
LabVIEW™ Basics II
Course Manual

Course Software Version 6.0
September 2000 Edition
Part Number 320629G-01

LabVIEW Basics II Course Manual

Copyright

Copyright © 1993, 2000 by National Instruments Corporation,11500 North Mopac Expressway, Austin, Texas 78759-3504.
Under the copyright laws, this publication may not be reproduced or transmitted in any form, electronic or mechanical, including
photocopying, recording, storing in an information retrieval system, or translating, in whole or in part, without the prior written consent
of National Instruments Corporation.

Trademarks
LabVIEW™, National Instruments™, and ni.com™ are trademarks of National Instruments Corporation.
Product and company names mentioned herein are trademarks or trade names of their respective companies.

Worldwide Technical Support and Product Information
ni.com

National Instruments Corporate Headquarters
11500 North Mopac Expressway Austin, Texas 78759-3504 USA Tel: 512 794 0100

Worldwide Offices
Australia 03 9879 5166, Austria 0662 45 79 90 0, Belgium 02 757 00 20, Brazil 011 284 5011, Canada (Calgary) 403 274 9391,
Canada (Ontario) 905 785 0085, Canada (Québec) 514 694 8521, China 0755 3904939, Denmark 45 76 26 00,
Finland 09 725 725 11, France 01 48 14 24 24, Greece 30 1 42 96 427, Germany 089 741 31 30, Hong Kong 2645 3186,
India 91805275406, Israel 03 6120092, Italy 02 413091, Japan 03 5472 2970, Korea 02 596 7456, Mexico (D.F.) 5 280 7625,
Mexico (Monterrey) 8 357 7695, Netherlands 0348 433466, New Zealand 09 914 0488, Norway 32 27 73 00,
Poland 0 22 528 94 06, Portugal 351 1 726 9011, Singapore 2265886, Spain 91 640 0085, Sweden 08 587 895 00,
Switzerland 056 200 51 51, Taiwan 02 2528 7227, United Kingdom 01635 523545

© National Instruments Corporation iii LabVIEW Basics II Course Manual

Contents

Student Guide
A. About This Manual ...SG-1
B. What You Need to Get Started ...SG-3
C. Installing the Course Software..SG-4
D. Course Goals and Non-Goals ...SG-5
E. Course Map...SG-6
F. Course Conventions..SG-7

Lesson 1
Planning LabVIEW Applications

A. The Planning and Design Process... 1-2
B. The Implementation Process..1-3
C. Error Handling Techniques... 1-4
D. LabVIEW Programming Architectures .. 1-10
E. VI Templates .. 1-21
Summary, Tips, and Tricks... 1-24

Lesson 2
Designing Front Panels

A. Basic User Interface Issues... 2-2
B. Using Boolean Clusters as Menus .. 2-14
C. Property Nodes ... 2-24
Common Properties .. 2-27
D. Graph and Chart Properties .. 2-37
E. Control References ... 2-46
F. LabVIEW Run-Time Menus (Optional)... 2-51
G. Intensity Plots ... 2-60
Summary, Tips, and Tricks... 2-64
Additional Exercises... 2-65

Contents

LabVIEW Basics II Course Manual iv ni.com

Lesson 3
Data Management Techniques

A. Data Management Techniques in LabVIEW..3-2
B. Local Variables ...3-4
C. Global Variables ...3-14
D. Important Advice about Local and Global Variables ...3-23
E. DataSocket ..3-26
Summary, Tips, and Tricks...3-35
Additional Exercises ...3-36

Lesson 4
Advanced File I/O Techniques

A. Working with Byte Stream Files ..4-2
B. LabVIEW Datalog Files ...4-13
C. Streaming Data to Disk...4-20
Summary, Tips, and Tricks...4-21
Additional Exercises ...4-22

Lesson 5
Developing Larger Projects in LabVIEW

A. Assembling a LabVIEW Application ...5-2
B. LabVIEW Features for Project Development...5-13
C. LabVIEW Tools for Project Management..5-21
Summary, Tips, and Tricks...5-35
Additional Exercises ...5-36

Lesson 6
Performance Issues

A. LabVIEW Multithreading and Multitasking Overview..6-2
B. The Profile Window..6-6
C. Speeding Up Your VIs..6-12
D. System Memory Issues ...6-25
E. Optimizing VI Memory Use ...6-28
Summary, Tips, and Tricks...6-46

Appendix
A. Polymorphic SubVIs...A-2
B. Custom Graphics in LabVIEW...A-7
C. The LabVIEW Web Server...A-14
D. Additional Information ...A-20
E. ASCII Character Code Equivalents Table ..A-22

© National Instruments Corporation SG-1 LabVIEW Basics II Course Manual

Student Guide

Thank you for purchasing the LabVIEW Basics II course kit. You can begin
developing an application soon after you complete the exercises in this
manual. This course manual and the accompanying software are used in the
two-day, hands-on LabVIEW Basics II course. You can apply the full
purchase of this course kit towards the corresponding course registration fee
if you register within 90 days of purchasing the kit. Visit the Customer
Education section of ni.com for online course schedules, syllabi, training
centers, and class registration.

A. About This Manual
This course manual teaches you how to use LabVIEW to develop test
and measurement, data acquisition, instrument control, datalogging,
measurement analysis, and report generation applications. This course
manual assumes that you are familiar with Windows, Macintosh, or UNIX,
that you have experience writing algorithms in the form of flowcharts or
block diagrams, and that you have taken the LabVIEW Basics I course or
that you have equivalent experience.

The course manual is divided into lessons, each covering a topic or a set of
topics. Each lesson consists of the following:

• An introduction that describes the purpose of the lesson and what you
will learn

• A description of the topics in the lesson

• A set of exercises to reinforce those topics

• A set of additional exercises to complete if time permits

• A summary that outlines important concepts and skills taught in the
lesson

Student Guide

LabVIEW Basics II Course Manual SG-2 ni.com

Several exercises in this manual use a plug-in multifunction data acquisition
(DAQ) device connected to a DAQ Signal Accessory containing a
temperature sensor, function generator, and LEDs.

If you do not have this hardware, you still can complete most of the
exercises. Be sure to use the demo versions of the VIs when you are working
through exercises. Exercises that explicitly require hardware are indicated
with an icon, shown at left. You also can substitute other hardware for those
previously mentioned. For example, you can use another National
Instruments DAQ device connected to a signal source, such as a function
generator.

Each exercise shows a picture of a finished front panel and block diagram
after you run the VI, as shown in the following illustration. After each block
diagram picture is a description of each object in the block diagram.

1 Front Panel 2 Block Diagram 3 *Comments* (do not enter these)

1

3

2

Student Guide

© National Instruments Corporation SG-3 LabVIEW Basics II Course Manual

B. What You Need to Get Started
Before you use this course manual, make sure you have all of the following
items:

❑ (Windows) Windows 95 or later installed on your computer; (Macintosh)
Power Macintosh running MacOS 7.6.1 or later; (UNIX) Sun workstation
running Solaris 2.5 or later and XWindows system software, an HP 9000
workstation model 700 series running HP-UX 10.20 or later, or a PC
running Linux kernel 2.0.x or later for the Intel x86 architecture

❑ (Windows) Multifunction DAQ device configured as device 1 using
Measurement & Automation Explorer; (Macintosh) Multifunction DAQ
device in Slot 1

❑ DAQ Signal Accessory, wires, and cable

❑ LabVIEW Professional Development System 6.0 or later

❑ (Optional) A word processing application such as (Windows) Notepad,
WordPad, (Macintosh) TeachText, (UNIX) Text Editor, vi, or vuepad

❑ LabVIEW Basics II course disk, containing the following files.

Filename Description

LVB2SW.exe Self-extracting archive containing VIs used in the
course

LVB2Sol.exe Self-extracting archive containing completed course
exercises

LVB2Read.txt Text file describing how to install the course software

Student Guide

LabVIEW Basics II Course Manual SG-4 ni.com

C. Installing the Course Software
Complete the following steps to install the LabVIEW Basics II course
software.

Windows
1. Run the program called LVB2SW.exe. The course files will be extracted

to the c:\exercises\LV Basics 2 directory:

Basics2.llb will be installed in the LabVIEW\user.lib directory.
When you launch LabVIEW, a palette called Basics 2 Course will be in
the User Libraries palette of the Functions palette.

2. (Optional) Double-click LVB2Sol.exe to install the solutions to all
exercises in the c:\solutions\LV Basics 2 directory.

Macintosh
1. As shown in steps 1 and 2 of the Windows installation, use a

Windows-based PC to extract the files and transfer them to your
Macintosh. If you do not have access to a PC, contact National
Instruments for uncompressed files.

2. Copy the files to your hard disk using the directory structure described
in the Windows section.

UNIX
1. As shown in steps 1 and 2 of the Windows installation, use a

Windows-based PC to extract the files and transfer them to your
workstation. If you do not have access to a PC, contact National
Instruments for uncompressed files.

2. Mount the PC disk you are using to transfer the files. The course
assumes the directory structure described in the Windows section.
Copy all files to the appropriate location.

Student Guide

© National Instruments Corporation SG-5 LabVIEW Basics II Course Manual

D. Course Goals and Non-Goals
This course prepares you to do the following:

• Understand the VI development process.

• Understand some common VI programming architectures.

• Design effective user interfaces (front panels).

• Use data management techniques in VIs.

• Use advanced file I/O techniques.

• Use LabVIEW to create your applications.

• Improve memory usage and performance of your VIs.

You will apply these concepts in Lesson 5, Developing Larger Projects in
LabVIEW. In Lesson 5, you will build a project that uses VIs you create in
Lessons 1, 2, 3, and 4. While these VIs individually illustrate specific
concepts and features in LabVIEW, they constitute part of a larger project
you will finish in Lesson 5.

The project you will build must meet the following criteria:

• Provides a menu-like user interface.

• Requires the user to log in with a correct name and password.

• If the user is not correctly logged in, other features are disabled.

• Acquires data with the specified user configuration.

• The user can analyze a subset of data and save the results to a file.

• The user can load and view analysis results previously saved to disk.

The following course map contains notes about the parts of the project you
will develop in various sections of the course. Exercises within the lessons
also remind you when you are working on a VI used in a later exercise.

This course does not describe any of the following:

• LabVIEW programming methods covered in the LabVIEW Basics I
course

• Programming theory

• Every built-in VI, function, or object

• Developing a complete application for any student in the class

Student Guide

LabVIEW Basics II Course Manual SG-6 ni.com

E. Course Map

Planning
LabVIEW

Applications

Develop flowchart for
Application Exervise VI

Build User Interface Menu
Build Acquire Data VI
Build Analyze & Present
Data VI
Build Disable Controls VI

Build Login VI

Build Save Data to File VI
(completes Analysis & Present
Data VI)
Study View Analysis File VI

Assemble pieces to build
Application Exercise VI
and finish project

Designing Front Panels

Data Management
Techniques

Advanced File I/O
Techniques

Creating Larger
Projects

Performance
Issues

Student Guide

© National Instruments Corporation SG-7 LabVIEW Basics II Course Manual

F. Course Conventions
The following conventions appear in this course manual:

» The » symbol leads you through nested menu items and dialog box options
to a final action. The sequence File»Page Setup»Options directs you to pull
down the File menu, select the Page Setup item, and select Options from
the last dialog box.

This icon denotes a note, which alerts you to important information.

This icon indicates that an exercise requires a plug-in DAQ device.

bold Bold text denotes items that you must select or click in the software, such as
menu items and dialog box options. Bold text also denotes parameter names,
controls and buttons on the front panel, dialog boxes, sections of dialog
boxes, menu names, and palette names.

italic Italic text denotes variables, emphasis, a cross reference, or an introduction
to a key concept. This font also denotes text that is a placeholder for a word
or value that you must supply.

monospace Text in this font denotes text or characters that you should enter from the
keyboard, sections of code, programming examples, and syntax examples.
This font is also used for the proper names of disk drives, paths, directories,
programs, subprograms, subroutines, device names, functions, operations,
variables, filenames and extensions, and code excerpts.

Platform Text in this font denotes a specific platform and indicates that the text
following it applies only to that platform.

right-click (Macintosh) Press <Command>-click to perform the same action as a
right-click.

© National Instruments Corporation 1-1 LabVIEW Basics II Course Manual

Lesson 1
Planning LabVIEW
Applications

This lesson describes some of the issues involved when developing
LabVIEW applications, including the design process, the organization of
subVI components, and the process of combining those components to
create a complete application. This lesson also describes common
LabVIEW programming architectures along with some tools to help you
build VIs.

You Will Learn:

A. Planning and design tips for developing a LabVIEW application

B. How to convert your design outline into actual LabVIEW subVIs

C. Error handling techniques

D. Common LabVIEW programming architectures

E. About VI templates

Lesson 1 Planning LabVIEW Applications

LabVIEW Basics II Course Manual 1-2 ni.com

A. The Planning and Design Process
To design large LabVIEW projects, you will find that you usually begin with
a top-down approach. That is, you first define the general characteristics
and specifications of the project. After you define the requirements of the
application with input from your customer, you begin developing the subVIs
you will eventually assemble to form the completed project. This stage
represents the bottom-up development period. Customer feedback helps
you determine new features and improvements for the next version of the
product, bringing you back to the project design phase. The following chart
illustrates this project development process.

Designing a flow diagram can help you visualize how your application
should operate and set up the overall hierarchy of your project. Because
LabVIEW is a data flow programming language and its block diagrams are
similar to typical flowcharts, it is important to carefully plan this chart. You
can directly implement many nodes of the flowchart as LabVIEW subVIs.
By carefully planning the flowchart before implementing your LabVIEW
application, you can save development time later.

Also, keep in mind the following development guidelines:

• Accurately define the system requirements.

• Clearly determine the end-user’s expectations.

• Document what the application must accomplish.

• Plan for future modifications and additions.

Define Project
Process

Customer
Feedback

Test & Release
Final Product

Design
Flowchart

Implement
Nodes as VIs

Integrate SubVIs
into Project

Test SubVIs

Top-Down

LabVIEW Project Development Process

Bottom-Up

Lesson 1 Planning LabVIEW Applications

© National Instruments Corporation 1-3 LabVIEW Basics II Course Manual

B. The Implementation Process
After completing the planning process, implement your application by
developing subVIs that correspond to flowchart nodes. Although you cannot
always use this approach, it helps to modularize your application. By clearly
defining a hierarchy of your application’s requirements, you create a
blueprint for the organization of the VIs you develop.

In addition, modularization makes it much easier for you to test small
portions of an application and later combine them. If you build an entire
application on one block diagram without subVIs, you might not be able to
start testing until you have developed the majority of the application. At that
point, it is very cumbersome to debug problems that might arise. Further,
by testing smaller, more specific VIs, you can determine initial design flaws
and correct them before investing hours of implementation time.

By planning modular, hierarchical development, it is easier to maintain
control of the source code for your project, and keep abreast of the project’s
status. Another advantage of using subVIs is that future modifications and
improvements to the application will be much easier to implement.

After you build and test the necessary subVIs, you will use them to complete
your LabVIEW application. This is the bottom-up portion of the
development.

Lesson 1 Planning LabVIEW Applications

LabVIEW Basics II Course Manual 1-4 ni.com

C. Error Handling Techniques
In the LabVIEW Basics I course, you used the error in and error out clusters
to pass error information between functions and subVIs. These error clusters
contain three pieces of information—a status Boolean indicating a True
value for an error, a numeric that indicates the error number, and the source
string that displays which function or subVI generated the error. You can use
either the Unbundle or the Unbundle By Name function located on the
Functions»Cluster palette to extract this information as shown in the
following block diagram.

The previous example illustrates a typical usage of the error in/error out
approach. That is, the File I/O VIs and functions use error clusters to pass
information from one operation to the next. You can then use the error
handling VIs from the bottom row of the Time & Dialog palette to notify
the user of any error conditions that occur.

The Error Handler VIs
The Simple Error Handler takes the error in cluster or the error code value
and if an error occurs, opens a dialog box that describes the error and
possible reasons for it. You also can change the type of dialog box it opens
from displaying an OK button, to not display a dialog box at all, or to
display a dialog box and give the user a choice to continue or stop the VI.

The General Error Handler VI also accepts the error in cluster or the error
code value and a dialog box of the type specified appears when an error
occurs. However, in addition, you can set up error exception lists so that
specified errors are cleared or set when they occur. You also can use the
General Error Handler VI to add errors to the internal error description table.
The error description table describes all errors for LabVIEW and its

Lesson 1 Planning LabVIEW Applications

© National Instruments Corporation 1-5 LabVIEW Basics II Course Manual

associated I/O operations. Therefore, you can add your own error codes and
descriptions to the error handler VIs. Refer to the LabVIEW Help for
information about how to modify your error handler VIs.

When an error occurs, the Simple Error Handler and General Error Handler
VIs open a dialog box that displays the information contained in the error
cluster and possible reasons for that error as listed in the internal error
description table.

Sometimes you have separate lines of operations that run in parallel in
LabVIEW and each operation maintains their own error clusters. You can
use the Merge Errors VI to combine several error clusters into one.

The Merge Errors VI looks at the incoming error clusters or the array of
error clusters and outputs the first error found. If no errors occur, LabVIEW
returns the first warning message, error code is a positive value. Otherwise,
LabVIEW returns a no error condition.

Lesson 1 Planning LabVIEW Applications

LabVIEW Basics II Course Manual 1-6 ni.com

Incorporating Error Handling into Your VIs
You should build error handling into your own VIs in addition to using the
error clusters for built-in VIs and functions. For example, when you are
building a subVI to use in a larger project, you might not want that subVI to
run if an error occurred previously. You can wire the error cluster to a Case
structure to get Error and No Error cases as shown in the following example.

As shown in the previous example, you place the code you wish to run in the
No Error case and then define the error out value for that case depending
upon what is occurring in that case.

In the next exercise you will build a VI that generates data, analyzes those
data, and presents the data to the front panel while using error clusters
appropriately.

Lesson 1 Planning LabVIEW Applications

© National Instruments Corporation 1-7 LabVIEW Basics II Course Manual

Exercise 1-1 Generate & Analyze Data VI
Objective: To build a VI that generates, analyzes, and displays data while using error handling

techniques.

You will build a VI that generates a noisy sine waveform, computes the
frequency response of those data, and plots the time and frequency
waveforms in waveform graphs. You will use the error clusters and the error
handling VIs to properly monitor error conditions.

Note You will use this VI in the appendix.

Front Panel

1. Open a new VI.

2. Add the three Vertical Pointer Slides located on the Controls»Numeric
palette, the Stop button located on the Controls»Boolean palette, and
the two Waveform Graphs located on the Controls»Graph palette to
the front panel as shown in the previous front panel. Label them
appropriately. You will create the two clusters—Sampling Info and
averaging parameters—from the block diagram.

Lesson 1 Planning LabVIEW Applications

LabVIEW Basics II Course Manual 1-8 ni.com

Block Diagram

3. Open and build the block diagram using the following components.

a. Place a While Loop located on the Functions»Structures palette on
the block diagram. This structures the VI to continue to generate and
analyze data until the user clicks the Stop button. Right-click the
Conditional terminal and select Stop If True.

b. Place the Sine Waveform VI located on the Functions»
Analyze»Waveform Generation palette on the block diagram.
This VI generates a sine waveform with the specified frequency,
amplitude, and sampling information. To create the sampling info
cluster control, right-click that input terminal and select
Create»Control from the shortcut menu.

c. Place the Uniform White Noise Waveform VI located on the
Functions»Analyze»Waveform Generation palette on the block
diagram. This VI generates a waveform of uniform white noise
specified by the amplitude and sampling information.

d. Place the Merge Errors VI located on the Functions»Time &
Dialog palette on the block diagram. This VI combines the error
clusters coming from the Sine and Noise VIs into a single error
cluster.

e. Place the Add Waveforms VI located on the Functions»
Waveform»Waveform Operations palette on the block diagram.
This function adds the two waveforms to obtain a noisy sinewave.

f. Place the FFT Power Spectrum VI located on the Functions»
Analyze»Waveform Measurements palette on the block diagram.
This VI calculates the frequency response of the time waveform
input and averages the data according to the specified averaging
parameters. To create the averaging parameters cluster control,

Lesson 1 Planning LabVIEW Applications

© National Instruments Corporation 1-9 LabVIEW Basics II Course Manual

right-click that input terminal and select Create»Control from the
shortcut menu.

g. Place the Wait Until Next ms Multiple function located on the
Functions»Time & Dialog palette on the block diagram. This
function causes the While Loop to execute every half second. To
create the constant, right-click the input terminal and select
Create»Constant from the shortcut menu.

h. Place the Unbundle By Name function located on the Functions»
Cluster palette on the block diagram. This function extracts the
status Boolean from the error cluster in order to stop the loop if an
error occurs.

i. Place the Or function located on the Functions»Boolean palette on
the block diagram. This function combines the error status Boolean
and the Stop button on the front panel so that the loop stops if either
of these values becomes True.

j. Place the Simple Error Handler VI located on the Functions»Time
& Dialog palette on the block diagram. A dialog box in this VI
appears if an error occurs and displays the error information.

4. Save this VI as Generate & Analyze Data.vi into the
c:\exercises\LV Basics 2 directory.

5. Observe how the subVIs you used in this block diagram use error
handling. Double-click the Sine Waveform VI and open its block
diagram. Notice that the first thing it does is to check the error in cluster
for previous errors. If an error has occurred, LabVIEW returns an empty
waveform and passes out the error information. If no error has occurred,
LabVIEW generates a sine waveform of the specified input parameters.

6. Run the VI. You can adjust the front panel controls to see the time and
frequency waveforms change. You can force an error by entering the
wrong values into these controls. For example, a sampling frequency,
Fs, too low or too high results in an error.

By turning the averaging mode on, you can extract the sine wave peak
from the noise regardless of their specified amplitudes. Notice what
affect the different averaging techniques have on the signal.

7. Stop and close this VI when you are finished.

End of Exercise 1-1

Lesson 1 Planning LabVIEW Applications

LabVIEW Basics II Course Manual 1-10 ni.com

D. LabVIEW Programming Architectures
You can develop better programs in LabVIEW and in other programming
languages if you follow consistent programming techniques and
architectures. Structured programs are easier to maintain and understand.
Now that you have created several VIs in LabVIEW through either the
LabVIEW Basics I course or from similar programming experience, this
concept of structured programming is described in more detail.

One of the best ways to create a program architecture that is easy to
understand is to follow modular programming techniques and make subVIs
for reusable or similarly-grouped operations. For example, refer to the VI
you built in Exercise 1-1. The subVIs you used make the VI very easy to
follow and understand while each piece can be reused in other VIs.
Combined with documentation on the block diagram and in the File»VI
Properties»Documentation option, a modular VI is easy to understand and
modify in the future.

You can structure VIs differently depending on what functionality you want
them to have. This section describes some of the common types of VI
architectures, along with their advantages/disadvantages—simple, general,
parallel loops, multiple cases, and state machines.

Simple VI Architecture
When doing calculations or making quick lab measurements, you do not
need a complicated architecture. Your program might consist of a single VI
that takes a measurement, performs calculations, and either displays the
results or records them to disk. The Simple VI architecture usually does not
require a specific start or stop action from the user and can be initiated when
the user clicks the run arrow. In addition to being commonly used for simple
applications, this architecture is used for functional components within
larger applications. You can convert these simple VIs into subVIs that are
used as building blocks for larger applications.

Lesson 1 Planning LabVIEW Applications

© National Instruments Corporation 1-11 LabVIEW Basics II Course Manual

The previous front panel and block diagram example is the Convert C to
F VI built in the LabVIEW Basics I course. This VI performs the single task
of converting a value in degrees Celsius to degrees Fahrenheit. You can use
this simple VI in other applications that need this conversion function
without needing to remember the equation.

General VI Architecture
In designing an application, you generally have up to three main phases:

Startup This section is used to initialize hardware, read
configuration information from files, or prompt
the user for data file locations.

Main Application This section generally consists of at least one
loop that repeats until the user decides to exit the
program, or the program terminates for other
reasons such as I/O completion.

Shutdown This section usually takes care of closing files,
writing configuration information to disk, or
resetting I/O to its default state.

The following block diagram shows this general architecture. For simple
applications, the main application loop can be fairly straightforward. When
you have complicated user interfaces or multiple events, such as, user
action, I/O triggers, and so on, this section can get more complicated. The
next few illustrations show design strategies you can use to design larger
applications.

Notice in the previous block diagram that the error cluster wires control the
execution order of the three sections. The While Loop cannot begin running
until the Startup VI is finished running and returns the error cluster.
Consequently, the Shutdown VI cannot run until the main program in the
While Loop is finished and the error cluster is passed out of the loop.
Another thing to notice in the previous block diagram is the wait function.
A wait function is required in most loops, especially if that loop is

Lesson 1 Planning LabVIEW Applications

LabVIEW Basics II Course Manual 1-12 ni.com

monitoring user input on the front panel. Without the wait function, the loop
might run continuously so that it uses all of the computer's system resources.
The wait function forces the loop to run asynchronously even if the wait
period is specified as zero milliseconds. If the operations inside the main
loop react to user inputs, then the wait period can be increased to a level
acceptable for reaction times. A wait of 100–200 ms is usually good as most
users will not detect that amount of delay between pushing a button on the
front panel and the subsequent event executing.

Parallel Loop VI Architecture
Some applications require the program to respond to and run several events
concurrently. One way of designing the main section of this application is
to assign a different loop to each event. For example, you might have a
different loop for each action button on the front panel and for every other
kind of event, such as a menu selection, I/O trigger, and so on. The following
block diagram shows this Parallel Loop VI architecture.

This structure is straightforward and appropriate for some simple menu type
VIs where a user is expected to select from one of several buttons that lead
to different actions. This VI architecture also has an advantage over other
techniques in that taking care of one event does not prevent you from
responding to additional events. For example, if a user selects a button that
causes a dialog box to appear, parallel loops can continue to respond to I/O
events. Therefore, the main advantage of the Parallel Loops VI architecture
is its ability to handle simultaneous multiple independent processes.

The main disadvantages of the parallel loop VI architecture lie in
coordinating and communicating between different loops. The Stop button

Lesson 1 Planning LabVIEW Applications

© National Instruments Corporation 1-13 LabVIEW Basics II Course Manual

for the second loop in the previous block diagram is a local variable. You
cannot use wires to pass data between loops, because that would prevent
the loops from running in parallel. Instead, you have to use some global
technique for passing information between processes. This can lead to race
conditions where multiple tasks attempt to read and modify the same data
simultaneously resulting in inconsistent results and are difficult to debug.

Note Refer to Lesson 3, Data Management Techniques, of this course for more
information about global variables, local variables, and race conditions.

Multiple Case Structure VI Architecture
The following block diagram shows how to design a VI that can handle
multiple events that can pass data back and forth. Instead of using multiple
loops, you can use a single loop that contains separate case structures for
each event handler. This VI architecture would also be used in the situation
where you have several buttons on the front panel that each initiate different
events. The following FALSE cases are empty.

An advantage of this VI architecture is that you can use wires to pass data.
This helps improve readability. This also reduces the need for using global
data, and consequently makes it less likely that you will encounter race
conditions. You can use shift registers on the loop border to remember
values from one iteration to the next to pass data as well.

Several disadvantages exist to the multiple case structure VI architecture.
First, you can end up with block diagrams that are very large and
consequently are hard to read, edit, and debug. In addition, because all event
handlers are in the same loop, each one is handled serially. Consequently, if
an event takes a long time, your loop cannot handle other events. A related
problem is that events are handled at the same rate because no event can
repeat until all objects in the While Loop complete. In some applications,
you might want to set the priority of user interface events to be fairly low
compared to I/O events.

Lesson 1 Planning LabVIEW Applications

LabVIEW Basics II Course Manual 1-14 ni.com

State Machine VI Architecture
You can make the block diagrams more compact by using a single case
structure to handle all of your events. The State Machine VI architecture is
a method for controlling the execution of VIs in a nonlinear fashion. This
programming technique is very useful in VIs that are easily split into several
simpler tasks, such as VIs that act as a user interface.

You create a state machine in LabVIEW with a While Loop, a Case
structure, and a shift register. Each state of the state machine is a case in the
Case structure. You place VIs and other code that the state should execute
within the appropriate case. A shift register stores the state to be executed
upon the next iteration of the loop. The block diagram of a state machine
appears in the following figure.

Lesson 1 Planning LabVIEW Applications

© National Instruments Corporation 1-15 LabVIEW Basics II Course Manual

In this architecture, you design the list of possible events, or states, and then
map that to each case. For the VI in the previous block diagram, the possible
states are startup, idle, event 1, event 2, and shutdown. These states above
are stored in an enumerated constant. Each state has its own case where you
place the appropriate nodes. While a case is running, the next state is
determined based on the current outcome. The next state to run is stored in
the shift register. If an error occurs an any of the states, the shutdown case is
called.

The advantage of the State Machine VI architecture is that the block
diagram can become much smaller, making it easier to read and debug.
One drawback of the Sequence structure is that it cannot skip or break out
of a frame. The State Machine architecture solves that problem because each
case determines what the next state will be as it runs.

A disadvantage to the State Machine VI architecture is that with the
approach in the previous block diagram, you can lose events. If two events
occur at the same time, this model handles only the first one, and the second
one is lost. This can lead to errors that are difficult to debug because they
can occur only occasionally. More complex versions of the State Machine
VI architecture contain extra code that builds a queue of events, states,
so that you do not miss any events.

Lesson 1 Planning LabVIEW Applications

LabVIEW Basics II Course Manual 1-16 ni.com

More About Programming Architecture
As with other programming languages, many different methods and
programming techniques are used when designing a VI in LabVIEW. The
VI architectures shown in this section are some of the common methods to
give you an idea of how to approach writing a VI.

The VI structures will get much more complicated as applications get larger
and many different hardware types, user interface issues, and error checking
methods are combined. However, you will see these same basic
programming architectures used. Examine the larger examples and demos
that ship with the LabVIEW application and write down which common VI
architecture is used and why. Additional resources for making LabVIEW
applications are described in the LabVIEW Development Guidelines
manual.

Next you will build a VI that uses the Simple VI architecture to verify the
name and password of a user.

Lesson 1 Planning LabVIEW Applications

© National Instruments Corporation 1-17 LabVIEW Basics II Course Manual

Exercise 1-2 Verify Information VI
Objective: To build a VI that demonstrates the simple VI architecture.

You will build a VI that accepts a name and password and checks for a match
in a table of employee information. If the name and password match, the
confirmed name and a verification Boolean object are returned.

Note You will use this VI in Lesson 3.

Front Panel

1. Open a new VI and build the previous front panel. Modify the string
controls as described in the labels by right-clicking the control. The
Table control located on the Controls»List & Table palette is a
two-dimensional array of strings where the first cell is at element 0,0.

2. Enter the information shown in the previous front panel in the Table and
save those values as default by right-clicking the Table and selecting
Data Operations»Make Current Value Default from the shortcut
menu.

Lesson 1 Planning LabVIEW Applications

LabVIEW Basics II Course Manual 1-18 ni.com

Block Diagram

3. Open and build the previous block diagram using the following
components.

a. Place a While Loop located on the Functions»Structures palette on
the block diagram. This structures the VI to continue checking for a
match until a name match occurs or there are no more rows in the
table. Notice that indexing is enabled on the names array but not on
the other two items entering the While Loop. Enable the indexing by
right-clicking the tunnel and selecting Enable Indexing from the
shortcut menu.

b. Place a Case structure located on the Functions»Structures palette
on the block diagram. If the Name input matches a listing in the first
column of the table, the Passwords are also checked. If the Name
does not match the current table entry, the loop continues to the next
iteration.

To create the Boolean constant in the False case, wait until the True
case is completely wired. Then select the False case and right-click
the green outlined tunnel and select Create»Constant from the
shortcut menu.

c. Place the Index Array function located on the Functions»Array
palette on the block diagram. This function is used to pull the names

Lesson 1 Planning LabVIEW Applications

© National Instruments Corporation 1-19 LabVIEW Basics II Course Manual

array out of the table. When you wire the table to the array input of
this function, two indices—rows and columns— appear. Right-click
the bottom index, columns, and select Create»Constant from the
shortcut menu. You will use two of these functions, so make a copy
of the Index Array function and place it into the True Case.

d. Place the Array Size function located on the Functions»Array
palette on the block diagram. This function returns the size of the
names array.

e. Place the Decrement function located on the Functions»Numeric
palette on the block diagram. This function decreases the number of
names in the array by one so that it can control the While Loop
which starts indexing at 0.

f. Place the Equal? function located on the Functions»Comparison
palette on the block diagram. You will use two of these functions to
check if the Name input matches a table entry and if the Password
also matches the table entry.

g. Place the Less Than? function located on the Functions»
Comparison palette on the block diagram. This function controls
the While Loop conditional. The loop continues to run while the
current iteration number is less than the number of rows in the table.

h. Place the Not Or function located on the Functions»Boolean palette
on the block diagram. This function also controls the conditional of
the While Loop so that the loop continues until a match is found or
there are no more rows in the table.

i. Place the Empty String constant located on the Functions»String
palette on the block diagram. You will use two of these functions,
one in the True case and one in the False case. If the names match
but not the passwords or if neither match, then an empty string is
returned in the Name Confirmed indicator.

j. Place the Select function located on the Functions»Comparison
palette on the block diagram. This function is used along with the
password matching. If the password matches, the current name is
sent to the Name Confirmed indicator; otherwise, the Empty String
is sent.

4. Save this VI as Verify Information.vi.

5. Go to the front panel and make sure you have some names—the names
do not have to be the same ones used in the course manual—and
passwords in the table control. If you have not already done so,
right-click the table and select Data Operations»Make Current
Values Default so that the names and passwords are permanently stored
in the table.

Lesson 1 Planning LabVIEW Applications

LabVIEW Basics II Course Manual 1-20 ni.com

6. Enter values into the Name and Password controls and run the VI.

If the Name and Password match one of the rows in the table, the name
is returned in the Name Confirmed indicator and the Verified LED is
lit. Otherwise, an empty string is returned and the Verified LED is off.
Be sure to try various combinations of names and passwords to make
sure that this VI shows the correct behavior.

7. Create an icon for this VI because you will use this VI as a subVI in a
later exercise. To create the icon, right-click the icon in the top right
corner of either the front panel or the block diagram and select Edit Icon
from the menu. Design an icon similar to the one shown here.

8. Create the connector pane for this VI by right-clicking the icon in the
front panel and selecting Show Connector from the shortcut menu.
Select a pattern and connect the front panel objects to the terminals as
shown in the following connector pane.

9. Save the VI under the same name.

10. Stop and close this VI when you are finished.

End of Exercise 1-2

Lesson 1 Planning LabVIEW Applications

© National Instruments Corporation 1-21 LabVIEW Basics II Course Manual

E. VI Templates
In the last section, you learned about some of the common programming
architectures for VIs. So that you do not have to start building each new VI
from an empty front panel and block diagram, a number of templates are
included with the LabVIEW package. These VI templates can be found in
the LabVIEW 6\Templates directory and contain the file extension .vit.
LabVIEW provides some basic templates, however, not all of the VI
architectures described are available as templates.

You can save a VI you create as a template by using the File»Save with
Options option as shown in the following dialog box.

This option allows you to save VI architectures and other programming
structures you use often for your own templates. Now you will examine a
couple of the template VIs.

Lesson 1 Planning LabVIEW Applications

LabVIEW Basics II Course Manual 1-22 ni.com

Exercise 1-3 Timed While Loop with Stop VIT,
State Machine VIT

Objective: To examine two of the template VIs that ship with LabVIEW.
You will examine template VIs that show both the State Machine
architecture and the General architecture.

Front Panel

1. Open the Timed While Loop with Stop.vit from the LabVIEW
6\Templates directory. The front panel only contains the Stop button.

Block Diagram

2. Open and examine the block diagram.

3. You will recognize this VI as having the General VI architecture. It
contains a While Loop that stops when you click the button on the front
panel and a wait function in the loop ensures that this loop will not use
all the system resources.

4. Return to the front panel and run the VI. It does nothing but continues to
run until you click the Stop button.

5. Stop and close this VI when you are finished.

6. Open the State Machine.vit from the LabVIEW 6\Templates
directory. The front panel is empty.

Lesson 1 Planning LabVIEW Applications

© National Instruments Corporation 1-23 LabVIEW Basics II Course Manual

Block Diagram

7. Open and examine the block diagram.

8. This State Machine VI architecture is implemented in a slightly different
manner as the one previously described. This VI uses a string constant
to contain the states for the Case structure whereas the previous VI
showed an enumerated type, similar to a ring control, to control the
states. Because the Case structure accepts both numeric and string data,
it does not matter how you specify the different states. The key to the
State Machine architecture is that you have a While Loop with a Case
structure inside where each case is a different state of the overall
application. The next state is determined while the VI is running based
upon what happens in the current state.

9. Close this VI when you are finished.

End of Exercise 1-3

Lesson 1 Planning LabVIEW Applications

LabVIEW Basics II Course Manual 1-24 ni.com

Summary, Tips, and Tricks
• In most cases, a top-down approach is used to plan the overall strategy

for a project. Development and implementation of an application usually
occurs from the bottom-up.

• When designing a LabVIEW application, it is important to determine
the end-user’s expectation, exactly what the application must
accomplish, and what future modification might be necessary before
you invest a great deal of time developing subVIs. You should design a
flowchart to help you understand how the application should operate and
discuss this in detail with your customer.

• After you design a flowchart, you can develop VIs to accomplish the
various steps in your flowchart. It is a good idea to modularize your
application into logical subtasks when possible. By working with small
modules, you can debug an application by testing each module
individually. This approach also makes it much easier to modify the
application in the future.

• Error clusters are a powerful method of error handling used with nearly
all of the I/O VIs and functions in LabVIEW. These clusters pass error
information from one VI to the next.

• An error handler at the end of the data flow can receive the error cluster
and display error information in a dialog box.

• The most common VI architectures are the Simple, the General, the
Parallel Loops, the Multiple Case Structures, and the State Machine.
Each of these architectures has advantages and disadvantages depending
upon what you want your application to do.

• The State Machine VI architecture is very useful for user interface VIs
and it generates clean, simple code.

• Several template VIs ship with the LabVIEW package so you do not
need to start VI development from empty front panels and block
diagrams each time.

• Refer to the LabVIEW Development Guidelines manual for more
information about designing and building VIs.

Lesson 1 Planning LabVIEW Applications

© National Instruments Corporation 1-25 LabVIEW Basics II Course Manual

Notes

Lesson 1 Planning LabVIEW Applications

LabVIEW Basics II Course Manual 1-26 ni.com

Notes

© National Instruments Corporation 2-1 LabVIEW Basics II Course Manual

Lesson 2
Designing Front Panels

This lesson introduces how you can design and build the user interface to
your VIs. First, an overview and list of things to consider while building the
front panel. The next few sections describe some common methods and
tools for customizing panels. The last few sections describe additional items
and panel objects used for developing user interfaces.

You Will Learn:

A. About basic user interface issues.

B. How to use Boolean clusters as menus.

C. About Property Nodes.

D. About Graph and Chart Properties.

E. How to use Control References.

F. About LabVIEW Run-Time Menus.

G. About Intensity Plots.

Lesson 2 Designing Front Panels

LabVIEW Basics II Course Manual 2-2 ni.com

A. Basic User Interface Issues
When you develop applications that other people will use, you need to
follow some basic rules regarding the user interface. If the front panel
contains too many objects or has a distracting mixture of color and text, the
users might not use the VI properly or not receive important information
from the data. This section describes some topics to consider when you are
building front panels.

One rule to follow when building a user interface to a VI is to only show
items in the front panel that the user needs to see at that time. The example
following shows a subVI that prompts the user for a login name. It has error
clusters because it is a subVI, but the user does not need to see those items
or the path name of the file.

The next example shows the same subVI after the front panel has been
resized and the menu bar, scrollbars, and toolbar have been removed with
the VI Properties»Window Appearance»Dialog option.

Lesson 2 Designing Front Panels

© National Instruments Corporation 2-3 LabVIEW Basics II Course Manual

Using Color
Proper use of color can improve the appearance and functionality of your
front panel. Using too many colors, however, can result in color clashes that
cause the front panels to look too busy and distracting. Here are some color
matching tips:

• Start with a gray scheme—select one or two shades of gray and highlight
colors that have good contrast with the background.

• Add highlight colors sparingly—on plots, abort buttons, and perhaps the
slider thumbs for important settings. Small objects need brighter colors
and more contrast than larger objects.

• Use spacing and alignment to group objects instead of matching colors.

• Good places to learn about color are stand-alone instrument panels,
maps, magazines, and nature.

Also, keep in mind that approximately twenty percent of engineers are
color-blind to some degree. They rely on contrast more than color when
differentiating items.

Spacing and Alignment
White space and alignment are probably the most important techniques for
grouping and separation. The more items that your eye can find on a line,
the more cohesive and clean the organization seems. When items are on a
line, the eye follows the line from left to right or top to bottom. This is
related to the script direction. Although some cultures might see items right
to left, almost all follow top to bottom.

Centered items are better than random, but much less orderly than either left
or right. A band of white space acts as a very strong means of alignment.
Centered items typically have ragged edges, and the order is not as easily
noticed.

Menus are left-justified and related shortcuts right-justified as shown in the
bottom left example of the LabVIEW File menu. It is more difficult to locate

Lesson 2 Designing Front Panels

LabVIEW Basics II Course Manual 2-4 ni.com

items in the center-justified menu as shown in the bottom right example.
Notice how the simple dividing lines between menu sections help you find
the items quickly and strengthen the relationship between the items in the
section.

Text and Fonts
Text is easier to read and information makes more sense when displayed in
an orderly way. To use this to your advantage when building front panels,
try grouping related controls together with white space or with lines. These
methods work best when they are subtle and do not distract from the
information.

Using too many font styles can make your front panel look busy and
disorganized. It is better to use two or three different sizes of the same font.
Serifs help people to recognize whole words from a distance. If you are
using more than one size of a font, make sure the sizes are quite different.
If not, it will look like a mistake. Similarly, if you use two different fonts,
make sure they are distinct.

Operator stations can catch lots of glare or users might need to read them
from a greater distance than normal computers or with a touch screen.
Therefore, you should use larger fonts and more contrast.

User Interface Tips and Tools
It is not necessary or wise to spend time making every front panel look
polished—concentrate on the ones that users see the most. Some of the
built-in LabVIEW tools for making user-friendly front panels include dialog
controls, tab controls, decorations, menus, and automatic resizing of front
panel objects.

Lesson 2 Designing Front Panels

© National Instruments Corporation 2-5 LabVIEW Basics II Course Manual

Dialog Controls
A common user interface technique is to have dialog boxes appear at
appropriate times to interact with the user. You can make a VI behave like a
dialog box by checking that option in the File»VI Properties»Window
Appearance dialog box. The Controls»Dialog Controls palette contains
the same kinds of objects available in system dialog boxes.

You should use these dialog controls to build system-like dialogs. Dialog
controls change appearance according to the operating system and Window
Appearance settings and they typically ignore all color clicks except
transparent. If you are integrating a graph or non-dialog controls into the
front panel, try to make them match by hiding some borders or selecting
colors similar to the system.

Tab Controls
Physical instruments usually have good user interfaces. Borrow heavily
from them, but move to smaller or more efficient controls, such as rings,
or tab controls where this makes sense. Tab Controls are found in the
Controls»Dialog Controls palette or the Controls»Array & Cluster
palette and offer a convenient way to group front panel objects together.

The way you use a Tab Control is to place it on the front panel as shown
previously. You add tabs by right-clicking an existing tab and selecting Add
Page After, Add Page Before, or Duplicate Page from the menu. You
relabel the tabs with the Labeling tool, and you place other front panel
objects into the appropriate pages. The terminals for these objects are
available in the block diagram as are terminals for any other front panel
object.

Lesson 2 Designing Front Panels

LabVIEW Basics II Course Manual 2-6 ni.com

The Tab Control wires directly to a Case structure as shown previously and
the page name shows up as the name of the case. You can then wire the data
to and from the other terminals as needed.

Decorations
One of the easiest and often overlooked methods of grouping or separating
objects is to use an item from the Controls»Decorations palette. You can
select to use various types of boxes, arrows, and lines from this palette as
follows:

You can find more decorations in the Controls»Classic Controls palette.
The following palette shows the various boxes, borders, lines, arrows,
circles, and triangles:

Lesson 2 Designing Front Panels

© National Instruments Corporation 2-7 LabVIEW Basics II Course Manual

Menus
Menus are a good way to present most of a front panel’s functionality in an
orderly way and in a relatively small space. This leaves room on the front
panel for actions that are needed in an emergency, items for beginners, items
needed for productivity, and items that do not fit well into menus. Also be
sure to add menu shortcut keys for the frequently accessed items. Later in
this lesson you will learn how to create your own menus in a VI.

Automatic Resizing of Front Panel Objects
As mentioned previously, you can use the VI Properties»Window
Appearance options to modify the appearance of the front panel when a VI
is running. With the VI Properties»Window Size options, you can set the
minimum size of a window, keep the window proportion with screen
changes, and set front panel objects to resize in two different modes. Most
professional applications do not enlarge each and every control when the
window changes size, but pick a table, graph, or list to enlarge with the
window, leaving other objects near the window’s edge. To resize one front
panel object with the front panel, select that object, and select Edit»Scale
Object With Panel.

The following exercise uses some of the techniques described to create a VI
with a user interfaces that is easy to use.

Lesson 2 Designing Front Panels

LabVIEW Basics II Course Manual 2-8 ni.com

Exercise 2-1 Scope Panel.vi
Objective: To logically arrange and separate front panel objects to make the user interface of

a VI easier to read and use.

You will resize, reorganize, and rearrange the objects on the front panel to
make the user interface easier to use. You will also setup the graph to resize
along with the front panel.

Front Panel

1. Open the Scope Panel VI from the c:\exercises\LV basics 2
directory. The front panel is shown previously.

2. Move the controls around as to logically group the controls that share
similarities (not all can relate to a group). For example the Channel A
ON/OFF button, Channel A Position knob, and Channel A Volts/Div
knob all operate on channel A and it makes sense to have them close to
one another. Two other example groups would be the three Channel B
controls and the three trigger controls.

Tip Remember to use the Align Objects and Distribute Objects features in the tool bar.

3. After making groups out of the controls, use the Raised Box decoration
on the Controls»Decorations palette to make visible separations

Lesson 2 Designing Front Panels

© National Instruments Corporation 2-9 LabVIEW Basics II Course Manual

between the groups. And resize your window so the front panel fits
inside the window, as shown in the following example.

Tip You need to use the Reorder button in the tool bar on the decorations to Move to
Back, so that the controls are visible and on top of the raised boxes.

4. Select File»VI Properties to display the VI Properties dialog box.
Select Window Size from the top pull-down menu of the VI Properties
dialog box. In the Minimum Panel Size section, click the >>Set to
Current Window Size button to set your minimum screen size to the
current size of the window. Click OK to return to the front panel.

5. Select the graph on the front panel then select Edit»Scale Object With
Panel. LabVIEW resizes the graph when the entire window is resized
and moves the other objects.

6. Save the VI under the same name.

7. Resize the window. You notice that the graph does resize with the
window and the controls maintain a proportional distance to the graph
and each other but do not grow or shrink. However, you notice that
the decorations do not resize. In order to do this, you must use
Boolean buttons that look the same in each state and resize them
programmatically. This requires the use of Property Nodes and is
covered later in this lesson.

8. Close the VI when you are finished.

End of Exercise 2-1

Lesson 2 Designing Front Panels

LabVIEW Basics II Course Manual 2-10 ni.com

Exercise 2-2 Acquire Data.vi
Objective: To modify a VI to use the Tab Control along with proper user-interface design

techniques.

You will modify the Generate & Analyze VI so that it uses the tab control.
One page of the tab will be for the generation of data as before and a second
page will be for acquiring the data from a DAQ device.

Note You will use this VI in the project in Lesson 5.

Front Panel

1. Open the Generate & Analyze VI you built in Exercise 1-1. Resize the
front panel to make room on the left of the other front panel objects as
you will be adding the tab control.

2. Place a Tab Control located on the Controls»Array & Cluster palette
on the front panel as shown previously. Select the Sine Frequency, Sine
Amplitude, Sampling Info, and Noise Amplitude controls and place
them into the first page of the Tab Control.

Lesson 2 Designing Front Panels

© National Instruments Corporation 2-11 LabVIEW Basics II Course Manual

3. Name the two pages of the tab control Simulate and DAQ respectively.
Click the DAQ page and add the objects as follows:

4. Save this VI as Acquire Data.vi.

5. Right-click the DAQ Channel Name control and make sure the Allow
Undefined Names option is selected.

6. To change the scale on the knob to read 20.0k instead of 20,000,
right-click the knob and select Format & Precision. Select
Engineering Notation and the k is added to represent one thousand.

Lesson 2 Designing Front Panels

LabVIEW Basics II Course Manual 2-12 ni.com

Block Diagram

7. Open and modify the block diagram as shown previously using the
following components:

a. Place a Case structure located on the Functions»Structures palette
on the block diagram. When used with the tab control—one case
handles the Simulate page and the other case is for the DAQ page.

b. Place the AI Acquire Waveform VI located on the Functions»Data
Acquisition»Analog Input palette on the block diagram. This VI
acquires data from an analog input channel on the DAQ device.

Note If you do not have a DAQ device or a DAQ Signal Accessory, use the Demo
Acquire Waveform VI located on the Functions»User Libraries»Basics 2 Course
palette on the block diagram in place of the AI Acquire Waveform VI. The Demo Acquire
Waveform VI simulates acquiring data from an analog input channel at a specified
sampling rate and returning the specified number of samples.

Lesson 2 Designing Front Panels

© National Instruments Corporation 2-13 LabVIEW Basics II Course Manual

c. Create a Cluster constant by right-clicking the Case structure tunnel
and selecting Create»Constant from the shortcut menu. This
constant passes the default values for the error cluster out of the
DAQ case.

8. Save the VI.

9. Observe how you have added quite a bit of new functionality to this VI
without adding a lot of extra code. Using the Tab Control is a very
efficient way to add new front panel objects to the user interface and also
add block diagram functionality without having to enlarge the front
panel and block diagram windows.

10. Run the VI. You can adjust the front panel controls to see the time and
frequency waveforms change. Click between the Simulated and DAQ
pages in the Tab Control.

11. Stop and close this VI when you are finished.

End of Exercise 2-2

Lesson 2 Designing Front Panels

LabVIEW Basics II Course Manual 2-14 ni.com

B. Using Boolean Clusters as Menus
You can use latched Boolean buttons in a cluster to build a menu for an
application. For example, consider an application where an operator
configures a system and runs either of two tests. A possible menu VI for
this application is as follows.

The Cluster to Array function converts the Boolean cluster to a Boolean
array with three elements. That is, each button in the cluster represents an
element in the array. The Search 1D Array function on the Functions»
Array palette searches the 1D array of Boolean values created by the
Cluster to Array function for a value of TRUE. A TRUE value for any
element in the array indicates that you clicked on a button in the cluster. The
Search 1D Array function returns the index of the first TRUE value it finds
in the array. If you did not click a button, Search 1D Array returns an index
value of -1. If no buttons are pressed, Case -1 is executed, which does
nothing. Clicking the Configure button executes Case 0, which could, for
example, call the Configure subVI. Clicking the Test 1 button executes
Case 1, which could call the Test 1 subVI, and clicking the Test 2 button
executes Case 2. The While Loop repeatedly checks the state of the Boolean
cluster control until you click the Stop button. The VI block diagram is as
follows.

Cluster of labeled buttons (mechanical action -> latch when released)
Cluster Order:
(0) Configure button
(1) Test 1 button
(2) Test 2 button

Lesson 2 Designing Front Panels

© National Instruments Corporation 2-15 LabVIEW Basics II Course Manual

Cluster Conversion
You can convert a cluster to an array if all cluster components have the same
data type (for example, all are Boolean data types or all are numeric). With
this conversion, you can use array functions to process components within
the cluster.

The Cluster to Array function Functions»Cluster and Functions»Array
palettes converts a cluster of identically typed components to a 1D array of
the same data type.

The following example shows a four-component Boolean cluster converted
to a four-element Boolean array. The index of each element in the array
corresponds to the logical order of the component in the cluster. For
example, Button 1 (component 0) corresponds to the first element (index 0)
in the array, Button 2 (component 1) to the second element (index 1),
and so on.

Lesson 2 Designing Front Panels

LabVIEW Basics II Course Manual 2-16 ni.com

The Array to Cluster function (Functions»Cluster and Functions»Array
palettes) converts a 1D array to a cluster in which each component in the
cluster is the same type as the array element.

Note You must right-click the function icon to set the number of components in the
cluster. The default number of components in the output cluster is nine.

You can combine the concept of a state machine with a Boolean menu
cluster to provide a powerful system for menus. For example, perhaps you
need to provide the following application, which can be divided into a series
of states.

1 Front Panel 2 Cluster Panel 3 Block Diagram

State Value State Name Description Next State

–1, Default No Event Monitor Boolean
menu to determine
the next state

Depends on the
Boolean button
pressed. If no button
is pressed, next state
is No Event.

0 Login Log in user No Event (0)

1 Configure Configure
acquisition

Acquire (2)

2 Acquire Acquire data No Event (0)

1 2

3

Lesson 2 Designing Front Panels

© National Instruments Corporation 2-17 LabVIEW Basics II Course Manual

The following is an example of a state machine for this application.

The front panel consists of a Boolean button cluster, with each button
triggering a state in the state machine. In state –1 (the No Event state), the
Boolean button cluster is checked to see if a button has been pressed. The
Search 1D Array function returns the index of the button pressed (or –1 if
no button is pressed) to determine the next state to execute. That state value
is loaded into the shift register, so that on the next iteration of the while loop
the selected state will execute.

In each of the other states, the shift register is loaded with the next state to
execute using a numeric constant. Normally this is state –1, so that the
Boolean menu will be checked again, but in state 1 (Configure) the
subsequent state is state 2 (Acquire).

Lesson 2 Designing Front Panels

LabVIEW Basics II Course Manual 2-18 ni.com

Exercise 2-3 Menu.vi
Objective: To build the menu system for the sample application.

A set of dependencies exist between the different operations of the
application to be built in this course. Under most circumstances, after
performing a certain action, the application should return to a “No Event”
state, in which the application should monitor a menu to see which button
should be pressed.

The dependencies of the application can be described as a simple state
machine, where each numeric state leads to another subsequent state. The
following table summarizes this series of dependencies.

In this exercise, you will build the state machine to be used in this
application and observe its operation.

Note You will use this VI in Lesson 5.

State Value State Name Description Next State

–1, Default No Event Monitor Boolean
menu to determine
the next state

Depends on the
Boolean button
pressed. If no button
is pressed, next state
is No Event.

0 Login Log in user No Event

1 Acquire Acquire data No Event

2 Analyze Analyze data,
possibly save to file

No Event

3 View View saved data
files

No Event

4 Stop Stop VI No Event

Lesson 2 Designing Front Panels

© National Instruments Corporation 2-19 LabVIEW Basics II Course Manual

Front Panel

1. Open a new VI.

2. Build the front panel according to the previous example. Each button in
the cluster will trigger an appropriate state when it is pressed. When
building the front panel, make sure that the Login button is at cluster
order 0. Acquire Data is cluster order 1, Analyze & Present Data is
cluster order 2, View Analysis File is cluster order 3, and Stop is cluster
order 4. The cluster order of the menu cluster will determine the numeric
state which will be executed.

Hints:

• Create the button with the largest label first.

• Set the mechanical action to Latch When Released.

• Use Copy and Paste to create the other buttons.

• Use Align and Distribute to arrange the buttons.

Lesson 2 Designing Front Panels

LabVIEW Basics II Course Manual 2-20 ni.com

Block Diagram

1. Build the block diagram as shown previously.

a. Place a While Loop located on the Functions»Structures palette on
the block diagram. This structures the VI to continue to generate and
analyze data until the user presses the Stop button. Create the shift
register by right-clicking the left or right side border of the loop and
selecting Add Shift Register from the shortcut menu.

Lesson 2 Designing Front Panels

© National Instruments Corporation 2-21 LabVIEW Basics II Course Manual

b. Place a Case structure located on the Functions»Structures palette
on the block diagram. This structure makes the states for the state
machine. Add cases by right-clicking the border of the Case
structure. Be sure to define the –1 case as being the default.

c. Place the Wait Until Next ms Multiple function located on the
Functions»Time & Dialog palette on the block diagram. This
function causes the While Loop to execute ten times a second.
Create the constant by right-clicking the input terminal and selecting
Create»Constant.

d. .Place the Cluster To Array function located on the
Functions»Cluster or Functions»Array palette on the block
diagram. In this exercise, this function converts the cluster of
Boolean buttons into an array of Boolean data types. The Boolean
object at cluster order 0 becomes the Boolean element at array
index 0, cluster order 1 becomes array index 1, and so on.

e. Place the Search 1D Array function located on the
Functions»Array palette on the block diagram. In this exercise, this
function searches the Boolean array that Cluster to Array returns
for a TRUE value. A TRUE value for any element indicates that you
clicked on the corresponding button. The function returns a value of
–1 if you did not click a button.

f. Place the One Button Dialog function located on the
Functions»Time & Dialog palette on the block diagram. You will
use four of these functions to indicate which state has been selected
and loaded into the shift register.

2. Save the VI as Menu.vi.

3. Run the VI. When you click the Login, Acquire Data, Analyze &
Present Data, or Data File View buttons, a dialog box appears to
indicate that you are in the associated state.

4. Using the Single-Step and Execution Highlighting features, observe
how the VI executes. Notice that until you click a button, the Search 1D
Array function returns a value of –1, which causes the While Loop to
continuously execute state –1. Once a button is pressed, however, the
index of the Boolean data types is used to determine the next state to
execute. Notice how the states of the VI correspond to the states in the
table at the top of the exercise.

In later exercises, you will substitute VIs that you create for the
One Button Dialog functions to build the application.

5. Click the Stop button on the VI’s front panel to halt execution.

6. Close the VI when you are finished.

End of Exercise 2-3

Lesson 2 Designing Front Panels

LabVIEW Basics II Course Manual 2-22 ni.com

Exercise 2-4 Cluster Conversion Example VI (Optional)
Objective: To examine a VI that uses clusters to process data.

You will examine a VI that uses clusters to process data. The VI features a
cluster containing four labeled buttons. The VI keeps track of the number of
times you click each button.

Front Panel

1. Open the Cluster Conversion Example VI in the c:\exercises\LV
Basics 2 directory.

Lesson 2 Designing Front Panels

© National Instruments Corporation 2-23 LabVIEW Basics II Course Manual

Block Diagram

False case is empty except for passing the cluster from the left shift register
to the right shift register.

1. Open and examine the block diagram.

2. Run the VI. Click a button. The corresponding digital indicator should
increment each time you click a button.

3. Close the VI. Do not save any changes.

End of Exercise 2-4

Lesson 2 Designing Front Panels

LabVIEW Basics II Course Manual 2-24 ni.com

C. Property Nodes
In some applications, you might want to programmatically modify the
appearance of front panel objects in response to certain inputs. For example,
if a user enters an invalid password, you might want to cause a red LED to
start blinking. Another example would be changing the color of a trace on a
chart. When data points are above a certain threshold, you might want to
show a red trace instead of a green one. Resizing front panel objects, hiding
parts of the front panel, and adding cursors to graphs also can be done
programmatically using Property Nodes.

Property Nodes in LabVIEW are very powerful and have many uses. This
course only covers one use for Property Nodes to change the appearance and
functional characteristics of front panel objects programmatically. You can
set properties such as display colors, visibility, position, size, blinking,
menu strings, graph or chart scales, graph cursors, and many more. Refer to
the Help»Contents and Index in LabVIEW for more information about the
Property Node.

Creating Property Nodes
You create Property Nodes by selecting the Create»Property Node option
from the shortcut menu of a front panel object or from its terminal on the
block diagram. Selecting Create»Property Node creates a new node on the
block diagram near the terminal for the object. If the object has an owned
label, the Property Node has the same label. You can change the label after
creating the node. You can create any number of Property Nodes for a front
panel object.

Because there are many different properties for front panel objects, we will
cover only some of the common properties. Select Help»Contents & Index
to find information about a particular property.

Using Property Nodes
When you create a Property Node, it initially has one terminal representing
a property you can modify for the corresponding front panel object. Using
this terminal on the Property Node, you can either set (write) the property or
read the current state of that property.

For example, if you create a Property Node for a digital control, it appears
on the block diagram with the Visible property showing in its terminal. A
small arrow appears on the right side of that terminal, indicating that you can
read a value from the Visible property for the digital control. You can change
it to a write property by right-clicking the node and selecting Change To
Write from the shortcut menu. Wiring a Boolean FALSE to that terminal
will cause the digital control to vanish from the front panel when the

Lesson 2 Designing Front Panels

© National Instruments Corporation 2-25 LabVIEW Basics II Course Manual

Property Node receives the data. Wiring a TRUE causes the control to
reappear.

You can read the current state of a property by right-clicking the Property
Node terminal and selecting Change To Read. When the Property Node is
called, it will output a Boolean TRUE if the control is visible or a Boolean
FALSE if it is invisible.

From the terminal on the Property Node, you can select properties by
clicking the node with the Operating tool, shown at left, and selecting the
desired property from the shortcut menu.

You can read or set more than one property with the same node by enlarging
the Property Node. Using the Positioning tool, shown at left, click the lower
corner of the Property Node and drag the corner down to enlarge the node.
As you enlarge the node, you add more terminals. You can then associate
each Property Node terminal with a property from its shortcut menu.

Some properties are clusters. These clusters contain several properties
that you can unbundle using the Unbundle function located on the
Functions»Cluster palette. Writing to these properties requires the Bundle
function, as follows:

Operating
tool

Positioning
tool

Lesson 2 Designing Front Panels

LabVIEW Basics II Course Manual 2-26 ni.com

To access bundled properties, select the All Elements option from the
property’s shortcut menu. For example, you can access all the elements in
the Position property by selecting Position»All Elements or you can access
a single element from that bundle.

Property Node Execution Order
Property Node terminals execute from the top down. For example, in the
waveform graph Property Node as follows, the graph is first made visible.
Then Plot 0 is set as the active plot, its color set to red, and the name of the
plot in the legend is updated. Finally, Plot 1 is set as the active plot, its color
set to green, and the name of the plot in the legend is changed.

Using the Context Help Window
Use the LabVIEW Context Help window and the Help»Contents and
Index to find descriptions, data types, and acceptable values for Property
Nodes. With the Context Help window active, pass the cursor over terminals
in the Property Node to display information. The following example shows
help for both a single property and a cluster of several properties.

Execution
Order

Lesson 2 Designing Front Panels

© National Instruments Corporation 2-27 LabVIEW Basics II Course Manual

Common Properties
There are many properties available for the various front panel objects in
LabVIEW. This section describes the Visible, Disable, Key Focus, Blink,
Position, Bounds, and Value properties, which are common to all front panel
objects. It also introduces some Property Nodes for specific kinds of
controls and indicators.

Visible Property
The Visible property, shown at left, sets or reads the visibility of a front
panel object. The associated object is visible when TRUE, hidden when
FALSE.

Wiring Example—Set the digital control to an invisible state. A Boolean
TRUE value makes the control visible, as shown.

Disabled Property
The Disabled property, shown at left, sets or reads the user access status
of an object. A value of 0 enables an object so that the user can operate it.
A value of 1 disables the object, preventing operation. A value of 2 disables
and greys out the object.

Wiring Example—Disable user access to the digital control. The control
does not change appearance when disabled.

Front PanelBlock Diagram

Lesson 2 Designing Front Panels

LabVIEW Basics II Course Manual 2-28 ni.com

Wiring Example—Disable user access to the digital control and grey it out.

Key Focus Property
The Key Focus property, shown at left, sets or reads the key focus of a front
panel object. When TRUE, the cursor is active in the associated object. On
most controls, you can enter values into the control by typing them with the
keyboard. You also can set the key focus on the front panel by pressing the
<Tab> key while in run mode or by pressing the hot key associated with the
control (assigned using the Key Navigation option).

Wiring Example—Make the digital control the key focus. You can then enter
a new value in the control without selecting it with the cursor.

Blinking Property
The Blinking property, shown at left, reads or sets the blink status of an
object. By setting this property to TRUE, an object will begin to blink. You
can set the blink rate and colors by selecting Tools»Options and selecting
Front Panel and Colors from the top pull-down menu. When this property is
set to FALSE, the object stops blinking.

Wiring Example—Enable blinking for the digital control.

Value Property
The Value property, shown at left, reads or sets the current value of an object.
When you set the Value property to write, it writes the wired value to object
whether it is a control or indicator. When you set the Value property to read,
it reads the current value in either a control or indicator. The example

1 Block Diagram 2 Front Panel: Normal 3 Front Panel: Blinking

1 2 3

Lesson 2 Designing Front Panels

© National Instruments Corporation 2-29 LabVIEW Basics II Course Manual

following shows a value of pi written to a numeric control and the value
inside one string being written to another string.

Position Property
The Position property, shown at left, sets or reads the position of an object’s
upper left corner on the front panel. The position is determined in units of
pixels relative to the upper left corner of the front panel. This property
consists of a cluster of two unsigned long integers. The first item in the
cluster (Left) is the location of the left edge of the control relative to the left
edge of the front panel, and the second item in the cluster (Top) is the
location of the top edge of the control relative to the top edge of the front
panel.

Wiring Example—Make the digital control change its location on the front
panel.

Lesson 2 Designing Front Panels

LabVIEW Basics II Course Manual 2-30 ni.com

Bounds Property
The Bounds property, shown at left, reads the boundary of an object on the
front panel in units of pixels. The value includes the control and all of its
parts, including the label, legend, scale, and so on. This property consists of
a cluster of two unsigned long integers. The first item in the cluster (Width)
is the width of object in pixels, and the second item in the cluster (Height)
is the height of the object in pixels. This is a read-only property. It does not
resize a control or indicator on the front panel. Some objects have other
properties for resizing, such as the Plot Area Size property for graphs and
charts.

Wiring Example—Determine the bounds of the digital control.

Numeric Property: Format and Precision
The Format and Precision property, shown at left, sets or reads the format
(type of notation) and precision (number of digits displayed after the
decimal point) of numeric front panel objects. The input is a cluster of
two unsigned byte integers. The first element sets the format and the second
sets the precision. The Format property can be one of the following integer
values:

0 – Decimal Notation

1 – Scientific Notation

2 – Engineering Notation

3 – Binary Notation

4 – Octal Notation

5 – Hexadecimal Notation

6 – Relative Time Notation

Wiring Example—Set the format of the digital control to scientific notation
and the precision to 4.

Lesson 2 Designing Front Panels

© National Instruments Corporation 2-31 LabVIEW Basics II Course Manual

Boolean Property: Strings [4]
The Strings [4] property, shown at left, sets or reads the labels on a Boolean
control. The input is an array of four strings that correspond to the False,
True, True Tracking, and False Tracking states.

True and False: On and Off states of the Boolean object.

True and False Tracking: Temporary transition levels between the
Boolean states. True Tracking is the transition state when the Boolean object
is changed from True to False. The tracking applies only to Boolean objects
with Switch When Released and Latch When Released mechanical
actions. These mechanical actions have a transitional state until you release
the mouse. The text strings True Tracking and False Tracking are
displayed during the transitional state.

Wiring Example—Set the display strings for the Switch control to the string
choices Stop, Run, Stop? and Run?

String Property: Display Style
The Display Style property, shown at left, sets or reads the display for a
string control or indicator. An unsigned long integer determines the display
mode.

0 – Normal Display

1 – ‘\’ Codes Display

2 – Password Display

3 – Hex Display

Lesson 2 Designing Front Panels

LabVIEW Basics II Course Manual 2-32 ni.com

Wiring Example—Show the text in the string control in the three other
modes.

Lesson 2 Designing Front Panels

© National Instruments Corporation 2-33 LabVIEW Basics II Course Manual

Exercise 2-5 Property Node Exercise.vi
Objective: To build a VI that uses Property Nodes to manipulate common characteristics of

panel objects.

You will build a VI that programmatically changes the position, disabled,
and color properties of front panel objects.

Front Panel

1. Open a new VI and build the front panel shown previously.

Block Diagram

Lesson 2 Designing Front Panels

LabVIEW Basics II Course Manual 2-34 ni.com

2. Open and build the block diagram shown previously using the following
components:

a. Place the While Loop located on the Functions»Structures palette
on the block diagram. This structures the VI to continue running
until the user presses the Stop button. Right-click the Conditional
terminal and select Stop If True.

b. Place the Wait Until Next ms Multiple function located on the
Functions»Time & Dialog palette on the block diagram. This
function causes the While Loop to execute once a second. Create
the constant by right-clicking the input terminal and selecting
Create»Constant.

c. Place the Random Number (0-1) function located on the
Functions»Numeric palette on the block diagram. Creates a
random number between zero and one.

d. Place the Multiply function located on the Functions»Numeric
palette on the block diagram. Multiplies two numbers together and
is used here to scale the random number to be between zero and 10.

e. Place the Greater? function located on the Functions»Comparison
palette on the block diagram. Compares two values, in this case the
random value and the limit value, and returns a True if the random
value is greater than the limit. Otherwise it returns a False.

f. Place the Select function located on the Functions»Comparison
palette on the block diagram. You will use two of these functions.
This function takes a Boolean input and outputs the top value if the
Boolean object is True and the bottom value if the Boolean object is
False.

g. Place the Color Box Constant located on the Functions»Numeric»
Additional Numeric Constants palette on the block diagram. This
constant is used to color the panel objects through their Property
Node. You will need two of these constants. Use the operating tool
to select the color and make one red and the other blue.

h. Create the Tank Property Node on the block diagram. To create this
node, right-click the Tank terminal and select Create»Property
Node from the shortcut menu. Resize this node by dragging the
corner with the positioning tool to show three terminals. Select the
properties shown by right-clicking each terminal and selecting the
item from the Properties menu. Right-click this node and select
Change All To Write from the menu.

i. Place the Bundle function located on the Functions»Cluster palette
on the block diagram. This function clusters together the left and top
positions into the Position property for the tank.

Lesson 2 Designing Front Panels

© National Instruments Corporation 2-35 LabVIEW Basics II Course Manual

j. Create the Boolean Property Node on the block diagram. To create
this node, right-click the Boolean terminal and select Create»
Property Node from the shortcut menu. Select the Disabled
property shown by right-clicking the terminal and selecting it from
the Properties menu. Right-click this node and select Change To
Write from the shortcut menu.

k. Create the String Property Node on the block diagram. To create this
node, right-click the String terminal and select Create»Property
Node from the shortcut menu. Select the Disabled property shown
by right-clicking the terminal and selecting it from the Properties
menu. Right-click this node and select Change To Write from the
menu.

l. Create the Limit Property Node on the block diagram. To create this
node, right-click the Limit terminal and select Create»Property
Node from the shortcut menu. Select the Disabled property shown
by right-clicking the terminal and selecting it from the Properties
menu. Right-click this node and select Change To Write from the
menu.

m. Create the Tank Vertical Position Property Node on the block
diagram. To create this node, right-click the Tank Vertical Position
terminal and select Create»Property Node from the shortcut menu.
Select the Disabled property shown by right-clicking the terminal
and selecting it from the Properties menu. Right-click this node and
select Change To Write from the menu.

n. Create the Tank Horizontal Position Property Node on the block
diagram. To create this node, right-click the Tank Horizontal
Position terminal and select Create»Property Node from the
shortcut menu. Select the Disabled property shown by right-clicking
the terminal and selecting it from the Properties menu. Right-click
this node and select Change To Write from the menu.

3. Save this VI as Property Node Exercise.vi.

4. Return to the front panel and run the VI. Several things should be
happening.

5. First, as new random numbers are generated and written to the tank, the
fill color is red if the random value is greater than the Limit value and
the color is blue if the random value is less than the Limit.

6. The two sliders change the position of the tank on the panel. Move these
values and see how the tank moves.

Lesson 2 Designing Front Panels

LabVIEW Basics II Course Manual 2-36 ni.com

7. The Disable switch controls whether you can change the values. Flip the
Disable switch to True and all the panel objects except the Disable
switch and the Stop button are grayed out and you cannot change their
values.

8. Stop and close this VI when you are finished.

End of Exercise 2-5

Lesson 2 Designing Front Panels

© National Instruments Corporation 2-37 LabVIEW Basics II Course Manual

D. Graph and Chart Properties
Property Nodes greatly enhance the programmatic flexibility of graphs and
charts. You can control most graph and chart features with Property Nodes.
Some of these properties are plot color, X and Y scale information, visibility
of the legends and palette, size of the plotting area, and cursors.

You have many scale options for graphs and charts. With Property Nodes,
you can set or read scale information for the X and Y scales. For each axis,
the VI can read or set the minimum, maximum, and increment values.

You also can use Property Nodes to programmatically read or set the plot
and background colors, and the X and Y grid colors. You can use this
capability to set plot or background colors depending on program conditions
such as out-of-range or error values.

To change the size of a graph or chart, use the Plot Area»Size property.
Thus, if you want to have a particular plot appear in a small window during
part of your application, but appear larger later, you can use this property in
conjunction with other properties that change the size of a VI’s panel.

Using Property Nodes, you have access to the information that cursors
provide on graphs. You use cursors to move a graphic selector on the plot.
A cursor can be locked to the plot or can float on the plotting surface. Values
from each cursor are returned to an optional display on the front panel.
Property Nodes present a means to programmatically set or read cursor
position on the graph, allowing user input from cursors in the VI.

Lesson 2 Designing Front Panels

LabVIEW Basics II Course Manual 2-38 ni.com

X (or Y) Range Property
The X (or Y) Range Property, shown at left, sets or reads the range and
increment for the graph axis. The property accepts a cluster of five numeric
values, depending on the data type of the graph or chart: X axis minimum
value, X axis maximum value, major and minor increments between the
X axis markers, and the start value of the scale. To create this property, select
X Scale»Range»All Elements from the property list. If there is not enough
space to display all the increment values you have specified, LabVIEW will
select an alternate increment value.

Wiring Example—Set the X axis range to 0 to 50 with major axis increments
of 10, minor increments of 1, and a start value of zero.

Active Plot and Plot Color Properties
The properties shown at left set or read the active plot (the trace for which
subsequent trace-specific properties are set or read) and the plot color for the
active plot. Active Plot is an integer corresponding to the desired plot and
Plot Color is an integer representing a color. The Plot Color property is
accessed by selecting Plot»Plot Color from the property list.

Wiring Example—Set the color of the active plot using a Color Box
Constant (set to Red in this example). When selecting the active plot, the
Active Plot terminal must precede (appear previous) the Plot Color terminal.

Active Cursor, Cursor Position, and Cursor Index Properties
The properties shown at left set or read the active cursor, the position of that
cursor on the graph, and the index (X axis position) in the plot where the
cursor resides. The Active Cursor property accepts an integer corresponding
to the desired cursor when there is more than one cursor on the graph.

Lesson 2 Designing Front Panels

© National Instruments Corporation 2-39 LabVIEW Basics II Course Manual

Cursor Position consists of a cluster of two floating-point numbers
representing the X and Y positions on the plot. To create the Cursor Position
property, select Cursor»Cursor Position»All Elements. Cursor Index
accepts an integer corresponding to an element in the array (plot). To access
the Cursor Index property, select Cursor»Cursor Index.

Wiring Example—Place a cursor at position (55.5, 34.8). When selecting
the cursor, the Active Cursor terminal must precede the Cursor Position
terminal. Because the node executes from top to bottom, you can set another
cursor’s location by adding another set of Active Cursor and Cursor Position
properties to this node.

Plot Area»Size Property
To read or change the size of a graph or chart, send new Width and Height
values to the Plot Area Size property. The Width and Height are in units of
screen pixels.

Wiring Example—Resize a graph to increase its width and height by
25 percent.

Lesson 2 Designing Front Panels

LabVIEW Basics II Course Manual 2-40 ni.com

Exercise 2-6 Temperature Limit.vi
Objective: To create a VI that uses Property Nodes to clear a waveform chart and notify the user

if the data exceed a limit.

You will finish building a VI that uses Property Nodes to perform the
following tasks:

• Set the delta X value of the chart to the sample rate in seconds.

• Clear the waveform chart so it initially contains no data.

• Change the color of a plot if the data exceed a certain value.

• Make an alarm indicator blink if the data exceed a certain value.

Front Panel

1. Open the Temperature Limit VI in the c:\exercises\LV Basics 2
directory. The front panel and a portion of the block diagram are already
built for you.

Lesson 2 Designing Front Panels

© National Instruments Corporation 2-41 LabVIEW Basics II Course Manual

Block Diagram

1. Modify the VI so that it sets the delta X value to the sample rate and
clears the Temperature chart before starting. While the VI acquires data,
it should turn the “High Limit” line red when the temperature exceeds
the limit value, and the Out of Range LED should blink.

a. In the Sequence structure, create a Property Node for the
Temperature chart that has two terminals. One terminal should be
the multiplier property, X Scale»Offset and Multiplier»Multiplier,
and the other terminal should be the History Data property. To clear
a waveform chart from the block diagram, send an empty array of
data to the History Data property. To do this, right-click the property
and select Create»Constant. Make sure that the array constant is
empty.

b. In the Case structure inside the While Loop, create a Property Node
for the Temperature chart that has two terminals. The top terminal
should be the Active Plot property, and the bottom terminal should
be the Plot Color property, Plot»Plot Color. You will need these
properties in both cases of the Case structure. The High Limit plot is
plot 1, so set the Active Plot property to one before setting the Plot
Color property. If the data are greater than the High Limit, set the
plot color to red. Otherwise, it should be yellow. Use a Color Box
constant to send the color value to this property.

c. Right-click the Out of Range indicator to create the Blink Property
Node. The indicator should blink when the temperature is greater
than the High Limit.

Lesson 2 Designing Front Panels

LabVIEW Basics II Course Manual 2-42 ni.com

2. Save the VI under the same name.

3. Run the VI to confirm that it behaves correctly. Save and close the VI.

End of Exercise 2-6

Lesson 2 Designing Front Panels

© National Instruments Corporation 2-43 LabVIEW Basics II Course Manual

Exercise 2-7 Analyze & Present Data.vi
Objective: To use Property Nodes with graph cursors.

You will create a VI in which you use graph cursors to select a subset of data
for analysis. In a later exercise, you will build a subVI that saves the results
to disk. You will also use the Value property to initialize an indicator.

Note You will use this VI in the project in Lesson 5.

Front Panel

1. Open the Analyze & Present Data VI in the c:\exercises\LV
Basics 2 directory. The front panel for this VI is already built. You will
complete the block diagram.

You will use the two cursors shown to select a subset of data to analyze.
A cursor can move freely or be locked to the plot. You control this action
using the Lock Control button at the far right side of the cursor display.

Movement locked to the plot points.

Movement unrestricted in the plot window.

In this exercise, use cursors that are locked to the plot. Use Property
Nodes to initially set the cursor indices to the beginning and end of the
array of data when the VI starts. When the user clicks the Analyze
Selected Subset button, read the location of each cursor and use this
information to find the DC, RMS, frequency, amplitude, and phase
values of the subset of data.

Lesson 2 Designing Front Panels

LabVIEW Basics II Course Manual 2-44 ni.com

Block Diagram

1. Complete the block diagram shown previously.

To create the Property Nodes, right-click the Data and Analysis Results
terminals and select Create»Property Node from the shortcut menu.
Use the Positioning tool to resize the Property Node so it has enough
terminals. You can then select the property by right-clicking the newly
created node and selecting the property from the Properties menu. The
Cursor Index property is found in Cursor»Cursor Index.

Place the Array Subset function located on the Functions»Array
palette on the block diagram. In this exercise, this function extracts the
set of data points to analyze.

Place the Max & Min function located on the Functions»Comparison
palette on the block diagram. In this exercise, this function determines
the first and last index for finding the subset of data to analyze.

Lesson 2 Designing Front Panels

© National Instruments Corporation 2-45 LabVIEW Basics II Course Manual

Place the Basic Averaged DC-RMS VI located on the Functions»
Analyze»Waveform Measurements palette on the block diagram. This
VI takes the input waveform and calculates the DC and RMS values.

Place the Extract Single Tone Information VI located on the
Functions»Analyze»Waveform Measurements palette on the block
diagram. This VI takes the input waveform, calculates the frequency
response, and returns the single tone with highest amplitude. LabVIEW
returns the amplitude, frequency, and phase values of that single tone.

2. Save the VI under the same name.

3. Run the VI. Move the cursors along the graph to select a subset of data
to analyze, and then click the Analyze Selected Subset button. The
results appear in the Analysis Results cluster. When you have finished,
click the Return button.

4. Close the VI when you are finished.

End of Exercise 2-7

Lesson 2 Designing Front Panels

LabVIEW Basics II Course Manual 2-46 ni.com

E. Control References
In the previous two sections you used Property Nodes to programmatically
change the characteristics of panel objects. If you are building a large VI that
contains many Property Nodes or if you are using the same property for
many different controls and indicators, you might want to consider placing
the Property Node in a subVI and using Control References to access that
node. A Control Reference is a refnum to a specific control. This section
shows only one way to use these versatile objects. Refer to the LabVIEW
manuals for more information about control references.

Creating Control References
You create a control reference for a panel object by right-clicking either on
the panel object or on the terminal for that object and selecting
Create»Reference from the shortcut menu.

You then wire this Control Reference to a subVI that contains the Property
Nodes. However, the subVI must contain a terminal that is a Control
Refnum. You create the Control Refnum by selecting Controls»Refnum
as follows.

Using Control References
The following subVI block diagram shows how you can use a control
reference to set many of the properties for a panel object.

Property Nodes use error clusters like many of the I/O functions in
LabVIEW so you can use the error handlers to keep track of the error
conditions. The VI that calls this subVI can use it to change the properties
of any type of control. The following example shows the subVI disabling a
numeric and setting a Boolean object to be the key focus.

Lesson 2 Designing Front Panels

© National Instruments Corporation 2-47 LabVIEW Basics II Course Manual

Next you will build a subVI that changes the disabled property for an array
of controls using the controls references.

Lesson 2 Designing Front Panels

LabVIEW Basics II Course Manual 2-48 ni.com

Exercise 2-8 Disable Controls.vi and Control Refs Example.vi
Objective: To build a VI that uses control references to access Property Nodes from a subVI.

You will start with the Property Node Exercise VI you built in Exercise 2-5.
You will make a subVI that accesses an array of control references and
assigns the Disabled property. Then you will modify the Property Node
Exercise VI to use the subVI rather than the original Property Nodes.

Note You will use this VI in the project in Lesson 5.

Front Panel

1. Open a new VI and build the front panel shown previously.

Block Diagram

2. Open and build the block diagram shown previously using the following
components:

a. Place a For Loop located on the Functions»Structures palette on
the block diagram. The For Loop is used to auto-index through the
array of control refnums so that each refnum and property is handled
separately.

b. Place a Property Node located on the Functions»Application
Control palette on the block diagram. You will use this Property
Node as a generic control type. When you wire the Refnum Array to
the refnum input terminal, the function changes slightly as in the
following example:

Lesson 2 Designing Front Panels

© National Instruments Corporation 2-49 LabVIEW Basics II Course Manual

c. Right-click the Property terminal and select Properties»Disabled.
Right-click the terminal again and select Change To Write.

d. Place the Select function located on the Functions»Comparison
palette on the block diagram. This function takes a Boolean input
and outputs the top value of 0 (enabled) if the Boolean is True and
the bottom value of 2 (disabled and grayed out) if the Boolean is
False.

e. Place a Numeric constant located on the Functions»Numeric
palette on the block diagram. You will need two of these with a value
of 0 and 2 for the Select function.

3. Save this VI as Disable Controls.vi.

4. Return to the front panel. You will now build an icon and connector pane
as follows for the VI.

5. Save and close this VI. You will now make a calling VI for this subVI.

6. Open the Property Node Exercise VI you built in Exercise 2-5. You will
not modify the panel.

7. Select File»Save As and rename this VI Control Refs
Exercise.vi.

Lesson 2 Designing Front Panels

LabVIEW Basics II Course Manual 2-50 ni.com

8. Open the block diagram and modify it as shown previously.

a. Create Control References for the six controls by right-clicking their
terminals and selecting Create»Reference from the shortcut menu.

b. You use the Build Array function located on the Functions»Array
palette to combine all the control references into an array to pass it
to the Disable Controls subVI located on the Functions»Select A VI
palette.

c. You also need the Not function located on the Functions»Boolean
palette to invert the value going into the subVI.

9. Save the VI.

10. Return to the panel and run the VI. Notice that when you set the Disable
switch to True, all the controls become grayed out as they did before.

11. Close this VI when you are finished.

End of Exercise 2-8

Lesson 2 Designing Front Panels

© National Instruments Corporation 2-51 LabVIEW Basics II Course Manual

F. LabVIEW Run-Time Menus (Optional)
You can customize the menu bar for every VI you build so that you have a
custom pull-down menu while a VI executes. There are two parts to
customizing menus—creating menus and handling menus.

You can build custom menus in two ways—statically at the time of editing,
or dynamically at run time. You can statically store a menu template in a file
called the run-time menu (RTM) file. You can associate an RTM file with a
VI at the time of editing. When the VI runs, it loads the menu from the
associated RTM file. You also can programmatically insert, delete, and
modify menu items at run time from the block diagram using several
LabVIEW functions. In addition, you can programmatically determine if
an option on the menu bar is selected, and programmatically handle the
selection. With these features, you can make a custom pull-down menu for
your application.

Static Menus
Static menus are stored in RTM files. You can enable, create, or edit an RTM
file for a VI by selecting Edit»Run-Time Menu. The Menu Editor dialog
box appears.

On the left side of this dialog box is an overall organization of the menu
items. Menu items are classified into three types: User Item, Application
Item, or Separator.

A User Item can be handled programmatically in the block diagram. It has
a name, which is the string that appears in the actual menu, and a tag, which
is a unique case-insensitive string identifier. A tag identifies a User Item in
the block diagram. For ease in editing, when you enter the name, it is copied
to the tag. However, you can always edit the tag to make it different from the

Lesson 2 Designing Front Panels

LabVIEW Basics II Course Manual 2-52 ni.com

name. For a menu item to be valid, its tag should not be empty. Invalid menu
items appear as ???.

An Application Item is one that LabVIEW provides. These items are part
of the default LabVIEW menu. To select a particular LabVIEW item, click
the arrow button next to the Item Name. You can add individual items or
entire submenus by using this process. Application Items are handled
implicitly by LabVIEW. These item tags do not appear in block diagrams.
You cannot alter the name, tag, or other properties of an Application Item.
LabVIEW reserves tags starting with APP_ for Application Items.

A Separator inserts a separation line in the menu. You cannot set any of the
properties for a Separator item.

The Menu Editor ensures that the tag is unique to a given menu
hierarchy by appending numbers when necessary. A User Item can be
enabled/disabled or checked/unchecked by setting the respective properties.
You can set a shortcut (accelerator) for a User Item by selecting an
appropriate key combination.

The Menu Editor allows you to insert, delete, or reorder menu items in the
menu hierarchy. Clicking the + button adds a new menu item. You also can
change the type of a menu item by selecting from the Item Type ring. In
addition, you can reorder the menu items and create submenus using the
arrow buttons. Finally, clicking the Delete Item button deletes the selected
menu item.

The Preview portion of the Menu Editor provides an up-to-date view of the
run-time menu. On the Menu Editor pull-down menu, the Open, New,
Save, and Save As buttons allow you to load and save RTM files. Once you
close the Menu Editor, you will have the option of updating the VIs
run-time menu with the menu you edited.

Dynamic Menus
While a VI executes, you can change items in the VI menu bar by using the
menu management functions described in the following sections. All of
these functions are located under Functions»Application Control»Menu.
All of these functions operate on a refnum for the menu retrieved using the
Current VI’s Menu function.

Lesson 2 Designing Front Panels

© National Instruments Corporation 2-53 LabVIEW Basics II Course Manual

Insert Menu Items

Inserts a menu item (or an array of menu items) identified by item names
or item tags into a menu (menu bar or submenu). The position of the item
is specified either through the after item parameter or through a
combination of the menu tag and after item pair.

Delete Menu Items

Deletes a menu item (or an array of menu items) identified by items from
a menu identified by menu tag (from the menu bar, if menu tag is not
specified). Items can be a tag, array of tags, position number, or an array
of position numbers.

Get Menu Item Info

Returns properties of the menu item specified through item tag (or the
menubar if the item tag is unspecified). Item properties include item
name, enabled, checked, and shortcut. If the item has a submenu attached,
its item tags are returned in submenu tags.

Lesson 2 Designing Front Panels

LabVIEW Basics II Course Manual 2-54 ni.com

Set Menu Item Info

Sets properties of the menu item specified through item tag. Item properties
include item name, enabled, checked, and shortcut. Unwired properties
remain unchanged.

Get Menu Shortcut Info

Returns the menu item that is accessible through a given shortcut.

Menu Selection Handling
Menu Selection functions handle your menu selections. The menus might
have been built statically in VI Properties or dynamically during run time.
To set up the block diagram to handle menu selections, acquire control over
the menu selection process with the Get Menu Selection function. While the
VI controls the menu selection, it waits for a selected menu item using the
same function, Get Menu Selection. All the LabVIEW menu items are
implicitly handled by LabVIEW—only the user menu selections are
obtained through Get Menu Selection.

Once you select an item, you cannot select another item until the Get Menu
Selection function reads the first item. Under such conditions, Get Menu
Selection is invoked under block menu mode, wherein menu tracking is
blocked out after a selection is read. The menu is enabled after you process
the selection using the Enable Menu Tracking function.

Current VI’s Menubar

Returns the menubar refnum of the current VI. This function must be
executed before the other menu handling functions are invoked.

Lesson 2 Designing Front Panels

© National Instruments Corporation 2-55 LabVIEW Basics II Course Manual

Get Menu Selection

Returns the item tag of the last selected menu item, optionally waiting for
a period of time specified by timeout. Item path is a string describing the
position of the item in the menu hierarchy. Menu selection is blocked after
an item is read if block menu is set to TRUE.

Enable Menu Tracking

This function enables or disables the tracking of menus. Once a menu is
blocked using the Get Menu Selection function, Enable Menu Tracking
must be executed to re-enable the pull-down menu.

Lesson 2 Designing Front Panels

LabVIEW Basics II Course Manual 2-56 ni.com

Exercise 2-9 Pull-down Menu.vi (Optional)
Objective: To build a VI using a custom run-time menu.

This VI illustrates how to edit and programmatically control a custom menu
in a LabVIEW application.

1. Open the Pull-down Menu VI located in the c:\exercises\LV
Basics 2 directory. The front panel and block diagram are partially
complete. You will build a custom run-time menu for this VI using the
Menu Editor, and complete the block diagram so that you can access
this menu.

2. Select Edit»Run-Time Menu to display the Menu Editor dialog box.

The current run-time menu for the application is the LabVIEW default
menu. In the next several steps, you will replace that menu with a
custom list of selections.

3. Change the top ring control in the Menu Editor from Default to
Custom. The menu listed on the left portion of the dialog box should be
replaced with a ???, representing a single unnamed item.

4. In the Item Type ring control, select Application Item»Operate»
Entire Menu. The LabVIEW Operate menu should be added to the
custom menu. Default LabVIEW options, as well as selections you
create, can be added to a custom menu.

Take a moment to navigate the Operate menu in the editor. Notice that
you can select various items and collapse submenus using the triangle
icons. As you select individual items in the menu, their Item Name and
Item Tag appear in the Item Properties box of the editor. When finished,
collapse the Operate menu by clicking the triangle next to the Operate
option. You should now see only the Operate item in the menu list.

Lesson 2 Designing Front Panels

© National Instruments Corporation 2-57 LabVIEW Basics II Course Manual

5. Click the + button in the Menu Editor toolbar. A new unnamed item,
???, appears in the menu list. With this item highlighted, enter Test into
the Item Name property. This menu item now has an item name and tag
of Test.

6. Click the + button again to add another entry under the Test item. Click
the right arrow button on the toolbar, and this unnamed option becomes
a subitem under the Test menu. Type in the Item Name Test 1 for this
new item.

7. Add two more subitems under the Test submenu called Test 2 and
Test 3. The Menu Editor dialog box should now resemble the
following:

In the Preview area of the Menu Editor, you can see how the custom
menu will behave during run time.

8. Select File»Save from the Menu Editor dialog box. Save the run-time
menu as Menu Exercise.rtm in the c:\exercises\LV Basics 2
directory. Then close the Menu Editor dialog box. When LabVIEW
asks if you want to change the run-time menu to Menu Exercise.rtm,
select Yes. You have configured a custom pull-down menu which will
be invoked while the VI executes.

Lesson 2 Designing Front Panels

LabVIEW Basics II Course Manual 2-58 ni.com

Block Diagram

9. Change to the block diagram of the VI and complete it as shown
previously.

a. Place the Current VI’s Menubar function located on the
Functions»Application Control»Menu palette on the block
diagram. This function returns the refnum for the selected VI’s
pull-down menu, so that it can be manipulated.

b. Place the Get Menu Selection function located on the Functions»
Application Control»Menu palette on the block diagram. Each
time the While Loop executes, the Get Menu Selection function will
return the Item Tag for any user item selected in the run-time menu.
If no user item is selected, Item Tag returns an empty string. This
function is configured so that every time it reads the menu bar, it
prevents the user from making another menu selection until Enable
Menu Tracking is executed.

c. Place the Enable Menu Tracking function located on the Functions»
Application Control»Menu palette on the block diagram. This
function enables the pull-down menu, after it has been disabled by
the Get Menu Selection function.

10. Save the VI and run it. When the VI executes, the custom run-time menu
appears on the front panel. If you select one of the items in the Test
pull-down menu, that item’s name appears in the Item Tag indicator and
a dialog box appears with the test name in it. At this point, if you try to
select another pull-down menu item, you find that the menu is disabled
(this is caused by the block menu parameter of the Get Menu Selection
function). If you click OK on the dialog box, the Item Tag indicator is
cleared and the menu is re-enabled by the Enable Menu Tracking
function. Also, notice that the items from the Operate pull-down menu

Lesson 2 Designing Front Panels

© National Instruments Corporation 2-59 LabVIEW Basics II Course Manual

do not show up in the Item Tag string—only User items are returned
from the Get Menu Selection option.

To observe the flow of the VI, you might want to turn on execution
highlighting and single-stepping and examine the block diagram. Click
Stop on the VI’s front panel to halt program execution.

11. Using the Menu Editor, you can assign shortcut keys to User items you
create. Assign the keyboard shortcuts to the test options according to the
following table:

In addition to setting the previous shortcuts, on a Windows platform
you can assign an ALT keyboard shortcut to menu items. This is
accomplished by preceding the letter of the menu name for the shortcut
with an underscore. For example, to assign ALT-X to a menu item called
Execute, give the Execute option an Item Name of E_xecute. In this
exercise, assign ALT-T to the Test option in the menu.

12. Save the menu with the updated keyboard shortcuts and run the VI. Now
you should be able to use the keyboard shortcuts, rather then the cursor,
to select the different test options.

13. Close the VI.

End of Exercise 2-9

Menu Item
Windows Keyboard

Shortcut
Macintosh Keyboard

Shortcut

Test 1 <Ctrl-1> <option-1>

Test 2 <Ctrl-2> <option-2>

Test 3 <Ctrl-3> <option-3>

Lesson 2 Designing Front Panels

LabVIEW Basics II Course Manual 2-60 ni.com

G. Intensity Plots
Intensity plots are extremely useful for displaying patterned data. For
example, the plots work well for displaying terrain, where the magnitude
represents altitude. Also, you can demonstrate temperature patterns with
intensity plots. Like the waveform graph and chart, the intensity chart
features a scrolling display while the intensity graph features a fixed display.
These displays accept a block of data and map each value to an associated
color, with a maximum of 256 accessible colors.

Intensity Plot Options
The displays of intensity charts and graphs use many of the same options as
their waveform counterparts. The following front panel shows many of the
intensity graph options. Intensity plots also provide options unavailable in
other charts and graphs. Because they display a third value (color), a color
ramp is accessible. You use these options to set and display the color
mapping scheme. The intensity graph also adds a third value, a z-value,
to the cursor display.

To change the color associated with a specific intensity value, right-click the
marker appearing next to the color ramp and select Marker Color from the
menu. The color palette appears, from which you select a color to associate
with that particular numeric value. To add more values to the color ramp,
right-click it and select Add Marker. You can drag the tick mark that
appears to the appropriate location on the color ramp, or select the text next
to the tick mark with the Labeling tool and type in the location of the marker.
After you have placed the marker at the appropriate location on the ramp,
right-click it and select Marker Color.

Lesson 2 Designing Front Panels

© National Instruments Corporation 2-61 LabVIEW Basics II Course Manual

Intensity Plot Data Types
The intensity chart and intensity graph accept a 2D array of numbers. The
location of each element in the array (its row and column indices) maps it
to the X and Y value on the chart or graph. The magnitude of each array
element maps to a corresponding color. The example following shows a
4 × 3 array plotted on an intensity graph. Notice how the Intensity Graph
transposes the array elements.

Lesson 2 Designing Front Panels

LabVIEW Basics II Course Manual 2-62 ni.com

Exercise 2-10 Intensity Graph Example.vi
Objective: To use an intensity graph.

You will use a VI that displays a wave interference pattern on an intensity
graph. You will also use the VI to plot a 2D array of data on the graph.

1. Open and run the Intensity Graph Example VI in the
c:\exercises\LV Basics 2 directory. By default, the VI plots an
interference waveform. A Property Node on the block diagram defines
the color range used in the intensity graph. You can change the color
range by opening the block diagram and modifying the Color Array
constant.

2. Change the Plot switch on the front panel to User Data and enter values
between 0.0 and 10.0 in the User Data array control. Run the VI. Notice
how the magnitude of each element is mapped to the intensity graph.

Lesson 2 Designing Front Panels

© National Instruments Corporation 2-63 LabVIEW Basics II Course Manual

3. Close the VI. Do not save changes.

End of Exercise 2-10

Lesson 2 Designing Front Panels

LabVIEW Basics II Course Manual 2-64 ni.com

Summary, Tips, and Tricks

• When you are designing user interfaces, keep the following things in
mind: the number of objects in the panel, color, spacing and alignment
of objects, and the text and fonts used.

• LabVIEW contains the following tools to help you create user
interfaces: dialog controls, tab controls, decorations, menus, and
automatic resizing of panel objects.

• Latched Boolean buttons in a cluster can be used to build menus for
applications.

• You can convert a cluster containing components of the same data type
to an array and then use the array functions to process the cluster
components. The Cluster To Array function (Functions»Cluster or
Functions»Array palette) converts a cluster to a 1D array.

• Property Nodes are powerful tools for expanding user interface
capabilities. You use Property Nodes to programmatically manipulate
the appearance and functional characteristics of panel controls and
indicators.

• You create Property Nodes from the Create shortcut menu of a control
or indicator (or a terminal for a control or indicator on the block
diagram).

• You can create several Property Node terminals for a single front panel
object, so you can configure properties from several locations in the
block diagram.

• You can set or read properties such as user access (enable, disable, gray
out), colors, visibility, location, and blinking.

• Property Nodes greatly expand graph and chart functionality by
changing plot size, adjusting the scale values, and operating or reading
cursors.

• Use the Context Help window to learn more about individual properties.

• You can use Control References and refnums to access Property Nodes
inside subVIs.

• To create your own run-time menus, select Edit»Run-Time Menu to
display the Menu Editor dialog box.

• You can programmatically create and read run-time menus with the
functions in the Functions»Application Control»Menu palette.

• You can use intensity charts and graphs to plot three-dimensional data.
The third dimension is represented by different colors corresponding to
a color mapping that you define. Intensity charts and graphs are
commonly used in conjunction with spectrum analysis, temperature
display, and image processing.

Lesson 2 Designing Front Panels

© National Instruments Corporation 2-65 LabVIEW Basics II Course Manual

Additional Exercises
2-11 Modify Exercise 2-4 by adding a cluster of four labeled buttons.

Each time you click a button in the new cluster, decrement the
display by one. Use the front panel as follows to get started. Save the
VI as Cluster Example 2.vi.

2-12 Build a VI that manipulates a button control on the front panel. The
button should control the VI’s execution (that is, terminate the While
Loop). Use a Dialog Ring to select the following options: Enable
and Show button, Disable button, Grey Out button, and Hide
button. Use Property Nodes to implement the actions that the Dialog
Ring specifies. Test the different modes of operation for the button
while trying to stop the VI. Save the VI as Button Input.viwhen
you are finished.

2-13 Open the Analyze & Present Data VI you developed in Exercise 2-7
and modify the VI so that if the number of data points in the subset
is one point or less, the Log Results to File button is grayed out.

Lesson 2 Designing Front Panels

LabVIEW Basics II Course Manual 2-66 ni.com

Notes

© National Instruments Corporation 3-1 LabVIEW Basics II Course Manual

Lesson 3
Data Management Techniques

This lesson describes how you can organize the block diagrams of your VIs
based upon how you transfer data from one place to another. First, you will
be reminded of how LabVIEW runs a VI. Then you will learn how to use
local and global data to pass data within and between VIs and tips for using
those data objects efficiently. Last, you will learn how to use DataSocket to
pass data between VIs and computers.

You Will Learn:

A. About data management techniques in LabVIEW

B. How to use Local Variables

C. How to use Global Variables

D. Some tips about using Locals and Globals

E. How to use DataSocket

Lesson 3 Data Management Techniques

LabVIEW Basics II Course Manual 3-2 ni.com

A. Data Management Techniques in LabVIEW
The previous lesson describes how you build the user interface, or front
panel, for a VI. This lesson concentrates on block diagram issues such as
passing data between nodes and controlling execution order.

As you already know, the principle that governs how a LabVIEW program
executes is called data flow. The rules of data flow are:

• A node executes only when data is available at all its input terminals.

• A node supplies data to all of its output terminals when it finishes
executing.

• The data flows through wires instantaneously.

Therefore, a block diagram does not execute top to bottom or left to right,
but according to data flow rules. This contrasts with the control flow method
of executing a conventional program in which instructions execute in the
sequence in which you write them.

Wires are the key to understanding how data flow works in LabVIEW.
When wires directly connect one node to the next, the order of execution
is defined. If no wire connects two nodes, then those nodes can run
concurrently. If you require those two nodes to run in order, then you either
use a sequence structure or, if the nodes are subVIs, program data
dependencies such as the error clusters to control program execution.

When You Cannot Use Wires
Wires are the most efficient way to pass data from one node to the next when
using data flow programming. On the block diagram, data is transferred
from one function or VI to another by connecting them with a wire. The data
then flows from the producer to the consumer as shown below.

Lesson 3 Data Management Techniques

© National Instruments Corporation 3-3 LabVIEW Basics II Course Manual

This approach does not work if you need to exchange data between block
diagrams that run in parallel. Parallel block diagrams can be in two parallel
loops on the same block diagram or in two VIs that are called without any
data flow dependency. Consider the following block diagram.

This block diagram does not run the two loops in parallel because of the wire
passing between the two subVIs. The wire creates a data dependency where
the second loop does not start until the first loop is finished and passes
the data through its tunnel. The only way to make the two loops run
concurrently is to remove the wire connection. However, then the subVIs
cannot pass data between each other unless you use another technique of
data management. This lesson describes local variables, global variables,
and DataSocket as methods to pass data between parts of the same block
diagram and between different block diagrams.

Lesson 3 Data Management Techniques

LabVIEW Basics II Course Manual 3-4 ni.com

B. Local Variables
Up until now, you have read data from or updated a front panel object using
its terminal on the block diagram. However, a front panel object has only
one terminal on the block diagram, and you might need to update or read a
front panel object from several locations on the block diagram. Using local
variables, you can access front panel objects in several places and pass data
between structures that cannot be connected by a wire.

Creating Local Variables
There are two ways to create local variables on the block diagram. If you
have already created a front panel object, you can create a local variable by
right-clicking the object or its terminal and selecting Create»Local
Variable from the pop-up menu. You can use this method on the front panel
or the block diagram. A local variable icon for the front panel object appears
next to the terminal on the block diagram. When you right-click a terminal
to create a local variable, the local variable refers to the object you
right-clicked to create the icon.

You also can select Local Variable from the Structures palette. A local
variable node, shown at left, appears on the block diagram. You can select
the front panel object you want to access by right-clicking the variable node
and selecting an object from the Select Item menu. This menu lists the
owned labels for the front panel controls and indicators. Thus, always label
your front panel controls and indicators with descriptive names, using
owned labels.

For example, if the first object you create on the front panel is labeled
number in, the local variable icon appears as shown at left. After you place
the local variable on the block diagram, you can select the appropriate front
panel object by either clicking the variable using the Operating tool, or
right-clicking it and selecting the front panel object from the Select Item
menu.

Local variable
node

Local variable
icon with

“number in”
selected

Lesson 3 Data Management Techniques

© National Instruments Corporation 3-5 LabVIEW Basics II Course Manual

Read Locals and Write Locals
You can either read data from or write data to a local variable. After you
place the local variable on the block diagram, you must decide how to use it.

By default, a local variable assumes that it will receive data. Thus, this kind
of local variable acts like an indicator and is a write local. When you write
new data into the local variable, the associated front panel control or
indicator updates to contain the new data.

You can change the configuration of a local variable so that it acts as a data
source, or a read local. To do this, right-click the variable and select Change
To Read. On the block diagram, a read local icon behaves just like a control.
When this node executes on the block diagram, your program reads the data
in the associated front panel control or indicator.

To change a read local to a write local, right-click the variable and select
Change To Write. The local variable will change its data direction so that
it receives data instead of providing data.

On the block diagram, you can visually distinguish read locals from write
locals just as you distinguish controls from indicators. A read local has a
thick border, emphasizing that it is a data source, similar to a control. A
write local has a thin border, because it acts like a data sink, similar to an
indicator. In the following figure, both local variables refer to the same item
on the front panel.

Read Local Write Local

Lesson 3 Data Management Techniques

LabVIEW Basics II Course Manual 3-6 ni.com

Local Variable Example
As an example of when you might need a local variable, consider how you
would use a single front panel switch to control two parallel While Loops.
Parallel While Loops are not connected by a wire, and they execute
simultaneously. First, we will study two unsuccessful methods using one
terminal for the switch on the block diagram (Methods 1 and 2). Then, we
will show how a local variable accomplishes the task (Method 3). The front
panel of this example VI appears below.

Method 1 (Incorrect)
As a first attempt, we place the Loop Control terminal outside of both loops
and wire it to each conditional terminal. In this case, the Loop Control
terminal is read only once, before either While Loop begins executing.
Recall that this happens because LabVIEW is a dataflow language, and the
status of the Boolean control is a data input to both loops. If a TRUE is
passed into the loops, the While Loops run indefinitely. Turning off the
switch does not stop the VI because the switch is not read during the
iteration of either loop. This solution does not work.

Method 2 (Incorrect)
Now we move the Loop Control terminal inside Loop 1 so that it is read in
each iteration of Loop 1. Although Loop 1 terminates properly, there is a
problem with this approach. Loop 2 does not execute until it receives all its
data inputs. Remember that Loop 1 does not pass data out of the loop until
the loop stops. Thus, Loop 2 must wait for the final value of the Loop

Lesson 3 Data Management Techniques

© National Instruments Corporation 3-7 LabVIEW Basics II Course Manual

Control, available only after Loop 1 finishes. Therefore, the loops do not
execute in parallel. Also, Loop 2 executes for only one iteration because its
conditional terminal receives a FALSE value from the Loop Control switch
in Loop 1.

Method 3 (Correct)
In this example, Loop 1 is again controlled by the Loop Control switch, but
this time, Loop 2 reads a local variable associated with the switch. When
you set the switch to FALSE on the front panel, the switch terminal in Loop
1 writes a FALSE value to the conditional terminal in Loop 1. Loop 2 reads
the Loop Control local variable and writes a FALSE to Loop 2’s conditional
terminal. Thus, the While Loops run in parallel and terminate
simultaneously when the single front panel switch is turned off.

This simple example demonstrates the need for local variables. As
previously shown, using the local variable gives access to a single front
panel object from several locations on the block diagram. Local variables
are also necessary when you cannot accomplish your goal using wires to
carry the data.

Thus far, you have learned that you can read input data from controls and
send results to an indicator. But, for example, what if you want to determine
which parameters were used to run a VI previously and you want to place
those values in controls for the users to modify? How can you write those
values into a control?

Lesson 3 Data Management Techniques

LabVIEW Basics II Course Manual 3-8 ni.com

You cannot do this with standard controls and indicators. Using local
variables, you can overcome this limitation. You can update a control from
the block diagram. Also, you can have any number of local variable
references for a given front panel control, with some in write mode and
others in read mode. With a local variable reference, you can access a front
panel object as both an input and an output.

To understand this concept, we will look at an example that shows another
use of local variables. Below is a single string indicator. Suppose you want
to update that indicator to display the loop that is currently executing.
Without a local variable, there is no way to accomplish this task. You can
place the indicator terminal in only one loop.

However, using a local variable, you can access the same front panel
indicator from more than one location on the block diagram, so that a single
indicator displays the loop that is executing. The Which Loop? indicator is
placed in Loop 1 and a local variable instance of that indicator is placed in
Loop 2. Although this example is simple, it shows how an indicator can be
updated from two separate locations on the block diagram.

Lesson 3 Data Management Techniques

© National Instruments Corporation 3-9 LabVIEW Basics II Course Manual

Exercise 3-1 Login VI
Objective: To use local variables to initialize controls on the front panel.

Note Use this VI in the project in Lesson 5.

Front Panel

1. Open the Login VI in the c:\exercises\LV Basics 2 directory.
The front panel of the VI is already created. Finish building the block
diagram.

Block Diagram

1. Complete the block diagram. Notice that the local variables are enclosed
in a single-frame Sequence structure, and that the empty string constant
is wired to the border of the While Loop. This setup ensures that both
local variables are updated before the While Loop starts.

a. Login Name local variable set to write local—Resets the login name
to an empty string. To create this local variable, right-click the Login
Name terminal and select Create»Local Variable from the pop-up
menu.

b. Password local variable set to write local—Resets the password
string to an empty string. To create this local variable, right-click the
Password terminal and select Create»Local Variable from the
pop-up menu.

Lesson 3 Data Management Techniques

LabVIEW Basics II Course Manual 3-10 ni.com

c. Empty String constant, available on the Functions»String
palette—Passes string values to the Login Name and Password local
variables.

d. Login Name Property Node—To create this node, right-click the
Login Name terminal and select Create»Property Node. Change
the property to key focus and wire a TRUE Boolean constant to it.

e. Place the Verify Information VI on the block diagram. To select this
VI, select Functions»Select a VI, navigate to c:\exercises\LV
Basics 2, double-click the Verify Information VI, which you built
in Exercise 1-2, and place the VI on the block diagram. This VI uses
the name and password and checks for a match in a table of
employee information.

Note If you have trouble wiring the string constant to a local variable, right-click the
local and select Change to Write Local.

2. Save the VI under the same name.

3. Return to the front panel and run the VI. Notice that the Login Name and
Password controls reset to empty strings when you start the VI.

4. Now resize the front panel to show only the necessary objects, as shown:

5. Save and close the VI.

End of Exercise 3-1

Lesson 3 Data Management Techniques

© National Instruments Corporation 3-11 LabVIEW Basics II Course Manual

Exercise 3-2 Select and Plot Waveform VI (Optional)
Objective: To use local variables to modify both indicators and controls on the front panel.

Front Panel

1. Open the Select and Plot Waveform VI in the c:\exercises\Basics
2 directory. The front panel is already built. Finish the block diagram.

2. Open and examine the block diagram.

Lesson 3 Data Management Techniques

LabVIEW Basics II Course Manual 3-12 ni.com

Block Diagram

1. Complete the portions of the block diagram shown in ellipses above.

a. String Constant, available on the Functions»String
palette—Sends text values to the Current Activity front panel
indicator.

b. Numeric Constant, available on the Functions»Numeric
palette—Resets the Select Waveform dialog ring to zero (Stand By)
after the waveform is acquired.

c. New Waveform local variable set to read local—Reads the data in
the New Waveform graph and passes that data to the Previous
Waveform graph. To create this local variable, right-click the New
Waveform terminal and select Create»Local Variable from the
pop-up menu. Then right-click the local variable and select Change
To Read.

d. Current Activity local variable set to write local—Places new text
into the Current Activity indicator. There are several instances of this
local variable in the block diagram, illustrating how you can access
a front panel object from several locations on the block diagram. To
create the local variable, right-click the Current Activity terminal

Lesson 3 Data Management Techniques

© National Instruments Corporation 3-13 LabVIEW Basics II Course Manual

and select Create»Local Variable from the pop-up menu. Then
make two more copies of this local variable.

e. Select Waveform local variable set to write local—Resets the
Select Waveform control to Stand By mode. To create this local
variable, right-click the Select Waveform terminal and select
Create»Local Variable from the pop-up menu.

Note Make sure to correctly set each local variable as a read local or a write local. To
change a write local to a read local, right-click the icon and select Change to Read Local
from the pop-up menu. To change a read local to a write local, right-click the icon and
select Change To Write.

f. Wait (ms) function, available on the Functions»Time & Dialog
palette—Generates a delay so you can observe the front panel
activities.

g. Acquire Signal VI, available on the User Libraries»Basics 2
Course palette—Generates the data for the waveform specified by
the Select Waveform control.

2. Save the VI under the same name.

3. Return to the front panel and run the VI. Notice that the VI updates the
string indicator and stores the old waveform in the Previous Waveform
graph. Also, observe that after the new waveform is acquired and sent to
the screen, the Select Waveform control is reset to Stand By (zero).

4. Close the VI when you are finished.

End of Exercise 3-2

Lesson 3 Data Management Techniques

LabVIEW Basics II Course Manual 3-14 ni.com

C. Global Variables
Recall that you can use local variables to access front panel objects at
various locations in the block diagram. Those local variables are accessible
only in that single VI. Suppose that you need to pass data between several
VIs that run concurrently, or whose subVI icons cannot be connected by
wires in the block diagram. You can use a global variable to accomplish this.
Global variables are similar to local variables, but instead of being limited
to use in a single VI, global variables can pass values between several VIs.

Consider the following example. Suppose you have two VIs running
simultaneously. Each VI writes a data point to a waveform chart. The first
VI also contains a Boolean to terminate both VIs. Remember that when both
loops were on a single block diagram, you needed to use a local variable to
terminate the loops. Now that each loop is in a separate VI, you must use a
global variable to terminate the loops.

Creating Global Variables
Global variables are built-in LabVIEW objects. They appear as special VIs
in the computer’s memory. A global variable has a front panel where you
can place controls and indicators of any type. However, a global variable has
no block diagram. The front panel is simply a container from which you
access data from other VIs.

Lesson 3 Data Management Techniques

© National Instruments Corporation 3-15 LabVIEW Basics II Course Manual

To create a global variable, select Global Variable from the Structures
palette. A global variable node appears on the block diagram. The icon for
a global variable on the block diagram is similar to a local variable icon,
except that a small picture of a globe appears to the left of the global variable
name.

Open the panel of a global variable by double-clicking the global variable
node. Place controls and indicators on the front panel in the same way you
place them on a standard VI’s front panel.

Note You must label each control or indicator with an owned label because a global
variable refers to an item by its name.

The following example shows a global variable front panel with three
objects—a numeric, a string, and a cluster containing a digital and a
Boolean control. Notice that the toolbar in the window does not show the
same items as a normal front panel.

After you finish placing objects on the global variable’s front panel, save the
global variable and return to the block diagram of the original VI. Select the
specific object in the global variable VI that you want to access. To select a
specific object, right-click the global variable node and select the object
from the Select Item menu. This menu lists the owned labels for all the
objects on the panel. Notice that you also can open the front panel
containing the objects in the global variable from this pop-up menu.

Global variable
node

Lesson 3 Data Management Techniques

LabVIEW Basics II Course Manual 3-16 ni.com

You also can click the node with the Operating tool and select the global
variable you want to access.

After you select the specific global variable object that you want to access,
the node changes from the figure shown at left to display the object you have
chosen, such as a numeric.

You might want to use this global variable in other VIs. Because a global
variable is a special kind of VI, you can place it in other VIs using the Select
a VI option in the Functions palette. Then, right-click the node to select the
specific object in the global variable you want to access, as described above.

Note A global variable front panel can contain references to many individual objects
that are globally accessible. You do not need to create a separate global variable VI for
each item you need to globally access.

Read Globals and Write Globals
Like local variables, you can either read data from or write data to a global
variable. By default, a global variable is write global when you create it. You
can write a new value into the global variable, so a write global acts like an
indicator.

You can change the configuration of a global variable so that it acts as a data
source, or a read global. To do this, right-click the variable and select
Change To Read. On the block diagram, a read global icon behaves like a
control. When this node executes on the block diagram, the program reads
the data in the associated front panel object.

To change a read global to a write global, right-click the variable and select
Change To Write. The global variable will change its data direction so that
it receives data instead of providing data. When this node executes on the
block diagram, the program sends new data into the global variable.

On the block diagram, you can visually distinguish read globals from write
globals just as you distinguish controls from indicators. A read global has a
thick border, emphasizing that it is a data source. A write global has a thin
border, because it acts as a data sink. In the figure below, both global
variables refer to the same item on the global variable’s front panel.

Global variable
node

Global variable
node displaying

a numeric

Read Global Write Global

Lesson 3 Data Management Techniques

© National Instruments Corporation 3-17 LabVIEW Basics II Course Manual

Exercise 3-3 Data to Global VI
Objective: To build a VI that writes data into a global variable.

Create a global variable and use it to send data to the VI in the next exercise.

1. Open a new VI and build the front panel as shown previously.

Block Diagram

2. Build the block diagram as shown previously.

a. Sequence Structure, available on the Functions»Structures
palette—Initializes a global variable using artificial data
dependency with the Boolean Constant, available on the
Functions»Boolean palette, and the While Loop.

b. While Loop, available on the Functions»Structures
palette—Structures the VI to continue running until a global
Boolean sends a TRUE value. Right-click the Conditional terminal
and select Stop If True.

c. Wait Until Next ms Multiple function, available on the
Functions»Time & Dialog palette—Ensures that data is written to
the global variable every 50 ms, in this exercise. Create the constant
by right-clicking the input terminal and selecting
Create»Constant.

d. Divide function, available on the Functions»Numeric
palette—Divides the iteration counter of the While Loop by 20.
Create the constant by right-clicking the bottom input terminal and
selecting Create»Constant.

e. Sine function, available on the Functions»Numeric»
Trigonometric palette—Accepts an input value in radians and
outputs the sine of that value.

Lesson 3 Data Management Techniques

LabVIEW Basics II Course Manual 3-18 ni.com

3. My Globals VI global variables—Pass values between
two concurrently running VIs, in this exercise. Complete the following
steps to create and configure the global variables.

a. In the block diagram, select Global Variable from the Structures
palette.

b. Double-click the node to bring up the global variable’s front panel.
Create the global variable front panel as shown in the following
figure. Label the controls with the owned labels shown. Notice that
there is no block diagram associated with the global variable’s front
panel.

Global Variable Panel

c. Save and close the global variable. Name it My Globals.vi.

d. Return to the Data to Global block diagram.

e. Right-click the global variable node and select Visible Items»
Label.

f. Using the Operating tool, click the global variable node and select
Stop Button. You can change the variable to be readable or writable
by right-clicking it.

g. Make enough copies of the My Global.vi variable. Use the
Operating tool to select the correct item you need from the global
variable.

Initialize the Stop Button global variable inside the Sequence structure
by writing a FALSE to it. The constant is wired to the loop border to
force the global to initialize before the loop begins executing. This
prevents the While Loop from reading an uninitialized global variable,
or one that has an unknown value.

4. Save the VI as Data to Global.vi. Keep it open so you can run it in
the next exercise.

End of Exercise 3-3

Global variable
node

Global variable
node

Lesson 3 Data Management Techniques

© National Instruments Corporation 3-19 LabVIEW Basics II Course Manual

Exercise 3-4 Display Global Data VI
Objective: To build a VI that reads data from a global variable.

Build a VI that reads data from the global variable you created in the
previous exercise and displays the data on a front panel chart.

Front Panel

1. Open a new VI and build the front panel shown previously.

Block Diagram

2. Build the block diagram shown previously.

a. While Loop, available on the Functions»Structures
palette—Structures the VI to continue running until you press the
Stop button. Right-click the Conditional terminal and select Stop If
True.

b. Wait Until Next ms Multiple function, available on the
Functions»Time & Dialog palette—Sets the loop rate. Make sure
the default is 20 iterations per second, or 50 msec.

Lesson 3 Data Management Techniques

LabVIEW Basics II Course Manual 3-20 ni.com

3. My Globals VI global variables—Pass values between two
concurrently running VIs, in this exercise. These global variables were
not created from a global variable node on this block diagram, so the
steps for creating and configuring them on this block diagram are as
follows.

a. Select Functions»Select a VI and select My Globals.vi from
c:\exercises\Basics 2 directory, where you saved the global
variable you created in Exercise 3-3. The global variable object
displayed in the node is either Stop Button or Data Value,
depending on the order in which they were placed on the global
variable’s front panel.

b. Copy the global variable so that you have two instances, one Stop
Button global and one Data Value global. To access a different global
variable object, click the node with the Operating tool and select the
object you want.

c. Change the Data Value global to a read global by right-clicking the
node and selecting Change To Read from the pop-up menu.

The VI reads a value from the Data Value and passes the value to the
waveform chart. It also writes the current value of the STOP button to
the Stop Button global variable object each time through the loop. Using
a global variable, the Boolean value is read in the Data to Global VI to
control its While Loop.

4. Save the VI as Display Global Data.vi.

5. Switch to the Data to Global VI front panel and position the two front
panels so both are visible.

6. Run Data to Global. Switch back to the Display Global Data VI and run
it. The waveform chart on the Display Global Data VI front panel
displays the data. Data to Global continually writes the value it
calculates to the Data Value global variable object. The following
example shows the Display Global Data reading the global variable
object and updating the chart.

Global variable
node

Lesson 3 Data Management Techniques

© National Instruments Corporation 3-21 LabVIEW Basics II Course Manual

The Time Delay control determines how often the global variable is
read. Notice how the Time Delay affects the values plotted on the
waveform chart. If you set the Time Delay to 0, the same Data Value
value is read from the global variable several times, appearing to
decrease the frequency of the sine wave generated in Data to Global.
If you set the Time Delay to a value greater than 50 ms, Display Global
Data may never read some values generated in Data to Global, and the
frequency of the sine wave appears to increase. If you set the Time
Delay to 50 ms, the same rate used in the While Loop in Data to Global,
Display Global Data reads and displays each point of the Data Value
global only once.

Note When using globals, if you are not careful, you may read values more than once,
or you may not read them at all. If you must process every single update, take special care
to ensure that a new value is not written to a global variable until the previous one has
been read, and that after a global has been read, it is not read again until another value
has been written to the global.

7. Press the STOP button on the Display Global Data front panel to stop
the VI. Notice that both Display Global Data and Data to Global stop.
The VI continually writes the value of the STOP button to the Stop
Button global variable object. That value is then read in Data to Global

Lesson 3 Data Management Techniques

LabVIEW Basics II Course Manual 3-22 ni.com

and passed to the conditional terminal to control its loop as well. When
you press the STOP button, a TRUE passes through the global variable
to Data to Global, where that TRUE value is read to stop that VI as well.

8. Close both VIs.

End of Exercise 3-4

Lesson 3 Data Management Techniques

© National Instruments Corporation 3-23 LabVIEW Basics II Course Manual

D. Important Advice about Local and Global Variables

Initialize Local and Global Variables
Verify that your local and global variables contain known data values before
your program begins. Otherwise, the variables may contain data that causes
the program to behave incorrectly.

If you do not initialize a local variable before reading data from it, it will
contain the current value of the control. The first time your program reads a
global variable, it contains the default value of the object it reads, unless you
have previously initialized the global variable.

Race Conditions
Local and global variables in LabVIEW do not behave like local and global
variables in text-based programming languages. Recall that LabVIEW is a
dataflow language, not a sequential programming language. Overusing local
and global variables can lead to unexpected behavior in your program,
because functions might not execute in the order you expect. Consider the
simple local variable example below. The LabVIEW code appears next to
the equivalent code of a sequential programming language.

When you execute the sequential code, the solution for a given value of x is
clear because the statements execute from top to bottom. However, the
LabVIEW code does not follow such a convention because LabVIEW is a
dataflow language. Each node executes when all of its data is available.
There are no data dependencies to guarantee the desired order of execution
in the above block diagram. In fact, there are several possible solutions,
depending on how the VI compiles. You cannot assume that the code located
at the bottom of the block diagram executed after the code above it.

The above example illustrates what is known as a race condition. The result
of your program depends on the order in which its instructions execute, and
the code might not execute in the order you assume. If you use local and
global variables, you might have a race condition if you notice that your
code executes correctly only some times, or that it executes correctly during
execution highlighting but not during normal execution.

LabVIEW Code Sequential Code

x = x 5
x = x + 2

or

x = x + 2
x = x 5

*

*

Lesson 3 Data Management Techniques

LabVIEW Basics II Course Manual 3-24 ni.com

To avoid race conditions, write to a local or global variable at a location
separate from where you read from it—in different locations of the block
diagram or structure, or in different structures or VIs. When using global
variables in VIs that execute in parallel, you might want to use an additional
Boolean global variable that indicates when a global variable’s data has
changed. Other VIs can monitor this Boolean to see if the data has changed
and read the new value.

Use Local and Global Variables Only When Necessary
Local and global variables are powerful tools that you can use to accomplish
useful goals. For example, you can create parallel loops on a single block
diagram that are controlled with one front panel object, or you can send data
between separately running VIs. However, local and global variables are
inherently not part of the LabVIEW dataflow programming concept. Block
diagrams can become more difficult to read when using local and global
variables. Race conditions can cause unpredictable behavior. Accessing data
stored in a local or global variable is slower than using dataflow and less
memory efficient. Therefore, use local and global variables sparingly and
only when necessary.

For example, do not use locals and globals to avoid long wires across the
block diagram or to access values in each frame of a sequence structure.
Consider the following block diagram.

Lesson 3 Data Management Techniques

© National Instruments Corporation 3-25 LabVIEW Basics II Course Manual

This three-frame sequence structure performs the usual tasks for all VIs.
Frame 0 reads the controls on the panel for configuring the test system,
Frame 1 uses the local variables for the controls to acquire data, and Frame 2
uses the locals to write the data to file. Although there is nothing inherently
wrong with using the sequence structure and the local variables in this way,
it is not the most efficient method of using dataflow programming. When
you look at one of the frames, it is not obvious where the values for the
locals are coming from and where they were last updated.

The block diagram shown above eliminates the use of local variables by
putting the original control terminals outside the sequence structure so that
each frame of the sequence now has access to the values. The data are passed
between frames of the sequence through a sequence local.

The block diagram shown above removes the sequence structure and uses
dataflow to define how the program works. The error clusters define the
execution order of the subVIs and also maintain the error conditions which
are checked at the end with the error handler VI. This is the most efficient
way to build a program and manage data in LabVIEW. Not only is the block
diagram smaller and easier to read, but passing data through wires is the
most efficient method for memory use.

Lesson 3 Data Management Techniques

LabVIEW Basics II Course Manual 3-26 ni.com

E. DataSocket
So far in this lesson you learned three main things:

• The most efficient way to manage data in the block diagram is through
a direct wire connection.

• Local variables can be used to access front panel objects in multiple
places in the block diagram.

• Global variables can be used to pass data between separate VIs without
using a wire.

There are many other ways to manage data in LabVIEW. This lesson covers
one other method, DataSocket. DataSocket is an Internet programming
technology based on TCP/IP that simplifies data exchange between
computers and applications. With DataSocket, you can efficiently pass data
over the Internet and respond to multiple users without the complexity of
low-level TCP programming.

Therefore, you can use DataSocket to pass live data not only between VIs
running on the same machine but also between VIs running on separate
computers that are connected through a network. You also can use
DataSocket to communicate between LabVIEW and any other
programming language that contains support for TCP/IP, such as Excel,
Visual Basic, C, and so on.

How Does DataSocket Work?
DataSocket consists of two components, the DataSocket API and the
DataSocket Server. The DataSocket API presents a single user interface for
communicating with multiple data types from multiple programming
languages. The DataSocket Server simplifies Internet communication by
managing TCP/IP programming for you.

DataSocket API
DataSocket is a single, unified, end-user API based on URLs for
connecting to measurement and automation data located anywhere, be it
on a local computer or on the Internet. It is a protocol-independent,
language-independent, and OS-independent API designed to simplify
binary data publishing. The DataSocket API is implemented so you can use
it in any programming environment and on any operating system.

The DataSocket API automatically converts your measurement data into a
stream of bytes that is sent across the network. The subscribing DataSocket
application automatically converts the stream of bytes back into its original
form. This automatic conversion eliminates network complexity, which
accounts for a substantial amount of code that you must write when using
TCP/IP libraries.

Lesson 3 Data Management Techniques

© National Instruments Corporation 3-27 LabVIEW Basics II Course Manual

DataSocket Server
The DataSocket Server is a lightweight, stand-alone component with which
programs using the DataSocket API can broadcast live measurement data at
high rates across the Internet to several remote clients concurrently.

The DataSocket Server simplifies network TCP programming by
automatically managing connections to clients. Access the DataSocket
Server by selecting Start»Programs»National Instruments»
DataSocket»DataSocket Server. When you select the DataSocket Server,
it opens the following window and begins running.

As shown above, the DataSocket Server keeps track of the number of clients
connected to it as well as how many packets of data have been exchanged.
You can select to have the DataSocket Server run hidden by selecting
Hide DataSocket Server from the Server menu.

Broadcasting data with the DataSocket Server requires three actors—a
publisher, the DataSocket Server, and a subscriber. A publishing application
uses the DataSocket API to write data to the server. A subscribing
application uses the DataSocket API to read data from the server. Both the
publishing and the subscribing applications are clients of the DataSocket
Server. The three actors can reside on the same machine, but more often the
three actors run on different machines. The ability to run the DataSocket
Server on another machine improves performance and provides security by
isolating network connections from your measurement application. The
DataSocket Server restricts access to data by administering security and
permissions. With DataSocket, you can share confidential measurement
data over the Internet while preventing access by unauthorized viewers.

A URL to Any Data Source
Before you can start using the DataSocket functions in LabVIEW, you need
to understand how DataSocket connects to different I/O technologies and
how you name the device or resource you are transferring data to or from.
For example, in file I/O the resource name is a file path. For TCP/IP there
are two parts to the name, a machine name and a port number. With
DataSocket, the resource name is in the form of a URL, or uniform resource
locator, much like the familiar web address used by a web browser. Consider
how a web browser would interpret the URL ni.com/datasocket. It tells
the browser to use the TCP/IP-based protocol called HTTP, or hyper text

Lesson 3 Data Management Techniques

LabVIEW Basics II Course Manual 3-28 ni.com

transfer protocol, to connect to the machine named ni.com and to fetch the
web page named datasocket.

The URL is different from the names used by most I/O technologies in that
it not only defines what you are interested in but also indicates how to get it.
The how encoded in the first part of the URL is called the access method of
protocol. Web browsers typically use several access methods, such as HTTP,
HTTPS (encrypted HTTP), FTP (file transfer protocol), and FILE (for
reading files on your local machine). DataSocket takes the same approach
for measurement data. For example, DataSocket can use the following URL
to connect to a data item: dstp://mytestmachine/wave1. The dstp in
the front tells DataSocket to open a data socket transfer protocol connection
to the test machine and fetch a signal called wave1. Had the URL started
with file, the data would have been fetched from a file instead of the
DataSocket server.

The DataSocket Functions
The DataSocket API in LabVIEW is a palette of functions and VIs located
in the Functions»Communication»DataSocket palette.

DataSocket communication is simple. You can do all the basic operations
with the following functions and VIs.

The DataSocket Write function writes the data input to the specified URL.
The data can be in any format or LabVIEW data type. The error in and
error out clusters maintain the error conditions.

The DataSocket Read function reads the data type specified by type from the
specified URL. The ms timeout value has a default of 10 seconds and you
can specify a different timeout value. The timed out Boolean indicates a
TRUE if this function timed out. The error in and error out clusters
maintain the error conditions.

Lesson 3 Data Management Techniques

© National Instruments Corporation 3-29 LabVIEW Basics II Course Manual

The DataSocket Select URL VI is only used when you do not know the URL
for an object and you want to search for a data source or target from a dialog
box.

Direct DataSocket Connection to Any Panel Object
You do not need to use the DataSocket Write and DataSocket Read
functions to publish and subscribe data using the DataSocket Server. You
can establish a DataSocket connection from a front panel object. Right-click
any front panel object and select Data Operations»DataSocket
Connection to display the DataSocket Connection dialog box.

In the Connect To field, enter a URL and select whether you want to
publish, subscribe, or both. Then check the Enabled box.

When you click the Attach button, the front panel object is now available at
the specified URL in the DataSocket Server. A small rectangle in the top
right of the control or indicator appears, indicating the status of the
DataSocket connection. If the rectangle is green as shown below, the
connection is good.

If the rectangle is gray, there is no connection to the server at that time. If the
rectangle is red, the connection has an error.

Now build two VIs that transfer data using DataSocket.

Lesson 3 Data Management Techniques

LabVIEW Basics II Course Manual 3-30 ni.com

Exercise 3-5 DS Generate Data VI and DS Read Data VI
Objective: To build two VIs that use DataSocket to transfer data.

Build a VI that generates a random number and displays this value in a meter
and sends the data to a DataSocket URL. Then build a second VI that reads
the DataSocket URL and displays the value in a slide. Last, use the
automatic publish and subscribe features to send the data through a
DataSocket connection.

Front Panel

1. Open a new VI and build the front panel shown above. The URL object
is a string control.

Block Diagram

2. Open and build the block diagram shown above using the following
components:

a. While Loop, available on the Functions»Structures
palette—Structures the VI to continue running until you press the
Stop button. Right-click the Conditional terminal and select Stop If
True.

b. Wait Until Next ms Multiple function, available on the Functions»
Time & Dialog palette—Causes the While Loop to execute once per
second. Create the constant by right-clicking the input terminal and
selecting Create»Constant.

Lesson 3 Data Management Techniques

© National Instruments Corporation 3-31 LabVIEW Basics II Course Manual

c. Random Number (0-1) function, available on the Functions»
Numeric palette—Creates a random number between zero and one.

d. Multiply function, available on the Functions»Numeric
palette—Multiplies two numbers together and is used here to scale
the random number to be between zero and 10.

e. DataSocket Write function, available on the Functions»
Communication»DataSocket palette—Writes the random data
value to the specified URL.

f. Simple Error Handler VI, available on the Functions»Time &
Dialog palette—Opens a dialog box if an error occurs and displays
the error information.

3. Save this VI as DS Generate Data.vi.

4. Now build the second VI to read the random value.

Front Panel

1. Open a new VI and build the front panel shown above. The URL object
is a string control. To show the scale on the slide indicator, right-click
the slide and select Scale»Style.

Block Diagram

2. Open and build the block diagram shown above using the following
components:

a. While Loop, available on the Functions»Structures
palette—Structures the VI to continue running until you press the

Lesson 3 Data Management Techniques

LabVIEW Basics II Course Manual 3-32 ni.com

Stop button. Right-click the Conditional terminal and select Stop If
True.

b. Wait Until Next ms Multiple function, available on the Functions»
Time & Dialog palette—Causes the While Loop to execute once per
second. Create the constant by right-clicking the input terminal and
selecting Create»Constant.

c. Numeric Constant, available on the Functions»Numeric
palette—Creates the correct data type to read the value through
DataSocket. Make sure this constant is a DBL by right-clicking it
and selecting Representation»Double Precision from the shortcut
menu.

d. DataSocket Read function, available on the Functions»
Communication»DataSocket palette—Reads the random data
value from the specified URL.

e. Simple Error Handler VI, available on the Functions»Time &
Dialog palette—Opens a dialog box if an error occurs and displays
the error information.

3. Save this VI as DS Read Data.vi.

4. Position the front panels of the DS Generate Data and DS Read Data VIs
so that you can see both front panels.

5. Start the DataSocket Server by going to the Start menu and selecting
Programs»National Instruments»DataSocket»DataSocket Server.
The DataSocket Server window, similar to the one below, appears.

6. Return to the two VI front panels and make sure that the URLs have been
entered the same for both VIs.

• dstp—The DataSocket transfer protocol.

• localhost—The current computer you are using.

• data1—The name given to the random number you will be sending.

7. Run the DS Generate Data and the DS Read Data VIs.

The DataSocket Server window shows one process connected, and the
Number of packets value increments each second as the meter and slide
show the same random numbers.

Lesson 3 Data Management Techniques

© National Instruments Corporation 3-33 LabVIEW Basics II Course Manual

8. Stop both VIs when you are finished. Now modify the VIs to use the
automatic publish and subscribe capabilities of front panel objects.

Front Panel

9. Place a digital indicator on the front panel of the DS Read Data VI as
shown above.

10. Right-click the new digital indicator and select Data Operations»
DataSocket Connection from the shortcut menu. Enter the following
values.

11. Click the Attach button and a little gray rectangle appears to the top
right side of the digital indicator. This indicates that the DataSocket
connection is not active.

12. Run the DS Generate Data and DS Read Data VIs again.

The rectangle next to the Random Number indicator turns green, and the
value matches the values shown in the meter and the slide.

Note If your computer is on a network with the other computers used in class, you can
type in URLs for other machines on the network and transfer the values between
classroom computers. Remember that you can use any programming language or
operating system with DataSocket connections. Go to the National Instruments
DataSocket web page, at ni.com/datasocket, for more information.

Lesson 3 Data Management Techniques

LabVIEW Basics II Course Manual 3-34 ni.com

13. Stop and close both VIs and the DataSocket Server when you are
finished.

End of Exercise 3-5

Lesson 3 Data Management Techniques

© National Instruments Corporation 3-35 LabVIEW Basics II Course Manual

Summary, Tips, and Tricks

• DataSocket is an Internet-based method of transferring data that is
platform-independent, programming language-independent, and
protocol-independent. DataSocket uses URLs to specify the specific
data connection.

• DataSocket consists of two parts, the DataSocket API and the
DataSocket Server.

• The DataSocket API for LabVIEW consists of the Functions»
Communication»DataSocket palette. The two main functions are
DataSocket Write and DataSocket Read.

• You can have any control or indicator publish and/or subscribe data
through the DataSocket Server by right-clicking that front panel object
and using the Data Operations»DataSocket Connection window.

• You can use global and local variables to access a given set of values
throughout your LabVIEW application. These variables pass
information between places in your application that cannot be connected
by a wire.

• Local variables access front panel objects of the VI in which you placed
the local variable.

• When you write to a local variable, you update its corresponding front
panel control or indicator.

• When you read from a local variable, you read the current value of its
corresponding front panel control or indicator.

• Global variables are built-in LabVIEW objects that pass data between
VIs. They have front panels in which they store their data.

• Always write a value to a global variable before reading from it, so that
it has a known initial value when you access it.

• Write to local and global variables at locations separate from where you
read them to avoid race conditions.

• Use local and global variables only when necessary. Overuse can cause
slower execution and inefficient memory usage in your application.

• Local and global variables do not use dataflow, so if you use them too
frequently, they can make your block diagrams difficult for others to
understand. Use locals and globals wisely.

Lesson 3 Data Management Techniques

LabVIEW Basics II Course Manual 3-36 ni.com

Additional Exercises
3-6 Open the In Range VI. Examine the block diagram. This simple VI

generates five random numbers and turns on an LED if the last
number generated is between 0.1 and 0.9. Run the VI several times
until the LED turns on. Notice that if the LED turns on during one
run of the VI, it remains on during the second run until the For Loop
completes and the last number is passed to the In Range? function,
available on the Functions»Comparison palette. Modify the VI
using a local variable so that the LED is turned off when the VI starts
execution. Save your VI after you have finished.

3-7 As mentioned earlier, the transfer of data through a global variable
is not a synchronized process. If you try to read data from a global
variable too quickly or slowly, you may read copies of the same
value or skip data points entirely. This was shown in Exercise 3-4,
where you could adjust the time delay between reads of the Data
Value global faster or slower than the data was actually available.

Modify Data to Global and Display Global Data, from Exercises 3-3
and 3-4, so they use a handshaking protocol to make sure that no data
points are skipped or read multiple times. Set up an additional
Boolean in My Global.vi named Handshake, which will be used
to indicate when VIs are ready to send or receive data. In the Data to
Global VI, make sure to set the Handshake global Boolean to
FALSE before it passes a new data point to the Data Value numeric.
In Display Global Data, set the Handshake Boolean to TRUE
before it attempts to read the numeric data. In both VIs, make sure
to set the Handshake Boolean so the other VI knows when to
access the variable.

Name the new global Boolean Handshake Global.vi, and the
other two VIs Data to Handshake Global.vi and Display
Handshake Global.vi.

Challenge
3-8 Open the Select and Plot Waveform VI from Exercise 3-2. Use the

information at the end of Section D to rewrite this VI to no longer
use the sequence structure and local variables.

Tip Use a state machine architecture and pass data using shift registers or direct wire
connections.

Save the VI as Select and Plot Waveform2.vi.

Lesson 3 Data Management Techniques

© National Instruments Corporation 3-37 LabVIEW Basics II Course Manual

Notes

Lesson 3 Data Management Techniques

LabVIEW Basics II Course Manual 3-38 ni.com

Notes

© National Instruments Corporation 4-1 LabVIEW Basics II Course Manual

Lesson 4
Advanced File I/O Techniques

When implementing subVIs for file I/O, you might need to account for
different file formats. For example, if a third-party application needs to read
data acquired by LabVIEW, you should save that data in text format because
most applications have support for text files. On the other hand, if only
LabVIEW will access the data, and file size is critical, binary files are a
better choice. Advanced File I/O techniques and the built-in file I/O
functions allow this flexibility.

You Will Learn:

A. How to work with byte stream files.

B. How to create and work with datalog files.

C. About streaming data to disk.

D. About the advantages and disadvantages of text, binary,
and datalog files.

Application SubVIs You Will Build:

A. Save Data to File VI

B. View Analysis File VI

Lesson 4 Advanced File I/O Techniques

LabVIEW Basics II Course Manual 4-2 ni.com

A. Working with Byte Stream Files
LabVIEW’s file I/O functions make working with byte stream files, or text
and binary files, quite simple. You use the same functions to manipulate
these files. However, when working with binary files, the data is generally
not in a readable form. Also, because you cannot rely on special characters
such as the <Tab> and <Return> keys, you must know the structure of the
data stored in the file before reading it. Without this knowledge, you cannot
successfully interpret the data stored in the binary file.

Frequently Used File I/O Functions
Before describing byte stream files in detail, we will first briefly review the
basic LabVIEW file I/O functions. These functions are located on the
Functions»File I/O and Functions»File I/O»Advanced File Functions
palettes.

Note Refer to the Help»Contents and Index for more information about these
functions.

The File Dialog function on the File I/O»Advanced File Functions palette
displays a file dialog box for file selection. You can select new or existing
files or directories from this dialog box. We will describe the use of the
datalog type input later in this lesson.

The Open File function on the File I/O»Advanced File Functions palette
opens an existing file. You must wire a valid path to the file path input. This
function is not capable of creating or replacing files. It opens only existing
files. The datalog type input is used only when opening LabVIEW datalog
files.

File Dialog

Open File

Lesson 4 Advanced File I/O Techniques

© National Instruments Corporation 4-3 LabVIEW Basics II Course Manual

The New File function on the Functions»File I/O»Advanced File
Functions palette creates a new file for reading or writing. You must wire a
path to the file path input. Use the datalog type input only when creating
new LabVIEW datalog files.

The Write File function on the Functions»File I/O palette writes data to an
open file. The behavior of this function varies slightly depending on whether
you are writing data to a byte stream file or to a LabVIEW datalog file.

The Read File function on the Functions»File I/O palette reads data from
an open file. When reading byte stream files, you can use the byte stream
type input to indicate how LabVIEW should interpret data in the file. We
will describe this concept later in this lesson.

The Close File function on the Functions»File I/O palette closes the file
associated with refnum.

New File

Write File

Read File

Close File

Lesson 4 Advanced File I/O Techniques

LabVIEW Basics II Course Manual 4-4 ni.com

Byte Stream Files
You can use the Write File function to create both types of byte stream
files—text and binary. Creating a text file is as simple as sending a string
containing characters to the Write File function.

When to Use Text Files
Text files are useful and common for many reasons. Almost every operating
system and a majority of software applications can read and write files in
text format. Historically, most instrument control applications, such as
GPIB and serial, use text strings to send control statements.

Because of the universality of the text format, there are several situations
where text files are preferable for data storage. For example, text files are
preferable when you plan to read or manipulate the data with other software
applications, such as spreadsheet or word processing applications.

Text files also have some significant disadvantages. It is difficult to
randomly access numeric data in text files. Although each character in a
string takes up exactly one byte of space, the space required to express a
number as text typically is not fixed. To find the ninth number in a text file,
LabVIEW must first read and convert the preceding eight numbers.

You might lose precision if you store numeric data in text files. Computers
store numeric data as binary data, and typically you write numeric data to a
text file in decimal notation. A loss of precision might occur when you read
the data from the text file. Loss of precision is not an issue with binary files.

As shown in the previous block diagram, the Write File function skips over
any header information that LabVIEW uses to store the string in memory
and writes the contents of the string data control to the file. In fact, the Write
File function does not distinguish a text string from a binary string when
writing the data to the file—it places the data in the file. The data terminal
of the Write File function is polymorphic, which means that it adapts to any
kind of data you wire into it. Thus, you can create a binary file by wiring
binary data to the Write File function in the previous example. However, you
will find that header information is vital for interpreting the binary file.

For example, if you wire a two-dimensional array of numbers into the data
terminal, the Write File function places a byte-for-byte copy of the input
data into the file. It does not convert the numbers to text, nor does it place

Lesson 4 Advanced File I/O Techniques

© National Instruments Corporation 4-5 LabVIEW Basics II Course Manual

any information about the number of rows or columns in the array into
the file. Even if you know that the data were originally single-precision
floating-point numbers, you cannot successfully reconstruct the
two-dimensional array. If the file contains 24 bytes of data, and knowing
that single-precision floating-point numbers use four bytes of memory each,
you can figure out that the array contained six values (24/4 = 6). However,
the original data might have been stored in a one-dimensional array of six
elements, a two-dimensional array with one row and six columns, or a table
with three columns and two rows.

When to Use Binary Files
Compared to text files, binary files require less disk space to store the same
amount of information. Binary files allow you to randomly access numeric
data stored in the file. However, binary files are generally not portable to
other applications. Also, you must carefully document the details needed to
extract information stored in a binary file.

Creating Header Information for a Binary File
When you create binary files, designing an appropriate header for the file is
often the single most important task. You can create the header information
by explicitly generating a header or by using the header input of the Write
File function. The following example shows how to explicitly generate a
header that contains the number of rows and columns of data.

You also can generate the same file using the header input of the Write File
function. If you wire a Boolean value of TRUE to the header input of the
Write File function, it writes the same data to the file as if you had manually
written a header. The following example shows how to use the Write File
function to create a binary file with a header.

Lesson 4 Advanced File I/O Techniques

LabVIEW Basics II Course Manual 4-6 ni.com

Using the previous block diagram example, if you again wire a
two-dimensional array of single-precision numbers with three rows and
two columns, the file would contain 24 bytes of data and two additional long
integers, four bytes each, as header information. The first four bytes
contains the number of rows in the array; the second four bytes contains the
number of columns.

As shown in the following example, you can read the binary file from the
previous examples by using the Read File function.

Notice that the byte stream type input of the Read File function has a
two-dimensional array of single-precision numbers wired to it. The Read
File function uses only the data type of this input to read the data in the file,
assuming that it has the correct header information for that data type.

Random Access in Byte Stream Files
If you store arrays of numeric data in a file, you might find it necessary to
access data at random locations in the file. You cannot randomly access data
stored in text files when the data contains negative signs, varying number of
digits in individual data points, and other factors. For example, if you have
an array of 100 numbers ranging in value from 0 to 1,000, you cannot
predict where a given element in the array is located within the text file. The
problem is that in text, the number 345 requires three bytes of storage, while
the number 2 requires only one byte. Therefore, you cannot predict the
location of an arbitrary array element in the file.

Such obstacles do not occur in binary files. In a binary file, the flattened
format of a number in LabVIEW is a binary image of the number itself.
Therefore, each number in the array uses a fixed number of bytes of storage
on disk. If you know that a file stores single-precision numbers, which use
four bytes per number, you can read an arbitrary group of elements from the
array, as shown in the following example.

Lesson 4 Advanced File I/O Techniques

© National Instruments Corporation 4-7 LabVIEW Basics II Course Manual

In the previous block diagram example, the pos mode input of the Read File
function is set to start, which means that the function begins reading data
at pos offset bytes from the beginning of the file. The first byte in the file
has an offset of zero. So, the location of the nth element in an array of
single-precision floating-point numbers stored in this file is 4 × n bytes from
the beginning of the file. A single-precision floating-point constant, wired
to the byte stream type input, tells the Read File function to read
single-precision floating-point values from the file. The # values to read
control, connected to the count input of the Read File function, tells the
function how many single-precision elements to read from the file. Notice
that when the count input is wired, LabVIEW places the output data in an
array, because LabVIEW reads more than one value from the file.

The following points are important to remember about random access
operations:

• When performing text and binary file I/O, remember that values for the
pos offset terminal are measured in bytes.

• The count input in the Read File function controls how many bytes of
information are read from the file when the byte stream type input is
unwired. The data read from the file is returned in a string.

• If the byte stream type input is wired, the data output of the Read File
function is of the same data type as the byte stream type input when the
count input is unwired.

• If the byte stream type input is wired and the count input has data
connected to it, then the Read File function returns an array containing
count elements of the same data type as the byte stream type input.

• Refer to the LabVIEW Help and the LabVIEW User Manual for more
information about random access operations and byte stream files.

Lesson 4 Advanced File I/O Techniques

LabVIEW Basics II Course Manual 4-8 ni.com

Exercise 4-1 Binary File Writer VI
Objective: To build a VI that writes data to a binary file with a simple data formatting scheme.

This VI saves data to a binary file using a simple formatting scheme in
which the file’s header is a long word integer (I32) containing the number
of data points in the file. In the next exercise, build a VI that reads the binary
file.

Front Panel

1. Open a new VI.

2. Build the following front panel. When you create the menu ring, recall
that a shortcut for adding a new item to the list of options is to press
<Shift-Enter> after entering the text for an item in the list. Enter Zero
for item 0 in the list, Sine for item one, and so on. To view the numeric
value of the menu ring, right-click the control and select Visible
Items»Digital Display.

Macintosh, <Shift-Return>; Sun, <Shift-Return>; HP-UX, <Shift-Enter>; and
Linux, <Shift-Enter>

Note The appearance of the menu ring control varies from one platform to the next.

3. Open the block diagram.

Lesson 4 Advanced File I/O Techniques

© National Instruments Corporation 4-9 LabVIEW Basics II Course Manual

Block Diagram
4. Build the following block diagram.

a. Place the Open/Create/Replace File VI located on the
Functions»File I/O palette on the block diagram. This VI creates or
replaces a file.

b. Place the Write File function located on the Functions»File I/O
palette on the block diagram. This function appears twice in this
exercise. The first function writes the binary file’s header
information, which is a four-byte integer containing the number of
values written to the file. The second instance writes the array of data
to the file.

c. Place the Close File function located on the Functions»File I/O
palette on the block diagram. In this exercise, this function closes the
binary file after data has been written to it.

d. Place the Simple Error Handler VI located on the Functions»Time
& Dialog palette on the block diagram. In the event of an error, this
VI displays a dialog box with information about the error and where
it occurred.

e. To create this constant, right-click the pos mode input of the Write
File function and select Create»Constant. Set the position mode to
start to ensure that new data are written relative to the beginning
of the file.

f. To create this constant, right-click the function input of the
Open/Create/Replace File VI and select Create»Constant. By
selecting create or replace, you allow the user to create a new file
or overwrite an existing file.

g. Place the Acquire Signal VI located on the Functions»User
Libraries»Basics-II Course palette on the block diagram. In this
exercise, this VI generates the waveform selected by the Select
Waveform control.

Lesson 4 Advanced File I/O Techniques

LabVIEW Basics II Course Manual 4-10 ni.com

h. Place the Array Size function located on the Functions»Array
palette on the block diagram. In this exercise, this function returns
the number of elements in the 1D array of data to be written to the
file.

5. Save the VI as Binary File Writer.vi. Run it, saving data to the
file on disk named data.bin.

End of Exercise 4-1

Lesson 4 Advanced File I/O Techniques

© National Instruments Corporation 4-11 LabVIEW Basics II Course Manual

Exercise 4-2 Binary File Reader VI
Objective: To build a VI that reads the binary file created in the last exercise.

Front Panel

1. Open a new VI and build the following front panel.

2. Open the block diagram.

Block Diagram
3. Build the following block diagram.

a. Place the Open/Create/Replace File VI located on the
Functions»File I/O palette on the block diagram. This VI opens a
file.

b. Place the Read File function located on the Functions»File I/O
palette on the block diagram. This function appears twice in
this exercise. The first function reads the binary file’s header
information, which is a four-byte integer containing the number of

Lesson 4 Advanced File I/O Techniques

LabVIEW Basics II Course Manual 4-12 ni.com

elements in the array stored in the file. The second instance reads the
array of data from the file.

c. Place the Close File function located on the Functions»File I/O
palette on the block diagram. In this exercise, this function closes the
binary file after data has been read from it.

d. Place the Simple Error Handler VI located on the Functions»Time
& Dialog palette on the block diagram. In the event of an error, this
VI displays a dialog box with information about the error and where
it occurred.

e. Place the Numeric constant located on the Functions»Numeric
palette on the block diagram. You must create an I32 constant so the
Read File function knows what data type to expect. I32 is the default
data type for numeric constants.

f. Place the Numeric constant located on the Functions»Numeric
palette on the block diagram. Create a double-precision constant so
the Read File function knows what data type to expect. Because the
default data type for numeric constants is I32, right-click the
constant and select Representation»Double Precision.

4. Return to the front panel. Save the VI as Binary File Reader.vi.

5. Run the VI. Open the data.bin file created in Exercise 4-1.

After the file opens, the Read File function uses the byte stream type
input, which has a long integer, four bytes, wired to it, to read the first
four bytes from the file. The function displays the number in the Number
of Data Points indicator, which shows how many numbers were stored
in the file. Recall that this header was created by the Write File function
in the Binary File Writer VI in Exercise 4-1.

The second Read File function reads the array of data points from the
file using the byte stream type input, which has a double-precision
floating-point value wired to it. The count input specifies how many
values should be read from the file.

6. Close the VI.

End of Exercise 4-2

Lesson 4 Advanced File I/O Techniques

© National Instruments Corporation 4-13 LabVIEW Basics II Course Manual

B. LabVIEW Datalog Files
If your data has a mixture of data types, formatting it into text or binary
strings for storage can be tedious or inefficient. LabVIEW datalog files use
a data storage format for saving records of data of an arbitrary data type.
For example, you might want to save records of data that contain several
hundred data points, including a date and time stamp for each set.

A datalog file stores information as a series of records of any data type.
Although all of the records in a file must be of the same type, those records
can be arbitrarily complex. Each record is written to the file as a cluster
containing the data to be stored. In the following example, each record
consists of a cluster containing the name of the test operator, information
about the test, a time stamp, and an array of numeric values for the actual
test data.

Use the same file I/O functions to work with datalog files that you use for
byte stream files. However, you use the data type input differently for
datalog files. To create a new datalog file, wire a cluster matching the data
record cluster to the datalog type terminal of the New File function. This
cluster specifies how the data is written to the file. Then wire the actual data
record to the data terminal of the Write File function. The datalog type
cluster wired to New File need not be an actual data record—you need it
only to establish the type of data that you can store in the file. The following
example shows how to create a new datalog file.

Lesson 4 Advanced File I/O Techniques

LabVIEW Basics II Course Manual 4-14 ni.com

To read the record of information from the datalog file, you must wire an
input to the datalog type of the Open File function that exactly matches the
data type of the records stored in the file. The following example shows how
to open and read an existing datalog file.

Note The cluster wired to the datalog type input of the Open File function must be
identical to the cluster used to create the file and write data to it, including numeric data
types and cluster order.

When the count input of the Read File function remains unwired, the
function reads a single record from the datalog file. If you wire an input to
the count terminal, Read File returns an array of records.

When to Use Datalog Files
You can use datalog files to store and retrieve complex data formats in
LabVIEW. However, datalog files, like binary files, do not have an
industry-standard format for storage. Thus, they are virtually impossible to
read with software applications other than LabVIEW. Datalog files are most
useful if you intend to access the data only from LabVIEW and need to store
complex data structures.

Lesson 4 Advanced File I/O Techniques

© National Instruments Corporation 4-15 LabVIEW Basics II Course Manual

Exercise 4-3 Save Data to File VI
Objective: To finish a VI that saves data in a text, binary, or datalog file.

Note Completing this VI enables the Log Results to File option in the Analyze and
Present Data VI from Exercise 2-7. Recall that you will use Exercise 4-3 in the project in
Lesson 5.

In the application being developed, you need to save a mixed data set to
disk. This data set contains simple numerics, arrays of numerics, and string
data. In addition, this data is used only in LabVIEW. Because of these
requirements, you will use datalog files to save the application’s data subsets
to disk.

Front Panel

1. Open the Save Data to File VI in exercises\Basics2 directory.
The front panel is already built.

The two controls on the front panel are used to pass application data to
this VI, which functions as a subVI in the finished project. The Data
Cluster will contain the subset of analyzed data to save to disk, and the
Employee Name string will contain the Operator name to save to
the file.

2. Open the block diagram.

Lesson 4 Advanced File I/O Techniques

LabVIEW Basics II Course Manual 4-16 ni.com

Block Diagram
3. Complete the Case structures for the following block diagram. The cases

that are not shown are already built.

a. Delete the Boolean constant labeled Delete Me.

b. Place the File Dialog function located on the Functions»File
I/O»Advanced File Functions palette on the block diagram. This
function prompts for the name of the new file. Connect the output of
the exists and cancelled terminals to the inputs of the OR function.
Wire the exists value to the Case structure as shown in the previous
block diagram.

c. To create this constant, right-click the select mode input of the File
Dialog function and select Create»Constant. With the Operating
tool, set this constant to the value new file.

d. To create this constant, right-click the prompt input of the File
Dialog function and select Create»Constant. This string displays a
prompt message in the file dialog box.

The outside Case structure writes the data to a LabVIEW datalog
file. Notice that bundling the Employee Name and Data Cluster
together provides the data type for the datalog file.

e. Place the New File function located on the Functions»File
I/O»Advanced File Functions palette on the block diagram. This
function creates the new file. Notice that the datalog type input to
this function must receive an input.

f. Place the Write File function located on the Functions»File I/O
palette on the block diagram. This function writes a record to a
datalog file.

g. Place the Close File function located on the Functions»File I/O
palette on the block diagram. In this exercise, this function closes the
file after the data is written to it.

Lesson 4 Advanced File I/O Techniques

© National Instruments Corporation 4-17 LabVIEW Basics II Course Manual

h. Place the Simple Error Handler VI located on the Functions»Time
& Dialog palette on the block diagram. In the event of an error, this
VI displays a dialog box with information about the error and where
it occurred.

4. After you finish the VI, save and close it.

5. Open Analyze and Present Data.vi, which you completed in
Exercise 3-3. This VI calls Save Data to File VI. When you run this VI
and click the Log Results to File button, a dialog box in the Save Data
to File VI appears so you can name the data file to save. Once you select
the filename, LabVIEW saves the data set as a datalog file.

End of Exercise 4-3

Lesson 4 Advanced File I/O Techniques

LabVIEW Basics II Course Manual 4-18 ni.com

Exercise 4-4 View Analysis File VI
Objective: To study a VI that reads data files created by the Save Data to File VI from

Exercise 4-3.

This VI reads and displays the data stored by the Save Data to File VI.

Note You will use this VI in Lesson 5.

Front Panel

1. Open the View Analysis File VI in exercises\Basics2 directory.
This VI has already been built.

2. Open the block diagram.

Lesson 4 Advanced File I/O Techniques

© National Instruments Corporation 4-19 LabVIEW Basics II Course Manual

Block Diagram

3. Examine the behavior of the VI. If the user cancels the file dialog box,
nothing happens.

Notice that the datalog type input of the File Dialog function is wired
to a dummy cluster of the same data type to be read. This connection
causes the LabVIEW file dialog to display only directories and files of
the appropriate data type. Once the file is selected, the file is opened as
a datalog file and a single data record is read. Finally, notice the use of
error checking in this application.

4. After you run the VI and test it, close it. Do not save any changes.

End of Exercise 4-4

Lesson 4 Advanced File I/O Techniques

LabVIEW Basics II Course Manual 4-20 ni.com

C. Streaming Data to Disk
When your application repeatedly acquires data and writes it to disk, you
can improve the efficiency of the file I/O operations if you do not open and
close the file each time you access it. The technique of leaving files open
between the write operations is called disk streaming. Disk streaming is a
technique we have used in this course without describing its performance
advantages. Refer to Exercise 4-3 for an example of disk streaming.

The following examples show the advantages of using disk streaming. In the
first example, the VI must open and close the file during each iteration of the
loop. The second example uses disk streaming to reduce the number of
times the VI must interact with the operating system to open and close the
file. By opening the file once before the loop begins and closing it after the
loop completes, you save two file operations on each iteration of the loop.

Disk streaming is especially important when you use the high-level VIs,
such as Write To Spreadsheet File and Write Characters To File. These VIs
open, write, and close the file each time they run. Thus, if you call one of
these VIs in a loop, you perform unnecessary Open File and Close File
operations during every iteration of the loop.

File I/O Example without Using Disk Streaming

File I/O Example Using Disk Streaming

Lesson 4 Advanced File I/O Techniques

© National Instruments Corporation 4-21 LabVIEW Basics II Course Manual

Summary, Tips, and Tricks
You can use the LabVIEW file I/O functions to work with text, binary,
or datalog files. The same basic operations of Open File, Read File, Write
File, and Close File work with all types of files.

Text Files
Text files are files in which all data is stored as readable text characters. Text
files are useful because almost all software applications and operating
systems can read them. However, text files can be larger than necessary and
therefore slower to access. It is also very difficult to perform random access
file I/O with text files. You typically use text files when:

• Other users or applications will need access to the data file.

• You do not need random access reading or writing in the data file.

• Disk space and file I/O speed are not crucial.

Binary Files
Binary data files are files in which data is stored in binary format without
any conversion to text representation. Binary data files are generally smaller
and thus faster to access. Random access file I/O presents no major
difficulties. However, there is no industry-standard format for binary files.
Thus, you must keep precise records of the exact data types and header
information used in binary files. We recommend you use binary data files
when:

• Other users or applications are unlikely to need access to your data.

• You need to perform random access file I/O in the data file.

• Disk space and file I/O speed are crucial.

Datalog Files
Datalog files are a special type of binary file for saving and retrieving
complex data structures in LabVIEW. Like binary files, they have no
industry-standard format. We recommend using datalog files when:

• Your data is made up of mixed or complicated data types.

• Other users or applications are unlikely to need access to your data.

• Users who write VIs to access the data know the datalog structure.

Disk streaming is a technique of writing data to a file multiple times without
closing the file after each write operation. Recall that the high-level file VIs
open and close files each time they run, incurring unnecessary overhead in
each iteration of the loop.

Lesson 4 Advanced File I/O Techniques

LabVIEW Basics II Course Manual 4-22 ni.com

Additional Exercises
4-5 Write a VI that uses the Advanced file I/O functions to create a new

file. Then, write to that file a single string composed of a string input
by the user concatenated with a number converted to a text string
using the Format Into String function. Name the VI File
Writer.vi.

4-6 Write a VI that uses the Advanced File I/O functions to read the file
created in Exercise 4-5. Name the VI File Reader.vi.

Tip Use the EOF function located on the File I/O»Advanced File Functions palette to
obtain the length of the written file.

Lesson 4 Advanced File I/O Techniques

© National Instruments Corporation 4-23 LabVIEW Basics II Course Manual

Notes

Lesson 4 Advanced File I/O Techniques

LabVIEW Basics II Course Manual 4-24 ni.com

Notes

© National Instruments Corporation 5-1 LabVIEW Basics II Course Manual

Lesson 5
Developing Larger
Projects in LabVIEW

This lesson describes some of the issues involved when building larger
LabVIEW projects, including the design process, the organization of subVI
components, and the process of combining those components to create a
complete application.

You Will Learn:

A. How to assemble your LabVIEW application from developed subVIs.

B. The LabVIEW features for managing project development.

C. About LabVIEW tools for project management.

Lesson 5 Developing Larger Projects in LabVIEW

LabVIEW Basics II Course Manual 5-2 ni.com

A. Assembling a LabVIEW Application
Lesson 1 of this course described a general approach to developing
LabVIEW applications. This approach involved a top-down design of an
application, followed by a bottom-up implementation of the project as a
series of subVIs. Following is a review of this development cycle.

In this lesson, you will put the VIs built in previous lessons into a large
application. You will develop a generic data acquisition VI that meets the
following criteria:

• Provides a menu-like user interface.

• Requires the user to log in with a correct name and password.

• If the user is not correctly loged in, other features are disabled.

• Allows the user to configure the acquisition settings, including sample
rate, number of samples, or to simulate data.

• Acquires waveform data with the specified user configuation.

• As soon as the data have been acquired, and any time the user selects
thereafter, the user can select a subset of the acquired data, analyze it,
and save the analysis results to a file.

• Allows the user to load and view analysis results previously saved to
disk.

• Stops the application with the click of a Stop button.

Define Project

Design
Flowchart

Implement
Nodes as VIs

Top-Down

Test SubVIs

Bottom-Up

Integrate SubVIs
into Project

Process
Customer
Feedback

Test & Release
Final Product

LabVIEW Project Development Process

Lesson 5 Developing Larger Projects in LabVIEW

© National Instruments Corporation 5-3 LabVIEW Basics II Course Manual

In Lessons 1 through 4, you concentrated on the bottom elements of the
development process, implementing and testing subVIs which correspond
to nodes of the following project flowchart.

Developing larger applications in LabVIEW is a different process than
building the relatively straightforward, mostly single-task VIs we have been
working with so far. As you develop larger applications, you will find that
working in teams, controlling source code, and creating an intuitive
hierarchy scheme for your application’s subVIs increases productivity and
improves documentation and application performance.

Teamwork
Business management experts stress the importance of teamwork in
designing solutions for large, complex tasks. When using LabVIEW,
teamwork is a powerful tool for increasing your productivity in graphical
programming. When several people work together to develop a project in
LabVIEW, it is essential that all team members agree on a method of source
code control and organization.

Lesson 5 Developing Larger Projects in LabVIEW

LabVIEW Basics II Course Manual 5-4 ni.com

Source Code Control
As the number of VIs used in your project grows, your development team
should take measures to control the source code of the project. You can use
the built-in VI Revision History window, located in Tools»VI Revision
History, to record changes you make to VIs. Then, you can set up a
check-out system for the VIs.

Third-party development tools that offer a check-out system to protect
project files typically will work with LabVIEW, as long as they can
manipulate binary files. If you use a third-party tool to manage your
project’s files, remember that VIs and LLBs, VI libraries, are binary files.
Therefore, tools that merge source files do not work correctly with
LabVIEW files.

If you use a check-out system and VIs are stored in an LLB, you must check
out the entire library of VIs. Keep this in mind as you work on a project. One
VI management technique is to edit a copy of the VI you want to modify and
lock the original VI to indicate to others that the VI should not be modified.
To lock a VI, enable the Locked setting by selecting Security from the top
pull-down menu in the File»VI Properties dialog box. You should also
indicate that you have checked out the VI by adding a comment in the VI
Revision History window. When you lock a VI, its block diagram cannot be
modified. After you finish modifying the VI, replace the VI stored in the
LLB with the new version and unlock it so others know it is safe to check
out the VI.

To document your VIs, select Description and Tip from the top pull-down
menu in the File»VI Properties dialog box. Control descriptions also
provide online help you can use in the final product.

Using LabVIEW Libraries (LLBs)
You can load and save VIs to/from a special file called a VI library (.llb).
VI library files are useful for organizing VIs. Some of the advantages of
using LLBs are:

• You can use names up to 255 characters in length for your VIs.

• LLBs store several VIs in a compressed format, which conserves disk
space.

• You can tag VIs to be top level within a library.

• Porting VIs to another platform is simplified because you do not need to
transfer as many files.

Lesson 5 Developing Larger Projects in LabVIEW

© National Instruments Corporation 5-5 LabVIEW Basics II Course Manual

There are also some disadvantages when using LLBs:

• Loading and saving time for applications that use a large number of
subVIs stored in LLBs is generally slower than if the subVIs are stored
directly on disk using directories.

• VI libraries are not hierarchical. You cannot create a VI library within
another VI library, so all VIs and subVIs are at the same level.

• When LLB files become large, that is, up to several megabytes, saving
edits to a VI stored in a LLB takes longer.

• Recall that the operating system views an LLB as a single file, so when
you save a VI in an LLB, LabVIEW and the operating system must
manipulate a very large file. When working with such large files, you
run a higher risk of running out of memory or disk space when
manipulating the file, increasing the likelihood of corrupting the library
and losing work.

• You cannot use your operating system’s file searching tools to locate VIs
stored in a LLB.

• Source code control of VIs stored in LLBs is more difficult.

As a rule of thumb, try to limit the size of your LLB to roughly 1 MB.
Whether you store your VIs in an LLB or directly on disk can depend on file
naming restrictions in your operating system or how you select to organize
your files.

Refer to the LabVIEW Development Guidelines manual, available at
ni.com, for more information about designing, building, and testing
applications in LabVIEW complete with a style guide, checklists, and
references.

Creating LabVIEW Applications
You are now going to create the application described on the previous few
pages. The first step in creating a professional, stand-alone application with
VIs is to understand the architecture of your application. You are going to
use the State Machine VI Architecture described in Lesson 1 for this
application. This application contains a single top-level VI that calls all
other VIs as subVIs.

In the next four exercises you will build the Application Exercise VI. Each
exercise adds a state or two to the application. This method is used so you
can incrementally test the application as it is being built.

Lesson 5 Developing Larger Projects in LabVIEW

LabVIEW Basics II Course Manual 5-6 ni.com

Exercise 5-1 Application Exercise (5-1) VI
Objective: To use the Login VI created in Exercise 3-1 to provide password security to an

application.

You will begin creating an application that uses several of the VIs you wrote
earlier in the course. The first stage of this development is to add a user login
procedure to the Menu VI created in Exercise 2-3.

Front Panel

1. Open the Menu VI in the exercises\Basics2 directory. You created
this VI in Exercise 2-3.

Note If you did not complete Exercise 2-3, locate Menu VI in the course solutions stored
on your computer.

2. Add a String indicator located on the Controls»String & Path palette
on the front panel. Label it Operator.

3. Add a Square LED located on the Controls»Boolean palette on the
front panel and label it Access Granted. You will write this VI so that
until access is granted by the user logging in with a correct name and
password, the user can only use the Login and Stop buttons.

4. Open the block diagram.

Lesson 5 Developing Larger Projects in LabVIEW

© National Instruments Corporation 5-7 LabVIEW Basics II Course Manual

Block Diagram

1. Modify the following VI. Only modify the While Loop and Cases -1 and
0. The Login VI is called when the user presses the Login button on the
front panel (Case 0 of the Case structure). Remember to delete the One
Button Dialog function that you placed in Case 0 in Exercise 2-3.

Note If you did not complete Exercise 3-1, locate Login VI in the course solutions
stored on your computer.

Lesson 5 Developing Larger Projects in LabVIEW

LabVIEW Basics II Course Manual 5-8 ni.com

2. In addition, modify the VI so that:

a. The Operator indicator is initialized to an empty string when the VI
starts.

b. If the user has not logged in with a correct name and password, only
the Login and Stop menu options execute.

c. If the Login VI returns a value of FALSE for the access granted
output, the Operator indicator should show an empty string.

Note The VI needs the Operator and Access Granted information in subsequent loop
iterations. Therefore, this VI uses two more shift registers to store the data. You will need
to make sure that the other cases in the Case structure pass the data through correctly,
straight through the cases.

By using the shift registers, notice that only Case 0, in which the Login VI
runs, can change the Operator and Access Granted values.

The loop verifies that the value stored in the Boolean shift register, which is
the Access Granted status, is TRUE, or if the user pressed the Login button
(component 0 in the menu cluster) or Stop button (component 4) to
determine which case to execute. If all of these conditions are FALSE, then
Case -1 executes.

3. Run the VI and test it to make sure it behaves properly. Use the
LabVIEW debugging tools—execution highlighting, single-stepping,
probes, and breakpoints—to determine the dataflow of the VI.

4. Save the VI as Application Exercise(5-1).vi. Do not close
the VI.

End of Exercise 5-1

Lesson 5 Developing Larger Projects in LabVIEW

© National Instruments Corporation 5-9 LabVIEW Basics II Course Manual

Exercise 5-2 Application Exercise (5-2) VI
Objective: To add the Acquire Data VI to the application started in Exercise 5-1.

In the previous exercise, you began building the Application Exercise VI.
Now, you will add the Acquire Data VI, which you built in Exercise 2-2.

Block Diagram
1. Make sure that the Application Exercise (5-1) VI is open. You will not

modify the front panel in this exercise. Open the block diagram.

2. Show Case 1 of the Case structure and delete the One Button Dialog
function. Add Acquire Data VI, which you built in Exercise 2-2. If you
did not finish that exercise, use the VI from the solutions located on your
computer.

3. Add a shift register to the border of the While Loop. Connect the Time
Waveform output of the Acquire Data VI to the right side of the shift
register.

4. You must initialize the new shift register you created.

a. Right-click the left side of the shift register that contains the
configuration cluster and select Create»Control from the shortcut
menu. This creates an empty waveform control on the front panel.

b. Hide this Time Waveform control by right-clicking the terminal and
selecting Hide Control fromt he shortcut menu. This makes the
waveform control invisible so it does not confuse users.

Lesson 5 Developing Larger Projects in LabVIEW

LabVIEW Basics II Course Manual 5-10 ni.com

5. Modify the VI Properties of the Acquire Data subVI so that it appears
like a dialog box when it is called. Double-click the Acquire Data subVI
to open its front panel. Select File»VI Properties and select Window
Appearance from the top pull-down menu and click the Dialog button.
Click OK then save and close the Acquire Data VI.

6. Remember that if one case in a Case structure passes data out of the case,
all other cases in the Case structure must also send out data. Finish the
VI so that the data pass through the other cases unchanged, recall the
method used in Exercise 5-1.

7. Save the VI as Application Exercise(5-2).vi. Run it and test it.

End of Exercise 5-2

Lesson 5 Developing Larger Projects in LabVIEW

© National Instruments Corporation 5-11 LabVIEW Basics II Course Manual

Exercise 5-3 Application Exercise (5-3) VI
Objective: To finish the Application Exercise VI by adding the subVIs for the Analyze & Present

Data and View Analysis File buttons.

You will add the Analyze & Present Data VI from Exercise 2-7 and the View
Analysis File VI, which you studied in Exercise 4-4.

Block Diagram

1. Make sure that the Application Exercise(5-2) VI is open. You will not
modify the front panel in this exercise. Open the block diagram.

Lesson 5 Developing Larger Projects in LabVIEW

LabVIEW Basics II Course Manual 5-12 ni.com

2. Delete the One Button Dialog function in Case 2 of the Case structure.
Add the Analyze & Present Data VI to this case. You completed this VI
in Exercise 2-7.

a. Connect the string containing the operator name to the Operator
input.

b. Connect the waveform containing the collected data to the Data
input.

3. Show Case 3 of the Case structure and delete the One Button Dialog
function. Add the View Analysis File VI. You do not need to make any
connections to it.

4. Save the VI as Application Exercise(5-3).vi and run it. You
should now be able to perform all of the options available in the menu
after you log in with a valid name and password.

Note You must select a subset of the acquired data when you select Analyze & Present
Data. After you select the data subset, click the Analyze button and then select the button
to save the data to file. Otherwise, the file does not contain any waveform data.

End of Exercise 5-3

Lesson 5 Developing Larger Projects in LabVIEW

© National Instruments Corporation 5-13 LabVIEW Basics II Course Manual

B. LabVIEW Features for Project Development

VI History
One of the most useful LabVIEW tools for team-oriented development is
the VI Revision History window. Every VI has a History window that
displays the comments recorded by those who worked on the VI. You can
use the VI Revision History window to track changes and revisions to VIs
and applications. You can configure LabVIEW with several different VI
Revision History options, which apply on a global or per-VI basis, using the
LabVIEW preferences in Tools»Options or File»VI Properties.

To open the Revision History window for a VI, select Tools»VI Revision
History.

After typing your comments into the Comment area of the Revision History
window, click Add to add them to the VI’s history. The VI Revision History
window also keeps track of revision numbers. Each time you save the VI,
the revision number for the VI increments by one.

In addition to the revision number and the date and time at which a comment
is added to a VI’s history, the current user’s name appears in the User field.
You can configure the LabVIEW preferences to prompt for a user name at
launch time, by selecting Revision History from the top pull-down menu in
the Tools»Options dialog box, or you can change the user name by
selecting Tools»User Name.

Lesson 5 Developing Larger Projects in LabVIEW

LabVIEW Basics II Course Manual 5-14 ni.com

VI Hierarchy
One of the most important advantages of breaking your main application
into subVIs is that you save memory. In addition, the responsiveness of
the LabVIEW editor improves because smaller VIs are easier to handle.
Hierarchical applications are easier to develop, read, document, and modify.

Therefore, as a general rule, it is recommended that you keep the block
diagram for your top-level VI under 500 KB in size. In general, your subVIs
should be significantly smaller. To check the size of a block diagram, select
Memory Usage from the top pull-down menu in the File»VI Properties
dialog box. Typically, you should consider breaking a VI into several subVIs
if the block diagram for your VI is too large to fit entirely on the screen.

If you find that the block diagram for a VI is getting too large, you can
convert part of it into a subVI by using Edit»Create SubVI. This capability
gives you a fast and easy method to create your application’s VI hierarchy
as you develop the source code.

The VI Hierarchy window is also a valuable tool for locating subVIs and
viewing the overall layout of the project as your application grows. To view
the Hierarchy window, select Browse»Show VI Hierarchy. A new window
appears showing the hierarchies of all top-level VIs in memory.

You can use the options available in the toolbar at the top of the Hierarchy
window to show or hide various categories of objects used in the hierarchy,
such as global variables or VIs shipped with LabVIEW, as well as whether
the hierarchy expands horizontally or vertically. Clicking the small arrow
appearing next to a VI expands or collapses the view of that VI’s hierarchy.
Thus, you can expand different branches of the overall hierarchy.

Lesson 5 Developing Larger Projects in LabVIEW

© National Instruments Corporation 5-15 LabVIEW Basics II Course Manual

The following Hierarchy window contains the hierarchy of the application
you completed in the previous exercise. The VIs from the LabVIEW
vi.lib directory are not shown. The entire hierarchy is shown by
right-clicking a blank area of the window and choosing Show All VIs.

As you move the cursor over the icons shown in the Hierarchy window, the
name of the VI follows the VI. You can double-click an icon to open the VI.
You can also locate a VI in the hierarchy by typing in the name of a VI while
in the Hierarchy window. As you type the name, the Hierarchy window
scrolls to the appropriate VI. You can also use the Find feature to search the
Hierarchy window for a VI.

The Hierarchy window can also be used a development tool when planning
or implementing your project. For example, after developing a flowchart of
the VIs required for an application, you can create, from the bottom of the
hierarchy up, each of these VIs so that they have all necessary inputs and
outputs on their front panel, and the subVIs they call on their block
diagrams. This will build the basic application hierarchy, which will now
appear in the Hierarchy window. You can then begin to develop each subVI,

Redo Layout

Vertical Layout

Horizontal Layout

Include VI Library

Include Globals

Include Type Def

Lesson 5 Developing Larger Projects in LabVIEW

LabVIEW Basics II Course Manual 5-16 ni.com

perhaps color-coding their icons, which will also be colored in the Hierarchy
window, to reflect their status. For example, white icons could represent
untouched VIs, red icons could represent subVIs in development, and blue
icons could represent completed VIs. While this is only one example of
using the Hierarchy window as a development tool, it demonstrates the
usefulness of this window for organizing a project.

Using Online Help in Your LabVIEW Applications
As you put the finishing touches on your application, you might want to
provide online help to the user. LabVIEW offers several mechanisms for
doing this. By using the Description and Tip option available on every
front panel control and indicator, you create not only well-documented VIs,
but also VIs that have extensive online help available to the user.

If you select Help»Show Context Help, the Context Help window appears.
As you move the cursor over an object, the Context Help window updates to
show its description. You can programmatically show or hide the Context
Help window with the Get Help Window Status and Control Help
Window functions, which you find in the Functions»Application
Control»Help palette.

Use this function to determine if the Context Help window is visible and the
location of the upper left corner of the window.

With this function, you can control whether the Context Help window is
visible, and where it will appear when shown.

You can also use the Control Online Help function to access the LabVIEW
Help or custom help files that you compile using third-party tools. The type
of online reference development tools you can use to develop this type of
help file depend on the platform on which your application will run.

• Windows Microsoft Help (.hlp files)
• Macintosh QuickView
• Sun/HP-UX HyperHelp

Get Help Window Status

Control Help Window

Lesson 5 Developing Larger Projects in LabVIEW

© National Instruments Corporation 5-17 LabVIEW Basics II Course Manual

With this function, you manipulate an online help file. You can list the
contents of the help file, jump to keywords in the file, or close the online
help file.

Providing online help and reference materials for your application makes it
easier to use and gives it a more polished, professional look.

VI Comparison
The LabVIEW Professional Development System includes a utility to
determine the differences between two VIs loaded into the memory. From
the LabVIEW pull-down menu, select Tools»Compare»Compare VIs to
display the Compare VIs dialog box.

From this dialog box, you can select the VIs you want to compare, as well
as the characteristics of the VIs to check. When you compare the VIs, both
VIs will be displayed, along with a Differences window that lists all
differences between the two VIs. In this window, you can select various
differences and details to view, which can be circled for clarity.

Control Online Help

Lesson 5 Developing Larger Projects in LabVIEW

LabVIEW Basics II Course Manual 5-18 ni.com

Exercise 5-4
Objective: To examine some of the built-in LabVIEW features for handling applications.

In this exercise, you will explore some of the features built into LabVIEW
for handling applications.

1. Open the Application Exercise(5-3) VI you created in the previous
exercise. Close any other VIs loaded into memory.

2. Select Tools»VI Revision History. The history window for the VI
should appear.

3. Click Reset in the Revision History window to clear the current history.
Click Yes to confirm the deletion of the history and resetting of the
revision number.

4. In the Comment box of the History window, type in Initial
Application Created. and then click the Add button. Your
comment should appear in the Revision History listing, along with a
date and time stamp. Close the Revision History window.

5. Select Browse»Show VI Hierarchy. The application’s hierarchy
appears.

Lesson 5 Developing Larger Projects in LabVIEW

© National Instruments Corporation 5-19 LabVIEW Basics II Course Manual

6. Experiment with expanding and collapsing the hierarchy. Notice that as
you click the small black and red arrows in the hierarchy, they expand or
collapse branches of the hierarchy. You might see some icons with a red
arrow by them, indicating that they call one or more subVIs. In addition,
you might also see icons with a blue arrow next to them, which occurs
when a subVI is called from multiple places in an application, but not all
calls are currently indicated in the hierarchy.

7. Examine the operation of the buttons in the hierarchy toolbar. Notice
how you can arrange the hierarchy using the Layout buttons or by
dragging the icons, or include various application components using the
Include buttons. Use Redo Layout to redraw the window layout to
minimize line crossing and maximize symmetry.

8. Double-click any subVI icon in the hierarchy to display the appropriate
subVI. Close the subVI you selected, and close the hierarchy window.

9. Open the Application Exercise(5-2) VI you completed in Exercise 5-2,
change to the front panel of the Application Exercise(5-3) VI, and then
select Tools»Compare»Compare VIs to display the Compare VIs
dialog box.

10. Using the Select option, make sure that the two Application Exercises
are listed in the VIs to Compare box, and that the Compare options are
set as in the previous example.

11. Click Compare to display the Differences window and tile the two VIs.
Place a checkmark in the Circle Differences checkbox in the
Differences window. Then, select a difference from the Differences
listbox, select a detail from the Details listbox, and then click Show
Detail. The difference between the two VIs is highlighted. Examine the
various differences between the two VIs and then close the Differences
window.

Lesson 5 Developing Larger Projects in LabVIEW

LabVIEW Basics II Course Manual 5-20 ni.com

12. Close Application Exercise(5-2).vi.

End of Exercise 5-4

Lesson 5 Developing Larger Projects in LabVIEW

© National Instruments Corporation 5-21 LabVIEW Basics II Course Manual

C. LabVIEW Tools for Project Management
There are several tools you can add to the LabVIEW environment to assist
in project development. The following section describes two of these tools
that are included in the LabVIEW Professional Development System.

Source Code Controls Tools
These tools simplify management of larger applications. The first feature
added with these tools is a basic source code control (SCC) system that is
tightly integrated into the LabVIEW environment. This system contains
many features found in third-party source code control systems, such as file
check-in/out, revision tracking, and support for multiple users. In addition,
the SCC tools can support third-party source code control systems such as
Microsoft Visual SourceSafe. As mentioned earlier in this lesson, however,
VIs for a project must be saved as individual files (instead of in LLBs),
because the file management features of the various operating systems do
not support LabVIEW libraries.

The SCC tools also contain a VI Metrics tool to measure the complexity of
an application similar to the widely used Source Lines of Code (SLOCs)
metrics for textual languages. With the VI Metrics tool, you can view
statistics about VIs, such as the number of nodes (functions, subVI calls,
structures, terminals, and so on) of a VI and its subVIs. Other statistics
include the number and sizes of block diagrams, number and type of user
interface objects, number of accesses to global and local variables, and
number of calls to Code Interface Nodes or shared libraries. You access the
followin VI Metircs window from the Tools»Advanced menu.

Lesson 5 Developing Larger Projects in LabVIEW

LabVIEW Basics II Course Manual 5-22 ni.com

A VI Library Manager tool is also included in this toolkit. This utility
enables you to copy, rename, and delete VIs, whether they are located in
LLBs or not. The VI Library Manager can also convert existing LLBs into
files in a subdirectory, to make implementation of SCC tools easier.

Utilities to Compare VIs and Compare VI Hierarchies are also included.
As described earlier, they are used to determine the differences between two
VIs or hierarchies.

The LabVIEW Help and manuals for this toolkit not only provide reference
material for the previous utilities, but also extensive discussions on
management of software projects. Various development models,
prototyping and design techniques, and project tracking methods are
described in detail. Documentation of VIs and tips for developing clear code
are described in detail as well.

LabVIEW Application Builder
You can use the LabVIEW Application Builder to create stand-alone
executable programs for users without the LabVIEW development software.
The executable VI or shared libraries can include a hierarchy of VIs that you
have created, or the VI can be configured to open and run any VI available
to the user.

Lesson 5 Developing Larger Projects in LabVIEW

© National Instruments Corporation 5-23 LabVIEW Basics II Course Manual

Required System Configuration
Applications or shared libraries that you create with the Application Builder
will generally have the same system requirements as the LabVIEW
development system. Memory requirements will vary depending on the size
of the application created.

Turning Your Application into a Stand-Alone Executable
Before LabVIEW 5.1, the process for building an application was to save
your VIs to a library, build an application using the Build Application
dialog box, and then create an installer using the Create Distribution Kit
dialog box. In LabVIEW 5.1, you can use the Build Application dialog box
to do all of these operations.

When you select Tools»Build Application or Shared Library (DLL), a
tabbed dialog box appears. By making settings in the various tabbed pages
on the dialog box, you can define the application you want to build. You can
save a script and use it later to rebuild the application. The Build
Application Shared Library dialog box contains the following tabbed
pages—Target, Source Files, VI Settings, Application Settings, and
Installer settings as shown in the following example.

Lesson 5 Developing Larger Projects in LabVIEW

LabVIEW Basics II Course Manual 5-24 ni.com

• From the Target tab, you can specify if you want to create a stand-alone
executable or a shared library, the name of your application and the
directory in which to create it. Optionally, you can choose to write
subVIs to an external file if you want to keep the main application small.

• From the Source Files tab, you can define the VIs that make up your
application. When you click Add Top Level VI, you add the main VI(s)
for your application. You need to select only the top-level VI, and
LabVIEW automatically includes all subVIs and related files (such as
menu files or DLLs). If your VI dynamically calls any subVIs using the
VI Server, LabVIEW cannot detect them automatically, so you must add
them by clicking the Add Dynamic VI button. If you want to include
any data files with your application, click the Add Support File button,
and the data files automatically copy over to your application directory.

• From the VI Settings tab, specify modifications to make to your VIs as
part of the build. You can choose to disable certain VI Properties. These
settings only apply to the build process and do not affect your original
source VIs. LabVIEW automatically creates your application as small as
possible by removing debugging code, block diagrams, and unnecessary
front panels. If you open a front panel dynamically using the VI Server,
you must specify that the front panel is needed using the VI Settings tab.

• From the Application Settings tab, you can customize the features in
your application. You can choose to specify the memory size for the
Macintosh, or customize icons and ActiveX server features on
Windows.

• From the Installer Settings tab (Windows only), you create an installer.
The installer is written to the directory that contains your application.

When you develop an executable VI with LabVIEW on Windows and ship
it to another computer, you must also include the LabVIEW Run-Time
DLL. The computer on which the VI runs must install this DLL using the
LabVIEW Run-Time DLL Installer before the VI runs. If you distribute a
VI using Build Application, the Run-Time DLL is installed automatically.

Note After the Run-Time DLL is properly installed on a machine, it can run any
executable VI developed in LabVIEW. You need to include only the Run-Time DLL with
the first VI sent to each computer.

Creating LabVIEW Applications
To create a professional, stand-alone application with VIs, you must
understand four areas:

• The architecture of your application

• Programming issues particular to the application

Lesson 5 Developing Larger Projects in LabVIEW

© National Instruments Corporation 5-25 LabVIEW Basics II Course Manual

• How to build your application

• How to build an installer for your application

The first section of this lesson describes the architecture of your application
and has you build the application in the exercises. Your application is a
single top-level VI that runs when you launch the application and calls front
panels from several subVIs when called. This is the most common and
easiest architecture for building a stand-alone application.

Programming Issues
You should consider several programming issues when you are building VIs
that end up as built applications. The first issue is to know what outside code
is used for the application. For example, are you calling any system or
custom DLLs or shared libraries? Are you going to process command line
arguments? These are advanced examples that are beyond the scope of this
course, but you need to consider them for the application.

A second issue is with the path names used in the VI. One example is when
you use the VI Server capability to dynamically load and run VIs (this is
described in the LabVIEW Advanced I course). Once an application is built,
the VIs are embedded in the executable. Suppose you have a VI named
test.vi inside an application named test.exe. A Current VI’s path
primitive in test.vi returns test.exe\test.vi prepended with the full
path of test.exe. Being aware of these issues will help you to build more
robust applications in the future.

A last issue that will affect the application you have currently built is that the
top-level VI does not quit LabVIEW or close the VIs front panel when it is
finished executing. To completely quit and close the top-level VI, you must
call the Quit LabVIEW function located on the Functions»Application
Control palette on the block diagram of the top-level VI.

Building the Application
As described earlier in this section, you use the Application Builder in
LabVIEW to make either an executable or a shared library (DLL) for your
application. This course describes how to build an executable and the
LabVIEW Advanced I course describes how to build and use a shared
library (DLL).

Lesson 5 Developing Larger Projects in LabVIEW

LabVIEW Basics II Course Manual 5-26 ni.com

The LabVIEW Application Builder can package your application in one of
two forms—as a single executable or as a single executable and one VI
library. Depending upon how you want your application to appear to the
end-user, as well as how complex the installation process can be, you might
prefer one format to the other.

The default packaging for applications is a single executable file. All VIs
that are part of the application are embedded in the executable file. These
include top-level VIs, dynamic VIs, and all their subVIs. While this
packaging is simple because it results in a single file, these files can become
quite large depending on the number of VIs in your application.

The second packaging option is to break the application into an executable
file and one Vi library. In this packaging, the application Builder embeds all
top-level and dynamic VIs in the resulting executable file and all subVIs of
these VIs are placed in a single VI library. While this package involves two
files, the file that the end-user launches can be quite small.

Depending upon the nature of your application, it can require the presence
of non-VI files to function correctly. Files commonly needed include a
preferences (.ini) file for the application, the LabVIEW serpdrv file, and any
help files that your VIs call. The LabVIEW serpdrv file (Windows and UNIX)
is required for any application that uses serial port I/O. Note that run-time
menu files and shared library files called using the Call Library Node are not
support files. The Application Builder includes run-time menu files in the
main files for the application. It automatically stores any shared libraries
needed in the support file directory for the application. External subroutines
for CINs are also stored in the main files for the application.

Note Refer to the LabVIEW Help in Help»Contents and Index for more detailed
descriptions of how to use the Application Builder and make a preferences file for your
application.

Building the Installer
The last phase in creating a professional, stand-alone application with your
VIs is to create an installer. The LabVIEW application Builder includes
functionality for creating installers in Windows. Common tools for creating
installers on a Macintosh are DragInstall and Vise. On UNIX systems, you
can create a shell script to install your application. The installers you create
with the LabVIEW Application Builder install all files that are part of the
source files list. You must add all files that you want to install to this list. By
specifying custom destinations for source files, you can create arbitrarily
complex directory structures within the installation directory.

Lesson 5 Developing Larger Projects in LabVIEW

© National Instruments Corporation 5-27 LabVIEW Basics II Course Manual

You will learn about each of the steps and options of the Application Builder
when you build an application in the next exercise. After defining your build
specifications using the LabVIEW Application Builder, you will save those
settings to disk in the form of a build script (.bld) file.

Lesson 5 Developing Larger Projects in LabVIEW

LabVIEW Basics II Course Manual 5-28 ni.com

Exercise 5-5 My Application executable
Objective: To create a stand-alone application with the Application Builder.

Note You must have the Application Builder properly installed to run this example.
To determine whether it is installed, select the Tools menu. If the option Build
Application or Shared Library (DLL) appears in the Tools menu, then the Application
Builder is properly installed.

Front Panel
1. Open the Application Exercise(5-3) VI you created in Exercise 5-3.

Modify the following front panel to remove the comments.

2. Select File»VI Properties to display the VI Properties dialog box.
Select Window Appearance from the top pull-down menu, then select
Top-level Application Window. This gives the front panel a
professional appearance when it is opened as an executable.

3. Save the VI as Application Exercise.vi.

Block Diagram
4. Open the block diagram and use the following components.

a. Place the not function located on the Functions»Boolean palette on
the block diagram. This function inverts the value being sent to the
While Conditional terminal. When the loop ends, this value is a
False, so a True value is actually sent through the loop boundary to
the Quit LabVIEW function.

Lesson 5 Developing Larger Projects in LabVIEW

© National Instruments Corporation 5-29 LabVIEW Basics II Course Manual

b. Place the Quit LabVIEW function located on the Functions»
Application Control palette on the block diagram. This function
quits LabVIEW and quits the application after it has been built.

5. Save this VI as Application Exercise.vi.

6. Open the front panel and run the VI. When you select the Stop button,
the VI stops and you exit LabVIEW.

7. Restart LabVIEW and open a new VI. You will not open the Application
Exercise VI because the Application Builder cannot create an
executable if the VIs are loaded into memory.

Lesson 5 Developing Larger Projects in LabVIEW

LabVIEW Basics II Course Manual 5-30 ni.com

8. Select Tools»Build Application or Shared Library (DLL). Build
an executable from Application Exercise.vi called
myApplication.exe and place it into the C:\myapp directory.
Modify the Target tab as shown.

Lesson 5 Developing Larger Projects in LabVIEW

© National Instruments Corporation 5-31 LabVIEW Basics II Course Manual

9. Click the Source Files tab and select the Add Top-Level VI button.
Add Application Exercise.vi as shown.

Lesson 5 Developing Larger Projects in LabVIEW

LabVIEW Basics II Course Manual 5-32 ni.com

10. Click the VI Settings tab. Leave these settings at their default
values—the top-level VI runs when opened and the block diagrams and
front panels are only saved if they are necessary. Examine these settings;
they should resemble the following examples.

11. Click the Application Settings tab. This is where you would enable
ActiveX settings or give your application a custom icon. Leave the icon
as the default LabVIEW icon. Do not change any of these settings.

Lesson 5 Developing Larger Projects in LabVIEW

© National Instruments Corporation 5-33 LabVIEW Basics II Course Manual

12. Click the Installer Settings tab. Build a distribution kit for your
application that installs into the C:\Program Files\
Myapplication directory. Configure the Installer tab as shown.

13. Click the Build button. The files associated with the installer are
then compressed into setup diskettes, which are stored in the
C:\myapp\installer\disks directory. A Setup.exe file is
created as well, which can be used to install the diskette images. All of
these files could be copied to diskettes to transfer the application to
another system. The LabVIEW Run-Time DLL installer is included by
default. The executable for your application is also built and is called
myApplication.exe, as defined on the Target tab.

14. Select Done from the Build Application window to close that utility. It
asks you to save a script so you can build this application again. Select
Yes and name the script myapp.bld. Now if you make changes to the
original application and want to rebuild an executable and installer with
the same settings, you can open this script file using the Load button.

15. RunmyApplication.exe from the C:\myapp directory. Application
Exercise should open its front panel and run automatically. Operate the
VI to make sure all the settings you chose are working. Close the
application when you are finished.

Lesson 5 Developing Larger Projects in LabVIEW

LabVIEW Basics II Course Manual 5-34 ni.com

16. Run the Setup.exe file in the C:\myapp\disks\Myapplication
directory. You should be guided through a setup process, the executable
is created inside the C:\Program Files\Myapplication directory,
and you should be able to run the application from Programs».

End of Exercise 5-5

Lesson 5 Developing Larger Projects in LabVIEW

© National Instruments Corporation 5-35 LabVIEW Basics II Course Manual

Summary, Tips, and Tricks
• LabVIEW has several features to assist you and your coworkers in

developing your projects, such as the VI Revision History window to
record comments and modifications to a VI, and the user login, which,
when used with VI Revision History, records who made changes to a VI.
You can access a VI’s Revision History window at any time by selecting
VI Revision History from the Tools menu.

• The VI Hierarchy window gives you a quick, concise overview of the
VIs used in your project. There is also a comparison feature to identify
the differences between two VIs.

• LabVIEW features several tools to facilitate larger project development.
The Source Code Control Tools contain several utilities for managing
LabVIEW code, and the Application Builder enables you to create
stand-alone executables or shared libraries (DLLs). Both of these
toolkits are included in the LabVIEW Professional Development
System.

• Creating a professional, stand-alone application with your VIs involves
four areas of understanding:

– The architecture of your application.

– The programming issues particular to the application.

– The application building process.

– The installer building process.

Lesson 5 Developing Larger Projects in LabVIEW

LabVIEW Basics II Course Manual 5-36 ni.com

Additional Exercises
5-6 Modify Application Exercise VI so that the Configure Data

Acquisition, Acquire Data, Analyze & Present Data, and View
Analysis File buttons are disabled and grayed out if the user has
not logged in with a valid user name and password.

Hint: Use control references and the Disable Controls VI you built
in Exercise 2-8 nodes to modify the buttons.

Save this VI as Application Exercise(5-6).vi.

5-7 Add one menu button to the menu cluster control in Application
Exercise VI so the user can show or hide the LabVIEW Help
window. The text of the button should indicate what happens when
the user clicks the button, for example, Show Help and Hide Help. If
you notice that the buttons and indicators on the front panel do not
have descriptions in the Context Help window, you need to add them
in the Description and Tip shortcut dialog box for each control or
indicator.

Make sure the VI properly tracks the state of the Context Help
window. For example, if the user clicks the Show Help button to
show the Context Help window, but closes the Context Help window
from the Help»Show Context Help menu, your VI incorrectly
assumes that the Context Help window is showing. Save this VI
as Application Exercise(5-7).vi.

Note Use a Property Node to set the button text. The mechanical action of the button
should be Latch When Released. Use a shift register to retain the status of the Context
Help window’s visibility, and use the Control Help Window function to show and hide
the Context Help window.

Lesson 5 Developing Larger Projects in LabVIEW

© National Instruments Corporation 5-37 LabVIEW Basics II Course Manual

Notes

Lesson 5 Developing Larger Projects in LabVIEW

LabVIEW Basics II Course Manual 5-38 ni.com

Notes

© National Instruments Corporation 6-1 LabVIEW Basics II Course Manual

Lesson 6
Performance Issues

This lesson describes how to maximize the performance of your VIs,
including how to improve run-time speed and memory use.

You Will Learn:

A. About LabVIEW multithreading and multitasking.

B. How to use the Profile window.

C. About methods for speeding up your VIs.

D. How system memory issues affect LabVIEW performance.

E. How to optimize memory use and related performance for
individual VIs.

Lesson 6 Performance Issues

LabVIEW Basics II Course Manual 6-2 ni.com

A. LabVIEW Multithreading and Multitasking Overview
In LabVIEW 4 and earlier versions, you could run several VIs
simultaneously and the VIs still responded to user input from the cursor or
keyboard. To accomplish this, the execution system used cooperative
multitasking—each different activity processed one at a time and in turn.
Cooperative multitasking works well, but processor time is not evenly
distributed to each activity. Executing a long computational routine or
displaying a large amount of data on a graph can use a disproportionate
amount of the processor’s time. The activities take turns with the processor,
and a lengthy activity is not divided into smaller, shorter ones. With this
architecture, multiple tasks executed under a single thread, or process, in the
system.

Versions of LabVIEW after 5.0 support multithreading. With
multithreading, different portions of an application can run under different
threads, or processes, in a computer system. This architecture allows the
operating system to preempt a thread of execution to give processor time to
another thread. So, CPU time is more evenly shared among the threads.

To take advantage of multithreading, use LabVIEW 5.0 or later on an
operating system that supports multithreading, such as Windows, Solaris 2,
or Concurrent PowerMAX. On operating systems that do not support
multithreading, LabVIEW continues to operate with cooperative
multitasking.

By default, LabVIEW takes advantage of multithreading if the operating
system supports it. If you want to verify that multithreading is enabled,
select Performance and Disk from the top pull-down menu in the
Tools»Options dialog box. You can check or uncheck the box labeled
Run with multiple threads.

Lesson 6 Performance Issues

© National Instruments Corporation 6-3 LabVIEW Basics II Course Manual

This option is available only on operating systems that support
multithreading. If you remove the checkmark from this checkbox, the
execution system behaves as though you have only a single thread.
Single-thread execution removes some overhead from the execution system.
However, you do not benefit from the advantages of multithreading, such as
multiple processor support and the ability for a higher priority operation
to interrupt a long operation, such as a screen redraw to get better
responsiveness from the application. Remove the checkmark from this
checkbox for VIs that are not compatible with a multithreaded execution
system.

Benefits
One important benefit of multithreaded LabVIEW is the separation of the
user interface from block diagram execution. Any activities conducted in the
user interface, such as drawing on the front panel, responding to mouse
clicks, and so on, operate in their own thread. This prevents the user
interface from robbing the block diagram code of execution time. So,
displaying a lot of information about a graph does not prevent the block
diagram code from executing. Likewise, executing a long computational
routine does not prevent the user interface from responding to mouse clicks
or keyboard strikes.

Computers with multiple processors benefit even more from multithreading.
On a single-processor system, the operating system preempts the threads
and distributes time to each thread on the processor. On a multiprocessor
computer, threads can run on the multiple processors simultaneously, so
more than one activity can occur at the same time.

Lesson 6 Performance Issues

LabVIEW Basics II Course Manual 6-4 ni.com

Using Multithreading
When an existing LabVIEW application runs, it takes advantage of the
multithreaded system automatically without any modification to the
application. However, when working with multiple VIs, there are different
classifications of threads, called execution systems, available to organize
your application. There are six execution systems available to run VIs:

• User Interface

• Standard

• Instrument I/O

• Data Acquisition

• Other 1

• Other 2

The purpose of having a few different execution systems is to provide some
rough partitions for VIs that need to run independently from other VIs. By
default, VIs run in the Standard execution system, which runs in separate
threads from the user interface. The Instrument I/O execution system is
included to prevent VISA, GPIB, and Serial I/O from interfering with other
VIs. Similarly, the Data Acquisition execution system is set for the DAQ
VIs. While VIs that you write will run correctly if you leave them set to the
Standard execution system, you might want to move appropriate VIs to
different execution systems. For example, if you are developing instrument
drivers, you might want to set your VIs to use the Instrument I/O execution
system.

To change the thread category in which a VI runs, select Execution from the
top pull-down menu in the VI Properties dialog box.

Lesson 6 Performance Issues

© National Instruments Corporation 6-5 LabVIEW Basics II Course Manual

The Preferred Execution System list box lists the available categories of
execution systems. You also can prioritize parallel tasks in a multithreaded
environment by setting the Priority of the VI. Within each thread category,
you can specify the priority of execution—normal, above normal, high, time
critical, subroutine, and background. Normal priority is the same as level 0
priority in previous versions of LabVIEW, above normal priority is the same
as level 1 priority, and so on. If there are multiple VIs, the VIs are placed
into an execution queue. VIs with higher priority, except the subroutine
priority, still execute before lower priority VIs. However, VIs with a
subroutine priority level behave differently than VIs with other priority
levels. When a VI runs at subroutine priority, it runs in the thread category
of its caller, and no other VI can run in that thread until that VI or its subVIs
complete. Subroutine priority VIs can call other subroutine priority VIs
only. Use subroutine priority VIs only when you want to run a simple
computation with no interactive elements. You can skip the execution of a
subroutine priority subVI when it is busy by right-clicking the subVI and
selecting Skip Subroutine Call if Busy. Use this option when you are
calling a shared subroutine from a high-priority VI but you do not want to
wait for the subroutine VI to become available.

Exercise caution when setting the priority levels for VIs. Using priorities to
control execution order might not produce the results you expect. For
example, if you use the priority setting incorrectly, lower priority tasks
might never execute. As you will see later in this lesson, strategic use of
Wait functions within VIs also can be a very effective way of optimizing
your LabVIEW code. Refer to the LabVIEW Help for more information
about how to use Wait functions.

Lesson 6 Performance Issues

LabVIEW Basics II Course Manual 6-6 ni.com

B. The Profile Window
The Profile window is a powerful tool for analyzing how your application
uses execution time as well as memory. With this information, you can
identify the specific VIs or parts of VIs you need to optimize. For example,
if you notice that a particular subVI spends a great deal of time updating the
display, you can focus your attention on improving the display performance
of that VI.

The Profile window displays the performance information for all VIs in
memory in an interactive tabular format. From the window, you can choose
the type of information to gather and sort the information by category. You
also can monitor subVI performance within different VIs. To show the
Profile window, select Tools»Advanced»Profile VIs. The following
window appears.

Notice that you must select the Profile Memory Usage option before
starting a profiling session. Collecting information about VI memory use
adds a significant amount of overhead to VI execution, which affects the
accuracy of any timing statistics you gather during the profiling session.
Therefore, you should perform memory profiling separate from time
profiling.

Many of the options in the Profile window are available only after you begin
a profiling session. During a profiling session, you can grab a snapshot of
the available data and save the data to an ASCII spreadsheet file. The timing
measurements accumulate each time you run a VI.

Note All statistics measured in a profiling session are collected for a complete run of
a VI, not a partial run of a VI.

Lesson 6 Performance Issues

© National Instruments Corporation 6-7 LabVIEW Basics II Course Manual

Execution Time Statistics
To collect execution time statistics with the Profile window, click the Start
button. The previous example shows the Profile window after a time
profiling session.

The VI Time statistic column shows the amount of time spent executing the
VI and displaying its data, as well as the time spent by the user interacting
with the front panel. This time consists of five subcategories, which you can
show by selecting the Timing Details option. The subcategories are
Diagram, Display, Draw, Tracking, and Locals. Refer to the LabVIEW Help
or the LabVIEW User Manual for more information about these statistics.

The SubVIs statistic column shows the total execution time for all the
subVIs called by the main VI. In addition, timing information can be
displayed in seconds, milliseconds, or microseconds.

The Total Time statistic column shows the sum of the VI and subVIs values,
which represents the total execution time for the main VI.

If you select the Timing Statistics option, four new categories of
information appear. # Runs displays how many times each VI has been
executed. The Average value represents the VI time value divided by the
Runs, or the average amount of time the VI takes to run. Shortest and
Longest show the least and greatest amount of time required for a run of
the VI.

Memory Statistics
To collect memory statistics with the Profile window, select the Profile
Memory Usage option before starting the profiling session. You also can
select the Profile Memory Usage option after starting the Profiler to collect
additional memory information.

The Profile window displays two sets of memory use data. One set of data
shows the number of bytes of memory used, and the other shows the blocks
of memory. LabVIEW stores data such as arrays, strings, and paths in
contiguous blocks of memory. If a VI uses a large number of blocks of
memory, the memory can fragment, which degrades LabVIEW
performance in general, not VI execution.

The Average Bytes statistic column shows the average number of bytes of
memory used by a VI’s data space during its execution. Min Bytes and Max
Bytes represent the least and greatest amount of memory used by a VI
during an individual run. Average Blocks indicates how many blocks of
memory a VI needs on average, while the Min Blocks and Max Blocks
show the fewest and greatest number of blocks of memory used by a VI
during an individual run.

Lesson 6 Performance Issues

LabVIEW Basics II Course Manual 6-8 ni.com

Exercise 6-1 The Profile Window
Objective: To use the Profile window to get information about how your application VI runs.

The Profile window is a powerful tool for analyzing how your application
uses execution time as well as memory. With this information, you can
identify the areas of your VI that you need to optimize. In this exercise,
examine the project just completed using the Profile window.

1. Open your final project, called CD Application Exercise VI.
If you did not complete this final project, you can open the solution.

2. Before running your final project, select Tools»Advanced»Profile VIs
to display the Profile window. The Profile window is not yet capturing
data.

Lesson 6 Performance Issues

© National Instruments Corporation 6-9 LabVIEW Basics II Course Manual

3. To collect timing information about your final project, place a
checkmark in the Timing Statistics checkbox and click the Start
button.

You are now capturing timing information about the VIs in memory.

Lesson 6 Performance Issues

LabVIEW Basics II Course Manual 6-10 ni.com

4. Run the CD Application Exercise VI and go through the steps as if you
were a typical user. At any time you can return to the Profile window
and take a snapshot of timing. Taking a snapshot does not effect the final
timing statistics.

5. When you finish using your project, return to the Profile window and
click the Snapshot button again. You can sort any column of data by
clicking the column heading. You also can select whether the timing
statistics are displayed in seconds, milliseconds, or microseconds. By
double-clicking VIs listed in the Profile window, you can view the
statistics of the VI that compose it. This allows you to drill down to the
subVIs to see where time is being spent. You can display the front panel
of the individual VIs by right-clicking the VI listed in the Profile
window.

Sort the Total Time column and look at where the CD Application Exercise
VI spends most of its time. Notice how these VIs correspond with the VIs
that require user interaction. Waiting for user input is often the portion of
execution which requires the most time.

In the Profile window you can capture timing statistics and information
about VI memory usage. To capture memory usage, place a checkmark in
the Profile Memory Usage checkbox.

Note Collecting information about VI memory usage requires overhead which can
create misleading timing statistics.

Lesson 6 Performance Issues

© National Instruments Corporation 6-11 LabVIEW Basics II Course Manual

6. Gather memory usage statistics about the CD Application Exercise VI.

Where is memory used and why?

Notice which VIs fragment memory, and look to see which VIs use many
blocks. Why do you suppose these VIs use blocks? Having fragmented
memory causes VIs to execute more slowly because moving data around in
memory takes overhead.

End of Exercise 6-1

Lesson 6 Performance Issues

LabVIEW Basics II Course Manual 6-12 ni.com

C. Speeding Up Your VIs
LabVIEW compiles your VIs and produces code that generally executes
very quickly. However, when working on time-critical applications, you
need to use programming techniques to obtain the best possible execution
speed. Consider the following three areas when speeding up your VIs:

• Input/Output—files, instrument control, data acquisition, and
networking

• Screen display—efficient controls and displays

• Memory management—efficient use of arrays, strings, and data
structures

Other factors, such as execution overhead and subVI call overhead, usually
have minimal effects on execution speed.

Input/Output
Input/Output (I/O) calls generally take much more time than a
computational operation. For example, a simple serial port read operation
can have an associated overhead of several milliseconds. This overhead is
present not only in LabVIEW, but also in other applications. The reason for
this overhead is that an I/O call involves transferring information through
several layers of an operating system.

The best method of reducing this I/O overhead is to minimize the number of
I/O calls you make in your application. Structure your application so that
you transfer larger amounts of data with each call, instead of making several
I/O calls that transfer a small amount of data.

For example, consider creating a data acquisition (DAQ) application that
acquires 100 points of data. For faster execution, use a multi-point data
transfer function such as the AI Acquire Waveform VI, instead of using a
single-point data transfer function such as the AI Sample Channel VI. To
acquire 100 points, use the AI Acquire Waveform VI with an input
specifying that you want 100 points. This is faster than using the AI Sample
Channel VI in a loop with a wait function to establish the timing.

Lesson 6 Performance Issues

© National Instruments Corporation 6-13 LabVIEW Basics II Course Manual

In the previous example, overhead for the AI Acquire Waveform VI is
roughly the same as the overhead for a single call to the AI Sample Channel
VI, even though it is transferring much more data. In addition, the data
collected by the AI Acquire Waveform VI uses hardware timers to control
the sampling. Calling AI Sample Channel in a loop does not provide data
collected at a constant sample rate.

Screen Display
Updating controls on a front panel is another time-consuming task in an
application. While multithreading helps to reduce the effect that display
updates have on overall execution time, complicated displays, such as
graphs and charts, can adversely affect execution speed. This effect can
become significant on the LabVIEW platforms that do not support
multithreading. Although most indicators do not redraw when they receive
data values that are the same as the old data, graphs and charts always
redraw. To minimize this overhead, keep front panel displays simple, and try
to reduce the number of front panel objects. Disabling autoscaling, scale
markers, and grids on graphs and charts improves their efficiency.

The design of subVIs also can reduce display overhead. If subVIs have front
panels that remain closed during execution, none of the controls on the front
panel can affect the overall VI execution speed.

As shown in the following block diagram, you can reduce display overhead
by minimizing the number of times your VI updates the display. Drawing
data on the screen is an I/O operation, similar to accessing a file or GPIB
instrument. For example, you can update a waveform chart one point at a
time, or several points at a time. You get much higher data display rates if
you collect your chart data into arrays so that you can display several points
at a time. This way, you reduce the amount of I/O overhead required to
update the indicator.

Single-Point Data Transfer
(Slower Method)

Multiple-Point Data Transfer
(Faster Method)

Lesson 6 Performance Issues

LabVIEW Basics II Course Manual 6-14 ni.com

Other Issues
SubVI Overhead
Each call to a subVI involves a certain amount of overhead. This overhead
is fairly small, on the order of tens of microseconds, especially in
comparison to I/O overhead and display overhead, which can range from
milliseconds to tens of milliseconds. However, if you make 10,000 calls to
a subVI in a loop, the overhead could significantly affect your execution
speed. In this case, you might consider embedding the loop in the subVI.

Another way to minimize subVI overhead is to turn your subVIs into
subroutines by selecting Execution from the top pull-down menu in the
File»VI Properties dialog box. However, there are some trade-offs.
Subroutines cannot display front panel data, call timing or dialog box
functions, or multitask with other VIs. Subroutines are generally most
appropriate for VIs that do not require user interaction and are short,
frequently executed tasks.

Unnecessary Computation in Loops
Avoid placing calculations in loops if the calculation produces the same
value for every iteration. Instead, move the calculation out of the loop and
pass the result into the loop. For example, consider the following two block
diagrams. The result of the division is the same every time through the loop,
so you can increase performance by moving the division out of the loop.

Multiple-Update Charting
(Faster Method)

Single-Update Charting
(Slower Method)

Only Necessary Computation in Loop
(Faster Method)

Unnecessary Computation in Loop
(Slower Method)

Lesson 6 Performance Issues

© National Instruments Corporation 6-15 LabVIEW Basics II Course Manual

Also, avoid accessing local and global variables unnecessarily in loops. For
example, the following first block diagram wastes time by reading from the
global variable and writing to the global variable during each iteration of the
loop. If you know that the global variable is not read from or written to by
another block diagram during the loop, consider using shift registers to store
the data, as shown in the second block diagram.

Notice that you need the shift registers to pass the new value from the subVI
to the next iteration of the loop. Beginning LabVIEW users commonly omit
these shift registers. Without using a shift register, the results from the subVI
are never passed back to the subVI as the new input value, as shown in the
following block diagram.

In the previous block diagram, the global variable is read once before the
loop begins, and the same value is passed to the function 10,000 times. The
result of the loop is the same as if you had written the code as shown in the
following block diagram.

Minimize Access to Global Variable
(Faster Method)

Frequent Access to Global Variable
(Slower Method)

Lesson 6 Performance Issues

LabVIEW Basics II Course Manual 6-16 ni.com

Parallel Diagrams
When several loops run in parallel on a block diagram, LabVIEW changes
between the loops periodically. If some of these loops are less important
than others, you should use the Wait (ms) function to ensure that the less
important loops use less time. For example, consider the following block
diagram.

The two loops run in parallel. One of the loops acquires data and must
execute as frequently as possible. The other loop monitors user input.
Currently, both loops get equal time. The loop monitoring the user input can
execute several hundred times per second. In reality, this loop needs to
execute only a few times per second, because the user cannot make changes
to the interface very quickly. As shown in the following block diagram, you
can call the Wait (ms) function in the user interface loop to give significantly
more execution time to the other loop.

Lesson 6 Performance Issues

© National Instruments Corporation 6-17 LabVIEW Basics II Course Manual

Exercise 6-2 Charting Benchmark Example VI
Objective: To observe the relative speeds of single-point and multiple-point charting using

the Profile window and the effects of multithreading on systems that support this
feature.

When you open the Charting Benchmark Example VI, two other subVI
front panels also open. These two subVIs plot the same data under different
conditions.

Front Panels

1. If you are running LabVIEW on an operating system that supports
multithreading (Windows, Solaris2, or Concurrent PowerMAX), complete
steps a through c. If you are on a system that does not support
multithreading, skip to step 2.

a. Configure LabVIEW so that it does not use multithreading when it
runs VIs. Select Tools»Options to display the Options dialog box.

b. From the top pull-down menu of the Options dialog box, select
Performance and Disk. In the Performance and Disk section,
remove the checkmark from the Run with multiple threads
checkbox. Click OK.

c. Exit and restart LabVIEW so that the updated preferences take
effect. LabVIEW is now configured to run VIs under a single thread,
using co-operative multitasking.

Lesson 6 Performance Issues

LabVIEW Basics II Course Manual 6-18 ni.com

2. Close all other VIs you might have open.

3. Open the Charting Benchmark Example VI. The VI is already built for
you. When you open it, two other VIs also open.

The Charting Benchmark Example VI generates an array of 1,000
random numbers. When you click the Run SubVIs button, two subVIs
are executed. The Update Chart 1 Point at a Time subVI updates a chart
1,000 times. The second subVI, Update Chart 50 Points at a Time,
updates a chart 20 times, displaying 50 points each time. Select
Tools»Advanced»Profile VIs.

4. Move the window so that it does not overlap any of the VI front panels.

5. Click the Start button in the Profile window. You see the VI Time,
SubVIs Time, and Total Time statistics in the table.

6. Run the Charting Benchmark Example VI. The VI does nothing until
you click the Run SubVIs button. Run the subVIs at least three or four
times. Then click the Quit button to stop the Charting Benchmark
Example VI.

7. After running the subVIs several times, click the Snapshot button in the
Profile window. Locate Charting Benchmark Example VI in the Profile
window and double-click it to display its subVIs. Notice the VI
execution times for the two subVIs. Recall that these are cumulative
times, not the amount of time needed to execute the subVIs once. Notice
that updating the chart one point at a time is the slowest method, and that
updating the chart several points at a time is the fastest method.

Lesson 6 Performance Issues

© National Instruments Corporation 6-19 LabVIEW Basics II Course Manual

8. Select the Timing Statistics option to view the average execution time
for the subVIs. Then select the Timing Details option and examine the
Display and Draw statistics. Notice that the Display statistic is largest
for the Update Chart 1 Point at a Time subVI and is very low for the
Update Chart 50 Points at a Time VI. Record the average execution time
in the following table.

Refer to the LabVIEW Help or the LabVIEW User Manual for more
information about these statistics.

9. Click the Stop button in the Profile window to stop the profiling session.
Then close the Profile window.

10. Close all open VIs and do not save any changes.

11. If you are running LabVIEW on a multithreading operating system,
place a checkmark in the Run with multiple threads checkbox on the
Execution page in the File»VI Properties dialog box and restart
LabVIEW. Repeat steps 3 through 10, noting in the table how much
faster the VIs execute when the display is running under its own
execution subsystem.

End of Exercise 6-2

Table 6-1. Record of Execution Times

Average Execution Time

Multithreading Off Multithreading On Percent Faster

Charting Benchmark
Example VI

%

Update Chart 1 Point at
a Time VI

%

Update Chart 50 Points
at a Time VI

%

Lesson 6 Performance Issues

LabVIEW Basics II Course Manual 6-20 ni.com

Exercise 6-3 Dialog & SubVI Demo VI
Objective: To observe how dataflow structure can affect execution speed.

Load and run a VI that plots a waveform pattern. Notice how the dataflow
affects the execution of the VI.

Front Panel
1. If you are running LabVIEW on an operating system that supports

multithreading (Windows, Solaris2, or Concurrent PowerMAX), complete
steps a though c. If you are on a system that does not support
multithreading, skip to step 2.

a. Configure LabVIEW so that it does not use multithreading when it
runs VIs. Select Tools»Options to display the Options dialog box.

b. From the top pull-down menu of the Options dialog box, select
Performance and Disk. In the Performance and Disk section,
remove the checkmark from the Run with multiple threads
checkbox. Click OK.

c. Exit and restart LabVIEW so that the updated preferences take
effect. LabVIEW is now configured to run VIs under a single thread,
using co-operative multitasking.

2. Open the Dialog & SubVI Demo VI. The VI is already built for you. The
front panel contains a strip chart and several option buttons. This chart
shows two pieces of data, the running average of a simulated
temperature and a red plot showing how quickly these averages are
calculated.

Lesson 6 Performance Issues

© National Instruments Corporation 6-21 LabVIEW Basics II Course Manual

3. Open the block diagram and examine it. Two While Loops run in
parallel. One loop handles data collection and analysis while the other
handles the user interface.

4. Run the VI. Notice the plot speed and the averages/second being
calculated.

Notice that the Averages/Sec value is periodic and dips very low. The
block diagram contains two While Loops running in parallel. The Plot
Loop (top) is the one generating the temperature average and the number
of averages per second. The dips in performance happen when the Menu
Loop executes and checks the values of the buttons on the front panel.
Performance increases when the Plot Loop runs.

5. Click the Show Dialog button. Notice the effect on the plot speed and
the Averages/Sec value. Recall that a loop cannot begin its next iteration
until the entire block diagram inside it finishes executing. In the Menu
Loop, the values from the buttons are read to determine which case
should be executed. If you click the Show Dialog button, Case 0 is
executed. The case does not complete until you click the OK button in

Lesson 6 Performance Issues

LabVIEW Basics II Course Manual 6-22 ni.com

the dialog box. Thus, while the dialog box is displayed, the Plot Loop
does not need to share the processor with the Menu Loop.

6. Click the Pop-Up VI button. The Pop-up 2nd Process VI opens its front
panel and runs. Notice the effect on the first VI’s Averages/Sec value. As
in the situation when you clicked the Show Dialog button, the Menu
Loop no longer executes until the Pop-up 2nd Process VI ends.
However, LabVIEW runs the second VI at the same time as the original
VI. The dips in performance appear when the second VI runs. Therefore,
LabVIEW executes multiple VIs in the same way it executes parallel
loops—each process gets an equal time-slice.

7. Click the Stop button.

8. Modify the Menu Loop so it includes a Wait (ms) function. Wire a
constant value of 300 to the input of the function. Notice how the speed
of the Plot Loop changes.

9. Close the VI and do not save any changes.

10. If you are running LabVIEW on a multithreaded operating system, place
a checkmark in the Run with Multiple Threads checkbox on the
Execution page in the File»VI Properties dialog box. Exit and restart
LabVIEW. Repeat steps 2 through 9 and notice how multithreading
affects the execution speed of the Dialog & SubVI Demo VI.

If you want to magnify the results of this exercise, move windows with your
cursor while the Dialog & SubVI Demo VI runs. This increases the
processor workload creating more drastic results.

End of Exercise 6-3

Lesson 6 Performance Issues

© National Instruments Corporation 6-23 LabVIEW Basics II Course Manual

Exercise 6-4 Computation & Global Benchmark VI
Objective: To observe the effects of unnecessary computation and global variable activity on VI

execution speed.

Use the Profile window to compare the performance of VIs that perform the
same tasks using different programming techniques.

Front Panel

1. Close all other VIs you might have open.

2. Open the Computation & Global Benchmark VI. The VI is already built
for you.

3. Select Tools»Advanced»Profile VIs. Click the Start button in the
Profile window. Do not gather any memory statistics.

4. Run the Computation & Global Benchmark VI. Click the Run SubVIs
button to run the following four subVIs. Run the subVIs at least three or
four times.

Lesson 6 Performance Issues

LabVIEW Basics II Course Manual 6-24 ni.com

5. After running the subVIs several times, stop the VI and click the
Snapshot button in the Profile window. Locate the Computation and
Global Benchmark VI in the Profile window and double-click it to
display its subVIs if they are not already displayed.

Notice the amount of time spent in each subVI. Specifically, compare
the amount of time spent executing Update Globals Inside Loop VI
versus Globals Outside of Loop VI and the time spent executing
Unnecessary Loop Computations VI versus Unnecessary Computations
Removed VI. Is this the behavior you expected? How would you apply
what you have learned in this exercise to your programming?

6. Click the Stop button in the Profile window to stop the profiling session.
Then close the Profile window.

7. Close the VI. Do not save any changes.

End of Exercise 6-4

Lesson 6 Performance Issues

© National Instruments Corporation 6-25 LabVIEW Basics II Course Manual

D. System Memory Issues
LabVIEW transparently handles many of the details that you normally deal
with in text-based programming languages. One of the main challenges of
programming with a text-based language is memory use. In a text-based
programming language, you must allocate memory before you use it and
deallocate it when you are finished. You also must be particularly careful not
to accidentally write past the end of the memory you have allocated. Failure
to allocate memory or to allocate enough memory is one of the biggest
mistakes that programmers make in text-based programming languages.

LabVIEW’s dataflow programming removes much of the difficulty of
managing memory. In LabVIEW, you do not allocate variables, nor assign
values to and read values from them. Instead, you create a block diagram
with graphical connections representing the transition of data.

Functions that generate data allocate storage for those data. When data are
no longer needed, LabVIEW deallocates the associated memory. When you
add new information to an array or a string, LabVIEW allocates the
necessary memory.

This automatic memory handling is one of the chief benefits of LabVIEW.
However, because it is automatic, you have less control over it. You should
understand how LabVIEW allocates and deallocates memory so you can
design applications with smaller memory requirements. Also, an
understanding of how to minimize memory use can help you increase VI
execution speed, because memory allocation and copying data can take a
considerable amount of time.

LabVIEW Memory
Windows, Sun, and HP-UX—LabVIEW allocates memory dynamically,
taking as much as needed. This process is transparent to the user.

Macintosh—LabVIEW allocates a single block of memory at launch time,
out of which all subsequent allocations are performed. When you load a VI,
its components are loaded into this block of memory. Likewise, when you
run a VI, all the memory that it manipulates is allocated from this block.

On the Macintosh, you configure the amount of memory that LabVIEW
allocates at launch time by selecting the Get Info option from the File menu
in the Finder. Note that if LabVIEW runs out of memory, it cannot increase
the size of this memory pool. Therefore, you should set this parameter as
large as possible. Make sure to leave enough memory for any other
applications that you want to run at the same time as LabVIEW.

Lesson 6 Performance Issues

LabVIEW Basics II Course Manual 6-26 ni.com

Virtual Memory
When using Windows or Macintosh, you can use virtual memory to increase
the amount of memory available for your applications. Virtual memory uses
available disk space for RAM storage. If you allocate a large amount of
virtual memory, applications perceive this as memory that is available for
storage.

On the Macintosh, you allocate virtual memory using the Memory device in
the Control Panel folder. Windows, Sun, and HP-UX automatically manage
virtual memory allocation.

LabVIEW does not differentiate between RAM and virtual memory. The
operating system hides the fact that the memory is virtual. However,
accessing data stored in virtual memory is much slower than accessing data
stored in physical RAM. With virtual memory, you might occasionally
notice more sluggish performance because data are swapped to and from the
hard disk by the operating system. Virtual memory can help run larger
applications, but it is probably not appropriate for applications that have
critical time constraints.

VI Components
VIs have the following major components:

• Front Panel

• Block Diagram

• Code—block diagram compiled to machine code

• Data—control and indicator values, default data, block diagram constant
data, and so on

When you load a VI, LabVIEW loads the front panel, the code, if it matches
the platform, and the data for the VI into memory. If the VI needs to be
recompiled because of a change in platform or in the interface to a subVI,
LabVIEW also loads the block diagram into memory.

LabVIEW also loads the code and data space of subVIs into memory. Under
certain circumstances, LabVIEW also loads the front panel of some subVIs
into memory. For example, if the subVI uses Property Nodes, LabVIEW
must load the front panel because Property Nodes manipulate the
characteristics of front panel controls.

As shown in the following example, you can save memory by converting
some of your VI components into subVIs. If you create a single, large VI
with no subVIs, the front panel, code, and data for that top-level VI end up
in memory. If the VI is broken into subVIs, the code for the top-level VI is
smaller, and only the code and data of the subVIs is in memory. In some
cases, you might actually see lower run-time memory use.

Lesson 6 Performance Issues

© National Instruments Corporation 6-27 LabVIEW Basics II Course Manual

front panel block
diagram

code data space

front panel block
diagram

code data space

front panel block
diagram

code data space

always resident

resident when necessary

Top-Level VI SubVI SubVI

Lesson 6 Performance Issues

LabVIEW Basics II Course Manual 6-28 ni.com

E. Optimizing VI Memory Use
This section describes specific issues about using VI memory more
efficiently. We will discuss how to monitor and improve your memory use
and suggest ways to efficiently assemble and process arrays and data
structures.

How to Monitor Memory Use
As shown in the following example, select Memory Usage from the top
pull-down menu in the File»VI Properties dialog box to get a breakdown
of the memory usage for a specific VI. The left column summarizes disk use
and the right column summarizes how much RAM is used for the various
components of the VI. Notice that the information does not include memory
use of subVIs.

You also can use the Profile window to monitor the memory used by all VIs
in memory.

Note When monitoring VI memory use, be sure to save the VI before examining its
memory requirements. The LabVIEW Undo feature makes temporary copies of objects
and data, which can increase the reported memory requirements of a VI. Saving the VI
purges the copies generated by Undo, resulting in accurate reports of memory
information.

Lesson 6 Performance Issues

© National Instruments Corporation 6-29 LabVIEW Basics II Course Manual

General Rules for Better Memory Use
Use the following rules to create VIs that use memory efficiently.

• Breaking a VI into subVIs usually improves memory use because
LabVIEW can reclaim subVI data memory when the subVI is not
executing.

• Do not overuse global and local variables to store arrays or strings;
reading a global or local variable generates a copy of the data stored in
the variable.

• On open front panels, display large arrays and strings only when
necessary. Indicators on open front panels retain a copy of the data that
they display.

• If the front panel of a subVI will not be displayed, do not leave unused
Property Nodes on the subVI. Property Nodes cause the front panel of a
subVI to remain in memory, which increases memory use.

• Do not use the Suspend Data Range option on time- or memory-critical
VIs. The front panel for the subVI needs to be loaded for range
checking, and extra copies of data are made for the subVI controls and
indicators.

• When designing block diagrams, watch for places where the size of an
input is different from the size of an output. For example, if you
frequently increase the size of an array or string using the Build Array
or Concatenate Strings function, you generate copies of data, increasing
the number of memory allocations LabVIEW must perform. These
operations can fragment memory.

• Use consistent data types for arrays and watch for coercion dots when
passing data to subVIs and functions. When LabVIEW changes data
types, the output is a new buffer.

• Do not use complicated, hierarchical data types, for example, arrays of
clusters containing large arrays or strings, or clusters containing large
arrays or strings. The Simple vs. Complicated Data Structures section
later in this lesson contains more information about designing efficient
data types.

Assembling and Processing Arrays
When designing the block diagram, there are several steps you can take to
make your VI use memory more efficiently. For example, you can assemble
and process arrays in ways that minimize the amount of memory access
required.

LabVIEW stores arrays of numeric elements in contiguous blocks of
memory. If you use For Loops to assemble these arrays, LabVIEW can
determine the amount of memory needed and allocate the necessary space
prior to the first iteration. However, if you use While Loops, LabVIEW

Lesson 6 Performance Issues

LabVIEW Basics II Course Manual 6-30 ni.com

cannot predetermine the space requirements you will need. LabVIEW might
need to relocate the entire buffer as the array grows in size, perhaps several
times. The time needed for relocation increases with the size of the array.
Therefore, you should use For Loops to assemble arrays when possible,
rather than using While Loops or concatenating arrays with the Build Array
function.

Inplaceness
When possible, LabVIEW’s compiler reuses a function’s input buffers to
store its output. This buffer sharing is called inplaceness. In the following
example, the Multiply function output uses the same buffer as the top input.
The array at the right is said to be inplace to array A.

For Loop
vs.

While Loop

Lesson 6 Performance Issues

© National Instruments Corporation 6-31 LabVIEW Basics II Course Manual

A function output reuses an input buffer if the output and the input have the
same data type, representation, and, in arrays, strings, and clusters, the same
structure and number of elements. Functions capable of inplaceness include
Trigonometric and Logarithmic functions, most Numeric functions, and
some string and array functions such as To Upper Case and Replace Array
Element. A function that shifts or swaps elements of an array, such as
Replace Array Element, can reuse buffers. Some functions such as Array
Subset and String Subset might not copy data but might pass pointers to the
subarrays or substrings. In the following illustration, A, B, C, and D identify
individual buffers. Build Array and Concatenate Strings are special
functions. They operate inplace when they can, but sometimes they must
allocate new buffers.

Lesson 6 Performance Issues

LabVIEW Basics II Course Manual 6-32 ni.com

Coercion and Consistent Data Types
Consider the Random Number (0-1) function, commonly used in the
examples shown in this course. This function produces double-precision,
floating-point (DBL) data. Therefore, DBL arrays are created at the border
of For Loops. To save memory, you might consider using single-precision
floating-point (SGL) arrays instead of DBL arrays. Of the following three
methods to create these SGL arrays, one is correct and two are incorrect.
Recall that each DBL value requires 8 bytes of memory, while each SGL
value requires 4 bytes of memory.

Lesson 6 Performance Issues

© National Instruments Corporation 6-33 LabVIEW Basics II Course Manual

Method 1 (Incorrect)

Method 1 might be your first attempt to save data space memory. You might
think changing the representation of the array on the front panel (FP) to SGL
can save space memory. However, this method does not affect the amount of
memory needed by the VI, because the function creates a separate buffer to
hold the converted data. The coercion dot on the SGL array terminal
indicates the function created a separate buffer to hold the converted data.

Lesson 6 Performance Issues

LabVIEW Basics II Course Manual 6-34 ni.com

Method 2 (Incorrect)

Method 2 is an attempt to remove the coercion dot by converting each
array to SGL using the To Single Precision Float function located on the
Functions»Numeric»Conversion palette. However, this method also
increases the size of the data space, because the function creates two new
buffers, C and D, to hold the new SGL arrays.

Lesson 6 Performance Issues

© National Instruments Corporation 6-35 LabVIEW Basics II Course Manual

Method 3 (Correct)

Method 3 reduces the size of the data space considerably, from 24.8 KB to
12.8 KB. This method converts the Random Number (0-1) function output
to SGL before the array is created; therefore, this method creates two SGL
arrays at the border of a For Loop rather than two DBL arrays.

Lesson 6 Performance Issues

LabVIEW Basics II Course Manual 6-36 ni.com

Simple vs. Complicated Data Structures
Simple data types, which include strings, numbers, Boolean data types,
clusters of numbers or Boolean data types, and arrays of numbers or
Boolean data types, are referenced in memory. Other data, referred to as
nested, or complicated data, is more difficult to reference. Examples of
nested data include arrays of strings, clusters containing arrays of clusters,
and arrays of clusters containing arrays.

For the best performance, avoid creating complicated data structures.
Performance can suffer because it is difficult to access and manipulate the
interior elements without generating copies of data. Therefore, keep your
data structures as flat as possible. Flat data structures can generally be
manipulated easily and efficiently.

Consider an application in which you want to record the results of several
tests. In the results, you want a string describing the test and an array of test
results. One data type that you might use to store this information is an array
of clusters containing a description string and an array of test data, as shown
in the following front panel.

Lesson 6 Performance Issues

© National Instruments Corporation 6-37 LabVIEW Basics II Course Manual

Now, consider what you need to do to change an element in the Test Data
array. First, you must index an element of the overall Tests array. For that
element, which is a cluster, you must unbundle the elements to get to the
array. You then replace an element of the array and store the resulting array
in the cluster. Finally, you store the resulting cluster in the original array. An
example of this is shown in the following illustration.

Copying data is costly both in terms of memory and performance. The
solution is to make the data structures as flat as possible. In this case, you
could store the data in two arrays, as shown in the following block diagram.
The first array is an array of strings. The second array is a 2D array, where
each row is a given test’s results. In the following example, the front panel
contains new controls to store the data and the block diagram performs the
same change to the test data, as shown in the previous block diagram.

Lesson 6 Performance Issues

LabVIEW Basics II Course Manual 6-38 ni.com

Lesson 6 Performance Issues

© National Instruments Corporation 6-39 LabVIEW Basics II Course Manual

Exercise 6-5 Assembling Arrays VI
Objective: To observe the speed of building arrays using several different methods.

Load and run a VI that creates an array of numbers using several methods.
Using the Profile window, compare the performance of VIs using For
Loops, While Loops, Auto-Indexing, and the Build Array function to create
arrays. Also, compare these methods with a technique that uses the Replace
Array Element function on an existing array.

Front Panel

1. Close all other VIs that you might have open.

2. Open the Assembling Arrays VI.

3. To display the Profile window, select Tools»Advanced»Profile VIs.
Select the option to display timing statistics. Click the Start button in
the Profile window to begin a profiling session. Do not gather any
memory statistics.

4. Run the Assembling Arrays VI. To test the different array-building
methods, click the Test button. The Method indicator shows which
method is being tested. The VI tests six different methods.

5. After running the test several times, click the Snapshot button in the
Profile window.

We will now describe the six different array building techniques and why the
performance of these VIs differs.

Using the Profile window, place a checkmark in the Timing Statistics
checkbox and notice the average execution times shown.

Lesson 6 Performance Issues

LabVIEW Basics II Course Manual 6-40 ni.com

The Initialize Array function is slightly faster than an Auto Indexing For
Loop. In both instances, the array size is known and LabVIEW can allocate
the correct amount of memory only once. Recall that resizing requires more
execution time. Therefore the Initialize Array function or an Auto Indexing
For Loop are the best ways to create arrays.

A For Loop executes a predetermined number of times. A While Loop does
not, so LabVIEW cannot predetermine how much memory to allocate if an
array is built inside a While Loop. When the array is built in a While Loop,
it is resized as needed. Each resizing requires the operating system to
allocate a new buffer and then copy the contents of the old buffer into the
new, larger buffer. The more resizing that occurs, the more time execution
takes. A For Loop requires less resizing, so it executes faster than a While
Loop. Notice this difference when comparing the Average execution time
for the For Loop using the Auto Indexing VI and While Loop using the Auto
Indexing VI.

If you can predetermine the maximum size of the array to be built, then you
can initialize this array and pass it into the While Loop. Once inside the
While Loop, each element can be updated or replaced as needed. This is
somewhat efficient, because the array does not need to be reallocated once
it is passed into the While Loop. This is still not as efficient as the For Loop
or Initialize Array function.

Lesson 6 Performance Issues

© National Instruments Corporation 6-41 LabVIEW Basics II Course Manual

Avoid using the Build Array function inside a loop. Every time a new value
is appended to the array, LabVIEW must reallocate the buffer and copy the
entire array to the new location. Thus execution times for the Build Array
function are the slowest.

6. Close the Profile window. Close the VI and do not save changes.

End of Exercise 6-5

Lesson 6 Performance Issues

LabVIEW Basics II Course Manual 6-42 ni.com

Exercise 6-6 Performance Enhancements VI
Objective: To improve the performance of a VI.

The Performance Enhancements VI was created to perform the following
tasks.

1. Acquire 1000 points of a waveform from a channel.

2. Save this data to disk.

3. Display the power spectrum of the acquired waveform.

The VI is poorly written. The VI consumes a lot of memory, runs slowly,
and is poorly documented. In addition, the VI does not give the desired
results for waveforms above 60 Hertz.

This project requires you to utilize information from the previous chapter as
well as draw upon other information in the course.

1. Close all VIs you might have open.

2. Open the Performance Enhancements VI in the Exercises\LV
Basics2 directory. Show the Profile window by selecting
Tools»Advanced»Profile VIs. Select Timing Statistics in the Profile
window.

3. Run the VI. After it finishes, click the Snapshot button in the Profile
window to view execution information about the VI. Notice how many
times VIs are called and which VIs being called multiple times are likely
to be slow. Notice which VIs were run many times and observe which
VIs you guess are likely to take longer execution times.

4. Select File»VI Properties and select Memory Usage from the top
pull-down menu. A well written VI for this application should consume
a total of about 25k of memory. Notice how much this poorly written VI
consumes.

5. Modify the VI to so that this application:

– Runs correctly for higher frequency waveforms.

– Runs faster.

– Uses better data structures and is easier to understand.

– Is better documented.

Use the tips in this lesson, information from other chapters in this
course, and the following tips to get started:

– Putting High Level VIs in loops creates redundant function calls.

– Gathering or plotting data one point at a time is less efficient than
acquiring multiple points.

Lesson 6 Performance Issues

© National Instruments Corporation 6-43 LabVIEW Basics II Course Manual

– Flat data types are more memory efficient than complex data
structures.

– There are a variety of ways to document a VI.

6. Save the modified VI.

7. Run the VI. Notice improvements in run time and memory usage. Also
notice the improvements in readability and simplicity of code.

Note Make sure you save the VI before you examine its memory usage. This prevents
the LabVIEW Undo feature from allocating memory unnecessarily.

8. When you are satisfied with the VI, save it as Performance
Improvements.vi.

End of Exercise 6-6

Lesson 6 Performance Issues

LabVIEW Basics II Course Manual 6-44 ni.com

Exercise 6-7 Performance Challenge VI/
Maximized Performance VI

Objective: To improve the performance of a VI.

The Performance Challenge VI performs the following tasks.

1. Generates four runs of data. Each run should consist of an array of
5,000 data points and a string containing a time stamp of when the data
were taken. Each element needs only digits of precision.

2. Saves all acquired data and associated time stamps to disk. The file will
be used only in LabVIEW applications, so it does not need to be in any
specific format.

3. Finds the maximum value in each run of data and plot 100 points around
the maximum value to a waveform graph. The final graph should contain
four traces, one for each run of data.

This VI is poorly written. It runs slowly and takes more memory than
necessary. In this exercise, optimize the VI to increase its run speed while
decreasing its memory requirements.

1. Close all VIs you might have open.

2. Open the Performance Challenge VI. Show the Profile window by
selecting Tools»Advanced»Profile VIs. Before running Performance
Challenge, select Timing Statistics and Timing Details in the Profile
window so that you can gain a better understanding of the VI run time.

3. Run the VI. After it finishes, click the Snapshot button in the Profile
window to view execution information for the VI. When looking at this
information, notice how much time is taken updating local variables,
and also how many times this application calls the file I/O subVIs.

4. Select File»VI Properties. Select Memory Usage from the top
pull-down menu. Notice the considerable amount of memory taken by
the data in this VI.

5. Modify the VI to improve the run speed and reduce the amount of
memory required. Use the tips in this lesson and the following
guidelines to get you started:

• Local variables increase memory requirements and slow run speed,
especially when they are accessed in loops.

• Create arrays in an efficient manner.

• Minimize the amount of file I/O operations performed in an
application. Only open and close a file when necessary.

• Avoid unnecessary computations and data conversions, especially
in loops.

Lesson 6 Performance Issues

© National Instruments Corporation 6-45 LabVIEW Basics II Course Manual

• Minimize and simplify front panel displays.

• Use simple data structures.

Tip You only need to meet the requirements of the application described previously.
How you choose to implement this application is up to you.

6. Save the modified VI.

7. Run the VI, noticing the speed improvements in the Profile window and
the memory use improvements in VI Properties. You might want to
repeat steps 5 through 7 several times, further optimizing the
application.

Note Make sure you save the VI before you examine its memory requirements. This
prevents the LabVIEW Undo feature from allocating memory unnecessarily.

8. When you are satisfied with the VI, save it as Maximized
Performance.vi.

End of Exercise 6-7

Lesson 6 Performance Issues

LabVIEW Basics II Course Manual 6-46 ni.com

Summary, Tips, and Tricks
Depending on the operating system, LabVIEW uses either multithreading
or co-operative multitasking to perform tasks simultaneously. With
multithreading, different tasks can use different execution threads, whereas
in a co-operative multitasking system, different tasks use the same execution
thread.

Use the Profile window to gauge VI performance and to help you locate the
tasks that require most of your VI’s run time and memory use. You can then
concentrate on improving those troublesome areas to enhance the overall
performance of your VI.

Use the following tips to speed up your VIs:

• Reduce the number of I/O calls you make by reducing the amount of
data you acquire, or by acquiring more data in fewer calls.

• Reduce the number of controls and indicators you have on the front
panel.

• Avoid using autoscaling on graphs and charts.

• Update graphs and charts with several points at a time, not one point at
a time.

• Force less important parallel tasks to wait, using the Wait (ms) function,
so more crucial ones have more processor time.

• Avoid unnecessary computation in looping structures.

Although LabVIEW removes much of the difficulty in managing computer
memory, you also have less control over that process. Remember, you can
monitor your computer’s memory by accessing the Memory Usage page in
the File»VI Properties dialog box and in the Tools»Advanced»Profile
VIs window.

Virtual memory has advantages and disadvantages. It can significantly
increase the amount of RAM available for LabVIEW and your VIs.
However, because that RAM is located on the hard drive, performance
suffers when it is accessed.

Breaking large top-level VIs into several smaller subVIs reduces the amount
of memory consumed in your application and can improve performance.

Use the following tips to improve the overall performance of your VIs:

• Avoid overusing local and global variables.

• Avoid displaying and manipulating large arrays and strings.

• Use functions that reuse data buffers.

Lesson 6 Performance Issues

© National Instruments Corporation 6-47 LabVIEW Basics II Course Manual

• Use consistent data types. In other words, avoid coercion dots.

• Use simple data structures that are as flat as possible.

• When generating arrays inside loops whose representation must be
changed, change the representation inside the loop, not after.

Lesson 6 Performance Issues

LabVIEW Basics II Course Manual 6-48 ni.com

Notes

© National Instruments Corporation A-1 LabVIEW Basics II Course Manual

Appendix

This appendix contains the following sections of useful information for
LabVIEW users:

A. Polymorphic subVIs

B. Custom Graphics in LabVIEW

C. The LabVIEW Web Server

D. Additional Information

E. ASCII Character Code Equivalents Table

Appendix

LabVIEW Basics II Course Manual A-2 ni.com

A. Polymorphic SubVIs
LabVIEW built-in functions can handle different types of data for the same
terminal, a capability called polymorphism. An example of polymorphism
is the Add function.

It is also possible to create your own polymorphic VIs, which can handle
more than one type of data for the same terminal. These polymorphic VIs
can then be used as polymorphic subVIs.

Using polymorphic VIs allows you to present a much simpler interface to
the users of your VIs. Consider the case of a polymorphic VI that can sort
either 1D or 2D arrays. Instead of having one VI for sorting 1D arrays and
another subVI for sorting 2D arrays, one VI called Sort Array handles both
types of inputs.

Complete the following steps to create your own polymorphic VI.

1. Create a set of VIs having the same connector pane pattern, one for
different sets of data types.

2. Create a polymorphic VI by selecting File»New and selecting
Polymorphic VI in the New dialog box. The Polymorphic VI builder
dialog box appears.

Appendix

© National Instruments Corporation A-3 LabVIEW Basics II Course Manual

3. Add each of the set of VIs to the polymorphic VI using the Add VI
button.

4. You can create an icon for the polymorphic VI using the Edit Icon
button. You also can create context help for the polymorphic VI by
selecting Documentation from the top pull-down menu in the File»VI
Properties dialog box.

Note Context help for the polymorphic VI is not associated with context help for the VIs
that compose the polymorphic VI. Therefore, you must create new context help by using
the Documentation page in the File»VI Properties dialog box.

A polymorphic VI is a collection of subVIs with the same connector pane
patterns. Each subVI is an instance of the polymorphic VI. When data are
wired to a polymorphic subVI, LabVIEW automatically chooses which
instance to use based on the types of data wired to the inputs of the
polymorphic subVI. If the instance is not available, a broken wire appears.
You can override LabVIEW’s automatic selection by right-clicking the
polymorphic subVI and selecting a specific instance VI from the Select
Type pull-right menu.

Appendix

LabVIEW Basics II Course Manual A-4 ni.com

Exercise A-1 Sort Poly Array
Objective: To create a polymorphic VI and use it as a subVI.

Using polymorphic VIs allows you to present a much simpler interface to
the users of your VIs. Consider the case of a polymorphic VI that can sort
either 1D or 2D arrays. Two individual VIs can do this function.

Instead of having one VI for sorting 1D arrays and another subVI for sorting
2D arrays, one VI called Sort Array handles both types of inputs. In this
exercise, create this VI.

1. Create a VI that sorts a 1D array. This VI should also include an option
to sort in ascending or descending order and pass out an error Boolean
object. The following example is a suggested front panel. You need to
create the front panel and block diagram and test the code you write.

2. Create an icon connector pane using the following configuration.

Note Use the same icon connector pane for the Sort 2D Array instance. Otherwise the
polymorphic VI produces broken wires.

Appendix

© National Instruments Corporation A-5 LabVIEW Basics II Course Manual

3. Save your work as Sort 1D Array+.vi.

4. The Sort 2D Array function is already built for you. However, you need
to complete the icon connector pane. This example was downloaded
from ni.com\support in the Example Programs Database. Open this
file from exercises\LV Basics2\Sort 2D Array.vi.

5. Create and wire the icon connector pane for the Sort 2D Array VI. Even
though the icon connector pane is already built, you might want to
modify it to help differentiate it from the Example program. You do not
need to wire all the controls and indicators on this front panel. Recall the
configuration used for the Sort 1D Array VI.

6. Save this new VI as Sort 2D Array+.vi.

Now create the polymorphic VI, which is composed of the Sort 1D Array+
instance and the Sort 2D Array+ instance.

7. To combine the two instances into one polymorphic VI, select File»New
and select Polymorphic VI. If you are at the welcome screen, select
Polymorphic VI from the New VI pull-down menu.

Appendix

LabVIEW Basics II Course Manual A-6 ni.com

8. Add the Sort 1D Array+ and Sort 2D Array+ VIs using the Add VI
button. You might need to browse to the directories where you saved
these VIs.

9. Create an icon for this new polymorphic VI by selecting the Edit Icon
button.

10. Create context help for this VI by selecting Documentation from the
top pull-down menu in the File»VI Properties dialog box.

11. Save your VI as Sort Poly Array.vi.

12. Use this VI as a subVI in another VI to test the functionality. Notice the
help screen. Also notice what happens when you double-click the
polymorphic VI. What happens if you select a particular context by
right-clicking and selecting Select Type?

End of Exercise A-1

Appendix

© National Instruments Corporation A-7 LabVIEW Basics II Course Manual

B. Custom Graphics in LabVIEW
There are several LabVIEW features available for giving front panels a more
professional, custom look. These features, provided with the LabVIEW full
and professional development system, provide custom graphics and
animation features to the user interface.

Decorations
One of the most straightforward methods to enhance a user interface is to
apply the LabVIEW Decorations to a front panel as you did in Lesson 2,
Designing Front Panels. Through careful use of the decorations, you can
increase the readability of the front panels.

Importing Graphics
You can import graphics from other VIs for use as background pictures,
items in ring controls, or parts of other controls. However, before you can
use a picture in LabVIEW, you need to load it into the LabVIEW Clipboard.
There are one or two ways to do this, depending on your platform.

• Windows—If you can copy an image directly from a paint program to
the Windows Clipboard and then change to LabVIEW, LabVIEW
automatically imports the picture to the LabVIEW Clipboard. You also
can use the Import Picture from File option from the LabVIEW Edit
menu to import a graphics file into the LabVIEW Clipboard. LabVIEW
recognizes graphics files in the following formats: CLP, EMF, GIF,
PCX, BMP, TARGA, TIFF, LZW, WFM, and WPG.

• Macintosh—If you copy from a paint program to the Clipboard and then
change to LabVIEW, LabVIEW automatically imports the picture to the
LabVIEW Clipboard.

• UNIX—You can use the Import Picture from File option from the
UNIX Edit menu to import a picture of type X Window Dump (XWD),
which you can create using the xwd command.

After a picture is on the LabVIEW Clipboard, you can paste it as a static
picture on the front panel, or you can use the Import Picture option of a
shortcut menu, or the Import Picture options in the Control Editor.

Custom Controls
You can customize LabVIEW controls and indicators to change their
appearance on the front panel. You also can save these controls for use in
other VIs. Programmatically, they function the same as standard LabVIEW
controls.

Appendix

LabVIEW Basics II Course Manual A-8 ni.com

Control Editor
Launch the Control Editor by selecting a control on the front panel and
selecting Edit»Customize Control. The Control Editor appears with the
selected front panel object in its window. The Control Editor has two modes,
edit mode and customize mode.

Edit Mode
In edit mode, you can right-click the control and manipulate its settings as
you would in the LabVIEW programming environment.

Customize Mode
In customize mode, you can move the individual components of the control
around with respect to each other. For a listing of what you can manipulate
in customize mode, select Window»Show Parts Window.

One way to customize a control is to change its type definition status. You
can save a control as a control, a type definition, or a strict type definition,
depending on the selection showing in the Type Def. Status ring. The
control option is the same as a control you would select from the Controls
palette. You can modify it in any way you need to, and each copy you make
and change retains its individual properties.

A Type Definition control is a master copy of a custom control. All copies
of this kind of custom control must be of the same data type. For example,
if you create a Type Definition custom control having a numeric
representation of Long, you cannot make a copy of it and change its
representation to Unsigned Long. Use a Type Definition when you want to
place a control of the same data type in many places. If you change the data
type of the Type Definition in the Control Editor, the data type updates
automatically in all VIs using the custom control. However, you can still
individually customize the appearance of each copy of a Type Definition
control.

Edit Mode Type Def.
Status

Text Align
Objects

Distribute
Objects

Reorder
Objects

Type Def.
Status

Customize
Mode

Text Align
Objects

Distribute
Objects

Reorder
Objects

Appendix

© National Instruments Corporation A-9 LabVIEW Basics II Course Manual

A Strict Type Definition control must be identical in all facets everywhere
you use it. In addition to data type, its size, color, and appearance must also
be the same. Use a Strict Type Definition when you want to have completely
identical objects in many places and to modify all of them automatically.
You can still have unique labels for each instance of a Strict Type Definition.

Saving Controls
After creating a custom control, you can save it for use later. By default,
controls saved on disk has a .ctl extension. You also can place controls in
the Controls palette using the same method as that you used to add subVIs
to the Functions palette.

You also can use the Control Editor to save controls with your own default
settings. For example, you can use the Control Editor to modify the defaults
of a waveform graph, save it, and later recall it in other VIs.

Appendix

LabVIEW Basics II Course Manual A-10 ni.com

Exercise A-2
Objective: To use the Control Editor to modify a control.

1. Open a new front panel.

2. Place a Horizontal Pointer Slide located on the Controls»Numeric
palette on the front panel. Right-click the slide and select Visible
Items»Digital Display.

Modifying the Control
3. Launch the Control Editor by selecting the slide with the Positioning

tool and selecting Edit»Customize Control. Using the Operating tool,
move the slide to the middle of the front panel to allow more work space.

4. Right-click the digital display and select Replace»Numeric»Meter.
Position the meter above the slide, as shown in the following example.

5. Hide the slide scale by right-clicking the slide and selecting
Scale»Style»None.

Appendix

© National Instruments Corporation A-11 LabVIEW Basics II Course Manual

6. Close the Control Editor by selecting Close from the File menu. Save
the control as Custom Slider.ctl, then click Yes to replace the
existing one. The modified slider is shown on the front panel.

Note You can save controls that you create like you save VIs. You can load saved
controls using Select a Control from the Controls palette. Controls have a .ctl
extension.

7. Manipulate the slider and watch the meter track its data value.

8. Close the VI. Do not save changes.

End of Exercise A-2

Appendix

LabVIEW Basics II Course Manual A-12 ni.com

Exercise A-3 Custom Picture Exercise VI
Objective: To create a custom Boolean indicator.

Build a VI that uses custom Boolean indicators to show the state of a Bunsen
burner and flask being heated. The pictures representing the on and off states
of the Bunsen burner and the flask are already drawn for you.

Front Panel

1. Open the Custom Picture Exercise VI in exercises\Basics2
directory.

The VI contains a vertical rocker switch to turn the Bunsen burner on
and off, and a button to quit the application. It also contains two graphics
representing the on and off states of the Bunsen burner, and two graphics
representing the boiling and non-boiling states of the flask.

2. To create the custom flask Boolean object, complete the following steps.

a. Right-click an open area on the front panel and select Square LED
from the Controls»Classic Controls»Boolean palette. Label the
LED Flask.

b. Using the Positioning tool, select the graphic that shows the contents
of the flask boiling and select Edit»Cut. Click the Flask LED
indicator and select Edit»Customize Control. The Control Editor
now appears with the Flask LED displayed. Right-click the LED and
select Import Picture»True. This custom picture now represents
the TRUE state.

Note The default state of the LED is FALSE. If you do not see the picture, the LED is
probably in the FALSE state.

Appendix

© National Instruments Corporation A-13 LabVIEW Basics II Course Manual

c. Change to the front panel by clicking it. Using the Positioning tool,
select the graphic of the flask that shows the contents of the flask not
boiling, and select Edit»Cut. Change to the Control Editor window
by clicking it.

d. Right-click the boiling flask and select Import Picture»False. This
custom picture now represents the FALSE state.

e. Select Apply Changes from the File menu, and close the Control
Editor. Do not save the custom control.

3. Right-click an open area and select Square LED from the
Controls»Classic Controls»Boolean shortcut menu. Label the LED
Flame.

4. Using the previous steps, make the LED look like a Bunsen burner. The
TRUE state should show the burner on; the FALSE state should show
the burner off.

5. Hide the labels of both Boolean indicators by right-clicking them and
selecting Visible Items»Label. Select both Boolean indicators and
align them on horizontal centers using the Align Objects tool.

Block Diagram

6. Complete the following block diagram.

7. Save the VI under the same name.

8. Return to the front panel and run the VI. Turn the Burner Switch on and
off and notice the custom Boolean change.

9. Stop the VI by clicking the Quit button. If you click the Quit button
while the burner is on, a dialog box notifies you that the burner must be
off before you can shut down the system.

10. Close the VI when you are finished.

End of Exercise A-3

Appendix

LabVIEW Basics II Course Manual A-14 ni.com

C. The LabVIEW Web Server
The Web is one of the most popular ways to share information, and it is a
good way to share your measurement and automation data. LabVIEW
contains several methods to help you publish your data to the web and create
HTML documents. Lesson 3 describes DataSocket and how it uses the URL
method to describe and access LabVIEW data.

Another method is to use the LabVIEW Web Server to publish images of
your VI front panels on the Web. By default, after you enable the Web Server
all VIs are visible to all Web browsers. However, you can control browser
access to the published front panels and configure which VIs are visible on
the Web. To display VI front panels on the Web, the VIs must be in memory
on your computer.

To configure the Web Server, select Tools»Options and select Web Server:
Configuration from the top pull-down menu.

The Web Server: Configuration window is where you enable the Web
Server. The default Web Server configuration is suitable for most
applications. If you need to change this default configuration, refer to the
LabVIEW help.

The Web Server: Browser Access window allows you to configure which
browser addresses can view your VI front panels. When a Web browser
attempts to obtain a VI front panel image, the Web Server compares the
browser address to the entries in the Browser Access List to determine
whether it should grant access. If an entry in the Browser Access List
matches the browser address, the Web Server permits or denies access based
on how you set up the entry. By default all browsers have access to the
LabVIEW Web Server. Refer to the Context Help window for more
information about the syntax used to specify browser access.

The WebServer: Visible VIs window lets you specify which VIs are
accessible to a Web browser. When a Web browser attempts to obtain a VI
front panel image, the Web Server compares the VI name to the entries in
the Visible VIs list to determine whether it should grant access. If an entry
in the Visible VIs list matches the VI name, the Web Server permits or
denies access to that VI image based on how you set up the entry. By default,
the front panel images of all VIs are visible. Refer to the Context Help
window for more information about the syntax used to specify visible VIs.

Note Use the LabVIEW Enterprise Connectivity Toolset to control VIs on the Web and
to add more security features to VIs you publish on the Web. Refer to the National
Instruments Web site for more information about this toolset.

Appendix

© National Instruments Corporation A-15 LabVIEW Basics II Course Manual

The LabVIEW Web Publishing Tool
You also can use the Tools»Web Publishing Tool to create an HTML
document and embed static or animated images of the front panel. You also
can embed images of the front panel in an existing HTML document.

Click the Instructions button to display information about how to add a title
to your HTML file and how to add text before and after your VI front panel.
Enter a VI name in the VI Name field or select Browse from the VI Name
pull-down menu and navigate to a VI.

Note To display VI front panels on the Web, the VIs must be in memory on your
computer.

You can preview the document in your default browser by clicking the
Start Web Server button and then clicking the Preview in Browser button.
If the Start Web Server button is dimmed, the Web Server is already
running. When you click the Save to Disk button, the title, text, and VI front
panel image are saved in an HTML document. If you want to view the
document from a remote computer, save the HTML document in the Web
Server root directory, usually labview\www. The Document URL dialog
box appears with the URL for your HTML document.

Appendix

LabVIEW Basics II Course Manual A-16 ni.com

Exercise A-4 Generate & Analyze Data
Objective: To use the LabVIEW Web Server tools to display a front panel in a web browser.

Open the VI you built in Exercise 1-1, the Generate & Analyze Data VI,
and save its front panel into an HTML document.

Front Panel

1. Open the Generate & Analyze Data VI from the exercises\LV
Basics2 directory.

2. Enable and configure the Web Server by selecting Tools»Options.

3. Select Web Server: Configuration from the pull-down menu at the top
of the Options dialog box and place a checkmark in the Enable Web
Server checkbox.

4. Click the OK button to close the Options dialog box. The LabVIEW
Web Server is now running.

Appendix

© National Instruments Corporation A-17 LabVIEW Basics II Course Manual

5. Run the VI for a few seconds and stop it.

6. Select Tools»Web Publishing Tool. Click the Instructions button and
read how to use this tool.

7. Click the continue link and configure the following window.

8. Click the Preview in Browser button to open and display the front panel
in a web browser. A window similar to the one shown in the next figure
appears.

Appendix

LabVIEW Basics II Course Manual A-18 ni.com

Note The Animated option only works with Netscape Navigator. You can only view
static images using Internet Explorer.

9. Return to the Web Publishing Tool window and click the Save to Disk
button to save the title, text, and VI front panel image in an HTML
document. Save the document as Generate & Analyze Data.htm
in the LV Basics 2 directory. A warning message appears, telling you
where to install the file if you want other machines to view it.

10. Click the Done button to exit the Web Publishing Tool.

11. Go back to the Browser application and type the following URL into the
address: http://127.0.0.1. This specifies the local machine. The
following window appears.

Appendix

© National Instruments Corporation A-19 LabVIEW Basics II Course Manual

12. Read the information and close the browser when you are finished.

13. Turn off the Web Server by selecting Tools»Options to display the
Options dialog box.

14. Select Web Server: Configuration from the top pull-down menu of the
Options dialog box and remove the checkmark from the Enable Web
Server checkbox.

15. Click the OK button to close the Options dialog box.

16. Close the Generate & Analyze Data VI.

End of Exercise A-4

Appendix

LabVIEW Basics II Course Manual A-20 ni.com

D. Additional Information
This section describes how you can receive more information regarding
LabVIEW, instrument drivers, and other topics related to this course.

National Instruments Technical Support Options
The best way to get technical support and other information about
LabVIEW, test and measurement, instrumentation, and other National
Instruments products and services is the NI Web site at ni.com

The support page for the National Instruments Web site contains links to
application notes, the support knowledgebase, hundreds of examples, and
troubleshooting wizards for all topics discussed in this course and more.

Another excellent place to obtain support while developing various
applications with National Instruments products is the NI Developer Zone
at ni.com/zone

The NI Developer Zone also includes direct links to the instrument driver
network and to Alliance Program member Web pages.

The Alliance Program
The National Instruments Alliance Program joins system integrators,
consultants, and hardware vendors to provide comprehensive service and
expertise to customers. The program ensures qualified, specialized
assistance for application and system development. Information about and
links to many of the Alliance Program members are available from the
National Instruments Web site.

User Support Newsgroups
The National Instruments User Support Newsgroups are a collection of
Usenet newsgroups covering National Instruments products as well as
general fields of science and engineering. You can read, search, and post to
the newsgroups to share solutions and find additional support from other
users. You can access the User Support Newsgroups from the National
Instruments support Web page.

Other National Instruments Training Courses
National Instruments offers several training courses for LabVIEW users.
The courses are listed in the National Instruments catalog and online at
ni.com/custed. These courses will continue the training you received
here and expand it to other areas. You can purchase just the course materials
or sign up for an instructor-led hands-on course by contacting National
Instruments.

Appendix

© National Instruments Corporation A-21 LabVIEW Basics II Course Manual

LabVIEW Publications
LabVIEW Technical Resource (LTR) Newsletter
Subscribe to LabVIEW Technical Resource to discover power tips and
techniques for developing LabVIEW applications. This quarterly
publication offers detailed technical information for novice users as well
as advanced users. In addition, every issue contains a disk of LabVIEW
VIs and utilities that implement methods covered in that issue. To order
LabVIEW Technical Resource, call LTR publishing at (214) 706-0587
or visit ltrpub.com

LabVIEW Books
Many books have been written about LabVIEW programming and
applications. The National Instruments Web site contains a list of all the
LabVIEW books and links to places to purchase these books. Publisher
information is also included so you can directly contact the publisher for
more information on the contents and ordering information for LabVIEW
and related computer-based measurement and automation books.

The Info-labview Listserve
Info-labview is an e-mail group of users from around the world who
discuss LabVIEW issues. The people on this list can answer questions about
building LabVIEW systems for particular applications, where to get
instrument drivers or help with a device, and problems that appear.

Send subscription messages to the info-labview list processor at:

listmanager@pica.army.mil

Send other administrative messages to the info-labview list
maintainer at:

info-labview-REQUEST@pica.army.mil

Post a message to subscribers at:

info-labview@pica.army.mil

You might also want to search the ftp archives at:

ftp://ftp.pica.army.mil/pub/labview/

The archives contain a large set of donated VIs for doing a wide variety of
tasks.

Appendix

LabVIEW Basics II Course Manual A-22 ni.com

E. ASCII Character Code Equivalents Table
The following table contains the hexadecimal, octal, and decimal code
equivalents for ASCII character codes.

Hex Octal Decimal ASCII Hex Octal Decimal ASCII

00 000 0 NUL 20 040 32 SP

01 001 1 SOH 21 041 33 !

02 002 2 STX 22 042 34 "

03 003 3 ETX 23 043 35 #

04 004 4 EOT 24 044 36 $

05 005 5 ENQ 25 045 37 %

06 006 6 ACK 26 046 38 &

07 007 7 BEL 27 047 39 '

08 010 8 BS 28 050 40 (

09 011 9 HT 29 051 41)

0A 012 10 LF 2A 052 42 *

0B 013 11 VT 2B 053 43 +

0C 014 12 FF 2C 054 44 ,

0D 015 13 CR 2D 055 45 -

0E 016 14 SO 2E 056 46 .

0F 017 15 SI 2F 057 47 /

10 020 16 DLE 30 060 48 0

11 021 17 DC1 31 061 49 1

12 022 18 DC2 32 062 50 2

13 023 19 DC3 33 063 51 3

14 024 20 DC4 34 064 52 4

15 025 21 NAK 35 065 53 5

16 026 22 SYN 36 066 54 6

17 027 23 ETB 37 067 55 7

Appendix

© National Instruments Corporation A-23 LabVIEW Basics II Course Manual

18 030 24 CAN 38 070 56 8

19 031 25 EM 39 071 57 9

1A 032 26 SUB 3A 072 58 :

1B 033 27 ESC 3B 073 59 ;

1C 034 28 FS 3C 074 60 <

1D 035 29 GS 3D 075 61 =

1E 036 30 RS 3E 076 62 >

1F 037 31 US 3F 077 63 ?

40 100 64 @ 60 140 96 `

41 101 65 A 61 141 97 a

42 102 66 B 62 142 98 b

43 103 67 C 63 143 99 c

44 104 68 D 64 144 100 d

45 105 69 E 65 145 101 e

46 106 70 F 66 146 102 f

47 107 71 G 67 147 103 g

48 110 72 H 68 150 104 h

49 111 73 I 69 151 105 i

4A 112 74 J 6A 152 106 j

4B 113 75 K 6B 153 107 k

4C 114 76 L 6C 154 108 l

4D 115 77 M 6D 155 109 m

4E 116 78 N 6E 156 110 n

4F 117 79 O 6F 157 111 o

50 120 80 P 70 160 112 p

51 121 81 Q 71 161 113 q

52 122 82 R 72 162 114 r

Hex Octal Decimal ASCII Hex Octal Decimal ASCII

Appendix

LabVIEW Basics II Course Manual A-24 ni.com

53 123 83 S 73 163 115 s

54 124 84 T 74 164 116 t

55 125 85 U 75 165 117 u

56 126 86 V 76 166 118 v

57 127 87 W 77 167 119 w

58 130 88 X 78 170 120 x

59 131 89 Y 79 171 121 y

5A 132 90 Z 7A 172 122 z

5B 133 91 [7B 173 123 {

5C 134 92 \ 7C 174 124 |

5D 135 93] 7D 175 125 }

5E 136 94 ^ 7E 176 126 ~

5F 137 95 _ 7F 177 127 DEL

Hex Octal Decimal ASCII Hex Octal Decimal ASCII

Documentation Comment Form
National Instruments encourages you to comment on the documentation supplied with our products. This information
helps us provide quality products to meet your needs.

Title: LabVIEW Basics II Course Manual

Edition Date: September 2000

Part Number: 320629G-01

Please comment on the completeness, clarity, and organization of the manual.

__

__

__

__

__

__

__

__

If you find errors in the manual, please record the page numbers and describe the errors.

__

__

__

__

__

__

__

Date manual was purchased (month/year): __

Thank you for your help.

Name ___

Title __

Company __

Address ___

__

E-mail Address ___

Phone (___)____________________________________ Fax (___) ___________________________________

Mail to: Customer Education Fax to: Customer Education
National Instruments Corporation National Instruments Corporation
11500 North Mopac Expressway 512 683 6837
Austin, Texas 78759-3504

Course Evaluation
Course ___

Location ___

Instructor ___ Date ____________________________________

Student Information (optional)
Name __

Company ___ Phone ___________________________________

Instructor
Please evaluate the instructor by checking the appropriate circle. Unsatisfactory Poor Satisfactory Good Excellent

Instructor’s ability to communicate course concepts ❍ ❍ ❍ ❍ ❍

Instructor’s knowledge of the subject matter ❍ ❍ ❍ ❍ ❍

Instructor’s presentation skills ❍ ❍ ❍ ❍ ❍

Instructor’s sensitivity to class needs ❍ ❍ ❍ ❍ ❍

Instructor’s preparation for the class ❍ ❍ ❍ ❍ ❍

Course
Training facility quality ❍ ❍ ❍ ❍ ❍

Training equipment quality ❍ ❍ ❍ ❍ ❍

Was the hardware set up correctly? ❍ Yes ❍ No

The course length was ❍ Too long ❍ Just right ❍ Too short

The detail of topics covered in the course was ❍ Too much ❍ Just right ❍ Not enough

The course material was clear and easy to follow. ❍ Yes ❍ No ❍ Sometimes

Did the course cover material as advertised? ❍ Yes ❍ No

I had the skills or knowledge I needed to attend this course. ❍ Yes ❍ No If no, how could you have been better

prepared for the course? ___

What were the strong points of the course? __

What topics would you add to the course? ___

What part(s) of the course need to be condensed or removed? __

What needs to be added to the course to make it better? __

Are there others at your company who have training needs? Please list. ____________________________________

Do you have other training needs that we could assist you with? ___

How did you hear about this course? ❍ National Instruments web site ❍ National Instruments Sales Representative

❍ Mailing ❍ Co-worker ❍ Other ___

Customer Education Student Profile
Name __ Title _____________________________________

Company ___ Mail Stop _________________________________

Mailing Address ___

City __________________ State/Province ____________ Country ______________ Zip ______________

Telephone __ Fax ______________________________________

E-Mail ___

Date ___ Event Location _____________________________

Industry and Application Information
Which industry does your company primarily serve? (check only one)

If you are currently a customer of National Instruments, please check the products you use:

Please check the operating system(s) you use:

Please check the bus architecture(s) you use:

What other products are of interest to you:

Tell Us About Your Applications
Number and type (AC, DC, thermocouple, and so on) of signals __

My systems are developed by ❏ In-house staff ❏ System(s) integrator ❏ consultant

System description ___

❏ Automotive ❏ Industrial systems -
factory floor/integrator

❏ Pharmaceutical ❏ Test, measurement,
and instrumentation

❏ Computer ❏ Medical ❏ Aero/avionics ❏ Telecommunications

❏ Consumer products ❏ Military/space ❏ Semiconductor ❏ University/education

❏ Electronics ❏ Paper/pulp ❏ ATE/automated test

❏ Graphics ❏ Petrochemical/plastics ❏ Other ______________

❏ LabVIEW™ ❏ HiQ™ ❏ DAQ ❏ Fieldbus™

❏ LabWindows/CVI™ ❏ ComponentWorks™ ❏ SCXI™ ❏ IMAQ™ Vision

❏ BridgeVIEW™ ❏ VirtualBench™ ❏ GPIB ❏ Serial

❏ Lookout™ ❏ Measure™ ❏ VXI ❏ Motion control

❏ Windows NT ❏ Windows 3.1 ❏ Mac OS ❏ HP-UX

❏ Windows 95 ❏ Sun ❏ Concurrent PowerMax

❏ PC/XT/AT ❏ PCI ❏ Macintosh ❏ DEC

❏ PCMCIA ❏ VME

❏ LabVIEW ❏ HiQ ❏ DAQ ❏ Fieldbus

❏ LabWindows/CVI ❏ ComponentWorks ❏ SCXI ❏ IMAQ Vision

❏ BridgeVIEW ❏ VirtualBench ❏ GPIB ❏ Serial

❏ Lookout ❏ Measure ❏ VXI ❏ Motion control

Which statements best describe your role in the purchase of instrumentation or data acquisition products?

Which statement best describes your function in the company? (check only one)

Please Check Below for Free Product Information
Software Tools

Catalogues and Newsletters

Industry-specific Literature

Product Literature (check up to three)

Additional Literature

Product and company names mentioned herein are trademarks or trade names of their respective companies.
© Copyright 1997, 1999 National Instruments Corporation. All rights reserved. 340812C-01

❏ I set company standards. ❏ I use a PC regularly in my instrumentation system.

❏ I influence product purchases. ❏ I develop virtual instrumentation applications.

❏ I evaluate and recommend software.

❏ Education ❏ Calibration ❏ Government/legal ❏ Production test

❏ Manufacturing/
automation

❏ Engineering
management

❏ Research/R&D/grad
student

❏ Systems integrator/
hardware

❏ Reseller/sales ❏ Purchasing/contracts ❏ Software developer ❏ Software consultant

❏ Service/repair ❏ Student/co-op ❏ Design ❏ Compliance testing

❏ Instrupedia™/Windows (CD) – includes catalogue, software demos, application notes, and more

❏ Software Showcase/Windows and Macintosh (CD) – Demos of entire software line

❏ DAQ Designer™/Windows (3.5 in.) – DAQ system integration tool

❏ Measurement and Automation Catalogue ❏ Automation View™ newsletter

❏ VXI Product Solutions Guide ❏ Third-Party Solution CD

❏ Academic Catalogue ❏ NI News e-mail newsletter

❏ Instrumentation Newsletter™

❏ Aerospace ❏ Semiconductor ❏ Analytical chemistry ❏ Industrial automation

❏ Telecommunications ❏ Vibration/acoustics ❏ Education ❏ Laboratory automation

❏ Automotive ❏ Physiology ❏ Test and measurement

❏ LabWindows/CVI ❏ Analysis ❏ GPIB ❏ PXI™

❏ ComponentWorks ❏ HIQ ❏ GPIB chip kit ❏ IMAQ

❏ TestStand™ ❏ Measure ❏ HS488™ ❏ Customer education

❏ LabVIEW Add-On
Toolkit pack

❏ LabVIEW
productivity study

❏ Virtual instrumentation
software

❏ Computer-based
instruments

❏ BridgeVIEW ❏ DAQ ❏ VXI ❏ SCXI signal
conditioning❏ Lookout ❏ Low-cost DAQ ❏ VME

❏ NI Global Services ❏ LabVIEW Technical Resource Subscription Card

❏ Customer Education Course Schedule

11500 North Mopac Expressway Austin, TX 78759-3504
Tel: 512-794-0100, (800) 433-3488 • Fax: 512-683-9300

info@ni.com • ni.com

