SYSTAT: AN OVERVIEW

T. Krishnan Cranes Software International Limited, Mahatma Gandhi Road, Bangalore - 560 001 krishnan.t@systat.com

1. Introduction

SYSTAT was designed for statistical analysis and graphical presentation of scientific and engineering data. In order to use this tutorial, knowledge of Windows 95/98/2000/Nt/XP would be helpful.

SYSTAT provides a powerful statistical and graphical analysis system in a new graphical user interface environment using descriptive menus, toolbars and dialog boxes. It offers numerous statistical features from simple descriptive statistics to highly sophisticated statistical algorithms.

Taking advantage of the enhanced user interface and environment, SYSTAT offers many major performance enhancements for speed and increased ease of use. Simply pointing and clicking the mouse can accomplish most tasks. SYSTAT provides extensive use of drag-n-drop and right click mouse functionality. SYSTAT's intuitive Windows interface and flexible command language are designed to make your research more efficient. You can quickly locate advanced options through clear, comprehensive dialogs.

SYSTAT also offers a huge data worksheet for powerful data handling. SYSTAT handles most of the popular data formats Excel, SPSS, SAS, BMDP, MINITAB, S-Plus, Statistica, Stata, JMP, and ASCII. All matrix operations and computations are menu driven.

The Graphics module of SYSTAT 12 is an enhanced version of the existing graphics module of SYSTAT 11. This module has better user interactivity to work with all graphical outputs of the SYSTAT application. Users can easily create 2D and 3D graphs using the appropriate top tool bar icons, which provide tool tip descriptions of graphs. Graphs could be created from the Graph top tool bar menu or by using the Graph Gallery, which facilitate accomplishing complex graphs (e.g. global map with contour, 3D surface plots with contour projections, etc.) with point and click of a mouse. Simply double clicking the graph will bring up a dialog to facilitate editing most of graph attributes from one comprehensive 'dynamic dialogue'. Each graph attribute such as line thickness, scale, symbols choice, etc. can be changed with mouse clicks. Thus simple or complex changes to a graph or set of graphs can be made quickly and done exactly as the user requires.

2. Getting Started With SYSTAT

2.1 Opening SYSTAT for Windows

To start SYSTAT for Windows NT4, 98, 2000, ME and XP:

> Choose: Start \rightarrow All Programs \rightarrow SYSTAT 12 \rightarrow SYSTAT 12

Alternatively, you can double-click on the SYSTAT icon **E**, to get started with SYSTAT.

2.2 User Interface

The user interface of SYSTAT is organized into three spaces:

- I. Viewspace
- **II.** Workspace
- **III.**Commandspace

The Screenshot of startpage of SYSTAT 12: SYSTAT - [Startpage] _ | 7 | File Edit View Data Utilities Graph Analyze Advanced Quick Access Window Hel - 8 □ ☞ 🖬 🖉 | 🕹 🖻 🚳 🗟 | 📾 🖾 🖾 🖾 🖾 🖾 🖾 🗠 | ● → | 🕺 Times New Romar 🔹 A 5 1 t2 A to K K M B/UQ|健健|医苦苦||図|信 Startpage Untitled.svo Untitled1.svz SYSTAT Output SYSTAT 12 Recent Data Files Recent Command Files Recent Output Files Did you know... You can enable Quick Graphs, which display graphs automatically in the process of analysis, using the Sdtw=>Options=>Output menu and checking the "Display rtatistical Quick graphs" box. Themes Classic.systheme Default.systheme IntrotoStatistics.systheme [Next Tip] Scratchpad Manuals < Out... Exa... Dyn... Show at startup Interactive Log Untitled For Help, press F1. OGRAPH NUM

I. Viewspace has the following tabs

Output Editor: Graphs and statistical results appear in the Output Editor. You can edit, print and save the output displayed in the Output Editor.

Data Editor: The Data Editor displays the data in a row-by-column format. Each row is a case and each column is a variable. You can enter, edit, view, and save data in the Data Editor.

Graph Editor: You can edit and save graphs in the Graph Editor.

Startpage: Startpage window appears in Viewspace as you open SYSTAT. It has five subwindows.

- i. Recent Files
- ii. Tips
- iii. Themes
- iv. Manuals
- v. Scratchpad

You can resize the partition of the Startpage or you can close the startpage for the remainder of the session.

If you want to view the Data Editor and the Graph editor simultaneously click Window menu or right-click in the toolbar area and select Tile or Tile vertically.

1000 1000 1000 1000 1000 1000 1000 100	400	त्		Startpage	
-	1208	. <u>.</u>			
PETALLEN	infloria (5 PECIED 0 1 × 2 + 3	5	Recent Data Files Themes Creat: suchers Manuals Stratup	ou know
ilican\karma\ln	stallFolder\Data\i	ris.syz		2 Untitled	
SPECIES	SEPALLEN S	2 500	PETALLEN A	Session Start: Friday, February 02nd, 2007.	
1.000	4.900	3.000	1.400		
1.000	4.700	3.200	1.300		
1.000	4.600	3.100	1.500	▼File: Untitled1.syz	
1.000	5.000	3.600	1.400		
1.000	5.400	3.900	1.700	THE R. LEWIS CO., NO. 4417 14 (TO A 17)	
	1000	3,400	1 400	The openciand anna anna ann order a ana ans syr	
1.000	4.600	5.400	1.400 M		
	alican Varma Vin SPECIES 1.000 1.000 1.000 1.000	EFFCES SEPALLEN SPECIES SEPALLEN 1.000 5.000 1.000 4.900 1.000 4.900 1.000 4.900 1.000 4.900 1.000 5.000 1.000 5.0000 5.0000 5.0000 5.0000 5.0	SEPALEN SEPALEN <t< td=""><td>SPECIES SPALEN SPALEN</td><td>Streeting Streeting <t< td=""></t<></td></t<>	SPECIES SPALEN SPALEN	Streeting Streeting <t< td=""></t<>

II. Workspace has the following tabs

Output Organizer: The Output Organizer tab helps primarily to navigate through the results of your statistical analysis. You can quickly navigate to specific portions of output without having to use the Output Editor scrollbars.

Examples: The Examples tab enables you to run the examples given in the user manual with just a click of mouse. The SYSTAT examples tree consists of folders corresponding to different volumes of user manual and nodes. You can also add your own example.

Dynamic Explorer: The Dynamic Explorer can be used to rotate 3-D graphs, apply power transformations to values on one or more axes, and change the confidence intervals, ellipses, and kernels in scatter plots.

By default, the Dynamic Explorer appears automatically when the Graph Editor tab is active.

III. Commandspace has the following tabs

Interactive: In the Interactive tab, you can enter commands at the command prompt (>) and issue them by pressing the Enter key.

Untitled: The Untitled tab enables you to run the commands in the batch mode. You can open, edit, submit and save SYSTAT command file (.syc or .cmd)

Log: In the Log tab, you can view the record of the commands issued during the SYSTAT session (through Dialog or in the Interactive mode).

By default the tabs of Commandspace are arranged in the following order.

- Interactive
- Log
- Untitled

You can cycle through the three tabs using the following keyboard shortcuts:

- **CTRL+ALT+TAB.** Shifts focus one tab to the right.
- CTRL+ALT+SHIFT+TAB. Shifts focus one tab to the left.

SYSTAT Data, Command and Output files

Data files. You can save data files with (.SYZ) extension.

Command files. A command file is a text file that contains SYSTAT commands. Saving your analyses in a command file allows you to repeat them at a later date. These files are saved with (**.SYC**) extension.

Output files. SYSTAT displays statistical and graphical output in the output Editor. You can save the output in (**.SYO**), Rich Text format (**.RTF**) and HyperText Markup Language format (*.**HTM**).

The Data Editor

The Data Editor is used for entering, editing, and saving data. Entering data is a straightforward process. Editing data includes changing variable names or attributes, adding and deleting cases or variables, moving variables or cases, and correcting data errors.

SYSTAT imports and exports data in all popular formats, including Excel, ASCII Text, Lotus, BMDP Data, SPSS, SAS, StatView, Stata, Statistica, JMP, Minitab and S-Plus as well as from any ODBC compliant application.

Data can be entered or imported in SYSTAT in the following way:

Entering data

Consider the following data that has records about seven dinners from the frozen-food section of a grocery store.

Brand\$	Calories	Fat
Lean Cuisine	240	5
Weight Watchers	220	6
Healthy Choice	250	3
Stouffer	370	19
Gourmet	440	26
Tyson	330	14
Swanson	300	12

To enter these data into Data Editor, from the menus choose: File \rightarrow New \rightarrow Data This opens the Data Editor (or clears its contents if it is already open).

Before entering the values of variables you may want to set the properties of these variables using Variable Properties Dialog Box.

To open Variable Properties Dialog Box form the menus choose:

Data

Variable Properties ...

Or right click (VAR) in the data editor and select Variable Properties. Or you can use CTRL+SHIFT+P.

Data: Variable Properties	? 🛛
Variable name: BRAND\$	
Variable label:	
Variable type	Display options
Numeric String Categorical	Characters: 23
Numeric display options Normal Exponential notation 	Decimal places: 3
O Date and time:	
Comments:	
Different dinner brands available	in the food section of a grocery : A
<	
Save changes while navigating	ng K
	OK Cancel

Type *BRAND\$* for the name. The dollar sign (\$) at the end of the variable name indicates that the variable is a "string" or a "character" variable, as opposed to numeric variable.

Note: Variable names can have up to 256 characters.

- Select String as the Variable type.
- Enter the number of characters in the "Characters" box.
- In the Comments box you can give any comment or description of the variable if you want.

As here the variable *BRAND*\$ is explained.

• Click OK to complete the variable definition for VAR_1.

To type CALORIES as Variable name, again open the dialog box in the same way.

- Select Numeric as the Variable type.
- Enter the number of characters in the "Characters" box. [The decimal point is considered as a character.]
- Select the number of Decimal places to display.
- Click OK to complete the variable definition for VAR_2.
- Repeat this process for the *FAT* variable, selecting Numeric as the variable type or you can do the same in another way.

Double-click (VAR) or click the Variable tab in data editor to get Variable Editor. With Variable Editor you can edit variables directly.

Bie Edit yew Data Utilities	Graph Analyze Adva	aced Quick Access Window Help						
Timer New Romar • 50								
12 sestat cutera	Startpage / Un	titled.sys //Untitled2.syz						- 3
Unbitled2.syz	VARIABLE NA. 1 BRAND\$ 2 CALORIES 3 4 5 6 7	VARIABLE LA VALUE LABELS DRAND\$ CALORIES	TYPE String Numeric	CATEGORICAL NO NO	CHARACTERS 23 12	DECIMALS 3	DESPEAY	DATE TIME
	8 9 10 Parameters	Value	_					3
	Case selection By Group variable(s) Weight variable Proquency variable Category variable(s) Order variable(s)	(nane) (nane) (nane) (nane) (nane) (nane)						
utpu Examp Dynam	Data Variable							
>								

You can specify the properties of *FAT* variable in the same way in the third row. Now after setting the variable properties you can start entering data by clicking the **Data** tab in Data Editor.

- Click the top left data cell (under the name of the first variable) and enter the data.
- To move across rows, press Enter or Tab after each entry. To move down columns, press the down arrow key.

Note: To navigate the behavior of the Enter key in the Data Editor.

From the menus choose:

Edit

Options

Data...

Edit: Options	?	×
General Data Output Output Scheme Graph	File Locations	
Default font: Arial 👽 9 👽	Century range for 2-digit years	
Default date and time format:	20th century	
MM/dd/yyyy	Begin year: 1900	
dd-MMM-yyyy	End year: 1999	
dd.MM.yyyy	21st century	
yyyy ddd	Begin year: 2000	
MMM yyyy	End year: 2099	
	Custom	
Data Editor cursor	Begin vear: 1930	
 Enter key moves right 	Enduear: 2029	
 Enter key moves down 		
Save category variable information to data file		
Save ID variable information to data file		
Trim leading and trailing spaces for string variable	data	
Allow multiple data file view		
		5
	OK Cancel	

Click either of the two radio buttons below Data Editor cursor.

Image: Second	SYSTAT - [Untitled2.	syz]	=					(_ @ 🛛
Image: Control of the state of the stat	Eile Edit View Data U	tilities g	iraph <u>A</u> nalyze /	Advanced Quick Acc	ess <u>W</u> indow <u>H</u>	lelp			_ 8 ×
Image: Startpage Untitled.syo Untitled.syz Image: Startpage Untitled.syz Untitled.syz ERANDS CALORIES FAT VAR VAR VI Untitled.syz Untitled.syz 240.000 5.000 1 <t< th=""><th>i 🗅 😂 🖬 🎒 i 🗴 🖻</th><th>8 (</th><th>) 🖪 i 🗖 🗖 🕻</th><th>5 🖳 🖳 🕞 -</th><th>• • 隆 🖬</th><th>ean Cuisine</th><th>Times Nev</th><th>v Romar. 💌 3 (</th><th>12 🔹 🛛 🖽</th></t<>	i 🗅 😂 🖬 🎒 i 🗴 🖻	8 () 🖪 i 🗖 🗖 🕻	5 🖳 🖳 🕞 -	• • 隆 🖬	ean Cuisine	Times Nev	v Romar. 💌 3 (12 🔹 🛛 🖽
BRANDS CALORIES FAT VAR VAR VI Untitled2.syz I Lean Cuisine 240,000 5.000 Image: Calories of the constraints of the constraint	Workspace ×	St	artpage / Untit	led.syo Untitle	ed2.syz				• x
Undded2.syz 1 ean Cuisine 240.000 5.000 2 WeightWatc 220.000 6.000	Untitled1.syz		BRAND\$	CALORIES	FAT	VAR	VAR	VAR	V/ ^
2 Weight Watc 220.000 6.000 Image: constraint of the state of the stat	Untitled2.syz	1	Lean Cuisine	240.000	5.000				=
3 Healthy Cho 250.000 3.000 4 Stouffer 370.000 19.000 5 Gournet 440.000 26.000 6 Tyson 330.000 14.000 7 Swanson 300.000 12.000 8		2	Weight Watc	220.000	6.000				
4 Stouffer 370.000 19.000 5 Gournet 440.000 26.000 6 Tyson 330.000 14.000 7 Swanson 300.000 12.000 8 9 10 11 0 11 11 11 0 12 10 11		3	Healthy Cho	250.000	3.000				
5 Gourmet 440.000 28.000 6 Tyson 330.000 14.000 7 Swanson 300.000 12.000 8		4	Stouffer	370.000	19.000				
6 Tyson 330.000 14.000 7 Swanson 300.000 12.000 8 - - 9 - - 10 - - 11 - - 0ut Exa Dyn Data Variable		5	Gourmet	440.000	26.000				
7 Swanson 300.000 12.000 8 9 10 10 11 10 11 10 10 12 10 10 14 10 10 15 10 10 10 10 10 11 10 10 12 10 10 13 10 10 14 10 10 15 10 10 10 10 10 11 10 10 14 10 10 15 10 10 16 10 10 17 10 10 18 10 10 19 10 10 10 10 10 11 10 10 10 10 10 11 10 10 12 10 10 13 10 10 14 10 10 15 10 10 16 10 10 17 10 10 18 10 10		6	Tyson	330.000	14.000				
8 9 10 10 11 10 Øut Exa Dyn Data Variable		7	Swanson	300.000	12.000				
9 10 11 0ut Exa Dyn Data Variable × >		8							
10 11 11 0ut Exa Dyn Data Variable		9							
Dut Exa Dyn Data Variable		10							
Out Exa Dyn Data Variable		11							~
Uut Exa Dyn Data Variable		<							>
	Out Exa Dyn Data Variable								
	mandspace ×								
Interactive Log Untitled	JINTERACTIVE Log Un	titled							- >

Once the data are entered in the Data Editor, the data file should look something like this:

For saving the data, from the menus choose:

File

Save As...

Importing Data.

To import IRIS.xls. (data of Excel format) from the menus choose: **File**

Open

Data...

From the 'Files of type' drop-down list, choose **Microsoft Excel**.

- Select the IRIS.xls file.
- Select the desired Excel sheet and click OK.

The data file in the Data Editor should look something like this:

SYSTAT - [\\pelican\karma\InstallFolderWata\iris.syz]										
Eile Edit View Data Utilities	Graph &	alyze Adva <u>n</u> ce	d Quick Access	Window <u>H</u> elp						_ 8 ×
	B R I			1.00	0	× 🐽 🖬 🖬 💀	b <i>∨</i> 0			
Times New Romar • 3 (12	2 - 1 -	BZU	Q 佳 佳 目			t2 /	2 1 2			
Workspace ×		26.0			- 1					
TAT Output	Sta	artpage / Untitl	ed.syo iris.	syz						• X
Untitled1.syz		SPECIES	SEPALLEN	SEPALWID	PETALLEN	PETALWID	VAR	VAR	VAR	VAF
Untitled2.syz	1	1.000	5.100	3.500	1.400	0.200				=
(\percan\karma\mscairoider)	2	1.000	4.900	3.000	1.400	0.200				
	3	1.000	4.700	3.200	1.300	0.200				
	4	1.000	4.600	3.100	1.500	0.200				
	5	1.000	5.000	3.600	1.400	0.200				
	6	1.000	5.400	3.900	1.700	0.400				
	7	1.000	4.600	3.400	1.400	0.300				
	8	1.000	5.000	3.400	1.500	0.200				
	9	1.000	4.400	2.900	1.400	0.200				
	10	1.000	4.900	3.100	1.500	0.100				
	11	1.000	5.400	3.700	1.500	0.200				
	12	1.000	4.800	3.400	1.600	0.200				
	13	1.000	4.800	3.000	1.400	0.100				
	14	1.000	4.300	3.000	1.100	0.100				
	15	1.000	5.800	4.000	1.200	0.200				
	16	1.000	5.700	4.400	1.500	0.400				
	17	1.000	5.400	3.900	1.300	0.400				
	18	1.000	5.100	3.500	1.400	0.300				
	19	1.000	5.700	3.800	1.700	0.300				
	20	1.000	5.100	3.800	1.500	0.300				
	21	1.000	5.400	3.400	1.700	0.200				
< >	<									>
Outpu Examp Dynam	Data	Variable								
× >USE iris.syz > Interactive Log Untitled										- x
For Help, press F1.				0	GRAPH HTM	ECHO SEL	BY WGT F	RQ ID CAT	OVR	NUM

3. Statistical Analyses through SYSTAT

Descriptive Statistics

Descriptive Statistics offers basic statistics and stem-and-leaf plot for columns as well as rows. The basic statistics are: number of observations (N), minimum, maximum, mean, sum, trimmed mean, geometric mean, harmonic mean, standard deviation, variance, coefficient of variation (CV), range, median, standard error of mean, etc. Besides the above options, you can perform the Shapiro-Wilk test for normality. If you have chosen more than one variable, you can also compute multivariate statistics like multivariate skewness and multivariate kurtosis, and carry out the Henze-Zirkler multivariate normality test.

Example: We will use the IRIS data to compute descriptive statistics. This data set consists of four measurements made on 50 random samples of Iris flowers from each of the three species of Setosa, Versicolor, and Virginica (coded as 1, 2, and 3, respectively). The four measurements are *Sepal length*, *Sepal width*, *Petal length*, and *Petal width* in cm. This is a famous data set from Fisher (1936).

To calculate basic statistics for the iris data, from the menu choose: Analyze Basic Statistics...

🕈 Analyze: Basic Statis	stics
Main N- & P-Tiles Resa	ampling
Available variable(s): SPECIES SEPALLEN SEPALWID PETALLEN PETALWID	Add> < Remove
Options All options N Minimum Maximum Sum Anthmetic mean (AM) SE of AM C I of AM: 0.35	Geometric mean (GM) Range Harmonic mean (HM) Variance Trimmed mean: Skewness 0.1 Two-sided SE of skewness Median Kurtosis ✓ SD SE of kurtosis CV CV
Shapiro-Wilk normality Multivariate normality asse Mardia skewness Save statistics	test Anderson-Darling normality test assment Mardia kurtosis Henze-Zirkler test Variables
	OK Cancel

- Choose SEPALWID and add it to the Selected variable(s) list.
- Select N, Mean, SD, Minimum, Maximum.
- To check for normality, select the Shapiro-Wilk normality test option.
- Click OK.

The following output is displayed in the Output Editor:

	SEPALWII
N of cases	150
Minimum	2.000
Maximum	4.400
Mean	3.057
Standard Dev	0.436
SW Statistic	0.985
SW P-Value	0.101

Correlation

The 'Correlation' feature computes correlations and measures of similarity and distance. **Example:** In the previous example, we computed basic statistics for SEPALWID. We will now compute the correlations between the four variables.

Often, we may want to compute certain statistics separately for each group defined by certain variable(s) in the data set. In this case, we may want to examine if the correlations are of the same magnitude in the three species. SYSTAT facilitates such computations by its 'By Groups' feature. Let us use By Groups in the Data menu to request separate results for each level of *SPECIES* (grouping variables).

- From the menus choose:
- Data

By Groups

📲 Data: By Groups	? 🛛
Available variable(s): SPECIES SEPALLEN SEPALWID PETALLEN PETALWID	Add> C Remove
Exclude missing	🛄 Turn off
	OK Cancel

- In the By Groups dialog box, select *SPECIES* as variable.
- Click OK.
- Return to the Simple Correlations dialog box.
- Select all the four variables and add it to the Selected variable(s) list.
- Click OK.

To compute correlations between pairs of the four variables: *SEPALLEN*, *SEPALWID PETALLEN* and *PETALWID*, from the menus choose:

Analyze

Correlations

Simple...

vailable variable(s): SPECIES SEPALLEN SEPALWID PETALLEN	Add> < Remove	Selected SEPAL SEPAL PETAL PETAL	d variable(s): LLEN LWID LLEN LWID	Sets © One O Two
Турез	Add> < Remove	Column(s): Deletion	
Continuous data:	Pearson	~	 Listwise 	
O Distance measures:	Bray-Curtis	~	O Pairwise	
🔘 Rank order data:	Spearman	~		
🔘 Unordered data:	Phi	~	Save matrix	
🔘 Binary data:	Positive matching	(\$2) 🗸		

The following output is displayed in the Output Editor:

Results fo Number of Means	or SPECIES Observatio	= 1.000 ons: 50		
SEPALLEN	SEPALWID	PETALLEN	PETALWID	
5.006	3.428	1.462	0.246	
Pearson Co	orrelation SEPALLEN	Matrix SEPALWID	PETALLEN	PETALWID
SEPALLEN	1.000			
SEPALWID	0.743	1.000		
PETALLEN	0.267	0.178	1.000	
PETALWID	0.278	0.233	0.332	1.000

Scatter Plot Matrix

r SPECIES = Observation	= 2.000 ns: 50		
SEPALWID	PETALLEN	PETALWID	
2.770	4.260	1.326	
rrelation M SEPALLEN	Matrix SEPALWID	PETALLEN	PETALWID
1.000 0.526 0.754 0.546	1.000 0.561 0.664	1.000 0.787	1.000
	r SPECIES = Observation SEPALWID 2.770 rrelation N SEPALLEN 1.000 0.526 0.754 0.546	r SPECIES = 2.000 Observations: 50 SEPALWID PETALLEN 2.770 4.260 rrelation Matrix SEPALLEN SEPALWID 1.000 0.526 1.000 0.754 0.561 0.546 0.664	r SPECIES = 2.000 Observations: 50 SEPALWID PETALLEN PETALWID 2.770 4.260 1.326 rrelation Matrix SEPALLEN SEPALWID PETALLEN 1.000 0.526 1.000 0.754 0.561 1.000 0.546 0.664 0.787

Quick Graphs. Quick Graphs are graphs which are produced along with numeric output without the user invoking the Graph menu. A number of SYSTAT procedures include Quick Graphs. The Quick Graphs above are automatically generated when you request correlations (with the Quick Graphs options on). If you want to turn off the Quick Graph facility:

• Under Edit menu, click Options.

In the **Global Options** dialog, select the **Output** tab.

•Turn off the Display statistical Quick Graphs option.

Or you can turn off the Quick Graph facility using the **QGRAPH** tab in the status bar at the bottom of user interface.

The above Quick Graphs in this example are in the scatterplot matrix (SPLOM). In each SPLOM there is one bivariate scatterplot corresponding to each entry in the correlation matrix that follows. A univariate histogram for each variable is displayed along the diagonal, and 75% normal distribution-based confidence ellipses are displayed within each plot. For species 3 (i.e., Virginica), the plot of *SEPALLEN* and *PETALLEN* has the narrowest ellipse, and thus, the strongest correlation, which is 0.864.

Hypothesis Testing

SYSTAT provides several parametric tests of hypotheses and confidence intervals for means, variances, proportions, and correlations. This section provides examples of the one-sample t-test and the paired t test.

One-Sample t-test

The one-sample t test is used to test if the mean of the population (from which the data set form a sample) is equal to a hypothesized value.

Example: One-Sample test. Let us study the effect of cigarette smoking on the carbon monoxide diffusing capacity (DL) of the lung. Ronald Knudson, Walter Klatenborn, and Benjamin Burrows found that current smokers had DL readings significantly lower than those of exsmokers or nonsmokers. Let us find out if the data indicate that the mean DL (μ) reading for current smokers is significantly lower than 100 DL.

The null hypothesis is H_0 : $\mu = 100$ against the alternative hypothesis H_1 : $\mu < 100$

The carbon monoxide diffusing capacities for a random sample of n=20 are entered in the Data Editor.

	DL_READING	VAR	VAR	VAR
1	103.768			
2	88.602			
3	73.003			
4	123.086			
5	91.052			
6	92.295			
7	61.675			
8	90.677			
9	84.023			
10	76.014			
11	100.615			
12	88.017			
13	71.210			
14	82.115			
15	89.222			
16	102.754			
17	108.579			
18	73.154			
19	106.755			
20	90.479			
21				
22				
23				
<				
Data	Variable			

To perform one-sample t-test, from the menus choose: Analyze

Hypothesis testing

Mean

One-Sample t-test...

tl Mean: One-Sample	t-Test	? 🛛
Main Resampling		
Available variable(s): DL_READING	Add> < Remove	Selected variable(s): DL_READING
Mean: Alternative type: Confidence:	100 less than 💌 0.95	Adjustment Bonferroni Dunn-Sidak
		OK Cancel

- Add DL_Reading to the Selected variable(s) list.
- Enter Mean 100.
- From the drop-down list, select the alternative type as 'less than'.
- Click OK.

The following output is displayed:

One-sample t-test of DL_READING with 20 Cases Ho: Mean = 100.00 vs Alternative = 'less than' : 89.855 Mean 95.00% Confidence Bound : 95.617 Standard Deviation : 14.904 : -3.044 t df : 19 p-value 0.003 : Ble Edit Yew Data Utilities graph Anal ce Ad Untitled0.syz One-sample t-test 6 5 4 Count 3 2 0 L 60 80 90 100 110 120 130 70 DL READING

Conclusion: We observe that the one-sided p-value is 0.003, which is highly significant. Clearly, the mean DL (μ) reading for current smokers is significantly lower than 100 DL.

Paired t-test

The paired t-test assesses the equality of two means in experiments involving paired measurements.

Example: Paired t-test. To illustrate the paired t-test we use the data from Hand et al. (1996). The data were collected on the systolic blood pressure of 15 patients (MacGregor et al., 1979). The interest is to see if there is any difference in the systolic blood pressure of the patients, before and after the administration of a drug called captopril. The BP data file gives the supine systolic and diastolic blood pressures (mm Hg) for 15 patients with moderate essential hypertension, immediately before and two hours after administering the drug.

٦	PATIENT_ID	SYSBP_BEFORE	SYSBP_AFTER	DIABP_BEFORE	DIABP_AFTER	VAR	VAR	VAR	V
đ	1.000	210.000	201.000	130.000	125.000				
2	2.000	169.000	165.000	122.000	121.000				
3	3.000	187.000	166.000	124.000	121.000				
1	4.000	160.000	157.000	104.000	106.000				
5	5.000	167.000	147.000	112.000	101.000				
3	6.000	176.000	145.000	101.000	85.000				
7	7.000	185.000	168.000	121.000	98.000				
3	8.000	206.000	180.000	124.000	105.000				
3	9.000	173.000	147.000	115.000	103.000				
)	10.000	146.000	136.000	102.000	98.000				
	11.000	174.000	151.000	98.000	90.000				
2	12.000	201.000	168.000	119.000	98.000				
3	13.000	198.000	179.000	106.000	110.000				
5	14.000	148.000	129.000	107.000	103.000				
5	15.000	154.000	131.000	100.000	82.000				
5									
T									
3									
9									
)									
2									
3									
1									
5									
5									
3									
3									
1									
			_						

The null hypothesis is H_0 : $\mu_d = 0$ (i.e. there is no difference in the systolic blood pressure of the patients, before and after the administration of the drug). The alternative hypothesis is H_1 : $\mu_d > 0$ (i.e. there is positive difference in the systolic blood pressure of the patients, between before and after the administration of the drug, indicating that the drug has the desired effect.)

To perform paired t-test, from the menu choose: Analyze Hypothesis testing

Mean

Paired t-test...

- Add SYSBP_BEFORE and SYSBP_AFTER in the Selected variable(s) list.
- From the drop-down list, select the alternative type as 'greater than'.
- Click OK.

The output is displayed in the Output Editor.

Paired Samples t-test on SYSBP_BEFORE vs SYSBP_AFTER with 15 Cases Alternative = 'greater than'

Mean SYSBP_BEFORE	:	176.933
Mean SYSBP_AFTER	:	158.000
Mean Difference	:	18.933
95.00% Confidence Bound	:	14.828
Standard Deviation of Difference	:	9.027
t	:	8.123
df	:	14
p-value	:	0.000

From the above graph, it is seen that the systolic blood pressure has decreased after the administration of the drug captopril. The test results (mean difference=18.933, p=0.000) indicate that the drug captopril reduces the systolic blood pressure.

You can do the same testing using the **Example** tab of Workspace as this is already included as an example in Hypothesis testing of Statistics-I. So for running this example using the Examples tree (which is collapsible) first click the example tab in Workspace then click **Statistics**

Statistics_1 Hypothesis Testing Paired t-Test...

Then you just double-click or right-click and select Run.

Times New Romar • 3(12 • 1. B / U		
Vorkspace	Startpage Untitled.syo BP.syz Graph1	
Constantse, J Constantse, J Constantse, J Constantse, J Constantse, J Constantse, Analysis Correspondence Analysis Correspondence Analysis Constantse, Test Constantse, Test Constantse, Test Constantse, Test Constantse, Stantse, Test Constantse, Test Constantse, Stantse, Test Too-Sample, Test Constantse, Stantse, Test Too-Sample, Test Constantse, Stantse, Stantse, Test Too-Sample, Test Constantse, Stantse, Test Constantse, Stantse, Test Constantse, Stantse, Stantse, Test Too-Sample, Test Constantse, Stantse, Test Constantse, Stantse, Test Constantse, Test Constantse, Stantse, Test Constantse, Test Constantse, Stantse, Test Constantse, T	Patred Surgles Leter on SYSBP_DEFORE vs SYSBP_AFTER with 15 Cases Alternative - 'greater than' Mrun SYSBP_BEFORE 176.633 Mrun SYSBP_AFTER 150.000 Mean Difference 10.933 95.09%-Conditionene Bund 14.020 Standard Deviation of Difference 9.027 t t t t t t t t t t t t t t t t t t t	ATT ®
>USE hp.svz		

R × **C** Contingency Table

A contingency table provides a display of (joint) frequencies of categorical (or discrete) data to study relationships between two or more variables. Using Crosstabulation, you can analyze and save frequency tables that are formed by categorical variables.

Example: Contingency Table. This example uses questionnaire data from a community survey (Afifi et al., 2004). The survey was conducted to study depression and help-seeking behavior among adults. The CESD depression index was constructed by asking people to respond to 20 items. The *SURVEY2* data file includes a record (case) for each of the 256 subjects in the sample. The data set consists of following variables:

ID	SEX	AGE	MARITAL	EDUCATN	EMPLOY
INCOME	RELIGION	BLUE	DEPRESS	LONELY	CRY
SAD	FEARFUL	FAILURE	AS_GOOD	HOPEFUL	HAPPY
ENJOY	BOTHERED	NO_EAT	EFFORT	BADSLEEP	GETGOING
MIND	TALKLESS	UNFRNDLY	DISLIKE	TOTAL	CASECONT
DRINK	HEALTHY	DOCTOR	MEDS	BED_DAYS	ILLNESS
CHRONIC	MARITAL\$	SEX\$	AGE\$	EDUC\$	

	ID	SEX	AGE	MARITAL	EDUCATN	EMPLOY	INCOME	RELIGION	BLUE	DEPRESS	LON
1	2.000	1.000	58.000	3.000	4.000	1.000	15.000	1.000	0.000	0.000	
2	3.000	2.000	45.000	2.000	3.000	1.000	28.000	1.000	0.000	0.000	
3	4.000	2.000	50.000	3.000	3.000	3.000	9.000	1.000	0.000	0.000	
4	5.000	2.000	33.000	4.000	3.000	1.000	35.000	1.000	0.000	0.000	
5	6.000	1.000	24.000	2.000	3.000	1.000	11.000	1.000	0.000	0.000	
6	7.000	2.000	58.000	2.000	2.000	5.000	11.000	1.000	2.000	1.000	
7	8.000	1.000	22.000	1.000	3.000	1.000	9.000	1.000	0.000	1.000	
8	10.000	1.000	30.000	2.000	2.000	1.000	35.000	4.000	0.000	0.000	
9	12.000	2.000	57.000	2.000	3.000	2.000	24.000	1.000	0.000	0.000	
0	13.000	1.000	39.000	2.000	2.000	1.000	28.000	1.000	1.000	1.000	
1	15.000	2.000	23.000	2.000	3.000	1.000	15.000	2.000	0.000	0.000	
2	18.000	2.000	55.000	4.000	2.000	3.000	19.000	1.000	1.000	0.000	
3	19.000	2.000	26.000	1.000	6.000	1.000	15.000	1.000	0.000	0.000	
1	21.000	2.000	44.000	1.000	3.000	1.000	6.000	2.000	0.000	0.000	
5	22.000	2.000	25.000	2.000	3.000	1.000	35.000	1.000	0.000	0.000	
3	24.000	2.000	61.000	2.000	3.000	1.000	19.000	2.000	0.000	0.000	
r	25.000	2.000	43.000	3.000	3.000	1.000	6.000	1.000	0.000	0.000	
3	26.000	2.000	52.000	2.000	2.000	5.000	19.000	2.000	1.000	2.000	
3	27.000	2.000	23.000	2.000	3.000	5.000	13.000	1.000	0.000	0.000	
)	28.000	1.000	73.000	4.000	2.000	4.000	5.000	2.000	0.000	1.000	
1	30.000	2.000	34.000	2.000	3.000	1.000	20.000	1.000	0.000	0.000	
2	32.000	2.000	31.000	2.000	4.000	1.000	45.000	4.000	1.000	1.000	
3	33.000	1.000	60.000	2.000	3.000	1.000	35.000	1.000	0.000	0.000	
1	34.000	2.000	35.000	2.000	3.000	5.000	23.000	1.000	0.000	1.000	
5	35.000	2.000	56.000	2.000	3.000	2.000	23.000	1.000	0.000	0.000	
6	36.000	1.000	40.000	2.000	3.000	1.000	15.000	1.000	0.000	1.000	
r i	37.000	2.000	33.000	2.000	4.000	1.000	19.000	4.000	0.000	0.000	
3	39.000	1.000	59.000	2.000	2.000	1.000	23.000	4.000	0.000	0.000	
3	40.000	1.000	42.000	3.000	5.000	1.000	23.000	4.000	1.000	0.000	
0	41.000	1.000	19.000	1.000	3.000	1.000	11.000	4.000	0.000	0.000	
1	42.000	1.000	32.000	2.000	7.000	1.000	23.000	4.000	0.000	0.000	
			17 000							0.000	

To study the relationship between depression and education, label the *EDUCATN* and *CASECONT* into categories using the Label dialog box.

To open the Label dialog box, from the menus choose:

Data

Label...

😼 Data: Value	Labels			
Available variable(:	s):			
ID	~		Value(s)	Label
SEX	E	1	1,2	Dropout
AGE		2	3	HS grad
MARITAL		3	4,5	college
EDUCATN		4	6,7	Degree+
INCOME				
RELIGION	~			
	>			
0				OK Cancel

- Select *EDUCATN* as the variable.
- Type the value(s) that require labels.
- Type the label for each specified value.
- Click OK.
- Repeat the process for the variable *CASECONT* and label the value '1' as **depressed** and '0' as **normal.**

To tabulate, from the menus choose: Analyze Tables

Two-Way...

- Select *EDUCATN* as the Row variable(s) and *CASECONT* as the Column variable.
- Below the **Tables**, check the Counts and the **Row percents** boxes.
- Click OK.

EDUCATN(EDUCATN(rows) by CASECONT(columns)							
	normal	depressed	Total					
Dropout	3	0	3					
Dropout	33	14	47					
HS grad	80	18	98					
college	42	3	45					
college	33	8	41					
Degree+	14	0	14					
Degree+	7	1	8					
	+							
Total	212	44	256					

Row Percents

EDUCATN(rows) by CASECONT(columns)

	normal	depressed	Total	N
Dropout	100.000	0.000	100.000	3.000
Dropout	70.213	29.787	100.000	47.000
HS grad	81.633	18.367	100.000	98.000
college	93.333	6.667	100.000	45.000
college	80.488	19.512	100.000	41.000
Degree+	100.000	0.000	100.000	14.000
Degree+	87.500	12.500	100.000	8.000
Total	82.813	17.188	100.000	
N	212.000	44.000		256.000

*** WARNING *** : More than One-fifth of the fitted Cells are sparse (Frequency < 5). Significance Tests computed on this table are Suspect.

Chi-square tests of association for EDUCATN and CASECONT

Test Statistic | Value df p-value Pearson Chi-square | 12.645 6.000 0.049

Number of Valid Cases: 256

Conclusion:

Subject to the reservation mentioned in the Warning message, we see that there is some association between Education and Depression state (p-value only just less than 0.05). The association is neither strong; nor is the direction of the association vis a vis Education is clear.

Fitting Distributions

The 'Fitting Distributions' feature enables you to assess whether the observed data can be modeled by a distribution from a parametric family of distributions with appropriately chosen parameter values.

Example: Fitting of Normal Distribution. The data in **FOREARM1** contains length of forearm (in inches) from Pearson and Lee (1903). A normal distribution may be an appropriate model to describe the data on the forearm length.

To fit a normal distribution, from the menus choose:

Analyze

Fitting Distributions Continuous...

onunuous...

- Add *ARMLENGTH* to the Selected variable(s) list.
- Select Distribution as **Normal.**
- Click OK.

The output is displayed in the Output Editor:

```
Variable Name : ARMLENGTH
Distribution : Normal
Estimated Parameter(s)
Location or Mean(mu) : 18.802143
Scale or SD(sigma) : 1.116466
```

Estimation of Parameter(s): Maximum Likelihood Method

Test Results

Lower	Limit	Upper Limi	t	Obsei	rved	Expected
	•	17.16000	0		11	9.893397
17.1	60000	17.69000	0		12	12.449753
17.6	90000	18.22000	0		16	19.802248
18.2	20000	18.75000	0		29	25.247070
18.7	50000	19.28000	0		22	25.802405
19.2	80000	19.81000	0		24	21.137956
19.8	10000	20.34000	0		11	13.880695
20.3	40000				15	11.786478
					140	140.000000
Chi-sq	uare Tes	st Statisti	с :	3.849	9814	
Degree	s of Fre	eedom	:		5	
p-valu	е		:	0.571	L236	
Kolmog	orov-Smi	irnov Test	Stat	cistic	c : (0.047870
Lillie	fors Pro	bability			: (0.554270
Shapir p-valu	o-Wilk 7 e	fest Statis	tic	: 0. : 0.	.991 .5902	759 263

Fitted Distribution

Conclusion: The above analysis indicates that a normal distribution fits the data well. In this case, we let SYSTAT estimate the parameters of the normal distribution. It is also possible to fit a normal distribution with parameters of your choice; in that case, you need to enter the values in the parameter edit boxes provided for them in the dialog box.

Analysis of Variance

We used the t-test for comparing the mean of one sample with a specified value or for comparing the means of two groups. In many situations there is a need to compare several means and to test the significance of differences between three or more means from independently sampled populations.

Example: One Way ANOVA. This example uses a one-way design to compare average typing speeds of three groups of typists. Fourteen beginning typists were randomly assigned to three types of machines and given speed tests. The following are their typing speeds in words per minute:

1	Electric	Word processor	Plain old		
	52	67	52		
	47	73	43		
	51	70	47		
	49	75	44		
	53	64			
Does	the	equipment	influence	typing	performance?
H _o : The	average speeds o	f the three machines	are the same.		

H₁: The average speeds of the three machines are not all the same.

To carry out analysis of variance using the above data, we need to reorganize the data in a form suitable for SYSTAT. This is done by using the `Reshape' feature and `wrapping' the columns as follows. Wrapping puts the group variable in one column and the measurement

variable in another column. Thus we need to wrap the data in two columns for which from the menus choose:

Data

Reshape

Wrap/Unwrap.....

🗗 Data: Reshape: Wrap/Unwrap 🛛 💽 🔀					
ا ور	√rap Available variable(s):		Wrap variable(s):		
	ELECTRIC WORD_PROC PLAIN_OLD	Add> < Remove	ELECTRIC WORD_PROC PLAIN_OLD		
ः ()	Jnwrap		DK Cancel		

The data file looks as follows:

	TRIAL	MEASURE	(VAR00003)
_1⊾	1.0000	52.0000	
2	2.0000	67.0000	
3	3.0000	52.0000	
4	1.0000	47.0000	
5	2.0000	73.0000	
6	3.0000	43.0000	
- 7	1.0000	51.0000	
8	2.0000	70.0000	
9	3.0000	47.0000	
10	1.0000	49.0000	
11	2.0000	75.0000	
12	3.0000	44.0000	
13	1.0000	53.0000	
14	2.0000	64.0000	
15	3.0000		
16			
17			
18			
19			

The variable *MEASURE* is the typing speed using three types of machines. The levels '1', '2' and '3' correspond to machines *ELECTRIC*, *WORD PROCESSOR* and *PLAIN OLD* respectively in the TRIAL column. Of course, you might like to rename `Trial' as `Equipment\$' and `Measure' as `Speed' using the Variable Properties dialog.

Now let us do one-way analysis of variance using the wrapped data. To perform One-Way ANOVA, from the menus choose:

Analyze

Analysis of Variance

Estimate Model...

Analysis of Varian	ce: Estimate Model	?🛛
Model Repeated Measu	ures Options Resampling	
Available variable(s): TRIAL MEASURE	Add>	
	C Hemove Factor(s): TRIAL	
	Missing values Covariate(s):	
Save Residuals	Add -> (Remove	
	ОК Са	ancel

- Add *MEASURE* as the **Dependent** variable.
- Add *TRIAL* as the **Factor**.
- Click OK.

The output is displayed in the Output Editor:

Effects coding used for categorical variables in model. The categorical values encountered during processing are

Durbin-Watson D Statistic | 3.152318 First Order Autocorrelation | -0.696026 Information Criteria AIC | 81.025394 AIC (Corrected) | 85.469838 Schwarz's BIC | 83.581623

Least Squares Means

Conclusion: We reject the hypothesis as the p-value is small. The Quick Graph illustrates this finding. Although the typists using electric and plain old typewriters have similar average speeds (50.4 and 46.5, respectively), the word processor group has a much higher average speed.

Example: Two Way ANOVA. Consider the following data from a two-factor (Drug & Disease) experiment, from Afifi and Azen (1972), cited in Neter et al. (1996). The dependent variable, *SYSINCR*, is the change in systolic blood pressure after administering one of four different drugs to patients with one of three different diseases. Patients were assigned randomly to one of the possible drugs. The data are stored in the SYSTAT file *AFIFI*.

S.no	DRUG	DISEASE	SYSINCR	S.no	DRUG	DISEASE	SYSINCR
1	1	1	42	29	2	3	4
2	1	1	44	30	2	3	16
3	1	1	36	31	3	1	1
4	1	1	13	32	3	1	29
5	1	1	19	33	3	1	19
6	1	1	22	34	3	2	11
7	1	2	33	35	3	2	9
8	1	2	26	36	3	2	7
9	1	2	33	37	3	2	1
10	1	2	21	38	3	2	-6
11	1	3	31	39	3	3	21

12	1	3	-3	40	3	3	1	
13	1	3	25	41	3	3	9	
14	1	3	25	42	3	3	3	
15	1	3	24	43	4	1	24	
16	2	1	28	44	4	1	9	
17	2	1	23	45	4	1	22	
18	2	1	34	46	4	1	-2	
19	2	1	42	47	4	1	15	
20	2	1	13	48	4	2	27	
21	2	2	34	49	4	2	12	
22	2	2	33	50	4	2	12	
23	2	2	31	51	4	2	-5	
24	2	2	36	52	4	2	16	
25	2	3	3	53	4	2	15	
26	2	3	26	54	4	3	22	
27	2	3	28	55	4	3	7	
28	2	3	32	56	4	3	25	
				57	4	3	5	
				58	4	3	12	

To perform Two-way ANOVA, from the menus choose:

Analyze

Analysis of Variance

Estimate Model...

Analysis of Varianc	e: Estimate	Model	?×
Model Repeated Measu	res Options	Resampling	
Available variable(s): DRUG DISEASE SYSINCR	Add> < Remove	Dependent(s): SYSINCR	
	Add>	Factor(s): DRUG DISEASE	
		Missing values Covariate(s):	
	Add>		
Save Residuals	×		
	(ок с	Cancel

Select SYSINCR as the **Dependent** variable.

- Add *DRUG* and *DISEASE* in the **Factor** list box.
- Click OK.

Note: While performing ANOVA, all interaction terms are included in the analysis. If you want to specify your own model then use the 'GLM' feature.

The output is displayed in the Output Editor:

Effects coding used for categorical variables in model. The categorical values encountered during processing are Variables | Levels _____ __+____ DRUG (4 levels) | 1.000000 2.000000 3.000000 4.000000 DISEASE (3 levels) | 1.000000 2.000000 3.000000 Dependent Variable | SYSINCR 58 Ν Multiple R 0.675296 Squared Multiple R | 0.456024 Analysis of Variance Source | Type III SS df Mean Squares F-ratio p-value _____+ DRUG2997.4718603999.1572879.0460330.000081DISEASE415.8730462207.9365231.8825870.163736DRUG*DISEASE707.2662596117.8777101.0672250.395846Error5080.81666746110.452536110.452536 Least Squares Means Factor | Level LS Mean Standard Error N _____+____ DRUG125.9944442.75100815.00000DRUG226.555562.75100815.00000DRUG39.7444443.10055812.000000DRUG413.5444442.63712316.000000 Least Squares Means Factor | Level LS Mean Standard Error N _____ DISEASE121.8166672.49258019.00000DISEASE219.7458332.44598619.00000DISEASE315.3166672.37438020.000000 Least Squares Means Factor | Level LS Mean Standard Error N DRUG*DISEASE | 1*129.3333334.2905436.000000DRUG*DISEASE | 1*228.2500005.2548204.000000DRUG*DISEASE | 1*320.4000004.700545.000000DRUG*DISEASE | 2*128.0000004.7000545.000000DRUG*DISEASE | 2*233.5000005.2548204.000000DRUG*DISEASE | 2*318.1666674.2905436.000000DRUG*DISEASE | 3*116.3333336.0677443.000000DRUG*DISEASE | 3*24.4000004.7000545.000000DRUG*DISEASE | 3*38.5000005.2548204.000000DRUG*DISEASE | 3*38.5000005.2548204.000000DRUG*DISEASE | 4*113.6000004.7000545.000000DRUG*DISEASE | 4*212.8333334.2905436.000000DRUG*DISEASE | 4*314.2000004.7000545.000000DRUG*DISEASE | 4*314.2000004.700545.000000DRUG*DISEASE | 4*314.2000004.7000545.000000 ______ Durbin-Watson D Statistic | 2.413731 First Order Autocorrelation | -0.223131 Information Criteria AIC 450.018358 AIC (Corrected) | 458.291085 Schwarz's BIC | 476.804117

Conclusion: In two-way ANOVA, begin the analysis by looking at the interaction effect. The *DRUG* * *DISEASE* interaction is not significant (p = 0.396), so shift your focus to the main effects.

The *DRUG* effect is significant (p < 0.0005), but the *DISEASE* effect is not (p = 0.164). Thus, at least one of the drugs differs from the others with respect to blood pressure change, but blood pressure change does not vary significantly across diseases.

Note: Along with ANOVA table, SYSTAT also displays the Estimates of the model parameters. To get the estimates, you need to select **LONG** as the PLENGTH option. To do so, from the menus, choose

• Edit → Options.

• Select the Output tab. From the Output results, select Length as Long.

Linear Regression

Regression analysis is used to investigate a predictive relationship between a response variable and one or more predictors.

Example: Let us study the relationship between noise exposure (predictor or independent variable) and hypertension (dependent or response variable). The following data were collected on Y (blood pressure rise in millimeters of mercury) and X (sound pressure level in decibels).

Y	X
1	60
0	63
1	65
2	70
5	70
1	70
4	80
6	90
2	80
3	80
5	85
4	89
6	90
8	90
4	90
5	90
7	94
9	100
7	100
6	100

To perform Linear Regression, from the menus choose:

Analyze Regression Linear Least Square	es
	🖌 Regression: Linear: Least Squares 🛛 💽 🔀
	Model Estimation Options Predict Resampling
	Available variable(s): Y X C Remove Add> Independent(s): X C Remove
	✓ Include constant Cases:
	Save Residuals

- Select *Y* as the **Dependent** variable.
- Select *X* as the **Independent** variable.
- Click OK.

The output is displayed in the Output Editor:

Eigenvalues of Unit Scaled X'X 1 2 ------1.989028 0.010972 Condition Indices 1 2 ------1.000000 13.463989 Variance Proportions 1 1 2 -------CONSTANT | 0.005486 0.994514 X | 0.005486 0.994514 Dependent Variable | Y N | 20 Multiple R | 0.865019 Squared Multiple R | 0.734271 Standard Error of Estimate | 1.317963

Regression Coefficients $B = (X'X)^{\{-1\}}X'Y$

Std. Effect | Coefficient Standard Error Coefficient Tolerance t p-value _____+ _____ CONSTANT | -10.131538 1.994900 0.000000 . -5.078720 0.000078 X | 0.174294 0.023829 0.865019 1.000000 7.314472 0.000001 Effect | Coefficient Lower Confidence Interval for Regression Coefficients Effect | Coefficient Lower Upper VIF CONSTANT | -10.131538 -14.322667 -5.940408 . X | 0.174294 0.124232 0.224356 1.000000 | Analysis of Variance Source | SS df Mean Squares F-ratio p-value Regression | 92.933525 1 92.933525 53.501505 0.000001 Residual | 31.266475 18 1.737026 *** WARNING *** : Case 5 is an Outlier (Studentized Residual : 2.740993) Durbin-Watson D Statistic | 2.289856 First Order Autocorrelation | -0.179127 Information Criteria | 71.693825 AIC AIC (Corrected) | 73.193825 Schwarz's BIC | 74.681021

Conclusion. The estimates of the regression coefficients are -10.132 and 0.174, so the regression equation is: Y = -10.132 + 0.174X

F-ratio in the analysis of variance table is used to test the hypothesis that the slope is 0 (or, for multiple regressions, that all slopes are 0). The *F* is large when the independent variable(s) helps to explain the variation in the dependent variable. Here, there is a significant linear relation between *Y* and *X*. Thus, we reject the hypothesis that the slope of the regression line is zero (**F-ratio** = 53.502, *p* value (**P**) < 0.0005). SYSTAT also outputs statistics and warnings for outlier detection and for testing the assumptions in linear regression methodology.

Logistic Regression

Logistic regression describes the relationship between a *dichotomous* response variable and a set of explanatory (predictor or independent) variables. The explanatory variables may be continuous or (dummy variables) discrete.

Example: Binary Logistic Regression. To illustrate the use of binary logistic regression, we consider this example from Hosmer and Lemeshow (2000). The purpose is to analyse low infant birth weight (LOW) as a function of several risk factors.

For the present analysis we are considering only mother's weight during last menstrual period (LWT) and race (RACE=1:white, RACE=2: black, RACE=3:other). The dependent variable is coded 1 for birth weights less than 2500 gms. and coded 0 otherwise. Instead of considering LWT itself we are taking LWD, a dummy variable coded 1 if LWT is less than 110 pounds and coded 0 otherwise.

Our model is simple regression of LOW on a constant, LWD and RACE. To perform Logistic regression, from the menus choose;

Analyze Regression Logit Estimate Mod<u>el.</u>

Model <u>Category</u> Discr Available variable(s) AGE LWT RACE SMOKE PTL HT	Add -> Dependent: C Remove Independent(s): Add -> RACE LWD LWD	
UI FTV B BWT RACE1 CASEID PTD LWD	Conditional(s): Add> Cross> < Remove	
✓ Include constant Save: Predicted ✓	Confidence: 0.95	

- Select *FALL* as the **Dependent** variable.
- Select *DIFFICULTY* and *SEASON* as the **Independent** variables.

The categorical values encountered during processing are Variables | Levels

LOW (2 levels) \ 0.000 1.000

Binary LOGIT Analysis Dependent Variable : LOW Input Records : 189 Records for Analysis : 189

Sample Split Category Choices

	+	
0	REFERENCE	130
1	RESPONSE	59
T	otal	189

Log-Likelihood Iteration History

Log-Likelihood at Iteration1 | -131.005 Log-Likelihood at Iteration2 | -112.159 Log-Likelihood at Iteration3 | -111.995 Log-Likelihood at Iteration4 | -111.995 Log-Likelihood at Iteration5 | -111.995 Log-Likelihood | -111.995

Information Criteria AIC | 229.989 Schwarz's BIC | 239.715

Parameter Estimates

						95 % Cor	nfidence Interval	
Parameter	• _]	Estimate	Standard Err	or Z	p-value	Lower	Upper	
+	+							
1 CONSTA	ANT	-1.535	0.380	-4.043	0.000	-2.278	-0.791	
2 RACE	ļ	0.263	0.176	1.501	0.133	-0.081	0.607	
3 LWD		0.982	0.366	2.681	0.007	0.264	1.700	

Odds Ratio Estimates

		95 % Conf	fidence Interval	
Parameter Odds Ratio	Standard Error	Lower	Upper	
+				
2 RACE 1.301	0.228	0.923	1.836	
3 LWD 2.671	0.978	1.302	5.476	

Log-Likelihood of Constants only Model = LL(0): -117.3362*[LL(N)-LL(0)]: 10.683df: 2p-value: 0.005

McFadden's Rho-squared | 0.046 Cox and Snell R-square | 0.055 Naglekerke's R-square | 0.077 **Covariance Matrix** -1 2 3 --+----- 1 ± 0.144 2 -0.058 0.031 3 -0.023 -0.007 0.134 Correlation Matrix | 1 2 3 --+-----1 | 1.000 -0.867 -0.165 2 -0.867 1.000 -0.108 3 -0.165 -0.108 1.000

Conclusion. We see that only RACE is significant. The likelihood-ratio statistic of 10.683 is chi-squared with two degrees of freedom and a p-value of 0.005.

Graphs

SYSTAT offers a wide variety of graphical analysis tools that enable better visualization of the data. The editing options in SYSTAT allow you to fine-tune and change the display of the graph. To create Summary charts, Density displays, Plots click on the graph toolbar menu or select the icon from the Graph toolbox

Note. Graph menus are available when a data file is in use.

Example: Simple Scatter Plot. Let us create a simple scatter plot. Consider the following data file. In various international cities, how long must people work to earn enough to buy a Big Mac? How does this time relate to the length of a typical work week? We plot *BIG_MAC*, the working time (in minutes) to buy a Big Mac against *WORKWEEK*, the length of the work week (in hours). The data are in the **RCITY** file that has 46 cases, one for each city.

Open the *RCITY.SYZ* data file from DATA folder of main SYSTAT directory.

Note. By default, the file location is "C:\Program Files\SYSTAT 12\Data" You can also change the default path. To do so, from the menus choose:

- Edit \rightarrow Options.
- Select the **File Locations** tab.
- Select the radio button, **Set custom directories.**
- Change the path for **Open data**.

To plot *Big_Mac* against *WORKWEEK*, from the menus choose:

Scatterplot	📓 Graph: Scatterplot	?
	All Axes Layout Legend Color Fill Symbol and L Main Options Smoother Residuals Coordinates X-Ax	abel Surface and Line Si xis Y-Axis Z-Axis W-A
	Available variable(s): X-variable(s): CITY\$ REGION\$ REGION\$ WORKWEEK BIG_MAC LIVECOST EARNINGS PCTTAXES Add -> BIG_MAC C Remove Z-variable(s): Add -> C Remove Z-variable(s): Add -> C Remove C Remo	Repeated trial Matrix column:
	Add -> Grouping variable(s):
	Univariate density display on border Histogram	v

- Select *WORWEEEK* as the X-variable(s).
- Select *BIG_MACK* as the Y variable.
- Click OK.

The Output Editor displays the following graph:

Customization of an existing graph

Once you have created a graph, you can use the Graph Editor tab to change many of its features without recreating the graph. Using the Graph menu, you can change the properties such as color, axes, labels, symbols, titles and graph size.

Note: To view the graph in the **Graph Editor**, either double-click on it or click the **Graph Editor tab** or double click the corresponding node in the tree formed in the **Output Organizer**.

> To Edit Graph Axes

For editing graph axes as well as editing the graph as a whole you can use Graph Properties Dialog Box in the Graph Editor. To open the Graph Properties Dialog box, double-click on the Graph Editor. You can also right-click on the Graph Editor, open a menu with item 'Properties' at the top and click 'Properties' to open Graph Properties dialog box. Through the Graph Properties dialog box you can modify features of a graph, frame, axis, legend and element.

For editing graph axes select the **Axes** page of the Graph Properties dialog box. The Axes dialog enables you to alter the axes of your graphs. It has four tabs **Display, Font, Option** and **Line.**

Suppose now you find that X-axis label 'WORKWEEK' is difficult to comprehend and you want to make it more explanatory by changing the label, using the Graph Properties dialog box. Select the **Display** tab.

Display tab

Graph Properties 🛛 🕐 🚺	<
🖿 🖬 🖾 🗞 🛃	
Bottom	~
Display Font Options Line	
Label: Average working hours per week	
Minimum: 30 Decimals: 0 🗸	
Maximum: 50 Reverse scale	
Tick mark intervals	
Labeled (Tick): 4 🗸	
Unlabeled (Pip): 0	
OK Cancel	5
1 4 11 44 9 6	

- To enter the new label for the x-axes select `bottom' from the drop down list.
- Change the *WORKWEEK* in the **X-axis label** to *Average working hours per week*.
- Click Ok.

Now the X-axis label will be changed into AVERAGE WORKING HOURS PER WEEK.If you want to change the labels of other axes also proceed in a similar way.

Note: Using the same dialog box you can specify suitable ranges for different axes using the **Minimum** and **Maximum** boxes. For a better specification, you can specify the number of 'Tick Mark Intervals' you want using the **labeled**(**Tick**) and **Unlabeled**(**pip**) boxes.

You can also give a title for the graph using the same dialog box.

- Go to the **Graph** page.
- Click **Options** tab.
- Check the **Title** box.
- Enter a new title for your graph, say, WORKWEEK vs. BIG_MACK.

For a better presentation, you may want to color the graph.

• Check **Color** box and select a suitable color.

Graph Properties 🛛 🛛 🛛 🔀
🕒 🖬 🛛 🗞 🔊
Graph 1 🛛 🗸
Font Zoom/Rotate Layout Options
V Title:
Background color
Graph type: 💽
Coordinate system: Rectangular 🐱
Projection type:
OK Cancel

You can also select a suitable font for the graph title by using the **Font** option. See this graph as an example, which is Algerian bold underline uppercase size 10.

Thus the Graph Properties Dialog box enables you to edit graphs in various modes.

Example: Fisher's IRIS Data

We again use the famous IRIS data set from Fisher and explore it graphically. We have already found that SEPALLEN and PETALLEN have the strongest correlation for SPECIES 3 (i.e., Virginica). Now you may want to know: are these two variables vary substantially for different species?

Let us try to answer this question graphically.

Open IRIS from the data folder. From the menus choose:

Graph

Scatterplot...

🔜 Graph: Scatterplot		? 🛛
All Axes Layout Legend Main Options Smoother	Color Fill Symbol a Residuals Coordinates	nd Label Surface and Line Style X-Axis Y-Axis Z-Axis W-Axis
Available variable(s): SPECIES SEPALLEN SEPALV/ID	Add> X-variable(s): SEPALLEN	
PETALLEN PETALWID	Add> Y-variable(s): PETALLEN	Repeated trials
	Z-variable(s): Add>	Matrix columns Display as: 3-D
	Add> Grouping varia	able(s):
Univariate density display	on border Histogram	
		OK Cancel

- Select SEPALLEN as the X-variable(s) and PETALLEN as the Y-variable(s).
- Select SPECIES as the Grouping variable(s).
- Click OK.

The Output Editor displays the following graph:

Suppose you want to enter a title for individual frames, e.g., add a title 'Versicolor' for *SPECIES 2*.

- Click the scatterplot for *SPECIES 2*.
- Open the **Frame** page of Graph Properties dialog box.
- Click **Options** tab.
- Check **Title** box.
- Write VERSICOLOR.
- Click OK.

	🖾 🛞 🛃	
Fon	t All Axes	Layout
Zo	om/Rotate	Options
	VERSICOLOR	~
🗹 Title:		~
	<	>
🗌 Backg	round color	-
Graph ty	pe:	~
Coordina	te system: Rectang	ular 🔽
Projection	n type:	~

Now from the graph it appears that *PETALLEN* and *SEPALLEN* vary substantially for different *SPECIES*. For getting a better impression, it may be useful to plot them on a common graph. For thism from the menus choose:

Graph Scatterplot...

AllAxes	Layout	Legend	Color	Fill	Symbo	and Label	Surfa	ce and Line SI
Main	Options	Smoother	Residua	als Co	ordinates	X-Axis	Y-Axis	Z-Axis W-4
Availab	e variable	[s]:		×	variable(s):		
SF	ECIES		< hhA		SEPALLE	N		
SE	PALLEN			5				
SE	PALWID		< Remov	/e				
PE	TALLEN			Y	variable(s):		
	TALWID		Add>		PETALLE	N		Repeated trial
		ſ	< Remov	/e				
				Z	variable(s	t:	_	
			< bhA			<i>.</i>		Matrix column:
			1100 7				Dis	play as:
			< Remov	re			3-) 🔽
		-		G	rouping va	ariable(s):		
			Add>		SPECIES			Mirror (Dual)
		- F	< Remov	/e				MultiPlot
				_				
Univ	ariate der	sity display	on border		ogram			
🗹 Ove	rlay multipl	e graphs int	o a single	frame				

- Select *SEPALLEN* as the X-variable(s) and *PETALLEN* as the Y-variable(s).
- Select *SPECIES* as the Grouping variable(s).
- Check the Overlay mode.
- Click OK.

The Output Editor displays the following graph:

Now from the graph it is clear that *PETALLEN* and *SEPALLEN* vary significantly from one species to another.

Now if you want to label the SPECIES go to the **Legend** page of the Variable Properties dialog box. Note that in the Overlay mode, **Legend** tab is activated.

- Select '1' from the drop-down list of Label.
- Write 'Setosa' in the **Change to** box.
- Select '2' from the drop- down list and write 'Versicolor'.
- Select '3' from the drop-down list and write 'Virginica'.

Ele Edit Yew Data Utilities Graph	Analyze Advagced Quick Access Window Help		_ 8 ×	
Startpage Untitled.syo Iris.	Graph Properties		- ×	Graph Properties 🛛 🖓 🗙
7	Color V	. +		
6 –	Options Display legend	+ + +		
	Title: SPECIES + + + + + + + + + + + + + + + + + + +			Options
5 -	Change to: Verginica	_		Display legend
z	Horizontal: 4.46. V Rows: 3 V XX X			Title: SPECIES
		-		Label: 1
TA	OK Cancel			Change to: Setosa
ЦЧ	~			Location Layout
2 -	0 0		IES	Horizontal: 4.48. 🗸 Rows: 3 🔽
	222088000 S	GFLU		Vertical: 0 🗸 Columns: 1 🗸
1 800	000800-08 -0	 Setosa 	a	
	·	\neg × Versic	olor	
0		+ Vergin	nica	
4	5 6 7	8		
	SEPALLEN			
Frame	QGRAPH HTM	ECHO SEL BY WGT FRQ ID CAT OV	R NUM	

In the Graph Editor, the legend labels are changed accordingly. Note that if you do not want to display legends, just uncheck the **Display legend** checkbox. You can also choose the symbols for different *SPECIES*.

> To Edit Appearance of the Graph:

We have already customized some aspects of the appearance of a graph. Here are some more aspects:

The **Variable Properties** dialog box will enable you to customize some more aspects. Using the Graph Properties dialog box you can change font, color, symbol, style, fill pattern etc.

Color	? 🛛
Basic colors:	
	Hue: 120 Red: 128 Sat: 240 Green: 255
Define Custom Colors >>	Color/Solid Lum: 180 Blue: 255
OK Cancel	Add to Custom Colors

SYSTAT allows you to set color for fonts, symbol fill, symbol boundary, tick marks, axes lines, and elements, by choosing a color from the color palette that pops up by pressing of the corresponding color picker button. In the Color Palette, apart from the 48 predefined

colors, you can access more than 16 million colors using Define Custom Colors. Simply specify the RGB (Red-Green-Blue) or Hue-Sat-Lum (Hue-Saturation-Luminosity) values, use the slider on the right to adjust the shading and press Add to Custom color.

Suppose you want to highlight the points for SETOSA SPECIES.

- Select Setosa from the drop-down list of labels.
- Go to the **Elements** page.
- Click the **Symbols** tab.
- Select suitable options.

Note: The above menus are also available in the main Scatterplot dialog box.

- To change the color of the elements in the graph, select the option **Select color**.
- Select a color from the **Color** drop-down list for each of the y variables.
- Select the fill pattern from **fill** tab.
- Select the symbols from **symbol** tab.

<u>Fill</u>

- To change the fill pattern for the elements in a graph, select the option **Select fill.**
- Select a fill pattern from the **Fill Pattern** drop-down list for each of the y variables.

Graph	Proper	ties		? 🛛
	🛛 🖾	> 💽]	
				×
Lin	es	0	ptions	Font
Smo	other	9	Symbol	Surface
Type:	Symbol	*		~
			0	
Size:	1.5	*		
-Fill			Boundary	·
Style:		~	Style: -	~
Colory		^	Color:	
Color.			Width: 1	*
		4		
C whh				
2			OK	Cancel

Symbol and Label

• You can change the symbol type by using any of SYSTAT's 23 built-in symbols.

Graph Proper	Graph Properties					
🖿 🖬 🖾 🕅	è 🖪)				
				~		
Lines	Op	tions	F	Font		
Smoother	S	ymbol	Su	urface		
Type: Symbol	*	0	¥			
		+	^			
Size: 1.5	v	Δ				
Fill	_					
Style:	~	⊲		- •		
		⊳				
Color:	-					
		\diamond		×		
Apply all		☆				
		Ó				
2		-		Cancel		

Getting Help

SYSTAT uses the standard HTML Help system to provide information you need to use SYSTAT and to understand the results. This section contains a brief description of the Help system and the kinds of help provided with SYSTAT.

The best way to find out more about the Help system is to use it. You can ask for help in any of these ways:

- Click the button in a SYSTAT dialog box. This takes you directly to a topic describing the use of the dialog box. This is the fastest way to learn how to use a dialog box.
- Right-click on any dialog box item, and select 'What's this?' to get help on that particular item.
- Select Contents or Search from the Help menu.
- For help on commands, from the command prompt (on the Interactive tab of the Commandspace) type:

HELP [command name]

References

Afifi, A. A., May, S., and Clark, V. (1984). *Computer-aided multivariate analysis*, 4th ed. New York: Chapman & Hall.

- Fisher, R. A. (1936). The use of multiple measurments in taxonomic problems. Annals of *Eugenics*, 7, 179-188.
- Hand, D. J., Daly, F., Lunn A. D., McConway, K. J. and Ostrowski, E. (Editors) (1996). *A handbook of data sets*. London: Chapman & Hall
- Hosmer, D. W. and Lemeshow, S. (2000). *Applied logistic regression* 2nd ed. New York: John Wiley & Sons.
- Neter, J., Kutner, M.H., Nachtsheim, C.J., and Wasserman, W. (1996). Applied linear regression models. Homewood, IL: Irwin.
- Pearson, K. and Lee, A. (1903). On the laws of inheritance in man. I. Inheritance of physical characters. *Biometrika*, 2, 357–462.