (map square a)
(19 4 16)

> (apply max a)
4

> (sort a <)
(123 4)

As a simple example, ley us graph sin(x) in the range -2Pi<=x<=2Pi. We first store the
values from -2*Pi to 2*Pi in a list with 100 points:

> (define x (: (- M_2PI) M_2PI 100))

The colon function creates a list of 100 numbers evenly distributed from -2Pi to 2Pi. We
then create a new list that applies sin element by element to x:

> (define y (map sin x))
To plot these points we do:
> (ezgraph x y)

This will create a simple graph using x and y as coordinates:

1.099862 -

0.659917 +

0.219972 -

-0.219972 -

-0.659917 -

-1.099862 -
r
-6.28318

T T T T 1
-3.76991 -1.25663 1.25663 3.76991 6.28318

3.5 Vectors, matrices and the Scientific Repository

SENSAWAVE also supports a number of different homogenous vector types that are of-
ten more efficient for numerical operations. For example, we can create a complex single
precision vector like this:

> (define C (c32vector 5 7.8 M_PI 12 5+1.0i))

This vector has five elements. We can also create vectors from lists such as those generated
by the colon operator:

> (define B (list->c32vector (: 1 5 5)))
Let us calculate the scalar product of these two vectors using the BLAS function cdotu.
BLAS (Basic Linear Algebra Subprograms) is a library routines that provide standard

building blocks for performing vector and matrix operations. SENSAWAVE provides a
loadable precompiled BLAS library:

Chapter 3: Quick Tour 9

> (module-require ’BLAS)
> (BLAS_cdotu 5 C 1 B 1)
103.0247802734375+5. 1

We can confirm this result by hand:

> (+ (x 1. 5.) (x7.82.) (xM_PI 3.) (* 12. 4.) (* 5+1.01 5.))
103.02477796076938+5.1

There is a slight discrepancy between the two results. This is due to the difference in
precision. SENSAWAVE uses double precision numbers, while cdotu is a single precision
BLAS function. Let us repeat the calculation using the double precision BLAS equivalent,
zdotu:

> (define C (c64vector 5 7.8 M_PI 12 5+1.0i))
> (define B (list->c64vector (: 1 5 5)))

> (BLAS_zdotu 5 C 1 B 1)
103.02477796076938+5. 1

This result is now identical to the internal SENSAWAVE calculation, as expected.

The SENSAWAVE Computing Base also supports simple homogenous matrix structures
internally, as a simple extension of the corresponding vectors. A matrix is often conveniently
built from a list of lists. For example, here is a 3x3 double precision matrix M, and a 1x3
matrix X:

> (define M (listlist->f64matrix ’((3. 1. 3.)
(1. 5. 9.)
(2. 6. 5.))))
> (define A (listlist->f64matrix ’((-1.)(3.)(-3.))))

The quotes in the above command instruct SENSAWAVE to treat the quoted lists and data,
instead of attempting to evaluate them as expressions.

Let us now use these to solve the equation M*xX=A using the double precision LAPACK func-
tion dgesv. LAPACK, the Linear Algebra PACKage, is a library for numerical computing
that provides routines for solving systems of simultaneous linear equations, least-squares
solutions of linear systems of equations, eigenvalue problems etc. We can load it just like
we did with BLAS:

(module-require ’LAPACK)
(define P (make-s32vector 3))
(LAPACK_dgesv 3 1 M 3 P A 3 0)
(f64matrix->1istlist A)

((-1.) (-1.) 1.0

P is a three element vector of signed 32bit integers that is needed for LAPACK to complete
the calculation. The value returned in A is the matrix X solving M*X=A, as can readily
be confirmed.

vV V V

\4

These simple examples illustrate how simple the interface to the fortran repository is. All
functions of the entire fortran repository can be accessed in this way, giving the developer
the ability to fine-tune numerical calculations and even utilize auxiliary functions in the
repository.

Chapter 3: Quick Tour 10

3.6 Graphics in SENSAWAVE

The SENSAWAVE Computing Base provides a number of powerful visualization mecha-
nisms. We will use the demo procedure to illustrate some of the capabilities of the system:

> (demo)

Please wait, building demonstration data...

#t
A new window will now appear on the screen. This is the graphical demonstration launch-
pad:

fA OpenGL Window - 0] x|
SEMSAWAVE graphical demo launchpad

linear graph 40 spherical plot

semi-log graph OpeniEL polygon

log-log graph framebuffer image
2D graph Close

The launchpad contains a number of buttons that will launch additional windows, and
is itself a small demonstration of the SENSAWAVE OpenGL interface. This graphical
interface provides a simple way to create powerful interactive programs. Each window is
running in an independent thread using the very efficient multi-threading capabilities of the
system.

Let’s click on the top left button labeled 1inear graph. This will launch an example of a
linear graph built with the device independent graphing subsystem in SENSAWAVE:

4 openGL Window =10]

Example linear graph

1.1 4
JI:] :
07 :
0.5 :

03 A

Sinc function

019

-01 4

-0.3 T T T T T T T T T T T 1
-B) -2 1] z 4 &
* coordinate

SENSAWAVE graphs can be rendered to a multitude of devices, including PDF, EPS,
PNG, PPM, framebuffers or direct OpenGL (the above), and will appear identical on all
output devices. This provides a powerful framework for developing multi-purpose scientific
visualizations.

Chapter 3: Quick Tour 11

Clicking on the semi-log graph button of the launchpad opens another window, this time
containing an example of a semi-logarithmic graph:

&4 opencGL Window =10 x|

Example semi-log graph

0.8 RealC
i)
[
2 4
=
o 0.6 7
o
i
(=]
2 04
o “mag C
o

0z

0o -

I T T T TTTTT] T T TTTTT]
100.0 1000.0 10000.0

Freguency [Hz]

This graph uses labels to identify the two curves. Another illustration of the graphing
subsystem opens when clicking on the log-log button of the launchpad. This is a double
logarithmic graph with data point markers:

[EAopenGlL Window o] |

30 e 5
fle.

The % axis lahel

1.0 {) O'D
- O‘% O

0.5, Ll !
0.3 1.0 3.0 10.0

The X axis label

Graphs are highly customizable and can easily be combined to build larger graphical data
presentations.

SENSAWAVE also contains a powerful framework for generating raster images using de-
vice independent framebuffers with full alpha channels. Framebuffers support both two-
dimensional and three-dimensional operations, making it easy to create complex images.
Framebuffers can be combined with the graphing subsystem, for example to provide two-

Chapter 3: Quick Tour 12

dimensional graphs. The 2D graph launchpad button illustrates such a combination of
framebuffer and graph:

S8 0penGL Window . ;IEIEI

Example: 2D sinc function

o

Y coordinate
=

- -3 -2 -1 0 1 g 3 4
coordinate

An example of a pure framebuffer rendering opens when clicking the 3D plot lauchpad
button:

e

This is a spherical plot illustrating the use of color gradients and shading with 3D frame-
buffer drawing primitives.

In addition to the device independent graphing and framebuffer facilities, SENSAWAVE also
provides direct access to the OpenGL API, making it simple to create OpenGL graphics.

Chapter 3: Quick Tour 13

The OpenGL polygon launchpad button opens a very simple direct OpenGL rendering of a
shaded polygon:

i

The last framebuffer image button on the graphical demo launchpad illustrates loading
of images from file:

This image is loaded from a PNG file into a framebuffer, and rendered to the screen with
a single command:

> (png->glwindow (path-expand "~~/examples/balloons.png"))

3.7 Reading and writing data files

Most technical computing applications require that numerical data be saved to and read
from permanent media such as hard disks. SENSAWAVE provides a simple mechanism for
loading and saving data as comma separated values (CSV). Such files can also be handled
by most spreadsheet programs such as Excel.

Let us save an example data set to file:

> (define data ’((1 2 3)(4 5 6)(7 8 9)))
> (datafile-save "example.csv" data)

The resulting file contains three lines of comma separated values. We can reload the data
like this:

Chapter 3: Quick Tour 14

> (datafile-load "example.csv")
((123) (456) (7 89)

If the data is not going to be used for import into other programs, it can be more efficient
to save it in native format. For example:

> (object->file data "example.dat")
> (file->object "example.dat")
((123) (456) (7 89)

In addition to these simple interfaces, SENSAWAVE also supports general purpose file I/O
that can be used to generate and/or parse more complicated data file formats.

3.8 Writing SENSAWAVE programs

So far we have been typing commands at the SENSAWAVE prompt. For real applications
it is much faster to write program files that SENSAWAVE can execute. Two different types
of program files are supported. *.scm files are in the same functional style that we have
worked with in this chapter, and *.six are in a C/Java style.

3.8.1 Example: Fourier approximation to a square wave

A program to plot a Fourier approximation to a square wave might look like this in functional
style:

;; examples/nthharmonic.scm
;3 program to plot fourier series to n-th harmonic

;; element-wise addition of two lists
(define (list+ 11 12)
(let loop ((L1 11)(L2 12)(r >()))
(if (= (length L1) 0) r
(loop (cdr L1) (cdr L2) (append r (list
(+ (car L1) (car L2)))))))

(define (nthharmonic n)
(let* ((wO (* 2. M_PI))
(t (: -.25 1.25 200))
(v (let loop ((i 3.)(factor -1.)
(res (map (lambda (x) (cos (* wO x))) t)))
(if (>= i n) (map (lambda (x) (/ (*x 4 x) M_PI)) res)
(loop (+ i 2.) (* factor -1.)
(1ist+ res (map (lambda (x)
(¥ factor (cos (x i wO x)) (/ 1 1))) t)))))))
(ezgraph t v)))

The program contains two functions, the first of which is a simple helper routine that
adds the elements of two lists element by element. The second function calculates the nth
harmonic and opens a graph of the result:

> (load "~ ~/examples/nthharmonic.scm")

Chapter 3: Quick Tour

> (nthharmonic 11)

1.298314 -

0.778566 -

0.258818 -

-0.260931

-0.780679

-1.300427 -

-0.25 0.05 0.35 0.65 0.95 1.25

The following accomplishes the exact same thing using the C/Java programming style:

// examples/nthharmonic.six
// program to plot fourier series to n-th harmonic

// element by element addition of two lists
obj add_lists(obj 11, obj 12)

{
obj 13 = [1;
for (int i=0;i<length(l1);i++) {
13 = append(13,list(list_ref(11,i)+1list_ref(12,i)));
}
return 13;
}
obj nthharmonic(int n)
{
obj w0 = 2. * M_PI;
obj t = \:(-.25,1.25,200);
obj v = map(obj (obj x) { return cos(wO*x); },t);
obj factor = 1;
for (int i=3; i<n; i+=2) {
factor *= -1;
v = add_lists(v, map(obj (obj x)
{ return factor*cos(wO*i*xx)/i; }, t));
}
v = map(obj (obj x) { return 4*x/M_PI; },v);
ezgraph(t,v);
}

This program can be loaded in exactly the same way as the previous one:

Chapter 3: Quick Tour 16

> (load "~"/examples/nthharmonic.six")
> (nthharmonic 21)

1.297251 -

0.780418 -

0.263586 -

-0.253246 -

-0.770079

-1.286911 -
r T T
-0.25 0.05

T T T 1
0.35 0.65 0.95 1.25

3.8.2 Example: linear regression
This an example of linear regression in standard functional style:

;; examples/linear-regression.scm
;; simple linear regression example

;; test data with random noise
(define x (: -5 5 20))
(define y (map (lambda (x)
(+ (* 0.8 x) -4 (*x 2. (- (random-real) 0.5)))) x))

;5 perform linear regression
(define result (linear-regression x y))
(display (format
"Linear regression: y = "4F * x + "4F\n"
(car result) (cadr result)))

;; fitted data
(define x2 (: -5 5 100))
(define y2 (map (lambda (x)
(+ (¢ (car result) x) (cadr result))) x2))

;; draw the result
(ezgraph x y x2 y2)

And here is the same example in C/Java style:

// examples/linear-regression.six
// simple linear regression example

Chapter 3: Quick Tour 17

// test data with random noise
obj x = \:(-5, 5, 20);
obj y = map(obj (obj x) {
return 0.8%x-4 + 2*xrandom_real()-1; }, x);

// perform linear regression
obj result = linear_regression(x,y);

display(format (
"Linear regression: y = "4F * x + "4F\n",
car(result), cadr(result)));

// fitted data

obj x2 = \:(-5, 5, 100);

obj y2 = map(obj (obj x) {

return car(result)*x + cadr(result); }, x2);

// draw the result
ezgraph(x, y, x2, y2);

The programs generate the same output:

> (load """/examples/linear-regression.six")
Linear regression: y = 0.81 * x + -3.9

0.284634 -

-1.451960 -

-3.188554

-4.925148 -

-6.661741

-8.398335 -
r

3.9 Compiling SENSAWAVE programs

A unique feature of SENSAWAVE is the ability to compile programs like the one shown
in the previous section. In this section we will use this capability on a small benchmark
program:

;; examples/fib.scm

;; simple fibonacci benchmark

Chapter 3: Quick Tour 18

(define (fib n) (if (< n 2) 1 (+ (fib (- n 1)) (fib (- n 2)))))
(define n 30)
(display (format "Running (fib "D)..\n" n))
(define start-time (time->seconds (current-time)))
(fib n)
(define end-time (time->seconds (current-time)))
(display (format "(fib D) took "4F seconds to complete.\n"
n (- end-time start-time)))

This program performs a recursive CPU intensive function call, and performs a simple
timing:

> (load "~ ~/examples/fib")

Running (£fib 30)..

(fib 30) took 2.97 seconds to complete.

"examples/fib.scm"

We can see that it took almost three seconds to complete the call. To improve this we now
compile the program to binary form:

> (compile-file """/examples/fib.scm")

#t
Note that this call requires that the host system has a gcc compiler installed (see Section 2.4
[host dependencies|, page 4).
We can now repeat the call:

> (load "~ ~/examples/fib")

Running (fib 30)..

(fib 30) took 0.12 seconds to complete.

"examples/fib.ol"

We notice a speed improvement of about twenty times due to the compilation (this will vary
depending on the host system). Notice how the file loaded has the extension .o1. This is
the binary that was generated by the compiler.

3.10 Further reading

We recommend that you browse the examples in the examples subdirectory, and use those
as a starting point for exploring the capabilities of the software further.

It is beyond the scope if this manual to offer a complete general description of the Scheme
programming language on which SENSAWAVE is built. There are several texts available
on the Internet, doing so, including:

The formal Scheme language definition can be found in Revised (5) Scheme Report:
http://sensawave.com/manuals/scheme-rbrs.pdf

SENSAWAVE is built on top of the Gambit-C portable Scheme to C compiler. Gambit-C
extends standard Scheme with a large number of additional features. For a complete de-
scription of extensions, compiler architecture and optimization, please refer to the Gambit-C
manual:

http://sensawave.com/manuals/gambit-c.pdf

http://sensawave.com/manuals/scheme-r5rs.pdf
http://sensawave.com/manuals/gambit-c.pdf

Chapter 4: Console Editing 19

4 Console Editing

SENSAWAVE supports interactive development through a simple console interface. Com-
mands can be entered at the console and executed one by one. The console supports
command line completion, command history, result history and parentheses balancing.

4.1 Command line completion

The console features command line or tab completion capable of automatically filling in
partially typed symbols. For example, typing glB followed by pressing the tab key will
produce glBegin, an OpenGL procedure. Repeated tab key presses will cycle through all
matches of the partially entered symbol. Typing glB and pressing the tab key twice will
produce glBitmap, another matching OpenGL procedure, and so on.

4.2 Command history

The console keeps a history of previously typed commands. The history is accessed with
the arrow keys. Pressing the up arrow will return the previous command, and the history
can be navigated by multiple presses of up and down arrow. The history is maintained
between sessions.

4.3 Result history

The console also keeps a short history of the last returned command results. These are
accessed by typing one or more hash signs. A single hash sign expands to the last command
result, two hash signs the next to last, and three the second to last.

(+12)
(+ 2 #)

>
3
>
5
> (+ # #i#)
8

>

(+ # ## ###)
16

4.4 Console editing commands

Several editing commands are available at the console. Here is a list of the most commonly
used commands:

<ctrl>a Moves the cursor to the beginning of the line.
<ctrl>c Interrupts evaluation of a command.

<ctrl>d Generates an end-of-file.

<ctrl>e Moves the cursor to the end of the line.

<ctrl>k Deletes the text from the cursor to the end of the line and places it on the
clipboard.

<ctrl>1l Clears the console.

<ctrl>y Pastes any text that is on the clipboard.

Chapter 4: Console Editing 20

4.5 Console on-line help

The console offers a simple help mechanism through the ? function:
> (7 ’list-ref)
list-ref list k
Returns the kth element of a list.
> (7 "framebuffer-interpbox")
framebuffer-interpbox framebuffer x1 yl x2 y2 colorl color2
color3 color4 Draws a box, but interpolates color values
between values specified at the four corners. This is
commonly used to produce smoothing effects. The color values
are assigned as (x1,yl)=colorl, (x1,y2)=color2,
(x2,y1)=color3, and (x2,y2)=color4.
> (7 °7)
? functionname
Displays help information regarding the named function, if
available. functionname must be a symbol or a string.

4.6 Console debugging and further reading

The console provides a number of mechanisms to facilitate debugging of interpreted pro-
cedures, including single stepping, break-points and tracing. These capabilities are doc-
umented in the Gambit-C manual, which contains a complete description of the console
interface:

http://www.sensawave.com/manuals/gambit-c.pdf

Some users will notice that the Gambit-C facility for nested read-eval-print loops has been
disabled by default in SENSAWAVE. This functionality can be activated by placing the line

nested-repl = true
in the SENSAWAVE configuration file setup.ini.

http://www.sensawave.com/manuals/gambit-c.pdf

Chapter 5: Scientific Repository 21

5 Scientific Repository

A large number of widely recognized high-quality scientific software libraries were developed
by scientists at universities and research centers in the past decades. Many are available in
repositories such as Netlib, but often in a form that requires significant effort to use. SEN-
SAWAVE makes a large number of these libraries directly accessible as loadable modules.

At the time of writing the SENSAWAVE repository totals 1,581,626 lines of code providing
8,301 distinct function calls in 33 libraries:

ALFPACK, ARPACK, BESPAK, BLAS, CDFLIB, CMLIB, COULOMB, DATAPAC,
DFFTPACK, DIFF, EISPACK, ELLIPGRID, FFTPACK, FNLIB, LAPACK, LINPACK,
MINPACK, NSWCLIB, ODEPACK, QUADPACK, RANLIB, REGRIDPACK,
SEISPACK, SLATEC, SMINPACK, SODEPACK, SPECFUN, STARPAC, STOEPLITZ,
TOEPLITZ, TRANSFINITE, VFFTPACK, VFNLIB.

Instead of imposing yet another limited higher level application programming interface
to these functions, SENSAWAVE aims at providing a very thin interface that follows the
calling conventions of the original code, and provides access to all functions in the repository,
including auxiliary routines.

The repository functions must be called with homogenous vector/matrix arguments of the
type that matches the function call (£64 for double precision real, £32 for single precision
real, etc.). Immediates can also be used, and are then automatically converted to a vector
of the correct homogenous type of length one.

Function callbacks must be provided as a pair of the function and its number of arguments,
and the callback must then extract the calling arguments from a list of pointers.

To avoid namespace contamination, the function names are prefixed with the name of the
library (in capitals) followed by an underscore.

The following sections provide a number of examples intended to illustrate the use of the
repository interface.

5.1 BLAS examples

Basic Linear Algebra Subprograms (BLAS) is the de facto application programming in-
terface standard for performing basic linear algebra operations such as vector and matrix
multiplication.

SENSAWAVE contains a precompiled BLAS library. The following code demonstrates
access to the BLAS matrix library:

;; examples/sci-blas.scm
;; simple demostration of BLAS calls

;3 load the BLAS module
(module-require °’BLAS)

;5 scalar product, single precision
(define X (f32vector 1. 2. 3.))
(define Y (f32vector 7. 7. 7.))
(define N (f32vector-length X))

Chapter 5: Scientific Repository 22

(for-each display (list
"-——\nBLAS sdot: " (BLAS_sdot N X 1 Y 1)
"\nExpecting: 42.\n---\n"))

;; matrix multiply, double precision

(define A (listlist->f64matrix
>((0.11 0.12 0.13)(0.21 0.22 0.23))))

(define B (listlist->f64matrix
»((1011. 1012.)(1021. 1022.)(1031. 1032.))))

(define C (make-f64matrix 2 2))

(BLAS_dgemm 78 78 (f64matrix-rows A)
(f64matrix-columns B) (f64matrix-columns A) 1.0
A (f64matrix-rows A) B (f64matrix-columns A)
0.0 C (f64matrix-rows A))

(display "BLAS_dgemm: ")

(pp (f64matrix->listlist C))

(display "Expecting: ((367.76 368.12) (674.06 674.72))\n---\n")

;; matrix-vector multiply, single precision complex
(define M (listlist->c32matrix
7((3.0 1.0 3.0)(1. 5. 9.)(2. 6. 5.))))
(define X (listlist->c32matrix
7 ((-1.01) (-1.01) (+1.01))))
(define Y (make-c32matrix 3 1))
(BLAS_cgemv "N" (c32matrix-rows M) (c32matrix-columns M)
1.0 M (c32matrix-rows M) X 1 0.0 Y 1)
(display "BLAS_cgemv: ")
(pp (c32matrix->listlist Y))
(display "Expecting: ((0.-1.i) (0.+3.i) (0.-3.i))\n---\n")

;3 matrix-vector multiply, single precision complex
(define M (listlist->c64matrix
’((3.0 1.0 3.0)(1. 5. 9.)(2. 6. 5.))))
(define X (listlist->c64matrix ’((-1.0i)(-1.01)(+1.01))))
(define Y (make-c64matrix 3 1))
(BLAS_zgemv #\N (c64matrix-rows M) (c64matrix-columns M)
1.0 M (c64matrix-rows M) X 1 0.0 Y 1)
(display "BLAS_zgemv: ")
(pp (c64matrix->listlist Y))
(display "Expecting: ((0.-1.i) (0.+3.i) (0.-3.i))\n---\n")

Try loading this program:

> (load "~ ~/examples/sci-blas.scm")

BLAS sdot: 42.
Expecting: 42.

Chapter 5: Scientific Repository 23

BLAS_dgemm: ((367.76 368.12) (674.06 674.72))
Expecting: ((367.76 368.12) (674.06 674.72))
BLAS_cgemv: ((0.-1.i) (0.+3.i) (0.-3.1i))
Expecting: ((0.-1.i) (0.+3.i) (0.-3.1))
BLAS_zgemv: ((0.-1.i) (0.+3.i) (0.-3.1i))
Expecting: ((0.-1.i) (0.+3.i) (0.-3.1))

The following code illustrates a simple interface to the general BLAS multiplier gemm in all
four precisions:

;; examples/sci-blas2.scm
;; interfacing the [s,d,c,z]gemm BLAS multipliers

(module-require ’BLAS)

;3 generic wrapper for the gemm multipliers
(define (blas:multiply A B 11->m m->11 mmake gemm)
(if (and (listlist? A) (listlist? B))
(let ((a_r (length A))
(a_c (length (car A)))
(b_r (length B))
(b_c (length (car B))))
(if (= a_c b_r)
(let ((ma (11->m A))
(mb (11->m B))
(mc (mmake a_r b_c 0.)))
(gemm (13 VL Vel ar b c
a_c 1.0 ma a_r mb a_c 0.0 mc a_r)
(m->11 mc))
(error "inner matrix dimension mismatch")))
(error "arguments must be lists of lists")))

;5 multipliers for all precisions
(define (blas-multiplyf32 A B)
(blas:multiply A B listlist->f32matrix f32matrix->listlist
make-f32matrix BLAS_sgemm))
(define (blas-multiplyf64 A B)
(blas:multiply A B listlist->f64matrix f64matrix->listlist
make-f64matrix BLAS_dgemm))
(define (blas-multiplyc32 A B)
(blas:multiply A B listlist->c32matrix c32matrix->listlist
make-c32matrix BLAS_cgemm))
(define (blas-multiplyc64 A B)
(blas:multiply A B listlist->c64matrix c64matrix->listlist

Chapter 5: Scientific Repository

make-c64matrix BLAS_zgemm))

> (load "~ ~/examples/sci-blas2.scm")

> (blas-multiplyf32 >((1. 2. 3.)(4. 5. 6.)) ’((7. 8.)(9.

((58. 64.) (139. 154.))

> (blas-multiplyc32 ’((1. 2. 3.)(4. 5. 6.)) *((7. 8.)(9.

((58.40.i 64.+0.i) (139.+0.i 154.+0.1i))

> (blas-multiplyf64 > ((1. 2. 3.)(4. 5. 6.)) *((7. 8.)(9.

((58. 64.) (139. 154.))

> (blas-multiplyc64 °((1. 2. 3.)(4. 5. 6.)) *((7. 8.)(9.

((58.40.1i 64.+0.1i) (139.+0.i 154.+0.1i))

5.2 LAPACK examples

10.) (11.

10.) (11.

10.) (11.

10.) (11.

24

12.)))

12.)))

12.)))

12.)))

The Linear Algebra PACKage, LAPACK, is a software library providing routines for solving
systems of simultaneous linear equations, least-squares solutions of linear systems of equa-
tions, eigenvalue problems, Householder transformation to implement QR decomposition

on a matrix and singular value problems.

The following code demonstrates access to the precompiled LAPACK library distributed

with SENSAWAVE:

;; examples/sci-lapack.scm
;3 simple LAPACK demonstration

(module-require ’LAPACK)

;; gaussian elimination - double precision
(define M (listlist->f64matrix
7((3. 1. 3.)(1. 5. 9.)(2. 6. 5.))))
(define X (listlist->f64matrix ’((-1.)(3.)(-3.))))
(define P (make-s32vector (f64matrix-rows M) 0))
(LAPACK_dgesv (f64matrix-rows M) (f64matrix-columns X)
M (f64matrix-rows M) P X (f64matrix-rows X) 0)
(display "---\nLAPACK_dgesv: ")
(pp (f64matrix->listlist X))
(display "Expecting: ((-1.)(-1.)(1.))\n---\n")

;3 tridiagonal gaussian elimination - double precision
;; we solve the system

i3 / 2-1000\ / x0\ / 1\
;5 1 -1 2-100 | | x1 | [2 |
;5 10-23-101* | x21] =131
;5 100 -13-2 | | x3 | | 2 |
;5 V000 -11/ \x4/ \N1/
(define 1 (f64vector -1. -2. -1. -1.))

(define (f64vector -1. -1. -1. -2.))

0
1
(define d (f64vector 2. 2. 3. 3. 1.))
u
(define x (f64vector 1. 2. 3. 2. 1.))

Chapter 5: Scientific Repository 25

(LAPACK_dgtsv 51 1 dux50)

(display "LAPACK_dgtsv: ")

(pp (f64vector->list x))

(display "Expected: (6.5 12.0 15.5 19.5 20.5)\n---\n")

;; auxiliary division - double complex function
(define z (LAPACK_zladiv 10.0+0.1i 2.0-0.1i))
(display (format "LAPACK_zladiv: "F +i “F\n"
(real-part z) (imag-part z)))
(display (format "Expecting: “F +i “F\n---\n"
(real-part (/ 10.0+0.1i 2.0-0.11i))
(imag-part (/ 10.0+0.1i 2.0-0.1i))))

Loading this program gives:
> (load """ /examples/sci-lapack")
LAPACK_dgesv: ((-1.) (-1.0000000000000002) (1.))
Expecting: ((-1.)(-1.)(1.))
LAPACK_dgtsv: (6.5 12. 15.5 19.5 20.5)
Expected: (6.5 12.0 15.5 19.5 20.5)
LAPACK_zladiv: 4.985037406483791 +i 0.29925187032418954
Expecting: 4.985037406483791 +i 0.29925187032418954

The following code illustrates a simple interface to the general LAPACK solver gesv in all
four precisions:

;3 examples/sci-lapack2.scm
;; interfacing the LAPACK [s,d,c,z]lgesv solvers

(module-require ’LAPACK)

;5 generic wrapper for the gesv solvers
(define (lapack:solve A B 11->m m->11 gesv)
(if (and (listlist? A) (listlist? B))
(let ((n (length (car A)))
(n2 (length A))
(n3 (length B))
(bnrsh (length (car B))))
(if (= n n2 n3)
(let ((ma (11->m A))
(mb (11->m B))
(mp (make-s32vector n 0)))
(gesv n bnrsh ma n mp mb n 0)
(m->11 mb))
(error "illegal array dimensions")))

Chapter 5: Scientific Repository

(error "arguments must be lists of lists")))

;3 the specific solvers for all precisions
(define (lapack-solvef32 A B)
(lapack:solve A B listlist->f32matrix
f32matrix->listlist LAPACK_sgesv))
(define (lapack-solvef64 A B)
(lapack:solve A B listlist->f64matrix
f64matrix->listlist LAPACK_dgesv))
(define (lapack-solvec32 A B)
(lapack:solve A B listlist->c32matrix
c32matrix->1istlist LAPACK_cgesv))
(define (lapack-solvec64 A B)
(lapack:solve A B listlist->c64matrix
c64matrix->listlist LAPACK_zgesv))

The same can be accomplished in C/Java style:

// examples/sci-lapack2.six
// interfacing the LAPACK [s,d,c,z]lgesv solvers

module_require ("LAPACK") ;

// generic wrapper for the *gesv solvers
obj _lapack_solve(obj A, obj B, obj 1lm, obj mll, obj gesv)
{
if (listlist_gm(A)&&listlist_qm(B)) {
int n = length(car(A));
int n2 = length(A);
int n3 = length(B);
int bnrsh = length(car(B));
if (n==n2&&n==n3) {
obj ma = 11m(A);
obj mb = 11m(B);
obj mp = make_s32vector(n,0);
gesv(n, bnrsh, ma, n, mp, mb, n, 0);
mll (mb) ;
} else {
error("illegal array dimensions");
}
} else {
error ("arguments must be lists of lists");

}

}

// the specific solvers for all precisions
obj lapack_solvef32(obj A, obj B) {

26

Chapter 5: Scientific Repository 27

_lapack_solve(A, B, listlist_to_f32matrix,
f32matrix_to_listlist, LAPACK_sgesv);
}
obj lapack_solvef64(obj A, obj B) {
_lapack_solve(A, B, listlist_to_f64matrix,
f64matrix_to_listlist, LAPACK_dgesv);
+
obj lapack_solvec32(obj A, obj B) {
_lapack_solve(A, B, listlist_to_c32matrix,
c32matrix_to_listlist, LAPACK_cgesv);
}
obj lapack_solvec64(obj A, obj B) {
_lapack_solve(A, B, listlist_to_c64matrix,
c64matrix_to_listlist, LAPACK_zgesv);

> (load "~ ~/examples/sci-lapack2.six")

> (lapack_solvef32 ’((3. 1. 3.)(1. 5. 9.)(2. 6. 5.)) > ((-1.)(3.)(-3.)))
((-1.) (-.9999999403953552) (1.))

> (lapack_solvef64 ’((3. 1. 3.)(1. 5. 9.)(2. 6. 5.)) > ((-1.)(3.)(-3.)))
((-1.) (-1.0000000000000002) (1.))

> (lapack_solvec32 *((3. 1. 3.)(1. 5. 9.)(2. 6. 5.)) *((-1.)(3.)(-3.)))
((-1.+40.1) (-.9999999403953552+0.1i) (1.+0.1))

> (lapack_solvec64 ’((3. 1. 3.)(1. 5. 9.)(2. 6. 5.)) ’((-1.)(3.)(-3.)))
((-1.+40.1i) (-1.0000000000000002+0.1i) (1.+0.1i))

5.3 SLATEC examples

SLATEC is a comprehensive scientific software library containing over 1400 general purpose
mathematical and statistical routines.

This is a simple example of accessing this library from within SENSAWAVE:

;; examples/sci-slatec.scm
;; simple SLATEC examples

(module-require ’SLATEC)

;3 cube root - single precision
(display (format "---\nSLATEC_cbrt: “F\n" (SLATEC_cbrt 10.)))
(display (format "Expecting: “F\n---\n" (expt 10. (/ 1. 3.))))

;3 cube root - double precision
(display (format "SLATEC_dcbrt: ~“F\n" (SLATEC_dcbrt 10.)))
(display (format "Expecting: “F\n---\n" (expt 10. (/ 1. 3.))))

;3 cube root - complex single precision
(display (format "SLATEC_ccbrt: “F\n" (real-part (SLATEC_ccbrt 10.))))
(display (format "Expecting: “F\n---\n" (expt 10. (/ 1. 3.))))

Chapter 5: Scientific Repository 28

;; bessel function of first kind - double precision
(define (J n x)
(let ((Y (f64vector 0.)))
(SLATEC_dbesj x n 1 Y 0)
(f64vector-ref Y 0)))

;3 plot the bessel functions of order 0,1,2,3

(define x (: 0 10 100))

(define y1 (map (lambda (x) (make-rectangular
Jox) (J1x))) x)

(define y2 (map (lambda (x) (make-rectangular
(J2x) (J3x))) x)

(ezgraph x y1 x y2)

Loading this code results in:

> (load ""~/examples/sci-slatec.scm")
SLATEC_cbrt: 2.1544346809387207
Expecting: 2.154434690031884

SLATEC_dcbrt: 2.154434690031884
Expecting: 2.154434690031884

SLATEC_ccbrt: 2.1544346809387207
Expecting: 2.154434690031884

Note that the precision of the single precision cube root results are slightly different than
the reference SENSAWAVE calculation due to the limited resolution.

The code also draws the bessel function of the first kind of orders 0, 1, 2 and 3:

1.070138 -

0.761532 -

0.452927 -

0.144322 -

-0.164283 N

-0.472888 -
r

Chapter 5: Scientific Repository 29

5.4 QUADPACK examples

QUADPACK is a standard library for the numerical computation of definite
one-dimensional integrals.

The following code demonstrates using QUADPACK with the SENSAWAVE function call-
back mechanism:

;; examples/sci-quadpack.scm
;; simple demonstration of QUADPACK calls

(module-require ’QUADPACK)

;3 our function callback - cos(100*sin(x))
(define (function xp)
(let* ((xv (ptr->f64vector xp 1))
(x (f64vector-ref xv 0)))
(cos (x 100. (sin x)))))

;3 numerical integration from O to Pi
(let* ((result (f64vector 0.)) ;; this will hold our result
(1imit 1000)
(lenw (* 4 1limit))
(iwork (make-s32vector limit))
(work (make-f64vector lenw)))
(QUADPACK_dgag (cons function 1) 0. M_PI
0. 0.001 6 result 0. 0 O limit lenw O iwork work)
(for-each display (list "---\n"
(format "QUADPACK_dgag: “10F\n" (f64vector-ref result 0))
"Expecting: 0.06278740\n")))

;; our function to integrate - log(x)/(1+100%x*x)
(define (function2 xp)
(let* ((xv (ptr->f64vector xp 1))
(x (f64vector-ref xv 0)))
(/ (log x) (+ 1. (x 100. x x)))))

;; numerical integration from O to infinity
(let* ((result (f64vector 0.)) ;; this will hold our result
(1imit 1000)
(lenw (* 4 limit))
(iwork (make-s32vector limit))
(work (make-f64vector lenw)))
(QUADPACK_dgagi (cons function2 1) 0. 1 0. 0.001
result 0. 0 O limit lenw O iwork work)
(for-each display (list "---\n"
(format "QUADPACK_dgagi: ~“10F\n" (f64vector-ref result 0))
"Expecting: -0.3616892\n"
"---\n")))

Chapter 5: Scientific Repository 30

Loading this code results in:

> (load "~ ~/examples/sci-quadpack")
QUADPACK_dqag: 0.06278740
Expecting: 0.06278740
QUADPACK_dqagi: -0.3616892
Expecting: -0.3616892

5.5 NSWCLIB examples

The Naval Surface Warfare Center mathematical library, NSWCLIB, is an extensive library
of high quality mathematical subroutines. The example below calls functions for finding a
function zero in this library. It provides another demonstration of the callback mechanism
that allows a precompiled library module to use interpreted SENSAWAVE functions:

;; examples/sci-nswc.scm
;; simple NSWCLIB example

(module-require ’NSWCLIB)

;; single precision function callback
(define (sfunction xp)
(let* ((xv (ptr->f32vector xp 1))
(x (f32vector-ref xv 0)))
(- x 0.5)))

;; double precision function callback
(define (dfunction xp)
(let* ((xv (ptr->f64vector xp 1))
(x (f64vector-ref xv 0)))
(- x 0.5)))

;; find a zero of the function
(define sresult (NSWCLIB_zeroin

(cons sfunction 1) 0. 1. 1e-3 1e-3))
(define dresult (NSWCLIB_dzero

(cons dfunction 1) 0. 1. 1e-3 1e-3))

(for-each display (list "---\n"
(format "NSWCLIB_zeroin: “F\n" sresult)
(format "NSWCLIB_dzero: “F\n" dresult)
"Expected: " 0.5 "\n---\n"))

Loading this code results in:

Chapter 5: Scientific Repository 31

> (load """/examples/sci-nswclib")
NSWCLIB_zeroin: 0.5

NSWCLIB_dzero: 0.5

Expected: .5

5.6 Other packages in the repository

The following is a non-exhaustive summary of the capabilities of some of the other libraries

in the SENSAWAVE repository.

5.6.1 ARPACK

ARPACK is a library of routines for solving large scale eigenvalue problems, designed to
compute a few eigenvalues and corresponding eigenvectors of a general matrix. It is based
upon an algorithmic variant of the Arnoldi process called the Implicitly Restarted Arnoldi
Method. ARPACK is capable of solving large scale symmetric, non-symmetric, and gener-
alized eigen problems.

5.6.2 CDFLIB

CDFLIB contains routines to compute cumulative distribution functions, inverses, and pa-
rameters of the distribution for the statistical distributions Beta, Binomial, Chi-square,
Noncentral, Chi-square, F, Noncentral F, Gamma, Negative Binomial, Normal, Poisson
and Student’s t.

5.6.3 FFTPACK and DFFTPACK

FFTPACK (single precision) and DFFTPACK (double precision) are libraries for fast
Fourier transform of periodic and other symmetric sequences. They include complex, real,
sine, cosine, and quarter-wave transforms.

5.6.4 EISPACK and SEISPACK

EISPACK (double precision) and SEISPACK (single precision) are libraries of routines
that compute the eigenvalues and eigenvectors of nine classes of matrices: complex general,
complex Hermitian, real general, real symmetric, real symmetric banded, real symmetric
tridiagonal, special real tridiagonal, generalized real, and generalized real symmetric ma-
trices. In addition, routines are included that use singular value decomposition to solve
certain least-squares problems.

5.6.5 LINPACK

LINPACK is a library of routines that analyze and solve linear equations and linear least-
squares problems. LINPACK solves linear systems whose matrices are general, banded,
symmetric indefinite, symmetric positive definite, triangular, and tridiagonal square. In
addition, the library computes the QR and singular value decompositions of rectangular
matrices and applies them to least-squares problems.

Chapter 5: Scientific Repository 32

5.6.6 MINPACK

MINPACK is a library of routines for solving nonlinear equations and nonlinear least squares
problems. The algorithms proceed either from an analytic specification of the Jacobian
matrix or directly from the problem functions. MINPACK includes facilities for systems of
equations with a banded Jacobian matrix, for least squares problems with a large amount
of data, and for checking the consistency of the Jacobian matrix with the functions.

5.6.7 ODEPACK and SODEPACK

ODEPACK (double precision) and SODEPACK (single precision) are collections of solvers
for the initial value problem for ordinary differential equation systems. They provide nine
solvers suitable for both stiff and non-stiff systems. Systems can be given in explicit or
linearly implicit form.

5.6.8 RANLIB

RANLIB is a library of routines for random number generation. The bottom level routines
provide 32 virtual random number generators. Using this base, routines are provided that
return Beta random deviates, Chi-square random deviates, exponential random deviates,
F random deviates, Gamma random deviates, Multivariate normal random deviates (mean
and covariance matrix specified), noncentral chi-square random deviates, noncentral F ran-
dom deviates, univariate normal random deviates, random permutations of an integer array,
real uniform random deviates between specified limits, binomial random deviates, negative
Binomial random deviates, multinomial random deviates, Poisson random deviates and
integer uniform deviates between specified limits.

5.6.9 REGRIDPACK

REGRIDPACK is a library of routines for interpolating values between one-, two-, three-,
and four-dimensional arrays defined on uniform or nonuniform orthogonal grids, an oper-
ation commonly referred to as "regridding." Linear or cubic interpolation can be selected
independently in each dimension.

5.6.10 STARPAC

STARPAC is library of routines for statistical data analysis from the National Institute for
Standards and Technology (NIST). STARPAC is an acronym for Standards Time Series
and Regression Package, and contains computational routines for normal random number
generation, univariate sampling, one-way analysis of variance, correlation analysis, linear
least squares, nonlinear least squares, digital filtering, complex demodulation, correlation
and spectrum analysis, and time series analysis.

5.6.11 TOEPLITZ and STOEPLITZ

TOEPLITZ (double precision) and STOEPLITZ (single precision) are libraries of routines
for linear systems of Toeplitz or circulant form , and for orthogonal factorization of column-
circulant matrices.

Chapter 5: Scientific Repository 33

5.7 Further reading

Many of the libraries are best documented in the Fortran source code. For this reason the
subdirectory repository of the SENSAWAVE directory contains full source code for the
entire SENSAWAVE scientific repository.

Chapter 6: Fonts and Colors 34

6 Fonts and Colors

6.1 Fonts

SENSAWAVE provides a font system designed to generate identical output on all supported
raster and vector rendering backends, including PDF, EPS, PNG, PPM and OpenGL.
The supported font faces are FONT_MONOSPACE, FONT_SANSSERIF, FONT_SERIF and FONT_
SYMBOL. Each font except the latter is available in four different styles: FONT_NORMAL, FONT_
BOLD, FONT_ITALIC, FONT_BOLDITALIC. The supported font sizes are FONT_8PT, FONT_10PT,
FONT_12PT, FONT_14PT, FONT_18PT and FONT_24PT.

A font-new call is used to create a font object, and font?, font-name and font-size can
be used to query a font object

> (define f (font-new FONT_14PT))
> (font? f)

#t

> (font-name f)

"Helvetica"

> (font-size f)

14

The name returned by font-name is the one used for rendering on PDF and EPS backends.

The font-stringascent font-stringdescent and font-stringwidth can be used to cal-
culate string dimensions for a given font:

> (font-stringascent f "a")

8

> (font-stringdescent f "p")

-3

> (font-stringwidth f "Hello World")
75

Unlike normal scheme objects, a font object must be explicitly deleted to free its storage:
> (font-delete f)
The following example renders some of the supported fonts in a framebuffer:

;; examples/fonts.scm
;; displays loadable fonts in a framebuffer window

;; routine to render a font
(define (show-font fbuf face points y)
(let* ((label "ABCDEFGabcdefgl12345!#$")
(fnt (font-new points face))
(dy (- (font-stringascent fnt label)
(font-stringdescent fnt label))))
(framebuffer-text fbuf 20 y Black fnt label HORIZONTAL)
(font-delete fnt)
+ y dy)))

Chapter 6: Fonts and Colors 35

(define f (framebuffer-new 375 385))
(framebuffer-clear f White)
(let ((faces (list FONT_MONOSPACE FONT_SANSSERIF
FONT_SERIF FONT_SYMBOL))
(points (list FONT_8PT FONT_10PT FONT_12PT
FONT_14PT FONT_18PT FONT_24PT)))
(let loop ((fs faces) (ps points) (y 20))
(if (> (length fs) 0)
(let* ((newpoints (if (= (length ps) 1) points (cdr ps)))
(newfaces (if (= (length newpoints) 6) (cdr fs) fs))
(newy (show-font f (car fs) (car ps) y))
)

(loop newfaces newpoints newy)))))

(framebuffer->glwindow f #t)

Loading this example:
> (load """/examples/fonts")

ABXAE®T iy Ssj) 123435443

ABXAE®T afdyrde H,|r123
;’-‘;B}{ﬂEtinl"mBg{ s¢ry12 45133

ABHAEDT afiybedyl 2345143
ABHAEFTufiybcde 1234543
ABAOE TTe Prbebyl2ads B3

ABCDEFGabcdefgl 2345!4%

ABCDEFGabcedefg123454$
ABCDEFGabcedefgl2345145

ABCDEFRG abedef %} 2345143

ARCDEFGabedefr123
ABCDEFGab: de£712 5a5 s

ABCDEFGabcdefg1 23451#%

ABCDEFGabcdefg12345'#$

ﬁBCDEFGabcdef1ES45W$

SBCDEFGabcdefil 234514

ABCDE FGaJ::u:def|§1 23450 4
4 BCDEFoabodeta 12 54 Shes

RBCDEFGadeef%12345'#$

ABCDEFGabcdefngBQ

ABCDEFGabodefgl 23451 45

P:BDDEFGa.bchEZqIEE-iE 33
ABCDEFGabcde fglZ3d 0l #5
RBCDEFGabodefgl 23451844

6.2 Colors

Colors are represented as 32bit RGBA values in SENSAWAVE, and a large number of
colors are predefined, following the color naming of the X11 graphics system. color-red,

Chapter 6: Fonts and Colors 36

color-green, color-blue and color-alpha can be used to extract the channels of a given
color:

> Red

4278190335

> (color-red Red)
255

> (color-blue Red)
0

color-rgb, color-rgba, color-rgbf and color-rgbaf can be used to build custom colors:

> (color-rgb #xff #x00 #x00)
4278190335

> (color-rgbf 1.0 0.0 0.0)
4278190335

SENSAWAVE also supports color gradients, which is often useful for data visualization.

> (color-gradient GRADIENT_GRAY O0.)

4278190080

> (color-gradient GRADIENT_GRAY 1.)

4294967295
The supported gradients are GRADIENT_GRAY, GRADIENT_RAINBOW, GRADIENT_THERMAL and
GRADIENT_COPPER.

Chapter 7: Framebuffers 37

7 Framebuffers

A SENSAWAVE framebuffer is a device independent raster device that can be used to create
graphical images.

7.1 Framebuffer fundamentals
We willcreate a framebuffer with a 300x300 pixel array using the command:
> (define fb (framebuffer-new 300 300))

fb is now pointing to a new framebuffer. The framebuffer is organized with the point (0,0)
corresponding to the lower left corner and (300,300) corresponding to the upper right corner
as shown here:

We can do operations on the framebuffer. For example:

> (framebuffer-clear fb Black)

> (framebuffer-solidbox fb 50 50 250 250 Blue)

> (framebuffer-text fb 105 150 White (font-new)
"HELLO WORLD" HORIZONTAL)

This clears the framebuffer to black, draws a solid blue rectangle, and finally writes a
message in white color. The resulting image can now for example be written to a PNG
image file with the command:

> (framebuffer-savePNG fb "helloworld.png")
We can also display the framebuffer on screen:

> (framebuffer->glwindow £fb)

Chapter 7: Framebuffers 38

The resulting image looks like this:

HELLO WORLD

The framebuffer framework supports a wide range of graphical operations listed in the refer-
ence section of this manual. Most applications however benefit by accessing the framebuffer
through the 2D or 3D abstractions that are described by example in the two following
sections.

7.2 Example: 2D Plotting Primitives

SENSAWAVE provides higher level functions for drawing 2D graphics primitives in a frame-
buffer. These functions provide scaling to real-world coordinates. The following example
draws a 2D function map using color interpolated rectangles:

;; examples/plot2d.scm
;; simple example of 2D framebuffer primitives

;; function to render
(define func (lambda (x y)
(let ((r (sqrt (+ (x x x) (xy y)))))
(/ (+ (sin (*x 0.3 r x)) (cos (x 0.3 r y))) (+ 1. 1)))))

;; draw the framebuffer image

(define f (framebuffer-new 400 400))
(framebuffer-clear f White)

(define p2 (plot2d-new f -6.3 -6.3 6.3 6.3))
(plot2d-setview p2 15 15 385 385)
(framebuffer-noclip f)

(framebuffer-box f 14 14 385 385 Black)
(plot2d-start p2)

(plot2d-clear p2 Black)

Chapter 7: Framebuffers 39

(let ((dx 0.25)(dy 0.25))
(let loop ((x -6.3)(y -6.3))
(if (< x 6.3)
(let* ((z1 (func x y))
(z2 (func (+ x dx) y))
(z3 (func (+ x dx) (+ y dy)))
(z4 (func x (+ y dy)))
(newy (if (> y 6.3) -6.3 (+ y dy)))
(newx (if (= newy -6.3) (+ x dx) x)))
(plot2d-interpbox p2 x y (+ x dx) (+ y dy)
(color-gradient GRADIENT_RAINBOW (/ (+ z1 1.0) 2.0))
(color-gradient GRADIENT_RAINBOW (/ (+ z4 1.0) 2.0))
(color-gradient GRADIENT_RAINBOW (/ (+ z2 1.0) 2.0))
(color-gradient GRADIENT_RAINBOW (/ (+ z3 1.0) 2.0)))
(loop newx newy)))))

;; render the framebuffer to a window
(plot2d->glwindow p2 #t)

This program opens a window with the framebuffer graphics:
> (load "~~/examples/plot2d")

7.3 Example: 3D plotting primitives
Framebuffer devices also support simplified 3D primitives. The following example builds a
3D spherical plot with shading and color interpolation:

;3 examples/plot3d.scm
;; Examples of 3D primitives on framebuffers

Chapter 7: Framebuffers

;; function to render
(define (func u v)
(+ 1. (x 0.1 (sin (x 5. v))
(sin (x 10. u)))))

;; setup the rendering

(define f (framebuffer-new 200 200))
(framebuffer-clear f White)

(define p3 (plot3d-new f -1.5 -1.5 -1.5 1.5 1.5 1.5))
(plot3d-setview p3 0 0 199 199)
(plot3d-lookat p3 5.5)
(plot3d-autoperspective p3 40.)
(framebuffer-noclip f)

(plot3d-start p3)

(plot3d-clear p3 White)

(plot3d-rotu p3 50.)

(plot3d-rotz p3 60.)

(plot3d-up p3 4.)

(plot3d-right p3 2.)

(plot3d-lightat -0.5 -0.5 1.)

;; draw the axis frame
(plot3d-quad p3 -1.1 -1.1 -1.1

1.1 -1.1 -1.1 1.1 1.1 -1.1 -1.1 1.1 -1.1 Black)
(plot3d-quad p3 -1.1 -1.1 1.1 1.1 -1.1 1.1 1.1

1.1 1.1 -1.1 1.1 1.1 Black)

(plot3d-line p3 -1.1 -1.1 -1.1 -1.1 -1.1 1.1 Black)
(plot3d-line p3 1.1 -1.1 -1.1 1.1 -1.1 1.1 Black)
(plot3d-line p3 1.1 1.1 -1.1 1.1 1.1 1.1 Black)
(plot3d-line p3 -1.1 1.1 -1.1 -1.1 1.1 1.1 Black)

;; now draw the function
(let ((du 0.04)(dv 0.04))
(let loop ((u 0.)(v 0.))
(if (< u M_PI)
(let* ((r1 (func u v))

(x1 (x r1 (sin u) (cos v)))
(y1 (x r1 (sin u) (sin v)))
(z1 (x rl1 (cos u)))
(r2 (func (+ u du) v))
(x2 (*x r2 (sin (+ u du)) (cos v)))
(y2 (x r2 (sin (+ u duw)) (sin v)))
(z2 (*x r2 (cos (+ u du))))
(r3 (func (+ u du) (+ v dv)))
(x3 (x r3 (sin (+ u du)) (cos (+ v dv))))
(y3 (* r3 (sin (+ u du)) (sin (+ v dv))))
(z3 (* r3 (cos (+ u du))))

40

Chapter 7: Framebuffers

(r4 (func u (+ v dv)))
(x4 (* r4 (sin u) (cos (+ v dv))))
(y4 (* r4 (sin uw) (sin (+ v dv))))
(z4 (x r4 (cos w)))
(cl (color-gradient GRADIENT_THERMAL
(x (-r1 0.9 5.00))
(c2 (color-gradient GRADIENT_THERMAL
(* (- r20.9) 5.0)))
(c3 (color-gradient GRADIENT_THERMAL
(x (- r30.9 5.00))
(c4 (color-gradient GRADIENT_THERMAL
(* (-4 0.9 5.0)))
(newv (if (> v (* 2.0 M_PI)) 0. (+ v dv)))
(newu (if (= newv 0.) (+ u dw) uw)))
(plot3d-shadedinterpquad p3 x1 y1 zl cl x2 y2 z2
c2 x3 y3 z3 c3 x4 y4 z4 c4)
(loop newu newv)))))

;; open the the graph in a window
(plot3d->glwindow p3 #t)

This program opens a window with the framebuffer graphics:
> (load """ /examples/plot3d.scm")

41

Chapter 8: Graphs 42

8 Graphs

SENSAWAVE contains a system for creating high quality scientific graphics. It supports
multiple output formats, including Encapsulated postscript (EPS) and PDF, PNG, PPM,
as well as unscreen rendering either through framebuffers or direct OpenGL. The purpose
of the library is to facilitate generation of complex graphs directly from SENSAWAVE. It
is particular useful for producing many graphs of a similar format for a large number of
data sets quickly and with minimum human interventions. For this type of situation, the
standard approach of transferring data from the analysis program to spread sheet, and then
to menu driven commercial graphics packages is not practical.

The graphing system can generate output suited for both on-screen display and final printing
from the same graph definition. This provides a mechanism for fast interactive develop-
ment of publication quality material, and also allows graphs to be build into interactive
applications.

We will demonstrate the graphing system through four examples, a linear plot, semi-

logarithmic plot, double-logarithmic plot and a 2D image map. The source code for these
examples are included with the SENSAWAVE distribution.

8.1 Example 1: Linear graph

The following is an example of a linear graph:
;5 examples/graph-linear.scm
;; example of a linear graph

;; create the graph
(define g (graph-new 550 320))

;; select the font
(graph-font g (font-new))

;; set the origin
(graph-aorigin g 1.2 0.9)

;; set the style of the log axis
(graph-linearstyle g 4 0 5 1 5)

;; initialize the x axis

;; 6 inches wide, from -6 to 6, offset O inch,
;53 tick every 1., label every 2 tick
(graph-xlinear g 6.0 -6. 6. 0. 1. 2)

;5 initialize the y axis

;3 3 inches high, from -0.3 to 1.1, offset 0. inch,
;53 tick every .1, label every 2 tick

(graph-ylinear g 3.0 -0.3 1.1 0.0 0.1 2)

;; draw a domain mesh

Chapter 8: Graphs 43

(graph-color g Grey)

(graph-moveto g -6.0 0.) (graph-lineto g 6.0 0.)
(graph-moveto g 0. -0.3) (graph-lineto g O 1.1)
(graph-stroke g)

(graph-mesh g)

;; draw the sinc function curves
(graph-color g Green)
(graph-moveto g -6. (sinc -6.))
(let loop ((x -6.))
(if (< x 6.) (begin
(graph-lineto g x (sinc x))
(loop (+ x 0.1)))))
(graph-stroke g)
(graph-color g Red)
(graph-moveto g -6. (sinc -6.))
(let loop ((x -6.))
(if (< x 6.) (begin
(graph-lineto g x (sinc (¥ 1.5 x)))
(loop (+ x 0.1)))))
(graph-stroke g)

;; draw the x and y axis
(graph-color g Black)
(graph-xaxis g)
(graph-yaxis g)

;; draw the axis labels
(graph-ylabel g "Sinc function")
(graph-xlabel g "X coordinate")

;; draw a caption in physical coordinates
(graph-setcoord g GRAPH_PHYS)
(graph-htextcenter g 3. 3.2 "Example linear graph")

;; uncomment to output the graph as EPS, PDF, PNG, PPM
;3 (graph-output g GRAPH_EPS "graph-sinc.eps")
; ; (graph-output g GRAPH_PDF "graph-sinc.pdf")
; ; (graph-output g GRAPH_PNG "graph-sinc.png")
; ; (graph-output g GRAPH_PPM "graph-sinc.ppm")

;; show the graph on screen
(graph-output g GRAPH_WIN)

This produces the following;:

Chapter 8: Graphs 44

> (load "“~/examples/graph-linear")

Example linear graph
1.1 4

0.9 4
0.7
0.5

0.3

Sinc function
1

0.1

-0.1 +

-03 T T T T T T T T T T T 1

X coordinate

8.2 Example 2: Semi-logarithmic graph

The following is an example of a semi-logarithmic graph:
;; examples/graph-semilog.scm
;; example of a semi-logarithmic graph

;; create the graph
(define g (graph-new 430 320))

;; set the origin
(graph-aorigin g 1.2 0.9)

;; select the font
(graph-font g (font-new))

;; set the style of the axis
(graph-linearstyle g 4 0 56 1 5)
(graph-logstyle g 2 1022 4 1 7 8)

;5 initialize the x and y axis

;3 4 inches wide, from 100 to 10000 Hz, offset -0.1 inch
(graph-xlog g 4.0 100. 10000. -0.1)

;3 3 inches high, from O to 1, offset -0.1 inch,
(graph-ylinear g 3.0 0.0 1.0 -0.1 0.1 2)

;; draw a domain mesh
(graph-color g Grey)
(graph-mesh g)

Chapter 8: Graphs

;3 render the capacitance spetrum
(let* ((R 1.0e6)(C 1e-10)
(cnorm (lambda (£f) (/ 1. (+ 1 (* +1.0i M_2PI £ R C))))))
(graph-color g Red)
(graph-moveto g 100. (real-part (cnorm 100.)))
(let loop ((f 100.))
(if (< £ 10000.) (begin
(graph-lineto g f (real-part (cnorm f)))
(loop (+ £ 10.)))))
(graph-stroke g)
(graph-color g Blue)
(graph-moveto g 100. (- (imag-part (cnorm 100.))))
(let loop ((f 100.))
(if (< £ 10000.) (begin
(graph-lineto g f (- (imag-part (cnorm £))))
(loop (+ £ 10.)))))
(graph-stroke g)

;; draw the x and y axis
(graph-color g Black)
(graph-xaxis g)
(graph-yaxis g)

;; draw the axis labels
(graph-ylabel g "Relative capacitance")
(graph-xlabel g "Frequency [Hz]")

;; draw labels to identify real and imaginary curves
(graph-color g Red)

(graph-htextleft g 1000. 0.8 "Real C")

(graph-color g Blue)

(graph-htextright g 400 0.3 "-Imag C")

;; draw a title
(graph-color g Black)
(graph-htextcenter g 1000 1.05 "Example logarithmic graph")

;; show the graph on screen
(graph-output g GRAPH_WIN)

This produces the following graph:

45

Chapter 8: Graphs 46

> (load "~~/examples/graph-semilog")

Example logarithmic graph

0.8 Real C
0.6
0.4

E -Imag C
0.2

Relative capacitance
1

0.0 -

[T T T TTT1T] T T T 111711
100.0 1000.0 10000.0

Frequency [Hz]

8.3 Example 3: Double-logarithmic graph

;3 examples/graph-loglog.scm
;; Example of a double logarithmic graph
;3 Adopted from an original Cgraph example

;; the data to plot
(define data ’((1.95 2.39) (0.99 0.82) (1.21 1.39) (1.97 2.23)

(2.25 2.23) (3.65 4.17) (2.84 2.85) (2.42 2.79) (1.34 0.78)
(3.26 3.91) (1.67 2.49) (3.59 2.84) (2.65 2.85) (1.56 2.55)
(1.58 0.95) (2.33 2.07) (1.02 1.63) (1.93 1.04) (1.32 2.75)
(1.82 2.54) (1.2 1.68) (1.78 1.91) (1.4 1.55) (2.37 1.89)
(3.91 3.26) (2.91 2.6) (1.32 1.25) (3.65 3.12) (4.19 3.71)
(2.57 1.74) (3.35 1.99) (4.02 3.96) (4.32 5.13) (1.27 0.9)

(2.5 2.59) (4.21 4.81) (3.12 3.12) (4.17 4.69) (2.6 2.67)

(1.56 2.08) (2.6 2.22) (2.71 2.44) (1.8 1.56) (2.61 0.78)

(1.39 1.11) (1.94 2.25) (1.85 1.75) (0.56 0.99) (1.04 1.56)

(2.08 3.12) (2.11 3.16) (3.12 3.04) (2.6 1.56) (2.35 2.48)

(3.11 2.74) (1.56 1.56) (2 2.13) (1.9 1.92) (4.56 4.56) (2.36 2.81)
(2.84 2.84) (3.55 4.26) (1.11 1.56) (6.61 6.61) (2.14 2.94)))

;; create the graph
(define g (graph-new 330 290))

;; set the font
(graph-font g (font-new))

;; set the origin

Chapter 8: Graphs

(graph-aorigin g 1.1 0.75)

;; set the style of the log axis
(graph-logstyle g #xb #x7ff 4 3 4 8)

;5 initialize the log x and y axis
(graph-xlog g 3.0 0.5 10. 0.0)
(graph-ylog g 3. 0.5 10. 0.0)

;3 draw a domain mesh
(graph-color g Grey)
(graph-mesh g)

;; draw some lines
(graph-color g Red)
(graph-linewidth g 0.6)

;; a solid diagonal line
(graph-moveto g 0.5 0.5)
(graph-lineto g 10. 10.)
(graph-stroke g)

;; dashed lines
(graph-dash g
(define vLmin

6 0.1364)

0.5) (define vLmax 10.0)
(define vRmin 0.5) (define vRmax 10.0)
(define ratio 1.5)
(graph-moveto g (* vLmin ratio) vRmin)
(graph-lineto g vLmax (/ vRmax ratio))
(graph-moveto g vLmin (* vRmin ratio))
(graph-lineto g (/ vLmax ratio) vRmax)
(graph-stroke g)

(graph-dash g 0 1.0)
(graph-linewidth g 1.0)

;5 plot markers here
(let loop ((d data))
(if (> (length d) 0) (begin
(graph-color g White)

47

(graph-marker g (car (car d)) (cadr (car d)) GRAPH_SOLIDCIRCLE 10)

(graph-color g Black)

(graph-marker g (car (car d)) (cadr (car d)) GRAPH_OPENCIRCLE 10)

(loop (cdr d)))))

;; draw an axis frame
(graph-frame g)

Chapter 8: Graphs

;; draw the x and y axis
(graph-xaxis g)
(graph-yaxis g)

;; draw the axis labels
(graph-xlabel g "The X axis label")
(graph-ylabel g "The Y axis label")

;; show it on screen
(graph-output g GRAPH_WIN)

This produces the following graph:
> (load """ /examples/graph-loglog")

10.0 -
D =
I 3.0
o O
x
© i
>
Q
e
|_
1.0 |© @)
O O
05 - || 1 1 1 1 I
0.5 1.0 3.0

The X axis label

8.4 Example 4: 2D image graph

We can combine the graphing system with framebuffers like this:
;; examples/graph-image.scm
;; example of a 2D image graph

;; create a framebuffer with data
(define myfb (framebuffer-new 216 216))
(let loop ((x 0)(y 0))
(if (< y 216)
(let* ((newx (if (< x 215) (+ x 1) 0))

10.0

48

Chapter 8: Graphs

(newy (if (= newx 0) (+ y 1) y))
(rx (- (/ x 27.) 4.))
(ry (- (/ y 27.) 4.)))
(framebuffer-pixel myfb x y
(color-gradient GRADIENT_RAINBOW
(/ (+ (sinc (sqrt (+ (x rx rx) (*x ry ry)))) 0.3) 1.3)))
(loop newx newy))))
(framebuffer-pixel myfb O O Black)

(define g (graph-new 320 320))

;; set the origin
(graph-aorigin g 1.0 0.9)

;; select the font
(graph-font g (font-new))

;; set the style of the log axis
(graph-linearstyle g 4 0 5 1 5)

;; initialize the axis

;3 3 inches wide, from -4 to 4, offset O inch,
;53 tick every .5, label every 2 tick
(graph-xlinear g 3.0 -4. 4. -0.1 .5 2)
(graph-ylinear g 3.0 -4. 4. -0.1 .5 2)

;; draw a domain mesh
(graph-framebuffer g -4. -4. myfb)

(graph-color g Black)

;; draw the x and y axis
(graph-xaxis g)
(graph-yaxis g)

;; draw the axis labels
(graph-ylabel g "Y coordinate")
(graph-xlabel g "X coordinate")

;; draw a caption in physical coordinates
(graph-setcoord g GRAPH_PHYS)
(graph-htextcenter g 1.5 3.2 "Example 2D framebuffer graph")

;; show the graph on screen
(graph-output g GRAPH_WIN)

49

Chapter 8: Graphs 50

This produces the following graph:

> (load "~ ~/examples/graph-image")

Example 2D framebuffer graph

Y coordinate

X coordinate

8.5 Quick data visualization

While the graphing system in SENSAWAVE is capable of generating very complex presen-
tation quality graphs, it can be overkill when data needs to be quickly visualized. For this
reason SENSAWAVE provides a function that automatically builds a simple graph from
lists of data. For example:

(define (f x) (sin (* 1.+40.31i x)))

(define (r) (+ (random-real) (* +1.0i (random-real)) -0.5-0.5i))
(define x (: 0 M_2PI 10))

(define y (map (lambda (x) (+ (f x) (r))) x))

(define x1 (: 0 M_2PI 100))

(define y1 (map f x1))

(ezgraph x y x1 y1)

V V V V V V V

Chapter 8: Graphs 51

This builds two sets of data lists, a 10 element list x with a corresponding noisy represen-
tation y of the complex function £, and a higher resolution rendering in x1 and y1. The
result looks like this:

3.960932 ~

2.595864 -

1.230796 -

-0.134272 6%0\-@\@\0

-1.499340 -

-2.864408 -
r
0.00000

T T T T 1
1.25663 2.51327 3.76991 5.02654 6.28318

SENSAWAVE also supports a real time rendering construct intended mainly for direct
display of measured data. For example:

> (rtgraph 20 (lambda (t) (+ (cos t) (exp (* +0.9i t)))) 0.5)
This opens a graph containing 20 data points that updates in real time by applying the
function argument every 0.5 seconds. The function parameter is the elapsed time in seconds:

1.192119 -

0.681355

0.170591 A

-0.340174

-0.850938

-1.361702 -
r
79.7372

T T T T 1
81.6752 83.6132 85.5512 87.4892 89.4272

Chapter 9: OpenGL 52

9 OpenGL

SENSAWAVE supports direct programming in OpenGL. The glwindow-open call can be
used to open a window and specify a callback to handle the rendering and input events of
the window.

This example below creates a simple rendering of an OpenGL shaded polygon:

;3 examples/opengl.scm
;; simple opengl rendering of a smooth shaded polygon

;; the OpenGL window event handler
(define (opengl:eventhandler)
(current-user-interrupt-handler (lambda () #t))
(let loop O
(let ((msg (thread-receive)))
(if (list? msg) (if (= (length msg) 4)
(let ((w (car msg)) (t (cadr msg))
(x (caddr msg)) (y (cadddr msg)))
(cond
((= t WINDOW_KEYPRESS)
(if (= x WINDOW_KEYESCAPE) (glwindow-close w)))
((= t WINDOW_CLOSE) (glwindow-close w))
((= t WINDOW_REDRAW)
(glcontext-grab!) ;; grab the rendering context
(glcontext-window w) ;; assign the rendering window
(glClearColor 0. 0. 0. 0.) ;; setup OpenGL
(glMatrixMode GL_PROJECTION)
(glLoadIdentity)
(glOrtho -1.1 1.1 -1.1 1.1 -1. 1.)
(glMatrixMode GL_MODELVIEW)
(glLoadIdentity)
(glClear GL_COLOR_BUFFER_BIT)
(glBegin GL_QUADS) ;3 render OpenGL
(glColor Red)
(glVertex3f -1. -1. 0.)
(glColor Green)
(glVertex3f 1.0 -1.0 0.)
(glColor Blue)
(glVertex3f 1. 1. 0.)
(glColor Yellow)
(glVertex3f -1. 1. 0.)

(glEnd)

(glwindow-swapbuffers w) ;; update window

(glcontext-release!) ;; release the rendering context
2)))))

(loop)))

Chapter 9: OpenGL 53

;; open the OpenGL window
(glwindow-open 200 200 opengl:eventhandler)

This program can be loaded to open the window:

> (load ""~/examples/opengl.scm")

The window callback can be seen to be a separate thread that receives events through the
mailbox interface. Please see Gambit-C documentation for more information about threads
and their mailbox interface.

Fach event has four parameters, the window id w, the event type t and two auxiliary
parameters x and y.

The possible window event types are:

WINDOW_BUTTON1DOWN

WINDOW_BUTTON1UP

WINDOW_BUTTON2DOWN

WINDOW_BUTTON2UP

WINDOW_BUTTON3DOWN

WINDOW_BUTTON3UP
These events are generated by the mouse buttons. The auxiliary parameters x
and y contains the position of the mouse within the window at the time of the
particular button event.

WINDOW_CLOSE
This is generated when the user closes the window.

WINDOW_KEYPRESS

WINDOW_KEYRELEASE
These events are generated by the keyboard. The x parameter contains the
ascii code of the relevant key. Special values are WINDOW_KEYENTER, WINDOW_
KEYTAB, WINDOW_KEYBACKSPACE, WINDOW_KEYRIGHT, WINDOW_KEYLEFT, WINDOW_
KEYUP, WINDOW_KEYDOWN and WINDOW_KEYESCAPE.

Chapter 9: OpenGL 54

WINDOW_MOTION
This event is generated when the mouse is moved inside the window. The
auxiliary parameters x and y contains the position of the mouse within the
window.

WINDOW_REDRAW
The event is generated when the window needs to be redrawn. This is where
the OpenGL rendering code must be called. Prior to calling any OpenGL
functions, the event handler must first call glcontext-grab! to acquire the
OpenGL rendering context, and then assign it to the window with glcontext-
window. After the rendering is complete the OpenGL rendering context must
be released with a call to glcontext-release!.

This simple framework is sufficiently advanced to allow complex interactive multi-window
graphics to be created.

9.1 Further reading

For more information about OpenGL programming, please refer to: http://opengl.org.

http://opengl.org

Chapter 10: RS232 Interfacing 55

10 RS232 Interfacing

The RS232 serial interface provides a simple cross-platform framework for serial communi-
cation from within the SENSAWAVE Computing Base. It is designed to enable communi-
cation with multiple devices concurrently, and offers an easy way to interface a wide range
of devices such as scientific instruments and network devices.

The RS232 modules must be loaded manually:
> (module-require ’rs232)

Let us assume that a serial device is connected to port COM1 at 9600 8N1 (9600 baud, 8
bit characters, no parity and 1 stop bit). Communication with this device can be started
with the command:

> (define port (rs232-open "COM1" RS232_9600BAUD
RS232_8BITS RS232_NOPARITY RS232_ONESTOPBIT))

A message can now be sent to the device using the communication handle:
> (rs232-writeline port "hello\n")
and responses can be received:

> (rs232-readline port)
"world!"

Once communication is complete, the interface is closed with the command:
(rs232-close port)

Serial port names are platform dependent. Please refer to your operating system documen-
tation for the naming scheme. Attempting to open an unconnected serial interface may
cause rs232-open to hang for some time.

This implementation assumes that the communication flow control is completely controlled
by the external device.

Chapter 11: Additional functionality 56

11 Additional functionality

The SENSAWAVE Computing Base includes several general purpose libraries, provided in
compiled form as a convenience for SENSAWAVE users.

11.1 pregexp

The pregexp module provides regular expressions modeled on perl and includes such power-
ful directives as numeric and nongreedy quantifiers, capturing and non-capturing clustering,
POSIX character classes, selective case- and space-insensitivity, backreferences, alternation,
backtrack pruning, positive and negative lookahead and lookbehind, in addition to the more
basic directives familiar to all regexp users.

11.1.1 pregexp copyright statement

Copyright (c) 1999-2005, Dorai Sitaram. All rights reserved.
Permission to copy, modify, distribute, and use this work or
a modified copy of this work, for any purpose, is hereby
granted, provided that the copy includes this copyright
notice, and in the case of a modified copy, also includes a
notice of modification. This work is provided as is, with
no warranty of any kind.

Web site: http://www.ccs.neu.edu/home/dorai/pregexp/pregexp.html

11.2 schelog

The schelog module provides Prolog-style logic programming. It contains the full repertoire
of Prolog features, including meta-logical and second-order predicates.

11.2.1 schelog copyright

Copyright (c) 1993-2001, Dorai Sitaram. All rights reserved.
Permission to distribute and use this work for any purpose
is hereby granted provided this copyright notice is included
in the copy. This work is provided as is, with no warranty
of any kind.

Web site: http://www.ccs.neu.edu/home/dorai/schelog/schelog.html

11.3 ssax-sxml

The ssax-sxml module is an extensive library to manipulate and parse XML data. ssax-
sxml was written by Kirill Lisovsky, and is in the public domain.

Web site: http://ssax.sourceforge.net

11.4 Third party module disclaimer

SensaWave offers no support on these third party modules.

http://www.ccs.neu.edu/home/dorai/pregexp/pregexp.html
http://www.ccs.neu.edu/home/dorai/schelog/schelog.html
http://ssax.sourceforge.net

Chapter 12: Copyright Information 57

12 Copyright Information

This chapter provides third party copyrights and attributions related to the SENSAWAVE
distribution. The copyright and terms for SENSAWAVE itself is provided in the Chapter 13
[license|, page 63 chapter.

12.1 Gambit-C

The SENSAWAVE Computing Base relies on the powerful Gambit-C Scheme compiler,
copyright 1994-2008 by Marc Feeley. SENSAWAVE uses an unmodified version of the
compiler under the Apache version 2.0 license. The compiler is in the file bin/gsc, and the
accompanying license in the file bin/gsc.license

12.2 MinGW

The Windows version of the SENSAWAVE distribution includes a MinGW compiler suite
to facilitate compilation of the C code generated by Gambit-C to native Windows binaries.
The MinGW compiler suite is located in the mingw directory, and is distributed under the
GNU General Public License, see mingw/COPYING for details.

12.3 PDF library

SENSAWAVE includes the PDF library written by Takeshi Kanno:

Copyright (C) 1999-2006 Takeshi Kanno

This software is provided ’as-is’, without any express or
implied warranty.

In no event will the authors be held liable for any damages
arising from the use of this software.

Permission is granted to anyone to use this software for any
purpose, including commercial applications, and to alter it
and redistribute it freely, subject to the following
restrictions:

1. The origin of this software must not be misrepresented;
you must not claim that you wrote the original software.
If you use this software in a product, an acknowledgment
in the product documentation would be appreciated but is
not required.

2. Altered source versions must be plainly marked as such,
and must not be misrepresented as being the original
software.

3. This notice may not be removed or altered from any
source distribution.

12.4 GLFW library

SENSAWAVE includes portions of the GLFW library written by Camilla Berglund:

Copyright (c) 2002-2006 Camilla Berglund
This software is provided ’as-is’, without any express or

Chapter 12: Copyright Information

implied warranty. In no event will the authors be held

liable for any damages arising from the use of this

software.

Permission is granted to anyone to use this software for any

purpose, including commercial applications, and to alter it

and redistribute it freely, subject to the following
restrictions:

1. The origin of this software must not be misrepresented;
you must not claim that you wrote the original software.
If you use this software in a product, an acknowledgment
in the product documentation would be appreciated but is
not required.

2. Altered source versions must be plainly marked as such,
and must not be misrepresented as being the original
software.

3. This notice may not be removed or altered from any source
distribution.

12.5 GIFPlot library
SENSAWAVE includes portions of the GIFPlot library, licensed as follows:

Dave Beazley
Department of Computer Science Theoretical Division (T-11)

University of Utah Los Alamos National Laboratory
Salt Lake City, Utah 84112 Los Alamos, New Mexico 87545
beazley@cs.utah.edu beazley@lanl.gov

Copyright (c) 1996

The Regents of the University of California and the
University of Utah All Rights Reserved Permission is hereby
granted, without written agreement and without license or
royalty fees, to use, copy, modify, and distribute this
software and its documentation for any purpose, provided
that (1) The above copyright notice and the following two
paragraphs appear in all copies of the source code and (2)
redistributions including binaries reproduces these notices
in the supporting documentation. Substantial modifications
to this software may be copyrighted by their authors and
need not follow the licensing terms described here, provided
that the new terms are clearly indicated in all files where
they apply. IN NO EVENT SHALL THE AUTHOR, THE UNIVERSITY OF
CALIFORNIA, THE UNIVERSITY OF UTAH OR DISTRIBUTORS OF THIS
SOFTWARE BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT,
SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT OF
THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF THE
AUTHORS OR ANY OF THE ABOVE PARTIES HAVE BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE. THE AUTHOR, THE UNIVERSITY OF
CALIFORNIA, AND THE UNIVERSITY OF UTAH SPECIFICALLY DISCLAIM

o8

Chapter 12: Copyright Information 59

ANY WARRANTIES,INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE SOFTWARE PROVIDED HEREUNDER IS ON AN "AS IS"
BASIS, AND THE AUTHORS AND DISTRIBUTORS HAVE NO OBLIGATION
TO PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR
MODIFICATIONS.

12.6 The Portable Network Graphics library

SENSAWAVE includes the Portable Network Graphics library:

libpng version 1.2.6, September 12, 2004, is Copyright (c)
2004 Glenn Randers-Pehrson, and is distributed according to
the same disclaimer and license as libpng-1.2.5 with the
following individual added to the list of Contributing
Authors

Cosmin Truta

libpng versions 1.0.7, July 1, 2000, through 1.2.5 - October
3, 2002, are Copyright (c) 2000-2002 Glenn Randers-Pehrson,
and are distributed according to the same disclaimer and
license as libpng-1.0.6 with the following individuals added
to the list of Contributing Authors

Simon-Pierre Cadieux
Eric S. Raymond
Gilles Vollant

and with the following additions to the disclaimer:

There is no warranty against interference with your
enjoyment of the library or against infringement. There is
no warranty that our efforts or the library will fulfill any
of your particular purposes or needs. This library is
provided with all faults, and the entire risk of
satisfactory quality, performance, accuracy, and effort is
with the user.

libpng versions 0.97, January 1998, through 1.0.6, March 20,
2000, are Copyright (c) 1998, 1999 Glenn Randers-Pehrson,
and are distributed according to the same disclaimer and
license as libpng-0.96, with the following individuals added
to the list of Contributing Authors:

Tom Lane
Glenn Randers-Pehrson
Willem van Schaik

Chapter 12: Copyright Information

libpng versions 0.89, June 1996, through 0.96, May 1997, are
Copyright (c) 1996, 1997 Andreas Dilger Distributed
according to the same disclaimer and license as libpng-0.88,
with the following individuals added to the list of
Contributing Authors:

John Bowler
Kevin Bracey
Sam Bushell
Magnus Holmgren
Greg Roelofs
Tom Tanner

libpng versions 0.5, May 1995, through 0.88, January 1996,
are Copyright (c) 1995, 1996 Guy Eric Schalnat, Group 42,
Inc.

For the purposes of this copyright and license,
"Contributing Authors" is defined as the following set of
individuals:

Andreas Dilger
Dave Martindale
Guy Eric Schalnat
Paul Schmidt

Tim Wegner

The PNG Reference Library is supplied "AS IS". The
Contributing Authors and Group 42, Inc. disclaim all
warranties, expressed or implied, including, without
limitation, the warranties of merchantability and of fitness
for any purpose. The Contributing Authors and Group 42,
Inc. assume no liability for direct, indirect, incidental,
special, exemplary, or consequential damages, which may
result from the use of the PNG Reference Library, even if
advised of the possibility of such damage.

Permission is hereby granted to use, copy, modify, and

distribute this source code, or portions hereof, for any

purpose, without fee, subject to the following restrictions:

1. The origin of this source code must not be
misrepresented.

2. Altered versions must be plainly marked as such and must
not be misrepresented as being the original source.

3. This Copyright notice may not be removed or altered from
any source or altered source distribution.

60

Chapter 12: Copyright Information 61

The Contributing Authors and Group 42, Inc. specifically
permit, without fee, and encourage the use of this source
code as a component to supporting the PNG file format in
commercial products. If you use this source code in a
product, acknowledgment is not required but would be
appreciated.

12.7 The zlib compression library

SENSAWAVE includes the zlib compression library:

Copyright (C) 1995-2003 Jean-loup Gailly and Mark Adler

This software is provided ’as-is’, without any express or
implied warranty. In no event will the authors be held
liable for any damages arising from the use of this
software.

Permission is granted to anyone to use this software for any
purpose, including commercial applications, and to alter it
and redistribute it freely, subject to the following
restrictions:

1. The origin of this software must not be misrepresented;
you must not claim that you wrote the original
software. If you use this software in a product, an
acknowledgment in the product documentation would be
appreciated but is not required.

2. Altered source versions must be plainly marked as such,
and must not be misrepresented as being the original
software.

3. This notice may not be removed or altered from any
source distribution.

12.8 Scientific repository packages

The SENSAWAVE distribution includes a large number of pre-compiled numerical libraries
that make up the scientific repository. These libraries are available in the public domain
or similar unrestrictive licenses in source code form at various sites on the Internet. The
libraries are not part of the SENSAWAVE Computing Base proper and are merely provided
in binary form as a convinience to SENSAWAVE users. Attribution related to the individual
libraries can be found in the original source code, which is located in the repository
directory. SensaWave makes no representation whatsoever in regards to these libraries. All
of the libraries are provided on an ’as-is’ basis, and SensaWave Technology Inc. have no
obligation to provide maintenance, support, updates, enhancements or modifications. In
no event shall SensaWave Technology Inc., its owners, contributors or distributors be liable
to any party for direct, indirect, special, incidental or consequential damages arising out of
the use of the libraries and their documentation, even if advised of the posibility of such
damage. SensaWave Technology Inc. specifically disclaim any warranty including, but not
limited to, implied warranties of merchantability and fitness for a particular purpose.

Chapter 12: Copyright Information

12.9 Trademarks

Linux is a registered trademark of Linus Torvalds.
Mac OS is a registered trademark of Apple Inc.

Windows is a registered trademark of Microsoft Corporation.

OpenBSD is a registered trademark of Theo DeRaadst.
OpenGL is a registered trademark of Silicon Graphics, Inc.
UNIX is a registered trademark of The Open Group.

X Window System is a trademark of X Consortium, Inc.

62

Chapter 13: License Terms 63

13 License Terms

This chapter provides information about the SENSAWAVE licensing terms. Usage and
distribution of SENSAWAVE must be in compliance with the appropriate license.

In simple terms, SENSAWAVE is covered by three different licenses (full legal terms follow
in the next sections):

Evaluation License
Software downloaded from the SensaWave website is subject to the
SENSAWAVE Evaluation License, and may only be used for the sole purpose
of evaluating the SENSAWAVE Computing Base functionality for a limited
time.

Single User License
SENSAWAVE distributions purchased under a Single User License can only
be used on a single computer at a single physical site at any given time. All
supported platforms are covered by the license, but only one platform can be
used at any given time. SENSAWAVE software keys purchased under a Single
User License cannot be used to deploy applications.

Site and Deployment License

SENSAWAVE distributions purchased under a Site and Deployment License
can be used by any number of users on all supported platforms at a single
physical site. In addition, SENSAWAVE software keys purchased under a Site
and Deployment License can be redistributed with an application (including
commercial) developed by the holder of the License, as long as the end use of
the application is not in direct competition with the SENSAWAVE distribution
itself, and the application does not offer any form of an interactive command
interface. Such deployments must only include the subset of SENSAWAVE
actually used.

Please note that the SENSAWAVE Computing Base cannot be redistributed under any of
the license terms set forth below.

If you do not agree to the terms of the license agreement that applies to you, please do not
install or use SENSAWAVE.

13.1 SENSAWAVE Evaluation License

The SENSAWAVE Computing Base ("the Software") is copyright (C) 2007, 2008 Sen-
saWave Technology Inc. The Software is protected by the copyright laws of Canada. By
copying, installing or using the Software, you are agreeing to this license and disclaimer.

In downloading, configuring or using the Software, you are not obtaining title to the Software
or any copyrights. You may not sublicense, rent, lease, convey, distribute, copy, modify,
translate, convert to another programming language, decompile, or disassemble the Software
for any purpose. You may not redistribute the Software. You may not use the Software
for any other purpose except evaluation of its functionality. You must remove the Software
from your system after the expiry of the temporary evaluation period.

Conditioned on your honoring the terms of this agreement, SensaWave grants you a tempo-
rary non-exclusive, non-transferable license to use the Software, including the accompanying

Chapter 13: License Terms 64

documentation for your lawful, non-infringing evaluation on a single physical computer at
a single physical site in accordance with this Agreement.

THIS SOFTWARE IS PROVIDED BY SENSAWAVE TECHNOLOGY INC. “AS IS”
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIM-
ITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SEN-
SAWAVE TECHNOLOGY INC. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDEN-
TAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIA-
BILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSI-
BILITY OF SUCH DAMAGE.

13.2 SENSAWAVE Single User License

The SENSAWAVE Computing Base ("the Software") is copyright (C) 2007, 2008 Sen-
saWave Technology Inc. The Software is protected by the copyright laws of Canada. In
downloading, configuring or using the Software, you are not obtaining title to the Software
or any copyrights. You may not sublicense, rent, lease, convey, distribute, copy, modify,
translate, convert to another programming language, decompile, or disassemble the Soft-
ware for any purpose. You may not redistribute the Software. By installing the Software,
you are agreeing to this license and disclaimer.

Conditioned on your honoring the terms of this agreement, SensaWave grants you a non-
exclusive, non-transferable license to use the present version of the Software, including the
accompanying documentation for your lawful, non-infringing use on a single computer at a
single physical site in accordance with this Agreement.

You may make up to two exact, unmodified copies of the Software solely for your own
back-up or archival use.

THIS SOFTWARE IS PROVIDED BY SENSAWAVE TECHNOLOGY INC. “AS IS”
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIM-
ITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SEN-
SAWAVE TECHNOLOGY INC. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDEN-
TAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIA-
BILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSI-
BILITY OF SUCH DAMAGE.

13.3 SENSAWAVE Site and Deployment License

The SENSAWAVE Computing Base ("the Software") is copyright (C) 2007, 2008 Sen-
saWave Technology Inc. The Software is protected by the copyright laws of Canada. In

Chapter 13: License Terms 65

downloading, configuring or using the Software, you are not obtaining title to the Software
or any copyrights. You may not sublicense, rent, lease, convey, distribute, copy, modify,
translate, convert to another programming language, decompile, or disassemble the Soft-
ware for any purpose. You may not redistribute the Software. By installing the Software,
you are agreeing to this license and disclaimer.

Conditioned on your honoring the terms of this agreement, SensaWave grants you a non-
exclusive, non-transferable license to use the present version of the Software, including the
accompanying documentation for your lawful, non-infringing use on multiple computers at a
single physical site in accordance with this Agreement. In addition SensaWave grants you a
non-exclusive, non-transferable license to use subsets of the present version of the Software
and the Software license key for deploying applications developed with the Software, includ-
ing commercial, provided that the use of such applications is not in direct competition with
the Software, and that such applications do not include any form of an interactive com-
mand interface, and further that such applications only include the minimum subset of the
Software needed to make such applications work. No part of the Software documentation
can be deployed as part of any such applications.

You may make up to two exact, unmodified copies of the Software solely for your own
back-up or archival use.

THIS SOFTWARE IS PROVIDED BY SENSAWAVE TECHNOLOGY INC. “AS IS”
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIM-
ITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SEN-
SAWAVE TECHNOLOGY INC. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDEN-
TAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIA-
BILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSI-
BILITY OF SUCH DAMAGE.

Index

Index
b
K 7
+
o 7
ol fileextension 18
.scmfileextension 14
.six fileextension 14
.. 8
?
e 20
2
2D framebuffer graph example............. 12, 48
2D framebuffer primitives 38
3
3D framebuffer example...................... 12
3D framebuffer primitives 39
APPLY e e 7
ARPACK ... 31
B
Basic command line syntax.................... 6
BLAS examples 21
BLAS numerical library 8
BLAS _cdotu .. ooviee e 8
BLAS_cgemmcoiuiiiiiiiiii. 23
BLAS_CgeMVt 21
BLAS dgemm.............................. 21, 23
BLAS_SAOt ..ot o e 21
BLAS_sgemm0iiuiiiiin.. 23
BLAS_zdotu ... 9
BLAS_zgemmiiiiiiiiiin... 23
BLAS_ZGEmMV . ..ottt 21

C

C/Java programming example 15

66
C/Java programming style..................... 2
C32VeCLOT . . oottt 8
CBAVECtOT. ... o 9
CDFLIB 31
CDROM distribution 3
color-alphao, 35
color-blue 35
color-gradient 36
color—greeniiiiiiiiiiiii. 35
color-red 35
color-rghb 36
color-rgba 36
color-rgbaf 36
color-rgbf 36
COlOTS .« v v 35
Command line completion.................... 19
Command line history........................ 19
Command result history...................... 19
compile-file 18
Compiling SENSAWAVE programs............ 17
COMPLEXT . .ttt e et et e e e 7
Console debugging 20
Console editing commands 19
Console interface 6
Console on-line help 20
Copyright information 57
O ittt 51
Cross-platform development 2
CSVidatafiles.................. 13
D
Datafiles ... 13
datafile-load 13
datafile-save 13
define i 7,8
demo. ... 10
DFFTPACK ... 31
display.....oviii e 6
Double-log graph example................. 11, 46
Downloading from the Internet 4
E
EISPACK 31
eXACE T .. 7
Execution speed oL 1
[5-3 < X 51
ezgraph 8, 50
F
f64matrix->listlist.............. 9
FETPACK 31

Index

file->objectl 14
font-delete 34
font-name 34
font-new.......... 34
font-size 34
font-stringascent.................... 34
font-stringdescent......................... 34
font-stringwidth........................... 34
font T . 34
Fonts 34
Fourier approximation to a square wave 14
Framebuffer graphics......................... 11
framebuffer->glwindow 37
framebuffer-clear.......................... 37
framebuffer-drawstring 37
framebuffer-new................. 37
framebuffer-savePNG........................ 37
framebuffer-solidbox....................... 37
Framebuffers 37
Functional programming example 14
Further reading. 18

Gambit-C 57
Graphics in SENSAWAVE 10
Graphs 42

H

Host dependencies 4

I

Infix programming style....................... 2
Installation................... 3
Installation on Linux.......................... 3
Installation on MAC OS X 3
Installation on OpenBSD 3
Installation on Windows. 3
Introduction................ 1

lambda. ...coovitii 50
LAPACK examples 24
LAPACK numerical library.................... 9
LAPACK_CEESYV ..o it 25
LAPACK_dgesvcoiinn... 9, 24, 25
LAPACK_dgtsv ... 24
LAPACK_SEeSV . ..ot 25
LAPACK_ZEEeSV . ..ot 25
LAPACK_zladivoiuiineiin... 24
License key........ 3
License terms........... 63
Linear graph example..................... 10, 42
Linear regression 16

LINPACK 31

67
1aSt ot 7
List data structures........................... 7
list->c32vector ... 8
list->cB4vector, 9
listlist->f64matrix......................... 9
108 - e 15, 17, 18
M
M_2PT . . 50
M PT .. 9
make-s32VeCctor 9
11ECY o TP 7, 8,50
Matrices ... 9
MIN ... 7
MinGW . ..o 57
MINPACK ... 31
module-require 8,9, 55
N
nested-repl 20
NSWCLIB examples, 30
NSWCLIB_dAZeXovvuiiiniieanennn.. 30
NSWCLIB_zeroin................cuiuinin... 30
nthharmonic 14
Numerical operations 7
Numerical precision 9
O
object->file..........l 14
ODEPACK 32
OpenGL 1, 10, 12, 52
Output devices 10
P
PATH . . 4
PATH environment 4
path-expand 13
PNG image rendering 13
png->glwindow 13
Prefix programming style................... ... 2
PIeEEXD « vttt et 56
Prolog-style logic programming 56
Q
QUADPACK examples............c.ooueoo... 29
QUADPACK_dQago oo 29
QUADPACK_dgagiovviiiiiiiaa. 29
Quick data visualization...................... 50
R
random-real, 50

Index

RANLIB 32
Rapid prototyping, 1
rational?....... 7
rationalizet 7
Real time graphing 51
REGRIDPACK 32
Regular expressions 56
RS232 Interfacing. 55
rS232-ClOSe ..ottt 55
TS232-0P€N . oot vtte e 55
rs232-readline 55
rs232-writeline............ 55
rtgraph........... 51
Running SENSAWAVE. 6
S

schelog. 56
Scientific repository, 1,8
Scientific Repository 21
SEISPACK 31
Semi-log graph example................... 10, 44
Serial port communication.................... 55
set!l 7
setup.ini configuration file 20
Simple graphing 8
Sin ... 7, 8, 50
SLATEC examples............ 27
SLATEC_CDTt .o ooiee et 27
SLATEC_ccbrtooi e 27
SLATEC_dcbrt ... 27

68
SODEPACK ... 32
SOTE ottt et e 7
ssax-sxml 56
STARPAC 32
Starting SENSAWAVE 6
STOEPLITZ ... 32
string-append 7
string="7........ ... 7
T
TOEPLITZ ... 32
U
Uninstalling the software 4
\%
Variables. i 7
Vectors . ..o 8
Visualization 1
Writing SENSAWAVE programs 14
X

XML data parsing 56

	Introduction
	Welcome to the SENSAWAVE Computing Base
	SENSAWAVE features and benefits
	Fast execution speed
	Scientific repository
	Advanced visualization
	Cross-platform development
	Choice of programming language

	Installation
	Installation from CDROM
	Installing on Windows
	Installing on MAC OS X
	Installing on Linux
	Installing on OpenBSD

	Installing from the Internet
	Changing the system PATH environment
	Host system dependencies
	Uninstalling SENSAWAVE
	Further Questions

	Quick Tour
	What is SENSAWAVE?
	Running SENSAWAVE
	Basic command line syntax
	Numerical operations
	Vectors, matrices and the Scientific Repository
	Graphics in SENSAWAVE
	Reading and writing data files
	Writing SENSAWAVE programs
	Example: Fourier approximation to a square wave
	Example: linear regression

	Compiling SENSAWAVE programs
	Further reading

	Console Editing
	Command line completion
	Command history
	Result history
	Console editing commands
	Console on-line help
	Console debugging and further reading

	Scientific Repository
	BLAS examples
	LAPACK examples
	SLATEC examples
	QUADPACK examples
	NSWCLIB examples
	Other packages in the repository
	ARPACK
	CDFLIB
	FFTPACK and DFFTPACK
	EISPACK and SEISPACK
	LINPACK
	MINPACK
	ODEPACK and SODEPACK
	RANLIB
	REGRIDPACK
	STARPAC
	TOEPLITZ and STOEPLITZ

	Further reading

	Fonts and Colors
	Fonts
	Colors

	Framebuffers
	Framebuffer fundamentals
	Example: 2D Plotting Primitives
	Example: 3D plotting primitives

	Graphs
	Example 1: Linear graph
	Example 2: Semi-logarithmic graph
	Example 3: Double-logarithmic graph
	Example 4: 2D image graph
	Quick data visualization

	OpenGL
	Further reading

	RS232 Interfacing
	Additional functionality
	pregexp
	pregexp copyright statement

	schelog
	schelog copyright

	ssax-sxml
	Third party module disclaimer

	Copyright Information
	Gambit-C
	MinGW
	PDF library
	GLFW library
	GIFPlot library
	The Portable Network Graphics library
	The zlib compression library
	Scientific repository packages
	Trademarks

	License Terms
	SENSAWAVE Evaluation License
	SENSAWAVE Single User License
	SENSAWAVE Site and Deployment License

	Index

