
- 1 -

Image Processing in Hardware

Mr. Kittituch Manakul

Mr. Surachai Chatchalermpun

A Project Submitted in Partial Fulfillment of the Requirements

for the Degree of Bachelor of Engineering

Department of Computer Engineering, Faculty of Engineering

King Mongkut’s University of Technology Thonburi

Academic Year 2007

- 2 -

Image Processing in Hardware

Mr. Kittituch Manakul

Mr. Surachai Chatchalermpun

A Project Submitted in Partial Fulfillment of the Requirements

for the Degree of Bachelor of Engineering

Department of Computer Engineering, Faculty of Engineering

King Mongkut’s University of Technology Thonburi

Academic Year 2007

Project Committee

…………………………………………………………… Committee and Advisor
(Kurt T. Rudahl, M.Sc.)

…………………………………………………………… Committee
(Jumpol Polvichai, Ph.d.)

…………………………………………………………… Committee
(Asst. Prof. Surapont Toomnark)

- i -

Project Title Image Processing in Hardware

Project Credit 4 credits

Project Participant Mr. Kittituch Manakul

 Mr. Surachai Chatchalermpun

Advisor Kurt T. Rudahl, M.Sc.

Degree of Study Bachelor's Degree

Department Computer Engineering

Academic Year 2007

Abstract

This project tries to reduce software processing time of image processing

operations by integrating a computing platform into an ordinary host computer as a co-

processor. The computationally-intensive parts of the operations are immigrated to the

computing platform. The platform performs operations with superior speed and returns

results back to the host computer. The other parts are performs within the host

computer.

This computing platform is designed to contain an FPGA and an external

memory unit. The bottle neck in this system is the communication connectivity between

the platform and the host computer. Because of this, the fastest possible connectivity is

chosen. It is Peripheral Component Interconnection with data transfer rate of 133 Mbps.

In this project, the GLCM statistics image generation is chosen to be

implemented in hardware. The FPGA is designed to compute the computationally-

intensive parts of this operation by separating the operation into modules. Each module

is functionally independent to one another and its function can be applied to most of

other image processing operations as well. Moreover, the system is generalized by

designing its architecture as a digital signal processor which has a controls module for

controlling the other modules to operate as a received instruction and an internal buses

system for interconnection between each module. This architecture aids in modifying

and extending the system later.

After performing an experiment with this system, the GLCM statistics image

generation can be performed correctly and the speed satisfies the timing constraint.

- ii -

หัวขอโครงงาน การประมวลผลภาพดวยหนวยประมวลผลภายนอก
หนวยกิตของโครงงาน 4 หนวยกิต

จัดทําโดย นายกิตติธัช มานะกุล

 นายสุรชัย ฉัตรเฉลิมพันธุ
อาจารยท่ีปรึกษา Kurt T. Rudahl, M.Sc.

ระดับการศึกษา วิศวกรรมศาสตรบัณฑิต

ภาควิชา วิศวกรรมคอมพิวเตอร
ปการศึกษา 2550

บทคัดยอ

การประมวลผลภาพเปนการประมวลผลท่ีใชเวลาสูง โครงงานน้ีทําการออกแบบหนวย
ประมวลผลภายนอกเช่ือมตอกับเครื่องคอมพิวเตอรเพื่อชวยลดเวลาในการประมวลผลภาพ การ
ประมวลผลท่ีม่ีความซับซอนและมีการวนซํ้าจะถูกกระทําบนหนวยประมวลผลภายนอกนี้ แลว
ผลลัพธจากการประมวลผลจะถูกสงกลับไปใหกับเคร่ืองคอมพิวเตอรเพื่อกระทําการประมวลผลอ่ืนๆ
ตอไป

หนวยประมวลผลท่ีสรางข้ึนมานั้นประกอบดวย วงจรทางตรรกะ และหนวยความจําภายนอก
ปญหาท่ีเกิดข้ึนกับระบบนี้คือ การเคล่ือนยายขอมูลระหวางหนวยประมวลผลภายนอกกับเคร่ือง
คอมพิวเตอร จึงใชการเช่ือมตอท่ีเร็วท่ีสุดคือ ระบบเช่ือมตออุปกรณภายนอกของระบบคอมพิวเตอร
ซ่ึงมีความเร็วในการเคล่ือนยายขอมูล 133 เมกะบิตตอวินาที

โครงงานนี้ไดเลือก การสรางรูปภาพทางสถิติจากภาพถายดาวเทียม เปนการประมวลผลภาพ
ท่ีนํามาประยุกตใชกับระบบ เพราะการประมวลผลภาพน้ีแสดงใหเห็นถึงลักษณะเดนตางๆ ของการ
ประมวลผลภาพไดอยางชัดเจน ระบบของหนวยประมวลผลภายนอกจะแบงออกเปนหนวยยอยๆ เพื่อ
ทําหนาท่ีเฉพาะสําหรับการประมวลผลแบบตางๆ เพื่อผูใชงานสามารถนําไปประยุกตใชไดกับการ
ประมวลผลภาพอ่ืนๆ นอนจากนั้นสถาปตยกรรมของระบบจะมีลักษณะคลายกับหนวยประมวลผล
สัญญาณดิจิตอล คือ มีหนวยยอยเพื่อทําการควบคุมการทํางาน และมีระบบบัสเพื่อใชในการ
เคล่ือนยายขอมูลระหวางหนวยยอยตางๆ สถาปตยกรรมแบบนี้จะชวยใหการพัฒนา และการปรับแตง
เปนไปดวยความสะดวกในภายหนา

จากการทดลองพบวา หนวยประมวลผลภายนอกทําการประมวลผลภาพไดอยางถูกตอง และ
ความเร็วของการประมวลผลรวดเร็วมากข้ึน

- iii -

Acknowledgement

The project couldn’t be completed without our project advisor, Kurt T. Rudahl,

M.Sc. He spends his precious time for project consultations every week and many good

advises which help us solving hard problems. We are very pleased to say “thank you”

for him here.

Not only our advisor, but there are also many organizations and people that

supporting this project – Asst. Prof. Surapont Toomnark who lent us the experimental

tools from the Bellab of KMUTT, APEX Instrument Co., Ltd. which advises us the

design techniques, and Design Gateway Co., Ltd. which lent us the True PCI for the

experiment without any payment.

In addition, this project couldn’t reach the end if there is no encouragement and

support from our parents and our friends. There are also assistances from the department

staffs in coordinating with teachers and other department members.

Finally, we would like to thank Asst. Prof. Tiranee Achalakul, Ph.D. who allows

us to be in the CAST Laboratory where this project is settled. We have been warmly

taken care of as if we are members of the lab and we are very happy being in the lab’s

environment.

- iv -

Contents

 Pages

Chapter 1 Introduction 1

 1.1 Project Background 1

 1.2 Project Objectives 1

Chapter 2 Research and Study 2

 2.1 Related Theories 2

 2.1.1 Digital Image Processing 2

 2.1.2 Computer Architecture 2

 2.1.3 Field-Programmable Gate Arrays 3

 2.1.4 Hardware Description Language 4

 2.1.5 Finite State Machine 5

 2.1.6 Communication Connectivity between 5

an FPGA Board and a Computer

 2.2 Gray-level Co-occurrence Matrix Statistic 8

 Image Generation

 2.2.1 Description 9

 2.2.2 Theories 9

 2.2.3 Processes 11

 2.2.4 Reasons of Choosing 13

 2.2.5 Problem Issues 13

 2.3 Prototyping Board 14

 2.3.1 Description 15

 2.3.2 Connectivity between the Board and a 15

 Computer

2.4 Static Random Access Memory 20

 2.4.1 Description 20

 2.4.2 Operation 20

- v -

Chapter 3 Experiments 23

 3.1 Possible Algorithms for Gray-level Co-occurrence 23

Matrix

 3.1.1 Introduction 23

 3.1.2 Objectives 24

 3.1.3 Materials and Equipments 24

 3.1.4 Procedures 24

 3.1.5 Results 25

 3.1.6 Conclusion 25

3.2 Gray-level Co-occurrence Matrix Statistic Image 26

 3.2.1 Introduction 26

 3.2.2 Objectives 26

 3.2.3 Materials and Equipments 27

 3.2.4 Procedures 27

 3.2.5 Results 27

 3.2.6 Conclusion 28

Chapter 4 Designs 29

4.1 Top-level Design of the System 29

 4.1.1 Block Diagram 30

 4.1.2 System Components 32

 4.1.3 Top-level System Operation 32

4.2 Components Design 34

 4.2.1 Memory Controller 34

 4.2.2 Process Controller 37

 4.2.3 Arbiter 46

 4.2.4 Center Indexer 49

 4.2.5 Square Fetcher 51

 4.2.6 Square Buffer 55

 4.2.7 GLCM Builder 57

 4.2.8 Address Decoder 60

 4.2.9 Matrix Voter 62

 4.2.10 Matrix Integrator 65

 4.2.11 Clock Divider 67

- vi -

Chapter 5 Implementation 69

 5.1 Prerequisites 69

 5.2 System Deployment Process 72

 5.2.1 Hardware Side 72

 5.2.2 Software Side 73

5.3 Theoretical calculation 74

Chapter 6 Verification 79

 6.1 Correctness Verification 79

 6.1.1 Introduction 79

 6.1.2 Objectives 79

 6.1.3 Materials and Equipments 79

 6.1.4 Procedures 80

 6.1.5 Results 81

 6.1.6 Conclusion 84

 6.2 Execution Time Verification 85

 6.2.1 Introduction 85

 6.2.2 Objectives 85

 6.2.3 Results 85

 6.2.4 Conclusion 86

Chapter 7 Conclusion 87

References 88

Appendix A Timing Diagrams 89

 A.1 Memory Controller 90

 A.2 Process Controller 93

 A.3 Arbiter 106

 A.4 Center Indexer 107

 A.5 Square Fetcher 108

 A.6 Square Buffer 110

 A.7 GLCM Builder 111

 A.8 Address Decoder 112

 A.9 Matrix Voter 113

 A.10 Matrix Integrator 114

 A.11 Clock Divider 115

- vii -

Appendix B Schematics 116

- viii -

List of Figures

 Pages

Figure 2.1 Directions from an interesting pixel in an image 9

Figure 2.2 GLCM with 8-scale levels and 1-pixel distance

in east direction 10

Figure 2.3 Flow chart of the GLCM statistic image generation 12

Figure 2.4 True PCI, the FPGA prototyping board 14

Figure 2.5 Model of the connectivity between the

prototyping board and a computer 15

Figure 2.6 Local-bus signals of pciif32 interfacing with a

user IP core 16

Figure 2.7 Read operation timing diagram 18

Figure 2.8 Write operation timing diagram 18

Figure 2.9 Timing Diagram of the SRAM Read Operation 21

Figure 2.10 Timing Diagram of the SRAM Write Operation 21

Figure 2.11 The bi-directional level-shifter circuit 22

Figure 4.1 Block diagram of Image Processing in Hardware

system (Top) 30

Figure 4.2 Block diagram of Image Processing in Hardware

system (Bottom) 31

 Figure 4.3 The top-level flow chart of the system 33

 Figure 4.4 Block structure showing ports of Memory

Controller 34

Figure 4.5 State Machine of Memory Controller 36

Figure 4.6 Block structure showing ports of Process

Controller 37

Figure 4.7 Finite State Machine of Process Controller 46

Figure 4.8 Block structure showing ports of Arbiter 47

Figure 4.9 Finite State Machine of Arbiter 49

Figure 4.10 Block structure showing ports of Center Indexer 49

Figure 4.11 Block structure showing ports of Square Fetcher 51

- ix -

Figure 4.12 Main Finite State Machine of Square Fetcher 54

Figure 4.13 Fetch Finite State Machine of Square Fetcher 55

Figure 4.14 Block structure showing ports of Square Buffer 56

Figure 4.15 Block structure showing ports of GLCM Builder 57

Figure 4.16 State Machine of GLCM Builder 60

Figure 4.17 Block structure showing ports of Address

Decoder 61

Figure 4.18 Block structure showing ports of Matrix Voter 62

Figure 4.19 Finite State Machine of Matrix Voter 64

Figure 4.20 Block structure showing ports of Matrix

Integrator 65

Figure 4.21 Finite State Machine of Matrix Integrator 67

Figure 4.22 Block structure showing ports of Clock Divider 68

Figure 6.1 The 1st moment output statistics image

generated by software with R is 64, direction is

east 81

Figure 6.2 The 1st moment output statistics image

generated by hardware with R is 64, direction is

east 81

Figure 6.3 The 2nd moment output statistics image

generated by software with R is 64, direction is

east 82

Figure 6.4 The 2nd moment output statistics image

generated by hardware with R is 64, direction is

east 82

Figure 6.5 The 3rd moment output statistics image

generated by software with R is 64, direction is

east 83

Figure 6.6 The 3rd moment output statistics image

generated by hardware with R is 64, direction is

east 83

Figure A.1 Timing diagram of Memory Read Operation 90

Figure A.2 Timing diagram of Memory Write Operation 91

- x -

Figure A.3 Timing diagram of Memory Clear Operation

(Begin) 92

Figure A.4 Timing diagram of Memory Clear Operation

(End) 92

Figure A.5 Timing diagram of Clear Interrupt Operation 93

Figure A.6 Timing diagram of Write to Memory Operation

(Begin) 93

Figure A.7 Timing diagram of Write to Memory Operation

(End) 94

Figure A.8 Timing diagram of Read from Memory into

 Data Register Operation (Begin) 95

Figure A.9 Timing diagram of Read from Memory into

 Data Register Operation (End) 96

Figure A.10 Timing diagram of Clear Temporary Memory

Operation (Begin) 97

Figure A.11 Timing diagram of Clear Temporary Memory

Operation (End) 98

Figure A.12 Timing diagram of Reset Square Window

Position Operation 99

Figure A.13 Timing diagram of Shift Square Window

Position Operation 100

Figure A.14 Timing diagram of Fetch Data into Square

Window Operation (Begin) 100

Figure A.15 Timing diagram of Fetch Data into Square

Window Operation (End) 101

Figure A.16 Timing diagram of Calculate GLCM Operation

(Begin) 101

Figure A.17 Timing diagram of Calculate GLCM Operation

(Finish clearing) 102

Figure A.18 Timing diagram of Calculate GLCM Operation

(End) 102

Figure A.19 Timing diagram of Digest GLCM into Statistics

Values Operation (Begin) 103

- xi -

Figure A.20 Timing diagram of Digest GLCM into Statistics

Values Operation (End) 104

Figure A.21 Timing diagram of Read 1st Moment into

Result Register Operation 104

Figure A.22 Timing diagram of Initial Image Operation 105

Figure A.23 Timing diagram of Read from Interrupt Register

Operation 106

Figure A.24 Timing diagram of Arbiter Operation 106

Figure A.25 Timing diagram of Center Indexer Operation 107

Figure A.26 Timing diagram of Square Fetcher Operation

 (Begin) 108

Figure A.27 Timing diagram of Square Fetcher Operation

 (End) 109

Figure A.28 Timing diagram of Square Buffer Operation 110

Figure A.29 Timing diagram of GLCM Builder Operation 111

Figure A.30 Timing diagram of Address Decoder Operation 112

Figure A.31 Timing diagram of Matrix Voter Operation 113

Figure A.32 Timing diagram of Matrix Integrator Operation

 (Begin) 114

Figure A.33 Timing diagram of Matrix Integrator Operation

 (End) 114

Figure A.34 Timing diagram of Clock Divider Operation 115

Figure B.1 Schematic of Image Processing in Hardware

 system 117

- xii -

List of Tables

 Pages

Table 2.1 Ports in the local bus of pciif32 17

Table 2.2 Functions and their descriptions provided in

 True PCI DLL 19

Table 3.1 The resulting processing time from varying the

distance 25

Table 3.2 result processing time from varying the number

of lines in the buffer 27

Table 4.1 Ports of Memory Controller 35

Table 4.2 Ports of Process Controller 38

Table 4.3 Ports of Arbiter 47

Table 4.4 Ports of Center Indexer 50

Table 4.5 Ports of Square Fetcher 52

Table 4.6 Ports of Square Buffer 56

Table 4.7 Ports of GLCM Builder 58

Table 4.8 Ports of Address Decoder 61

Table 4.9 Ports of Matrix Voter 63

Table 4.10 Ports of Matrix Integrator 65

Table 4.11 Ports of Clock Divider 68

Table 5.1 Design Parameters of Image Processing in

Hardware System 70

 Table 6.1 The result processing time from varying the

number of lines in the buffer 84

Table 6.2 Resulting of speed between performed GLCM

image generated by software and hardware for

comparing 85

- 1 -

Chapter 1

Introduction

Image Processing in Hardware project aims at accelerating image processing

operations by using an FPGA as a co-processor of the computer system. This co-

processor will perform the compute-intensive processing part of those operations.

1.1 Project Background

Digital image processing is one of the most compute-intensive processing in the

world. Obviously, it repeats the same operations on a large amount of data. It is found

that doing the digital image operations by using a computer is slow because the

computer executes very repetitive operations by fetch-execute cycle. The cycle keeps

fetching data and instructions from the storage and executes them one by one not

knowing that it is executing the same operations.

An FPGA does not use the fetch-execute cycle. It can be programmed to

function as a parallel computing unit which takes a large amount of data and does the

same operations to each segment of the data at the same time.

Thus, Image Processing in Hardware project takes the advantages of the FPGA

in speeding the digital image processing. The computationally-intensive operations in a

digital image process will be implemented in the FPGA. For other operations, users

have to implement them in the host computer.

1.2 Project Objectives

1. Use the FPGA as a co-processor of the computer system in computing

the computationally-intensive part of operations in the digital image

processing.

2. Study methodology of using the FPGA to build a computing platform

which co-operates in computing with the CPU of the computer.

3. Make programming of specified algorithms in the FPGA possible for an

applications developer or researcher.

- 2 -

Chapter 2

Research and Study

In this phase, many image processing operations are studied. Interesting

operations which contains intensively-computational processing are chosen and studied

in detail.

2.1 Related Theories

2.1.1 Digital Image Processing

Digital image processing is used to process digital images to recover

information which is not visible in the original images. It has advantages over analog

image processing – it lets algorithms, which can be implemented only in digital

system, be applied to the input data. Moreover, during the digital process, there is

less noise and distortion than when you using analog processing.

In the past, the cost of digital image processing was very high. This made the

digital image processing limited to a small number of uses. After computers and

dedicated hardware were cheaper, the processing became more popular.

At the present time, computers have more speed than in the past. Computers

now take over the role of most dedicated hardware in the digital image processing

system except processing that related to compute-intensive operations.

2.1.2 Computer Architecture

Present computer architecture is developed from Von Neumann architecture.

Computers in Von Neumann architecture consist of 2 units. They’re a processing unit

and a storage unit. Both data and instructions are stored in the same storage and

processing unit processes them.

The architecture has a bottleneck in processing. When the processor needs to

process a large amount of data, it has to wait for a long time due to throughput of the

transfer between the storage and the processing unit leading to the lack of efficiency

in this architecture.

- 3 -

In order to process, the processor calls for an instruction in the storage. After

the instruction is fetched to the processor, it executes the instruction. If the

instruction needs input data, the processor will request to fetch the data from the

storage to itself. Then, the execution was successful. This process will be repeated

continuously so it was called “Fetch-execute Cycle”.

Because of the cycle, the architecture performs slower operation on

intensively-computational processes than an FPGA which executes the operation

without the instruction fetch part of the cycle. This speed difference will be most

important with the process that does the same compute-intensive operation on a large

amount of the data such as the digital image processing operation.

2.1.3 Field-Programmable Gate Array (FPGA)

A Field-Programmable Gate Array is a large-scale integrated circuit (LSI)

which is programmable. It is different from other ICs that can’t be reprogrammed

after they’re manufactured.

The FPGA is programmable because it contains a large number of

programmable logic cells that are capable of perform small logic functions. They are

connected to one another using programmable interconnections in the FPGA. By

programming the devices, a more-complex logic function is formed to suit needs.

At the present time, designing the FPGA circuit configuration begins from

gathering requirements, e.g. inputs and outputs of the circuits, timing constraints, or

area constraints. Then, files called “HDLs” are written to describe the behavior of the

system. The HDLs are behaviorally simulated in the computer to make sure that they

can work properly. After the simulations, the circuit diagrams are generated by

circuit synthesis software in the computer. Finally, the diagrams are mapped to the

technology of the FPGA that will be used by place & route software. The result of

the mapping is a configuration of the FPGA called “Netlist”

Once the netlist is loaded into the FPGA board and the switch is turned on,

the configuration will be applied to the FPGA. Then, the FPGA can perform the

behavior described by those HDLs.

- 4 -

Advantages of using FPGAs in processing

1. Perform computationally-intensive operations much faster than

computers.

2. Permit changes by application programmers or researchers.

Disadvantages of using FPGAs in processing

1. Requires digital hardware knowledge to maximize the efficiency of the

designed system.

2. Trying new algorithms in the FPGA is more inconvenient than in the

computer program according to the hardware limitation and design

process.

3. A bottleneck in transferring data between the host computer and the

FPGA board is created.

2.1.4 Hardware Description Language (HDL)

Basic digital circuit designing can be done manually. But it can’t be done

manually or takes a lot of time when the circuit becomes larger and more complex.

Because of this, languages have been developed to describe the behavioral model of

the circuit. Hence, it is possible to use a computer to synthesize a circuit which will

have the desired behavior. These languages are called “Hardware Description

Languages”.

Once describing the behavioral of the system with HDLs is completed, the

HDL files will be analyzed and the circuit is synthesized by synthesis software in a

computer. When the circuit is generated, the HDLs complete their responsibility.

Moreover, HDLs are useful in verification of the designed system. They’re

used in behavioral simulations of the system before the circuit is mapped to the

technology to verify correctness of results and basic timing diagrams.

There are 2 HDLs that mostly used. They are Verilog HDL and VHDL. They

are a little different but give the same synthesis result.

Nowadays, high-level languages such as C and Java are developed to

abstractly describe the behavior of the circuit. This makes the design process easier

- 5 -

than using HDLs but those languages need special compiler programs to generate the

netlist or to convert them to HDLs. The most popular one is ImpulseC. With

ImpulseC, you can use C language to describe circuits and can debug them as C

programs. The compiler facilitates the design process bypassing many tasks – writing

HDLs, synthesizing, etc. Moreover, the compiler makes the description of the circuit

become more abstract because it is not necessary that designers must have knowledge

related to hardware before using it.

With those high-level language compilers, the design process can be finished

faster than using only HDLs and more easily used by C programmers.

2.1.5 Finite State Machine (FSM)

Finite State Machine is a behavioral model which consists of a finite number

of states and transitions between the states. In different states, the action of the model

is also different. It differently obtains inputs and produces outputs in each state.

When sufficient condition occurs, the state will transit to a state that suits the

condition.

States, transitions, and actions can be illustrated in a diagram called “State

Diagram”.

The model is very suitable in designing control devices and processing

devices, such as an elevator controller or a calculator, because they need to perform

different actions in the different input conditions. It is also appropriate in

programming image processing using the FPGA.

2.1.6 Communication Connectivity between an FPGA Board and a

Computer

The connection between the FPGA board and the computer is the bottle-neck

of processing data outside the CPU. Possible connections are …

2.1.6.1 Connect Directly to the PCI Bus of the Computer

Peripheral Component Interconnection (PCI) is a local bus which connects

directly with the processor bus or system bus of the computer.

- 6 -

Specifications

1. 33.33 MHz clock with synchronous transfers

2. Data transfer rate is 133 MB per second for 32-bit bus width

3. 3.3 or 5 V signaling

Implementation Possibility

This connection provides the fastest transfer rate over other connections. It

greatly reduces the effect of the bottle-neck to the system.

In spite of the profit from the speed, the FPGA board, which contains an

FPGA, must provide the connector to the PCI slot of the computer and there must

be a PCI controller on the FPGA board. This requires a specialized development

board which is not available at KMUTT.

2.1.6.2 Connect via the 1000BASE-T Gigabit Ethernet

Gigabit Ethernet is a computer network connection according to the IEEE

802.3z standard. 1000BASE-T is a type of this connection which uses category-5

unshielded twisted pair (UTP-5) cables to connect between devices.

Specifications

1. Serial data transfer

2. Data transfer rate is up to 128 MB per second (1000 Mb per

second)

3. Use Carrier Sense Multiple Access / Collision Detection protocol

(CSMA/CD)

4. Support full-duplex communication

Implementation Possibility

Transferring data through the network requires packaging data into a

packet which wastes data space to the packet header. This reduces the transfer rate

of the real data. Even if the FPGA board can operate in the physical layer of the

TCP/IP model, sending data from the computer to the FPGA board still requires

specials commands and the encapsulation according to the protocol of the model,

e.g. IP header, Data Link header.

- 7 -

Moreover, if the FPGA board provides only the physical layer of the model

and there is no Gigabit Ethernet Controller in the board, TCP/IP stack must be

implemented separately as a part of the FPGA.

The development board at KMUTT includes a “soft” Ethernet core which

may be 1000 Mb per second or may be only 100 Mb per second. Implementation

in the host computer side is very easy using standard sockets protocol.

2.1.6.3 Connect via Universal Serial Bus

Universal Serial Bus (USB) is a standard connection between electronic

devices including computers. The outstanding features of this connection are

portable and hot-pluggable.

Specifications

1. Serial data transfer

2. Support 3 modes of data transferring

- Low Speed mode with 192 KB per second (1.5 Mb per
second) required 0.0 – 0.3 V

- Full Speed mode with 1.5 MB per second (12 Mb per second)
- High Speed mode with 60 MB per second (480 Mb per

second) required 2.8 – 3.6 V

3. Support half-duplex communication

4. Use differential signaling

Implementation Possibility

Using this connection, the host computer requires USB Host Controller

connected to the PCI bus of it and USB Host Controller Driver to control the data

transfer between devices and the computer.

Device drivers are necessary in communication between a host and

devices. Thus, the FPGA board must have a USB controller to handle the USB

protocol in communication between the board and the host, and the driver for the

board is necessary, as well.

The protocol of this connection uses packets in the communication. Not

only the real data is transmitted but the header of the packets is also transmitted.

The protocol also specified transaction of packets to be sent. For example, if a

- 8 -

host wants to send data to a device, handshake packets must be sent to each other

to ensure the availability of the communication.

According to the non-data bits sending along with the real data in the

packets, the real transfer rate of this connection is lower than the 60 MB per

second for the High Speed mode. This caused a bottleneck to be created in the

system.

Implementation of a high-speed driver in the host side is reported to be

difficult.

2.1.6.4 Connect to the PCI bus via an I/O Board

By using the PIO-24.PCI I/O board as an intermediate between the FPGA

board and the computer, it allows the FPGA board be connected to the PCI bus for

transferring data between the FPGA and the computer.

Specifications

1. 24-bit bus width to the development board via a 50-pin IDC

connector with half of the pins connected to the ground

2. 5 V signaling

Implementation Possibility

The I/O board uses 8 bits out of 32 bits of the PCI bus as its instruction

port to control its operation. The other 24 bits of the bus is connects to the FPGA

board. The speed of the 24-bit depends on the circuit of the I/O board.

Predictably, if it uses the same clock frequency as the PCI bus, the transfer

rate will be 99.99 MB per second (3 bytes x 33.33 MHz). However, the boards

available at low-cost are much slower-probably only 3 MB per second.

With this connection, FPGA development boards that support 24 or more

I/O pins can be use in this project. Moreover, they must support 5 V signaling. If

they don’t, the driver circuit must be used to convert the lower voltage to 5 V.

2.2 Gray-level Co-occurrence Matrix Statistics Image Generation

This is an image processing operation which is chosen to be a representation of

other image processing operation. The operation generates statistics images from a large

fine image, e.g. a satellite image which contains about 1000 million pixels.

- 9 -

2.2.1 Description

Gray-level Co-occurrence Matrix statistics images are images which represent

the statistic uniqueness of textures in an image. Many statistics images are generated

from an input image with each different from the others because each different image

is generated from a different gray-level co-occurrence matrix which is unique in

distance and direction.

These statistic images describe a texture so they can be used in texture

detection and texture segmentation by comparing the statistics images generated from

a pattern image to those generated from a segment of the image in which the texture

detection or segmentation is needed.

2.2.2 Theories

2.2.2.1 Gray-level Co-occurrence Matrix (GLCM)

GLCM is a square matrix which contains numbers of times that patterns of

2 scaled values are found while examining pairs of pixels through an image. The

row and column indexes of the GLCM represent the possible scaled values of an

interesting pixel and a pixel which corresponds to the specific direction and

distance from the interesting pixel. Thus, size of the matrix is equal to the number

of all possible scaled values, e.g. 256 values. Each position in the matrix

represents a pattern of a pair of scaled values and the number of times that the

pattern is found in the image is stored in the position.

Figure 2.1 Directions from an interesting pixel in an image

- 10 -

An example of a GLCM with 8-scale levels and 1-pixel distance in east

direction is shown below to describe how a GLCM is generated.

Figure 2.2 GLCM with 8-scale levels and 1-pixel distance in east direction

[Source: http://matlab.izmiran.ru/help/toolbox/images/enhanc15.html]

From Figure 2.2, position (1, 1) in this GLCM contains the value 1

because, in the scaled image, there is only one time that a pattern of an interesting

pixel value and its corresponded-pixel value is (1, 1).

Position (1, 2) in this GLCM contains the value 2 because, in the scaled

image, the pattern of an interesting pixel value and its corresponded-pixel value

which is (1, 2) is found twice.

The other values in the GLCM can be derived in the similar way.

2.2.2.2 Calculating Statistics Value for a GLCM

The statistic value is a representation of every value in a matrix. For a

GLCM, the k-th moment method is used in representing. It can be calculated as

follow …

() ,
k

k i j
j i

Statistic i j GLCM= − ×∑∑

Where k is a natural number

Only the 1st, 2nd and 3rd moments are calculated for the GLCM Statistics

image generation.

- 11 -

2.2.3 Processes

GLCM statistics image generation processes are as follows …

1. Open an input image.

2. Set distance value used in GLCM calculation process to 1.

3. Process the image using a moving window of pixel lines. The number of

lines is specified by user but is limited by the available memory.

4. For each location of the window, a square area with its size specified by

users is set up with its center at each pixel in the window.

5. Then, the northeast, east, southeast and south direction GLCMs are

created calculating on pixels within each square area.

6. For each GLCM created in a square area, the 1st, 2nd and 3rd moments are

calculated.

7. Three statistics values for each GLCM are stored in separated image-

equal-sized buffers at the same position of the center of each square area.

Here twelve image-equal-sized buffers are needed because the GLCMs

are created for four directions and there are three statistics values for

each direction.

8. Once all twelve buffers are fully filled. twelve statistics images are

generated.

9. If the distance is not more than half of the size of the square area, the

processes, which are Steps 3 to 8, are repeated with the distance value

increased.

10. Finish the generation.

- 12 -

Figure 2.3 Flow chart of the GLCM statistic image generation

- 13 -

2.2.4 Reasons for Choosing GLCM

This operation is chosen to be implemented in hardware because it performs

many iterative and intensively-computational processes. Those processes are

performed for each square area of pixels in the input image. four GLCM types for

northeast, east, southeast and south direction are calculated for each square area. For

each direction, GLCMs are calculated for all distance values. The 1st, 2nd and 3rd

statistic moments are calculated for each GLCM and stored in the output buffer at the

same position of the center of the square area. The next interesting square area is

chosen by moving its center to the next pixel. These processes continue until all

statistic values store in the output buffer. Once the buffer is fully filled a statistics

image is created.

A statistics image is generated for each k-th moment statistic calculation of

each different type of the GLCM. Thus, there are 3 moments × 4 directions × ½ of

the square size images needed to be created.

In software, these processes are performed by the fetch-execute cycle of the

computer system. The processes must be performed in order. This can be optimized

using hardware which is capable of perform processes that are not depend on the

others concurrently, and also which does not require the extra time for the instruction

fetch part of the fetch-execute cycle.

2.2.5 Problem Issues

When generating four GLCMs the main step is to examine all pixels and their

corresponded pixels to fill the GLCM. Thus, there are two possible ways in

implementing this algorithm as follow …

1. Compute each matrix one after another.

2. Compute all four matrices in one loop.

Filling all four GLCMs concurrently within one round of examining pixel by

pixel in the image shortens the steps in calculating GLCMs for a square area but it

consumes memory and may suffer from the lack of locality of references which is

required by the fetch-execute cycle of the computer system.

- 14 -

As each algorithm above has some difference in its trade-offs, both algorithms will

be tested for determining the fastest algorithm to be implemented in the GLCM

statistic image generation operation in the experimental phase.

2.3 Prototyping Board

In section 2.1, many communication methods were discussed. Among all of

them, PCI is the best one but the tasks to handle the PCI protocol are not the main

purpose of this project. Thus, a prototyping board called True PCI is chosen to handle

communication.

Figure 2.4 True PCI, the FPGA prototyping board

 [Source: True PCI User Manual rev. 1.2, Design Gateway Co., Ltd., page 4]

- 15 -

2.3.1 Description

True PCI is an FPGA prototyping board developed by Design Gateway Co.,

Ltd. It has built-in PCI interface which can be fit in any type of 32-bit PCI slot.

Moreover, the manufacturer provides the 32-bit PCI interface intellectual property

core (IP Core), the windows driver, the dynamic link library and the example

application. These resources are essential for an FPGA designer who is not used to

the PCI protocol so that the designer shouldn’t have to implement them by himself.

2.3.2 Connectivity between the Board and a Computer

The prototyping board uses PCI interface to communicate with a computer.

The components in are divided into 2 sections as followed…

1. Prototyping-board-side Section

2. Computer-side Section

Figure 2.5 Model of the connectivity between the prototyping board and a computer

- 16 -

2.3.2.1 Prototyping-board-side Section

This section contains an IP core, called "pciif32”, which capable of

sending and receiving PCI protocol commands and data to or from a computer via

PCI bus. The core also provides ports interfacing with user-designed IP cores

inside the FPGA via local bus.

Figure 2.6 Local-bus signals of pciif32 interfacing with a user IP core

[Source: True PCI User Manual rev. 1.2, Design Gateway Co., Ltd., page 13]

- 17 -

Table 2.1 Ports in the local bus of pciif32

Port Name

[MSB:LSB]

Size

(bits)

Direction

Based on

pciif32

Description

lbaddr[14:2] 13 Input Address Signal

lbdatain[31:0] 32 Input Input Data Signal

lbdataout[31:0] 32 Output Output Data Signal

lbrdb 1 Output Active-low Read Signal

When this signal goes low, it shows that

there is a read request from the computer and

pciif32 will read data from lbdatain and

sending to the computer.

lbwrb 1 Output Active-low Write Signal

When this signal goes low, it shows that

there is a write request from the computer

and pciif32 will send out the data through

lbdataout during the time that this signal

remaining low.

lbcsb 1 Output Active-low Chip Select Signal

When this signal goes low, it shows that the

user IP core is selected to be active.

lbint 1 Input Interrupt Signal

Interrupt Signal coming from user IP core to

be sent as an internal interrupt to the CPU.

vendorid[15:0] 16 Input User-defined Vendor ID (Default: 0xF0F0)

deviceid[15:0] 16 Input User-defined Device ID (Default: 0xF0F0)

The designer of pciif32 also defined a communication protocol between

the user IP core and the pciif32 by timing diagrams below…

- 18 -

Figure 2.7 Read operation timing diagram

[Source: True PCI User Manual rev. 1.2, Design Gateway Co., Ltd., page 14]

Read operation signals are shown in Figure 2.7. The operation writes data

0x00007777 to the address 0x0003. The Figure shows that after the address signal

is changed for 30 ns, the chip select and read signals will go low and the data

should be sent to lbdatain bus during 60 ns after those signals goes low. The data

will be read by pciif32 and sent to the PCI bus master.

Figure 2.8 Write operation timing diagram

 [Source: True PCI User Manual rev. 1.2, Design Gateway Co., Ltd., page 15]

Write operation signals are shown in Figure 2.8. The figure shows

protocol of writing data 0x00007777 to address 0x0003. After the address and

data-out signals are changed for 30 ns, the chip select and write signals will go

low and the user-design core must read the data from the bus within 60 ns.

- 19 -

This section reduces the user task in learning and implementing the PCI

communication protocol in his/her own design.

2.3.2.2 Computer-side Section

There are three components in this section – PCI Interface, Driver and

Dynamic Link Library.

PCI Interface provides physical communication in the PCI protocol. This

component is already in the ordinary computer system. It consists of PCI port,

internal PCI bus, PCI Bus Controller, Memory Controller.

A driver is required by the True PCI card because pciif32 is a custom-

design IP core. The driver handles the low-level functional operation in

communicating with the core. A True PCI driver is already provided by the

manufacturer; however, the driver can be used only in Microsoft Windows™

(Win32) system.

The Dynamic Link Library (DLL) is a file that contains functions which

will be used in controlling the driver to do some certain operations. True PCI

package includes a DLL working properly with the True PCI driver. The list of

functions and descriptions is provided in Table 2.2.

Table 2.2 Functions and their descriptions provided in True PCI DLL

Function Description

InitDevice Initialize the device and retrieve the device handler.

ChkDeviceCnt Count number of devices in the system.

reg_read Read data from an address

The address will set the lbaddr signal and the data will

be read from lbdatain signal.

reg_write Write data to an address

The address will set the lbaddr signal and the data will

set lbdataout signal.

CloseDevice Finalize the device.

- 20 -

2.4 Static Random Access Memory (SRAM)

According to the FPGA specification, there are some distributed RAMs inside

the FPGA on the prototyping board but image processing operations consume a lot of

memory so that those RAMs is not enough. The solution is an external SRAM.

2.4.1 Description

SRAM is an electronic memory which is capable of storing data as long as

there is the power supply for the device. The word ‘Random Access’ means that the

time used in accessing every data in it is always constant.

2.4.2 Operation

The SRAM was chosen to be used in this project is AMIC LP621024D.

Its access time is 75 ns. It was chosen because it has 128k × 8 bit size of memory

and it can be fit in the prototyping board. Because of the high access time despite

high-speed clock signal (33 MHz), the speed of the processing is slowed down

because of this bottle neck.

The operation of this SRAM is controlled by four signals – Active-low

Chip Enable 1 (ce1_n), Chip Enable 2 (ce2), Active-low Write Enable (we_n), and

Active-low Output Enable (oe_n). Additional signals are a 17-bit Address Signal

(Address[16:0]) and a 8-bit Data Signal (Din[7:0], Dout[7:0])

Read operation can be performed by continuously setting both ce1_n and

oe_n to low voltage, and both we2_n and ce2 to high voltage. Then, changing

Address to the required address will read the data from the SRAM and send it out

to data after 75 ns. This operation is shown in Figure 2.9.

- 21 -

Figure 2.9 Timing Diagram of the SRAM Read Operation

 [Source: AMIC LP621024D Data Sheet, AMIC Technology, Corp., page 6]

Write operation is shown in Figure 2.10. The oe_n is constantly at low

voltage. Begin with changing Address signal to the address which needs to be

written and set ce1_n to low voltage and both ce2 and we_n to high voltage, then

after 15 ns, toggle we_n to another state. The write operation will be performed

during the overlapped time of high ce2, low ce1_n and low we_n, thus the data to

be written must be present during this period. After about 60 ns, those signals will

be toggle again and the operation is finished.

Figure 2.10 Timing Diagram of the SRAM Write Operation

[Source: AMIC LP621024D Data Sheet, AMIC Technology, Corp., page 6]

- 22 -

Note that, the SRAM is a 5V device but the FPGA prototyping board is a

3.3V one. Thus, a bi-directional level-shifter circuit is needed in the system. 150Ω

resisters are used to solve this problem because getting a 3.3-to-5 volt converter

circuit is very difficult in Thailand. The circuit is shown in Figure 2.11.

Figure 2.11 The bi-directional level-shifter circuit

- 23 -

Chapter 3

Experiments

Experiments in this phase are set up to obtain the fastest algorithm for each

operation when performed by PC software. The processing time of each operation is

recorded to be compared with the processing time performed by hardware. Moreover,

the outputs of each operation are obtained to be used in verifying correctness of the

outputs obtained from the operation performed by hardware.

3.1 Possible Algorithms for Gray-level Co-occurrence Matrix

3.1.1 Introduction

The GLCM can be implemented in the code in 2 ways. They are …

1. Compute each matrix one after another. (m01)

2. Compute all four matrices in one loop. (m02)

Each of them has different advantages and disadvantages as mentioned in the

previous chapter. The main object of this experiment is to find the best algorithm to

be implemented in the GLCM statistics image generation operation.

- 24 -

3.1.2 Objectives

1. To obtain the fastest algorithm for calculating GLCMs in four directions

(i.e. northeast, east, southeast and south)

2. To examine effects of varying arguments of GLCM operation on

processing time

3. To examine processing characteristics of a computer system

3.1.3 Materials and Equipments

1. Executable files of each algorithm which implements timer functions in it

2. An Open Dragon image which its size is 3822 pixels by 2560 pixels

3. A Computer with these specifications

a. CPU: Intel Pentium 4 1.6 GHz

b. Motherboard: IBM, Intel i845

c. RAM: DDR 640 MB, 133 MHz

3.1.4 Procedures

1. Execute m01 algorithm with the image, and 16-pixel distance. Observe

and record the processing time and GLCMs generated.

2. Repeat step 1 but using the m02 algorithm instead of the m01 algorithm.

3. Repeat step 1 - 2 but change the distance into 1, 128, 512 and 1024

respectively.

- 25 -

3.1.5 Results

Vary the distance (D) by fixing the number of scale levels to 8 levels.

Table 3.1 The resulting processing time from varying the distance

Algorithm
Processing Time with D = 1

(seconds)
Processing Time with D = 16

(seconds)
1 2 3 Mean 1 2 3 Mean

m01 5.813 5.829 5.844 5.829 5.781 5.797 5.797 5.792
m02 5.813 5.829 5.844 5.829 5.828 5.860 5.859 5.849

Algorithm
Processing Time with D = 128

(seconds)
Processing Time with D = 512

(seconds)
1 2 3 Mean 1 2 3 Mean

m01 5.750 5.750 5.735 5.745 5.532 5.532 5.531 5.532
m02 5.782 5.782 5.797 5.787 5.547 5.563 5.547 5.552

Algorithm
Processing Time with D = 1024

(seconds)
1 2 3 Mean

m01 5.250 5.250 5.250 5.250
m02 5.266 5.266 5.266 5.266

3.1.6 Conclusion

According to the results above, the algorithm m01 which says “Compute each

matrix one after another.” is fastest. By increasing the distance measured between

interesting pixels, the processing time is decreased. This caused by the reduction in

the number of pixels taking into calculation a GLCM. The reduction cannot be

avoided because the GLCM requires that both pixels must be valid. For example, if

the interesting pixel was 5-pixel far from the east side of the image, the 10-pixel-far

pixel to the east of it does not exist. So it is necessary to ignore the interesting pixel

for that GLCM.

- 26 -

Because the algorithm m01 is faster than m02 it is illustrated that the

computer fetch-execute cycle will work well if the processing data has some locality

of references, e.g. the next data is nearby the processing data. To emphasize the idea,

in the m01 algorithm, a GLCM is processed one by one which means that a pair of

interesting pixels is always in the same direction and distance. Unlikely, in m02, all

four GLCMs is filled at the same time. This causes the CPU of the computer to fetch

the next interesting pixel which is not in the same direction of the processing pixel.

3.2 Gray-level Co-occurrence Matrix Statistics Image Generation

3.2.1 Introduction

This operation generates many statistics images from many GLCMs of

specified-size square segments of the input image. Two arguments are required for

generating the statistic images from an input image. They are …

1. The size of square areas of pixels of the input image using in calculating

GLCMs for each direction (i.e. northeast, east, southeast and south)

2. The number of rows of pixels that can be in a buffer which is used to

divide images into regions

3.2.2 Objectives

1. To obtain the processing time of this operation performed by software for

being compared to the processing time performed by hardware in the

later phase

2. To obtain the output statistics image used in verifying the correctness of

the operation performed by hardware in the later phase

- 27 -

3.2.3 Materials and Equipments

1. Executable file of the GLCM Statistics Image Generation Operation

which implements timer functions in it

2. Two tagged Image File Format images (TIFF image) whose sizes are 16

pixels by 16 pixels and 272 pixels by 280 pixels

3. A Computer with these specifications

 a) CPU: Intel Celeron 2.4 GHz

b) Motherboard: IBM, Intel i845

c) RAM: DDR 512 MB, 133 MHz

3.2.4 Procedures

1. Execute the operation with the 16-by-16-pixel TIFF image, 3-by-3-pixel

square size and 16-line region buffer. Observe and record the processing

time and output statistics image generated.

2. Repeat step 1 but change the image to 272-by-280-pixel TIFF image and

the number of lines in the buffer to 240.

3.2.5 Results

Vary the number of lines in the buffer (R) by fixing the number of scale

levels to 256 levels and size of square areas of pixels to 3.

Table 3.2 The result processing time from varying the number of lines in the buffer

Image Size

(pixels)

Region Size

(lines)

Processing Time

(seconds)

CPU Time Wall Time

16x16 16 38.13 38

272x280 240 14682.24 14682

- 28 -

3.2.6 Conclusion

The result processing time and images is obtained. The processing time shows

that when increasing the number of pixels, the processing time increases linearly.

The output statistics images show that sections of the image which have the

same pattern will be shown in the result images by the same gray level. The 2nd

moment statistics images are different from the 1st and 3rd moment. They bring

contrast of the patterns in the input image into sight.

- 29 -

Chapter 4

Designs

After research & study and experiment have been done, the system was designed

to resolve problems facing in software. The first goal of designing the system is to speed

up the processing time of image processing operations and the GLCM statistic image

generation was selected as an example. The second is to generalize image processing

operations into building blocks which functions independently so that the system can be

easily expanded or modified later.

All designs in this chapter are based on hardware devices listed below…

1. Prototyping Board: Design Gateway True PCI

2. SRAM: AMIC LP621024D

3. Bi-directional Buffer: 150Ω Resistors

4.1 Top-level Design of the System

As discussed above, the system is divided into functional blocks. Thus, the

system is composed of blocks and buses. There are two buses in the system – the 17-bit

Address bus and the 8-bit Data bus. Length of each bus is defined by the external

SRAM used.

- 30 -

4.1.1 Block Diagram

Names and connections between each block are shown in Figure 4.1.

Figure 4.1 Block diagram of Image Processing in Hardware system (Top)

- 31 -

Figure 4.2 Block diagram of Image Processing in Hardware system (Bottom)

- 32 -

4.1.2 System Components

There are 13 modules in the system. They are …

1. Memory Unit

2. Process Controller

3. Memory Controller

4. Arbiter

5. Center Indexer

6. Square Fetcher

7. Square Buffer

8. GLCM Builder

9. Address Decoder

10. Matrix Voter

11. Matrix Integrator

12. Clock Divider

13. pciif32

4.1.3 Top-level System Operation

All components work together by exchanging digital signals between one

another. The system operation starts from the host computer. By calling the

‘initDevice’ function, pciif32 will take care of initializing the device.

Once the device has been initialized, instructions will be sent to the device by

calling ‘reg_write’ function with proper arguments – a 32-bit instruction/data to be

sent and an address to send instruction/data to. pciif32 will perform a write operation

through the local bus with the specified instruction/data to the specified address.

Then, proc_ctrl will receive the instruction and control the others modules to

operate the received instruction. If the instruction is to read data, proc_ctrl will

prepare the data to be ready for the next call to ‘reg_read’ function.

When a ‘reg_read’ function is called, pciif32 will perform a read operation

from the local bus with the specified address. According to the read operation,

- 33 -

proc_ctrl will be responsible for presenting the data during the low-voltage duration

of cs_n and rd_n.

A flow chart of the top-level system operation is shown in Figure 4.3.

Start

Idle

Wait for a read or write operation

Is initDevice called?

No

Yes

Is a write operation
performed?

Is a read operation
performed?No

No

Do the instructed operattion

Yes

Send the requested data to the local bus

Yes

Figure 4.3 The top-level flow chart of the system

- 34 -

4.2 Component Designs

The system is divided into modules for generalization. This section provides

information of how each module is designed and what is its operation.

4.2.1 Memory Controller

4.2.1.1 Description

Memory Controller takes care of reading from and writing to the SRAM.

A read or write request comes from other modules which need to access data

within the SRAM. Once the request is received, the memory controller signals the

SRAM as in Figure 2.9 or Figure 2.10 for a read or write request, respectively and

notifies the requester about the completion. This module is named “mem_ctrl” and

abbreviated as “mc”.

4.2.1.2 Ports

Figure 4.4 Block structure showing ports of Memory Controller

Figure 4.4 shows ports of this module and those ports are described in the

Table 4.1

- 35 -

Table 4.1 Ports of Memory Controller

Port Name

[MSB:LSB]

Size

(bits)

Direction

Based on

Memory

Controller

Description

mc_clk 1 Input Clock Signal from Clock Divider

mc_rst_n 1 Input Active-low Reset Signal

mc_en 1 Input Enable Signal

mc_rw 1 Input If low, activate the read operation.

If high, activate the write operation.

mc_clr_n 1 Input If low, clear temporary memory.

mc_addr[16:0] 17 Input Address used in the read/write operation

mc_done 1 Output Done Signal to notice other modules

sr_ce1_n 1 Output Active-low Chip Enable 1 of SRAM

sr_we_n 1 Output Active-low Write Enable of SRAM

sr_oe_n 1 Output Active-low Output Enable of SRAM

sr_ce2 1 Output Chip Enable 2 of SRAM

bf_dir 1 Output Bi-directional Level Shifter Direction

dbg_mc_st[3:0] 4 Output Memory Controller State LEDs (debug)

mc_data[7:0] 8 Bi-direction Data to be written or read in the operation

sr_data[7:0] 8 Bi-direction Data Signal of SRAM

4.2.1.3 Operation

Normally, Memory Controller is in the Wait State and controls all SRAM

signals to operate in the reading operation until mc_en is changed to high or

mc_clr_n is change to low.

If mc_en is high, it checks mc_rw whether it is low or high. If mc_rw is

high, it will change its state to Read State, change sr_addr to be the same as

mc_addr (received address) to read the data, put the data to mc_data, and return to

- 36 -

the Wait State. If mc_rw is low, it will change its state to Write State, perform a

write signaling, and return to the Wait State.

Otherwise, if mc_clr_n is low when Memory Controller is in the Wait

State, it will change its state to Clear State. When it is in Clear State, a clear flag is

set, a counter is started, and the state changes into Write State. During SRAM

write operation, if the flag is set Memory Controller will write a zero number to

the address which equals to starting address of the temporary memory plus a

number in the counter, and return to the Clear State for adding the counter. If the

counter reaches the size of the temporary memory, the clear process will be done

and the controller will return to the Wait State. Otherwise, it continuously goes to

the Write State. Figure 4.5 shows the finite state machine of these operations.

Wait
State

Clear
State

Write
State

Read
State

mc_clr_n is low.
Read operation
is done.

mc_en is high.
mc_rw is low.

mc_en is high.
mc_rw is high.

Write operation
is done.
Clear Flag is clear.

Counter reaches
size of temporary memory.

Counter doesn’t reach size of
temporary memory.

Write operation
is done.

Clear Flag is set.

Figure 4.5 Finite State Machine of Memory Controller

- 37 -

4.2.2 Process Controller

4.2.2.1 Description

Process Controller was designed to control the other modules and

provide relevant information for their processing. It is controlled by pciif32 and

operates as instructed by combinations of local bus address and data signals.

Moreover, this module also manages interfacing with pciif32, interrupt generating

and error reporting. This module is named “proc_ctrl” and abbreviated as “pc”.

4.2.2.2 Ports

Figure 4.6 Block structure showing ports of Process Controller

Figure 4.6 shows ports of this module and those ports are described in the

Table 4.2.

- 38 -

Table 4.2 Ports of Process Controller

Port Name

[MSB:LSB]

Size

(bits)

Direction

Based on

Process

Controller

Description

pc_clk 1 Input 33MHz Clock Signal

pc_rst_n 1 Input Active-low Reset Signal

pc_gnt 1 Input If high, gain control of Memory

Controller’s operation.

sf_done 1 Input Done Signal from Square Fetcher

gb_done 1 Input Done Signal from GLCM Builder

mi_done 1 Input Done Signal from Matrix Integrator

mc_done 1 Input Done Signal from Memory Controller

lb_cs_n 1 Input Chip Select Signal from pciif32

lb_wr_n 1 Input If low, pciif32 is performing a write

operation.

lb_rd_n 1 Input If low, pciif32 is performing a read

operation.

lb_addr[12:0] 13 Input Address of the register participated in

the operation of pciif32

lb_data_out[31:0] 32 Input Data to be read/write to the register

addressed by lb_addr

pc_req 1 Output If high, Process Controller request for

controlling Memory Controller’s

operation from Arbiter.

ci_ld_n 1 Output If low, reset Center Index’s row and

column indices to zeroes.

ci_nxt 1 Output If high, shift indices of Center Index to

the next pixel co-ordinate.

- 39 -

Port Name

[MSB:LSB]

Size

(bits)

Direction

Based on

Process

Controller

Description

sf_en 1 Output Enable Signal for Square Fetcher

gb_en 1 Output Enable Signal for GLCM Builder

mi_en 1 Output Enable Signal for Matrix Integrator

mc_en 1 Output Enable Signal for Memory Controller

mc_rw 1 Output Read/Write Control Signal for Memory

Controller

mc_clr_n 1 Output Active-low Temporary Memory Clear

Enable Signal for Memory Controller

lb_int 1 Output If high, send an interrupt to the host

computer.

mi_output_sel[1:0] 2 Output Select which results of Matrix

Integrator should be present at

mi_data_out

img_width[9:0] 10 Output Width of the target image

img_height[9:0] 10 Output Height of the target image

gb_dx[3:0] 4 Output Different in horizontal direction of the

interesting pixel in building the GLCM

gb_dy[3:0] 4 Output Different in vertical direction of the

interesting pixel in building the GLCM

dbg_pc_st[3:0] 4 Output Process Controller State LEDs (debug)

vendor_id[15:0] 16 Output Vendor ID Number (Default: 0xF0F0)

device_id[15:0] 16 Output Device ID Number (Default: 0xF0F0)

img_addr[16:0] 17 Output Starting Address of the target image

mc_addr[16:0] 17 Output Address used in operation of Memory

Controller

- 40 -

Port Name

[MSB:LSB]

Size

(bits)

Direction

Based on

Process

Controller

Description

lb_data_in[31:0] 32 Output Data to be sent to the host computer

when a read request from pciif32

occurred.

mc_data[7:0] 8 Bi-directional Data read from or to be written to

Memory Unit by Memory Controller

4.2.2.3 Operations

Process Controller controls operations of the other components except

Arbiter. It receives instructions from the host computer through lb_addr and

lb_data_out of the pciif32 write operation.

32-bit instructions were designed to controls operations of the system.

Note that, addresses below must be right-shifted by 2 to be correctly used in the

‘reg_read’ or ‘reg_write’ functions because the range of MSB to LSB of lbAddr

of pciif32 is [14:2] but lb_addr of Process Controller is [12:0], respectively. They

are…

1. Clear Interrupt

Description: Clear the interrupt produced by Process Controller.

lb_addr: 0x0000

lb_data_out: All bits are 0’s.

2. Write to Memory

Description: Write an 8-bit data to the specified address in the external

memory.

lb_addr: 0x0001

lb_data_out: bit 24 – 8 A 17-bit address to be written

 bit 7 – 0 An 8-bit data to be written

 Other bits are 0’s.

- 41 -

3. Read from Memory into Data Register

Description: Read an 8-bit data from the specified address in the

external memory.

lb_addr: 0x0001

lb_data_out: bit 24 – 8 A 17-bit address to be read

 Other bits are 0’s.

4. Clear Temporary Memory

Description: Clear temporary memory in the external memory used

during image processing.

lb_addr: 0x0001

lb_data_out: bit 28 is 1.

 Other bits are 0’s.

5. Reset Square Window Position

Description: Reset position of the square processing window to

position (0, 0) of the input image.

lb_addr: 0x0001

lb_data_out: bit 29 is 1

 Other bits are 0’s.

6. Shift Square Window Position

Description: Shift the square processing window to the next position in

the input image.

lb_addr: 0x0001

lb_data_out: bit 28 and 29 are 1’s.

 Other bits are 0’s.

7. Fetch Data into Square Window

Description: Fetch all pixels into the square processing window.

lb_addr: 0x0001

lb_data_out: bit 30 is 1.

 Other bits are 0’s.

- 42 -

8. Calculate GLCM

Description: Calculate GLCM in the specified direction (dx, dy). dx is

the horizontal different between an interesting pixel and a

target pixel, and dy is the vertical different between an

interesting pixel and a target pixel.

lb_addr: 0x0001

lb_data_out: bit 28 and 29 are 1’s.

 bit 15 – 8 dx

 bit 7 – 0 dy

 Other bits are 0’s.

9. Digest GLCM into Statistic Values

Description: Digest a GLCM into 3 statistic values – 1st, 2nd and 3rd

moment statistic values.

lb_addr: 0x0001

lb_data_out: bit 31 is 1.

 Other bits are 0’s.

10. Read 1st Moment into Result Register

Description: Read the 1st moment statistic value into Result Register.

lb_addr: 0x0001

lb_data_out: bit 27 and 31 are 1’s.

 Other bits are 0’s.

11. Read 2nd Moment into Result Register

Description: Read the 2nd moment statistic value into Result Register.

lb_addr: 0x0001

lb_data_out: bit 28 and 31 are 1’s.

 Other bits are 0’s.

12. Read 3rd Moment into Result Register

Description: Read the 3rd moment statistic value into Result Register.

lb_addr: 0x0001

lb_data_out: bit 27, 28 and 31 are 1’s.

 Other bits are 0’s.

- 43 -

13. Initialize Image

Description: Specify width and height of an input image.

lb_addr: 0x0002

lb_data_out: bit 31 – 16 Width of the image

 bit 15 – 0 Height of the image

There are 5 32-bit registers related in operations of Process Controller.

Each can be addressed by changing lb_addr to a defined address.

1. Interrupt Register (Address: 0x0000)

This register controls sending an interrupt to the host computer. If

its bit 0 is set, an interrupt will occur and lb_int will go high. Once set, it

can be cleared by ‘Clear Interrupt’ instruction.

2. Instruction/Data Register (Address: 0x0001)

This register operates in 2 modes – Input and Output. It operates

in the input mode when there’s a write request with lb_addr is 0x0001

and the register will operate as Instruction Register storing an instruction

which is going to be performed by the Process Controller.

Oppositely, it operates in the output mode when there’s a read

request with the same lb_addr and the register will operate as Data

Register storing the data which is fetched from the specified address in

the external memory with ‘Read from Memory into Data Register’

instruction.

3. Image Register (Address: 0x0003)

This register holds information of the input images. The

information about the input image’s width and height is declared to the

other modules. This register can be set with ‘Initialize Image’ instruction.

4. Result Register (Address: 0x0004)

This register contains the result digested value after a ‘Read 1st,

2nd or 3rd Moment into Result Register’ instruction.

- 44 -

5. Message Register (Address: 0x0005)

This register will be set after each completion of every instruction

to provide error report information to the host computer. Its value can

be…

MSG_OK

The operation is done properly.

MSG_IMAGE_NOT_INIT

Cannot perform requested instruction because ‘Image

Initialize’ instruction has never been received.

 MSG_IMAGE_SIZE_INVALID

The specified input image size is larger than the unused

external memory size of the system.

Normally, Process Controller is in the Wait State. Instructions are

received by monitoring when lb_cs_n, lb_wr_n and lb_rd_n signals will go low.

According to pciif32 operations, Process Controller responds to 2 types of

requests from pciif32 – a read request or a write request.

When receiving a write request (lb_cs_n and lb_wr_n are low), if a flag

named ‘is_image_described’ is clear, an ‘Initialize Image’ instruction should be

sent to Process Controller, is_image_described will be set, an interrupt will be

received at the host computer with MSG_OK in the Message Register.

Otherwise, an interrupt occurs and the Message Register is set to

MSG_IMAGE_NOT_INIT. In case of MSG_IMAGE_SIZE_INVALID, an

interrupt occurs but the flag is not set.

If the flag is set, any of the instruction can be received, Process

Controller will move to the Decide State to perform different tasks for each

different instruction except for ‘Clear Interrupt’ and ‘Initialize Image’

instructions.

For ‘Clear Interrupt’ instruction, the instruction register is clear and the

current interrupt is disappeared suddenly without state changing of Process

Controller.

- 45 -

For ‘Initialize Image’ instruction, the Image Register is set, once the

instruction is received without state changing if and only if the size is valid.

Otherwise, an error will be reported.

For the other instructions, Process Controller performs operations as

described below…

For ‘Write to Memory’, ‘Read from Memory into Data Register, or

‘Clear Temporary Memory’ instruction, Process Controller will move into the

mc State. It begins the state by first send a request for controlling Memory

Controller to Arbiter by set pc_req to high. After receive a grant, i.e. pc_gnt is

high, it performs one of 3 Memory Controller’s operations in order to which one

of 3 instructions was received. Once it receives a Done Signal from Memory

Controller, i.e. mc_done is high; it returns mc_en and mc_clr_n to the default

values cancelling the operation and goes back to the Wait State with a MSG_OK

interrupt.

For ‘Reset Square Window Position’ or ‘Shift Square Window Position’

instruction, Process Controller move into the ci State send ci_ld_n negative

square pulse or ci_nxt positive pulse, respectively. Then, it will return to the

Wait State.

For ‘Fetch Data into Square Window’, ‘Calculate GLCM’, or ‘Digest

GLCM into Statistic Values’ instruction, it will move into a corresponding state,

i.e. sf State, gb State, and mi State, to enabling Square Fetcher through a high

sf_en, GLCM Builder through a high gb_en and Matrix Integrator through a high

mi_en, respectively. Once the enabled module is complete its operation and the

Done Signal is received, i.e. sf_done, gb_done, mi_done, Process Controller will

disable the module and return to the Wait State with a MSG_OK interrupt.

For ‘Read 1st, 2nd, or 3rd Moment into Result Register’ instruction,

Process Controller will change into mi State and change mi_output_sel to be the

same as bit 28 down to 27 of the instruction register to order Matrix Integrator to

send the selected data through mi_data_out. After setting the signal, Process

Controller returns itself to the Wait State and sends a MSG_OK interrupt to the

host computer.

- 46 -

When receiving a read request (lb_cs_n and lb_rd_n are low), Process

Controller will select a register corresponded to lb_addr and put the data within

the specified register to lb_data_in for the read operation of pciif32. Figure 4.7

shows the finite state machine of this module.

Figure 4.7 Finite State Machine of Process Controller

4.2.3 Arbiter

4.2.3.1 Description

Arbiter is a module which is responsible for granting an access to

Memory Controller. Because there’re 4 modules connecting to the same ports of

the Memory Controller, the ambiguity of which module is controlling the Memory

Controller occurs. Arbiter clarifies this situation by granting the access to the

- 47 -

highest priority request at that moment. This module is named “arbiter” and

abbreviated as “ar”.

4.2.3.2 Ports

Figure 4.8 Block structure showing ports of Arbiter

Figure 4.8 shows ports of this module and those ports are described in the

Table 4.3.

Table 4.3 Ports of Arbiter

Port Name

[MSB:LSB]

Size

(bits)

Direction

Based on

Arbiter

Description

ar_clk 1 Input 33MHz Clock Signal

ar_rst_n 1 Input Active-low Reset Signal

pc_req 1 Input If high, Process Controller is requesting

for controlling of Memory Controller.

sf_req 1 Input If high, Square Fetcher is requesting for

controlling of Memory Controller.

mv_req 1 Input If high, Matrix Voter is requesting for

controlling of Memory Controller.

mi_req 1 Input If high, Matrix Integrator is requesting

for controlling of Memory Controller.

- 48 -

Port Name

[MSB:LSB]

Size

(bits)

Direction

Based on

Arbiter

Description

pc_gnt 1 Output If high, Process Controller gains control

of the Memory Controller.

sf_gnt 1 Output If high, Square Fetcher gains control of

the Memory Controller.

mv_gnt 1 Output If high, Matrix Voter gains control of

the Memory Controller.

mi_gnt 1 Output If high, Matrix Integrator gains control

of the Memory Controller.

dbg_ar_st[3:0] 4 Output Arbiter State LEDs (debug)

4.2.3.3 Operations

Arbiter starts from Wait State. When a request signal (which is pc_req,

sf_req, mv_req or mi_req) is set, it will move to Decide State. Within the state,

grant signals (which are pc_gnt, sf_gnt, mv_gnt and mi_gnt) are changed by

granting the request from the highest priority module first, in case of 2 or more

modules request in the same time. The signal connected to the granted module

goes high during granting. The priority of granting can be rearranged from Process

Controller, Square Fetcher, Matrix Voter and Matrix Integrator, descending. After

granting, the state of this module is changed into Grant State. While being in

Grant State, all non-granted-request signals are ignored until the granted-request

signal becomes low. Once the signal goes low, Arbiter will return to the Wait

State and continue its operation. Figure 4.9 shows the finite state machine of this

module.

- 49 -

Wait
State

Decide
State

Grant
State

There is a request.

The granted-request
becomes low.

Figure 4.9 Finite State Machine of Arbiter

4.2.4 Center Indexer

4.2.4.1 Description

Center Indexer is one of the modules representing the square processing

window. This window is one of unique characteristics of image processing

operations. Operations are performed to every pixel in the window and the results

are placed at the center pixel of the result images. Center Index keeps track of row

and column indices of this center pixel and is responsible for moving this index

through all pixels in the input image. This module is named “cen_index” and

abbreviated as “ci”.

4.2.4.2 Ports

Figure 4.10 Block structure showing ports of Center Indexer

- 50 -

Figure 4.10 shows ports of this module and those ports are described in

the Table 4.4.

Table 4.4 Ports of Center Indexer

Port Name

[MSB:LSB]

Size

(bits)

Direction

Based on

Center

Indexer

Description

ci_rst_n 1 Input Active-low Reset Signal

ci_ld_n 1 Input If low, calculate and change the index

to the next position.

ci_nxt 1 Input If high, shift the index to the next

position.

If low, reset the index to (0, 0).

img_width[9:0] 10 Input Width of the Image

img_height[9:0] 10 Input Height of the Image

img_addr[16:0] 17 Input Starting Address of the Image

ci_end 1 Output If high, indicates that the index reaches

the end of the image.

ci_row[9:0] 10 Output Row Index of the Window

ci_col[9:0] 10 Output Column Index of the Window

4.2.4.3 Operations

During the ci_rst_n signal is low, Center Indexer resets itself to the origin

position of the image (0, 0). The index can be shifted to the next position by

setting ci_nxt to high and send a negative-edge signal to ci_ld_n.

If ci_nxt is low when a negative-edge signal has been received at ci_ld_n,

the index will be reset to (0, 0) position.

- 51 -

4.2.5 Square Fetcher

4.2.5.1 Description

Square Fetcher fetches corresponding pixels from the Memory Unit into

the Square Buffer which represents the square processing window. This module

has an advantage over the CPU in the reduction of the time used in fetching pixels

in the window which is virtually nearby one another but physically far away one

another in the memory address space. This module is named “sq_fetch” and

abbreviated as “sf”.

4.2.5.2 Ports

Figure 4.11 Block structure showing ports of Square Fetcher

Figure 4.11 shows ports of this module and those ports are described in

the Table 4.5.

- 52 -

Table 4.5 Ports of Square Fetcher

Port Name

[MSB:LSB]

Size

(bits)

Direction

Based on

Square

Fetcher

Description

sf_clk 1 Input 33MHz Clock Signal

sf_rst_n 1 Input Active-low Reset Signal

sf_en 1 Input Enable Signal

sf_gnt 1 Input If high, Square Fetcher gains control of

Memory Controller.

mc_done 1 Input Done Signal from Memory Controller

img_width[9:0] 10 Input Width of the Image

img_height[9:0] 10 Input Height of the Image

ci_row[9:0] 10 Input Row Index of the Window

ci_col[9:0] 10 Input Column Index of the Window

img_addr[16:0] 17 Input Starting Address of the Image

sf_req 1 Output If high, Square Fetcher is requesting for

controlling of Memory Controller.

sf_done 1 Output If high, Square Fetcher is done its

operation.

sb_wr_n 1 Output Active-low Write Signal

If low, command Square Buffer to store

the data from sb_data_in to the address

specified by sb_wr_addr.

mc_en 1 Output Enable Signal Memory Controller

- 53 -

Port Name

[MSB:LSB]

Size

(bits)

Direction

Based on

Square

Fetcher

Description

mc_rw 1 Output Read/Write Control Signal for Memory

Controller

dbg_sf_st[3:0] 4 Output Square Fetcher State LEDs (debug)

sb_wr_addr[3:0] 4 Output Address in Square Buffer address space

to fetch data into

mc_addr[16:0] 17 Output Address used in operation of Memory

Controller

4.2.5.3 Operations

Square Fetcher starts fetching the top-left pixel of the square processing

window. It fetches in left-to-right and top-to-bottom direction. There are 2 finite

state machines in this module – Main FSM and Fetch FSM.

Square Fetcher’s Main FSM originates in Wait State. If sf_en is high, its

state will be changed to Request State. In this state, Square Fetcher sends a

request for controlling the Memory Controller to the Arbiter via a high sf_req

signal. Once sf_gnt is received, the request operation is done and Square Fetcher

moves to Fetch State. Fetch FSM is enabled in this state by setting the “f_en” flag

to logic 1. The Main FSM is now waiting for the logic 1 of “f_done” flag. Once

the flag is set, The Main FSM resets f_en flag and moves to Done State sending

high sf_done to the Process Controller. The done signal is sent continuously until

sf_en is reset to low signal. Once sf_en is reset, the state is looped back to Wait

State wating for sf_en again. Figure 4.12 shows the Main FSM of the Square

Fetcher.

- 54 -

Wait
State

Request
State

Fetch
State

Done
State

sf_en is high.

sf_gnt is high.f_done is high.

sf_en is low.

Figure 4.12 Main Finite State Machine of Square Fetcher

Fetch FSM originates in its Wait State. Once f_en is high, its state will

changes to Validate State. In this state, the row and column indices of expected-

to-be-fetched pixel are validated. If the coordinate is out-of-bound, the row and

column indices will be replaced by the coordinate of the nearest border pixel.

Once the validation process is complete, the FSM will move to Assign State. As

the name of the state, this state assigns a value to the new Square Buffer address

space. It performs a read operation of the Memory Controller with the index-

validated address. When a high mc_done is received, a negative-edge signal is

generated at sb_wr_n to write the data in the data bus to the address in Square

Buffer address space specified sb_wr_addr. Again, the state changes to Next State

to move the coordinate to the next position and sb_wr_addr is added by 1. If the

coordinate doesn’t reach the end of the square processing window, the FSM

moves to Validate State to continuously perform fetching operations. Otherwise,

if the end of the window is reached, it moves to Done State setting f_done to logic

1 and waiting for a reset of f_en to return to Wait State. This FSM is shown in

Figure 4.13.

- 55 -

Wait
State

Validate
State

Assign
State

Next
State

Done
State

f_en is high.

Address is validated.

The pixel in the window is
assigned to Square Buffer.

All pixels in the window are
fetched.

f_en is low.

All pixels in the window are
not completely fetched.

Figure 4.13 Fetch Finite State Machine of Square Fetcher

4.2.6 Square Buffer

4.2.6.1 Description

Square Buffer represents the square processing window. Its address space

is independent from the Memory Unit address space. Thus, the low-locality-of-

reference addressing is changed into one contiguous addressing which speed up

the fetching operation. This module is capable of reading and writing the data to

one of its address at the same time. Moreover, it provides the 2-channelled data

accessing which aids in accessing 2 data at the same time. Hence, accessing 2 data

in the square processing window is another uniqueness of image processing

operation. This module is named “sq_buf” and abbreviated as “sb”.

- 56 -

4.2.6.2 Ports

Figure 4.14 Block structure showing ports of Square Buffer

Figure 4.14 shows ports of this module and those ports are described in

the Table 4.6.

Table 4.6 Ports of Square Buffer

Port Name

[MSB:LSB]

Size

(bits)

Direction

Based on

Square

Buffer

Description

sb_rst_n 1 Input Active-low Reset Signal

sb_wr_n 1 Input If low, write the data from sb_data_in

to the address specified by sb_wr_addr.

sb_wr_addr[3:0] 4 Input Address to be written

sb_rd_addr1[3:0] 4 Input Address to be read to sb_data_out1

sb_rd_addr2[3:0] 4 Input Address to be read to sb_data_out2

sb_data_in[7:0] 8 Input Data to write to sb_wr_addr

sb_data_out1[7:0] 8 Output Data read from sb_rd_addr1

sb_data_out2[7:0] 8 Output Data read from sb_rd_addr2

- 57 -

4.2.6.3 Operations

There are 2 operations in this module – write and read operation.

For the write operation, it begins by receiving a negative-edge signal at

sb_wr_n . Once received, the data in sb_data_in is stored into the buffer inside the

module.

For the read operation, the data in the buffer corresponded to

sb_rd_addr1 will be presented at sb_data_out1 and the operation is the same for

sb_rd_addr2 and sb_rd_addr2.

4.2.7 GLCM Builder

4.2.7.1 Description

GLCM Builder was designed to do GLCM operation of direction

specified by (dx,dy). This value can be defined by user. GLCM Builder does this

operation by cooperation with Square Buffer, Address Decoder and Matrix Voter.

This module is named “glcm_builder” and abbreviated as “gb”.

4.2.7.2 Ports

Figure 4.15 Block structure showing ports of GLCM Builder

- 58 -

Figure 4.15 shows ports of this module and those ports are described in

the Table 4.7

Table 4.7 Ports of GLCM Builder

Port Name

[MSB:LSB]

Size

(bits)

Direction

Based on

GLCM

Builder

Description

gb_clk 1 Input 33MHz Clock Signal

gb_rst_n 1 Input Active-low Reset Signal

gb_en 1 Input Enable Signal for GLCM Builder

mv_done 1 Input Done Signal from Matrix Voter

gb_dx[7:0] 8 Input Different in horizontal direction

gb_dy[7:0] 8 Input Different in vertical direction

gb_done 1 Output Done Signal from GLCM Builder

mv_en 1 Output Enable Signal Matrix Voter

gb_addr[16:0] 17 Output Starting Address of an GLCM in Memory

sb_rd_addr1[3:0] 4 Output 1st Address for Reading the Buffer

sb_rd_addr2[3:0] 4 Output 2nd Address for Reading the Buffer

dbg_gb_st[3:0] 4 Output GLCM Builder State LEDs (debug)

- 59 -

4.2.7.3 Operation

Normally, GLCM Builder is in the Wait State. This state gets the value of

specified direction from user (dx,dy) and waits until the gb_en is high, it will

change its state to Check State. This state combines the current pixel,

sb_rd_addr1, and value of specified direction from user (gb_dx, gb_dy). If the

result of combining is in the Square windows it will get the pair of pixel,

sb_rd_addr2, and then it changes its state to Vote State. This state sets the mv_en

to high and sends the both sb_rd_addr1 and sb_rd_addr2 to Square Buffer

Module for getting the pair of data and then sending these to Address Decoder

Module for getting the a result of address row and address column of GLCM

matrix for voting at Matrix Voter Module. If it has finished this operation it will

return the mv_done to GLCM Builder and then it changes its state to Move State.

Otherwise, it will change its state to Move State immediately.

Move State will increment the position of current pixel by checking if the

column equals to size of square windows-1 and row is not equal to size of square

windows-1, it will increment the row by 1 and reset the column to 0. If the column

is not equal to size of square windows-1, it will increment the column by 1. In 2

conditions above, it will change its state to Check State again. Because it must

move the current pixel all position in the square windows. If column and row are

equal to square windows-1, it changes its state to Done State. This state will set

the gb_done to Process Controller and wait until gb_en is low; it changes its state

to Wait State. Figure 4.16 shows the finite state machine of these operations.

- 60 -

Figure 4.16 Finite State Machine of GLCM Builder

4.2.8 Address Decoder

4.2.8.1 Description

Address Decoder was designed to calculate a linear address, which is

used in addressing data in the address space of the Memory Unit, from a couple of

row index and column index. This module is named “addr_dec” and abbreviated

as “ad”.

- 61 -

4.2.8.2 Ports

Figure 4.17 Block structure showing ports of Address Decoder

Figure 4.17 shows ports of this module and those ports are described in

the Table 4.8.

Table 4.8 Ports of Address Decoder

Port Name

[MSB:LSB]

Size

(bits)

Direction

Based on

Address

Decoder

Description

ad_rst_n 1 Input Active-low Reset Signal

ad_row[7:0] 8 Input Row Index

ad_col[7:0] 8 Input Column Index

ad_start[16:0] 17 Input Starting Address

ad_addr[16:0] 17 Output Decoded Address

4.2.8.3 Operation

Normally, Address Decoder is processed after Square buffer sends 2 data,

the first data is defined as column, ad_col, of GLCM matrix is used for voting and

the second data is defined as row, ad_row, of GLCM matrix. Address Decoder

will calculate the result of address, ad_addr, and the starting address, ad_start,

can be calculated from (size of Memory Unit) - ((GLCM_Scale_Level) 2)

- 62 -

The result of address, ad_addr, can be calculated from following

formula…

ad_addr = ad_start + (GLCM_Scale_Level x ad_row) + ad_col

When complete the calculation, Address Decoder will send ad_addr to

Matrix Voter for voting this address.

4.2.9 Matrix Voter

4.2.9.1 Description

Matrix Voter was designed for reading the data from Memory Unit for

voting by increment the value of the address that gets from Address Decoder by 1

and writes into Memory Unit in the same address. Matrix Voter does this

operation by cooperation with Address Decoder and GLCM Builder. This module

is named “mat_voter” and abbreviated as “mv”.

4.2.9.2 Ports

Figure 4.18 Block structure showing ports of Matrix Voter

Figure 4.18 shows ports of this module and those ports are described in

the Table 4.9

- 63 -

Table 4.9 Ports of Matrix Voter

Port Name

[MSB:LSB]

Size

(bits)

Direction

Based on

Matrix Voter

Description

mv_clk 1 Input 33MHz Clock Signal

mv_rst_n 1 Input Active-low Reset Signal

mv_en 1 Input Enable Signal for Matrix Voter

mv_gnt 1 Input If high, gain control of Memory

Controller’s operation.

mc_done 1 Input Done Signal from Memory

Controller

mv_addr[16:0] 17 Input Address for voting of GLCM

operation in Memory Unit

mv_req 1 Output If high, request for controlling of

Memory Controller’s operation.

mv_done 1 Output Done Signal from Matrix Voter

mc_en 1 Output Enable Signal for Memory

Controller

mc_rw 1 Output Active-high Read the data in

Memory

mc_addr[16:0] 17 Output Address in Memory Unit

mc_data[7:0] 8 Bidirectional Data from the data bus or Data into

data bus

4.2.9.3 Operation

Normally, Matrix Voter is in the Wait State. It wait until mv_en is high, it

changes its state to Request State. This state set mv_req is high for requesting to

read the data in Memory Unit and wait until mv_gnt is high, it changes its state to

- 64 -

Read State. This state set mc_addr equal to mv_addr that getting from Address

Decoder and set mc_rw is high for reading the data at this address. When the

mc_done is high, it changes its state to Vote State. This State increment

the data by 1 and set the mc_rw is low and wait until mc_en is high, it changes its

state to Write State. This state write the data to Memory Unit in the same address

that be read and wait until mc_done is high, it changes its state to Done State. This

state wait until mv_en is low, mv_req is low and send mv_done to GLCM Builder

for reporting its tasks is done , it changes its state to Wait State. Figure 4.19 shows

the finite state machine of these operations.

Write State

Vote State

Request State Done State

Wait State

mv_en is high.

Read State

Request for reading
mv_gnt is high

Reading is done
mc_done is high

Voting is done
mc_done is low

mi_en is low.

Writing is done
mc_done is high

Figure 4.19 Finite State Machine of Matrix Voter

- 65 -

4.2.10 Matrix Integrator

4.2.10.1 Description

Matrix Integrator was designed to calculate the three GLCM Statistic

values by summation all calculated positions of GLCM matrix is in Memory Unit.

Matrix Integrator does this operation by cooperation with Memory Controller.

This module is named “mat_int” and abbreviated as “mi”.

4.2.10.2 Ports

Figure 4.20 Block structure showing ports of Matrix Integrator

Figure 4.20 shows ports of this module and those ports are described in

the Table 4.10.

Table 4.10 Ports of Matrix Integrator

Port Name

[MSB:LSB]

Size

(bits)

Direction

Based on

Matrix

Integrator

Description

mi_clk 1 Input 33MHz Clock Signal

mi_rst_n 1 Input Active-low Reset Signal

mi_en 1 Input Enable Signal for Matrix Integrator

- 66 -

Port Name

[MSB:LSB]

Size

(bits)

Direction

Based on

Matrix

Integrator

Description

mi_gnt 1 Input If high, gain control of Memory

Controller’s operation.

mc_done 1 Input Done Signal from Memory Controller

mi_data_in[7:0] 8 Input Gain data from the Data Bus

mi_output_sel[1:0] 2 Output Select GLCM Statistic Moment

(1 = 1st-order, 2 = 2nd-order, 3 = 3rd-

order)

mi_req 1 Output If high, request for controlling of

Memory Controller’s operation.

mi_done 1 Output Done Signal from Matrix Integrator

mc_en 1 Output Enable Signal for Memory Controller

mc_rw 1 Output Active-high Read the data in Memory

mc_addr[16:0] 17 Output Address in Memory Unit

mi_data_out[31:0] 32 Output Output GLCM Statistic Moment

4.2.10.3 Operation

Normally, Matrix Integrator is in the Wait State. It wait until mi_en is

high, it changes its state to Request State. This state sets mi_req is high and wait

until mi_gnt is high, it changes its state to Read State. The first address of GLCM

matrix to be read when it has finished, it changes its state to Read State. This state

sets the mc_rw is high for reading the data, mi_data_in, at this address and get the

data for calculation the 3 GLCM Statistic values such as 1st-order, 2nd-order, 3rd-

order altogether. User can choose the output of a GLCM Statistic value,

mi_data_out, from setting the mi_output_sel. When it has finished, it changes its

state to Sum State. This state does the summation of all calculated positions in the

GLCM matrix. When it has finished, it changes its state to Decode State. This

- 67 -

state calculates the next position in the GLCM matrix and sets the result to

mc_addr, it changes its state to Read State again until it calculates all positions in

the GLCM matrix, and it changes its state to Done State. This state wait until

mi_done is high and mi_en is low, it changes its state to the Wait State. Figure

4.21 shows the finite state machine of these operations.

Figure 4.21 Finite State Machine of Matrix Integrator

4.2.11 Clock Divider

4.2.11.1 Description

Clock Divider is responsible for dividing the frequency of a clock signal

into another frequency. This module is named “clk_divider” and abbreviated as

“cd”.

- 68 -

4.2.11.2 Ports

Figure 4.22 Block structure showing ports of Clock Divider

Figure 4.22 shows ports of this module and those ports are described in

the Table 4.11.

Table 4.11 Ports of Clock Divider

Port Name

[MSB:LSB]

Size

(bits)

Direction

Based on Clock

Divider

Description

cd_rst_n 1 Input Active-low Reset Signal

cd_clk_in 1 Input Input Clock Signal

cd_clk_out 1 Output Output Clock Signal

4.2.11.3 Operations

Clock Divider divides the frequency of the input lock signal by a

specified design parameter’s value. It takes the advantages of a counter circuit in

the FPGA. Once the counter counts the positive edges of the input clock to the

specified number, the counter is reset and the output signal is toggled to the

opposite logic. The formula for calculating the output clock frequency is…

__
2 _ _

clk inclk out
CLOCK DIVISOR NUMBER

=
×

Where clk_in and clk_out are the input and output frequency in Hz

- 69 -

Chapter 5

Implementation

After designing, the knowledge of deployment is required to apply the system

into the real configuration. This chapter presents some prerequisites and process of how

to deploy the Image Processing in Hardware system.

5.1 Prerequisites

In the software side, the software-related pre-requisites are programming in C

language, using DLLs and driver installation.

In the hardware side, the implementation of designs is based on VHDL; thus,

basically, some knowledge of programming in VHDL and using VHDL synthesis tools

is required. VHDL also provides a method of using parameters called “design

parameters” or “generic values” to dynamically deploy the system into any

heterogeneous systems, e.g. two systems with different data bus width or different size

of memory. The system is generalized with this technique.

The Image Processing in Hardware System’s design parameters are described in

Table 5.1 with default values.

- 70 -

Table 5.1 Design Parameters of Image Processing in Hardware System

Parameter

Name

Allowable

Values

Default

Value

VHDL

Type
Description

CLOCK_DIVISOR

_NUMBER

1 to

2,147,483,647

2 natural Divide the frequency of the global clock signal to SRAM access time

_ _ __ _
2

SRAM ACCESS TIME clk inCLOCK DIVISOR NUMBER ×⎡ ⎤= ⎢ ⎥⎢ ⎥

ADDRESS_BUS_WIDTH - 17 natural SRAM address bus width

DATA_BUS_WIDTH - 8 natural SRAM data bus width

GLCM_SCALE_LEVEL 2n

where n is a

natural

number from

3 to 8

256 natural Number of color-scale levels used in calculating the GLCM

NUMBER_OF

_DISTANCE_BITS

- 8 natural Number of bits to contain the maximum value of both vertical and horizontal

difference for calculating the GLCM (dx and dy)

2_ _ _ log (_)NUMBER OF DISTANCE BITS MAX DIFFERENT= ⎡ ⎤⎢ ⎥

- 71 -

Parameter

Name

Allowable

Values

Default

Value

VHDL

Type
Description

NUMBER_OF_IMAGE

_ADDRESS_BITS

- 10 natural Number of bits to contain the maximum index of the image both vertical and

horizontal index.

2_ _ _ _ log (_ _)NUMBER OF IMAGE ADDRESS BITS MAX IMAGE INDEX= ⎡ ⎤⎢ ⎥

WINDOW_SIZE 1 to 7 3 natural Size of the square processing window.

NUMBER_OF_WINDOW

_ADDRESS_BITS

0 to 6 4 natural 2
2_ _ _ _ log (_)NUMBER OF WINDOW ADDRESS BITS WINDOW SIZE⎡ ⎤= ⎢ ⎥

- 72 -

5.2 System Deployment Process

For someone who wants to modify or evolve this project, deployment processes

are necessary. To deploy the system for properly working condition can be separated

into 2 sides – hardware and software.

5.2.1 Hardware Side

1. Study the interested image processing operation.

2. Define which parts of the operation can utilize designed components, e.g.

Square Buffer and Matrix Integrator; and which parts must be done in the

host computer, e.g. Floating-point calculation.

3. Define how much memory size the operation needs and look for a

suitable SRAM.

4. Verify that operation timing diagrams of the chosen SRAM are the same

as LP621024D or can utilize the existing signals from Memory

Controller.

5. Modify the old components or additionally design new components.

6. Integrate those components to the system using VHDL.

7. Set design parameters’ values.

8. Maps ports of the integrated system to pins of the FPGA.

9. Assemble electronic components together. It should be better if the

noise-elimination and analog filtering are applied in building the circuitry

because the system will become more stable and the speed of the

operation will be closer to the theoretical value.

10. Check whether each device working properly by measurement tools.

11. If the software side is done, the deployment is finished.

- 73 -

5.2.2 Software Side

1. Study the interested image processing operation.

2. Define which parts of the operation can utilize designed components, e.g.

Square Buffer and Matrix Integrator; and which parts must be done in the

host computer, e.g. Floating-point calculation.

3. Write a program which presenting the operation without Image

Processing in Hardware functions.

4. Modified the source code in the sections which were selected to be

implemented in the hardware into the hardware function calls.

5. Modified the code so that after a call to a hardware function, the device

interrupt is monitored. This aids the synchronization of the host computer

and the prototyping board.

6. Install the device driver.

7. Compile and link the program.

8. If the hardware side is done, the deployment is finished.

- 74 -

5.3 Theoretical calculation
The processing time can be calculated by assuming that the basic operations

performed by a CPU are a lot faster than the 33 MHz PCI clock frequency. Thus, the

processing time mostly depends on the time used by the hardware side of the system.

Time used by the hardware side is divided into types and measures in ‘clock cycle’ unit.

- Request Time (Treq)

This is the time used by sending a read or write request to Process

Controller by pciif32. According to the pciif32 timing diagram, this takes four

clock cycles per request.

- SRAM Access Time (Tram)

This is the time used in accessing the data in the SRAM. It is measured

from the moment when Memory Controller received a high mc_en until

mc_done is high indicating the operation is done. If there is an assumption that

the frequency of the clock signal used by Memory Controller is equal to the

frequency of the global clock signal, this takes six clock cycles for each access.

- Synchronization Time (Tsyn)

Synchronization Time occurs during the Enable-Done or Request-Grant

Signal handshaking. This takes one clock cycle for each handshake.

 Image Processing in Hardware system performs operations by instructions. Each

instruction is analyzed and the time used by each operation is shown below…

1. Clear Interrupt Time (Tint)

This operation takes one Treq and the interrupt is cleared immediately.

Thus,

int reqT T=

2. Write to Memory Time (Twr)

After receiving this instruction, a request-grant handshake occurs, SRAM

is accessed. Then, enable-done handshake occurs followed by an interrupt. Thus

the time required is…

- 75 -

1wr req ram synT T T T= + + +

3. Read from Memory Time (Trd)

The processes of this operation are the same as Write to Memory Time

so the time used is the same…

1rd req ram synT T T T= + + +

4. Clear Temporary Memory Time (Tclr)

After a request from pciif32, this operation iteratively performs a zero-

value SRAM write operation to the last section of the SRAM. The number of

addresses to be cleared is equal to GLCM_SCALE_LEVEL2 of the system.

Then, a handshake and an interrupt are followed. Thus,

2_ _ 1clr req ram synT T T GLCM SCALE LEVEL T= + × + +

5. Reset Square Window Position Time (Trst)

After receiving the request, the operation takes a clock cycle to change

ci_nxt and another for sending a negative pulse through ci_ld_n. Then, an

interrupt follows. Thus,

3rst reqT T= +

6. Shift Square Window Position Time (Tshf)

Shifting operation takes the same length of the time period taken by

Reset Square Window Position operation. Thus,

3shf reqT T= +

- 76 -

7. Fetch Data into Square Window Time (Tft)

After receiving a fetching request, Square Fetcher is enabled and a

request-grant handshake occurs. Then, WINDOW_SIZE2 pixels are fetched into

the window. For each fetching period, it uses one clock cycle to validate the

coordinate, follows by an SRAM access time with an enable-done handshake

time, one clock cycle for writing the fetched data to the Square Buffer and

another clock cycle to shift to next pixel in the window. After all pixels in the

window are fetched, an internal enable-done handshake occurs followed by a

global enable-done handshake and an interrupt. Thus, it can be calculated as…

()2_ 2 2 1ft req ram syn synT T WINDOW SIZE T T T= + + + + +

8. Calculate GLCM Time (Tcal)

After an instruction write request, a Clear Temporary Memory occurs

without the request and an interrupt, and then GLCM Builder is enabled. Once

enabled, GLCM builder iterates through every pixel in the window. For each

round of the iterations, it checks the distance between an interesting pixel and a

target pixel in once clock cycle, enables Matrix Voter to do a request-grant

handshake, read from memory, do a sub enable-done handshake, write back to

the memory and do a sub enable-done handshake again. Once the vote operation

is done a handshake is made and it takes one clock cycle to move to the next

pixel. Once all pixels are iterated through an enable-done handshake is made and

the operation is ended by an interrupt. These can be represented as…

()

2

2

_ _

 2 _ 2 1 2
cal req ram

ram syn syn

T T T GLCM SCALE LEVEL

WINDOW SIZE T T T

= + ×

+ × + + +

9. Digest GLCM into Statistics Values Time (Tdig)

Once the digest request is received, Process Controller enables Matrix

Integrator. Matrix Integrator will perform a request-grant handshake and starts

digesting process with every element in the GLCM. For each element, Matrix

Integrator accesses the memory, does a sub enable-done handshake with

- 77 -

Memory Controller, and takes one more clock cycle for the summing operation

and another one clock cycle for shifting to the next element. Then an enable-

done handshake is made between Process Controller and Matrix Integrator is

made following by an interrupt. Thus,

()22 _ _ 2 1dig req syn ram synT T T GLCM SCALE LEVEL T T= + + + + +

10. Read 1st, 2nd or 3rd Moment Time (Tsrd)

After receiving the instruction, Process Controller takes one clock cycle

for changing mi_output_sel to the selected value and another one for the

interrupt so the time can be calculated as…

2srd reqT T= +

11. Initialize Image Time (Timg)

For initializing the image information, the instruction is received and it

takes one clock cycle for storing the information and sends out an interrupt.

Thus,

2img reqT T= +

For GLCM statistics image generation, it begins with divide the whole image

into sub images called “region”. For each region, initialize it and loads every pixel in it

into the SRAM one by one. For each pixel in the input image except one that makes a

hole in the window, the window is moved to that pixel, nearby pixel is fetched into the

window, GLCM is calculated for the window, digest it into values, and send all three

statistics value to the host computer. Once all three values are received, the operations

are performed to every region and the calculation of the next direction values begins by

iterating the same operations again. There are 4 directions to be calculated – Northeast,

East, Southeast, and South. Note that, for every instruction, there must be an interrupt

read request followed by an interrupt clear.

- 78 -

Thus, time used for GLCM statistics image generation (TGSIG) is…

{ }int int4 3 11 8GSIG img wr shf ft cal dig srd req req
IT T R T T T T T T T T T T
R
⎡ ⎤ ⎡ ⎤ ⎡ ⎤= × + + + + + + + + + +⎣ ⎦ ⎣ ⎦⎢ ⎥⎢ ⎥

 Where I is the size of the input image

 R is the size of each region

 For the typical values of the time types and the default values, specified in Table

5.1, of GLCM_SCALE_LEVEL and WINDOW_SIZE which is 256 and 3, respectively,

each instruction time is…

int 4
12
12
393,222
7
7

88

393,384
97

6
6

wr

rd

clr

rst

shf

ft

cal

dig

srd

img

T
T
T
T
T
T

T

T
T

T
T

=
=

=
=
=
=

=

=
=

=
=

Thus,

(){ }

()

4 393,682 16

1,574,728

GSIG

GSIG

IT R
R

T I

⎡ ⎤= × +⎢ ⎥⎢ ⎥
≈

- 79 -

Chapter 6

Verification

Verification in this phase is set up to obtain the comparison of both correctness

and speed of algorithm for each operation performed between software and hardware.

The processing time of each operation is recorded to be compared with the processing

time performed by hardware. Moreover, the outputs of each operation obtained from the

experimental phase are used in verifying correctness of the outputs obtained from the

operation performed by hardware.

6.1 Correctness Verification

6.1.1 Introduction

From the statistic image outputs by software in the experiment phase in the

previous chapter, statistics images are generated by hardware in the same

experimental phase for verifying the correctness between the outputs of operation in

software and hardware.

6.1.2 Objectives

1. To obtain the processing time of this operation performed by hardware

2. To obtain the output statistics performed by hardware

To compare the correctness between operation performed by software

and hardware

6.1.3 Materials and Equipments

1. Executable file of the GLCM Statistic Image Generation Operation

which implements timer functions in it

2. A Tagged Image File Format image (TIFF image) which its size is 272

pixels by 280 pixels

- 80 -

3. A Computer with these specifications

 a) CPU: Intel Celeron 2.4 GHz

d) Motherboard: IBM, Intel i845

e) RAM: DDR 512 MB, 133 MHz

4. A True PCI with these specifications

a) Spartan-3 device 200,000 system gates (XC3S200)

b) +3.3V ,32 bits,33MHZ PCI Interface for PC Slot-based

development

6.1.4 Procedures

1. Execute the operation with the TIFF image, 3-by-3-pixel square size and

256-line region buffer. Observe and record the processing time and

output statistics image generated.

2. Verifying the correctness of the output statistics image generated by

software and hardware following as:

2.1 Find the Percent_Error from …

, ,

_ 100
_ _ _

i j i jsoftware hardware
j i

GLCM GLCM
Percent Error

GLCM SCALE LEVEL PIX NUM

−
= ×

×

∑∑

Where PIX_NUM is the total pixels of output statistics image

2.2 Repeat step 2.1 until complete all output statistics image

generated

- 81 -

 6.1.5 Results

Verifying the correctness of the output statistics image generated by software

and hardware

Figure 6.1 The 1st moment output statistics image generated by software

with R is 240, direction is east

Figure 6.2 The 1st moment output statistics image generated by hardware

with R is 240, direction is east

- 82 -

Figure 6.3 The 2nd moment output statistics image generated by software

with R is 240, direction is east

Figure 6.4 The 2nd moment output statistics image generated by hardware

with R is 240, direction is east

- 83 -

Figure 6.5 The 3rd moment output statistics image generated by software

with R is 240, direction is east

Figure 6.6 The 3rd moment output statistics image generated by hardware

with R is 240, direction is east

- 84 -

Table 6.1 Average error from verifying the correctness of output statistics image

generated by software and hardware

Region

Size
Direction

Statistic

Moment

Summation of

Difference

Average

Error

240

Northeast

1st 0 0

2nd 0 0

3rd 0 0

East

1st 0 0

2nd 0 0

3rd 0 0

Southeast

1st 0 0

2nd 0 0

3rd 0 0

South

1st 0 0

2nd 0 0

3rd 0 0

6.1.6 Conclusion

According to the results above, it says “Average error is zero”. So verifying

the correctness between GLCM statistic image generation operation by software and

hardware is correctly.

- 85 -

6.2 Execution Time Verification

6.2.1 Introduction

From the generated statistic image outputs by software in the experimental

phase in previous chapter and verifying the correctness in this chapter, we get the

processing time the both software and hardware.

So we can compare the speed between performed GLCM image generated by

software and hardware.

6.2.2 Objectives

To compare the Processing Time between performed GLCM image generated

by software and hardware

 6.2.3 Results

Table 6.2 Resulting of speed between performed GLCM image generated by software

and hardware for comparing

Image

Size

(pixels)

Region

Size

(lines)

Processing Time

by

software(seconds)

Processing Time

by

hardware(seconds)
Speed Up

(%)
CPU

Time

Wall

Time

CPU

Time

Wall

Time

16x16 16 38.13 38 32.11 32 15.79

272x280 240 14682.24 14682 11027.56 11027 24.89

- 86 -

6.2.4 Conclusion

According to the results above, the processing time of the hardware is faster

than the processing time of the software. Speed-up tends to be increase when

increasing size of the input images.

The speed-up is not as good as expected because the clock signal for Memory

is needed to be divided by eight, by setting CLOCK_DIVISOR_NUMBER to four,

in order to maintain the correctness of the experimental system.

If the default value in Table 5.1 of CLOCK_DIVISOR_NUMBER is used,

the data read from the Memory Unit will become inconsistent and the result images

are incorrect. The inconsistency is caused by wiring configuration of the prototype

and time delay of signal transitions through resistors.

- 87 -

Chapter 7

Conclusion

Image Processing in Hardware is the project concentrating on designing a co-

processor for the computer system to compute the computationally-intensive part of

operations in the digital image processing. This project integrates the knowledge of both

software and hardware computer engineering into one application.

The designed system is capable of speeding a digital image processing operation

by transferring the selected computationally intensive part of the GLCM statistic image

generation, which takes a week to complete its process, into a Spartan-3 FPGA with an

external SRAM. The system theoretically speeds the generation of the image about four

times but practically, the speed up is about 25 percent due to the parasitic capacitance in

the prototype of the system and a bottle neck in transferring data between the host

computer and the FPGA.

To build a computing platform which co-operates in computing with the CPU of

the computer, a lot of tools and knowledge must be integrated together. Firstly, the

device which is capable of computing and contains a fast memory unit is required. An

FPGA prototyping board was selected to play this role. Secondly, the communication

protocol between CPU and the device must be chosen or created. It is highly

recommended that the speed of the communication should be the fastest because the

data transferring consumes the precious time of computing. In this project, PCI was

chosen because it is the fastest way to communicate directly with the computer local

bus. Lastly, a program which needed to utilize the device must be modified so that the

data transferring and specific functions of the device are correctly substituted or inserted

into the source code and the program needed to be rebuilt.

In addition, this project tries to generalize the designs to widen the user space of

the reconfigurable system, e.g. application developers and researchers by divide the

function of the system into functional independent modules so that these modules can be

modified or rerouted into a new system. Moreover, the designs used design parameter

technique to aid in deploying the system into different platforms and reducing the task

of studying each module in details.

- 88 -

References

1. David Pellerin and Scott Thisbault, Practical FPGA Programming in C,

Pearson Education, Inc., USA, 2005.

2. RC Cofer and Ben Harding, Rapid System Prototyping with FPGA,

Elsevier, Inc., USA, 2006.

3. Digital Image Processing [online], available: http://en.wikipedia.org/

wiki/Digital_image_processing [2007, June 22].

4. Finite State Machine [online], available: http://en.wikipedia.org/

wiki/Finite_state_machine [2007, June 18].

5. Peripheral Component Interconnect [online], available: http://en.

wikipedia.org/wiki/Peripheral_Component_Interconnect

[2007, July 21].

6. Universal Serial Bus [online], available: http://en.wikipedia.org/

wiki/USB#USB_mass-storage [2007, July 26].

7. Using a Gray-Level Co-occurrence Matrix [online], available:

http://matlab.izmiran.ru/help/toolbox/images/enhanc15.html

[2007, August 24].

8. Finite State Machine [online], available: http://www.nist.gov/dads/

HTML/finiteStateMachine.html [2007, June 24].

9. Marching Cubes Algorithm [online], available: http://www.polytech.

unice.fr/~lingrand/MarchingCubes/algo.html [2007, August 23].

10. Introduction to Radar Remote Sensing [online], available: http://satftp.

soest.hawaii.edu/space/hawaii/vfts/kilauea/radar_ex/intro.html

[2007, August 10].

11. True PCI User Manual rev. 1.2 [online], available: http://www.design-

gateway.com/download/Trupci/UserManual.zip [2008, February, 25].

12. OpenDragon Project [online], available: http://www.open-dragon.org/

[2008, February, 25].

13. AMIC LP621024D Data Sheet [online], available: http://www.es.co.

th/Schemetic/PDF/LP621024D.PDF [2008, February, 25].

- 89 -

Appendix A

Timing Diagrams

Timing diagrams of the Image Processing in Hardware system and its modules

are shown in this section.

- 90 -

A.1 Memory Controller

A.1.1 Memory Read Operation

Figure A.1 Timing diagram of Memory Read Operation

Figure A.1 shows a memory read at the address 0x000A2. The operation is enabled at cursor A by rising mc_en. The data 0x5D is

received at cursor B. And, the operation is done at cursor C when mc_done is high.

- 91 -

A.1.2 Memory Write Operation

Figure A.2 Timing diagram of Memory Write Operation

Figure A.2 shows a write operation to the address 0x000A1 with the data

0xD1. The operation is enabled at cursor A by rising mc_en then a memory write is

performed at cursor B. And the operation is done at cursor C when mc_done is high.

- 92 -

A.1.3 Memory Clear Operation

Figure A.3 Timing diagram of Memory Clear Operation (Begin)

Figure A.3 shows the starting of a clear operation. The operation begins at

cursor A by lowering mc_clr_n. Signals between cursor B and C show a write

operation with zero data. The address of zero writing is increasing from 0x10000

which is the starting address of the temporary memory.

Figure A.4 Timing diagram of Memory Clear Operation (End)

- 93 -

The end of the operation is shown in Figure A.4. After the last address

(0x1FFF) is cleared, the operation is end with a high mc_done at cursor A.

A.2 Process Controller

A.2.1 Clear Interrupt Operation

Figure A.5 Timing diagram of Clear Interrupt Operation

A write request of pciif32 with the data 0x00000002 to the interrupt register is

shown in Figure A.5. The interrupt is cleared after the request at cursor B.

A.2.2 Write to Memory Operation

Figure A.6 Timing diagram of Write to Memory Operation (Begin)

- 94 -

The beginning of the operation by a pciif32 write request is shown at cursor A

in Figure A.6. The request writes a Write to Memory instruction to the instruction

register with the address parameter is 0x000A1 and the data parameter is 0xD1.

Process Controller performs a Memory Controller access request at cursor B. And a

write to memory is enabled at cursor C when mc_en is high.

Figure A.7 Timing diagram of Write to Memory Operation (End)

After a write to memory is complete, Process Controller receives a high

mc_done at cursor A in Figure A.7. The request signal of Process Controller is

lowered at cursor B to give up the request for the access grant. After that, an interrupt

is initialized at cursor C to synchronize with the host computer.

- 95 -

A.2.3 Read from Memory into Data Register Operation

Figure A.8 Timing diagram of Read from Memory into

Data Register Operation (Begin)

The beginning of the operation by a pciif32 write request is shown at

cursor A in Figure A.6. The request writes a Read from Memory into Data

Register instruction to the instruction register with the address parameter is

0x000A2. Process Controller performs a Memory Controller access request at

cursor B. And a read from memory is enabled at cursor C when mc_en is high.

- 96 -

Figure A.9 Timing diagram of Read from Memory into Data Register Operation (End)

After Memory Controller performs its read operation, a high mc_done occurs as shown at cursor A in Figure A.9. At cursor B, Process

Controller gives up its access grant and initializes an interrupt at cursor C.

- 97 -

A.2.4 Clear Temporary Memory Operation

Figure A.10 Timing diagram of Clear Temporary Memory Operation (Begin)

In Figure A.10, The operation begins at cursor A when a write request of

pciif32 occurs. The request writes the instruction to the instruction register. At cursor

B, Process Controller requests for an access grant to Memory Controller. After it is

granted, the clear operation of Memory Controller is enabled by lowering mc_clr_n

at cursor C.

- 98 -

Figure A.11 Timing diagram of Clear Temporary Memory Operation (End)

After the completion of the clear operation, a high mc_done occurs at cursor

A in Figure A.11 followed by the Memory Controller access cancelation at cursor B

and an interrupt at cursor C.

- 99 -

A.2.5 Reset Square Window Position Operation

Figure A.12 Timing diagram of Reset Square Window Position Operation

The operation is initialized at cursor A in Figure A.12 when an instruction write request of pciif32 occurs. The request writes a Reset

Square Window Position instruction to the instruction register through lb_data_out. The position is reset by the negative-edge of ci_ld_n

when ci_nxt is low at cursor B. After some delay, an interrupt is initialized at cursor C.

- 100 -

A.2.6 Shift Square Window Position Operation

Figure A.13 Timing diagram of Shift Square Window Position Operation

The operation is shown in Figure A.13. It begins when an instruction write

request of pciif32 occurs at cursor A. Process Controller forces ci_nxt signal to high

and performs a negative-edge ci_ld_n at cursor B. After the operation is done, an

interrupt is initialized at cursor C.

A.2.7 Fetch Data into Square Window Operation

Figure A.14 Timing diagram of Fetch Data into Square Window Operation (Begin)

- 101 -

The beginning of the operation is at cursor A in Figure A.14 where a write

request of the instruction occurs. Process controller sets sf_en to high for enabling

Square Fetcher at cursor B. After enabling, a fetch is shown at cursor C.

Figure A.15 Timing diagram of Fetch Data into Square Window Operation (End)

Figure A.15 shows the end of the operation. After a high sf_done at cursor A.

Process Controller initializes an interrupt at cursor B.

A.2.8 Calculate GLCM Operation

Figure A.16 Timing diagram of Calculate GLCM Operation (Begin)

- 102 -

Figure A.16 shows the beginning of the operation. In the figure, the

instruction is written at cursor A along with dx and dy. dx is 0x01 and dy is 0x81

indicating it is negative 0x01. Thus, the GLCM is calculated for (1, -1) direction.

Process Controller changes gb_dx and gb_dy to the given values at cursor B and

performs a memory clear by lowering mc_clr_n at cursor C.

Figure A.17 Timing diagram of Calculate GLCM Operation

(Finish clearing)

After the temporary memory is cleared as shown at cursor A in Figure A.17,

Process Controller enables GLCM Builder by setting gb_en to high at cursor B.

Figure A.18 Timing diagram of Calculate GLCM Operation (End)

- 103 -

The ending of the operation is shown in Figure A.18. At cursor A, GLCM

Builder declares the completion of its operation by rising gb_done. Then, Process

Controller reset the gb_dx and gb_dy at cursor B and an interrupt occurs at cursor C.

A.2.9 Digest GLCM into Statistics Values Operation

Figure A.19 Timing diagram of Digest GLCM into

Statistics Values Operation (Begin)

Figure A.19 shows the beginning of the operation. An instruction write

request at cursor A writes a Digest GLCM into Statistics Values instruction to the

instruction register. The operation of Matrix Integrator is enabled when Process

Controllers sets mi_en to high at cursor B.

- 104 -

Figure A.20 Timing diagram of Digest GLCM into

Statistics Values Operation (End)

After Matrix Integrator sets mi_done to high at cursor A in Figure A.20,

Process Controller lowers mi_en signal and sends an interrupt to the host computer at

cursor B.

A.2.10 Read 1st, 2nd or 3rd Moment into Result Register Operation

Figure A.21 Timing diagram of Read 1st Moment into

Result Register Operation

- 105 -

In order to read 1st moment statistics value, Read 1st Moment into Result

Register is written to the instruction register at cursor A in Figure A.21. At cursor B,

Porcess Controller selects the value by changing mi_output_sel to 0x1. Suddenly,

mi_data_out is change to 1st moment value. Then, the host computer is interrupted at

cursor C.

A.2.11 Initialize Image Operation

Figure A.22 Timing diagram of Initialize Image Operation

The image information is initialized by a write request to the instruction

register with the corresponding instruction. Cursor A in Figure A.2 shows the

instruction with 0x0005 width argument and 0x000A height argument. Process

Controller accepts those values and change img_width and img_height to the

specified values respectively at cursor B. And an interrupt is initialized at cursor C.

- 106 -

A.2.12 Read from a Register Operation

Figure A.23 Timing diagram of Read from Interrupt Register Operation

Figures A.23 shows how a Read from the Interrupt Register instruction

works. A read request to the interrupt register (address 0x0000) of pciif32 occurred at

cursor A causes lb_data_in to change to the 0x00000003. This value is stored in the

interrupt register.

A.3 Arbiter

Figure A.24 Timing diagram of Arbiter Operation

The timing diagram in Figure A.24 simulates the operation of Arbiter. Matrix

Integrator requests for an access grant at cursor A. Arbiter accepts the request and grant

an access for it. During the grant, a request from Square Fetcher occurs at cursor B.

- 107 -

Arbiter neglects this request until the grant of Matrix Integrator is cancelled. Cursor C

shows a race condition when there are requests from both Square Fetcher and Matrix

Voter. Arbiter decides that the Square Fetcher wins because of its higher priority, and

grants it.

A.4 Center Indexer

Figure A.25 Timing diagram of Center Indexer Operation

In Figure A.25, cursor A shows Reset operation of this module and cursor B

shows Next operation. The reset operation is done at the negative-edge of ci_ld_n with

the low ci_nxt. This operation reset ci_row and ci_col to 0. The next operation is done at

the negative-edge of ci_ld_n with the high ci_nxt. The next operation shift the ci_col to

the right. The figure shows shifting the window position from (0, 0) to (0, 1).

- 108 -

A.5 Square Fetcher

Figure A.26 Timing diagram of Square Fetcher Operation (Begin)

The beginning of the operation is when sf_en is high. It is shown at cursor A in

Figure A.26. Once enabled, Square Fetcher requests for the Memory Controller access

grant at cursor B. After it receives an access grant, it begins fetching data from the

Memory Unit to the bus. When the data is on the bus (mc_done is high.), the data is

written to Square Buffer by a negative-edge of sb_wr_n shown at cursor C.

- 109 -

Figure A.27 Timing diagram of Square Fetcher Operation (End)

The fetch operation continuously occurs until all elements in the processing

window are fetched. Figure A.27 shows this event. At cursor B, Square Fetcher set

sf_done to high in order to indicate the completion of the operation and cancels the

request for controlling Memory Controller at the same time.

- 110 -

A.6 Square Buffer

Figure A.28 Timing diagram of Square Buffer Operation

The operation of this module is simulated as shown in Figure A.28. At cursor A,

sb_rst_n is set to high and the operation begins. At the same time, the sb_rd_addr2 is

changed to 0x1. The output data at sb_rd_data2 is 0x00. A write occurs at cursor B.

Writing the data 0xD1 via sb_data_in to the address 0x1 causes sb_data_out2 to change

to 0xD1. Another write occurs at cursor C writing 0xD2 to the address 0x2.

- 111 -

A.7 GLCM Builder

Figure A.29 Timing diagram of GLCM Builder Operation

Figure A.29 shows the operation of GLCM Builder. This operation is enabled at cursor A by rising gb_en. The sb_rd_addr1 is 1 match

the sb_rd_addr2 is 3 follow by the direction gb_dx and gb_dy. This operation gets their pair to vote and operation is done when mv_done is

low at cursor B. And, the all operations is done at cursor C when gb_done is high.

- 112 -

A.8 Address Decoder

Figure A.30 Timing diagram of Address Decoder Operation

Figure A.30 shows the operation of Address Decoder. This operation takes both of the value of ad_row 0x01 and ad_col 0x05 to

compute the result and combine the ad_start for getting the value of ad_addr 0x00204.

- 113 -

A.9 Matrix Voter

Figure A.31 Timing diagram of Matrix Voter Operation

Figure A.31 shows the operation of Matrix Voter. The operation is enabled at cursor A by rising mv_en. The mc_data 0xAB is read

from memory is received at cursor B for increasing the value by one, mc_data 0xAC. It is written into the memory at cursor C. And, the

operation is done at cursor D when mv_done is high.

- 114 -

A.10 Matrix Integrator

Figure A.32 Timing diagram of Matrix Integrator Operation (Begin)

Figure A.33 Timing diagram of Matrix Integrator Operation (End)

- 115 -

Figure A.32 shows the operation of Matrix Integrator. This operation is enabled

at cursor A by rising mi_en. This operation read the mi_data_in from the memory when

rising mc_rw at cursor B. To compute the mi_data_out_buf1 0x00000002,

mi_data_out_buf2 0x00000004 and mi_data_out_buf3 0x00000008 from three

combining the three values such as row 0x00,col 0x01 and mi_data_in 0x01 at cursor

C. And, the operation is done at cursor D when mi_done is high.

A.11 Clock Divider

Figure A.34 Timing diagram of Clock Divider Operation

Figure A.34 shows the operation of Clock Divider. Its operation is begun when

cd_rst_n is risen up at cursor A. The simulation simulates Clock Divider when setting

CLOCK_DIVISOR_NUMBER to 3. Thus, the 30 ns input clock signal is divided into

180 ns output clock signal measured between cursor B and cursor C.

- 116 -

Appendix B

Schematics

Schematic of Image Processing in Hardware system is shown in Figure B.1.

- 117 -

Figure B.1 Schematic of Image Processing in Hardware system

