Edinburgh Napie’

UNIVERSITY

Automatic XSS detection and Snort signatures/
ACLs generation by the means of a cloud-based
honeypot system

Benoit Jacob

08009764

Submitted in partial fulfilment of
the requirements of Edinburgh Napier University
for the degree of
Msc Advanced Networking

Supervisor Professor William J. Buchanan
Second marker Mr Alistair Lawson
School of computing

December 2011

Benoit Jacob

Authorship Declaration

I, Benoit Jacob, confirm that this dissertation and the work presented in it are my own
achievement.

Where | have consulted the published work of others this is always clearly attributed;

Where | have quoted from the work of others the source is always given. With the exception
of such quotations this dissertation is entirely my own work;

I have acknowledged all main sources of help;

If my research follows on from previous work or is part of a larger collaborative research
project | have made clear exactly what was done by others and what | have contributed
myself;

| have read and understand the penalties associated with Academic Misconduct.

| also confirm that | have obtained informed consent from all people | have involved in the
work in this dissertation following the School's ethical guidelines

Signed:

Date: 12 December 2011

Matriculation no: 08009764

Benoit Jacob 3

Data Protection Declaration

Under the 1998 Data Protection Act, The University cannot disclose your grade to an
unauthorised person. However, other students benefit from studying dissertations that
have their grades attached.

Please sign your name below one of the options below to state your preference.

The University may make this dissertation, with indicative grade, available to others.

The University may make this dissertation available to others, but the grade may not be

disclosed.

The University may not make this dissertation available to others.

Benoit Jacob 4

Abstract

It is no secret that nowadays cloud computing is becoming popular with large companies,
mainly because they can share valuable resources in a cost effective way. This is just the
beginning of the cloud computing, an independent research firm “Forrester Research”
expects the global cloud computing market to grow from $40.7 billion in 2011 to more than
$241 billion in 2020 (Ried, et al., April 2011). This increasing migration towards cloud
computing is resulting in an escalation of security threats, which is becoming a major issue.
The cloud computing is even considered to be a “security nightmare», according to John
Chambers, Cisco CEO (McMillan, 2009).

The migration of networks and servers over the cloud means that hacking techniques are
now aimed at cloud-based servers. According to the Web Hacking Incident Database (WHID,
2011) the Cross Site Scripting (XSS) attacks are currently the second most implemented
attacks and they are associated with a 12.58% of the overall attacks on the web. Moreover,
XSS attacks can easily pass through Intrusion Detection Systems (IDS), such as Snort, without
raising an alert as these systems lack detection for attacks which use hex-encoded values
(Mookhey, et al., 2010).

This thesis aimed to detect XSS attacks sent to a cloud-based Webserver by using a
honeypot that simulates a fake Webserver onto the cloud computing of Edinburgh Napier
University. The honeypot is able to log any interaction with the webserver simulated. By
developing specifics Bash scripts, this thesis showed the possibility to detect XSS attacks,
through analysis of the honeypot’s log file, leading to the generation of ACLs/Snort
signatures. ACLs will block the IP addresses source of the attacks and the Snort signatures
will block similar packets to enter the network again.

All experiments were done through the cloud of Edinburgh Napier University to ensure that
the results are the more realistic possible. The result shows that out of a random set of 50
XSS attacks, the Bash scripts implemented in the honeypot generated 26 Snort signatures.
These signatures were implemented into Snort which was then able to detect 64% of the
same set of XSS attacks. This is 4% above the acceptable level of True Positive alerts, which
should be at least 60% of the total alerts raised (Timm, 2010). Finally, background traffic and
XSS attacks were injected into the honeypot at increasing speed, to measure the efficiency
of the honeypot in detecting attacks within high loads of traffic. Despite an increasing
latency in correlation with the network load speed, HoneyD was able to log/detect the same
XSS attacks, as seen previously. However, at 2mbps, the honeypot generated a
“segmentation fault” error due to insufficient memory that the CPU could not physically
address. The 2mbps load speed was identified to be the breaking point of the honeypot and
an unstable interval was established between 1.5-2mbps.

The conclusion drawn in this thesis is that HoneyD coupled with Bash scripts, are
successfully able to automatically detect XSS attacks and trigger the generation of
ACLs/Snort signatures. Further work could be realised by improving the detecting engine.

Benoit Jacob 5

Table of Content

ACKNOWLEDGEIMENTSccoeeeirenennsenssenssessnsssnsssnns 10
CHAPTER 1. INTRODUCTIONcciiiiiiemmnnniieiiiiieennmessssssssisessssesssssssssssssssssssssssssssssnssssssssssssssanssssssssssans 12
00 R 0 1V 1 L P PPPPPPP 12
1.2 BACKGROUNDcvttiiiiiiteiirtte e sttt e sttt e s st e s st e e ssne e e s samae e e s mbe e e s aab et e s s st e e e e mneeesaaneeeesmneeesannaeessannes sreees 12
1.3 AIMS AND OBJECTIVES ceeeeietieieiieeeeeteeieeeeeeeeeeeeeeeaaaaaaaaaaaaaasaasasasassssssssssssssssssssssssnnnsnsnnsnsssnsnsssnssnsnssnssssnnnes 13
1.4 THESIS LAYOUT .eeeetetiittie sttt e s sttt e sttt e st e s st e e s e e e s s et e e s ambe e e s aab et e s s st e e e s mne e e saaneeeesamneeesennanessnneee anes 13
CHAPTER 2. TECHNOLOGIES REVIEW........ccciiiiiimmmnnniiiiiiiiieennmiissniimmessmsssissssssssssnsssssssssssssssnssssssssssans 16
2.0 INTRODUCTION ..uuuuuuuutuuturusenssssssssssssssssseseeseereeeeeeeeeeeeeteeeeeeteeeteetetetteetttttttttteeeeeeeeeeeeeeeeeeseeeeeseeeeseeeeeessonns 16
2.2 HONEYPOT SYSTEMS ..eeeeuveeeeeureeesssueeeessuseesesseeeeasssseeaasssesssssseesssssssessnssssessssesesssssesessssessessssessnssseessnssnees 16
D N W=V =] o) [T (=T e o1 17/ VS 17
2.2.1.1 (WX VAT =T = Toru o] a1 a o aT<1¥/ o Yo RSP 17
2.2.1.2 VYo TT0 Ty g TN =T = Yot o] o TP PSPPSR 17
2.2.1.3 o 17 oW 0 =T =T £ T o TP 18
2.2.2 PUIPOSE Of DEPIOYMENT ...ttt e e e st e e st e st e e et e e entaaessneeaenasnees 18
2.3 INTRUSION DETECTION SYSTEMS ...uvvuvuvvurvrrursrsrseeersnseererreeeeeeeeeseeeeeeeeeeseeteetettteeteteeteesseseeeaeeseesaeeseesessessenns 19
2.3. 1 TYPES OF IDS oot ettt e e e ettt e e e e e et e e e e e ettt aa e e e e e ———taaeeaaaarraaaaaaaan 19
2.3.1.1 NETWOIK-DASEU.....cco e e e e et re e e s bee e s e nte e e e ataeeeennraeeennns 19
2.3.1.2 HOSE-DASEA IDSeeii ettt et e e s e e s s are e e s s e e e e sabeeesateeesnnneeeennnes 20
DG I A 14 {-Toux (o ¢ I =T 11 o T L= 21
23.21 Signature-based INtrusion DEtECIONccviiiriieiiie sttt 21
2.3.2.2 Anomaly-based Intrusion DeteCtioNnovvvcuiiericiiie e e 21
2.3.3 Acceptable levels Of falSe QIAIMSoooeueeeeeiiieecee ettt s e e saaa e 22
2.4 CLOUD COMPUTING ..eteiiurtrerairttessanteeesasteeessseeessamreeesareeeesmaeeesemreeessasaeesssreeesamneeeseaneneesmneeesannaeeesannenes 23
D N XX Y= 1 (o | M@ o Lo [o Tor (=T Y ok SR 23

D B -1 o [0V =TT 1Y Lo e L= KRR 23
D BTV [or =3 Y] Lo o =] KR 23
D RV |4 (Y Lo] [Yo [A o F OSSP 24
2.4.5 ClOUA HYPOIVISOISvveeeeeeeeeeeieeee s e eeectetee e e ettt e e e e e s ettt e e e e e e ssasstaaaeaeeesssssssaaessessssssssaaees 25
2.4.5.1 GENETAI OVEIVIEW ...eeeieiieeeeeieee ettt e e tte e et e e e aa e e s e ata e e e stteeeseataeassnsaeeeentaeesnnseeeans 25
2.4.5.2 VIMWAIE ESXi wvtitiiiiiiiiiiiee sttt e e ettt e e e s s sttt e e e e e s s san b e e e e e e esssnsnaaeeessenans 26

2.5 HACKING TECHNIQUES ...uuvteeeeuteeeseeueeeessutsesessssessasssseessssessssssessssssesessnsssesssssesessnssssessssessessssesssssssessnssnnes 27
2.5.1 SQLINJECHION. ..ccccooeeeeeeeeeeeeee ettt ettt ettt e e e ettt e e e e e sttt e e e e e s sassseeeaeeeas 27
2.5.2 Cross Site€ SCrPtING (XSS) .eeeueeeeeeeeeeeeee ettt e et e et estte e s e e et a et aestaseassaessssessseessseessseenans 27
DB R -1 (o] e) Y =1 Y (ol - S 28
2.6 CONCLUSION. ...etttiiumtteeiatietesettee e sttt e st e e s s et eesmbe e e s saba e e e s sb et e s s ab et e e s s s e e e e amsaeeseameneesamneeeesanaeeesanrene paneesas 29
CHAPTER 3. LITERATURE REVIEW.......cccuuuiiiiiiiiiiennnenseeiieereennnesseesseeeesnnssssssssessssnnnsssssssssssssnnnsssssssnsaens 31
3.0 INTRODUCTION ..uuuuuuuuuuutuunnsnsssssssssssssssssseeseeeseeeeeeeeeeeeeteeeeeeeeetetteeteeeetttetttetttteeeeeeeeeeeeeeeeeeeeeeeseeeeseeeseessrnns 31
3.2 CLOUD COMPUTING SECURITY ISSUES «vvveeeuvreeesureressasereessnsseeessssesessssessssssessssssnesssssssessnssnsessnsessssnssesensnsees 31
I RV 14 Y Lo [Yo [oY XYV =X SR 31
3.2.2 Side-channels information 1€GQKSeueeeeeeecoeeeeeeeeeeeiieiee e e eeeciee e e e e e secstaae e e e e eessasareeeas 33
3.2.3 SECUIItY MANAGEMENT ... sssssssssssssssssnssnssnnnnes 33
3.3 SIGNATURES GENERATION BY THE MEANS OF HONEYPOTeevtiiiiiiieiiiriiesereeessireeeereee e smnee e s e 34
3.4 HONEYPOTS EVALUATION ...eteieuvteeeeeureeesssreeesssseseasseesasassesesssssesssssssessnsssesssssssessnssessssssessessssessssnssessnsnees 36
3.4.1 Low/mid interaction NONEYPOLSccveeeeeieesieeieeieeiesiesteste st essestaesteestaetaesteesassaessaeses 36

Benoit Jacob 6

3.4.2 High interaction NONEYPOLceeeeeeeeeieeeee et eeete e e e s s ettt e e e e e e sssstaaeaeeeesssseeaees 37

3.4.3 Decision towards a NONEYPOL SYSEEM........cccccueeeeeciieeecieeeeecteeeecee e e sta e e s sae e e s steaaesssaaeeneees 37
3.5 CROSS SITE SCRIPTING (XSS) 1.utteeteerireesietenieeentieesiteesueeesuteessteesseesasesssaesssessnsesssesensessnsesssssesnssessssesnnees 38
3.5.1 INtroduction QN DECISIONccecueeeeeeiieeeeiieeeseee et e e e etee e seee e ettt e e s staaaessteaennseaessanees 38
IV | =Tot (o] I 1 1=l o O RR 39
3.5.3 DELECLION RUIBS ..ottt s ettt e s te e e et e e s stte e s sstaeessaaessnsesesssanassnsseneas 40
3.5.4 Recent Cross Site SCripting ALLACKSuueeeeeeeeeeeee e et ettt e e e ea e e st e e steaaesstaaeenaes 41
3.54.1 A Wide spectrum of websites targetedcccceevveciiieiiie e, 41
3.5.4.2 Up to date example: FAcebOOoK XSS.....ooo i 41

3.0 LEGALISSUES ..uuuuuuuuuuuuuuuuutterstssssessssssseseseseeeereseeseeeseeeseeeeseeseeeeeeeteeeeteeteeeeeteeeeeeeeeeeeeeeeeeeseeseeseeeeseeses sonnnns 42
R A o [LU] [0 S 43
CHAPTER 4. DESIGNoiiiiiieeeicciiiitienineesieiseereennnessssessssresnnssssssssssseesnnsssssssssssesnnnsssssssssssssnnnssssssssnanes 46
4.1 INTRODUCTION .ettttiurtressrtressnrteesanreeesaneeeseameeeesamretessaraeeesmbesesanreeessabeeeessraeesamnaeeseananeesnnenesanranessn senas 46
4.2 NETWORK ARCHITECTURE OVERVIEW . .ueeeeeeeeeeeeseeeee st sssssssssssssstseseesseaeeaaeeaesenenanes 46
4.3 XSS SIMULATION AND LOGGING CAPABILITY ceceeuuiireeteeesesiuirrteeeesessnnreteeeesessnnneeeeesssesannrseeeeesssssnsssneeeesanns 48
4.4 DETECTION OF XSS ATTACKS AND GENERATION OF ACLS/SNORT SIGNATURES ...c.veeeueeerieereenreenteenreenreesseenveenns 48
4.4.1 Extracting content aNd IP QAAIESScooeoueeeeieiiiieeiiee ettt e 48
4.4.2 Programming 1anquaGe dECISIONueeeeeeeeeeiiiieeeeeeeeiieeeeeeeeeeetteeesaeeesseistaseaaseessssseneesas 49
4.5 EXPERIMENTATIONS 1ueeeeeeeeeeeeeeeeaeaaaaussaaaaaaaaaaaaaaanaaaaaanesassassssssssssssssssssessseseeseseeeeeeeeaeeeaeeaeesaaaaeeeeseeeneens 49
I Yol ¢ o O = =10 L= (=X RSP SR 50
4.5.2 NIDS Within Lab @NVIFONMENTcccc.eveeeeeeieeeeeeeeeieeeecee e et e e st esstea e s s esteasesseaessneeaennes 50
4.5.3 NIDS in Real WOrld SIMUIGEIONccouveeeeieeeeeeee e et ettt stea et ttae e s evaeeesseae e 51
4.5.4 Honeypot in Real World SiMUIQLIONcccueeeeeeeiieeeiieeeeiie e ssee e s seaeetee e e svtaa e e 51
N @] [0 L 1 T] PR 51
CHAPTER 5. IMPLEMENTATION.....ciitttuuueiiiiiiniieensmesssssniiimessssssssssssmsmessssssssssssssssssssssssssssssessssssssssssssnes 54
5.0 INTRODUCTION ..uuuuuuuuuuutttutttttustssstssssseseeseseeeeeeeeeeeeeeeeesteeaeeesseeeeeeeteetettteeeeeeeeeeeeeeeeeeeeeeeeeaeeeeeseseeseseseessnnns 54
5.2 CLOUD CONFIGURATION AND TEST BED...eeeeeteeuuurrtrreesssasunrreeeeesessanseneeessessannseeeeesssssnsnsseeseessssssssseeessessnnnnes 54
5.3 INSTANCES CONFIGURATION. ... uuveeeesureeessreeeessnseeessseesassssesesssssessssssesssnssnesssssssessnssnsessssessessssessssseessnssnees 56
5,301 HONEYD ...ttt ettt e e et e e e e s ettt et e e e e anteeeee sae 56
5.3.1.1 2 T Tol T 0 15 = | =Y o o SRS PPPRSPRPPNE 56
5.3.1.2 (@7o] oY iT={U T =Y o o I {1 L= 56
5.3.1.3 Service script adaptationc.ueeeiei i e e 57
5.3.14 STArTING HONEYD ...t e e e s s e e e e e e e s s b taeeeesessannnes 57

I 20 Y ¢ o] PP PPPPPPPPPPP 57
5.3.2.1 N =Y VYo o QT =T - [o] PSPPSR 58
5.3.2.2 (@oY oY iT={U T =Y [o I 1 L= 58
5.3.2.3 R = 1 11T o] o PPNt 58

I R Vi ' (o (=1 SRR 59
5.3.3.1 DT 1 SRR 59
5.3.3.2 B o] T =T o] F= 1 YU SRS 59

5.4 PROTOTYPE SCRIPTS CREATION ...uuuuurteteesssaauurrteeeessssansseeeeessasannseeeesssssannseseeessssssssseeeesesssnnssseeeesessannnes 60
B B Yol ¢ 101 A0 V=1 4V 1= APt 60
5.4.2 SNOIt SIGNATUIE SCIIPT ... asasssssasssssssasssssnnnnes 61
R S Y) B Yo ¢] <) SRS 62
5.4.4 SNOIt SIGNALUIE TIANSTEIveeeeeeeeeeeee ettt e et e e e st e e st e e st e e e ateaesnseaesaneeasnreees 63
5.5 EXPERIMENTATIONS «etttuuuueeeeeettttntuunaseeeeeestsnsnssaeseeesemssssssssseeesseesssssssssseesensssssssssseeesssnsnsnsnnsssesssennnnnnsssees 63
I B Yo o] R = f ot 1L =2 g L= 64

Benoit Jacob 7

5.5.2 Snort Within Lab @NVIFONMENTcccoee e asasssssnnsnes 65

5.5.3 Snort in Real WOrld SimMUIGLION...............uueeeeeeeeeeiieeeieeeeeeetiieieeeeeesetiiaeeaaeeeessvsseeeeeeeessssseeaeeas 66

5.5.4 HoneyD in Real World SimMUIGEIONc.ccccueeseiesieeciieesiiiesieesieeseeseeseessieessieessvaessaee e 67

LT ST o o LU] Lo 68
CHAPTER 6. EVALUATIONccuuiiiiiiiiiiriniiiiiiiiiiisinnessssisiiiiesmssesssssssiimsssnnes 70
6.1 INTRODUCTION ...ttteeteseeuutrrtreeessssurrrteeeesssasunreaeeeesssaassneteeesssssassssaeeeessssssssnaeeesssssnsssseeesssnsnssseneessssnssees 70
6.2 SCRIPTS EFFECTIVENESS ...uuvuuuuusuruusssussssssensssesesseseseseeeeeseeeeeeeseeeeeteseteeetteteteeettettetaetaeeaeeeeeeeeeeeseesesssesssesans 70
6.3 SNORT WITHIN LAB ENVIRONMENTvvtteeeesrsurrrereeesssssunrreeeeesesssmssseeesssssasssseeeesssssnsssneseesssssssssneeesssssnnnnes 71
6.4 SNORT IN REAL WORLD SIMULATION ...veeesuvteeesureeessanersessnsseeesssnsesssssesassssesssssnesssssesessssnsessnsesessnssesensnsens 73
6.5 HONEYD IN REAL WORLD SIMULATION ...uuvvuuuvvrrurrreresreeererersrererereeeseseseseeeeseeeeeeeeereeesssteeeeeseesesseeasssssaseaseens 74
6.6 RESULTS ANALYSIS COMPARED TO EXPECTED RESULTS ...vvveeevrreeseurreessnensessnseesesnsesssssssesssssseesssssnessnnsssesssens 76
L3 A o] [LU] L] S 77
CHAPTER 7. CONGCLUSION ...ccuuuiiiiiiiiiennnnessieiiiiieemsmessssssssmmessssssssssssssmesses 80
7.1 INTRODUGCTION ..uuuuuuuuuuuuuuunnnnssssssssssssseseessesseseeeeeeseeeaeesteeeeeeeeeeeeeeeteeteeteeeeeteteeeeeeeeeeeeseeeeeeeeeeeseseeseseesessanns 80
7.2 IMIEETING THE OBJECTIVES. ..uuuuuuutuurrrurusrsssssereeseseeeseeeeeeesseseeeeeeeteetetteetettetttettttttteteessteseseeeeeeseeeessesesesssennnns 80
0 N O]] -Tor 11 -2 RS 80

A0 A 0] -ot 1 1Y - SRS 81

A0 B 0] o) =Tl 1 1V TSRS 81

28 T o] N U] [0 NS 81
T4 CRITICAL ANALYSIS ceeieeuuirretteeesesauttrteeeesssaausraeeeeesasasussreeeesssssasssseeeesssssssssseesessssssssssseeessssassseneeesssnsnnsnnees 82
28 T S LU YV o U 83
CHAPTER 8. WORKS CITED ...ccuuuiiiiiiiemmnnesiiiiimmmsmmnessssissimmmsmssssssssssimmesssnes 86
APPENDIXA. UNDERSTANDING HONEYD.....cccoooieiiiimmmnnnnisiesiinnrennnssssssisssssssssssssssssssssssssssssssssssnnsnss 920
Al FEATURES <. eeeiiitieieieeeeeeeee ettt ettt ettt e e e et e e e e e e e e e e e e e e e e eeeeeeeeaaaaaaaaasaasasasasaaaaa e aaaanaaaanaasnnannnnnnnan seaaaes 90
A2, ARCHITECTURE OVERVIEW...ctttettieiuuirteteesssssurrteeeesessassssteeeesssssasssseeeesssssasssneesessssssssssesessssssnsssseeesssnnns 91
A3. CONFIGURATION FILE ..ttt s e s seae st e e e eaeeaaaaaaaaaeaaeeaaasaeneaaeeenenes 93
Ad. LOGGING CAPABILITY .t ttteettieiieeeeteeeieee et ettt eeeeeeeeeeeeeeeeeeeeeesasaaassaaaasasasssssssasssssssssssssssssssssnsnnnnsnnsssnsssnsnns 93
APPENDIXB. UNDERSTANDING SNORT ...ccceuuuiiiiiiiiinmnnnmisiesiinsmsnsssssssssiissssssssssssssssssssssssssssssssssnnsnss 95
B.1. SNORT COMPONENTS 11t ttttttetetitettttietteee e ettt e eeeeeseaesssasasssssssasasassssssssssssssssnssnsssnnsssssssnssssssssssssssssssssssnnns 95
B.2. SNORT CONFIGURATION FILE...uuuuuvteteeessasuurrneeeesssasnnereeeessssassnseneesssssssssneeeesssssssssneeeesssssnsssseeeesssssnnnnes 96
B.3. RULE FORMAT .ttt ettt ettt ettt eaeeaaassasessasaaasaasasaaaa s naaannannnnannannnae 96
LI 2 B 1V 1= 1 = T = USRS 96
B.3.2. RUIE OPLIONS......oeeeeeeeeeee ettt e et e e st e e et e e e st aessseaesasseeesssseaesasseaessnsenasnans 97

B.4. STANDARD OUTPUT ALERT AND LOGGING ...uuuuuuuuuuuuuunnuunnnnnnnnnnnnnnnsnsnnnsssssssssssssssssssssssssssssssssssssmsmsmmmemmmnn 97
APPENDIX C. SCRIPT ANALYSIS ...ccuueiiiiiiiiiennnnesieiiiiitessmsisiesiissssssmssssssisssssssssssssssssssssssssssssssssssansnss 98
C.1. SN O RT SCRIPT 1 eteeeteeetteteeeeeteetessaaaaaaaaaa s et bb bbbttt sttt sttt et eeeeeeeaeeeeeeeaaaeaaaee oe 98
C.2. AACL SCRIPT «ttttteeeeseeittt ittt e e e s sttt e e e e e s s are et e eesssaauareeaeeessaaasbbaeeeeessassbbbeeeeeesnnnsaaaeeessasannreaaaeessannseees 99
APPENDIXD. CONFIGURATION OF A PASSWORD LESS SSH CONNECTIONcccoorrermmmennecccerneennnns 100
D.1. SERVER SIDE (HONEYPOT) ..vteuveerureerureesureesnteesseessessnsesenseessssessssessssessssessssessssessnsessnsessssessssessnnesenns 100
D.2. CLIENT SIDE (SNORT) «uvvteeeitreteeeiteeeeiitreeeeiteeeesasseeeesseeeeeseesessssesesastesessassssesassesesssssssssssreesnssesessnnes 100
APPENDIXE. SNORT SIGNATURES CREATEDccoettremuunesiininimmnnnnssssesiinmmsssssssssssssnssssssssssssssssssnns 101
APPENDIX F. GANTT CHART .cottiiiiiiiiiiennneniisiiiitessmssssiostimmtsnssssssissitsmsssssssssssssssssssssssssssssessssssssssssns 103
APPENDIX G. RESEARCH PROPOSAL.....cccctttttuneniceeiriereennnssssesseeeeesnnssssssssssessnnnsssssssssesssnnssssssssssssnnns 103
G.1. BRIEF DESCRIPTION OF THE RESEARCH AREA - BACKGROUNDuvvteeivrereenerreeesnreeessnseeeessseeesssnseessnssenes 103
G.2. PROJECT OUTLINE FOR THE WORK THAT YOU PROPOSE TO COMPLETEveeeeuvveeeeereeeesnreeeesnnnsessnnenssnsnenes 104
G.3. PROPOSAL REFERENCESettetttttruuiseeeetetrueusseeeeeerransnsseseesssessssnsssesessensssssssseseesnnsssnssseseeesnsnnnnnns 106

Benoit Jacob 8

List of Figures

Figure 1 - Honeypot taxonomy based on (Christian Seifert, 2006)ccovvvveeeeeeeeicrnreereeeennn. 16
Figure 2 - Low interactivity (KOOt, 2007)ueeeiiiiiiiiiirieeeeeeeeeeirieeeee e e sentreeeee e e e eesnsrrreeeeeeeens 17
Figure 3 - Medium interactivity (KOot, 2007)ooeeeiiiiieieiieee e 17
Figure 4 - High interactivity (KOOT, 2007).....c..coicuiiiiiieiiieeeiieesireeesreeseteeseeesveeesveessraeesneeenns 18
Figure 5 - Honeypot deployment: Research and Productionccceecvvveeieiieeeeciiieeccsiieeeens 19
Figure 6 - NetWOork-Dased IDScocuiiiiiiiiee ettt e e e e s e e e s saaae e e eenaaaeeennnes 20
FIZUre 7 - HOSE-DASEA IDScuuiiiiiiiieieeiieeeee ettt eetrre e e e e s eabbeaeeeeeseesasbaaeeeeeeesennns 20
Figure 8 - Hypervisor Types (SCsami, 2011)ccccuirieiiiiiieeieiieeeeecieee et eeeee e e e e iree e e eeaaeeeeenes 25
Figure 9 - VMware ESXi Server (Venezia, 2008)ccueeeeeiieeeeeiiieeeeeieeeeecieeeeeeveeeeeeenreeeeeans 26
Figure 10 - Vulnerable VMs represent a risk (Jarabek, 2009)........ccccceevueeriieriiieeiiieeeiieesieens 32
Figure 11 - Dedicated security VMs update vulnerable VMs (Agastya, 2011)cccccvvveeeeeenn. 32
Figure 12 - Side-channels attack (Agastya, 2011)ccccvverieeieiiiiiiiieeeeeeeeeciirreee e eerirrrereee e 33
Figure 13 - Statistics of top attacks 2011 (WHID, 2011)cccveeeeiiiiieeeiiee e e 39
Figure 14 - Facebook XSS text prompt (Harmonyguy, 2011).......ccceeeeiiiiieeeeiiereeeiieeeeeiieee e 41
Figure 15 - Facebook XSS Javascript (Harmonyguy, 2011)ccceeevveeviieeniieeenieeeieeesieeesveeens 42
Figure 16 - Network ArchiteCture DESISNcccccueeeiiiiiiiee e et sre e e e e e sre e e e e saaeeeenaes 47
Figure 17 - Flow chart paths choices for incoming packets........ccccveeieeiiiiciivveeeeeceeiciireeeeeee. 47
Figure 18 - EXPEriments SUMIMATYuuuiuiuiuiuieiirirerererererererereeseeeeeeremeeerereteteteteteieteeesaeseaeeaeaeens 50
Figure 19 - Deployment of INSTANCESeuviiiiieeie e 55
Figure 20 - Instances implementation OVEIVIEWceoiviiieeiiiiiiie et eeee e sseee e 55
Figure 21 - Flow Chart Snort SCript prototyPe.....ccoocciiieeeee e eeecrrree e 60
Figure 22 - Flow Chart ACL SCript ProtOtYPe.. e ciiiiciiieeeiee ettt eeeeirrreee e e 60
Figure 23 - UML Sequence EXperiments MOdEl.......cccuvveeiiiiiiiiiiiieeeeeec e eeeinreeeeee e 64
Figure 24 - Wireshark capture honeyd_attack.pcapccccceeeiieiciiiieei e, 65
Figure 25 - SN0t Lab rESUILS «....vviii ittt e e s 72
Figure 26 - SNOrt 10g file [ah..c...ueeeeeeee e 72
Figure 27 - Real world SNOrt @lertsoooiiieiiiiieeccieee et e sree e e 73
Figure 28 - Chart XSS injection latency according to the background traffic speed 75
Figure 29 - Chart attacks detected according to the background traffic speed..................... 75
Figure 30 - Error message HoneyD with background traffic at 2mbpsccccccevviiiiiiiieennns 76
Figure 31 - HoneyD architecture (Provos, 2007)cccceeiiieerieeeniieeesieeeeeeessieeesveeesseesnsneeens 92
Figure 32 - Snort components overview based on (Snort, 2011)......cccceeevviieeeencieeeeeiieee e 95
List of Tables
Table 1 - CoNfUSION IMAtFiX......uiiiiieeiie e e e scrre e e e e s e e erer e e e e e e e seennraeneeeeeeeennns 22
Table 2 - Differences between each level of involvement based on (Mishra, 2004).............. 37
Table 3 - Special characters specification based on (Mookhey, et al., 2010).......c.cccecveerunenns 40

Benoit Jacob 9

Acknowledgements

This dissertation would not have been possible unless my supervisor Professor William J.
Buchanan. Thank you for giving me access to Edinburgh Napier cloud computing, for helping
me refine my ideas, giving me valuable advices and answering to the numerous amounts of
emails sent during this project.

Moreover, | would like to thank Mr Alistair Lawson, my second marker, for the time spent
reviewing this thesis and taking part to the viva voce.

Finally and not least, | would like to thank Ms Selina Kubo for the proof reading and the
moral support throughout the whole project.

Benoit Jacob 10

Benoit Jacob

11

Chapter 1 Introduction

Chapter 1. Introduction

1.1 Context

With the increasing migration towards cloud computing, it was obvious that working on a
subject related to the cloud would be an interesting topic. After reading about this
technology, the main issues that were repeatedly highlighted were the security issues. The
security issues concerning data privacy and protection are major factors that deter some
companies from moving to the cloud. Based on these findings, the choice was taken to work
in the area of Cloud Computing Security. Luckily, Edinburgh Napier University started to
migrate to the Cloud Computing at the beginning of the year 2011 and was proposing to its
students to devise their network laboratory work through instances emulated by the cloud.
Therefore, after agreement with Pr. Bill Buchanan, it was possible for this project to be
implemented within the University cloud. After further research, a way to detect attacks
and intruders was found by setting up a fake server, known as honeypot, able to lure them.
The implementation of a honeypot within the cloud computing seemed to be interesting
project and a deeper investigation was carried out through the three technologies involved
in this project, Honeypot systems, Intrusion Detection System (IDS) and Cloud Computing.
These technologies are analysed and compared in the next chapter, in order to provide a
good understanding to the reader.

1.2 Background

It is no secret that cloud computing is becoming popular with large companies nowadays,
mainly because they share valuable resources in a cost effective way. This is just the
beginning of the cloud computing, an independent research firm “Forrester Research”
expects the global cloud computing market to grow from $40.7 billion in 2011 to more than
$241 billion in 2020 (Ried, et al., April 2011). This increasing migration towards cloud
computing results in an escalating security threat, which is becoming a major issue. Many
studies (McDonald, 2011) (Wolf, 2010) show that there are major security issues to take in
consideration before moving onto the cloud. The cloud has even been called “security
nightmare” by John Chambers, Cisco CEO (McMillan, 2009).

On the other hand, there is a wide repertoire of hacking techniques used by pirates to
gather sensitive data and stolen credentials from web servers. According to the Web
Hacking Incident Database (WHID, 2011), most popular attacks concern SQL injections,
Cross Site Scripting (XSS) and Denial of Service (DoS). The SQL injections and DoS attacks are
often making the headlines of the news but the poorly-known XSS attacks are kept in the
shadows. However, these XSS attacks, according to the WHID, are currently the second most

Benoit Jacob 12

Chapter 1 Introduction

used attacks and associated with 12.58% of the overall attacks on the web. Moreover, XSS
attacks can easily pass through Intrusion Detection System (IDS), such as Snort, without
being detected as it lacks the ability to detect XSS attacks using hex-encoded values
(Mookhey, et al., 2010).

The migration of networks and servers over the cloud involves that XSS attacks are, or will
be soon, aimed at cloud-based Web servers. This report aims to investigate this issue by
implementing a cloud-based honeypot that simulates a fake Web server able to detect XSS
attacks. The XSS attacks detected are used to generate Access Control Lists (ACLs) and IDS
Signatures that will be implemented in the router and IDS to block future attacks.

1.3 Aims and Objectives

The aim of this project is to automatically detect XSS attacks and generate Snort signatures
to block similar future attacks. To do so, a honeypot, that simulates a Webserver and handle
the XSS attacks, will be implemented on the cloud computing of Edinburgh Napier
University. This project has a scientific interest as it should complete the literature in the
area of Intrusion Detection Signatures by providing an automatic way to detect attacks and
generate Snort signatures. In order to achieve this project, the following objectives must be
achieved:

1. Review and investigate the existing literature about security issues related to the
cloud computing. In addition, critically evaluate the previous work in generating IDS
signatures and compare different honeypot systems. Finally, analyse a specific
attacking method and ways to detect it.

2. Design some scripts to generate IDS signatures every time that an attack is
detected. Design some cloud-based experiments that will show the effectiveness of
the scripts created in detecting attacks and generating IDS signatures.

3. Conduct the final evaluation based on the results collected from the experiments.
This evaluation should present the effectiveness of the scripts created.

1.4 Thesis layout

The remainder of this report is organised as follows:

e Chapter 2 — Technologies review: The first chapter provides a basic understanding
for the reader about the four technologies used throughout this project. This
understanding is required in the next chapter, Literature Review, which investigates
further into contrasting these technologies and their issues.

e Chapter 3 — Literature review: This chapter critically reviews the literature in the
area of cloud computing security issues, signature generation using honeypots, legal
issues concerning honeypot’s implementation and cross site scripting attacks. In

Benoit Jacob 13

Chapter 1 Introduction

addition, a comparison of multiple honeypot system is carried out to determine the
honeypot the most suited for this study.

Chapter 4 — Design: This chapter presents a design of the scripts required to
generate ACLs and Snort signatures. This script design provides a good
understanding of the functions required and help in making a decision towards an
appropriate programming language. The methodology used in the experiments is
introduced and expected results are projected.

Chapter 5 — Implementation: This chapter deploys and configure the instances
required for the experiments. The experiments designed in the previous chapter are
carried out and the resulting data is collected.

Chapter 6 — Evaluation: This chapter evaluates the effectiveness of the prototype
created, by analysing the data collected during the experiments. In addition, the
results of the evaluation are compared to the results expected in the Design.
Chapter 7 — Conclusion: This chapter provides a summary of the main findings and
compares them with the initial objectives. A critical evaluation of the project is
carried out and advice for future work is suggested.

Benoit Jacob 14

Benoit Jacob

15

Chapter 2 Technologies Review

Chapter 2. Technologies Review

2.1 Introduction

This project aims to detect attacks targeting a cloud-based server. In order to detect these
attacks, a honeypot is used to simulate a fake server and log any interaction with a malicious
user. This chapter provides a good background and understanding about the three main
technologies used all along this paper: Honeypot, Cloud Computing, IDS and an up to date
overview of the most popular attacks used by pirates to gather sensitive data and stolen
credentials.

2.2 Honeypot systems

Honeypots are not defensive security systems as Intrusion Detection Systems (IDS) and
Firewalls as they do not tend to protect the network but lean towards attracting the
intruder. According to L. Spitzner, a honeypot is “an information system resource whose
value lies in unauthorized of illicit use of that resource” (Spitzner, 2003). Honeypot systems
are fake information (server or client) able to run multiple services, such as FTP, SQL, Web,
SSH, etc. These services are configured using weak security mechanisms, making them
highly interesting for an intruder in search for an easy target. Logging mechanisms are
loaded with monitoring and tracking tools, which make them able to capture data resulting
from an illicit access such as attacks techniques, events and intrusions. When more than a
single honeypot system is used in a network, they form a network of honeypot called
Honeynet. The following Figure 1 represents an overview of the taxonomy of a honeypot

system.
Client Server Low Medium High Distributed Stand-alone
!]]
Role In an N-tier| Interaction Distribution
architecture level appearance
! |]
Honeypot
None > None
Slowdown =) Attacks
— Containment Data capture |—
Defuse - Events
Block - Intrusions

Figure 1 - Honeypot taxonomy based on (Christian Seifert, 2006)

Benoit Jacob 16

Chapter 2 Technologies Review

2.2.1 Level of interactivity

A honeypot can offer three levels of interaction from low to the high or in between. The
higher the interaction is, the more liberty of movement will be provided to an attacker and
the more data will be collected about that attack. However, a high level of interaction
induces a high risk of potential damages (Spitzner, 2002). The following description provides
an evaluation of the three types of honeypots with their advantages and inconvenient.

2.2.1.1 Low interaction honeypot
A low interaction honeypot provides a limited communication between the honeypot and
the attacker, seen Figure 2. Low interaction honeypots offer the possibility to emulate
network services on preconfigured port, such as FTP, SQL, Web, SSH, etc. However, these
services are restricted to only reply to basic queries (such as a ping or a connection

attempt). |
Advantages: the ease of installation and L .

. . . . 2 Operating
configuration, as well as a low risk of potential g: System
damage by an attacker. g

o
=]
Inconvenient: the collections of information are
limited to the date/time of the connection, the IP
source and the source/destination ports. ?QZELI,ZZ?
Therefore, they are mostly used to detect
unauthorized connections in the network.

. . . Figure 2 - Low interactivity (Koot, 2007)
2.2.1.2 Medium interaction

A medium interaction honeypot collects more information about attacks than a low
interaction, by giving the ability to the attacker to interact a bit more with the honeypot,
seen Figure 3. This medium interaction takes the attacker a step further and the honeypot is
now able to reply to specific commands, by using preconfigured messages. The services
emulated are programmed in some templates, which provide the list of the authorized
commands with their specific replies. In the case of a command being received by the
honeypot that does not match any authorized commands, a message “command unknown”

is generated.

Advantages: the data collected is more
advantageous than a low interaction honeypot, L

due to a higher interaction. In terms of security, a

Operating
System

uowaep axe4

low risk of potential intrusion is expected as the

honeypot only answer to preconfigured

Other local
resources

commands.
Inconvenient: the attacker generally, quickly

discovers that the system does not behave as it

should. Figure 3 - Medium interactivity (Koot, 2007)

Benoit Jacob 17

Chapter 2 Technologies Review

2.2.1.3 High interaction

High interaction honeypots operate on real systems and provide the attacker the possibility
to break into the operating system and take control over it, represented Figure 4. There are
no more limited commands like in the medium interaction honeypot, the attacker is now
able to fully interact with a the whole operating system and its applications. Multiple
sensors are installed on the honeypot and collect all the data used by the attacker, such as
toolkits uploaded, keystrokes typed in and network data flow (Awad Johny, 2009).
Advantages: all the interaction of the hacker and all the files uploaded are captured by the
honeypot. It provides a vast amount of information for the researcher about unknown
attack and previously known attack.

Inconvenient: the setup of the honeypot is time

consuming: Firstly, it must be customized and .

configured to the only applications needed for the L § -« Bt
experiment. Secondly, the vast amount of data %

gathered must be scrutinized by researchers in : / t
order to determine the aim of the attacker.

\

Moreover, this type of honeypot must be always

Other local hard
resources disk

Figure 4 - High interactivity (Koot, 2007)

behind a firewall and constantly monitored in

order to reduce the risk of a nasty attacker, which

might compromise the honeypot and use it to
spread attacks to other systems (Awad Johny,
2009).

2.2.2 Purpose of Deployment

The deployment of a honeypots can be categorised into two categories, research honeypots
and production honeypots, represented Figure 5:

Research honeypots are deployed at in a non-secure zone and are used primarily for a
medium or high interaction. This kind of honeypot can be deployed in the outside of the
network or in the Demilitarize Zone (DMZ). They are used to collect the maximum of
information about new attacks, such as new toolkits used by attackers and commands used
to break into the system. All this information is analysed by researchers in order to create
new antivirus or IDS signatures that aim to improve the system defence against future
attacks. However, research honeypots need to be under constant supervision in reason of
their dangerous location on the outside of the network and their high interactivity, which
make them an easy target for attackers.

Production honeypots are deployed inside secure environments with the aim to attract
intruders away from critical systems. Usually, a low interaction honeypot is used in the
production network, as we do not want an attacker to take over the system. These kinds of
honeypots are also used to discover if an attacker made his way into the production
network and fooled the security equipment. In addition, this honeypot gives the possibility

Benoit Jacob 18

Chapter 2 Technologies Review

to detect insiders trying to hack into the production network or Worms/Trojans spreading
automatically.

Internal
network

Internal network External firewall

Y
(0]
7]
[0
Q
=
o
>
=
o
>
()
<
©
o
-~

>

) DMz
Production Honeypot

Y

Internal

network
Figure 5 - Honeypot deployment: Research and Production

&
9

Service Network Research honeypot
(Web, Mail, DNS, etc.)

2.3 Intrusion Detection Systems

Intrusion Detection System is a process or device that analyses system and network activity
for abnormal behaviours. The way an Intrusion Detection System (IDS) detects malicious
packets widely vary according to the type of implementation (host-based or network-based)
and detection techniques (signature-based or anomaly-based) used by the IDS. This section
gives an overview of the advantages and inconvenient of these systems.

2.3.1 Types of IDS

2.3.1.1 Network-based
A Network-based IDS identifies intrusion by examining network traffic, as seen Figure 6. The
network IDS often contains a list of known attack signatures that are compared to the live
network traffic. Whenever a packet matches a signature, an attack attempt alert is raised.
There are two different ways to implement a network-based IDS: Inline or Outline.

An inline implementation acts like a gateway and ensures that all the traffic goes directly
into the IDS before reaching/leaving the production network. The benefit of this
implementation is the effectiveness to quickly block potential attacks. However, it comes at
a price, as the IDS sits in the middle of the network and filters the whole network traffic. The

Benoit Jacob 19

Chapter 2 Technologies Review

risk is that an overload of the IDS could happen during peak times and this one could start
dropping genuine data packets.

An outline implementation means that the IDS does not receive directly the data packets.
The IDS is plugged into a switch configured to mirror the network traffic to the IDS.
Therefore, all the network traffic is copied and sent to the IDS for analysis. The benefit of an
outline implementation is that the IDS cannot slow down the network traffic because the
traffic is copied and sent to it. The inconvenient is a slow reaction from the IDS when
malicious packets are discovered. The reason is that the packets generally reach the IDS as
the same time as the destination host, which make them hard to block.

2.3.1.2 Host-based IDS

A Host-based IDS is generally used to analyse all the network traffic reaching or leaving a
computer that hosts a network service and are sensible to attacks, such as Webserver,
Database or FTP server, see Figure 7. This host-based analysis acts like a firewall that
inspects every data packet interacting the host with a unique advantage of being able to
inspect encoded traffic. This advantage is possible because the data packets are decoded
when they reach the destination host, therefore the host-IDS is able to analyse them. The
main drawback of a Host-based implementation is the consumption of physical resources
needed by the IDS to inspect the traffic, which could result in using most of the host
resources at peak times.

W/a4

aa

NIDS g NIDS

Print Server FTP Server Web Server

@
% %@

Figure 6 - Network-based IDS

Print Server FTP Server Web Server

HE 3 H&

Figure 7 - Host-based IDS

NIDS

Benoit Jacob 20

Chapter 2 Technologies Review

2.3.2 Detection Techniques

There are two detection techniques that can be used by IDS to discover malicious data
packets: the first one based on data packets signature and the second one based on
anomaly detection. Each detection technique has its own benefits and weaknesses,
compared in the following section.

2.3.2.1 Signature-based Intrusion Detection
Signature-based detection is the most widely type of detection used by IDS nowadays. The
IDS uses a local database with multiple packet signatures known as being malicious. Each
data packet going through the IDS is compared to a list of known malicious patterns.
Whenever a positive match is found, it means that a malicious packet has been detected.
This type of detection is similar to an antivirus, which compare files signatures to a database
of malicious known virus signatures.

The advantages of a signature-based IDS are the ease of configuration and the low rate of
false positive (Allen, 2004). However, the main drawback is similar to antivirus software:
they cannot detect unknown malicious patterns. This means that firstly the IDS needs to be
updated regularly and secondly that the IDS will always be one-step behind the attacker
(Joho, 2004). Another type of IDS, anomaly-based Intrusion Detection can be used to
counteract these weaknesses.

2.3.2.2 Anomaly-based Intrusion Detection

Anomaly-based Intrusion Detection inspects the data packets and compares them with the
self-learned network patterns specific to the network. To generate these network patterns,
the IDS go through a training phase where its only objective is to listen to the network data
flow and translate it into Metadata. The patterns generated give an enormous quantity of
information such as network addresses, flags, used ports, timeouts, etc. These results are
considered by the IDS as a normal network activity. After this training period, the anomaly-
based IDS is ready to be implemented and can compare the network traffic to the pattern
generated during the training phase. Alerts are raised when the IDS detect unusual network
activity, such as detecting new services which should not be active, or detecting users’
access to new services that they never accessed before.

The main strength of anomaly-based IDS is the possibility to detect unknown malicious
network traffic, which is not possible using a signature-based IDS. However, there are
important drawbacks: Firstly, if any attacks occur during the training period, they will be
considered as normal traffic and remain undetected in the future. Secondly, there are
concerned towards the scalability of this system because if the network administrator
decides to give new service accessibility to specifics users, the IDS will raise False Positive
alerts. This leads to the main drawback of this system, which is the high number of False
Positive alerts that are generated if the anomaly-based IDS is not perfectly tuned up.

Benoit Jacob 21

Chapter 2 Technologies Review

2.3.3 Acceptable levels of false alarms

The two previous paragraphs describe how IDSs work: they analyse network traffic and raise
alarms whenever malicious data packets are discovered. However, these alarms are not
always right and unjustified alarms can be triggered. There are four kinds of alarms, they are
based on the success to detect attacks and raise alarms. The Table 1 represented below
illustrates the meanings of these alarms.

Table 1 - Confusion Matrix

Alarm raised
Yes No
Attack attempt Yes True Positive False Negative
No False Positive True Negative

In theory, a perfectly tuned IDS is able to rise only True Positive alerts, which means that a
security related event has happened and an alert has been raised accordingly. However, in
real conditions with a high amount of network traffic, many False Positive alerts are
generally raised up by IDS. False Positive alerts mean that an alert was raised without a true
security related event. Therefore, the main question is: What is an acceptable level of True
Positive alerts? This question is debatable and every network engineers have their own
point of views about it. However, to give a vague idea, an answer has been found on the
Symantec Website (Timm, 2010): “an acceptable level of True Positive alerts should be at
least 60% of the total alerts raised”. This True Positive Rate is calculated using the following
formula:

TPR = 100

TP + FN
With: TP = An attack has occurred and an alarm has been raised,

FN = An attack has occurred but no alarm was raised.

In addition, the False Positive ratio can be calculated with a similar formula. It shows the
proportion of instances, which were not malicious but raised an alarm (false alert):

FPR = 100

—_— %
FP+TN
With: FP = An alarm has been raised but no attack occurred (False alert)

TN = The number of correct decisions on benign traffic.

A perfectly tuned IDS should have a rate of TPR = 100% and FPR = 0%, which means that
every attacks have raised alerts and that benign traffic has never raised any alert. However,
this case is extremely rare in live environment.

Benoit Jacob 22

2.4

Chapter 2 Technologies Review

Cloud computing

The emergence of the Cloud Computing has revolution the IT industry by reducing the

hardware cost while improving its scalability. Edinburgh Napier University has been using

the cloud since the beginning of the year 2011. The cloud computing gives the possibility to

any students to access their Virtual Machines used in the Networking labs, from any devices

connected to internet, anywhere and at any time. An article written by Petter Mell for The

National Institute of Standards and Technology (Peter Mell, 2011) gives a good definition of

the cloud computing through five essential characteristics, three service models and four

deployment models, such as following.

2.4.1 Essential Characteristics

On-demand self-service: individuals can manage computing resources without
needing anyone’s help;

Ubiquitous network access: The platform can be accessed through standard
Internet-enabled devices;

Rapid elasticity: resources are scalable and can be quickly adjusted when it suits
(raised or lowered);

Resource pooling: processing and storage are shared across a common
infrastructure;

Pay per use: consumers usage are tracked in order to determine charged fees based
on a combination of computing power, bandwidth use and storage space;

2.4.2 Deployment Models

Private cloud (internal clouds): The cloud infrastructure is owned and used by a
single organisation. However, a third party service provider on or off-premise can
manage the hosting and outsourced operation.

Community cloud: The cloud infrastructure is shared by several related
organisations. For example, all the universities of a country can use a community
cloud in order to share their resources between each other’s.

Public cloud (external clouds): The cloud infrastructure is owned by a third party
service provider that is selling cloud services to multiple organisations.

Hybrid cloud: The cloud infrastructure is a composition of two or more clouds
infrastructure (private, community, public). The advantage of this technology is to
provide dedicated resources (private cloud) and increased scalability (public cloud)
when it suits.

2.4.3 Service Models

Software as a Service: Saa$S delivers to the costumers business applications hosted
on the cloud by a third party organisation. Customers can access these applications
through an internet enable device using a thin client such as a web browser. This

Benoit Jacob 23

Chapter 2 Technologies Review

model eliminates the need to install and run the applications because the
applications are not installed directly on the customer’s own computer, which
induce an easier maintenance and support. An example of SaaS provider is Oracle
CRM On Demand that provides both multi-tenant (all resources are shared by
customers) and single-tenant (customers have owned resources) options.

- Platform as a Service: Paa$S provides all the software needed by developer to build,
deploy and manage SaaS applications. However, the service provider defines the
supported tools and programming languages. Moreover, the costumer does not
control the underlying cloud infrastructure such as network, servers or operating
systems. An example of SaaS provider is Oracle PaaS Platform that provides to the
costumers the ability to build their own public clouds.

- Infrastructure as a Service: laaS provides a standardized virtual server with elastic
resources. The consumer is able to deploy operating systems, control and manage
computing resources. However, the customer is not able to manage the underlying
cloud infrastructure. An example of laaS is Amazon Elastic Compute Cloud (EC2) and
Simple Storage Service (S3).

2.4.4 Virtualisation

Today’s virtualisation technology is use by the cloud computing in order to deliver on-
demand cloud services, which is the key technology of the cloud computing success (Perilli,
2009). However, the concept of virtualization is not as recent as the cloud computing.
Actually, it is in the mid-1960s that IBM created for the first time some virtual machines
implemented within an IBM 7044 (M44). At the time, IBM’s virtual machines were identical
“copies” of the underlying hardware and each instance could run its own operating system
(Singh, 2004). It was used to reduce the highly expensive hardware acquisition, which was at
the time enormous pieces, and improve the ability for the users to work simultaneously. In
recent days, virtualization technology has been able to separate the operating system and
application from the hardware. Moreover, the hardware got cheaper and the trend for
testing applications in a sand box has increased. The main reasons to use virtualisation are
described by a consultant for Citrix (Bogobowicz, 2011), such as following:

- Hardware independence: The same image file of the computer/server can be used
across multiples types of hardware.

- More efficient resource use: A single physical server can be split into multiple virtual
machines that are sharing the resources of the physical server. Moreover, the virtual
machines can be upgraded with more resources (CPU, memory, hard drive...)
without any downtime.

- Fast deployment and snapshotting: The deployment of new virtual machines takes a
couple of seconds and snapshots can be taken at any given time in order to allow
rollbacks if troubles happen. It is a great benefice for software testing and
evaluation.

Benoit Jacob 24

Chapter 2 Technologies Review

- Backup and transfer: Entire operating systems can be backed up on-site or be
transferred off-site, allowing a quick recovering in case of disasters.

The management and execution of multiple operating systems is done, most of the time,
through a hypervisor also called Virtual Machine Manager (VMM). Hypervisors are directly
installed onto the server hardware whose provide multiple operating systems. Hypervisors
are classified into two types named Type 1 and Type 2, see Figure 8 . Virtualization Review,
an independent web guide to virtualisation, states that there is no formal standards-based
definition for both types but the distinction has to do with whether an underlying operating
system is present (Vanover, 2009). Therefore,

hypervisor type 1 level runs directly onto the host (o8 e
physical hardware to control and manage guest Eﬁ‘\
operating systems, while type 2 runs in an s >
operating system installed onto the physical
. /" HARD
hardware (2™ level) to control and manage third < ware HARD
< WARE >
level operating system. Hypervisor type 1 refers to
- . o TYPE1 TYPE 2
VMware ESXi and Citrix XenServer, while natve
Fourm matsl hosted

Hypervisor type 2 refers to Sun VirtualBox,

VMware Server and Microsoft Virtual PC. Figure 8 - Hypervisor Types (Scsami, 2011)

2.4.5 Cloud Hypervisors

2.4.5.1 General Overview
A cloud hypervisor is a mainframe operating system sitting at the lowest of the hardware
environment, known as bare metal. The hypervisor is able to support many different
operating environments and gives a very practical way of getting virtualization started
quickly and efficiently. The main hypervisors available on the market nowadays are:

e VMware ESX (License proprietary)

e VMware ESXi (License proprietary)

e Microsoft Hyper-V with Windows Server 2008 (License proprietary)
e Microsoft Hyper-V with Windows Server Core (License proprietary)
e Citrix XenServer v4.1 (Open source)

e OpenNebula (Open source)

e Eucalyptus (Open source)

The major difference between all these hypervisors is that some are free while others are
cost-effective. The battle between open source and license proprietary hypervisors involves
the following advantages and disadvantages: The license proprietary hypervisor is expensive
and un-flexible but benefit of a good support and an easy implementation, while the open
source hypervisor is free and more flexible but harder to implement and to get the
documentation.

Benoit Jacob 25

Chapter 2 Technologies Review

This paper presents a project for Edinburgh Napier University. The University recently
implemented VMware ESXi in the laboratory rooms, which will be used in this project.
Therefore, the next section aims to only describe the features of the cloud hypervisor
VMware ESXi.

2.4.5.2 VMware ESXi

VMware ESXi hypervisor is a production-proven virtualization layer that abstracts the
physical server resources (processor, memory, storage...) into multiple virtual machines, see
Figure 9. VMware ESXi is thinner than his big brother VMware ESX (less than 100Mb instead
of 2 GB footprint) and offers all the same functionality. VMware ESXi is used in Napier
University in order to reduce hardware and operation costs by sharing physical resources
across virtual environments. VMware ESXi is similar to an operating system, it is installs
directly on the server hardware, called “bare metal”, in order to give a complete control of
the server resources. Once installed, VMware ESXi allows the creation of multiple virtual
environments with their own specific resources. Virtual environments are completely
isolated from each other by the virtualization layer. In consequence when a
misconfiguration occurs in a Virtual Machine it does not affect other virtual environments.

= =)
- =0

il

DOperating System r Operating System
IS || OnH

Hardware g

5
e
a Iﬁ_‘d
NiE Disk

Figure 9 - VMware ESXi Server (Venezia, 2008)

Memary

The Vendor (VMware, 2011) claims the following advantages when migrating to an ESXi
server:

e Run multiple applications on a single server in order to increase the hardware
utilization through virtualization while reducing operating costs.

e Run a greener datacentre, ESXi can reduce the energy costs by 80%.

e Back up and recover applications more easily by taking snapshot of live machines
and restoring them within seconds in case of errors.

e Virtual machines can be easily accesses through a thin clients or PCs.

e Virtualize even business-critical applications with a cost effective virtualization-based
solution.

These advantages represent for Edinburgh Napier University, the possibility for professors
to create practical labs within multiple virtual environments. These virtual environments are
assigned to specific students in order to allow them to work with it from anywhere, at any

Benoit Jacob 26

Chapter 2 Technologies Review

time and using any device internet enable. Additionally, students are able to have a risk free
environment to work on, because if a misconfiguration occurs they can rollback or re-create
a new VM within seconds.

2.5 Hacking techniques

Today, there is a wide repertoire of hacking techniques used by pirates to gather sensitive
data and stolen credentials from servers. According to the Web Hacking Incident Database
(WHID, 2011), most popular attacks concern SQL injections, Cross Site Scripting (XSS) and
Denial of Service. This section aims into giving on overview of each one of these attacks.

2.5.1 SQL Injection

SQL injection the most common application layer attack technique used to steal data from
organizations. This type of attack aims websites with incorrect coding that allow hackers to
inject SQL commands in order to retrieve data held in the website’s database. To achieve
this attack, a hacker first needs a web page with features, such as login fields, forms,
shopping carts or dynamic content. These features are widely used on web sites nowadays
and too often not coded appropriately. Once a weak web site has been found, a hacker
proceeds to a SQL injection, which aims to send SQL commands through a web application
for execution by the backend database. A successful attack allows a hacker to communicate
with the database in order to retrieve and/or modify sensible credentials saved on the
database.

A famous example of a SQL injection is explained in a study realised by (Adam Kiezun, 2011)
realised through a login form by submitting “* OR 1=1 —“ within the input login field and
keeping the password field empty, which result in:

login="" OR 1=1 — AND pass="" |

The injection of this input transforms the entire WHERE clause into a tautology. The
tautology means a universal unconditioned truth, always valid (William G.J. Halfond, 2006).
This causes the application to conclude that the user authentication is successful and
therefore, the user is granted access without any real credentials.

2.5.2 Cross Site Scripting (XSS)

Cross Site Scripting also known as XSS is one of the most common application layer hacking
techniques. According to the WHID, 12.58% of the overall attacks on the web are associated
with XSS (WHID, 2011). Additionally, XSS is also the origin of many other attacks such as
Information Disclosures, Content Spoofing and Stolen Credentials.

Nowadays, websites are growing exponentially fast and include more complex dynamic
features that deliver new services to their customers. The drawback of these dynamic
websites is that they do not have a complete control over the output’s interpretation by the

Benoit Jacob 27

Chapter 2 Technologies Review

customer’s browser. In that case, malicious content can be introduced into a dynamic web
page without the client or website knowing about it.

XSS attacks work by injecting script tags in URLs and enticing unsuspecting users to click on
them, ensuring that the malicious code, such as Flash, HTML, VBScript or get executed onto
the user’s machine. To do so, the malicious script is inserted through common inputs, such
as URL parameter, Form elements, cookies and databases queries. A random user browsing
on the web page will then execute the malicious script without his knowledge or consent.
Often, XSS is used to compromise private information, steal cookies or execute malicious
code onto the end user machine. If not filtered appropriately, an example of an XSS attack
could be a user navigating on Facebook will automatically execute a script that a friend
posted on his wall. An example provided by (Jim, et al., 2007) reviews the XSS script
injection attack. This XSS involves injecting a malicious script, typically written in JavaScript
into the content of a trusted website using the following command:

<script src="malicious. js”’></script>

This injection results in loading and executing the script on the web browser of each visitor
that are viewing the targeted page.

2.5.3 Denial of Service

A Denial-of-service attack (DoS) is characterized by “an explicit attempt by attackers to
prevent legitimate users of a service from using that service” (CERT, 2007). Diverse attacks
are able to do so:

a. Network flooding that prevent any legitimate traffic going into the network.
b. Connections disruption between two machines.
c. Restriction or Disruption of a service.

In the recent years, attackers have found a way to exploit large pool of computers to launch
DoS attacks. In that case, the name Distributed Denial of Service (DDoS) is used. These
attacks cause disruption of large organization’s network, which generally induce a large loss
of profits. DDoS attack used a large pool of computers to attack servers by sending huge
amount of network traffic at the same time. This flood attack results in an overflow of the
server that cannot reply to genuine packet and end up paralyzing the whole network. There
are some ways to protect the network against DDoS attacks. For example DDoS SYN flood
attack (Sun, et al., 2009) uses the three way TCP handshakes to massively start connection
on the remote server. These connections are never acknowledged (ACK) by the attacking
host and stay open on the remote server, which become overflown. A simple example of
protection against this kind of attack would be to implement a timer that terminates the
connection if no ACK is received in a short period of time. However, it is still hard to mitigate
DDoS attacks when hundreds of thousands of computers are used in the process.

Benoit Jacob 28

Chapter 2 Technologies Review

2.6 Conclusion

This chapter has compared and contrasted the different interactions and deployment
purposes of honeypot systems. This comparison has provided an understanding of the
advantages and limitation of different honeypot systems classification. Moreover, Intrusion
Detection Systems have been reviewed in order to learn their different behaviours
according to their types and detection techniques. Cloud computing has also been
introduced and defined through five essential characteristics, three service models and four
deployment models. This definition concludes with an overview of different cloud
hypervisors. Finally, the last section gives an overview of the three most popular attacks SQL
injections, XSS injections and DoS attacks.

The basic understanding of the three technologies described in this chapter is required in
the next chapter, Literature Review, which goes further into contrasting these technologies
and the research undertaken in their area.

Benoit Jacob 29

Benoit Jacob

30

Chapter 3 Literature review

Chapter 3. Literature review

3.1 Introduction

The aim of this chapter is to critically compare the current literature in the research area.
The research area has been described in the previous chapter throughout three
technologies: Honeypot systems, Intrusion Detection Systems and Cloud Computing.

The choice for an appropriate honeypot system is based on first three sections of this
chapter. Firstly, the security issues related to the Cloud computing are evaluated in order to
determine the safety of the Cloud Computing environment. Secondly, the literature is
investigated to compare previous works done within the area of Signature Generation using
honeypot systems. Thirdly, multiple honeypot systems are compared according to their
degree of involvements and their embedded features. The end of the third section
concludes on the best suited honeypot system for this project, based on the investigation
carried out in the previous sections.

In addition, Cross-Site Scripting (XSS) are chosen to be the hacking technique used in this
project. This decision is explained and XSS are reviewed to understand their injection
mechanisms and to find out methods to detect them. Finally, a research about legal issues
concerning honeypot systems is carried out, to discuss whether it is legal to implement one
of them.

3.2 Cloud computing Security issues

The cloud computing is a growing interest for organisations considering cutting their IT costs
by offloading infrastructure and software costs onto a 3" party service provider (SaaS, PaaS
and laaS). However, many studies (McDonald, 2011) (Wolf, 2010) show that there are major
security issues to take in consideration before moving onto the cloud. Cisco CEO, John
Chambers, said during a RSA security conference that the Cloud computing was a “security
nightmare” (McMillan, 2009). C. Jarabek (Jarabek, 2009) relates these security issues into
three areas: virtualisation’s drawbacks, side-channels information leaks and security
managements.

3.2.1 Virtualisation issues

Virtualisation is one of the main components of 1aaS cloud computing. Virtualisation enables
the implementation of multiples Virtual Machines onto a single piece of hardware. The main
security concern stated by (Jarabek, 2009), is that VMs can regularly appear, disappear or
become dormant (stopped or suspended) which make them difficult to manage in matters
of security patch. The first problem is that service providers have an important volume of

Benoit Jacob 31

Chapter 3 Literature review

VMs, which make it difficult to be patched at the same time. Secondly, long-dormant
machines might take a long time before being patched and could represent a risk when
being turned on, cloned or moved to other clouds without the new security patch, see
Figure 10. Furthermore, the ability to rollback a VM to a previous state runs the risk of
removing the patch of a previously patched security hole.

‘ A Y

L
3 L

Figure 10 - Vulnerable VMs represent a risk (Jarabek, 2009)

Christodorescu et al. propose a system to counteract the patching issues (Christodorescu, et
al., 2009). They describe that the cloud provider has no knowledge about the software (OS,
applications, etc.) running on each VM. To counteract this effect, they propose a novel
technique using the Interrupt Descriptor Table (IDT) to identify the OS being used on each
VM. Then they compare a white-list of known secure code against VM’ linked code (system
calls, kernel modules, etc.) in order to determine if the VM runs the last security patch for
each software.

However, Trend Micro (Agastya, 2011) shows that when using virtual environments, the
security updates and antivirus scans should be scheduled

carefully. The problem is if every VMs were updating
themselves and running antivirus scan simultaneously, it

Vi v v VM_> V
will affect the performance of the server and result into a Ea | . b
= e L S) e

drain of its resources. This could result in an “antivirus | HYPERVISOR™

storm” and crash the physical server. To solve this
problem, Trend Micro proposes the utilisation of a

dedicated security VM on each server that automatically _

coordinates VMs security updates and scans when they Frigure 11 - Dedicated security VMs

are switched on or cloned, seen Figure 11. update vulnerable VMs (Agastya, 2011)

Additionally, another security issue about virtualisation stated by (Agastya, 2011) concerns
the Virtual Machine Manager (VMM), which is used to manage each VM. The VMM is a
single point of failure that could theoretically be compromised. In that case, it could
engender a network of compromised VMs. It is a potential risk but to this day, there are no
proofs in the security researches relating of a security whole within the VMM.

Benoit Jacob 32

Chapter 3 Literature review

3.2.2 Side-channels information leaks

Side-channels information leaks concern the potential communication between VMs co-
located on a single piece of hardware. The risk is that a malicious VM could access the
sensitive information from a target VM sharing the same hardware resource. In their paper,
Ristenpart et al. use the Amazon’s EC2 cloud service to investigate this security issue
(Ristenpart, et al., 2009). They show how to determine if two instances are running on the
same hardware, using some network mapping tools. Then, using a disk-cache side channel,
they successfully establish a means of communication between the two VMs in spite of their
supposed VM isolation, as seen Figure 12. However, it is nearly impossible that this
technique could target a single specified VM because this one needs to be on the same
hardware that the attacking VM. Authors claimed an 8.4% success over 1500 targets VM. To
counteract the issue of side-channels information leaks, it might be preferable for
organisations to pay the cloud provider in order to ensure that customer’s VM reside in an

VM VM

independent hardware.

Figure 12 - Side-channels attack (Agastya, 2011)

3.2.3 Security Management

Security Management concerns the tendency among customers to believe that the cloud
provider is responsible to manage the security issues relatives to the VMs. These customers
are wrong, in general, the cloud provider is not responsible for security issues on each VM.
Therefore, each costumer needs to manage his VMs just as he will do in a non-virtualized
environment. In their paper, Bleikertz et al. (Bleikertz, et al., 2011) propose a method to
perform security audits in the Amazon’s EC2 cloud. They assign VMs in to security groups
and apply firewall rules specific to each groups. Then, they use the EC2 API to group the
results into graphs, which let the administrator now the open ports of each VMs. To
determinate which VM has a high-risk of intrusion, they use a vulnerability scanner “Nessus”
to do a penetration test on to their VMs. However, the author’s security auditing is based on
only a single security tool, which provides a limited view of the security vulnerabilities.

To summarize, the security related to the cloud computing is in some parts similar to the
one related to physical hosts security. Firstly, the administrator needs to take care of each
single instance by applying security patch. Secondly, the hardware where the VMs are
hosted should preferably be specific to a single organisation. Finally, customers should

Benoit Jacob 33

Chapter 3 Literature review

always contact their cloud providers in order to know the division of responsibilities and
service expectations if a security breach happened.

3.3 Signatures Generation by the means of Honeypot

Many studies have been realised on attack detection and signature generation based on
honeypots. The earliest found is a paper by Levin et al. (J. Levine, 2003): They used a
honeypot to collect details of worm exploits in order to generate detection signature. This
first attempt did not provide an automated way of generating signature, which results in a
lot of hard manual work to analyse worms’ details and create signatures.

C. Kreibich and J. Crowcroft were the firsts able to provide an automated way of generating
signatures using Honeycomb (Christian Kreibich, 2004). Their method is to analyse the traffic
from HoneyD, a honeypot proposed by Neil Provost, in extension with Honeycomb in order
to generate intrusion detection signature. All the traffic going through HoneyD is considered
as suspicious; therefore, Honeycomb uses the longest common substring (LCS) algorithm,
which looks for the longest shared byte sequences across pairs of connections to spot
similarities in packet payloads. Then, Honeycomb generates signatures consisting in a
continuous substring of a worm’s payload and provides the choice to convert the signature
into Snort or Bro format. The efficiency of Honeycomb is famous to generate signatures for
the worms Slammer and Code-Red-ll.

H.-A. Kim and B. Karp designed the Autograph system for larger-scale deployments (Hyang-
Ah Kim, 2004). The difference with Honeycomb is the implementation of Autograph within
the DMZ. Therefore, Autograph does not only collects traffic considered as malicious but
also collects benign traffic. The Autograph system operation mode follows two main stages.
In the first stage, Autograph use a port-scanner detection technique on the inbound TCP
flows to classify flows as either suspicious or non-suspicious. In the second stage, Autograph
generate signature based on the content of suspicious flows” payloads. The generated
signature is similar as the Honeycomb’s ones: a single, contiguous substring of worm’s
payload. In their paper, Kim and Karp demonstrate that the Autograph system can detect a
newly released Code-Redl-v2 worm’s signature before 2% of the vulnerable host population
becomes infected.

S. Singh et al. describes the Earlybird system (Sumeet Singh, 2004) as an improvement to
the Autograph system. This system eliminates the pre-filtering step and focus on scalable,
high-performance implementation. In addition, Earlybird introduces two new metrics such
as, content prevalence and address dispersion. The content prevalence inspects all the
packets’ payloads while the address dispersion tracks source and destination network
addresses. Using these 2 metrics, the Earlybird system flags as suspicious invariant packet’
payloads sent to a large number of network addresses. In S. Singh et al.’s paper, Earlybird
detects precise signatures for the worms Code-Red, MyDoom, Sasser and Kibvu.

Benoit Jacob 34

Chapter 3 Literature review

A first attempt to generate signature for polymorphic worms is described by J. Newsome et
al. using the Polygraph system (James Newsome, 2005). Polymorphic worms are the new
generation of worms that mutate as they spread across the network through self-encryption
mechanisms. To understand the anatomy of polymorphic worms, they study a sample of a
network flow containing an instance of a polymorphic worm. Their analyse shows that
polymorphic worms after multiple re-encoding keep some invariant due to the exploit of the
same vulnerability. However, they demonstrate that a single, contiguous byte string
signature, like in Honeycomb, Autograph and Earlybird, is not efficient at matching
polymorphic worms. To solve this problem, they identify a family of signature types more
complex based on conjunction, token subsequence and bays signatures. Using all three
algorithms, Polygraph generates good signatures even in presence of noise flows and
multiple worms. Nevertheless, R. Predisci et al have done controversy research about
Polygraph (R. Perdisci, 2006) and they propose attacks using deliberate noise injections that
successfully mislead Polygraph’s automatic signature generation process.

A recent study by M. Mohssen et al. (Mohammed, et al.,, 2010) shows that automated
signature generation approach for Polymorphic Worms are now able to generate high
guality signatures even in presence of noise flows. They propose a new detection method
with double-honeynet to capture all worm instances. Then they generate a high-quality
signature using a Principal Component Analysis (PCA) that determines the most significant
data that are shared between polymorphic worms.

All the researches cited above aims to generate signature for polymorphic/non-polymorphic
worms. However, it will be interesting to see the possibility to detect a wider spectrum of
attack. A first attempt in that field was propose by V. Yegneswaran et al. who describe
Nemean as a system able to generate signature for a wider class of attacks (Vinod
Yegneswaran, 2005). The specificity of Nemean is the ability to combine protocol semantics
and signature generation algorithm. In V. Yegneswaran paper, Nemean is tested out using
NetBIOS exploit, which is detected with a 0% false-positive rate.

In 2006, a study by (Grgnland, 2006) focuses on seeing the effectiveness of a honeypot to
generate IDS rules based on FTP attacks. During the study, Gronland simulate a fake FTP
server using a honeypot and send FTP attacks using a vulnerability scanner. Using the results
collected in the log file of the honeypot, Gronland is able to create appropriate Snort
signatures to counteract future attacks. This study shows the possibility to collect log data
from a honeypot and to create IDS rules based on them. However, the attacks simulated are
FTP attacks, which are very rare attacks. In addition, the process of IDS signature generation
is not fully automatized and an efficiency test of the honeypot prototype with background
traffic is not carried out.

Recently, X. Tang proposed another technique to generate attacks signatures based on
Virtual Honeypots (Tang, 2011). He uses the honeypot HoneyD with a specific Long Common
String (LCS). The signatures are generated as a Snort format. By penetration testing using an
exploit named THCI/ISSLAME, the honeypot is able to generate the same rule as the one

Benoit Jacob 35

Chapter 3 Literature review

originally implemented in Snort. However, this paper does not provide an automated way to
generate signatures. Moreover, the paper contains only one experiment and further study
would be interesting to see if his system can be adapted to other exploits.

3.4 Honeypots evaluation

One of the leading research organisations in honeypot technology is The Honeynet Project
(Honeynet, 2011). Founded in 1999, the Honeynet Project is a non-profit research
organisation dedicated into investigating the latest attacks and developing open source
security tools. The website provides a good list of every available honeypot systems
associated with their descriptions. In addition, the investigation carried out in a book by Neil
Provos “Virtual Honeypots - From Botnet Tracking to Intrusion Detection” (Niels Provos,
2007) provides a good understanding of some low- and high-interaction honeypots. The
following evaluation compares honeypot systems on the server side:

3.4.1 Low/mid interaction honeypots

Labrea created by (Liston, 2003), it is the first low-interaction honeypot introducing the
concept of tarpit. A tarpit is a service that intentionally responds slowly to incoming request.
It is mainly used to slow down spammers and worms by maintaining their TCP connection
open while forbidding any traffic over it.

Nepenthes are a versatile low-interaction honeypot able to collect malware. To do so,
Nepenthes simulate open ports and known vulnerabilities in order to capture live malware
samples trying to exploit these vulnerabilities. An interesting paper by Beacher et Al (Paul
Baecher, 2006) states that over a 4 month period, Nephentes has been able collected 15
500 unique binaries. Moreover, four different antivirus engines have scanned those binaries
and only 73% were detected as malicious binaries, which mean that the remaining 27% of
malicious binaries went undetected through the antivirus engines.

Amun is a low-interaction honeypot developed by (Gobel, 2007). The main objective of
Amun is to collect binaries of malware that spread automatically. For this purpose, Amun
emulates network vulnerabilities known to attract malwares. Once a malware exploit one of
these vulnerabilities, the payload transmitted is analysed and any URL found is extracted.
Additionally, the honeypot try to download the malicious file and store it for later analyse.

Honeyd is a mid-interaction honeypot created by Neil Provos in 2003 and last updated in
2007 (Provos, 2007). It is a small daemon able to simulate up to 65536 virtual hosts on a
network. Each host can be customized to run specific operating systems with a unique IP
address (that does not match to a valid system). Additionally, advanced scripts can be
implemented to simulate different services (telnet, SSH, SMTP, FTP...). These scripts go
further than a simple banner and can simulate a Login/Password security and answer to few
commands typed by an attacker. HoneyD is a mid-interaction honeypot because an attacker
can interact with it by sending request and receiving replies.

Benoit Jacob 36

Chapter 3 Literature review

Dionaea is a mid-interaction honeypot developed in 2009 by the Honeynet Project is the
successors of Nepenthes (Honeynet, 2011). The purpose of this honeypot is to gain a copy of
a malware exploiting vulnerabilities of network services. To gain a copy of the malware, the
honeypot accepts to download files triggered by the malware. These files are confined in a
sandbox for later analysis. The main protocol offered by dionaea is SMB, which is a very
popular target for worms. Additionally, other network services are provided as HTTP, FTP,
TFTP, SIP and MySQL.

3.4.2 High interaction honeypot

A good list of high interaction honeypots is provided by the (Honeynet, 2011). One of the
most well-known is Sebek created in 2003 by the honeynet project. Sebek is a kernel
module installed high interaction honeypot that allows administrators to collect malicious
activities such as keystrokes on the system, even in encrypted environments.

The Honeynet Project's 3rd Generation Honeywall ('Roo v1.4') framework (honeywall, 2008)
is one of the last high interaction honeypot created. This type of honeypot allows the
attacker to interact with the system on all levels. Attacker can probe, attack and
compromise the system by his own initiative. Many monitor tools installed on the honeypot
allow the capture of all the activity done by the attacker, from SSH encrypted sessions to
emails and toolkits uploaded. Additionally, a Honeywall gateway, which sits between the
honeypot and the outside world, is set up to monitor the network traffic from/to the
honeypot system. The Honeywall gateway allows all the inbound traffic to the victim
systems but control the outbound traffic with an IDS. This gives the attacker the possibility
to interact with the honeypot and by the meantime prevents the honeypot of harming other
systems. The Honeywall Roo is a bootable CDROM that installs onto the hard drive the Cent-
OS-based distribution and many other tools, which aim to capture and analyse cyber
threats.

Table 2 - Differences between each level of involvement based on (Mishra, 2004)

Low Mid High

- - Yes
Low Low-Mid High

Connections Requests All

= = Yes
Low Low-Mid High
Low Mid Mid-High
Low Low Very High

3.4.3 Decision towards a honeypot system

The Table 2 reflects well the result found in the literature in matter of differences between
low/mid-interaction and high-interaction honeypot. The literature (Honeynet, 2011) shows

Benoit Jacob 37

Chapter 3 Literature review

that a lot of researches have been realised in the development of low/mid interaction
honeypots in the past couple of years, while in general, far less works have been realised on
high-interaction honeypots. The main causes stated by (Spitzner, 2010), are that high-
interaction honeypots are very complex to deploy, maintain and require an “extensive
tender loving care”. Moreover, a badly configured high-interaction honeypot could
potentially threaten the whole network.

The honeypot system will be installed within the cloud computing of Napier University and
the security issues of this implementation needs to be taken in consideration. The review of
the cloud computing security issues demonstrate that cloud, at the time of writing this
project, has undoubted security weaknesses.

The very complex configuration of the high interaction honeypot and the security issues
related to the cloud computing shows that it will not be appropriate to install a high-
interactivity honeypot in the cloud of the University, because there will be a higher risk that
an attacker compromises the honeypot and the entire network.

Therefore, the honeypot involvement leans toward a low/mid interaction honeypot. The
following honeypot systems are reviewed:

- Labrea is out-dated and its functions are very limited.

- Nepenthes, Amun and Dionaea are used to trick automated malwares into the
honeypot in order to get the payload of malicious worms. To do so, they require
multiple attempts by the same worm in order to generate a signature. They are able
to emulate a single host with multiple network vulnerabilities.

- HoneyD allows the creation of small- to large-scale virtual networks (up to 65000
hosts) using only one machine. HoneyD is open source and written in Python, which
make it easily configurable. Moreover, the vulnerability scripts used to simulate
different services (Telnet, Web, SSH...) are easily accessible and very flexible.

Nephentes, Amun, Dioneae and HoneyD can all emulate services with specific vulnerability,
as required by this study. In comparison and after a lot of research online, HoneyD seems to
be more accessible in reason of the multiple sample configurations, service scripts, tools
associated and large open forum available on its website (Provos, 2007). Consequently,
HoneyD will be used in this project.

3.5 Cross Site Scripting (XSS)

3.5.1 Introduction and Decision

There is a wide repertoire of hacking techniques used by pirates to gather sensitive data and
stolen credentials from web servers. According to the Web Hacking Incident Database
(WHID, 2011), most popular attacks concern SQL injections, Cross Site Scripting (XSS) and
Denial of Service. Statistics concerning the top attack methods used in 2011 have been
realised by the WHID. Their results are showed in the following Figure 13:

Benoit Jacob 38

Chapter 3 Literature review

Credential /Session Prediction, 2.9%

Brute Force, 4.03% _~—Misconfiguration, 2.26%

\ ___——Stolen Credentials, 2.26%

Sy —Process Automation, 2.1%
— ———Known Vulnerability, 2.1%
o ——Cross Site Request Forgery (CSRF), 1.77%
-~ Content Spoofing, 1.61%
"j-*Administration Error, 1.45%
_—Abuse of Functionality, 1.45%
05 Commanding, 1.29%
. "—DNS Hijacking, 1.29%
-Banking Trojan, 1.29%
\\-Redirection, 1.13%
‘- Insufficient Authentication, 1.13%

Unintentional Information Disclosure, 4.35%

Predictable Resource Location, 4.35%—.‘

Denial of Service, 8_06%—-,\

Cross Site Scripting (XSS), 12.58% —~

- Unknown, 18.87%

|
SQL Injection, 18.87% -

Figure 13 - Statistics of top attacks 2011 (WHID, 2011)

The decision to study the Cross Site Scripting attacks has been made, after introducing the
top three attack methods in the chapter Technologies Review 2.5. This decision is based on
the unpopularity of this type of attack. Indeed, SQL Injections and DDoS attacks are often at
the headlines of the news; however, it is rare to hear about Cross Site Scripting even
thought this year it has been the second most used attack on the internet. This section is
going to analyse the literature about the injection theory of XSS attacks, the prevention
rules used to prevent a XSS injection and examples showing up to date XSS attacks.

3.5.2 Injection theory

Injection is an attack that allows a malicious user to break out of a data context and switch
into a code context, through the use of special characters. These special characters injected
in a text context will be interpreted by the server side as a code context and could cause
serious issues. XSS injections use this technique to insert code into HTML documents. HTML
is the predominant mark-up language used in web pages. However, this language is one of
the worst of all the coding languages, because it supports so many different types of valid
encodings and becomes a total mishmash. Moreover, HTML supports the addition of other
languages as XML, JavaScript, URL, CSS, VBScript etc., which make it even more confusing.
XSS are injected in the hierarchical structure of the HTML Document Object Model (DOM)
through fields that accept untrusted data. This untrusted data corresponds to the data
entered by the users of a website. This data can be injected in two different ways (OWASP,
2011):

- Injecting UP is the most common way in XSS injection. This technique uses a special
character to close the current context, which results in going up a level in the HTML

Benoit Jacob 39

Chapter 3 Literature review

hierarchy and to start a new context with a malicious code. An HTML example
consists in inserting a closed angle-bracket followed by a new script tag, which result
in the execution of the script inserted between the scripts tag, as seen below:

 <script>alert(’XSS”)</script> <“/> --Malicious user

- Injecting DOWN is the less common way in XSS injection. This technique aims to start
a code sub context without closing the existing context. An HTML example consist in
inserting JavaScript within the current context, in order to introduce a sub context
within the src attribute, as seen below:

 --Malicious user

3.5.3 Detection Rules

To prevent the injection of malicious script through URLs or forms that accept untrusted
data, a simple attempt consist in blocking the input of the characters “<” and “>", which are
generally used to inject script tags (CERT, 2011). Therefore, an attacker will not be able to
inject the previous tag “<SCRIPT>" into a web page because the angled brackets will be
detected and blocked. This solution works well but blocks only a small part of the attacks.

According to K. Mookhey, the famous IDS Snort, which has a set of signatures for detecting
XSS attack, can be easily evaded by XSS attacks (Mookhey, et al., 2010). Indeed, Snort XSS
signatures do not filter hex-encoded values. Thus, Snort would not detect the characters “<”
and “>" that appear as “%3C” and “%3E” while the tag <script> would appear as
%3C%73%63%72%69%70%74%3E. These hex-encoded values are used to inject embedded
scripts tags without being detected by the NIDS.

To avoid this problem, hex encoded values corresponding to the blocked characters, should
be also blocked. K. Mookhey gives a list that can avoid most of the XSS attacks by using
specifics characters that should be restricted from the user’s input, represented in Table 3:

Table 3 - Special characters specification based on (Mookhey, et al., 2010)

< Introduce a tag.

& Introduce a character entity when used in conjunction with some attributes
in HTML encoding.

> Some browsers treat this character as special because they assume that the
author really meant an opening angled bracket (“<”), but omitted it in error.

% Introduce Hexa-encoded values that are used to avoid detection by security
mechanisms.

/ End an HTML entity.

Benoit Jacob 40

Chapter 3 Literature review

In addition to the filtering of special characters, the OWASP foundation provides a XSS
prevention sheet composed of a set of eight prevention rules that should stop the vast
majority of XSS (OWASP, 2011). These rules aim in reducing the freedom of the user’s input
of untrusted data into an HTML document.

3.5.4 Recent Cross Site Scripting Attacks

3.5.4.1 A Wide spectrum of websites targeted

XSS attacks are really common, as seen in the Figure 13, 12.5% of the attacks are attributed
to XSS (WHID, 2011). However, it is hard to realise that the bigger the web sites are, the
more chances they had or have issues with XSS. A good source of recent XSS vulnerabilities
can be found on the XXSed project (XSSed, 2011). This website aims to provide up to date
information about the last XSS vulnerabilities found by their community. Before being
published, the XSS are validated by the moderators, an email is sent to the company
targeted and an archive of the vulnerability is saved on their website. By sorting the
vulnerabilities by websites, main stream webservers are easily found: Google, Yahoo,
Lastminute, Facebook, Twitter, Youtube, Myspace, Ebay, Microsoft... and the list goes on
and on. Each one of these websites were, and are still probably, vulnerable to XSS attacks.

3.5.4.2 Up to date example: Facebook XSS
Facebook is a widely used social networking website that has more than 800 million users
and 50% of them log on the website on any given day. Last April, two separate cross-site
scripting vulnerabilities were uncovered (Harmonyguy, 2011). These holes were used to
spread viral links or attacks.

On April 3rd, the first vulnerability came from a page on the mobile version of Facebook.
The interface was a prompt used for posting stories to a user’s wall. The parameters used
for the text input in that prompt were not accurately defined so that the text input was able
to escape the filtering process. The vulnerability was a code that opens a connection to the
Facebook home page and posts into the wall of the user the message “Wow..cool! Nice
page...” followed by a link to a viral page. Anyone attempting to click on this link would have
the same code executed and the same message posted on his wall. Luckily, the viral page
was not used for malwares spreading but simply for advertisements and spam. This
vulnerability was using the code seen Figure 14:

<iframe id="CrazyDaVinci” style="display:none;"
src="http://m.facebook.com/connect/prompt_feed.php?display=wap&user _message prompt="
<script>window.onload=function(){document.forms[0]. message.value="Just visited
http://y.ahoo.it/gajeBA Wow.. cool! nice page dude!ll’;document.forms[0].submit();} </script>
</iframe>
Figure 14 - Facebook XSS text prompt (Harmonyguy, 2011)
Later, on the 7" of April, a second vulnerability was detected and came from the Facebook
app page (Harmonyguy, 2011). Despite the filters installed by Facebook to prevent scripts

Benoit Jacob 41

Chapter 3 Literature review

from apps to modify the page’s Document Object Model (DOM), the XSS vulnerability was
still able to execute code. Indeed, this code was hidden within a video hyperlink, which is
interpreted on Facebook as an image place holder (“href=") followed by the link. Users
clicking on this video (that actually works) would execute without their consents the hidden
script. Again, XSS made its way around the Facebook filters by using a simple space
character to execute a JavaScript code, see Figure 15. Normally, Facebook’s filters block
JavaScript input but the simple addition of a space preceding the command in the place
holder field, was able to pass undetected by the filters and to be executed as JavaScript
code by the browser.

LI WS
</div>
<div clazs="panel clearfix mvp player" id="appl028474364]
immmﬂ:if (window.opener) &¥123; wing
=http:fffragranceperf:mea.i:fnfpri:cipalf&anp;app_link=http
dow.close(}: }el=e{ document.body.appendChild (docy
pp;app link=http://fb.me/TwiZYWNWsamp: embed link=http://www

.src = '%;/ajax/ct.php?app id=202842426413400&actios
"heop: /1. imgur. com/8hZd5 . png™ border="0" f>
< /Sdivy

Figure 15 - Facebook XSS Javascript (Harmonyguy, 2011)

3.6 Legalissues

The legal issues concerning honeypot systems remain a controversial topic. Most of the
articles found on the web are out-dated and only provide the authors’ self-opinions. There
are no law concerning honeypots deployment in the UK. Nevertheless, on the other side of
the Atlantic Ocean, the CyberLaw101 (Radcliffe, 2007) has been adopted in 2007 in the
United-States of America: “a primer to US law the deployment of honeypot systems”. The
major legal issues concern the privacy and entrapment. However, a recent article published
on the Symantec website (Spitzner, 2010), stated: “there are no legal cases recorded on the
issues concerning honeypot deployment in the US”. Therefore, until a judge gives a court
order, the law stay blurry.

The legal issues of a honeypot deployment on the cloud are even more unclear because of
the multiple countries that could be involved. For example, a French person could
implement a honeypot on the cloud. The cloud is based in California and the honeypot
receives attacks coming from China. In that case, there would be three countries involved,
each one of them with different laws enforcement. Internet can become exponentially
confusing and incomprehensible for law authorities.

To have a reasonable idea about the legal issues of a cloud-based honeypot, | contacted the
Amazon Web Services (AWS) security group (Amazon, 2011) and asked if it was allowed to
implement a honeypot within EC2. Their reply is firm:

Benoit Jacob 42

Chapter 3 Literature review

« It is against AWS Terms of Service and Acceptable Use Policy to set up honeypots on EC2.
Those restrictions are specifically called out in the following:

You may not use, or encourage, promote, facilitate or instruct others to use, the Services
or AWS Site for any illegal [or] harmful use...

Prohibited activities...include...activities that may be harmful to other, our operations or
reputation...

Prohibited content include[s]...content or other computer technology that may damage,
interfere with, surreptitiously intercept, or expropriate any system, program, or data,
including viruses, Trojan horses, worms, time bombs, or cancelbots.

Prohibited activities...include...attempting to probe, scan, or test the vulnerability of a
System or to breach any security or authentication measures used by a system. System
includes any network, computer or communications system, software application, or
network or computing device. »

3.7 Conclusion

Throughout this literature review, many security issues concerning the cloud computing
have been discussed. The cloud computing is far from being a safe heaven and was even
described to be a “security nightmare” by Cisco CEO (McMillan, 2009). The main concerns
related to the security patch of VMs associated with the roll back function, which make
them hard to be kept up to date (Christodorescu, et al., 2009). In addition, researchers’
(Ristenpart, et al., 2009) show that VMs from different owners located on the same piece of
hardware may be able to communicate together. Therefore, this investigation shows that,
to this day, there are many security issues related to the Cloud Computing.

Based on a study by the Web Hacking Incident Database (WHID, 2011), one of the most
common application layer hacking techniques aiming webservers are the Cross-site scripting
attacks. The world is moving towards the cloud computing because it is cost effective and
more convenient. This means that webservers are being moved from being physical hosts
into being a virtualized host on the cloud. This virtualization of webservers on the cloud
induces that Cross-Site Scripting attacks are, nowadays, aiming cloud based webserver. By
following the trend, the first aim of this project is to implement a honeypot simulating a
Web server onto the cloud computing. This honeypot aims to detect XSS attacks. A first gap
in the literature has been identified during the literature review as no studies have set up a
honeypot onto the cloud computing. Initially it was thought the gap was due to the recent
emergence of the cloud computing. However, after contacting the AWS (Amazon, 2011), a
second reason was found: regulations of cloud providers do not allow the implementation
of honeypots on their cloud infrastructure. Luckily, this project is going be implemented into
Edinburgh Napier University privately owned cloud infrastructure, which will avoid cloud
provider regulations.

Benoit Jacob 43

Chapter 3 Literature review

The second aim of this project is to generate ACLs and IDS signatures when XSS attacks are
detected. Similar works have been done before and have used the honeypot’s log file in
order to generate IDS signatures to counteract FTP attacks (Grgnland, 2006) or worms
attacks (Tang, 2011). However, a second gap was identified in the literature because the
signature generation always required user’s intervention during the process. To fulfil this
gap, the second aim is redefined into fully automate the whole signature generation
process.

Additionally, a third gap was found in the honeypot literature: studies reviewed show that
honeypots can detect attacks even if background traffic is injected. However, there are no
studies relating the background traffic speed breaking point to the honeypot’s stability.

The decision towards a honeypot system is based on a comparison of multiple honeypot
systems according to their level of interactivity. Despite of keeping the risk low in Edinburgh
Napier University Cloud, the decision was taken not to use a high interaction honeypot.
Therefore, the choice was based on a panel of low/middle interaction honeypots. After a
comparison of the features provided by each honeypot, the choice was taken to use HoneyD
(Provos, 2007) because it seemed to be more accessible than other honeypots, according to
the multiple sample configurations, service scripts, tools associated and large open forum
available on its website.

Finally, by carrying out the literature review, three gaps have been highlighted within the
research area. The aim of the next chapter is to propose a prototype design that will fulfil
these gaps.

Benoit Jacob 44

Benoit Jacob

45

Chapter 4 Design

Chapter 4. Design

4.1 Introduction

The literature review has outlined that previous works in the area of honeypot systems do
not permit fully automated generation of signatures for NIDS. In addition, no studies discuss
the installation of a honeypot within the Cloud Computing and no studies refer to measuring
the background traffic breaking point to assess whether the honeypot becomes unstable.
This chapter is going to fulfil these gaps by designing some scripts to fully automate the
whole process of ACLs and Snort signature generation. In addition, a design of the honeypot
within the cloud infrastructure will be proposed. Finally, this chapter will design some
experiments to find out the effectiveness of the prototype created and the breaking point of
the honeypot systems. The set up for this implementation will be operated within Edinburgh
Napier University’s private cloud computing infrastructure and kept for future use by the
students.

4.2 Network Architecture Overview

An ideal network architecture design is to filter the network traffic before it enters inside
the cloud infrastructure. To do so, the design of the prototype network architecture is split
into two sections: The first section is composed of two security layers that analyse the IP
packet and content before entering the cloud infrastructure. The second section is
composed of a security sensor (honeypot) placed within the cloud infrastructure, which is
able to detect undiscovered threats.

On the front end of the network, a cisco router is placed and followed by Snort NIDS. The
router is used to filter the traffic by using IP access control lists known as ACLs. The
configurations of ACLs allow to filter network packets based on their IP source/destination,
protocol and port. ACLs are implemented on the interface of the router desired and filter
inbound and/or outbound traffic. Each ACL have specific actions (log/drop) to do when IP
packet match is discovered. ACLs are effective to filter IP packets, to block suspicious
individuals or restrict access to specific services. However, they cannot examine the content
carried out within the packet, which can be harmful to the network. To examine the content
carried out by a packet, the NIDS Snort is placed below the router and provides a second
layer of security. Snort examines the packet’s content against its set of signatures, to
determine the packet maliciousness. Here again, if a content match is discovered, specific
actions will be taken to log or drop the packet. The choice of placing the router on the front
end and the NIDS above is well thought: the router can process packets quicker than the
NIDS. Therefore, less traffic will be sent to the NIDS, which will ensure a low congestion in

Benoit Jacob 46

Chapter 4 Design

the network. Once a packet successfully passed these two security layer, it will be
forwarded to the cloud hypervisor.

The cloud hypervisor acts like a router and determine which packet goes to which instances.
Instances can be any types of machines or servers allowed by the hypervisor. The honeypot
system is one of these instances. The honeypot is able to emulate a template that simulates
a fake web server. Packets received by the honeypot are analysed to determine their
maliciousness, which will be explained in the next section. The following network
architecture draft and flow chart show the different decisions taken when a packet goes
through the network architecture. Both Figure 16

Figure 16 and Figure 17 have been place next to each other to ease the understanding of

Request
forwarded to
the router

the device decisions within the network.

Is the address IP
arked as blocked?

YES»| Access Denied

NO

v

Request
forwarded to
the NIDS

Generate alert

Attack pattern YES—>» and drop

?
found? packet
Cloud
Infrastructure NO
v
Packet forwarded to the
Cloud hypervisor
Emulated P
Service
Instance X
Q s the destination IP Forwarded to
% address for the YES> the production
production networ Network
Instance Y Fake
Web Server
NO
4
\ Forwarded
Instance Z _ to the
Honeypot
e system for
analysis
Figure 16 — Ideal Network Architecture Design Figure 17 - Flow chart paths choices for incoming packets

This network architecture design would be the best architecture to ensure security and high
efficiency of the network. However, for the rest of the project, instances for NIDS and the

Benoit Jacob 47

Chapter 4 Design

attacker will be implemented within the cloud infrastructure. Implementing these instances
on the cloud would be easier to manipulate and provide the same results than if the
NIDS/attacker were outside the cloud.

4.3 XSS Simulation and Logging capability

To simulate and log XSS attacks, the first step consists in creating a source that will simulate
the attacks. To do so, XSS vulnerabilities will be retrieved from the “XXSed.com” website,
which is a database of recent XSS vulnerabilities found by the website’s community,
previously seen in the Literature Review 3.5.4.1. By using this database, a list containing 50
XSS will be established, which will give a large panel of realistic attacks that could be used
against a webserver.

The second step consists in creating a target able to handle and log these XSS attacks. This is
done by building a HoneyD’s template that simulates a web server. This web server will host
a web page that will be closely monitored and any interaction with it will be logged.

Finally, once these attacks are simulated and every interaction with the web page detected,
the last step consists in choosing a logging method, which are detailed in Appendix A.4. The
requirement for this logging method is that it should log any interaction with the web page.
Therefore, the service level logging capability is chosen because it can log any interaction
with the service emulated (web server).

4.4 Detection of XSS attacks and Generation of
ACLs/Snort Signatures

4.4.1 Extracting content and IP address

The generation of ACLs and Snort signatures involve the understanding on how these
security measures works. The section reviewed in Design 4.2 explains that ACLs are mainly
used to filter packets based on their IP addresses, ports and services, while the Snort
signatures are used to analyse and filter suspicious content carried in the packet.

Concerning the generation of ACLs, this study only aims in discarding suspicious
IP/individuals that have interacted with the honeypot, because any interaction with the
honeypot is considered as malicious activity. Therefore, IP addresses that have interacted
with the honeypot will be extracted from HoneyD’s log and inserted in an ACL template.
These ACLs, once implemented in the router, will block future packets coming from these IP
addresses.

The detection of XSS attack, in this study, is based in detecting the injection of the “<script>
</script>” tags or its equivalent in hex-encoded value “%3Cscript%3E %3C%2Fscript%3E”
into the webpage, as seen in the Literature Review 3.5.2. These tags are widely used to
inject malicious scripts into webpages and a common way of evading security filters is to

Benoit Jacob 48

Chapter 4 Design

replace their angle brackets by their equivalent in hex-encoded value. Every interaction with
the webpage is monitored and logged into HoneyD’s log file. The aim of the prototype script
is to automatically extract this information and parse it into a Snort signature template that
will be implemented in order to filter future malicious traffic. An example can be seen in the
following example:

- HoneyD’s log file:

--MARK--,"Thu Oct 13 11:14:03 EDT
2011 ,"webmin/HTTP"," 192.168.230.140",61176
/ ,80, "GET /gp/seller/product-ds/registration_html?ld=<script>
alert(document.cookie%)</script> HTTP/1.1

--ENDMARK--

Snort signature template:

alert tcp $EXTERNAL_NET any -> $HOME_NET 80 (msg:''XSS
attempt: script injection detected™; flow:to server,
established;content:"<script>alert(document.cookie%)</script>
"; classtype:attempted-admin;sid:1000001;)

- ACL template:

| 170 deny tcp host any

4.4.2 Programming language decision

Nowadays, many programming language are available such as C/C++, Perl, Python, Bash,
JavaScript, etc. The generation of ACLs and Snort signatures involves a lot of interaction with
the UNIX shell through specific commands. Therefore, the programming language required
should provide an easy way to do so. This specificity narrows the research down to two
programming languages: Perl and Bash. Perl is a very powerful language, widely used and
can be combined with many plugins. On the other hand, Bash is more limited but offers a
great interaction with the shell and is easier to maintain. In comparison, Bash is generally
used for short scripts (under 100 lines) while Perl is used for bigger ones. The scripts that
will be created in this chapter will be short and will require a lot of system command
interaction. Based on these facts the choice is made to use the Bash language to code the
required scripts.

4.5 Experimentations

The two previous sections show the creation of XSS attacks, the detection of these attacks
and the generation of ACLs/Snort signatures. This section implements four experiments that
will be used to determine if the prototype is working properly and to calculate its
effectiveness in Lab environment and in a simulated real world environment. A summary of
these experiments has been realised in the Figure 18.

Benoit Jacob 49

Chapter 4 Design

In these experimentations ACLs are not implemented, because they will block all the
network traffic coming from the attacker host.

Vmwar% ESXi
Step 1 Scripts effectiveness
XSS attacks are sent Step 2. NIDS Lab environment
and network traffic recorded Recorded XSS attacks

Step 4. Honeypot Real World Step 3. NIDS Real World
environment environment

Honeypot XSS attacks + background traffic at Attgcker ~ Coorded XSS attacks

. i Snort
192.168.230.140 multiple speeds 192.168.230.130 *+ background traffic 192.168.230.120

S

After Step 1: Snort signatures are sent and implemented in the NIDS

Figure 18 — Experiments steps summary

4.5.1 Scripts etfectiveness

The scripts experiment aims in testing the ability of the scripts to generate ACLs and Snort
signatures. To do so, the list of XSS attacks is going to be injected on the honeypot and
should result in generating a number of ACLs/Snort signatures. During the injection phase,
the network flow is going to be recorded using Wireshark and saved as
“honeyd_attack.pcap” file. The expected results should show that the Snort signatures
generated should correspond to the number of attacks containing a “script” tag.

At the end of this test, the Snort signatures generated by the honeypot will be automatically
sent and implemented in Snort

4.5.2 NIDS within Lab environment

The NIDS lab environment experiment aims in testing the Snort signature effectiveness in a
controlled environment. Indeed, the snort signatures generated have been implemented in
the NIDS and the network flow of the attack has been recorded in the “honeyd_attack.pcap”
file. This experiment needs to modify the end points of the network flow
“honeyd_attack.pcap” by using the Tcpreplay suite. The modification will change the IP
addresses from Attacker-Honeypot, to Attacker-Snort and save the modified file in
“snort_attack.pcap”. This file will be sent on the network using Tcpreplay. The expected
results should show that the number of alerts raised by Snort is identical to the number of
signatures implemented.

Benoit Jacob 50

Chapter 4 Design

4.5.3 NIDS in Real World simulation

The NIDS real world simulation experiment aims in testing the prototype effectiveness with
background traffic. Indeed, a real world implementation would involve a wide mix of
genuine network traffic going through the NIDS. This background traffic will be generated by
using the UNIX tool TCPreplay, which will send a file “snort_background.pcap” containing
network packets onto the network. This file packet is free of attacks and comes from the
Massachusetts Institute of Technology (MIT, 2011). The IP addresses of this file packet will
be rewritten during the implementation to suit the needs of this experiment.

The background traffic “snort_background.pcap” and the previous set of XSS attacks
“snort_attack.pcap” will be mixed together and sent to the NIDS (at low speed 10mbps).
Hopefully, the expected result should show that the background traffic did not raise any
false positive alerts.

4.5.4 Honeypot in Real World simulation

This last experiment aims in testing the effectiveness of the Prototype created. This
experiment is similar to the previous one but aims in testing the honeypot effectiveness
through increasing network traffic. The Tcpreplay suite is able to send the packets
“honeyd_background.pcap” at a predefined speed on the network. XSS attacks will be
injected in parallel with the background traffic. The background traffic speed will be
increased from Ombps by step of 0.5mbps. Two measures will be taken according to the
background traffic speed: The latency to send the 50 XSS attacks and the number of attack
detected (equal to the number of signature raised).

Expected results at a low speed should indicate the same number of alerts, as detected
previously in the lab environment. However, at a higher speed, the expected results are that
HoneyD will have a high amount of traffic to analyse and it will probably start dropping
packets, which involve missing out XSS attacks. The experiment will show the breaking point
of the prototype under a certain amount of network traffic.

4.6 Conclusion

The network architecture designed, proposes to implement the honeypot within the
production network. In that way, the honeypot is able to detect XSS attacks that bypassed
security devices placed on the front end of the network, such as the NIDS and the router.
The detection of an XSS attack by the honeypot generates an ACL, to block the IP address
source of the attack, and a Snort signature to block future incoming packet using the same
attack content. The ideal network architecture put forwards in this chapter would be to
install a boundary router followed by a NIDS to provide a double filter of incoming packet.

In order to generate ACLs and Snort signatures, the design proposes to create two Bash
scripts (one for each generation) that automatically extract relevant information from the
honeypot log file and parse it into its template (ACL or Snort signature). This fulfils the gap

Benoit Jacob 51

Chapter 4 Design

found in the literature review, which states that there are no mechanisms that provide an
automated way to generate ACLs/Snort signatures.

A set of four experiments are designed to test out the honeypot and the NIDS. However, a
different network architecture design is created in order to ease the implementation of the
experimentations. In addition, the experiments do not implement the ACLs created into a
router. These ACLs have only been created to show the possibility to generate ACLs using a
honeypot system.

The first experiment aimed to evaluating the effectiveness of the Bash scripts created in
detecting XSS attacks and generating ACLS/Snort signatures. The Snort signatures generated
are then implemented into the NIDS for the next two experiments. These experiments inject
the same XSS attacks but into the NIDS. They evaluate firstly, if the NIDS is able to detect the
XSS attacks by using the new set of signatures and secondly, by injecting background traffic
to evaluate if any False Positive alarm is raised. Finally, the last experiment consists of
injecting background traffic and XSS attacks into the honeypot to determine the ability and
latency to detect the attacks under increasing background traffic. This experiment put
forward a breaking point, due to the increasing background traffic, after which the
honeypot became unstable. This last experiment has fulfilled the second gap found in the
literature review, which states that there are no experiments showing the breaking point of
the honeypot.

In the next chapter, the design of the scripts and experiments will be implemented within
the cloud computing of Edinburgh Napier University. This implementation will fulfil the last
gap found in the literature review, which is the gap about cloud-based honeypot
implementation.

Benoit Jacob 52

Benoit Jacob

53

Chapter 5 Implementation

Chapter 5. Implementation

5.1 Introduction

This chapter aims to create scripts and implement experiments designed in the previous
chapter. The previous chapter has clarified the aims of each script and experiment needed
for this project.

In the previous chapter, the scripts required to generate ACLs and Snort signatures have
been designed. The design showed that specific information of the honeypot log file can be
extracted and injected into appropriate templates to create ACLs and Snort signatures. In
addition, the previous chapter presented a set of four experiments, which tested the
effectiveness of the honeypot coupled with the scripts in detecting XSS attacks. These
experiments are to be implemented in this chapter.

The network architecture of the implementation is composed of three instances, in order to
simulate a honeypot, a NIDS and an attacker. The configuration of these instances is
described within the following chapter, however, background understanding of the features
and capabilities offered by the honeypot “HoneyD” and the NIDS “Snort” are respectively
proposed in Appendix A. and Appendix B. which eases the understanding for the reader.

5.2 Cloud configuration and Test bed

The network architecture seen in the Design 4.2 requires the creation of a unique instance
to simulate the honeypot (Fake Web Server). However, for this implementation, the design
needs to be adapted in order to simulate also the instances of the NIDS and the Attacker.
The cloud hypervisor available at the University is VMware ESXi with vCenter Lab manager.
The requirements to create three instances can be quickly achieved through lab manager,
within a couple of clicks. The portal of lab manager is accessed through the following
address: https://Im2003.napier.ac.uk/. The login credentials must be pre-activated by Bill
Buchanan to enable the connection onto the platform (Buchanan 2011). Once connected on
the platform, three instances are created and deployed, all under the operating system
BackTrack5, as seen Figure 19. The choice for the operating system BackTrack5 instead of
Widows or other UNIX platform is done because BackTrack5 provides a large panel of
security tools pre-installed. This saves a lot of time, because it is generally a troublesome
task to install new software in a UNIX environment.

Benoit Jacob 54

Chapter 5 Implementation

Consoles Configuration Name ¢ Status Owner
@ Attacker BTS Deployed Jacob,

Benoit

@ Haoneypot BTS Deployed Jacob,

Benoit

@ Snort BTS Deployed Jacob,

Benoit

Figure 19 - Deployment of instances
The instances have been deployed on the student network, which means that they are able
to communicate together within the same subnet. The access to the outside (internet) is
enable, although not needed in the following experiments, but could be useful in order to
retrieve the last packages needed for the security tools. The test bed of the network
implementation of the three instances is represented below, Figure 20.

146.176.0.0/16

Edinburgh Napier University
Border|Router

192.168.0.0/16

Vmware ESXi +
vCenter Lab Manager

Student Honeypot Attacker Snort Student
Instance X BackTrack 5 BackTrack 5 BackTrack 5 Instance Y
192.168.230.140 192.168.230.130 192.168.230.120

Figure 20 - Instances implementation overview

Benoit Jacob 55

Chapter 5 Implementation

5.3 Instances configuration

The configurations of the three instances involve setting up a NIDS “Snort”, a honeypot
“HoneyD” and an attacker instance. These instances are running the Operating System
BackTrack 5. Even though the setup of these instances is not very hard to realise, there are a
lot of command line options to choose from, and it is not always obvious which ones should
be used and in which context. This section aims to make the implementation understanding
easier for beginner users.

5.3.1 HoneyD

5.3.1.1 Basic installation
The honeypot system used for this study is HoneyD. A review of HoneyD’s features and
capabilities is provided in reviewed in Appendix A. The installation of HoneyD under a UNIX
system is done with the command “apt-get install HoneyD”. Luckily, the prompt command
informs that HoneyD is already installed in the system. This is because Backtrack 5 comes
with pre-installed security tools and apparently includes HoneyD. However, the installation
path of HoneyD is not indicated, so the “locate” command is typed in to find out where it is:

honeypot@bt:~# locate honeyd
/usr/local/share/honeyd

By default HoneyD does not has any service scripts implemented. These services scripts are
used to simulate services as FTP server, Email server, Web server, etc. A package containing
service scripts “service.tar” is retrieved from HoneyD’s website (Provos, 2007) and extracted
using the following command:

honeypot@bt:~# tar —zxvf honeyd.tar /usr/local/share/honeyd/

5.3.1.2 Configuration file

HoneyD’s configuration file is used to create some virtual devices. This is done by first
setting up a template named “Webserver” and the template personality named "Linux
kernel 2.4.20". These options are used to deceive fingerprinting tools by making the system
looks like genuine. The uptime, which defines how long the system will stay on, is
configured to stay awake for a long time. The “add” command defines the information
related to a service script. In this configuration, the service script webmin.sh (used to
emulate the webserver) is configured on the TCP port 80. Any other traffic that use the
protocols UDP or TCP will be reset. The name of the Ethernet card used in the configuration
is defined by “3com”. Finally, the template Webserver is “bind” (associated) with the IP
address 192.168.230.140 (which should be a non-used IP address). Therefore, the IP address
of the Webserver is 192.168.230.140. The configuration file is presented below:

#HoneyD”s WebServer configuration file
create Webserver
set Webserver personality "Linux kernel 2.4_.20"

Benoit Jacob 56

Chapter 5 Implementation

set Webserver uptime 9999999

add Webserver tcp port 80 'sh ./scripts/suse7.0/webmin.sh”
set Webserver default tcp action reset

set Webserver default udp action reset

set Webserver ethernet "3Com"

bind 192.168.230.140 Webserver

5.3.1.3 Service script adaptation

The service script used in this study is Webmin.sh. It was created by Fabian Bieker to
emulate a web page with an authentication form. The script is 407 lines long and provides
multiple options that are not needed in our experimentations. However, two lines need to
be changed in the Webmin.sh file, in order to make the service script work. The first line
should indicate the full path to the file base.sh, which is located in the script directory
created earlier. The second line defines where the service script writes its log messages. This
line should be configured to save log message in the file honeyd/msg.log. An overview of
Webmin.sh and the modified lines is shown below:

#1/bin/sh
Webmin.sh
(... text...)
. /usr/local/share/honeyd/scripts/base.sh
(... text ...)
LOG=""/usr/local/share/honeyd/msg.log"

5.3.1.4 Starting HoneyD
Before getting HoneyD started, two last commands need to be typed in. The first commands
change the attributes of the files “msg.log”, “webmin.sh” and “base.sh” in order to enable
everybody to access them. This is required otherwise HoneyD cannot access these files and

fail to start up, to start a service or to log alerts.

honeypot@bt:/usr/local/share/honeyd# chmod 777 ./msg.log
honeypot@bt:/usr/local/share/honeyd# chmod 777 ./scripts/base.sh

honeypot@bt:/usr/local/share/honeyd# chmod 777
./scripts/suse7.0/webmin. sh

HoneyD is now configured and ready to start. To start up, the last command consists in
indicating HoneyD the network interface chosen, the emplacement of the configuration file
and the IP range attributed. The command is shown below:

honeypot@bt:/usr/local/share/honeyd# sudo honeyd -d -i ethl -Ff
myconfig.conf 192.168.230.140

5.3.2 Snort

The NIDS Snort is provided in the BackTrack 5 distribution. However, before starting the
program, the network interface and the configuration file need to be modified.

Benoit Jacob 57

Chapter 5 Implementation

5.3.2.1 Network interface
First of all, an “ifconfig” command needs to be typed in, to determine the network interface
that Snort will be listening on.

snort@bt:~# ifconfig
ethl Link encap:Ethernet HWaddr 00:0c:29:81:2c:81

inet addr:192.168.233.128 Bcast:192.168.230.255
Mask:255.255.255.0

lo Link encap:Local Loopback
inet addr:127.0.0.1 Mask:255.0.0.0

The “ifconfig” command shows two network interfaces: ethl and lo. Ethl is the network
interface connected to the outside (needed for this experiment) while “lo” is a loopback
interface generally used for testing purposes.

5.3.2.2 Configuration file
Snort’s configuration file “snort.conf” is used at start up time. It contains six basic sections:

n " n " 4 "

“variable definitions”, “config parameters”, “pre-processor configuration”, “output module
configuration”, “new action types” and “rules configuration”. For this implementation only
the last section “rule configuration” needs some modifications. In the default configuration,
Snort includes paths to multiple rules files. These rules files have specific patterns that are
used by Snort to detect an attack. In this project, these files are not needed, therefore they
should be ignored. However, the rules file “snort.rules” that contains the XSS attacks
signatures, created during the implementation, needs to be added in the configuration file.
Therefore the path to this rules file is added, while other rules files are commented by using

a # character, such as the following:

snort@bt:/etc/snort# nano snort.conf

SRR A R R R R R R R A S R R R R R SR R O A R AR
Step #6: Customize your rule set

-

HR T A T T R R T A R R R TR T R R T

include $RULE_PATH/snort.rules
#include $RULE_PATH/local .rules
#include $RULE_PATH/bad-traffic.rules
#include $RULE_PATH/exploit.rules

5.3.2.3 Starting Snort
Once the network interface is found out and the configuration file modified, the command
line used to start Snort can be typed in, such as the following:

snort@bt:/etc/snort# snort -A console -i ethl -1 _/log -c snort.conf \

Benoit Jacob 58

Chapter 5 Implementation

--== Initializing Snort ==--
--== Initialization Complete ==-—-

This command line has four options: “-A console” specifies that alerts will be shown in the
console, “-i eth1” specifies the network interface used to capture traffic, “-I ./log” specifies
the logging directory for the alerts and “-c snort.conf” specifies the configuration files.

Once the command is typed in, Snort starts initializing each plugin one by one and prints an
“initialisation complete” message to confirm that the start-up went successfully.

5.3.3 Attacker

The configuration of the attacker’s instance consists is split into two sections: Firstly, the
creation of a list of XSS attacks that will be injected in the lab and real world experiments,
and secondly, the installation of the Tcpreplay suite needed to generate background traffic
for the real world experiment.

5.3.3.1 XSS list
A list of 50 XSS is created based on recent XSS attacks found on the XSSed.com website. This
list is composed of various types of XSS attacks that use different injection methods.

|ll

Therefore, some of these XSS do not use the traditional “script” tags but use different tags
or encryption methods. The sources of these attacks come from multiple websites as
Google, EBay, Amazon, Yahoo and so on. However, for this project the website names
(www.website.com) will be deleted in order to keep only the URL string without the website
name. The full XSS list is provided in the DVD-ROM enclosed with this thesis, but the

following gives three examples of what it looks like:

/NEWS/?act=VIEW&ano0=958&pst=-1&startno=1121&pageno=9&FID=
%22%3E%3Cscripth3Ealert®%28%2Fwww. r3t.n3t.nl%2F%29%3C%2Fscript%3E

/gp/change-password/-%22%3E%3Cscripth3Ealert®%28document.cookie
%29%3C/script%3E-.html

/mai lto?prop=movies&locale=us&uril=&title=irsdl"STYLE="width:expressi
on(alert(/Internet Explorer Only-Irsdl is here again/));

5.3.3.2 Tcpreplay suite
The Tcpreplay suite is a set of tools that can inject previously captured traffic onto the
network. Additionally, Tcpreplay can rewrite the layer 2 and 3 header and replay the traffic
at different speeds throughout the network. This tool is perfectly suitable for the real world
experiments. The installation procedure is straight forward by using the “apt-get install
tcpreplay” command, which automatically install the Tcpreplay suite composed of
Tcpreplay, Tcprewrite and Tcpprep:

attacker@bt:~# sudo apt-get install tcpreplay

Benoit Jacob 59

Chapter 5 Implementation

The following NEW packages will be installed:

tcpreplay ...

54 Prototype scripts creation

5.4.1 Scripts overview

ACLs generation and Snort signatures generation require different operations and
methodology. Therefore, they have their own specific script written in Bash language,
previously chosen in the Design 4.4.2. The scripts require to extract specific data from
HoneyD’s log and to inject them into ACL or Snort signature templates. This needs to be
done in an automated way to fulfil the gap found in the literature review. An overview of
the main functions required by these two scripts has been realised in the following

flowcharts Figure 21 and Figure 22:

1/ Select the content
of each alert in
HoneyD'’s log.

2/ Remove duplicated

alerts.

Copy each alert in content.log

Extract the “script” tags
with the text embedded
in between them

Copy in content_script.log

Compare text in
content_script.log to
existing signature in
snort.rule

No matching found

Signature already exists
Or
End of the file

Creation of a Snort
Signature in snort.rule

Sleep for 30 secondes (=

Figure 21 - Flow Chart Snort Script prototype

Benoit Jacob

Y

1/ Select IPs source of
each alert.
2/ Remove duplicates

Copy IPs source in IP_src.log

ompare each IPs |
IP_src.log to existing
ACLs in ACL.log

No matching found

i Yes

Creation of an ACL IP alreagry exists
blocking the IP)
source in ACL.log End of the file

Sleep for 30
secondes

Figure 22 - Flow Chart ACL script prototype

60

Chapter 5 Implementation

5.4.2 Snort signature script

The following Snort script is a coded representation of the flow chart seen above. To
resume, this script extracts the URL string that has been logged by HoneyD, analyse it to find
“<script></script>" tags or hex-encoded equivalent, and parse the result into a Snort
signature template. This Snort script has been created especially for this study and the
explanation following describes its main operations. In addition, another explanation is
provided in the Appendix C.1, which gives a line by line description of each single operation.

#Snort_script.sh

#1/bin/ksh

count=1000000

(

while true

do

nawk -F /~ "/GET/ {print $0}" msg.log | cut -d* * -f2] sort | uniq
> content.log

grep "script>\]|script%3E \|script%3e” content.log | sed -e
's/.*<script>//;s/<\/script>_.*//" | sed -e

"'s/ . *%3CscriptW3E// ;;s/%3C\/scripth3E.*//" | sed -e

"'s/ . *%3Cscripth3E// ;S/%3Ch2Fscript%3E.*//" > content_script.log

cat content_script.log |
(
while read line
do
res="grep -c $line snort.rules”

if [$res == 0];

then echo "alert tcp $EXTERNAL_NET any -> $HOME_NET any

(msg:' XSS attempt: script injection detected ';

flow:to_server,established; content:""$line"'"; nocase; sid:
"$count”;)"\">> snort.rules count="expr $count + 1 °

else echo "Snort signature "$line" already existing”
fi
done
)
sleep 30
done

)

The Snort script begins with a “count” variable, which will be used later on to identify each
signature with a unique number. A loop starts with the nawk option, which retrieves each
line of HoneyD’s log (msg.log) starting by /GET. These lines show the interaction from an
attacker onto the webpage (commands typed, URL strings, etc.). Results found are saved in
“content.log”. Then, each line is examined to detect any tags “<script></script>" (or hex
encoded angle bracket equivalent), which are widely used tags in XSS attacks. Positive
results are saved in “content_script.log”. Then, each line of this file is read and compared to
the existing Snort signatures file “snort.rule” (to avoid duplicated signatures). If a match is

Benoit Jacob 61

Chapter 5 Implementation

found, the variable “res” is incremented and an echo is displayed. If no results are found,
the line is injected into a Snort signature template and sent in “snort.rule”. Finally, the
prototype script waits 30second before doing a loop.

5.4.3 ACL script

The following ACL script is a coded representation of the flow chart seen in Figure 22. To
resume, this script extracts the IP address source of every machine that interacts with the
web page. As nobody should be interacting with the honeypot, any interaction is considered
as suspicious. This IP address is then injected into an ACL template. This script has been
created especially for this study. An explanation is given after the script, but a more detailed
explanation, with a line by line explanation can be found in the Appendix C.2.

#ACL_script.sh
#1/bin/ksh
count=200

(

while true

do

nawk -F"[\",]" "/MARK/ {print $9}" msg.log | cut -d* " -fl1l] sort |
uniq | grep -v "~$"> IP_src.log

cat IP_src.log |

(

while read line

do

res="grep -c $line ACL.log ;

if [$res == 0];
then echo ""$count® deny tcp host *"$line” any"\>> ACL.log
count="expr $count + 10 °

else echo "IP match found®

fi

done

)

sleep 30

done

)

The ACL prototype script begins with a “count” variable, used to identify each ACL with a
unique number. A loop starts with the nawk option, which retrieves each lines of HoneyD’s
log (msg.log) starting by /MARK/. From these lines, IP addresses source are extracted,
duplicate addresses are removed and the result is sent to “IP_src.log”. Then, each line of
this file is read and compared to existing ACL file “ACL.log” (to avoid creating duplicated
ACLs). If a match is found, the variable “res” is incremented and an echo is displayed. If no
results are found, the line is injected into an ACL template and sent in “ACL.log”. Finally, the
prototype script waits 30second before doing a loop.

Benoit Jacob 62

Chapter 5 Implementation

5.4.4 Snort signature transfer

This last script is a short example that shows the possibility to automatically transfer the
Snort signatures file “snort.rule”. This is done by starting a SSH connection and transferring
the file using the “SCP” option command. In order to work, the SSH connection needs to be
preconfigured as a passwordless connection. The steps to configure a passwordless
connection by using private/public keys pair are provided in Appendix D. The following
script establishes a SSH connection, transfer the file “snort.rule” from the honeypot to the
NIDS Snort and wait 60 seconds before making a loop:

#SCP_script.sh
#1/bin/ksh

(

while true

do

scp /(client_snort_signature_folder)/snort._rule
ben@192.168.230.120:/(NIDS_directory_signatures_folder)/snort.rules

sleep 60
done

)

5.5 Experimentations

The instances have been configured and the scripts have been created in the previous
section of this chapter. The following section presents the implementation of the set of
experiments designed in the Design 4.5. In order to ease the understanding for the reader, a
UML sequence has been created in following Figure 23. This UML sequence represents each
interactions involved in each experiments.

Benoit Jacob 63

192 168.230.130

192 168.230. 120

Chapter 5 Implementation

192.168.230.140

Packet capture
> started‘d XSS attack (1 - 50)

Packet oapture Stoped -
> XSS poap file created

Attacks recorded in
HoneyD's log file

Snort Signatures and
> ACLs are generated
from HoneyD'’s log

|
! file.

Experiment 2! NIDS within Lab envir
|
I

New set of signatures
XSS Tcpreplay packet capture > implemented

—p
|
|
|
1

> Alerts generated

nment

L “‘_‘_____‘__‘_O‘

3l

|

D Alerts generated

1 Experiment 31— NIDS in Real World simulation

XSS Tcpreplay +
Background traffic

ﬁxperiment 4 — Honeypot in Real World
i XSS attac||<s (1-50)

XSS Iétency retreived

XSS latency retreived
XSS attacks (1 — 50) + Background traffic at 1mbps

XSS Iétency retreived

Bacquohnd traffic increaslkas by 0.5mbps steps...

|
|
|
|
|
|
|
i XSS atta¢ks (1-50) + Baclkground traffic at 0.5mbps
|
|
|
|
|
|
|
|

$|3| mulation

:

»

|

, Snort signatures

' generated

|

D Snort signatures

, generated at 0.5mbps
»

| Snort signatures

' generated at 1mbps
|

i

5.5.1 Scripts etfectiveness

The scripts effectiveness experiment involves firstly, to record the network flow while

Figure 23 - UML Sequence Experiments model

simulating XSS attacks towards the honeypot and secondly, to implement the list of Snort

signatures generated by these attacks into Snort.

Benoit Jacob

64

Chapter 5 Implementation

To record the network flow between the attacker and the honeypot, Wireshark is listening
on the attacker’s network interface, which is used to send these attacks. The Wireshark
packet capture needs to be started before the first experiment and stopped when all the
attacks have been sent. The packet capture will be saved in “honeyd_attack.pcap”.

To start the honeypot, the following command explained in the section 5.3.1.4, is typed in
the command prompt:

honeypot@bt:/usr/local/share/honeyd# sudo honeyd -d -1 ethl -T
myconfig.conf 192.168.230.140

The XSS attacks list injection is realised by using the “wget” command, which allows to send
HTTP requests. The HTTP requests can be extracted from the file “XSS_attack.txt” using the

I_III

option:

attacker@bt:~# wget -i ~/Desktop/XSS_attack.txt

The following HTTP request containing XSS attacks will be sent to the web server:

http://192.168.230.140/NEWS/?act=VIEW&ano=958&pst=-
l&startno=1121&pageno=9&FID=
%22%3E%3Cscripth3Ealert®%28%2Fwww . r3t.n3t.nl1%2F%29%3C%2Fscript%3E

http://192.168.230.140/gp/change-password/-
%22%3E%3Cscripth3Ealert%28document.cookie %29%3C/scripth3E-_html

http://192.168.230.140/mailto?prop=movies&locale=us&url=&title=irsdl
"STYLE="width:expression(alert(/Internet Explorer Only-Irsdl is here
again- BugReport.ir andSoorush.SecProject.com/));

The honeypot will analyse these URL strings and generate Snort signatures/ACLs when a
string is composed of “<script></script>" tags (or hex-encoded equivalent). The result of this
generation will be displayed in the file snort.rules and ACL.log. Once all the attacks have
been sent, the packet capture “honeyd_attack.pcap” is stopped and saved, as seen Figure
24,

Source Destination Protocol Info

e - R T

192.168.230.130 192.168. 230.140 HTTP GET /%22%3E%3C/script®3E%3Cscript®3Ealert
192.168.230.130 192.168.2320.140 HTTF GET /%22%3EX3Cscript®3Ealerti2B%2Fvww. r3t
192.168.230.130 192.168.230.140 HTTP GET /%22%3E%3Cscript®3ealert(/This-x55-dc
192.168.230.130 192.168.230.140 HTTP GET /%22%3EX%3Cscript®3Ealert(document. coc
192.168.230.130 192.168. 230,140 HTTP GET /%3ICH22%ICHICHK22%3ICHICSCrIPTHIEalert(
192.168.230.130 192.168. 230.140 HTTF GET /%3D%3C/noscript®3E%3Cscript¥®3Ealert|
192.168.230.130 192.168. 230.140 HTTP GET /%3E%3Cscript¥®3eEalert(/xss/)%3C/scrig

192.168.230.130 192.168.230.140 HTTP GET /2%22%3E%3Cscript%3Ealert(document. cc
192.168.230.130 192.168.230.140 HTTP GET /<IMG SRC=%"jav& HTTR,/1.0

Figure 24 - Wireshark capture honeyd_attack.pcap

5.5.2 Snort within Lab environment

The lab environment Snort experiment involves replaying the previous packet capture with
a different destination IP address (Snort). To do so, the Tcpreplay suite is required to modify
the “honeyd_attack.pcap” file. This suite is composed of 3 main tools, Tcpprep, Tcprewrite
and Tcpprep.

Benoit Jacob 65

Chapter 5 Implementation

Firstly, the Tcpprep tool is used to create a cache file “attack.cache”. This cache file splits
the packet capture of “honeyd_attack.pcap” into two sides (client/server). This is done to
avoid Tcpreplay to do any calculation, which result into having a higher packet rate.

attacker@bt:~# tcpprep --auto=bridge --pcap=honeyd attack.pcap --
cachefile=attack.cache

Secondly, the Tcprewrite tool is used to modify the end points IP addresses. Indeed, in the
first experiment the traffic was sent from the Attacker to the Honeypot. In this experiment
the traffic will be sent from the Attacker to the NIDS. Therefore the destination address
needs to be modified by using the —endpoints option. Additionally, the cache file
“attack.cache” and input file “honeyd_attack.pcap” need to be provided. The modified file is
saved using the —outfile option with the name “snort_attack.pcap”.

attacker@bt:~# tcprewrite --endpoints=192.168.230.130:
192.168.230.120 --cachefile= attack.cache

-—infile=honeyd attack.pcap --outfile=snort _attack.pcap
—-skipbroadcast

Finally, the Tcpreplay tool is used to replay an entire communication saved into the newly
created “snort_attack.pcap”. Additional options such as the network interface used --intfl
and a low output speed —mbps are also defined.

attacker@bt:~# tcpreplay ——mbps=10 --intfl=ethl snort_attack.pcap

5.5.3 Snort in Real World simulation

The Snort real world simulation consists in adding genuine background traffic to the
previous experiment. To simulate this background traffic, the packet capture
“background.pcap” retrieved from the MIT needs to be modified with the Tcpreplay suite.
This is similar to the previous experiment: A cache file is created for “background.pcap”, the
endpoints of the network flow are modified and a new packet -capture
“snort_background.pcap” is created.

attacker@bt:~# tcpprep --auto=bridge --pcap=background.pcap --
cachefile=background.cache

attacker@bt:~# tcprewrite --endpoints=192.168.230.130:
192.168.230.120 --cachefile= background.cache --
infile=background.pcap --outfile=snort background.pcap —
skipbroadcast

The background packet file is now configured and ready to be sent on the network. To mix
up both packet captures, two command prompts need to be opened on the attacker
instance to type both commands at the same time.

#Command promptl

attacker@bt:~# tcpreplay —mbps=10 --intfl=ethO
snort_background.pcap

#Command prompt2
attacker@bt:~# tcpreplay —mbps=10 --intfl=ethO snort_attack.pcap

Benoit Jacob 66

Chapter 5 Implementation

5.5.4 HoneyD in Real World simulation

This last experiment is similar to the previous one but involves the honeypot effectiveness
throughout multiple network speed. The background traffic is sent at different speed from
Ombps by step of 0.5mbps to the honeypot. In parallel, the XSS attacks are injected in a
different terminal. The background packet capture is modified with Tcprewrite to change
the IP addresses with the one of the Attacker and the Webserver:

attacker@bt:~# tcprewrite --endpoints=192.168.230.130:
192.168.230.140 --cachefile= background.cache

-—-infile=background.pcap --outfile=honeyd_background.pcap
—-skipbroadcast

Finally, two command prompts are started, one for the background traffic and one for the
XSS injection. Experiments are repeated with background traffic sent at 0.5mbps steps, as
seen below:

Ombps background traffic
#Command promptl
attacker@bt:~# (Ombps background traffic = no background traffic)

#Command prompt2
attacker@bt:~# wget -i ~/Desktop/XSS_attack.txt
--.- Done

0.5mbps background traffic
#Command promptl

attacker@bt:~# tcpreplay ——mbps=0.5 -—loop 20 --intfl=ethO
honeyd_background.pcap

#Command prompt2
attacker@bt:~# wget -1 ~/Desktop/XSS_attack.txt
... Done

1mbps background traffic
#Command promptl

attacker@bt:~# tcpreplay ——mbps=1 -—loop 20 --intfl=ethO
honeyd_background.pcap

#Command prompt2
attacker@bt:~# wget -i ~/Desktop/XSS_attack.txt
--- Done

The injection time of the 50 XSS attacks is recorded at each 0.5mbps steps. Moreover, the
number of signatures generated by Snort signature script is counted and then deleted for
each steps

Benoit Jacob 67

Chapter 5 Implementation

5.6 Conclusion

In this chapter, two Bash scripts have been created and implemented. They gave the
possibility to detect XSS attacks and generate ACLs/Snort signatures based on the log file of
HoneyD. Additionally, a third Bash script was created to automatically send and implement
the Snort signatures generated by the honeypot, into the NIDS “Snort”. Therefore, this
chapter demonstrates that the generation and implementation of Snort signatures can be
fully automated with the help of Bash scripts.

Three instances have been created on the Cloud Computing of Edinburgh Napier University
to implement this project. This chapter has shown, step by step, the commands typed in the
command prompts of each instance, to install and configure the packages needed for the
execution of the experiments. A set of 50 random XSS attacks have been collected from the
XXSed.com website and used during the experiments. This gives a large panel of different
XSS attacks that will hopefully be detected by the honeypot system.

The experiments are complete and the results have been collected. The next chapter will
analyse the results and discuss the effectiveness of the Bash scripts in detecting XSS attacks
through HoneyD’s log. Furthermore, the effectiveness of Snort and HoneyD to detect these
XSS attacks will be tested through injection of Background traffic.

Benoit Jacob 68

Benoit Jacob

69

Chapter 6 Evaluation

Chapter 6. Evaluation

6.1 Introduction

The results collected during the previous experiments are going to be analysed in this
chapter. The results will be compared to assess the effectiveness of the prototype created.
This effectiveness will be assessed by calculating the True Positive Ratio and the False
Positive Ratio of each experiment. In addition, the breaking point of the honeypot system
will be determined by injecting background traffic at increasing speed. This breaking point
will indicate the moment where the honeypot becomes unstable and stop detecting XSS
attacks. Finally, all the results will be compared against the expected results written in the
chapter Design 4.5, to determine whether the behaviours of the HoneyD were as expected
or not.

6.2 Scripts effectiveness

The script effectiveness experiment consists in sending XSS attacks towards the honeypots
in order to detect them and generate Snort signatures by using the Snort script. In addition,
this experiment records the network flow of the attack in order to replay it in the NIDS
experiments.

XSS attacks have been sent from the attacker to the honeypot Web server. To evaluate the
number of XSS attacks detected by the honeypot’s Bash scripts, the number of signatures
that have been automatically generated in the “snort.rule” file will be counted.

The whole XSS injection was composed of 50 random XSS attacks and out of them,
“snort.rule” shows that 26 signatures have been generated. This means that 26 XSS attacks
out of 50 have been detected. The following gives a quick overview of these Snort
signatures but the whole list can be found in Appendix E. :

alert tcp $EXTERNAL_NET any -> $HOME_NET any (msg:" XSS attempt:

script Injection detected '; flow:to_server,established;
content:"alert(document.cookie)'; nocase; sid: 1000000;)

alert tcp $EXTERNAL_NET any -> $HOME_NET any (msg:" XSS attempt:
script injection detected '; flow:to_server,established;
content:"a=eval ;b=alert;a(b(/XSS/ .source)) ; %3C/script37%22%3%3Cmarqu
ee%3E%N3Ch1%3EXSS%20by%20Xy i tol%3C/h1%3E%3C/marquee%3E'; nocase;
sid: 1000001;)

alert tcp $EXTERNAL_NET any -> $HOME_NET any (msg:" XSS attempt:
script injection detected *; flow:to_server,established;
content:"alert(*'DaiMon™)"; nocase; sid: 1000002;)

Benoit Jacob 70

Chapter 6 Evaluation

alert tcp $EXTERNAL_NET any -> $HOME_NET any (msg:" XSS attempt:
script injection detected '; flow:to_server,established;

content:"ipt>alert("XSS");</scr'; nocase; sid: 1000003;)

alert tcp $EXTERNAL_NET any -> $HOME_NET any (msg:'" XSS attempt:
script injection detected *; flow:to_server,established;
content:alert%28%2FXSS+By+RedTuninG%2F%29%3B"; nocase; sid:
1000004;)

In addition an ACL has been generated to block the traffic coming from the attacker IP
address:

200 deny tcp host any 192.168.230.130 |

To evaluate the effectiveness of the signatures prototype in the lab environment, the true
positive ratio, explained in the chapter Technologies Review section 2.3.3, is calculated

Lab Prototype True Positive Ratio

TPR —TP 100
= *
TP+ FN

TPR = 100

26 + 24
TPR = 52%

The True Positive ratio is a way of saying how good the honeypot is at alerting on real
attacks. The chapter Technologies Review section 2.3.3 states that an acceptable level of
True Positive alerts should be at least 60%. In this experiment, the True Positive ratio is
equal to 52%, which makes it 8% under the acceptable level.

6.3 Snort within Lab environment

The Snort lab experiment implements the newly generated signatures into the NIDS Snort
and replays the XSS attack packet towards the NIDS.

During Snort initialization an error is printed. The error message specifies that punctuation
errors are present in the newly generated signature file “snort.rule”. After analysing
“snort.rule”, errors are found to originate from additional semicolons within the “msg” and
“content” fields. In Snort signatures, semicolons should only be used to separate options.
However, the strings used in the XSS attacks were directly inserted into the signatures
template. In some cases, these strings were composed of semicolons, which were
misunderstood by Snort and were generating errors. To mitigate those errors, backslashes
were typed before these specific semicolons in order to make them become some no
special characters. The modifications are shown below:

alert tcp $EXTERNAL_NET any -> $HOME_NET any (msg:" XSS attempt:
script injection detected '; flow:to_server,established;
content:"alert(String.fromCharCode(88,83,83,32,98,121,32,66,117,103,
66,117,115,116,101,114,32,45,32,76,101,105,97,32,98,117,103,98,117,1
15,116,101,114,46,99,111,109,46,98,114))\;"; nocase; sid: 1000013;)

Benoit Jacob 71

Chapter 6 Evaluation

alert tcp $EXTERNAL_NET any -> $HOME_NET any (msg XSS attempt:
script Injection detected”;flow:to server,established;
content:"a=eval\;b=alert\;a(b(/XSS/.source))\;%3C/script37%22%3%3Cma
rquee%3E%3Ch1%3EXSS%20by%20Xy 11 tol%3C/h1%3E%3C/marquee%3E' ; nocase;
sid: 1000014;)

alert tcp $EXTERNAL_NET any -> $HOME_NET any (msg:" XSS attempt:
script injection detected " ;flow:to_server,established;

content:"ipt>alert("XSS")\;</scr'; nocase; sid: 1000015;)

alert tcp $EXTERNAL_NET any -> $HOME_NET any (msg:" XSS attempt:
script injection detected ";flow:to_server,established;
content:"&to=extarea%20cols=1000%20rows=1000%20sty le=%22position:%20
absolute\ ;%20top:%200px\ ;%20 1eft:%200px\ ; %22%200nmouseover=%22alert%
28%27Hacked%20By%20B34TR1BOX%20For%20LeaderHackers.ORG%27%2" ;
nocase; sid: 1000016;)

After modification of the previous signatures, Snort initializes correctly and the XSS packet
capture is sent from the Attacker to the NIDS. Once the 678 packets that compose the XSS
packet capture are sent, Snort displays that 36 alerts have been generated, as seen Figure
25:

Surprisingly, Snort detected 36 XSS attempt while the honeypot generated signatures for
only 26 XSS attacks. This result is surprising because the same number of attack should have
been found by the honeypot and by Snort. To understand what happened, the Snort’s log
file is analysed using Wireshark. This log shows that four TCP out-of-order messages were
generated in the XSS packet capture, which resulted in duplicating four of the XSS attacks, as
seen Figure 26.

192.168.230.120 192.168.230.130 HTTP GET /germany/msdn/501Ve?suche/defath.mspx?g=typ&o=&f=6

GET /mac/temp1ateé.mspx?icid=2&appid=3'%22%3E%3cscr1pt%
192.168.230.120 192.168.230.130 HTTP GET /Danmark/mac/help.mspx?app=2<script=alert(AGD_5COR

192.168.230.120 192.168.230.130 HTTP GET /?set_zﬁp_f11£er=c1ear&&et_city_fi1ter=%22%3E%3cscr

1A% A4S0 TTIA AN 4A% 4S8 IA AR —rn B R e L L o T B R B T T s o ToE IEeee)

These four duplicated messages were causing four additional alerts and consequently, they
should be removed from the total alerts.

36 alerts — 4 duplicated alerts = 32 alerts.

Benoit Jacob 72

Chapter 6 Evaluation

However, there are still a difference between the 26 signatures generated by the honeypot
and the 32 XSS attempt raised by Snort. A second analyse of Snort’s log file was done,
looking for other duplicated alerts, but none of them were found: each alert corresponds to
a unique XSS attack string. This fact leads to only one explanation: some Snort signatures
are detecting multiple attacks. This is a possibility because some XSS attacks could be using
the same strings between the script tags for multiple websites. The script that generates
Snort signature is built in a way to not duplicate signatures and therefore, one signature
could lead in detecting multiple XSS attacks. Finally, those 32 alerts are True Positive and
correspond to unique XSS attacks. The TPR ratio of this experiment is calculated below:

Lab NIDS True Positive Ratio

TPR = TP+ FN * 100
32
TPR = 32118 * 100
TPR = 64%

The chapter Technologies Review section 2.3.3 states that an acceptable level of True
Positive alerts should be at least 60%. In this experiment, the True Positive ratio is equal to
64%, which makes it 4% above the acceptable level and 12% above the previous
experiment. However, the TPR calculated in the previous experiment is wrong because it
has been calculated on the number of signatures generated without taking in consideration
that one signature could detect multiple XSS attacks. Based on that fact, the Scripts
effectiveness TPR result should be of 64%, equivalent to this experiment.

6.4 Snort in Real World simulation

The Snort Real world simulation consists in simulating a real world environment by injecting
background traffic mixed up with the XSS attack packet. The aim of this experiment is to
determine if the background traffic generates False Positive alert results.

During this experiment, the DARPA data set packet has been sent mixed up with the 50 XSS
attack packets, which results in a total of 48562 packets. Both packets were sent at a speed
of 10mbps. Over this large network traffic, 36 alerts have been generated by Snort, as seen
Figure 27:

Figure 27 - Real world Snort alerts

Benoit Jacob 73

Chapter 6 Evaluation

This result is similar to the one found previously in the Lab NIDS experiment. The same
number of XSS attacks has been sent, which means that results of both experiments are
equivalent. This concludes that the injection of background traffic did not raise any False
Positive alerts. Therefore using the False Positive Ratio with FP = 0 (no False positive alerts)
done:

Lab NIDS False Positive Ratio

FPR = 100

FP+TN
FP

FP + (total packets — XSS packets) i
0
*
0 + (48562 — 678)

FPR = 100

FPR = 100

FPR = 100

0+ 47884
FPR = 0%

The False Positive Ratio is 0% because this experiment did not raise any False Positive
results. This is a great result because the FPR should always be as close as 0% if possible.

The True Positive Ratio is equivalent to the one calculated in the previous experiment
because the same number of True Positive alerts have been detected: 36alerts — 4
duplicated = 32 TP alerts. Therefore the True Positive Ratio is still equal to 64%, meaning 4%
above the acceptable level.

6.5 HoneyD in Real World simulation

The HoneyD in real world simulation consists in sending background traffic at different
speeds while injecting the 50 XSS attacks into the honeypot. This determines the
performances in detecting the attacks and generating Snort signatures in a busy network
environment with background traffic. To do so, increasing background traffic speed is sent
to the honeypot and two results are collected: the latency to inject the 50 XSS, and the
number of signatures generated. Indeed, the latency is printed on the attacker terminal
once the 50XSS are successfully injected and the number of signatures generated can be
easily found in the file “snort.rule” on the honeypot. The background traffic increases by
0.5mbps steps and latency/signatures generated are collected at each step. The following
charts, Figure 28 and Figure 29, have been created with the results retrieved:

Benoit Jacob 74

Chapter 6 Evaluation

XSS injection latency according to the background
traffic speed

80
70 Breaking Point
60
50 /
40 |
30 / Unstable interval
20 /
10
0

0 0.5 1 15 2 2.5

Time to inject 50 XSS (seconds)

Background traffic speed (mbps)

Figure 28 - Chart XSS injection latency according to the background traffic speed

Signatures generated by the honeypot according to
the background traffic speed
30
©
9 5
© A .
E 20 \Qeak ng Point
[J]
o 15 \
[
= |
"?E 10 Unstable interval \
c
T
(7]
0
0 0.5 1 1.5 2 2.5
Background traffic speed (mbps)

Figure 29 - Chart attacks detected according to the background traffic speed

The results show that when the background traffic speed increases, the injection time of the
50 XSS attacks increases but the number of attacks detected stay similar with 26 signatures
generated (equivalent to the first experiment). The increase in the latency shows that the
honeypot queue the network packets destined to the webserver. The repercussions of this
gueuing mechanism during high loads of traffic accrue the honeypot struggle to reply to
each single data packets. However, collected results shows that the honeypot never drops

Benoit Jacob 75

Chapter 6 Evaluation

packets and always find the similar number of XSS attacks than in the first experiment
(before the breaking period).

However, when the background traffic reaches a speed of 2mbps, the honeypot generates
an error and stop itself after certain period of time, as seen Figure 30:

: Killing unknown connection: tcp (192.168

: Killing unknown connection: tcp (192.168

Figure 30 - Error message HoneyD with background traffic at 2mbps
This error called “segmentation fault” is generated because the honeypot is trying to access
memory that the CPU cannot physically address. In other words, the honeypot is using all
the available memory available to inspect every packet. The segmentation fault error results
in sending a dump core signal that terminates the honeypot process.

At 2mbps, the honeypot had the time to detect 18 XSS attacks in 67seconds before
segmentation fault error. At 2.5mbps, the honeypot detected 7 XSS attacks in 43 seconds
before segmentation fault error. These results are explained in the following way: The XSS
injection in this experiment is realised using the command “wget”. This command connects
and downloads every pages found in the file “XSS_attack.txt”, which is composed of 50 XSS
attacks. This TCP connection involves a 3 way handshake to connect to the webserver and
then, the download of the page (error page in this case). Therefore, quite a lot of interaction
with the webserver is required when injecting XSS attacks. During high loads of background
traffic, this interaction takes an increasing time, because the queuing mechanism used by
the webserver can receive multiple background packets between each step of the 3 ways
handshake. Consequently, in high loads of traffic, the XSS struggle to be injected (increase
the latency) and the honeypot struggle to inspect each packet. This result in a segmentation
fault stops the honeypot after a certain period, which explains why the number of signature
generation and latency decrease after the breaking point of 2mbps. From this experiment,
an unstable interval is determined to be between 1.5 and 2mbps.

6.6 Results analysis compared to expected results

This section analyse the evaluation results in comparison to the expected results that have
been supposed in the chapter Design 4.5.

The script effectiveness expected results should have generated a signature for every XSS
attacks containing “<script> random_string </script>” tags or equivalent tags with the
following hexenconded value:

“script> random_string script%3E”
”%3Cscript%3E random_string 3C/script%3E”

Benoit Jacob 76

Chapter 6 Evaluation

”%3Cscript%3E random_string %3C%2Fscript%3E™ \

The Bash script implemented did a good job in detecting successfully all the values above.
However, different “script” tags attack went undetected such as the following attack that
inserts % character within the script tags to evade the filtering process:

Hexencoded value:
%252529%25253B%25253C%25252Fscript%25253E
ASCI1 equivalent:

%%) %% ; %%<%%/scr i pth%>

Moreover, some of the XSS attacks were using different tags to inject some JavaScript, such
as tags or , and went undetected too.

The NIDS within Lab environment expected results should have shown that the number of
alerts raised by Snort is identical to the number of signatures generated by the honeypot.
However, during the result analysis, the NIDS detected more XSS attacks that the number of
signatures implemented, which had been generated by the honeypot. This surprising result
was investigated in the section 6.4. The investigation shows that the honeypot signature
generation process always ensure that signatures are not duplicated. Therefore if two
attacks have the same attack pattern, only one signature will be generated. This process
explains why during the NIDS experiment, Snort was able to detect more attacks than the
honeypot had generated signatures: one Snort signatures can detect multiple XSS attacks
using the same pattern.

The NIDS in Real World simulation expected results should have been the same that the Lab
environment experiment. The result analysis proved that the same number of attacks was
detected after the DARPA background traffic injection. This means that the patterns of the
signatures generated were specific enough not to raise any False Positive results within
background traffic injection.

The honeypot in Real World simulation expected results were that HoneyD should have
dropped XSS attacks within high load of background traffics. However, the results analysis
showed a different behaviour. During an increasing load of background traffic, HoneyD
could detect the same number of XSS attack than previously but HoneyD was taking more
and more time to reply to the XSS injection. However, when the background traffic speed
reached 2mbps, HoneyD did a “segmentation fault” due to an insufficiency of allocated
RAM. This error stopped HoneyD and induce that not all the XSS attacks were detected.

6.7 Conclusion

The results analysed during the evaluation have demonstrated the effectiveness of the
Snort signatures generation mechanism invented. The experiments showed that in a Lab
and simulated Live environment, the Bash scripts created were able to successfully extract
specific information from HoneyD’s log file and to parse it into an ACL or Snort template.

Benoit Jacob 77

Chapter 6 Evaluation

This fulfils a gap found in the literature review, which concerned automating the generation
process of Snort signatures.

The injection of 50 random XSS attacks found on the XXSed.com website showed that 26
Snort signatures were generated by the honeypot. During the NIDS lab experiment, the
signatures were successfully implemented into Snort and were able to detect 32 XSS
attacks. This surprising result was due to the ability of some signatures to detect multiple
attacks that used the same pattern. The True Positive Ratio calculation showed that the
overall number of detected attacks was 64%, which is 4% above the recommended ratio
seen in the chapter Technologies Review 2.3.3. This result did not change during the NIDS
Live experiment and proved that the signatures created were specific enough not to trigger
any False Positive alarms within background traffic.

Finally, the Snort signature generation was tested by sending XSS attacks and increasing
background traffic to the honeypot. HoneyD with the Bash scripts did successfully detect
every attack for a background traffic speed up to 1.5mbps. However, at 2mbps the
honeypot could not handle the huge traffic load resulting in a segmentation error, due to
insufficient RAM. Therefore, a breaking point is identified at 2mbps and an unstable interval
is determined between 1.5 and 2mbps.

The next chapter will use these conclusions to determine whether the initial aims of the
project have been carried out successfully and to critically evaluate the work achieved in
this project.

Benoit Jacob 78

Benoit Jacob

79

Chapter 7 Conclusion

Chapter 7. Conclusion

7.1 Introduction

The previous chapter, the evaluation, has shown that it is possible to detect XSS attacks and
generate ACLs/Snort signatures by using HoneyD’s log file. The experiments, based in a
cloud environment, show that the signatures are accurate and, when implemented in the
NIDS Snort, are able to detect XSS attacks without False Positive results. The main aim of
this project was to implement a cloud-based honeypot and use it to automatically detect
XSS attacks and generate Snort signatures. Therefore, the main aim of this project has been
successfully achieved.

This chapter aims in giving a conclusion of the work that has been carried out during this
project. To do so, the initial objectives will be compared to the objectives achieved and a
main conclusion will outline the findings. In addition, a critical analysis of the work achieved
will assess the work carried out and future work in the same area will be proposed. A grant
chart illustrating the project schedule is provided Appendix F. and the initial research
proposal in Appendix G.

7.2 Meeting the objectives

This section aims to compare the objectives defined in the introduction chapter and the
work that has been carried out. The initial three objectives were the following:

1. Review and investigate the existing literature about security issues related to the
cloud computing. In addition, critically evaluate the previous work in generating IDS
signatures and compare different honeypot systems. Finally, analyse a specific
attacking method and ways to detect it.

2. Design some scripts to generate IDS signatures every time that an attack is
detected. Design some cloud-based experiments that will show the effectiveness of
the scripts created in detecting attacks and generating IDS signatures.

3. Conduct the final evaluation based on the results collected from the experiments.
This evaluation should present determine the effectiveness of the scripts created.

7.2.1 Objective 1

The first objective was met by splitting the literature investigation in two chapters:
Technologies Review and Literature Review. The technologies review chapter was used to
provide background knowledge about the technologies used throughout the project.
Following that, the literature review analysed the literature and compared, in depth, the
technologies and the work carried out by previous researchers. Investigations about the

Benoit Jacob 80

Chapter 7 Conclusion

cloud computing security issues, generating IDS signatures, honeypot systems and hacking
techniques were undertaken. Furthermore, in order to have an awareness of the laws
concerning honeypot implementation, an additional section was created concerning legal
issues. Finally, analysis of the features and capabilities of the honeypot “HoneyD” and the
NIDS “Snort” were respectively carried out in Appendix A. and Appendix B.

By successfully carrying out the first objective, based on the literature investigation, a gap
within the IDS signature generation was identified, an appropriate honeypot system was
chosen and detection methods of a hacking technique, known as Cross-Site Scripting (XSS),
were examined.

7.2.2 Objective 2

The second objective has been met by creating a Bash script to automatically detect XSS
attacks and generate Snort signatures. Additionally, research supervisor Bill Buchanan
recommended creating another script to generate some ACLs to block the attacker (Saliou
2005). This work was undertaken by creating a second Bash script. Finally, a third script was
created to automatically transfer the signatures generated by the honeypot to the NIDS
Snort.

An experiment was designed in order to test the effectiveness of the scripts created to
generate Snort signatures/ACLs. In addition, a set of two experiments were designed to test
the efficiency of the Snort signatures by implementing them in the NIDS within Lab and Live
environment. Finally a last experiment was designed to test the efficiency of the honeypot
HoneyD within increasing background traffic. All of these experiments were designed to be
implemented within the cloud computing of Edinburgh Napier University. The data collected
was kept for further analysis in the next objective.

7.2.3 Objective 3

The third objective was met by conducting an evaluation to determine the effectiveness of
the scripts created. This evaluation required the data collected during the implementation.
Using this data, the effectiveness of the Snort script created has been evaluated in terms of
True Positive Ratio. The results collected from the additional three experiments were also
evaluated with a True/False Positive Ratio. Finally, the results of the evaluation were
compared with the results expected in the Design chapter. This was done to determine
whether the behaviours of the scripts/HoneyD were predictable or not.

7.3 Conclusions

This project has succeeded in creating some Bash scripts able to detect XSS attacks and
cause the generation of ACLs/Snort signatures. During the achievement of this project the
following findings have been made.

Benoit Jacob 81

Chapter 7 Conclusion

A honeypot system is able to simulate network services and log any interaction with these
services. The log file of the honeypot is useful to retrieve a number of important
information about intruders, such as IP addresses, ports, timestamps, services and
commands typed in. HoneyD, the honeypot studied in this thesis, does not provide any
features to filter the information written in the log file. This means that the log file is huge
with a lot of information. In order to detect XSS attacks, a Bash script was created to filter
specific fields found in the honeypot log file and compare them with well-known tags
“<script> random_strings </script>" used in XSS attacks. When a match was found, the
random strings between the script tags was extracted and injected within a template of a
Snort signature. In order to automatize the system a step further, a Bash script was created
to automatically transfer the file containing all the generated Snort signatures from the
Honeypot into the NIDS.

Moreover, a third Bash script was created to automatically create Access Control Lists. This
script extracted every source IP addresses from the honeypot log file and injected them into
an ACL template. The honeypot was in the production network, therefore, any interaction
with it was classified as malicious activity and an ACL was created to block the attacker.
However, ACLs were not implemented into the boundary router and were created just to
show the possibility to automatically generate them.

The experiments undertaken in this project showed that the Snort signatures generated by
the honeypot, once implemented in Snort, were able to detect 64% of a random set of XSS
attacks. By adding background traffic retrieved from the DARPA website, the NIDS was still
able to detect successfully the same percentage of XSS attacks. This means that no False
Positive Results were generated by the background traffic, which induce that the Snort
signatures are specifics enough to only detect XSS attacks. Finally, the last experiment
consisted in estimating the honeypot efficiency by injecting XSS attacks and increasing
background traffic. Results showed that the latency of the honeypot was increasing
according to the background traffic speed. This did not have any effect on the Bash script in
detecting XSS attacks and generating Snort signatures. However, a breaking point was
identified when the background traffic reaches 2mbps, the honeypot generated an error
and stopped. Therefore, an unstable interval was determined between 1.5mbps and 2mbps.

7.4 Critical analysis

Having shown that all objectives of this project have been met and conclusions have been
done, this section provides a critical analysis by analysing the limitations of the work carried
out. The different methodologies discussed in the literature review will be compared for
this purpose.

It must be acknowledged that there are few limitations to the scripts realised. The first
limitation concerns the Bash script used to generate Snort signatures. This script was based
on detecting the presence of the scripts tags, which seemed to be well-used tags in XSS

Benoit Jacob 82

Chapter 7 Conclusion

attacks, according to (Mookhey, et al.,, 2010). This detection limited the number of XSS
discovered to the number of script tags found out in the honeypot log file. Despite the 64%
of alerts generated based on a random set of XSS attacks, this result could have been higher
if other tags were implemented in the bash script, such as injection through image field
“ Random_string ".

Another limitation is the set of XSS attacks collected from the XXSed.com website which is a
database of recent XSS vulnerabilities (XSSed, 2011). This set of attack had a major factor in
the experimental results, concerning the detection of scripts tags. However, no selection or
filtering was realised over the choice of these XSS attacks. In order to keep a realistic
approach the first 50 XSS attacks were used. Therefore, using different XSS attacks would
have led to different results.

However, the work carried out in this project contains some strength, able to fulfil gap
found during the literature review. The first strength is to automatically generate ACLs and
Snort signature based on the attacks detected, which is not found in the existing
methodology. Indeed, the Bash scripts created during this thesis reveal to be handy because
they do not require any user input.

In addition, this automation is pushed a step further, with a second strength, by creating a
Bash script that transfer the snort signatures automatically between the honeypot and the
NIDS. This simple script has never been found or thought about in the existing literature and
reveals to be really useful in automatically updating the NIDS with new signatures.

7.5 Future Work

The work presented in this project has achieved some requirements that fulfil gaps found in
the literature. However, further work in the enhancement of the scripts presented and in
additional experiments could be the aim of future projects.

Further work in the detection of attack and generation of Snort signatures could be carried
out by using a different type of detection engine. Indeed, the work carried out in this project
enables the detection of specific “script” tags. However, as reviewed in the previous section,
there are many different type of tags used to inject XSS. Further work in this area could be
carried out in order to create a universal detection mechanism able to detect multiple tags.

An additional feature could be to detect different kind of attacks. The investigation
undertaken during the literature review showed that the most used hacking technique is
SQL injection. By using a similar work scheme and simulating a database by the means of a
honeypot, SQL injection could be detected. Indeed, by modifying the detection engine of
the Bash Snort_script, in order to detect common SQL injection, could lead to be the subject
of a future project.

Another feature could be the creation of a script able to implement automatically in the
router the ACLs generated by the honeypot. This would require a similar methodology that
the one used to transfer the Snort signatures: a connexion between the honeypot and the

Benoit Jacob 83

Chapter 7 Conclusion

router can be automatically made by using a passwordless SSH connexion. However, there
one issue that needs to be taken in consideration. The ACLs should expire after a certain
amount of time, because most of the IPs nowadays are attributed automatically and
renewed by the Internet Service Provider (ISP) every time the router is shutdown.
Therefore, attackers IPs will change and there is no point in blocking too many IPs or it will
increase the router’s latency.

An additional experiment could be to give an internet access to the honeypot and leave it
for a couple of days/weeks to gather data. This type of experiment has not been realised in
this project to avoid taking any security risks. However, this experiment could lead in
detecting new XSS injection methods and make statistics about the geographical position
where the attacks are coming from.

Benoit Jacob 84

Benoit Jacob

85

Appendix A. Understanding HoneyD

Chapter 8. Works Cited

Adam Kiezun, Philip J. Guo, Karthick Jayaraman, Michael D. Ernst. 2011. Automatic
Creation of SQL Injection and Cross-Site Scripting Attacks. Vancouver, Canada: ICSE’09,
2011. 978-1-4244-3452-7.

Agastya, Harish. 2011. Security threats to evolving data centers. s.l. : Trend Micro, 2011.
Allen, Julia. 2004. Intrusion detection: Implementation and operational issues. 2004.
Amazon. 2011. Amazon Web Services. [Online] 2011. http://aws.amazon.com/.

Awad Johny, Derdemezis Andreas. 2009. Honeynets and honeypots: Implementation of a
High Interaction Honeynet. 2009.

Bleikertz, Soren, Schunter, Matthias and Probst, Christian W. 2011. Security Audits of
Multi-tier Virtual Infrastructures in Public Infrastructure Clouds. s.l. : IBM, 2011.

Bogobowicz, Michael. 2011. What are the main use cases for virtualization? Quora. [Online]
01 01 2011. [Cited: 19 09 2011.] http://www.quora.com/What-are-the-main-use-cases-for-
virtualization.

Buchanan W, Graves J, Bose N, Macfarlane R, Davison B, Ludwiniak R, 2011. Performance
and student perception evaluation of cloud-based virtualised security and digital forensics
labs, HEA ICS Conference.

CERT. 2008. CERT® Advisory CA-2000-02 Malicious HTML Tags Embedded in Client Web
Requests. CERT. [Online] CERT, 2008. [Cited: 27 10 2011.]
http://www.cert.org/advisories/CA-2000-02.html.

—. 2007. Denial of Service Attacks. CERT. [Online] 2007. [Cited: 20 10 2011.]
http://www.cert.org/tech_tips/denial_of_service.html.

—. 2011. Understanding Malicious Content Mitigation for Web Developers. CERT. [Online]
2011. [Cited: 20 10 2011.] http://www.cert.org/tech_tips/malicious_code_mitigation.html.

Christian Kreibich, Jon Crowcroft. 2004. Honeycomb Creating Intrusion Detection Signatures
Using Honeypots. JJ Thomson Avenue, Cambridge CB3 OFD, United Kingdom : University of
Cambridge Computer Laboratory, 2004.

Christian Seifert, lan Welch, Peter Komisarczuk. 2006. Taxonomy of Honeypots.
WELLINGTON : VICTORIA UNIVERSITY OF WELLINGTON, 2006.

Christodorescu, Mihai, et al. 2009. Cloud Security Is Not (Just) Virtualization Security.
Chicago, lllinois, USA : IBM, 2009. 978-1-60558-784-4/09/11.

Gobel, Jan. 2007. Amun: A Python Honeypot. Germany : University of Mannheim, 2007.
Grgnland, Vidar Ajaxon. 2006. Building IDS rules by means of a honeypot. 2006.

Benoit Jacob 86

Appendix A. Understanding HoneyD

Harmonyguy. 2011. Recent Facebook XSS Attacks Show Increasing Sophistication. Social
Hacking. [Online] 21 04 2011. [Cited: 27 10 2011.]
http://theharmonyguy.com/2011/04/21/recent-facebook-xss-attacks-show-increasing-
sophistication/.

Honeynet. 2011. About the Honeynet Project. The Honeynet project. [Online] 2011. [Cited:
17 11 2011.] http://www.honeynet.org/about.

honeywall. 2008. Honeywall project. The honeynet project. [Online] 24 04 2008. [Cited:
2011 09 27.] https://projects.honeynet.org/honeywall.

Hyang-Ah Kim, Brad Karp. 2004. Autograph: Toward Automated, DistributedWorm
Signature Detection. s.l. : Carnegie Mellon University, 2004.

J. Levine, R. La Bella, H. Owen. 2003. The use of honeynets to detect exploited systems
across large enterprise networks. s.l. : IEEE Information Assurance Workshop, 2003.

James Newsome, Brad Karp, Dawn Song. 2005. Polygraph: Automatically Generating
Signatures for Polymorphic Worms. Carnegie Mellon Univ., Pittsburgh, PA, USA : Security
and Privacy, 2005 IEEE Symposium on, 2005. 1081-6011 .

Jarabek, Christopher. 2009. A Review Of Cloud Computing Security: Virtualization, Side-
Channel Attacks, And Management. Alberta, Canada : University of Calgary, 2009.

Jim, Trevor, Swamy, Nikhil and Hicks, Michael. 2007. Defeating Script Injection Attacks with
Browser-Enforced Embedded Policies. Alberta, Canada. : ACM, 2007. 978-1-59593-654-.

Joho, Dieter. 2004. Active Honeypots. Zurich, Switzerland : s.n., 2004.

Koot, Matthijs. 2007. Intrusion Detection System - Lesson #4: Honey{pots,nets,walls}.
Amsterdam : s.n., 2007.

Koziol, Jack. 2003. Intrusion Detection with Snort. s.l. : Sams, 2003. 978-1-57870-281-7.

Liston, Tom. 2003. Tom Liston talks about LaBrea. Labrea sourceforge. [Online] 2003. [Cited:
17 11 2011.] http://labrea.sourceforge.net/Intro-History.html.

McDonald, Kevin. 2011. Tackle your client’s security issues with cloud computing in 10 steps

Search Security Channel. [Online] 06 2011. [Cited: 23 09 2011)]
http://searchsecuritychannel.techtarget.com/tip/Tackle-your-clients-security-issues-with-
cloud-computing-in-10-steps.

McMillan, Robert. 2009. Cloud computing a 'security nightmare,' says Cisco CEQ. Computer
World. [Online] 22 04 20009. [Cited: 23 09 2011.]
http://www.computerworld.com/s/article/9131998/Cloud_computing_a_security_nightmar
e_says_Cisco_CEO.

Mishra, Dhanada K. 2004. International Conference on Controls, Automation &
Communication Systems. s.. : Allied Publisher Pvt limited, 2004. ISBN 81-7764-726-1.

MIT. 2011. Massachusetts Institute of Technology. DARPA Intrusion Detection Evaluation.
[Online] 2011. [Cited: 26 10 2011.]

Benoit Jacob 87

Appendix A. Understanding HoneyD

http://www.Il.mit.edu/mission/communications/ist/corpora/ideval/data/1999/training/wee
k1/index.html.

Mohammed, M.M.Z.E., et al. 2010. Accurate signature generation for polymorphic worms
using principal component analysis . Rondebosch, South Africa : Univ. of Cape Town, 2010.
978-1-4244-8863-6 .

Mookhey, K. and Burghate, Nilesh. 2010. Detection of SQL Injection and Cross-site Scripting
Attack. Symantec. [Online] Symantec, 02 11 2010. [Cited: 27 10 2011.]
http://www.symantec.com/connect/articles/detection-sql-injection-and-cross-site-
scripting-attacks.

Niels Provos, Thorsten Holz. 2007. Virtual Honeypots: From Botnet Tracking to Intrusion
Detection. s.l. : Addison Wesley Professional, 2007.

OWASP. 2011. XSS (Cross Site Scripting) Prevention Cheat Sheet. OWASP The Open Web
Application Security Project. [Online] 2011. [Cited: 28 10 2011.]
https://www.owasp.org/index.php/XSS_%28Cross_Site_Scripting%29_Prevention_Cheat_Sh
eet.

Paul Baecher, Markus Koetter,ThorstenHolz, Maximillian Dornseif. 2006. The Nepenthes
Platform: An Efficient Approach to Collect Malware. Mannheim : s.n., 2006.

Perilli, Wendy. 2009. The Benefits of Virtualization and Cloud Computing. Virtualization
Journal. [Online] 10 03 2009. |[Cited: 19 09 2011.] http://virtualization.sys-
con.com/node/870217.

Peter Mell, Timothy Grance. 2011. The NIST Definition of Cloud computing. Gaithersburg :
s.n., 2011. 800-145.
Provos, Neil. 2007. Developments of the Honeyd Virtual Honeypot. 2007.

Provos, Niels and Holz, Thorsten. 2007. Virtual Honeypots: From Botnet Tracking to
Intrusion Detection. s.l. : Addison Wesley Professional, 2007. 0-321-33632-1.

Provos, Niels. 2007. Service Scripts. HoneyD. [Online] 2007. [Cited: 02 11 2011.]
http://www.honeyd.org/contrib.php.

R. Perdisci, Dagon D., Wenke Lee, Fogla P., Sharif M. 2006 . Misleading worm signature
generators using deliberate noise injection. Berkeley/Oakland, CA : Security and Privacy,
2006 IEEE Symposium, 2006 . 1081-6011 .

Radcliffe, Jerome. 2007. CyberLaw 101: A primer on US laws related to honeypot
deployment. s.l. : SANS Institute, 2007.

Ried, Stefan and Kisker, Holger. April 2011. Sizing The Cloud - Understanding And
Quantifying The Future Of Cloud Computing . s.l. : Forester research, April 2011.

Ristenpart, Thomas, et al. 2009. Hey, You, Get Off of My Cloud: Exploring Information
Leakage in Third-Party Compute Clouds. Chicago, lllinois, USA : CCS'09, 2009. 978-1-60558-
352-5/09/11.

Benoit Jacob 88

Appendix A. Understanding HoneyD

Saliou L, William J Buchanan, James Graves, Jose Munoz. 2005. Novel framework for
automated security abstraction, modelling, implementation and verification, ECIW, pp 303-
312

Scsami. 2011. Hypervisor. Wikipedia. [Online] 07 2011. |[Cited: 16 11 2011
http://en.wikipedia.org/wiki/Hypervisor.

Singh, Amit. 2004. An Introduction to Virtualization. Kernelthread. [Online] January 2004.
[Cited: 19 09 2011.] http://www.kernelthread.com/publications/virtualization/.

Snort. 2011. Snort User Manual 2.9.1. s.l. : Snort, 2011.

Spitzner, L. 2002. Honeypots: Tracking Hackers. s.l. : Pearson Education Inc, 2002.

Spitzner, Lance. 2010. Honeypot Farms. Symantec. [Online] 02 11 2010. [Cited: 17 11 2011.]
http://www.symantec.com/connect/articles/honeypot-farms.

—. 2010. Honeypots: Are They lllegal? Symantec. [Online] 02 11 2010. [Cited: 26 09 2011.]
http://www.symantec.com/connect/articles/honeypots-are-they-illegal.

Sumeet Singh, Cristian Estan, George Varghese, Stefan Savage. 2004. Automated Worm
Fingerprinting. San Diego : University of California, 2004.

Sun, Changhua, et al. 2009. A More Accurate Scheme to Detect SYN Flood Attacks. Rio de
Janeiro : IEEE, 2009. 978-1-4244-3968-3.

Tang, Xinyu. 2011. The Generation of Attack Signatures Based on Virtual Honeypots.
Wuhan, Hubei China :s.n., 2011. 978-0-7695-4287-4.

Timm, Kevin. 2010. Strategies to Reduce False Positives and False Negatives in NIDS.
Symantec. [Online] 03 11 2010. [Cited: 15 09 2011.]
http://www.symantec.com/connect/articles/strategies-reduce-false-positives-and-false-
negatives-nids.

Vanover, Rick. 2009. Type 1 and Type 2 Hypervisors Explained. Virtualization Review.
[Online] 24 06 2009. [Cited: 19 09 2011.] http://virtualizationreview.com/blogs/everyday-
virtualization/2009/06/type-1-and-type-2-hypervisors-explained.aspx.

Venezia, Paul. 2008. VMware ESX Server 3.5. Techworld. [Online] 11 02 2008. [Cited: 16 11

2011.] http://review.techworld.com/virtualisation/599/vmware-esx-server-35/.

Vinod Yegneswaran, Jonathon T. Giffin, Paul Barford, Somesh Jha. 2005. An Architecture
for Generating Semantics-Aware Signatures. Madison : University of Wisconsin, 2005.

VMware. 2011. VMware vSphere Hypervisor™ (ESXi). VMware. [Online] VMware Inc., 2011.
[Cited: 29 09 2011.] http://www.vmware.com/products/vsphere-hypervisor/overview.html.
WHID. 2011. Web-Hacking-Incident-Database . WHID. [Online] 2011. [Cited: 20 10 2011.]
http://projects.webappsec.org/w/page/13246995/Web-Hacking-Incident-Database.

William G.J. Halfond, Jeremy Viegas, and Alessandro Orso. 2006. A Classification of SQL
Injection Attacks and Countermeasures. Georgia Institute of Technology : IEEE, 2006.

Benoit Jacob 89

Appendix A. Understanding HoneyD

Wolf. 2010. Security Issues and Solutions in Cloud Computing. Wolf Halton's Opensource &
Security. [Online] 25 06 2010. [Cited: 23 09 2011.]
http://wolfhalton.info/2010/06/25/security-issues-and-solutions-in-cloud-computing/.

XSSed. 2011. XSS archive. XSS attacks information. [Online] 2011. [Cited: 17 11 2011.]
http://www.xssed.com/.

Appendix A. Understanding HoneyD

HoneyD is a low interaction honeypot created by Neil Provos (Provos, 2007) and released
under GNU Public license (GPL). It is a small daemon able to simulate a networking stack of
virtual hosts. Virtual hosts have specifics preconfigured personalities, which mean that they
are associated with unallocated IP addresses and configured to run arbitrary services.
Services are generally scripted in Perl, Shell or Python and a couple of them can be found on
the author’s website. They can simulate different TCP/IP services like HTTP, FTP, Telnet,
SMTP, SSH, IIS and many more.

A.1. Features

HoneyD supports many features and is very flexible for simulating networks infrastructures.
The following gives a brief overview of the main features supported by HoneyD and come
from a book written by HoneyD’s creator (Provos, et al., 2007):

- Simulate small to large network topologies: Neil Provos stated that HoneyD is able to
simulate up to 65536 virtual hosts with different personalities. Each virtual host is
allocated with an un-used IP address, so it is possible to interact with thousands of
hosts at the same time.

- Configuration of personalities: Virtual hosts can be associated with multiple services
(HTTP, SMTP, FTP, etc.), which aimed to interact with an adversary. Additional
HoneyD features include proxy connections to other machines, passive fingerprinting
to identify remote hosts and random sampling for load scaling.

- Simulate operating systems at TCP/IP stack level: HoneyD is able to deceive
fingerprinting tools like Nmap or Xprobe and make them believe that the virtual
honeypot is running specifics operating systems and services. Moreover, policies as
fragment reassembly policy and FIN-scan policy can be adjustable in order to
increase the realism of the system.

- Configurable network characteristics: The routing topologies can be configured with
specifics latency, packet loss and bandwidth characteristics. In addition, HoneyD is
able to integrate of physical machines within the virtual environment and to
distribute operations of its network topology via GRE tunnelling.

Benoit Jacob 90

Appendix A. Understanding HoneyD

- Subsystem virtualization: With subsystem virtualization, HoneyD can run real UNIX
applications (web/mail/FTP servers, etc.) under a virtual IP address controlled by
HoneyD.

A.2. Architecture overview

HoneyD’s architecture is build using five components: a configuration database, a packet
dispatcher, protocol handlers, a personality engines and optional routing components, as
seen on Figure 31.

Incoming packets entering the network are routed to the packet dispatcher. The packet
dispatcher inspects the checksum of each packet, to detect accidental errors and then
inspects the protocol handler. HoneyD supports only ICMP, TCP and UDP, which results in
dropping packets for any other protocols. Once the inspection is done, the packet
dispatcher query the configuration database to see if the packet’s destination IP address
corresponds to a specific template (virtual host). When there is no template that
corresponds to an IP address, a default template is used. Then, the packet is dispatched to
its specific handler ICMP, TCP or UDP. By default, ICMP request are replied by a destination
unreachable message, unless specified in the personality database. TCP and UDP protocols
establish connection to arbitrary services. For a TCP datagram, the framework checks the
three way handshakes to see if a packet is part of an established connection. If the packet
encloses a connection request, the framework creates a new process to emulate the
required service. If the packet is part of a previous connection, the framework forwards it to
its existing service. For a UDP datagram, there is no possibility to know if a packet is from a
previous connection because UDP does not ensure handshaking dialogs. Therefore, the UDP
datagram is directly sent to the appropriate service. Finally, before leaving the framework,
packets are routed to the personality engine. The personality engine modify the packet’s
content in order to change the IP source, to make it appears to come from the network
stack of the configure OS.

Benoit Jacob 91

Benoit Jacob

Configuration

Personality

Appendix A. Understanding HoneyD

i

Packet Dispatcher

.
| 3

Personality
Engine

N
v

v

TCP

ubP

—

Services

v Routing

L--l-‘—-_'

Figure 31 - HoneyD architecture (Provos, 2007)

92

Appendix A. Understanding HoneyD

A.3. Configuration file

HoneyD’s configuration file is used to define templates. A template is associated with: a
name, a service(s) associated, open port(s) and IP address(es). The configuration file is by
default honeyd.conf and a simple example of it looks like the following:

create windows

set windows personality "Windows NT 4.0 Server SP5-SP6"
add windows tcp port 80 "./scripts/iisemul8.pl™

set windows default tcp action reset

bind 192.168.0.10 windows

This configuration is used to create a template named ‘windows’. The template personality
‘Windows NT 4.0 Server SP5-SP6’ is used to deceive fingerprinting tools by making the
system looks like genuine. Open ports are configured using ‘add windows tcp port 80’ open
the tcp port 80 and associate a script to emulate a Windows Web Sever IIS by using the perl
script ‘iisemul8.pl’. Any other TCP query that are not for the port 80 will be reset ‘default tcp
action reset’. Finally, to associate this template to an IP address, the keyword ‘bind’ is used,
followed be the IP address and the template’s name.

This configuration file is a simple example of simulating one host with one service. However,
HoneyD is much more flexible and can emulate up to 65536 host with multiple services.
Additionally, other hosts like routers can be emulated and the routing topology (latency,
loss and bandwidth) can be configured in honeyd’s configuration file. Therefore, a big
network with multiple hosts and services can become extremely complicated to configure.

A.4. Logging capability
HoneyD has capability to provide two different logging modes: packet level and service
level.

The packet level logging mode is enable by using the —I flag. This logging mode contains the
timestamp of the packet, the protocol used, the source/destination IP addresses and the
source/destination ports. Additionally, the letters S (start connection), E (end connection) or
— (neither S nor E) display if the connection start, end or part of a previous connection. The
last field displays how many bytes have been transmitted by the honeypot and which type
of OS was identified. The following output is an example of the packet level logging file:

2011-10-07-04:09:30-9342 tcp(6) S 192.168.230.1 3337 192.168.230.132
80 [Windows 2000 RFC1323]

2011-10-07-04:09:31.3346 tcp(6) - 192.168.230.1 3336 192.168.230.132
280: 52 S [Windows 2000 RFC1323]

2011-10-07-04:09:31.9319 tcp(6) - 192.168.230.1 3336 192.168.230.132
280: 48 S [Windows XP SP1]

2011-10-07-04:09:32.0325 tcp(6) E 192.168.230.1 3337 192.168.230.132
80: 315 6149

The service level logging mode is enable by using the —s flag. This mode contains the logging
outputs of the emulated services (HTTP, FTP, telnet, etc.). It gives detailed information

Benoit Jacob 93

Appendix A. Understanding HoneyD

about the interaction of an attacker with the honeypot. The log file organise each
connection attempt between —MARK- and -ENDMARK- tags. The following output is an
example of the service level logging file. In that example, the honeypot had the service wu-
ftpd.pl installed with an open port 21. The log file shows that an attacker interacted with the
virtual FTP server at a specific time using the user anonymous and password
neesus@nessus.org. Actually, that was not an attacker but a vulnerability scanner named
Nessus. It was used to check if the honeypot was logging information correctly. Once
connected, the vulnerability scanner sent a DELE (delete) command. This is just an example
to show that every commands typed by an intruder are recorded by the honeypot.

--MARK--,"Wed Oct 7 04:36:51 EDT 2011","‘wu-ftpd/FTP",
'"192.168.230.1", '192.168.230.132", 6119,21,

"USER anonymous
PASS nessus@nessus.org
DELE /

-—-ENDMARK—

Benoit Jacob 94

Appendix B. Understanding Snort

Appendix B. Understanding Snort

Snort is a widely use network IDS/IPS (intrusion detection/prevention system) that can take
action against specific packets going across a network. Snort is one of the most successful
IDS on the market because it is a fast, flexible, lightweight and open-source IDS. Snort’s
approaches to inspect the traffic combine the benefits of signature, protocol and anomaly-
based packets inspection. Additionally, Snort can be used with four different modes:

- Sniffer mode: Snort listens to the network traffic and prints it on to the screen.

- Packet logger: Snort record the network traffic and save it into a file.

- IDS mode: Snort record only the network traffic matching specifics rules. Rules have
been previously configured by the administrator.

- IPS mode: Snort takes action against specific network traffic matching the rule file.
This network traffic can be logged, dropped or raised an alert.

B.1. Snort components

Snort relies into the following four major components that are each critical to intrusion
detection system (Koziol, 2003), as seen Figure 32.

Mo S
Packet Decode Engine I

Libpcap

Preprocessor Plug-ins J :

|

|

|

| Y : Data Flow

Detection Engine | _

| V

| [OquuI”P!ug-im]

|

et —— = = v
Alerts/logs

Figure 32 - Snort components overview based on (Snort, 2011)

Snort has no native packet capture facility yet, so in order to collect packets Snort needs an
external library named Libpcap. This component is used to sniff packets directly from the
network interface card and pass them into the second component: packet decoder. The
Packet decoder component translates specific protocol elements into an internal data
structure. Once the packets are translated, they are forwarded to the third component: pre-
processors. The Pre-processors plugins can be used either to examine packets for suspicious
activity or to normalize traffic so that the next component can interpret them. The
Detection Engine compares the packets to its rule files, in order to builds attack signatures.
The alerts raised are sent to the Output plugins that is used to dump alerting data to
another resource (database, pop-up alert, SNMP center, etc.) or file.

Benoit Jacob 95

Appendix B. Understanding Snort

B.2. Snort configuration file

At start up, Snort reads its configuration file snort.conf to determine, among other, the rule
files” paths. These rules are text-based files generally categorized into different groups; for
example, the file ftp.rules contains a selection of rules to detect ftp attacks and exploits. The
following configuration file can be customized by adding or deleting rule files’ paths.

HHHHH R AR AR R R R R R
Step #9: Customize your Shared Object Snort Rules

include $SO_RULE_PATH/bad-traffic.rules
include $SO_RULE_PATH/chat.rules
include $SO_RULE_PATH/dos.rules
include $SO_RULE_PATH/icmp.rules
include $SO_RULE_PATH/ftp.rules

B.3. Rule format

Each rule has two logical parts: rule header and rule options. The rule header contains
criteria for matching a rule against data packets and specifies what action the rule
undertakes. The rule options contain a customisable message and additional criteria for
matching a rule against data packet. The following rule comes from the file ftp.rules and rise
an alert with the message “FTP DELE attempt” every time the host receives a packet with
the content “DELE” from an established connection and on the FTP port.

alert tcp $EXTERNAL_NET any -> $HOME_NET 21 (msg:"FTP DELE attempt';
flow:to_server,established; content:"DELE"™; classtype:attempted-
admin; sid:1975; rev:8;)

B.3.1. Rule header
The rule header is the first section of the rule. It shows which action will be taken on which
type of packets.

alert tcp $EXTERNAL_NET any -> $HOME_NET 21

The following section is a quick overview of the syntax used above:

- Alert: Action to undertake when the packet matches the rule. Other options are
available: log, pass, dynamic and activate.

- ICMP: protocol being used. Other options available: UDP, IP and TCP.

- SEXTERNAL_NET: keyword for any outside IP address.

- Any: source port.

- -> indicates the direction of the conversation. Other option available for a bi-
communication: <>,

- SHOME_NET: keyword for the local network.

- 21: destination port (FTP).

Benoit Jacob 96

Appendix B. Understanding Snort

B.3.2. Rule options
Rule options follow the rule header and are enclosed by a pair of parentheses. There can be
multiple options inside the parentheses, so to differentiate each one of them, options are
separated by a semicolon. An option is composed of a keyword and an argument; they are
separated by a colon.

(msg:"FTP DELE overflow attempt'; flow:to_server,established;
content:"DELE"; classtype:attempted-admin; sid:1975; rev:8;)

The following is an overview of the rule options seen above:

- Msg:"FTP DELE overflow attempt": message displayed by the alert.

- Flow: to_server,established: Detection plugin that check if the packets is part of an
existing session.

- Content:”DELE”: Snort tries to match this content against packets received on port
21.

- Class-type:attempted-admin: alerts are categorized in multiple class-type. Categories
have different priorities in order to ease the user’s reading.

- Sid: Snort rule unique identifier. This number is unique for each rule. By convention,
local rules (self-made) should be above 1000000. The previous rule is an official rule
from the Snort website, therefore the sid is under 1000000.

- Rev: Revision number of the rule.

B.4. Standard output alert and logging

Snort output alerts can be raised in diverse ways:

- Alert_fast generates alerts sequently in a one-line file.

- Alert_full creates a directory for each IP and fills it with decoded packets traces.
- Log_tcpdump logs packets that can be opened by TCPdump.

- CSVlogs packet into CSV files that can be imported into databases.

- XML logs alerts that can be read as a webpage.

- Alert_syslog logs alert for syslog servers.

By repeating the previous example, Snort configured in Alert fast will generate the
following alert message:

] [**] [116:1975:8] FTP DELE overflow attempt [**]

This alert is composed of [**], three numbers and a message. The [**] is only there to ease
the readability by an user. The three numbers correspond in order to the Generator ID
(GID), Signature ID(sid) and Revision ID(rev). The sid and rev have been seen in the previous
section and are used to identify a rule. The GID is used to tell the user which Snort’s
component generated this alert. Finally, the message corresponds to the one entered in the
msg:”” field option, seen last section.

Benoit Jacob 97

Appendix C. Script analysis

Appendix C. Script analysis

The following provides a line by line analysis of the two main scripts created during this
thesis.

C.1. Snort script

#SNORT SCRIPT with a line by line analysis
#1/bin/ksh
count=1000000

(

while true
do

#The nawk option is used to look into msg.log (honeypot log file) and
retreive the lines that start with “GET”. Then the cut option, copy the
second argument of this line. The sort and uniqg options classify the
lines retreived and delete duplicates. The output is sent iIn
“content.log”.

nawk -F /~ "/GET/ {print $0}" msg.-log | cut -d* " -f2] sort | uniq >
content.log

#The grep option is used to copy, from content.log, every lines that
has a “script>" or “script%3E” keyword in it. These lines are then
handled by the sed options, which are used to retreive the content
between the “script” tags (or their hex-encoded equivalents). The
output Is sent iIn “content_script.log”.

grep "script>\|script%3E \|script%3e" content.log | sed -e

s/ .*<script>//;s/<\/script>.*//" | sed -e

"'s/ *%3Cscripth3E// ;s/%3C\/script%3E.*//" | sed -e

"'s/ _*%3Cscripth3E// ;s/%3C%h2Fscript%3E.*//" > content_script.log

#The cat option is used to print the file content script.log. The
pipeline is used to associate the cat command with the read comman. The
read command allows that each line will be read one by one and inserted
in the variable “$line”.

cat content_script.log |

(

whille read line
do

#Each line of the content script.log is compared to the file
snort.rules, which contains previous signatures created. If a line
match a signature, it means that the signature for this attack has
already been created. In that case an echo "Snort signature “"$line-
already existing”™ 1s done.

res="grep -c $line snort.rules”
#1f no match are found, the variable line is inserted within a Snort
signature template.
if [$res == 0];
then echo "alert tcp $EXTERNAL_NET any -> $HOME_NET any
(msg:" XSS attempt: script injection detected ';

flow:to_server,established; content:""$line""; nocase; sid:
"$count®;)"\">> snort.rules count="expr $count + 1 °

Benoit Jacob 98

Appendix C. Script analysis

#1Ff a line match a signature, It means that the signature for this
attack has already been created. In that case an echo "Snort sighature
*$line” already existing® is done.

else echo "Snort signature "$line" already existing”
fi
done
)
#The script wait 30seconds before starting a new loop.
sleep 30
done

)

C.2. ACL Script

#ACL_script.sh
#1/bin/ksh
count=200

(

while true

do

nawk -F"[\",1" "/MARK/ {print $9}" msg.log | cut -d* * -f1] sort | uniq
| grep -v "~$"> IP_src.log

#The nawk option is used to look into msg.log (honeypot log file) and
retreive the lines that start with “MARK”. Then the cut option, copy
the first argument of this line. The sort and uniq options classify the
lines retreived and delete duplicates. The output is sent iIn
“IP_src.log”. This command exctract the IP source addresses from the
honeypot log fille and paster i1t into “IP_src.log”.

cat IP_src.log |

(

while read line

do

res="grep -c $line ACL.log";

if [$res == 0];

#IPs in “IP_sc.log” and “ACL;log” are compared. If there is no match,

the IP is injected into the ACL template below and printed iInto
“ACL.l1og”

then echo ""$count®™ deny tcp host "$line” any*"\>> ACL.log
count="expr $count + 10 °

#1F the IPs already exists, the following echo is done.

else echo "IP match found®

fi

done

)

#The script wait 30seconds and do a loop.

sleep 30

done

)

Benoit Jacob 99

Appendix D. Configuration of a password less SSH connection

Appendix D. Configuration of a password less

SSH connection

The following is a guide to set-up a SSH Client for password-less login to a Server using
public-private key certificates.
D.1. Server side (honeypot)

1.1. Generate public/private dsa key pair
| #sshd-generate |

1.2. Start the ssh service
| #/etc/init.d/ssh start |

1.3. Edit the following file
| #sudo nano /etc/ssh/sshd_config |

Make sure these lines are available and not commented:
PubkeyAuthentication yes
AuthorizedKeysFile %h/.ssh/authorized_keys

D.2. Client side (Snort)

2.1. Edit the following file
#sudo nano /etc/ssh/ssh_config
Make sure these lines are available and not commented:
IdentityFile ~/_ssh/identity
IdentityFile ~/.ssh/id_rsa
IdentityFile ~/_ssh/id_dsa

2.2. Login into SSH server
| ssh 192.168.230.140 |
Issue the following command:
] ssh-keygen -t dsa |

2.3. Copy the public key into target SSH server
sudo ssh-copy-id -i ~/.ssh/id_dsa.pub ben@192.168.230.140
Choose username as ben

A SSH address is generated:
ben®192.168.230.140

2.4. Passwordless connection created
Now that the keys have been exchanged, a SSH passwordless connection is possible using
the following command:

ssh ben@192.168.230.140

Benoit Jacob 100

Appendix E. Snort Signatures Created

Appendix E. Snort Signatures Created

The following shows the Snort signatures created by the Bash script “snort.sh” after the
injection of 50 XSS attacks. The 50 XSS are provided in the DVD attached to this thesis.

alert tcp $EXTERNAL_NET any -> $HOME_NET any (msg:"'XSS attempt
detected"; flow:to_server,established;
content:"alert(document.cookie)’; nocase; sid: 1000000;)

alert tcp $EXTERNAL_NET any -> $HOME_NET any (msg:"'XSS attempt
detected"; flow:to_server,established; content:"alert(%27test%27)%3B";
nocase; sid: 1000001;)

alert tcp $EXTERNAL_NET any -> $HOME_NET any (msg:"'XSS attempt
detected"; flow:to server,established;
content:"alert(%22BlackHacker[dot]Coder[at]Gmail[dot]com%22)"; nocase;
sid: 1000002;)

alert tcp $EXTERNAL_NET any -> $HOME_NET any (msg:"'XSS attempt
detected"; flow:to_server,established;
content:"alert%28%2Fwww.r3t.n3t.nl%2F%29"; nocase; sid: 1000003;)

alert tcp $EXTERNAL_NET any -> $HOME_NET any (msg:"'XSS attempt
detected"; flow:to_server,established; content:"alert(/This-XSS-doesnt-
work-all-the-time/)"; nocase; sid: 1000004;)

alert tcp $EXTERNAL_NET any -> $HOME_NET any (msg:"'XSS attempt
detected™; Tlow:to_server,established; content:"alert("BugReport.ir";
nocase; sid: 1000005;)

alert tcp $EXTERNAL_NET any -> $HOME_NET any (msg:"'XSS attempt
detected”; flow:to_server,established;
content:"alert(%27HackSever%27)"; nocase; sid: 1000006;)

alert tcp $EXTERNAL_NET any -> $HOME_NET any (msg:"'XSS attempt
detected"; Flow:to_server,established; content:"alert(/xss/)"; nocase;
sid: 1000007;)

alert tcp $EXTERNAL_NET any -> $HOME_NET any (msg:"'XSS attempt
detected"; flow:to_server,established; content:"alert(*l"m%20Back%20-
%20rstcenter.com®%20-%20hackersblog.org™)"; nocase; sid: 1000008;)

alert tcp $EXTERNAL_NET any -> $HOME_NET any (msg:''XSS attempt
detected"; flow:to_server,established; content:"alert(1337)"; nocase;
sid: 1000009;)

alert tcp $EXTERNAL_NET any -> $HOME_NET any (msg:"'XSS attempt
detected"; flow:to server,established;
content:"alert(/XSS%20by%20Fugitif/)"; nocase; sid: 1000010;)

alert tcp $EXTERNAL_NET any -> $HOME_NET any (msg:"'XSS attempt
detected™; flow:to_server,established; content:"alert(1)'; nocase; sid:
1000011;)

alert tcp $EXTERNAL_NET any -> $HOME_NET any (msg:"'XSS attempt
detected”; flow:to_server,established;
content:"alert("AGD_SCORP®)</Script>"; nocase; sid: 1000012;)

alert tcp $EXTERNAL_NET any -> $HOME_NET any (msg:"'XSS attempt
detected"; flow:to_server,established;
content:"alert(String.fromCharCode(88,83,83,32,98,121,32,66,117,103,66,
117,115,116,101,114,32,45,32,76,101,105,97,32,98,117,103,98,117,115,116
,101,114,46,99,111,109,46,98,114));"; nocase; sid: 1000013;)

Benoit Jacob 101

Appendix E. Snort Signatures Created

alert tcp $EXTERNAL_NET any -> $HOME_NET any (msg:"'XSS attempt
detected"; flow:to_server,established; content:"alert("Agd _Scorp®)";
nocase; sid: 1000014;)

alert tcp $EXTERNAL_NET any -> $HOME_NET any (msg:"'XSS attempt
detected"; flow:to server,established;
content:"alert®%28document.cookie%29"; nocase; sid: 1000015;)

alert tcp $EXTERNAL_NET any -> $HOME_NET any (msg:"'XSS attempt
detected”; flow:to_server,established;
content:"'/hk/presspass/chinese/result.aspx?fm=01/01/2006T12/14/2006%22%
3e%3c/scripth3eh3c&to=extarea%20cols=1000%20rows=1000%20sty le=%22positi
on:%20absolute;%20top:%200px;%201eft:%200px ; %22%200nmouseover=%22alert%
28%27Hacked%20By%20B34TR1BOX%20For%20LeaderHackers .ORG%27%2" ; nocase;
sid: 1000016;)

alert tcp $EXTERNAL_NET any -> $HOME_NET any (msg:"'XSS attempt
detected"; flow:to_server,established;
content:"alert(/www.r3t.n3t.nl/)"; nocase; sid: 1000017;)

alert tcp $EXTERNAL_NET any -> $HOME_NET any (msg:"'XSS attempt
detected"; flow:to_server,established;
content:"alert(%22AGD_SCORP%20xD%22)%3C/Script%3E'™; nocase; sid:
1000018;)

alert tcp $EXTERNAL_NET any -> $HOME_NET any (msg:"'XSS attempt
detected"; Flow:to_server,established;

content:"a=eval ;b=alert;a(b(/XSS/.source)) ;%3C/script37%22%3%3Cmarquee%
3E%3Ch1%3EXSS%20by%20Xy 1 1 to1%3C/h1%3E%3C/marquee%3E'; nocase; sid:
1000019;)

alert tcp $EXTERNAL_NET any -> $HOME_NET any (msg:"'XSS attempt
detected"; flow:to server,established; content:"alert(‘'DaiMon')";
nocase; sid: 1000020;)

alert tcp $EXTERNAL_NET any -> $HOME_NET any (msg:"'XSS attempt
detected"; flow:to server,established;
content:"alert(%22BlackHacker[dot]Coder[at]Gmail[dot]com%22)"; nocase;
sid: 1000021;)

alert tcp $EXTERNAL_NET any -> $HOME_NET any (msg:"'XSS attempt
detected"; flow:to_server,established;
content:"ipt>alert(°XSS");</scr'; nocase; sid: 1000022;)

alert tcp $EXTERNAL_NET any -> $HOME_NET any (msg:''XSS attempt
detected"; flow:to server,established;
content:"alert®%28%2FXSS+By+RedTuninG%2F%29%3B' ; nocase; sid: 1000023;)

alert tcp $EXTERNAL_NET any -> $HOME_NET any (msg:"'XSS attempt
detected"; flow:to server,established;
content:"eval%28String.fromCharCode%2897%2C108%2C101%2C114%2C116%2C40%2
C34%2C88%2C83%2C83%2C32%2C102%2C111%2C117%2C110%2C100%2C32%2C98%2C121%2
C32%2C83%2C109%2C111%2C107%2C101%2C121%2C32%2C79%2C102%2C32%2C68%2CI7%2
C114%2C107%2C99%2C48%2C100%2C101%2C32%2C72%2C97%2C99%2C107%2C99%2C105%2
C110%2C103%2C32%2C67%2C114%2C101%2C119%2C34%2C41%2C59%29%29—""; nocase;
sid: 1000024;)

alert tcp $EXTERNAL_NET any -> $HOMEET any (msg:'"'XSS attempt detected";
flow:to_server,established;
content:"alert%28document.cookie%29%3C%2Ffscripth3E&sa=N&tab=wb"";
nocase; sid: 1000025;)

Benoit Jacob 102

Appendix F. Gantt Chart

Appendix F. Gantt Chart

This Gantt Chart has been made at the beginning of the project to organise the work
schedule of each chapter. In addition, an extra week was planned at the end of the project
for proof reading and printing. During the project, this schedule has been followed and extra
work was done over weekends and evenings when it was required. But this has been
efficient and the writing of this thesis was finished two weeks before the hand in date,
which gave more than enough time to show it to Professor Bill Buchanan, do minor updates,
proof read and print it.

] [o 1 — —
< | E [| £ | & |= | &8 Ve
o —_— purad = = (=] [=] =] [
WO = = [=] =] Yol =] =] =1
i = = e =l ol o =3 g
g (=) = g & g 8] -
2 = = = = 2 = =
=l < I =3 > t>4 [Vel
& X
2 1E = |22 5||% =
= = = = =3 = k=) =4 =L
~ - - ~ ~ = - = o
(] L= - L e - [o~
g |E | g |E|8|E|E |8
=
=
= = - = 5
F : e L et o (e o
] ‘2 = = = = = =
-]
=

i

57 | 6 [
1wz dag

J
fiysr | aygr

o | o | oige
JI0T 137

Appendix G. Research Proposal

G.1. Brief description of the research area - background

At the beginning of the academic year 2010/2011, Napier University has started a migration
to the cloud computing using the platform VMware ESXi. The actual success of the cloud
computing is due to the cost saving of this technology which reduce the hardware
investment, save space and save power consumption (Georgieva, 2009).The cloud computing
uses virtualisation and clustering in order to optimise the server utilisation. The platform
VMware ESXi is installed directly on a physical stack (server) and gives the possibility to
create/manage multiples Virtual Machines (V.M) which share the physical resources of the
server. Instead of using expensive physical machine when a high-end hardware is needed, it is
now possible to create the same VM within seconds and give it more resources on the fly if
necessary. The benefit from the students’ perspective of Napier University is an opportunity
to manage their own virtual environment through any web browser, giving them the ability to
complete practical lessons from any computer, anywhere in the world.

Benoit Jacob 103

Appendix G. Research Proposal

According to Daniel Petri, using virtualisation in cloud computing brings some new security
issues, as virtualisation does not provide any more security and a Virtual Machine (V.M.)
could be even less secure than a phisical machine (Petri, 2009). The addition of VMs is so fast
and easily done that administrator sometimes forget to add them to the patch distribution
system. These unpatched VM become quickly targeted by worms/intruders and result in using
more network bandwidth and resources that usually needed. Moreover, Daniel Petri states
multiple security issues in virtualisation as a VM infected by a virus could potentially infect
another VM or even infect the hypervisor layer, which could result as a complete failure of
the VM cloud.

Traditional networks use IDS (Intrusion Detection System) to detect malicious data packets.
There are two types of IDS: anomaly-based and signature-based. This thesis covers signature
based IDS. It means that the IDS detects an attack using a set of signatures which are
periodically updated. However, signature-based IDSs lack to discover new attacks that are not
included within the signature database.

In order to detect potential new attacks, this thesis is based on the implementation of a trap
known as “honeypot”. Honeypots are not defensive security systems as IDS and Firewalls as
they do not tend to protect the network but lean towards attracting the intruder. According
to L. Spitzner a honeypot is an information system resource whose value lies in unauthorized
of illicit use of that resource (Spitzner, 2003). Honeypots are fake information servers able to
run multiple of services (FTP, SQL, SSH...) that are configured using weak security
mechanisms, making them highly interesting for an intruder in search for a target. These traps
are loaded with monitoring and tracking tools which make them able to log any activity
resulting from an illicit access.

The aim of this project is to use the honeypot in order to create a new set of signatures for
the IDS and compare the efficiency with the old ones.

G.2. Project outline for the work that you propose to
complete

The idea for this research arose from:

A personal interest developed during the Honours project dissertation “Network- and Host
Detection System of Botnets” where my researches aimed to the development,
implementation and detection of own-made Botnet within virtual environment. During that
project, | went through some white paper about the detection of Botnets using Honeypots
systems. It seemed fascinating and made me want to know more about it.

Last year during the Honours degree, the cloud computing has been introduced to me in the
Advanced Security and Network Forensics module. It really caught my interest and | was
amazed about the aspect of virtualisation and clustering. Moreover, a conference in Napier
University by Tabassum Sharif on the 9" March 2011 about the future of the Cloud computing
made me realise that it will play an important role in the future and therefore that | should

Benoit Jacob 104

Appendix G. Research Proposal

study more about it.

| had my two ideas, network security and cloud computing, so | decided to mix them together
and to work on my Master dissertation about the network security within the cloud
computing based on the implementation of a honeypot.

The aims of the project are as follows:
Review and investigate the existing literature

- The literature review covers the VMware ESXi platform, Intrusion Detection Systems,
Honeypot systems and Security/Vulnerability scanner.

- Design and implement a honeypot system

- The honeypot implementation aims to create a virtual network topology. This topology
includes virtual routers and virtual hosts with different OS and services.

- Generate new signatures for the IDS

- A security scanner is going to attack the honeypot and try to exploit the different
vulnerabilities previously configured. The honeypot is going to log those attacks and
generate new signature for the IDS.

- Compare the new signatures

- The new signatures are going to be compared with the Snort basic ones to determine
if they are more efficient in terms of True/False positive.

The main research questions that this work will address include:

- Which type of honeypot interaction is more adapted for a secure implementation?
- How to translate packets captured by the honeypot into an IDS signature?
- Are the signatures generated more efficient than traditional ones?

The software development/design work/other deliverable of the project will be:

Honeypot implementation within the cloud of Napier University.

The project will involve the following research/field work/experimentation/evaluation:
- Literature search and review

The literature research will be done through the search Engine of Napier University NUIN-link
which is really helpful to have a look in multiple databases at the same time. Deeper research
will be done on the databases “Science Direct” and “IEEE” which are some of the best one for
networking white papers.

- Experimentations

Verify that the honeypot and monitoring tools are correctly working. Using Penetration tools,
| will try to access the services offered by the honeypot (e.g. FTP or SSH servers). If the
monitoring tools are working as they should, the honeypot should log the different attacks.

Generate new IDS signatures using the log file of the honeypot.
- Evaluation

The evaluation consists in comparing the IDS signatures against the signatures created by the

Benoit Jacob 105

Appendix G. Research Proposal

honeypot.

This work will require the use of specialist software:
All the software needed will be open source

This work will require the use of specialist hardware: No

The project is being undertaken in collaboration with: Edinburgh Napier University

G.3. Proposal References

Davis, David. 2009. Best Practices for Securing VMware ESX Server. Petri IT Knowledgebase.
[Online] 2009. [Cited: 31 03 2011.] http://www.petri.co.il/secure-vmware-esx-server.htm.

Georgieva, Tsveti. 2009. Advantages of Virtualization. suite101. [Online] 17 Nov 2009. [Cited:
25 Mar 2011.] http://www.suite101.com/content/advantages-of-virtualization-a170746.
Jackson, Peter. 2005. Detection of Netowrk Threats Using Honeypots. Edinburgh : Napier
UNiversity, 2005.

Petri, Daniel. 2009. What You Need to Know About Securing Your Virtual Network. Petri IT
knowledge. [Online] 08 01 2009. [Cited: 24 03 2011.] http://www.petri.co.il/what-you-need-
to-know-about-vmware-virtualization-security.htm.

Spitzner, L. 2003. Definitions and Value of Honeypots. tacking-hackers. [Online] 2003. [Cited:
2503 2011.] http://www.tracking-hackers.com/papers/honeypots.html.

Benoit Jacob 106

