
get homologues manual

Bruno Contreras-Moreira
Laboratory of Computational Biology

Estación Experimental de Aula Dei/CSIC, Fundación ARAID
http://www.eead.csic.es/compbio

Zaragoza, España

Pablo Vinuesa
Center for Genomic Sciences

Universidad Nacional Autónoma de México
http://www.ccg.unam.mx/̃ vinuesa

Cuernavaca, México

August 14, 2015

1

http://www.eead.csic.es/compbio
http://www.ccg.unam.mx/~vinuesa

Contents

1 Description 3

2 Requirements and installation 3
2.1 Perl modules . 3
2.2 Required binaries . 4
2.3 Optional software dependencies . 4

3 User manual 7
3.1 Input data . 7
3.2 Obtaining (bacterial) GenBank input files . 7
3.3 (Eukaryotic) FASTA amino acid input files . 9
3.4 Program options . 10
3.5 Accompanying scripts . 17

4 A few examples of use 19
4.1 Clustering orthologous proteins from a few FASTA files . 19
4.2 Clustering orthologous proteins from a single FASTA file . 23
4.3 Clustering genes and proteins extracted from GenBank files . 25
4.4 Clustering genes and proteins that share Pfam domain architecture 27
4.5 Clustering syntenic/neighbor genes . 29
4.6 Comparing clusters with external sequence sets . 30
4.7 Clustering intergenic segments from GenBank files . 31
4.8 Performing genome composition analyses . 33

4.8.1 Obtaining a pangenome matrix . 33
4.8.2 Interrogating a pangenome matrix . 36
4.8.3 Calculating cloud, shell and core genomes . 38
4.8.4 Estimating core/pan-genome size by sampling genomes 40
4.8.5 Estimating average identity matrices . 42
4.8.6 Finding out best hits of a particular sequence . 43

4.9 A script to test most get homologues features with a sample dataset 44

5 Frequently asked questions (FAQs) 45
5.1 Installation . 45
5.2 Run options . 47
5.3 Downstream analyses . 49

6 Frequent warnings and error messages 51

7 Credits and references 52

2

1 Description

This document describes the software get homologues and provides a few examples on how to use it. get homologues
is mainly written in the Perl programming language and includes several algorithms designed for three main
tasks:

1 Clustering protein and nucleotide sequences in homologous (possibly orthologous) groups, on the grounds
of sequence similarity.

2 Identification of orthologous groups of intergenic regions, flanked by orthologous open reading frames
(ORFs), conserved across related genomes.

3 Definition of pan- and core-genomes by calculation of overlapping sets of proteins.

While the program was mainly developed for the study of bacterial genomes in GenBank format, it can
also be applied to eukaryotic sets of sequences, although in this case the meaning of terms such as core- or
pan-genome might change, and intergenic regions might be much larger.

2 Requirements and installation

get homologues.pl is a Perl program bundled with a few binary files. The software has been tested on 32 and
64-bit Linux boxes, and on Intel MacOSX 10.8.4 systems. Therefore, a Perl interpreter is needed to run this
software, which is usually installed by default on these operating systems. In addition, the package includes a
few extra scripts which can be useful for downloading GenBank files and for the analysis of the results.

In order to install and test this software please follow these steps:

1. Unpack the software with: $ tar xvfz get_homologues_X.Y.tgz

2. $ cd get_homologues_X.Y

3. $./install.pl

Please follow the indications in case some required part is missing.

4. Type $./get_homologues.pl -v which will tell exactly which features are available.

5. Test the main Perl script, named get_homologues.pl, with the included sample input folder sample_buch_fasta
by means of the instruction:
$./get_homologues.pl -d sample_buch_fasta . You should get an output similar to the contents of
file sample_output.txt.

6. Optionally modify your $PATH environment variable to include get homologues.pl. Please copy the following
lines to the .bash_profile or .bashrc files, found in your home directory, replacing [INSTALL_PATH] by
the full path of the installation folder:

export GETHOMS=[INSTALL_PATH]/get_homologues_X.Y

export PATH=${GETHOMS}/:${PATH}

This change will be effective in a new terminal or after running: $ source ~/.bash_profile

The rest of this section might be safely skipped if installation went fine, it was written to help solve instal-
lation problems.

2.1 Perl modules

A few Perl core modules are required by the get homologues.pl script, which should be already installed on
your system: Cwd, File::Fetch, Net::FTP, FindBin, File::Basename, File::Spec, Getopt::Std, Benchmark and
Storable. In addition, the Bio::Seq, Bio::SeqIO, Bio::Graphics and Bio::SeqFeature::Generic modules from
the Bioperl collection, and module Parallel::ForkManager are also required, and have been included in the
get homologues bundle for your convenience.

3

http://www.bioperl.org
http://search.cpan.org/perldoc?Parallel%3A%3AForkManager

Should this version of BioPerl fail in your system (as diagnosed by install.pl) it might be necessary to install
it from scratch. However, before trying to download it, you might want to check whether it is already living on
your system, by typing on the terminal:
$ perl -MBio::Root::Version -e ’print $Bio::Root::Version::VERSION’

If you get a message Can’t locate Bio/Root/Version... then you need to actually install it, which can
sometimes become troublesome due to failed dependencies. For this reason usually the easiest way of installing
it, provided that you have root privileges, it is to use the software manager of your Linux distribution (such as
synaptic/apt-get in Ubuntu, yum in Fedora or YaST in openSUSE). If you prefer the terminal please use the
cpan program with administrator privileges (sudo in Ubuntu):
$ cpan -i C/CJ/CJFIELDS/BioPerl-1.6.1.tar.gz

This form should be also valid:
$ perl -MCPAN -e ’install C/CJ/CJFIELDS/BioPerl-1.6.1.tar.gz’

Please check this tutorial if you need further help.

2.2 Required binaries

The Perl script install.pl, already mentioned in section 2, checks whether the included precompiled binaries for
COGtriangles, hmmer, MCL and BLAST are in place and ready to be used by get homologues. However, if any
of these binaries fails to work in your system, perhaps due a different architecture or due to missing libraries, it
will be necessary to obtain an appropriate version for your system or to compile them with your own compiler.

In order to compile MCL the GNU gcc compiler is required, although it should most certainly already be
installed on your system. If not, you might install it by any of the alternatives listed in section 2.1. For instance,
in Ubuntu this works well: $ sudo apt-get install gcc . The compilation steps are as follows:

$ cd bin/mcl-02-063;

$./configure‘;

$ make

To compile COGtriangles the GNU g++ compiler is required. You should obtain it by any of the alternatives
listed in section 2.1. The compilation would then include several steps:

$cd bin/COGsoft;

$cd COGlse; make;

$cd ../COGmakehash;make;

$cd ../COGreadblast;make;

$cd ../COGtriangles;make

Regarding BLAST, get homologues can use binaries from both the BLAST and BLAST+ versions, which
can be easily downloaded from the NCBI FTP site. The packed binaries are blastp and makeblastdb from version
ncbi-blast-2.2.27+. If these do not work in your machine or your prefer to use older BLAST versions, then it
will be necessary to edit file lib/phyTools.pm. First, environmental variable $ENV{’BLAST_PATH’} needs to be
set to the right path in your system (inside subroutine sub set_phyTools_env).
Variables $ENV{’EXE_BLASTP’} and $ENV{’EXE_FORMATDB’} also need to be changed to the appropriate BLAST
binaries, which are respectively blastall and formatdb.

2.3 Optional software dependencies

It is possible to make use of get homologues on a computer farm or high-performance computing cluster managed
by gridengine. In particular we have tested this feature with versions GE 6.0u8, 6.2u4, 2011.11p1 (in Rocks
Cluster distributions 4.3, 5.4 and 6.1), invoking the program with option -m cluster. For this command to
work it might be necessary to edit the get homologues.pl file and add the right path to set global variable
$SGEPATH. To find out the installation path of your SGE installation you might try the next terminal command:
$ which qsub

In case you have access to a multi-core computer you can follow the steps in this blog post to set up your own
Grid Engine cluster and speed up your calculations.

For cluster-based operations three bundled Perl scripts are invoked:
_cluster_makeHomolog.pl, _cluster_makeInparalog.pl and _cluster_makeOrtholog.pl .

4

http://bioperl.open-bio.org/wiki/Installing_Bioperl_for_Unix
http://sourceforge.net/projects/cogtriangles/files/
http://hmmer.janelia.org/
http://www.micans.org/mcl
ftp://ftp.ncbi.nlm.nih.gov/blast/executables/
ftp://ftp.ncbi.nlm.nih.gov/blast/executables/
http://gridscheduler.sourceforge.net/
http://www.rocksclusters.org/roll-documentation/base/5.5/
http://www.rocksclusters.org/roll-documentation/base/5.5/
http://bioinfoperl.blogspot.com.es/2015/04/howto-install-grid-engine-on-multi-core-box-gethomologues.html

It is also possible to invoke Pfam domain scanning from get homologues. This option requires the bundled
binary hmmscan, which is part of the HMMER3 package, whose path is set in file lib/phyTools.pm (variable
$ENV{’EXE_HMMPFAM’}). Should this binary not work in your system, a fresh install might be the solution, say
in /your/path/hmmer-3.0/. In this case you’ll have to edit file lib/phyTools.pm and modify the relevant:

if(! defined($ENV{’EXE_HMMPFAM’}))

{

$ENV{’EXE_HMMPFAM’} = ’/your/path/hmmer-3.0/src/hmmscan --noali --acc --cut_ga ’;

}

The Pfam HMM library is also required and the install.pl script should take care of it. However, you can
manually download it from the appropriate Pfam FTP site. This file needs to be decompressed, either in the
default db folder or in any other location, and then it should be formatted with the program hmmpress, which
is also part of the HMMER3 package. A valid command sequence could be:

$ cd db;

$ wget ftp://ftp.sanger.ac.uk/pub/databases/Pfam/current_release/Pfam-A.hmm.gz .;

$ gunzip Pfam-A.hmm.gz;

$ /your/path/hmmer-3.0/src/hmmpress Pfam-A.hmm;

Finally, you’ll need to edit file lib/phyTools.pm and modify the relevant line to:

if(! defined($ENV{"PFAMDB"})){ $ENV{"PFAMDB"} = "db/Pfam-A.hmm"; }

In order to reduce the memory footprint of get homologues it is possible to take advantage of the Berke-
ley DB database engine, which requires Perl core module DB File, which should be installed on all major Linux
distributions.

Similarly, in order to take full advantage of the accompanying script parse pangenome matrix.pl, particularly
for option -p, the installation of module GD is recommended. An easy way to install them, provided that you
have administrator privileges, is with help from the software manager of your Linux distribution (such as
synaptic/apt-get in Ubuntu, yum in Fedora or YaST in openSUSE).

This can usually be done on the terminal as well, in different forms:

$ sudo apt-get -y install libgd-gd2-perl # Ubuntu/Debian-based distros

$ yum -y install perl-GD # Redhat and derived distros

$ zypper --assume-yes install perl-GD # SuSE

$ cpan -i GD # will require administrator privileges (sudo)

$ perl -MCPAN -e ’install GD’ # will require administrator privileges (sudo)

The installation of perl-GD on macOSX systems is known to be troublesome.
The accompanying scripts compare clusters.pl, plot pancore matrix.pl, parse pangenome matrix.pl, plot matrix heatmap.sh,

hcluster matrix.sh require the installation of the statistical software R, which usually is listed by software man-
agers in all major Linux distributions. In some cases (some SuSE versions and some Redhat-like distros) it will
be necessary to add a repository to your package manager. R can be installed from the terminal:

$ sudo apt-get -y install r-base r-base-dev # Ubuntu/Debian-based distros

$ yum -y install R # RedHat and derived distros

$ zypper --assume-yes R-patched R-patched-devel # Suse

Please visit CRAN to download and install R on macOSX systems, which is straightforward.

In addition to R itself, plot matrix heatmap.sh and hcluster matrix.sh require some R packages to run, which
can be easily installed from the R command line with:

5

http://hmmer.janelia.org
ftp://ftp.sanger.ac.uk/pub/databases/Pfam/current_release/Pfam-A.hmm.gz
http://en.wikipedia.org/wiki/Berkeley_DB
http://en.wikipedia.org/wiki/Berkeley_DB
http://search.cpan.org/perldoc?DB_File
http://search.cpan.org/perldoc?GD
http://www.bugzilla.org/docs/2.16/html/osx.html
http://www.r-project.org
http://cran.r-project.org/bin/linux/suse/README.html
http://fedoraproject.org/wiki/EPEL/FAQ#How_can_I_install_the_packages_from_the_EPEL_software_repository.3F
http://cran.r-project.org/bin/macosx/

> install.packages(c("ape", "gplots", "cluster"), dependencies=TRUE)

Finally, the script compare clusters.pl might require the installation of program PARS from the PHYLIP
suite, which should be already bundled with your copy of get homologues.

6

http://evolution.genetics.washington.edu/phylip/doc/pars.html
http://evolution.genetics.washington.edu/phylip/doc/pars.html

3 User manual

This section describes the available options for the get homologues software.

3.1 Input data

The input required to run get homologues can be of two types:

1 A single file with amino acid sequences in FASTA format, in which headers include a taxon name between
square brackets, including at least two words and a first capital letter, as shown in the example:

>protein 123 [Species 1]

MANILLLDNIDSFTYNLVEQLRNQKNNVLVYRNTVSIDIIFNSLKKLTHPILMLSPGPSLPKHAGCMLDL

PEKFVINSYFEKMIMSVRNNCDRVCGFQFHPESILTTHGDQILEKIIHWASLKYITNKKQ

>gi|10923402| [Species 2]

IKKVKGDIPIVGICLGHQAIVEAYGGIIGYAGEIFHGKASLIRHDGLEMFEGVPQPLPVARYHSLICNKI

PEKFVINSYFEKMIMSVRNNCDRVCGFQFHPESILTTHGDQILEKIIHWASLKYITNKKQ

...

2 A directory or folder containing several files in either FASTA format (extensions ’.faa’ or ’.fasta’, containing
amino acid sequences) or GenBank files (extension ’.gbk’, one file per organism). The advantage of this
option is that new files can be added to the input folder in the future and previous calculations will be
conserved. This might be useful to study a group of organisms for which a few genomes are available, and
then keep adding new genomes as they become available. This directory can actually contain a mixture
of FASTA and GenBank files.

3.2 Obtaining (bacterial) GenBank input files

The GenBank format is routinely used to describe genomic sequences, usually taking one file per chromosome
or genomic contig. Each file contains a reference DNA genomic sequence plus a collection of genes and their
products, making it possible to extract simultaneously the sequence of every ORF and its corresponding protein
products.

GenBank files are the recommended input format for bacterial sequences, as they permit the compilation of
DNA and protein sequences clusters, which might have different applications.

There are many ways to obtain GenBank files, starting by manual browsing and downloading from the NCBI
site, keeping in mind that full files, which include the reference nucleotide sequences, should be downloaded. In
fact, get homologues.pl will fail to parse any ORF in summary GenBank files.

Figure 1: NCBI download widget showing the choice of ’GenBank (full)’ format, which contains the raw reference
nucleotide sequences.

7

http://www.ncbi.nlm.nih.gov/Sitemap/samplerecord.html
http://www.ncbi.nlm.nih.gov/genbank
http://www.ncbi.nlm.nih.gov/genbank

Often users take custom-made GenBank files, resulting from in-house genome assemblies, to be analysed.
In most cases genes from such files don’t have GenBank identifiers assigned yet, and so we recommend adding
the field locus_tag to each CDS feature so that parsed sequences can be properly identified.

For their use with get homologues, GenBank files for the same species (for example, from the main chromo-
some and from a couple of plasmids) must be concatenated. For instance, the genomic sequences of Rhizobium
etli CFN 42 comprise seven files, which can be concatenated into a single Rhizobium etli CFN42.gbk file.

In order to assist in this task this software package includes the accompanying script download genomes ncbi.pl.
We will explain its use by fetching some of the Yersinia pestis genomic sequences used in a 2010 paper by Morelli
et al :

Group Name Accession Number Status

0.PE2 Pestoides F NC_009381 Completed Sanger genome

0.PE3 Angola NC_010159 Completed Sanger genome

0.PE4 91001 NC_005810 Completed Sanger genome

0.ANT2 B42003004 NZ_AAYU00000000 Draft Sanger genome

1.ANT1 UG05-0454 NZ_AAYR00000000 Draft Sanger genome (12.3X coverage)

1.ANT1 Antiqua NC_008150 Completed Sanger genome

1.IN3 E1979001 NZ_AAYV00000000 Draft Sanger genome

1.ORI1 CA88-4125 NZ_ABCD00000000 Draft Sanger genome

1.ORI1 FV-1 NZ_AAUB00000000 Draft Sanger genome

1.ORI1 CO92 NC_003143 Completed Sanger genome

1.ORI2 F1991016 NZ_ABAT00000000 Draft Sanger genome

1.ORI3 IP674 ERA000177 Draft 454 genome (82X coverage)

1.ORI3 IP275 NZ_AAOS00000000 Draft Sanger genome (7.6X coverage)

1.ORI3 MG05-1020 NZ_AAYS00000000 Draft Sanger genome (12.1X coverage)

2.ANT1 Nepal516 NZ_ACNQ00000000 Draft Sanger genome

2.MED1 KIM NC_004088 Completed Sanger genome

2.MED2 K1973002 NZ_AAYT00000000 Draft Sanger genome

In order to use download genomes ncbi.pl is is necessary to feed it a text file listing which genomes are to be
downloaded. The next examples show the exact format required, as does the bundled file sample_genome_list.txt.

First, it can be seen that all completed genomes have NC accession numbers, and indeed they all have their
own folder in the NCBI site for bacterial genomes: ftp://ftp.ncbi.nih.gov/genbank/genomes/Bacteria. These
genomes can be added to the download list as follows:

NC_009381 Yersinia_pestis_Pestoides

Moreover, there are also a few draft genomes, with NZ accessions, which can be browsed at:
ftp.ncbi.nih.gov/genomes/Bacteria DRAFT. These entries can be listed in our download file by adding the
four-letter code of their accession numbers, as follows:

AAYU Yersinia_pestis_B42003004

Sometimes it might not be possible to successfully find a sequence, as happened with ERA000177 when
writing this part of the manual. Finally, the genome_list.txt file will look as this:

Yersinia_pestis_Pestoides_F Yersinia_pestis_Pestoides

NC_010159 Yersinia_pestis_Angola

NC_005810 Yersinia_pestis_91001

NC_008150 Yersinia_pestis_Antiqua

NC_003143 Yersinia_pestis_CO92

NC_006155 Yersinia_pestis_IP32953

NC_004088 Yersinia_pestis_KIM

AAYU Yersinia_pestis_B42003004

AAYR Yersinia_pestis_UG05-0454

AAYV Yersinia_pestis_E1979001

ABCD Yersinia_pestis_CA88-4125

8

http://www.ncbi.nlm.nih.gov/genome?Db=genome&term=rhizobium%20etli%20CFN42[orgn]
http://www.ncbi.nlm.nih.gov/pubmed/21037571
ftp://ftp.ncbi.nih.gov/genomes/Bacteria
ftp://ftp.ncbi.nih.gov/genomes/Bacteria_DRAFT

AAUB Yersinia_pestis_FV-1

ABAT Yersinia_pestis_F1991016

AAOS Yersinia_pestis_IP275

AAYS Yersinia_pestis_MG05-1020

ACNQ Yersinia_pestis_Nepal516

AAYT Yersinia_pestis_K1973002

#ERA000177 Yersinia_pestis_IP674 # unavailable

Note that only the first two columns (separated by a blank) are read in, and that lines can be commented out
by adding a ’#’ as the first character.

Now we can run the following terminal command to fetch these genomes:
$./download_genomes_ncbi.pl genome_list.txt

which will put several Yersinia pestis *.gbk files in the current directory, which are now ready to be used by
get homologues.

3.3 (Eukaryotic) FASTA amino acid input files

Due to the complexity of eukaryotic genomes, which are split in many chromosomes and contigs and usually
contain complex gene models, the preferred format taken by get homologues for their sequences is FASTA.

While eukaryotic GenBank files can be fed in, during development we have not tested nor benchmarked the
compilation of clusters of nucleotide eukaryotic sequences, which can be more error prone due to the inclusion
of, for instance, introns and pseudogenes. Therefore we currently cannot recommend the use of eukaryotic
GenBank input files.

Of course FASTA format can also be used for prokaryotic amino acid sequences, as in the case of the example
sample_buch_fasta folder, which contains protein sequences found in four Buchnera aphidicola genomes.

If your data are DNA coding sequences you can translate them to protein sequences for use with get homologues,
for instance by means of a Perl command in the terminal, with a little help from Bioperl 2.1. It is a long com-
mand, which is split in three chunks to fit in this page:

$ perl -MBio::Seq -lne ’if(/^(>.*)/){$h=$1}else{$fa{$h}.=$_} \

END{ foreach $h (sort(keys(%fa))){ $fa{$h}=Bio::Seq->new(-seq=>$fa{$h})->translate()->seq(); \

print "$h\n$fa{$h}\n" }}’ your_CDS_file.fna

9

http://en.wikipedia.org/wiki/FASTA_format

3.4 Program options

-v print version, credits and checks installation

-d directory with input FASTA files (.faa / .fna), (overrides -i,

GenBank files (.gbk), 1 per genome, or a subdirectory use of pre-clustered sequences

(subdir.clusters / subdir_) with pre-clustered sequences ignores -c, -g)

(.faa / .fna); allows for new files to be added later;

creates output folder named ’directory_homologues’

-i input amino acid FASTA file with [taxon names] in headers, (required unless -d is set)

creates output folder named ’file_homologues’

Optional parameters:

-o only run BLAST/Pfam searches and exit (useful to pre-compute searches)

-c report genome composition analysis (follows order in -I file if enforced,

ignores -r,-t,-e)

-R set random seed for genome composition analysis (optional, requires -c, example -R 1234,

required for mixing -c with -c -a runs)

-s save memory by using BerkeleyDB; default parsing stores

sequence hits in RAM

-m runmode [local|cluster] (default local)

-n number of threads for BLAST/HMMER in ’local’ runmode (default=2)

-I file with .faa/.gbk files in -d to be included (takes all by default, requires -d)

Algorithms instead of default bidirectional best-hits (BDBH):

-G use COGtriangle algorithm (COGS, PubMed=20439257) (requires 3+ genomes|taxa)

-M use orthoMCL algorithm (OMCL, PubMed=12952885)

Options that control sequence similarity searches:

-C min %coverage in BLAST pairwise alignments (range [1-100],default=75)

-E max E-value (default=1e-05,max=0.01)

-D require equal Pfam domain composition (recommended with -m cluster

when defining similarity-based orthology

-S min %sequence identity in BLAST query/subj pairs (range [1-100],default=1 [BDBH|OMCL])

-N min BLAST neighborhood correlation PubMed=18475320 (range [0,1],default=0 [BDBH|OMCL])

-b compile core-genome with minimum BLAST searches (ignores -c [BDBH])

Options that control clustering:

-t report sequence clusters including at least t taxa (default t=numberOfTaxa,

t=0 reports all clusters [OMCL|COGS])

-a report clusters of sequence features in GenBank files (requires -d and .gbk files,

instead of default ’CDS’ GenBank features example -a ’tRNA,rRNA’,

NOTE: uses blastn instead of blastp,

ignores -g,-D)

-g report clusters of intergenic sequences flanked by ORFs (requires -d and .gbk files)

in addition to default ’CDS’ clusters

-f filter by %length difference within clusters (range [1-100], by default sequence

length is not checked)

-r reference proteome .faa/.gbk file (by default takes file with

least sequences; with BDBH sets

first taxa to start adding genes)

-e exclude clusters with inparalogues (by default inparalogues are

included)

10

-x allow sequences in multiple COG clusters (by default sequences are allocated

to single clusters [COGS])

-F orthoMCL inflation value (range [1-5], default=1.5 [OMCL])

-A calculate average identity of clustered sequences, (optional, creates tab-separated matrix,

by default uses blastp results but can use blastn with -a recommended with -t 0 [OMCL|COGS])

-z add soft-core to genome composition analysis (optional, requires -c [OMCL|COGS])

Figure 2: Flowchart of get homologues.

Typing $./get_homologues.pl -h on the terminal will show the available options, shown on the previous
pages.

The only required option is either -i, used to choose an input file, or -d instead, which indicates an input
folder, as seen in section 3.1. It is important to remark that in principle only files with extensions .faa and
.gbk are considered when parsing the -d directory. By using .faa input files in theory you might only calculate
clusters of protein sequences. In contrast, the advantage of using .gbk files is that you obtain both nucleotide
and protein clusters. If both types of input files are combined, only protein clusters will be produced. However,
if each input .faa file has a twin .fna file in place, containing the corresponding nucleotide sequences in the
same order, the program will attempt to produce the corresponding clusters of nucleotide sequences. The
possible input file combinations are summarized in Table 1:

The use of an input folder or directory (-d) is recommended as it allows for new files to be added there in
the future, reducing the computing required for updated analyses. For instance, if a user does a first analysis
with 5 input genomes today, it is possible to check how the resulting clusters would change when adding an
extra 10 genomes tomorrow, by copying these new 10 .faa / .gbk input files to the pre-existing -d folder, so
that all previous BLAST searches are re-used.

In addition to .gbk and .faa files, the input directory can also contain one subfolder with pre-clustered
sequences. This feature was designed so that users can add previously produced get homologues clusters, or
any other set of grouped sequences in FASTA format, to be analysed. For such a subfolder to be recognized,
it must be named subdir.clusters or subdir_. Sample data folder sample_buch_fasta/ contains such an

11

input file extensions output clusters
.gbk amino acid + DNA sequence
.faa amino acid sequence
.gbk & .faa amino acid sequence
.faa & .fna amino acid + DNA sequence
.gbk & .faa & .fna amino acid + DNA sequence

Table 1: Valid input file combinations.

example subfolder which can be uncompressed to be tested. It is important to note that, during subsequent
calculations, these clusters are represented by the first sequence found in each. However, the output
of the program will include all pre-clustered sequences for convenience.

All remaining flags are options that can modify the default behavior of the program, which is to use the
bidirectional best hit algorithm (BDBH) in order to compile clusters of potential orthologous ORFs, taking the
smallest genome as a reference. By default protein sequences are used to guide the clustering, thus relying on
BLASTP searches.

Perhaps the most important optional parameter would be the choice of clustering algorithm (Table 2):

name option
BDBH default Starting from a reference genome, keep adding genomes stepwise while storing the

sequence clusters that result of merging the latest bidirectional best hits, as illus-
trated in Figure 3.

COGS -G Merges triangles of inter-genomic symmetrical best matches, as described in
PubMed=20439257. Note that a single sequence might occasionally be included
in several COGS clusters with option -x.

OMCL -M OrthoMCL v1.4, uses the Markov Cluster Algorithm to group sequences, with in-
flation (-F) controlling cluster granularity, as described in PubMed=12952885.

Table 2: List of available clustering algorithms.

The remaining options are now reviewed:

• Apart from showing the credits, option -v can be helpful after installation, for it prints the enabled features
of the program, which of course depend on the required and optional binaries mentioned in sections 2.2
and 2.3.

• -o is ideally used to submit to a computer cluster the required BLAST (and Pfam) searches, preparing a
job for posterior analysis on a single computer.

• -c is used to request a pan- and core-genome analysis of the input genomes, which will be output as
a tab-separated data file. The number of samples for the genome composition analysis is set to 10 by
default, but this can be edited at the header of get_homologues.pl (check the $NOFSAMPLESREPORT

variable). In addition, variables $MIN_PERSEQID_HOM and $MIN_COVERAGE_HOM, with default values 0
and 20, respectively, control how homologues are called. These values can as well be edited to require
more stringent identity and coverage requirements in order to call a sequence homologous, and therefore,
redundant.

• -R takes a number that will be used to seed the random generator used with option -c. By using the
same seed in different -c runs the user ensures that genomes are sampled in the same order.

• -s can be used to reduce the memory footprint, provided that the Perl module BerkeleyDB is in place
(please check section 2.3). This option usually makes get homologues slower, but for very large datasets
or in machines with little memory resources this might be the only way to complete a job.

• -m allows the choice of runmode, which can be either -m local (the default) or -m cluster. In the
second case global variable $SGEPATH might need to be appropriately set, as explained in section 2.3,

12

http://www.ncbi.nlm.nih.gov/sites/ppmc/articles/PMC2881409/
http://www.ncbi.nlm.nih.gov/sites/ppmc/articles/PMC403725/
http://search.cpan.org/perldoc?BerkeleyDB

Figure 3: Flowchart of BDBH algorithm with default parameters and G genomes. First, inparalogues, defined
as intra-specific bidirectional best hits (BDBHs), are identified in each genome; second, new genomes are
incrementally compared to the reference genome and their BDBHs annotated; finally, clusters containing at
least 1 sequence per genome are conserved.

as well as $QUEUESETTINGS, that specificies for instance a particular queue name for your cluster jobs.
It’s worth mentioning that get homologues takes advantage of the default home/ export in Rocks Cluster
distributions, so it should be run with input files/folders located within home/ .

• -n sets the number of threads/CPUs to dedicate to each BLAST/HMMER job run locally, which by
default is 2.

• -I list_file.txt allows the user to restrict a get homologues job to a subset of the genomes included in
the input -d folder. This flag can be used in conjunction with -c to control the order in which genomes
are considered during pan- and core-genome analyses. Taking the sample_buch_fasta folder, a valid
list_file.txt could contain these lines:

Buch_aph_APS.faa

Buch_aph_Bp.faa

Buch_aph_Cc.faa

• option -C sets the minimum percentage of coverage required to call two sequences best hits, as illustrated
in the figure. The larger these values get, the smaller the chance that two sequences are found to be
reciprocal best hits. The default coverage value is set to 75%. This parameter has a large impact on

13

http://www.rocksclusters.org/roll-documentation/base/5.5/
http://www.rocksclusters.org/roll-documentation/base/5.5/

the results obtained and its optimal values will depend on the input data and the anticipated use of the
produced clusters:

Figure 4: Coverage [BDBH,OMCL] and overall segment coverage [COGS] illustrated with the alignment of
sequence ’query’ to two aligned fragments of sequence ’subject’, where 1,s1,e1,s2,e2 and L are alignment coor-
dinates.

• -E sets the maximum expectation value (E-value) for BLAST alignments. This value is by default set to
1e-05. This parameter might be adjusted for nucleotide BLAST searches or for very short proteins, under
40 residues.

• -S can be passed to require a minimum % sequence identity for two sequences to be called best hits. This
option does not affect COGS runs; its default value is set to 1.

• -N sets a minimum neighborhood correlation, as defined in PubMed=18475320, for two sequences to be
called best hits. In this context ’neighborhood’ is the set of homologous sequences reported by BLAST,
with the idea that two reliable best hits should have similar sets of homologous sequences.

• -D is an extra restriction for calling best hits, that should have identical Pfam domain compositions.
Note that this option requires scanning all input sequences for Pfam domains, and this task requires
some software to be installed (see section 2.3) and extra computing time, ideally in a computer cluster
(-m cluster). While for BDBH domain filtering is done at the time bidirectional best hits are called,
this processing step is performed only after the standard OMCL and COGS algorithms have completed,
to preserve each algorithm features.

14

http://www.ncbi.nlm.nih.gov/sites/ppmc/articles/PMC2377100/

• -b reduces the number of pairwise BLAST searches performed while compiling core-genomes with algo-
rithm BDBH, reducing considerably memory and run-time requirements (for G genomes, 3G searches are
launched instead of the default G2). It comes at the cost of being less exhaustive in finding inparalogues,
but in our bacterial benchmarks this potential, undesired effect was negligible.

Figure 5: For G genomes, a typical get homologues job requires running G2 BLAST searches in order to compare
all against all sequences, including against itself to help infer inparalogues. Therefore, the resources required
for calculating BLAST jobs grow quadratically. Instead, the BDBH algorithm with option -b requires only 3G
BLAST searches (in grey) for any reference genome.

• -t is used to control which sequence clusters should be reported. By default only clusters which include at
least one sequence per genome are output. However, a value of -t 2 would report all clusters containing
sequences from at least 2 taxa. A especial case is -t 0, which will report all clusters found, even those
with sequences from a single genome.

• -a forces the program to extract user-selected sequence features typically contained in GenBank files,
such as tRNA or rRNA genes, instead of default CDSs. When using this option clusters are compiled by
comparing nucleotide sequences with BLASTN. Note that such BLASTN searches are expected to be less
sensitive than default BLASTP searches.

• -g can be used to request the compilation of clusters of intergenic sequences. This implies the calculation
of ORF clusters and then a search for pairs of ’orthologous’ ORFs which flanking conserved intergenic
regions, with the constraints set by three global variables in the header of get_homologues.pl:

my $MININTERGENESIZE = 200; # minimum length (nts) required for intergenic

segments to be considered

my $MAXINTERGENESIZE = 700;

my $INTERGENEFLANKORF = 180; # length in nts of intergene flanks borrowed

from neighbor ORFs

Figure 6: Two divergent ORFs flanking an intergenic region. Only 180 bases from each ORF are taken for
compiling intergenic clusters.

• -f filters out cluster sequences with large differences in length. This flag compares sequences within a
cluster to the first (arbitrary) reference sequence. Those with length difference (either shorter or longer)
beyond the selected threshold will be removed. This might cause the resulting cluster to be entirely
removed if the final number of taxa falls below the -t minimum.

• -r allows the choice of any input genome (of course included in -d folder) as the reference, instead of
the default smaller one. If possible, resulting clusters are named using gene names from this genome,
which can be used to select well annotated species for this purpose. In addition, when using the default

15

BDBH algorithm, the reference proteome is the one chosen to start adding genes in the clustering process.
Therefore, when using BDBH, the choice of reference proteome can have a large impact on the resulting
number of clusters. By default, the taxon with least genes is taken as reference. It is possible to change
the way clusters are named by editing subroutine extract_gene_name in file lib/phyTools.pm.

• -e excludes clusters with inparalogues, defined as sequences with best hits in its own genome. This option
might be helpful to rule out clusters including several sequences from the same species, which might be
of interest for users employing these clusters for primer design, for instance.

• -x allows COG-generated sequence clusters to contain the same sequence in more than one cluster.

• -F is the inflation value that governs Markov Clustering in OMCL runs, as explained in PubMed=12952885.
As a rule of thumb, low inflation values (-F 1)result in the inclusion of more sequences in fewer groups,
whilst large values produce more, smaller clusters (-F 4).

• -A tells the program to produce a tab-separated file with average % sequence identity values among pairs
of genomes, computed from sequences in the final set of clusters (see also option -t). By default these
identities are derived from BLASTP alignments, and hence correspond to amino acid sequence identities.
However, as explained earlier, option -a forces the program to use nucleotide sequences and run BLASTN
instead, and therefore, -a ’CDS’ combined -A will produce genomic average nucleotide sequence identities
(ANI), as used in the literature to help define prokaryotic species (PubMed=19855009).

• -z can be called when performing a genome composition analysis with clustering algorithms OMCL or
COGS. In addition to the core- and pan-genome tab-separated files mentioned earlier (see option -c), this
flag requests a soft-core report, considering all sequence clusters present in a fraction of genomes defined
by global variable $SOFTCOREFRACTION, with a default value of 0.95. This choice produces a composition
report more robust to assembly or annotation errors than the core-genome.

16

http://www.ncbi.nlm.nih.gov/sites/ppmc/articles/PMC403725/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2776425/

3.5 Accompanying scripts

The following Perl scripts are included in the bundle to assist in the interpretation of results generated by
get homologues.pl :

• download genomes ncbi.pl, a script which is described in section 3.2 with examples.

• compare clusters.pl primarily calculates the intersection between cluster sets, which can be used to select
clusters supported by different algorithms or settings. This script can also produce syntenic clusters,
pangenome matrices, OrthoXML reports, and Venn diagrams (this last optional feature requires R, please
check section 2.3). Examples of use of this script are presented in sections 4.1, 4.5 and 4.8.1.

• parse pangenome matrix.pl is a script that can be used to analyze pan-genome sets, in order to find genes
present in a group A of species which are absent in set B. The identified genes can be mapped onto the
underlying genome contigs of a reference genome included in A. Moreover this script can be used for
calculating and plotting cloud, shell and core genome compartments. Please see examples in sections 4.8.2
and 4.8.3.

• make nr pangenome matrix.pl is provided to post-process pangenome matrices in case the user wishes to
remove redundant clusters.

• plot pancore matrix.pl, a Perl script to plot pan/core-genome sampling results and to fit regression curves
with help from R functions. An example of use of this script is given in section 4.8.4. Please check section
2.3 for the requirements of this script.

• check BDBHs.pl is a script that can be used, after a previous get homologues run, to find out the bidirec-
tional best hits of a sequence identifier chosen by the user. It can also retrieve the Pfam annotations of a
sequence and its reciprocal best hits. See section 4.8.6.

• add pancore matrices.pl can be used to add pan/core-matrices produced by previous get homologues -c -R
runs on the same set of genomes, with the aim of combining default CDS clusters and -a ’rRNA,tRNA’
results.

• add pangenome matrices.pl can be used similarly to add two pangenome matrices produced by com-
pare clusters.pl, for instance from sets of CDS and rRNA,tRNA clusters.

In addition, two shell scripts are also included:

• plot matrix heatmap.sh calculates ordered heatmaps with attached row and column dendrograms from
squared tab-separated numeric matrices, which can be presence/absence pangenomic matrices or similarity
/ identity matrices as those produced by get homologues with flag -A. From the later type of matrix a
distance matrix can optionally be calculated to drive a neighbor joining tree. See example on section 4.8.1.

• hcluster matrix.sh generates a distance matrix out of a tab-separated numeric matrix, which is then used
to call R functions hclust() and heatmap.2() in order to produce a heatmap.

To check the options of any of these scripts please invoke them from the terminal with flag -h. For instance,
typing $./compare_clusters.pl -h in the terminal will produce the following:

-h this message

-d comma-separated names of cluster directories, which

usually have associated dir.cluster_list files. These lists

avoid parsing taxon names from FASTA headers, which might be

error prone.

-o output directory

-n use nucleotide sequence .fna clusters

-r take first cluster dir as reference set, which might contain

a single representative sequence per cluster

-s use only clusters with syntenic genes

-t use only clusters with single-copy orthologues from -t taxa

17

http://orthoxml.org/xml/Main.html
http://www.r-project.org

-I produce clusters with single-copy seqs from ALL taxa in file

-m produce intersection pangenome matrices

-x produce cluster report in OrthoXML format

-T produce parsimony-based pangenomic tree

18

4 A few examples of use

This section presents a few different ways of running get homologues.pl and the accompanying scripts with
provided sample input data.

4.1 Clustering orthologous proteins from a few FASTA files

This example takes the provided sample input folder sample_buch_fasta, which contains the proteins sets
of four Buchnera aphidicola strains, and compiles clusters of BDBH sequences, which are candidates to be
orthologues, with this command:
$./get_homologues.pl -d sample_buch_fasta .

The output should look like this (contained in file sample_output.txt):

./get_homologues.pl -i 0 -d sample_buch_fasta -o 0 -e 0 -f 0 -r 0 -t all -c 0 -I 0

-m local -n 2 -M 0 -G 0 -P 0 -C 75 -S 1 -E 1e-05 -F 1.5 -N 0 -B 50 -s 0 -D 0 -g 0 -a ’0’ -x -R 0

results_directory=sample_buch_fasta_homologues

parameters: MAXEVALUEBLASTSEARCH=0.01 MAXPFAMSEQS=250

checking input files...

Buch_aph_APS.faa 574

Buch_aph_Bp.faa 507

Buch_aph_Cc.faa 357

Buch_aphid_Sg.faa 546

4 genomes, 1984 sequences

taxa considered = 4 sequences = 1984 residues = 650959 MIN_BITSCORE_SIM = 17.2

mask=BuchaphCc_f0_alltaxa_algBDBH_e0_ (_algBDBH)

running makeblastdb with sample_buch_fasta_homologues/Buch_aph_APS.faa.fasta

running makeblastdb with sample_buch_fasta_homologues/Buch_aph_Bp.faa.fasta

running makeblastdb with sample_buch_fasta_homologues/Buch_aph_Cc.faa.fasta

running makeblastdb with sample_buch_fasta_homologues/Buch_aphid_Sg.faa.fasta

running BLAST searches ...

done

concatenating and sorting blast results...

sorting _Buch_aph_APS.faa results (0.12MB)

sorting _Buch_aph_Bp.faa results (0.11MB)

sorting _Buch_aph_Cc.faa results (0.084MB)

sorting _Buch_aphid_Sg.faa results (0.11MB)

done

parsing blast result! (sample_buch_fasta_homologues/tmp/all.blast , 0.42MB)

parsing blast file finished

creating indexes, this might take some time (lines=9.30e+03) ...

construct_taxa_indexes: number of taxa found = 4

number of file addresses = 9.3e+03 number of BLAST queries = 2.0e+03

19

http://en.wikipedia.org/wiki/Buchnera_%28proteobacteria%29

clustering orthologous sequences

clustering inparalogues in Buch_aph_Cc.faa (reference)

0 sequences

clustering inparalogues in Buch_aph_APS.faa

1 sequences

finding BDBHs between Buch_aph_Cc.faa and Buch_aph_APS.faa

324 sequences

clustering inparalogues in Buch_aph_Bp.faa

0 sequences

finding BDBHs between Buch_aph_Cc.faa and Buch_aph_Bp.faa

326 sequences

clustering inparalogues in Buch_aphid_Sg.faa

0 sequences

finding BDBHs between Buch_aph_Cc.faa and Buch_aphid_Sg.faa

317 sequences

looking for valid ORF clusters (n_of_taxa=4)...

number_of_clusters = 305

cluster_list = sample_buch_fasta_homologues/BuchaphCc_f0_alltaxa_algBDBH_e0_.cluster_list

cluster_directory = sample_buch_fasta_homologues/BuchaphCc_f0_alltaxa_algBDBH_e0_

runtime: 64 wallclock secs (0.74 usr 0.08 sys + 61.49 cusr 0.47 csys = 62.78 CPU)

RAM use: 20.3 MB

In summary, the output details the processing steps required:

• Reading and parsing input files (Buch_aph_APS.faa,Buch_aph_Bp.faa,Buch_aph_Cc.faa,Buch_aphid_Sg.faa),
which contain 574, 507, 357 and 546 protein sequences, respectively. In total there are four input taxa
and 1984 sequences.

• Preparing input sequences for BLAST.

• Running BLAST searches and sorting the results.

• Parsing the complete volume of sorted BLAST results.

• Searching for orthologous sequences using the BDBH algorithm, which requires a reference taxon or
proteome to start with (see Figure 3).

• Clustering orthologous sequences and put them in files inside an appropriate folder. In this example the
relevant output is directory sample_buch_fasta_homologues/BuchaphCc_f0_alltaxa_algBDBH_e0_ to-
gether with file sample_buch_fasta_homologues/BuchaphCc_f0_alltaxa_algBDBH_e0_.cluster_list,
which lists the found clusters and their taxa composition. It can be seen that the folder name contains
the key settings used to cluster the sequences contained therein:

20

BuchaphCc_f0_alltaxa_algBDBH_e0_

| | | | |

| | | | -e option was not used (inparalogues are in)

| | | the clustering algorithm is BDBD (default)

| | all clusters contain at least 1 sequence from each taxa (default -t behavior)

| -f option not used (no length filtering)

reference proteome

In this case a total of 305 protein sequence clusters are produced, which include the original FASTA
headers plus information of which segment was actually aligned by BLAST for inclusion in the cluster:

>gi|116515296| Rho [Buchnera aphidicola str. Cc (Cinara cedri)] | aligned:1-419 (420)

MNLTKLKNTSVSKLIILGEKIGLENLARMRKQDIIFSILKQHSKSGEDIFGDGVLEILQDGFGFLRSSDSSYLAGPDDIYVSPS...

>gi|15617182| termination factor Rho [Buchnera aphidicola str. APS] | aligned:1-419 (419)

MNLTALKNMPVSELITLGEKMGLENLARMRKQDIIFAILKQHAKSGEDIFGDGVLEILQDGFGFLRSADSSYLAGPDDIYVSPS...

>gi|27905006| termination factor Rho [Buchnera aphidicola str. Bp] | aligned:1-419 (419)

MNLTALKNIPVSELIFLGDNAGLENLARMRKQDIIFSILKQHAKSGEDIFGDGVLEILQDGFGFLRSSDSSYLAGPDDIYVSPS...

>gi|21672828| termination factor Rho [Buchnera aphidicola str. Sg] | aligned:1-419 (419)

MNLTALKNMPVSELITLGEKMGLENLARMRKQDIIFAILKQHAKSGEDIFGDGVLEILQDGFGFLRSADSSYLAGPDDIYVSPS...

If we wanted to test a different sequence clustering algorithm we could run
$./get_homologues.pl -d sample_buch_fasta -G ,
which will produce 298 clusters employing the COG triangles algorithm (see Table 2) in folder
sample_buch_fasta_homologues/BuchaphCc_f0_alltaxa_algCOG_e0_.

Furthermore, typing $./get_homologues.pl -d sample_buch_fasta -M

produces 308 clusters employing the OMCL algorithm in folder
sample_buch_fasta_homologues/BuchaphCc_f0_alltaxa_algOMCL_e0_.

Now we can make use of script compare clusters.pl to get the intersection between these cluster sets and
choose only the consensus subset. We will need to type (without any blanks between folder names, in a single
long line) and execute:

./compare_clusters.pl -o sample_intersection -d \

sample_buch_fasta_homologues/BuchaphCc_f0_alltaxa_algBDBH_e0_, \

sample_buch_fasta_homologues/BuchaphCc_f0_alltaxa_algCOG_e0_, \

sample_buch_fasta_homologues/BuchaphCc_f0_alltaxa_algOMCL_e0_

The following output is produced:

number of input cluster directories = 3

parsing clusters in sample_buch_fasta_homologues/BuchaphCc_f0_alltaxa_algBDBH_e0_ ...

cluster_list in place, will parse it (BuchaphCc_f0_alltaxa_algBDBH_e0_.cluster_list)

number of clusters = 305

parsing clusters in sample_buch_fasta_homologues/BuchaphCc_f0_alltaxa_algCOG_e0_ ...

cluster_list in place, will parse it (BuchaphCc_f0_alltaxa_algCOG_e0_.cluster_list)

number of clusters = 298

parsing clusters in sample_buch_fasta_homologues/BuchaphCc_f0_alltaxa_algOMCL_e0_ ...

cluster_list in place, will parse it (BuchaphCc_f0_alltaxa_algOMCL_e0_.cluster_list)

number of clusters = 308

intersection output directory: sample_intersection

intersection size = 295 clusters

intersection list = sample_intersection/intersection_t0.cluster_list

21

input set: sample_intersection/BuchaphCc_f0_alltaxa_algBDBH_e0_.venn_t0.txt

input set: sample_intersection/BuchaphCc_f0_alltaxa_algCOG_e0_.venn_t0.txt

input set: sample_intersection/BuchaphCc_f0_alltaxa_algOMCL_e0_.venn_t0.txt

Venn diagram = sample_intersection/venn_t0.pdf

Venn region file: sample_intersection/unique_BuchaphCc_f0_alltaxa_algBDBH_e0_.venn_t0.txt (5)

Venn region file: sample_intersection/unique_BuchaphCc_f0_alltaxa_algCOG_e0_.venn_t0.txt (0)

Venn region file: sample_intersection/unique_BuchaphCc_f0_alltaxa_algOMCL_e0_.venn_t0.txt (5)

The 295 resulting clusters, those present in all input cluster sets, are placed in a new folder which was
designated by parameter -o sample_intersection. Note that these are clusters that belong to the core-
genome, as they contain sequence from all input taxa. A Venn diagram, such as the one in Figure 7, might also
be produced which summarizes the analysis.

Figure 7: Venn diagram showing the overlap between clusters of ’orthologous’ sequences produced by three
different algorithms and otherwise identical settings.

If we are interested only in clusters containing single-copy proteins from all input species, as they are probably
safer orthologues, we can add the option -t 4 to our previous command, as our example dataset contains 4
input proteomes.

22

4.2 Clustering orthologous proteins from a single FASTA file

A similar analysis could be performed with a single input FASTA file containing amino acid sequences, provided
that each contains a [taxon name] in its header, as explained in section 3.1:

>gi|10957100|ref|NP_057962.1| ... [Buchnera aphidicola str. APS (Acyrthosiphon pisum)]

MFLIEKRRKLIQKKANYHSDPTTVFNHLCGSRPATLLLETAEVNKKNNLESIMIVDSAIRVSAVKNSVKI

TALSENGAEILSILKENPHKKIKFFEKNKSINLIFPSLDNNLDEDKKIFSLSVFDSFRFIMKSVNNTKRT

SKAMFFGGLFSYDLISNFESLPNVKKKQKCPDFCFYLAETLLVVDHQKKTCLIQSSLFGRNVDEKNRIKK

RTEEIEKKLEEKLTSIPKNKTTVPVQLTSNISDFQYSSTIKKLQKLIQKGEIFQVVPSRKFFLPCDNSLS

AYQELKKSNPSPYMFFMQDEDFILFGASPESSLKYDEKNRQIELYPIAGTRPRGRKKDGTLDLDLDSRIE

LEMRTNHKELAEHLMLVDLARNDLARICEPGSRYVSDLVKVDKYSHVMHLVSKVVGQLKYGLDALHAYSS

CMNMGTLTGAPKVRAMQLIAEYEGEGRGSYGGAIGYFTDLGNLDTCITIRSAYVESGVATIQAGAGVVFN

SIPEDEVKESLNKAQAVINAIKKAHFTMGSS

[...]

>gi|15616637|ref|NP_239849.1| ... [Buchnera aphidicola str. APS (Acyrthosiphon pisum)]

MTSTKEIKNKIVSVTNTKKITKAMEMVAVSKMRKTEERMRSGRPYSDIIRKVIDHVTQGNLEYKHSYLEE

RKTNRIGMIIISTDRGLCGGLNTNLFKQVLFKIQNFAKVNIPCDLILFGLKSLSVFKLCGSNILAKATNL

GENPKLEELINSVGIILQEYQCKRIDKIFIAYNKFHNKMSQYPTITQLLPFSKKNDQDASNNNWDYLYEP

ESKLILDTLFNRYIESQVYQSILENIASEHAARMIAMKTATDNSGNRIKELQLVYNKVRQANITQELNEI

VSGASAVSID

[...]

>gi|21672839|ref|NP_660906.1| ... [Buchnera aphidicola str. Sg (Schizaphis graminum)]

MHLNKMKKVSLKTYLVLFFLIFFIFCSFWFIKPKEKKLKLEKLRYEEVIKKINAKNNQNLKSVENFITEN

KNIYGTLSSLFLAKKYILDKNLDKALIQLNNSLKYTKEENLQNILKIRIAKIKIQQNKNQDAIKILEEIK

DNSWKNIVENMKGDIFMKNKEIKKAILAWKKSKYLEKSNASKEIINMKINEIKR

It is possible to analyze the provided sample input file sample_buchnera.faa with the following command:
$./get_homologues.pl -i sample_buchnera.faa .

Obtaining:

results_directory=sample_buchnera_homologues

parameters: MAXEVALUEBLASTSEARCH=0.01 MAXPFAMSEQS=250

checking input files...

sample_buchnera.faa

created file sample_buchnera_homologues/tmp/all.fa (4 genomes, 1984 sequences)

taxa considered = 4 sequences = 1984 residues = 650959 MIN_BITSCORE_SIM = 17.2

mask=BuchneraaphidicolastrCcCinaracedri3_f0_alltaxa_algBDBH_e0_ (_algBDBH)

running makeblastdb with sample_buchnera_homologues/tmp/all.fa

running local BLAST search

done

parsing blast result! (sample_buchnera_homologues/tmp/all.blast , 0.44MB)

parsing blast file finished

creating indexes, this might take some time (lines=9.30e+03) ...

construct_taxa_indexes: number of taxa found = 4

number of file addresses = 9.3e+03 number of BLAST queries = 2.0e+03

clustering orthologous sequences

23

clustering inparalogues in Buchnera_aphidicola_str__Cc__Cinara_cedri__3.faa (reference)

0 sequences

[...]

looking for valid ORF clusters (n_of_taxa=4)...

number_of_clusters = 305

cluster_list = [...]/BuchneraaphidicolastrCcCinaracedri3_f0_alltaxa_algBDBH_e0_.cluster_list

cluster_directory = [...]/BuchneraaphidicolastrCcCinaracedri3_f0_alltaxa_algBDBH_e0_

runtime: 55 wallclock secs (0.76 usr 0.04 sys + 51.75 cusr 0.23 csys = 52.78 CPU)

RAM use: 21.3 MB

24

4.3 Clustering genes and proteins extracted from GenBank files

The use of input files in GenBank format allows clustering nucleotide sequences in addition to proteins, since
this format supports the annotation of raw genomic sequences. This example illustrates this feature by taking
the input folder sample_plasmids_gbk, which contains 12 GenBank files of plasmid replicons, which we analyze
by running $./get_homologues.pl -d sample_plasmids_gbk :

results_directory=sample_plasmids_gbk_homologues

parameters: MAXEVALUEBLASTSEARCH=0.01 MAXPFAMSEQS=250

checking input files...

E_coli_ST131_plasmid_pKC394.gb 55

E_coli_plasmid_pMUR050.gb 60

IncN_plasmid_R46.gb 63

K_oxytoca_plasmid_pKOX105.gb 69

K_pneumoniae_12_plasmid_12.gb 92

K_pneumoniae_9_plasmid_9.gb 87

K_pneumoniae_KP96_plasmid_pKP96.gb 64

S_enterica_subsp_enterica_serovar_Dublin_plasmid_pMAK2.gb 52

Uncultured_bacterium_plasmid_pRSB201.gb 58

Uncultured_bacterium_plasmid_pRSB203.gb 49

Uncultured_bacterium_plasmid_pRSB205.gb 52

Uncultured_bacterium_plasmid_pRSB206.gb 55

12 genomes, 756 sequences

taxa considered = 12 sequences = 756 residues = 184339 MIN_BITSCORE_SIM = 16.0

mask=EcoliplasmidpMUR050_f0_alltaxa_algBDBH_e0_ (_algBDBH)

[..]

running BLAST searches ...

done

concatenating and sorting blast results...

sorting _E_coli_ST131_plasmid_pKC394.gb results (0.026MB)

sorting _E_coli_plasmid_pMUR050.gb results (0.026MB)

sorting _IncN_plasmid_R46.gb results (0.026MB)

sorting _K_oxytoca_plasmid_pKOX105.gb results (0.031MB)

sorting _K_pneumoniae_12_plasmid_12.gb results (0.036MB)

sorting _K_pneumoniae_9_plasmid_9.gb results (0.027MB)

sorting _K_pneumoniae_KP96_plasmid_pKP96.gb results (0.026MB)

sorting _S_enterica_subsp_enterica_serovar_Dublin_plasmid_pMAK2.gb results (0.025MB)

sorting _Uncultured_bacterium_plasmid_pRSB201.gb results (0.029MB)

sorting _Uncultured_bacterium_plasmid_pRSB203.gb results (0.023MB)

sorting _Uncultured_bacterium_plasmid_pRSB205.gb results (0.026MB)

sorting _Uncultured_bacterium_plasmid_pRSB206.gb results (0.026MB)

done

parsing blast result! (sample_plasmids_gbk_homologues/tmp/all.blast , 0.33MB)

parsing blast file finished

creating indexes, this might take some time (lines=7.61e+03) ...

construct_taxa_indexes: number of taxa found = 12

number of file addresses = 7.6e+03 number of BLAST queries = 7.6e+02

25

clustering orthologous sequences

clustering inparalogues in E_coli_plasmid_pMUR050.gb (reference)

2 sequences

[...]

looking for valid ORF clusters (n_of_taxa=12)...

number_of_clusters = 24

cluster_list = [...]_homologues/EcoliplasmidpMUR050_f0_alltaxa_algBDBH_e0_.cluster_list

cluster_directory = sample_plasmids_gbk_homologues/EcoliplasmidpMUR050_f0_alltaxa_algBDBH_e0_

runtime: 28 wallclock secs (1.62 usr 0.33 sys + 24.31 cusr 1.57 csys = 27.83 CPU)

RAM use: 19.5 MB

This outcome is similar to that explained in example 4.1, with the notable difference that now both protein
and nucleotide sequence clusters (24) are produced, as GenBank files usually contain both types of sequences.
File EcoliplasmidpMUR050_f0_alltaxa_algBDBH_e0_.cluster_list.cluster_list

summarizes the contents and composition of the clusters stored in folder
EcoliplasmidpMUR050_f0_alltaxa_algBDBH_e0_.
For instance, the data concerning cluster 100_traJ looks like this:

cluster 100_traJ size=12 taxa=12 file: 100_traJ.faa dnafile: 100_traJ.fna

: E_coli_plasmid_pMUR050.gb

: E_coli_ST131_plasmid_pKC394.gb

: IncN_plasmid_R46.gb

: K_oxytoca_plasmid_pKOX105.gb

: K_pneumoniae_12_plasmid_12.gb

: K_pneumoniae_9_plasmid_9.gb

: K_pneumoniae_KP96_plasmid_pKP96.gb

: S_enterica_subsp_enterica_serovar_Dublin_plasmid_pMAK2.gb

: Uncultured_bacterium_plasmid_pRSB201.gb

: Uncultured_bacterium_plasmid_pRSB203.gb

: Uncultured_bacterium_plasmid_pRSB205.gb

: Uncultured_bacterium_plasmid_pRSB206.gb

The two FASTA files produced for this cluster are now dissected. Note that each header includes the co-
ordinates of the sequence in the context of a genomic contig. For instance, the first sequence was extracted
from the leading strand of GenBank contig AY522431, positions 44726-46255, out of a total 56634 nucleotides.
Furthermore, the names of neighboring genes are annotated when available, in order to capture some synteny
information. These syntenic data can be valuable when evaluating possible orthologous genes, as conservation
of genomic position (also operon context) strongly suggests orthology among prokaryots:

>GI:109390522 |[Escherichia coli]||traJ|1530|AY522431(56634):44726-46255:-1 [...]|neighbour_genes:traI,traK|

ATGGACGATAGAGAAAGAGGCTTAGCATTTTTATTTGCAATTACTTTGCCTCCAGTGATGGTATGGTTTCTAGTT...

[...]

and

>GI:109390522 |[Escherichia coli]||traJ|1530|AY522431(56634):44726-46255:-1 [...] | aligned:1-509 (509)

MDDRERGLAFLFAITLPPVMVWFLV...

26

4.4 Clustering genes and proteins that share Pfam domain architecture

The BDBH algorithm in get homologues.pl can be modified by requiring bidirectional best hits to share the same
domain architecture, annotated in terms of Pfam domains. For large volumes of sequences this taks should be
accomplished on a computer cluster, but of course can also be performed locally. The command on the terminal
could then be: $./get_homologues.pl -d sample_plasmids_gbk -D

The generated output should be:

results_directory=sample_plasmids_gbk_homologues

parameters: MAXEVALUEBLASTSEARCH=0.01 MAXPFAMSEQS=250

checking input files...

E_coli_ST131_plasmid_pKC394.gb 55

E_coli_plasmid_pMUR050.gb 60

IncN_plasmid_R46.gb 63

K_oxytoca_plasmid_pKOX105.gb 69

K_pneumoniae_12_plasmid_12.gb 92

K_pneumoniae_9_plasmid_9.gb 87

K_pneumoniae_KP96_plasmid_pKP96.gb 64

S_enterica_subsp_enterica_serovar_Dublin_plasmid_pMAK2.gb 52

Uncultured_bacterium_plasmid_pRSB201.gb 58

Uncultured_bacterium_plasmid_pRSB203.gb 49

Uncultured_bacterium_plasmid_pRSB205.gb 52

Uncultured_bacterium_plasmid_pRSB206.gb 55

12 genomes, 756 sequences

taxa considered = 12 sequences = 756 residues = 184339 MIN_BITSCORE_SIM = 16.0

mask=EcoliplasmidpMUR050_f0_alltaxa_algBDBH_Pfam_e0_ (_algBDBH_Pfam)

skipped genome parsing (sample_plasmids_gbk_homologues/tmp/selected.genomes)

submitting Pfam HMMER jobs ...

[...]

done

concatenating Pfam files ([...]/_E_coli_ST131_plasmid_pKC394.gb.fasta.pfam)...

done

[..]

parsing Pfam domain assignments (generating sample_plasmids_gbk_homologues/tmp/all.pfam) ...

skip BLAST searches and parsing

WARNING: please remove/rename results directory:

’/home/contrera/codigo/cvs/get_homologues/sample_plasmids_gbk_homologues/’

if you change the sequences in your .gbk/.faa files or want to re-run

creating indexes, this might take some time (lines=7.61e+03) ...

construct_taxa_indexes: number of taxa found = 12

number of file addresses = 7.6e+03 number of BLAST queries = 7.6e+02

27

creating Pfam indexes, this might take some time (lines=7.54e+02) ...

clustering orthologous sequences

clustering inparalogues in E_coli_plasmid_pMUR050.gb (reference)

2 sequences (re-using previous results)

[...]

looking for valid ORF clusters (n_of_taxa=12)...

number_of_clusters = 24

cluster_list = [...]/EcoliplasmidpMUR050_f0_alltaxa_algBDBH_Pfam_e0_.cluster_list

cluster_directory = sample_plasmids_gbk_homologues/EcoliplasmidpMUR050_f0_alltaxa_algBDBH_Pfam_e0_

28

4.5 Clustering syntenic/neighbor genes

The sequence clusters derived from a set of GenBank files can be further processed in order to select those that
contain only syntenic genes, defined as those having at least one neighbor included in other clusters. Again we
will invoke script compare clusters.pl for this task:

./compare_clusters.pl -o sample_intersection -s -d \

sample_plasmids_gbk_homologues/EcoliplasmidpMUR050_f0_alltaxa_algBDBH_e0_

The following output is produced:

number of input cluster directories = 1

parsing clusters in sample_plasmids_gbk_homologues/EcoliplasmidpMUR050_f0_alltaxa_algBDBH_e0_ ...

cluster_list in place, will parse it ([...]/EcoliplasmidpMUR050_f0_alltaxa_algBDBH_e0_.cluster_list)

number of clusters = 24

intersection output directory: sample_intersection

intersection size = 21 clusters (syntenic)

intersection list = sample_intersection/intersection_t0_s.cluster_list

Figure 8: A cluster is called syntenic when it contains neighboring genes which are also contained in other
single clusters. In this example, genes X and Z of species 1,2 and 3 are found to be syntenic, regardless of their
orientation.

29

4.6 Comparing clusters with external sequence sets

Sometimes we will need to compare clusters of possibly orthologous sequences, produced by get homologues.pl
in any of the ways explained earlier, with a set of sequences defined elsewere, for instance in a publication.
This can be done to validate a set of core clusters and to check that nothing important was left out. We can
accomplish just this with help from script compare clusters.pl, invoking option -r, which indicates that the first
parsed cluster folder is actually a reference to be compared.

To illustrate this application we have set a folder with 4 protein sequences from Buchnera aphidicola from
strain Cinara cedri (directory sample_buch_fasta/sample_proteins), each sequence in a single FASTA file.
Note that these clusters must contain sequences contained in the larger dataset which we want to compare with,
otherwise the script will not match them. Headers are not used by the program, only the sequences matter.

In order to check whether these sequences are clustered in any of the clusters generated earlier, say with
BDBH, we will issue a command such as:

./compare_clusters.pl -o sample_intersection -r -d \

sample_buch_fasta/sample_proteins,\

sample_buch_fasta_homologues/BuchaphCc_f0_alltaxa_algBDBH_e0_\

The following output should be produced:

number of input cluster directories = 2

parsing clusters in sample_buch_fasta/sample_proteins ...

no cluster list in place, checking directory content ...

WARNING: [taxon names] will be automatically extracted from FASTA headers,

please watch out for errors

number of clusters = 4

parsing clusters in sample_buch_fasta_homologues/BuchaphCc_f0_alltaxa_algBDBH_e0_ ...

cluster_list in place, will parse it ([...]/BuchaphCc_f0_alltaxa_algBDBH_e0_.cluster_list)

number of clusters = 305

intersection output directory: sample_intersection

intersection size = 4 clusters

intersection list = sample_intersection/intersection_t0.cluster_list

input set: sample_intersection/sample_proteins.venn_t0.txt

input set: sample_intersection/BuchaphCc_f0_alltaxa_algBDBH_e0_.venn_t0.txt

Venn diagram = sample_intersection/venn_t0.pdf

Venn region file: sample_intersection/unique_sample_proteins.venn_t0.txt (0)

Venn region file: sample_intersection/unique_BuchaphCc_f0_alltaxa_algBDBH_e0_.venn_t0.txt (301)

30

4.7 Clustering intergenic segments from GenBank files

The use of input files in GenBank format also allows the extraction of clusters of flanked orthologous inter-
genic regions, which might be of interest as these are expected to mutate at higher rates compared to coding
sequences. In this example this feature is illustrated by processing folder sample_plasmids_gbk with options
-g -I sample_plasmids_gbk/include_list.txt

The restraints that apply to the parsed intergenic regions are defined by three global variables variables
within get_homologues.pl, as explained in section 3.4. These default values might be edited for specific
taks; for instance, chloroplast intergenic regions are usually much smaller than 200 bases, the default size,
and therefore variable $MININTERGENESIZE should be set to a smaller value. Moreover, in this example we
restrict the search for conserved intergenic segments to Klebsiella pneumoniae plasmids, by creating a file
sample_plasmids_gbk/include_list.txt with these contents:

K_pneumoniae_12_plasmid_12.gb

K_pneumoniae_9_plasmid_9.gb

K_pneumoniae_KP96_plasmid_pKP96.gb

We can now execute
$./get_homologues.pl -d sample_plasmids_gbk -g -I sample_plasmids_gbk/include_list.txt:

results_directory=sample_plasmids_gbk_homologues

parameters: MAXEVALUEBLASTSEARCH=0.01 MAXPFAMSEQS=250

checking input files...

E_coli_ST131_plasmid_pKC394.gb 55 (intergenes=7)

E_coli_plasmid_pMUR050.gb 60 (intergenes=12)

IncN_plasmid_R46.gb 63 (intergenes=11)

K_oxytoca_plasmid_pKOX105.gb 69 (intergenes=13)

K_pneumoniae_12_plasmid_12.gb 92 (intergenes=11)

K_pneumoniae_9_plasmid_9.gb 87 (intergenes=12)

K_pneumoniae_KP96_plasmid_pKP96.gb 64 (intergenes=18)

S_enterica_subsp_enterica_serovar_Dublin_plasmid_pMAK2.gb 52 (intergenes=9)

Uncultured_bacterium_plasmid_pRSB201.gb 58 (intergenes=9)

Uncultured_bacterium_plasmid_pRSB203.gb 49 (intergenes=7)

Uncultured_bacterium_plasmid_pRSB205.gb 52 (intergenes=8)

Uncultured_bacterium_plasmid_pRSB206.gb 55 (intergenes=10)

12 genomes, 756 sequences

included input files (3):

: K_pneumoniae_12_plasmid_12.gb K_pneumoniae_12_plasmid_12.gb 92

: K_pneumoniae_9_plasmid_9.gb K_pneumoniae_9_plasmid_9.gb 87

: K_pneumoniae_KP96_plasmid_pKP96.gb K_pneumoniae_KP96_plasmid_pKP96.gb 64

[...]

looking for valid ORF clusters (n_of_taxa=3)...

number_of_clusters = 31

cluster_list = sample_plasmids_gbk_homologues/[...]include_list.txt_algBDBH_e0_.cluster_list

cluster_directory = sample_plasmids_gbk_homologues/[...]include_list.txt_algBDBH_e0_

looking for valid clusters of intergenic regions (n_of_taxa=3)...

parameters: MININTERGENESIZE=200 MAXINTERGENESIZE=700 INTERGENEFLANKORF=180

number_of_intergenic_clusters = 1

31

intergenic_cluster_list = [...]/[...]_intergenic200_700_180_.cluster_list

intergenic_cluster_directory = sample_plasmids_gbk_homologues/[...]_intergenic200_700_180_

runtime: 1 wallclock secs (0.10 usr 0.01 sys + 0.05 cusr 0.01 csys = 0.17 CPU)

RAM use: 67.8 MB

Intergenic clusters, illustrated by Figure 3.4, include upper-case nucleotides to mark up the sequence of
flanking ORFs, with the intergenic region itself in lower-case, and the names of the flanking ORFs in the
FASTA header, with their strand in parentheses:

>1 | intergenic18|coords:63706..64479|length:774|neighbours:GI:165928631(-1),GI:165928630(1)...

CGCGCCATTGCTGGCCTGAAGGTATTCCCAATACCCTCCCTGGTAGTCTTTAGCGTAACGATTCAGAAAGGACTGAATGAAGTGATCTGCGCTGAAGAAAGCG

CCACGAAATGCCGCAGGCATGAAGTTCATGCGGGCGTTTTCAGAAATGTAGCGGGCGGTGATTTCGATAGTTTCCATgatacttcctctttaagccgataccg

gcgatggttaagcggcaggcacatcacctgccactttttaattatcgtacaatggggcgttaaagtcaatacaagtacggattatatttacctaattttatgc

ccgtcagagcatggaaggcgacctcgccggactccaccggacaccgggggcaaatcgccggaaactgcgggactgaccggagcgacaggccacccccctccct

gctagcccgccgccacgcggccggttacaggggacactgagaaagcagaaagccaacaaacactatatatagcgttcgttggcagctgaagcagcactacata

tagtagagtacctgtaaaacttgccaacctgaccataacagcgatactgtataagtaaacagtgatttggaagatcgctATGAAGGTCGATATTTTTGAAAGC

TCCGGCGCCAGCCGGGTACACAGCATCCCTTTTTATCTGCAAAGAATTTCTGCGGGGTTCCCCAGCCCGGCCCAGGGCTATGAAAAGCAGGAGTTAAACCTGC

ATGAGTATTGTGTTCGTCACCCTTCAGCAACTTACTTCCTGCGGGTTTCTGGC

>2 | intergenic3|coords:9538..10293|length:756|neighbours:GI:209574108(-1),GI:209574109(1)...

CGCGCCATTGCTGGCCTGAAGGTATTCCCAATACCCTCCCTGGTAGTCTTTAGCGTAACGATTCAGAAAGGACTGAATGAAGTGATCTGCGCTGAAGAAAGCG

CCACGAAATGCCGCAGGCATGAAGTTCATGCGGGCGTTTTCAGAAATGTAGCGGGCGGTGATTTCGATAGTTTCCATgatacttcctctttaagccgataccg

gcgatggttaagcggcaggcacatcacctgccactttttaattatcgtacaatggggcgttaaagtcaatacaagtacggattatatttacctaattttatgc

ccgtcagagcatggaaggcgacctcgccggactccaccggacaccgggggcaaatcgccggaaactgcgggactgaccggagcgacaggccacccccctccct

gctagcccgccgccacgcggccggttacaggggacactgagaaagcagaaagccaacaaacactatatatagcgttcgttggcagctgaagcagcactacata

tagtagagtacctgtaaaacttgccaacctgaccataacagcgatactgtataagtaaacaGTGATTTGGAAGATCGCTATGAAGGTCGATATTTTTGAAAGC

TCCGGCGCCAGCCGGGTACACAGCATCCCTTTTTATCTGCAAAGAATTTCTGCGGGGTTCCCCAGCCCGGCCCAGGGCTATGAAAAGCAGGAGTTAAACCTGC

ATGAGTATTGTGTTCGTCACCCTTCAGCAACTTAC

...

32

4.8 Performing genome composition analyses

The next few examples illustrate how get homologues.pl might be used to analyze the genomic evolution of
a group of related organisms, the core-genome and the pan-genome, using the terms coined by Tettelin and
collaborators (PubMed=16172379).

4.8.1 Obtaining a pangenome matrix

First we will try option -t 0 in combination with the OMCL or the COG algorithms. By enforcing this option
we are actually asking for all possible clusters, including those which might not contain sequences from all
input genomes (taxa). For this reason the use of this option usually means that a large number of clusters are
reported. This is particularly true for COG runs, since this algorithm does not resolve clusters involving less
than 3 genomes. The default algorithm BDBH is not available with this option.
For instance, by calling $./get_homologues.pl -d sample_plasmids_gbk -t 0 -G we obtain 199 clusters:

[...]

looking for valid ORF clusters (n_of_taxa=0)...

number_of_clusters = 199

cluster_list = [...]/EcoliplasmidpMUR050_f0_0taxa_algCOG_e0_.cluster_list

cluster_directory = sample_plasmids_gbk_homologues/EcoliplasmidpMUR050_f0_0taxa_algCOG_e0_

By choosing the OMCL algorithm we obtain a smaller set of clusters, which we can test by typing on the
terminal $./get_homologues.pl -d sample_plasmids_gbk -t 0 -M:

[...]

looking for valid ORF clusters (n_of_taxa=0)...

number_of_clusters = 193

cluster_list = [...]/EcoliplasmidpMUR050_f0_0taxa_algOMCL_e0_.cluster_list

cluster_directory = sample_plasmids_gbk_homologues/EcoliplasmidpMUR050_f0_0taxa_algOMCL_e0_

We can now take advantage of script compare clusters.pl, and the generated cluster directories, to compile
the corresponding pangenome matrix. This can be accomplished for a single cluster set:

./compare_clusters.pl -o sample_intersection -m -d \

sample_plasmids_gbk_homologues/Uncultured[...]_f0_0taxa_algCOG_e0_

or for the intersection of several sets, in order to get a consensus pangenome matrix:

./compare_clusters.pl -o sample_intersection -m -d \

sample_plasmids_gbk_homologues/Uncultured[...]_f0_0taxa_algCOG_e0_,\

sample_plasmids_gbk_homologues/Uncultured[...]_f0_0taxa_algOMCL_e0_

The ouput of the latter command will include the following lines:

[...]

number of input cluster directories = 2

parsing clusters in sample_plasmids_gbk_homologues/Uncultured[...]_f0_0taxa_algCOG_e0_ ...

cluster_list in place, will parse it ([...]/Uncultured[...]_f0_0taxa_algCOG_e0_.cluster_list)

ERROR: skipping cluster 62_transposase.faa , seems to duplicate 59_transposase.faa

ERROR: skipping cluster 116_tnpA.faa , seems to duplicate 59_transposase.faa

number of clusters = 197

parsing clusters in sample_plasmids_gbk_homologues/Uncultured[...]_f0_0taxa_algOMCL_e0_ ...

cluster_list in place, will parse it ([...]/Uncultured[...]_f0_0taxa_algOMCL_e0_.cluster_list)

number of clusters = 193

[...]

33

http://www.ncbi.nlm.nih.gov/sites/ppmc/articles/PMC1216834/

intersection size = 180 clusters

intersection list = sample_intersection/intersection_t0.cluster_list

pangenome_file = sample_intersection/pangenome_matrix_t0.tab

pangenome_phylip file = sample_intersection/pangenome_matrix_t0.phylip

input set: sample_intersection/Uncultured[...]_f0_0taxa_algCOG_e0_.venn_t0.txt

input set: sample_intersection/Uncultured[...]_f0_0taxa_algOMCL_e0_.venn_t0.txt

Venn diagram = sample_intersection/venn_t0.pdf

Venn region file: sample_intersection/unique_Uncultured[...]_f0_0taxa_algCOG_e0_.venn_t0.txt (17)

Venn region file: sample_intersection/unique_Uncultured[...]_f0_0taxa_algOMCL_e0_.venn_t0.txt (13)

Note that skipped clusters correspond precisely to COG unresolved clusters. This script produces two
versions of the same pangenomic matrix:

• A full detailed matrix in tab-separated columns, with taxa/genomes as rows and sequence clusters as
columns, in which cells with natural numbers indicate whether a given taxa contains one or more sequences
from a given cluster. Such files can be read and edited with any text editor or spreadsheet software.

source:folder 3_EcoRII.faa 8_tnpA.faa 22_traA.faa 36_beta-lactamase[...]

K_pneumoniae_12_plasmid_12.gb 1 0 1 2

K_pneumoniae_9_plasmid_9.gb 1 0 0 2

K_oxytoca_plasmid_pKOX105.gb 1 0 1 1

[...]

• A reduced binary matrix in a format suitable for PHYLIP discrete character analysis software, which
looks like this:

12 180 <-12 taxa, 180 clusters

0000000000 0000000011001000000000100000111111101100000000000 ...

0000000001 0000000010000000000000000000000000001000000000000 ...

0000000002 0000000010000000000000100000000001111111111111111

0000000003 00000000100

0000000004 0000000010000000000000000000000000000000010000000

0000000005 0000000110011100100000101000000000100001000000000

0000000006 0000000011000000000000100000000000000000000000000

0000000007 0000000001011000000001111111111110000000000000000

0000000008 0000000101111111111111000000000000000000000000000

0000000009 000

0000000010 0000000010001000000000000000000000000000000000000

0000000011 11111111100 ...

Indeed, when option -T is toggled, as in the next example,

./compare_clusters.pl -o sample_intersection -m -T -d \

sample_plasmids_gbk_homologues/Uncultured[...]_f0_0taxa_algCOG_e0_,\

sample_plasmids_gbk_homologues/Uncultured[...]_f0_0taxa_algOMCL_e0_

then the script calls program PARS from the PHYLIP suite to produce one or more alternative parsimony
trees that capture the phylogeny implied in this matrix, adding the following lines to the produced output:

parsimony results by PARS (PHYLIP suite, evolution.genetics.washington.edu/phylip/doc/pars.html):

pangenome_phylip tree = sample_intersection/pangenome_matrix_t0.phylip.ph

pangenome_phylip log = sample_intersection/pangenome_matrix_t0.phylip.log

34

http://evolution.genetics.washington.edu/phylip/doc/discrete.html
http://evolution.genetics.washington.edu/phylip/doc/pars.html

Figure 9: Example of pangenomic tree of the consensus COG & OMCL pangenomic matrix obtained for a few
plasmids. Such trees can be useful to create the A and B lists discussed in section 4.8.2. Plot produced with
FigTree, with midpoint root.

Please note that the resulting Newick format .ph file can contain several trees separated by ’;’, one per line.
In order to plot them, as in the next figure, it might be necessary, depending on the software used, to leave only
one. This is the case for instance for MEGA or TreeView.

A complementary view of the same data con be obtained with script plot matrix heatmap.sh:

cd sample_intersection

../plot_matrix_heatmap.sh -i pangenome_matrix_t0.tab

35

http://tree.bio.ed.ac.uk/software/figtree
http://en.wikipedia.org/wiki/Newick_format

Figure 10: Heatmap of the previous pangenome matrix, with dendrograms sorting genomes and sequence
clusters.

4.8.2 Interrogating a pangenome matrix

Script parse pangenome matrix.pl can be used to analyze a pangenome matrix, such as that created in the
previous section. It was primarily designed to identify genes present in a group A of species which are absent in
another group B, but can also be used to find expansions/contractions of gene families. If you require the genes
present/expanded in B with respect to A, just reverse them. Expanded clusters are defined as those where all
A taxa contain more sequences than the maximum number of corresponding sequences in any taxa of group B.

We now review these features with the same plasmid set of previous sections, analyzing the pangenome
matrix produced by intersecting several cluster sets on section 4.8.1. Let’s say we are interested in finding
plasmid genes present in Klebsiella oxytoca which are not encoded in K.pneumoniae KP96. In order to do this
we first create a couple of text files to define sets A and B, called A.txt and B.txt, which we place inside folder
sample_plasmids_gbk. The content of A and B files should be one line per species. In this example file A.txt

contains a single line: K_oxytoca_plasmid_pKOX105.gb As well as B.txt: K_pneumoniae_KP96_plasmid_pKP96.gb
We can now execute the script as follows:

./parse_pangenome_matrix.pl -m sample_intersection/pangenome_matrix_t0.tab \

-A sample_plasmids_gbk/A.txt -B sample_plasmids_gbk/B.txt -g

The output should be:

taxa included in group A = 1

taxa included in group B = 1

matrix contains 76 clusters and 12 taxa

36

finding genes absent/present in both groups...

file with genes present in set A and absent in B (7): [..]pangenome_matrix_t0__pangenes_list.txt

It can be seen that 7 genes were found to be present in A and absent in B. In the case of pangenome matrices
derived from GenBank files, as in this example, it is possible to produce a map of these genes in the genomic
context of any species included in A, which should be queried using option -l. A valid syntax would be:

./parse_pangenome_matrix.pl -m sample_intersection/pangenome_matrix_t0.tab \

-A sample_plasmids_gbk/A.txt -B sample_plasmids_gbk/B.txt -g \

-p ’Klebsiella oxytoca KOX105’

Figure 11: Map of plasmid OX105 highlighting 7 genes absent in pKP96.

By default, parse pangenome matrix.pl requires present genes to be present in all genomes of A and none of
B. However, as genomes might not be completelly annotated, it is possible to make these tests more flexible by
controlling the cutoff for inclusion, by using flag -P. For instance, the next command will require genes to be
present only in 90% of A genomes and missing in 90% of B genomes:

./parse_pangenome_matrix.pl -m sample_intersection/pangenome_matrix_t0.tab \

-A sample_plasmids_gbk/A.txt -B sample_plasmids_gbk/B.txt -g -P 90

Note that the most flexible way of finding out genes absent in a set of genomes within a pangenome matrix
is by using option -a, which does not require an A list, rather a B list is sufficient. It is called as in the example:

./parse_pangenome_matrix.pl -m sample_intersection/pangenome_matrix_t0.tab \

-B sample_plasmids_gbk/B.txt -a

37

4.8.3 Calculating cloud, shell and core genomes

parse pangenome matrix.pl can also be employed to classify genes in these four compartments:

core Genes contained in all considered genomes/taxa.
soft core Genes contained in 95% of the considered genomes/taxa, as in the work of Kaas

and collaborators (PubMed=23114024).
cloud Genes present only in a few genomes/taxa. The cutoff is defined as the class next

to the most populated non-core cluster class.
shell Remaining genes, present in several genomes/taxa.

Table 3: Definitions of pangenome compartments as used by parse pangenome matrix.pl.

The script is invoked as follows:

./parse_pangenome_matrix.pl -m sample_intersection/pangenome_matrix_t0.tab -s

The output is as follows:

matrix contains 79 clusters and 12 taxa

cloud size: 27 list: sample_intersection/pangenome_matrix_t0__cloud_list.txt

shell size: 19 list: sample_intersection/pangenome_matrix_t0__shell_list.txt

soft core size: 33 list: sample_intersection/pangenome_matrix_t0__softcore_list.txt

core size: 24 (included in soft core) list: sample_intersection/pangenome_matrix_t0__core_list.txt

shell bar plots: sample_intersection/pangenome_matrix_t0__shell.png , [...]shell.pdf

shell circle plots: sample_intersection/pangenome_matrix_t0__shell_circle.png , [...]circle.pdf

pan-genome size estimates (Snipen mixture model PMID:19691844): [...]shell_estimates.tab

Core.size Pan.size BIC LogLikelihood

2 components 24 79 521.631345479665 -254.261500961132

3 components 23 82 369.668268427632 -173.910514582648

4 components 12 82 367.79871965143 -168.606292342080

5 components 12 82 376.537523230116 -168.606246278956

6 components 11 82 385.276721241776 -168.606397432319

7 components 11 82 394.015364162271 -168.606271040100

8 components 12 82 402.754305849755 -168.606294031375

9 components 11 82 411.493489104614 -168.606437806337

10 components 11 82 420.232678626918 -168.606584715022

Sample 24 79 NA NA

Apart from text files listing the cluster names that take part in each of the four compartments, two types of
plots are generated. Note that the output also includes estimates of the pan- and core-genome sizes as calculated
by the binomial mixture model of Snipen and collaborators (PubMed=19691844). A simple interpretation is
that as soon as likelihood converges then adding more components does not improve the mixture model. Please
check that paper for a full explanation.

38

http://www.ncbi.nlm.nih.gov/pubmed/23114024
http://www.ncbi.nlm.nih.gov/pubmed/19691844

Figure 12: Barplot of the pangenome matrix created in section 4.8.1. Core clusters are in white for clarity, but
note that according to the definitions in Table 3 the soft core also includes the strict core.

Figure 13: Area plot of the pangenome matrix created in section 4.8.1. Note that the soft core compartment
includes also the core, as implied by the definition in Table 3.

39

4.8.4 Estimating core/pan-genome size by sampling genomes

The pioneer work of Tettelin and collaborators (PubMed=16172379) unveiled that bacterial genomes are dy-
namic containers that harbour essential genes and also accessory elements, which might be unique to each
community. get homologues.pl can be used to perform such genome composition analyses. The rationale is to
sample a set of genomes (present in the input folder) and keep adding genome after genome keeping track of i)
the novel genes added to the pool and ii) the genes that fall in pre-existing clusters. This sampling experiment
can be done with any of the included 3 algorithms (please see Table 2), by invoking option -c . For instance,
we could try $./get_homologues.pl -d sample_buch_fasta -c:

[... same as first example ...]

genome composition report (samples=10,permutations=24)

genomic report parameters: MIN_PERSEQID_HOM=0 MIN_COVERAGE_HOM=20

genome order:

0 Buch_aph_APS.faa

1 Buch_aph_Bp.faa

2 Buch_aph_Cc.faa

3 Buch_aphid_Sg.faa

sample 0 (Buch_aph_APS.faa | 0,1,2,3,)

adding Buch_aph_APS.faa: core=574 pan=574

[...]

pan-genome (number of genes, can be plotted with plot_pancore_matrix.pl)

file=sample_buch_fasta_homologues/pan_genome_algBDBH.tab

genomes mean stddev | samples

0 490 90 | 574 507 507 546 357 357 546 574 357 574

1 572 28 | 598 585 585 587 521 521 562 592 575 598

2 597 5 | 606 593 594 594 594 596 600 599 591 606

3 608 5 | 615 602 600 608 605 605 611 613 605 615

core-genome (number of genes, can be plotted with plot_pancore_matrix.pl)

file=sample_buch_fasta_homologues/core_genome_algBDBH.tab

genomes mean stddev | samples

0 490 90 | 574 507 507 546 357 357 546 574 357 574

1 420 82 | 466 466 466 523 324 324 317 523 324 466

2 327 36 | 319 319 434 315 310 315 313 318 309 319

3 310 4 | 313 313 313 311 304 304 311 313 304 313

[... same as first example ...]

As can be seen, the output now contains two data frames which summarize the genome composition analysis
done by sampling, which are also stored as tab-separated files. These text files can be used to plot the core-
and pan-genome, with help from the accompanying script plot pancore matrix.pl. A suitable command would be:
./plot_pancore_matrix.pl -i sample_buch_fasta_homologues/core_genome_algBDBH.tab -f core_Tettelin

The script also supports the core function as modified by Willenbrock and collaborators (PubMed=18088402),
as shown on the next figure in a more realistic set of 35 genomes. Both fits can be superimposed by calling
option -f core_both.

Besides standard core- and pan-genomes, it is possible to estimate the evolution of the soft core-genome,
which is a relaxed version of the core that considers genes found in a fraction (by default 0.95) of genomes, and
thus accommodates some annotation or assembly errors. This experiment can be done with either the OMCl
or COGS algorithms by invoking options -c -z. The resulting data file can be plotted the same way.

The genome composition analyses presented so far are actually random sampling experiments. It is thus
worth mentioning that the user can control the order in which genomes are sampled during these simulations,

40

http://www.ncbi.nlm.nih.gov/sites/ppmc/articles/PMC1216834/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2246269

Figure 14: Core-genome (left) and pan-genome (right) estimates after ten random samples of 4 taxa. Fitted
curves follow functions first proposed by Tettelin in 2005 (PubMed=16172379). Residual standard errors are
reported on the right margin as a measure of the goodness of fit.

Figure 15: Core-genome estimate after ten random samples of 35 taxa.

by enforcing a list of genomes with option -I, already introduced in section 4.7, or by setting the seed of the
random number generator with option -R. In the first case only one sampling is performed and therefore the
standard deviation of the core and pan values is zero. The second strategy ensures that sampling order is
conserved in different program executions and thus allows merging CDS core-genomes and non-coding genes
(such as rRNAs) core-genomes computed separately over the same set of taxa, with help from accompanying
script add pancore matrices.pl.

41

4.8.5 Estimating average identity matrices

If we recall for a moment the example GenBank files analyzed on section 4.3 we can demonstrate how to calculate
average identity matrices, which can then be used to compare genome members of a pangenome. To do so we
will add a few flags to the previous command, in addition to flag -A, which specifically asks for an identity
matrix to be calculated: $./get_homologues.pl -d sample_plasmids_gbk -A -t 0 -M

This will produce the following output:

[...]

number_of_clusters = 193

cluster_list = [...]/UnculturedbacteriumplasmidpRSB203_f0_0taxa_algOMCL_e0_.cluster_list

cluster_directory = [...]/UnculturedbacteriumplasmidpRSB203_f0_0taxa_algOMCL_e0_

average_identity_matrix_file =

[...]/UnculturedbacteriumplasmidpRSB203_f0_0taxa_algOMCL_e0_Avg_identity.tab

NOTE: matrix computed on blastp results

Note that on this example the produced identity matrix was calculated with the BLASTP scores among
protein sequences included on the resulting clusters (193). If average nucleotide identities are desired the
command must be modified to:

$./get_homologues.pl -d sample_plasmids_gbk -a ’CDS’ -A -t 0 -M

Such matrices can then be used to calculate heatmaps and dendrograms that capture how similar the coding
sequences are among genomes. An example of this would be:

cd sample_plasmids_gbk_homologues

../hcluster_matrix.sh -i EcoliST131plasmidpKC394_f0_0taxa_CDS_algOMCL_e0_Avg_identity.tab

Figure 16: Example heatmap derived from an average nucleotide identity matrix calculated with
get homologues.pl.

42

4.8.6 Finding out best hits of a particular sequence

After running get homologues with almost any set of parameters, you will always end up with a lot of BLAST
files of all-against-all involved taxa. The accompanying script check BDBHs.pl can help you find out which are
the best BLAST hits of any sequence that might interest you. First, as cluster names are not always informative,
you’ll need to find out the internal identifier used by the software to handle your target sequence. For instance,
we might want to investigate protein CspE among our 4 Buchnera taxa. The command to achieve this would
be: $./check_BDBHs.pl -d sample_buch_fasta_homologues -g -i CspE:

And we obtain:

Sequences containing label CspE:

1360,Buch_aph_Cc.faa,gi|116515229|ref|YP_802858.1| CspE [Buchnera aphidicola str. Cc (Cinara cedri)]

Now that we know the identifier (1360), we can check its best hits:
$./check_BDBHs.pl -d sample_buch_fasta_homologues -i 1360

Output contains the identifiers of best hits in both directions, their bit-scores, E-values, alignment %coverages
and annotated Pfam protein domains when available:

query = 1360

query fullname = gi|116515229|ref|YP_802858.1| CspE [Buchnera aphidicola str. Cc (Cinara cedri)]

list of bidirectional best-hits:

dir query sbjct bits Eval cover Pfam annotation

: [Buch_aph_Bp.faa]

> 1360 972 135 1e-41 100.0 NA gi|27904911|...cold shock protein E...

< 972 1360 135 1e-41 100.0 NA

: [Buch_aph_APS.faa]

> 1360 467 136 4e-42 100.0 NA gi|15617086|...cold shock protein E...

< 467 1360 136 4e-42 100.0 NA

: [Buch_aphid_Sg.faa]

> 1360 1883 136 4e-42 100.0 NA gi|21672738|...cold shock protein E...

< 1883 1360 136 4e-42 100.0 NA

If previous get homologues jobs included the calculation of Pfam domains, then option -D can be added to
produce a richer report, that now includes the identifiers of Pfam domains such as PF00313, sorted on their
position along the sequence:

dir query sbjct bits Eval cover Pfam annotation

: [Buch_aph_Bp.faa]

> 1360 972 135 1e-41 100.0 PF00313, gi|27904911|...

< 972 1360 135 1e-41 100.0 PF00313,

: [Buch_aph_APS.faa]

> 1360 467 136 4e-42 100.0 PF00313, gi|15617086|...

< 467 1360 136 4e-42 100.0 PF00313,

: [Buch_aphid_Sg.faa]

> 1360 1883 136 4e-42 100.0 PF00313, gi|21672738|...

< 1883 1360 136 4e-42 100.0 PF00313,

Note that this script works by parsing files all.p2o.csv and all.bpo, which are created at run-time by
get homologues in folder tmp/ within the results directory. These are text files that can be inspected with help
from any text editor.

43

http://pfam.sanger.ac.uk/family/PF00313

4.9 A script to test most get homologues features with a sample dataset

File HOWTOTettelin is a shell script which performs typical uses of get homologues.pl. This script can be made
executable on the terminal with: $ chmod +x HOWTOTettelin and then executed with: $./HOWTOTettelin

The first task carried out by the script is to download the same GenBank files used in the landmark work of
Tettelin and collaborators (PubMed=16172379); afterwards several analyses are sequentially undertaken:

1.0) optionally download genomes in GenBank format from NCBI FTP site

cd test_Streptococcus

../download_genomes_ncbi.pl test_Streptococcus_download_list.txt

cd ..

1.1) run BLAST jobs with 4 CPU cores and optionally HMMER

./get_homologues.pl -d test_Streptococcus/ -n 4 -o

./get_homologues.pl -d test_Streptococcus/ -n 4 -D -o

1.2) calculate core-genomes with all BDBH, OMCL & COG algorithms

./get_homologues.pl -d test_Streptococcus/

./get_homologues.pl -d test_Streptococcus/ -M

./get_homologues.pl -d test_Streptococcus/ -G

./get_homologues.pl -d test_Streptococcus/ -M -D

1.3) calculate consensus core-genome with syntenic genes

./compare_clusters.pl -s -n -o test_Streptococcus_intersection -d \

test_Streptococcus_homologues/S_f0_alltaxa_algCOG_e0_,\

test_Streptococcus_homologues/S_f0_alltaxa_algOMCL_e0_,\

test_Streptococcus_homologues/S_f0_alltaxa_algBDBH_e0_

1.4) calculate core-genome with coverage and identity as in the Tettelin paper (cover=50%,%ID=50)

./get_homologues.pl -d test_Streptococcus/ -M -C 50 -S 50

1.6) calculate core intergenic clusters

./get_homologues.pl -d test_Streptococcus/ -g

1.7) estimate and plot core- and pangenome sizes with all BDBH, OMCL & COG algorithms

./get_homologues.pl -d test_Streptococcus/ -c

./get_homologues.pl -d test_Streptococcus/ -M -c

./get_homologues.pl -d test_Streptococcus/ -G -c

2.1) calculate pan-genome with OMCL & COG algorithms

./get_homologues.pl -d test_Streptococcus/ -M -t 0

./get_homologues.pl -d test_Streptococcus/ -G -t 0

2.2) build consensus pangenomic matrix

./compare_clusters.pl -d test_Streptococcus_homologues/S_f0_0taxa_algCOG_e0_,\

test_Streptococcus_homologues/S_f0_0taxa_algOMCL_e0_ -m -T -o test_Streptococcus_intersection

2.3) plot pangenomic compartments and estimate core- and pan-genome size with mixture models

./parse_pangenome_matrix.pl -m test_Streptococcus_intersection/pangenome_matrix_t0.tab -s

2.4) check accesory genes present in A genomes and absent in B

./parse_pangenome_matrix.pl -m test_Streptococcus_intersection/pangenome_matrix_t0.tab \

-A test_Streptococcus/A.list -B test_Streptococcus/B.list -g -e

Readers looking for a fully worked out example, including a comprehensive interpretation of results, can
read our book chapter ”Robust Identification of Orthologues and Paralogues for Microbial Pan-Genomics Using
GET HOMOLOGUES: A Case Study of pIncAC Plasmids” (PubMed=25343868).

44

http://www.ncbi.nlm.nih.gov/sites/ppmc/articles/PMC1216834/
http://www.ncbi.nlm.nih.gov/pubmed/?term=25343868

5 Frequently asked questions (FAQs)

5.1 Installation

• Is it necessary to have a computer cluster to run get homologues.pl?

Not really. It can be run on a single machine, but if you have say, more than microbial genomes, the
required all-against-all BLAST jobs would take some time to complete, depending on your hardware.
If this is your case we recommend setting option -n to the number of cores of your processor, as this
way BLAST/HMMER jobs will be split and sent to different jobs and the required computing time
proportionally reduced.

Figure 17: Runtime of a typical bacterial genomic BLASTP jobs as calculated with 1 to 8 CPU cores when
splitting the job in batches. Note that the optimal batch size in this test is 100 sequences (compared to 250
and 500 sequences).

• How do I set up get homologues.pl to run in my computer cluster?

Cluster jobs are submitted by invoking option -m cluster, instead of explicitely calling qsub. The fist
time such a job is run the following error can be seen:

running BLAST searches ...

Unable to run job: You have to specify a queue, with the ’-q’ option to qsub.

Exiting.

[...]

This usually means that qsub jobs inside get homologues.pl lack a target queue in the cluster. Please find
out the name of the right queue for your jobs, perhaps something as simple as such as -q default, and
edit the relevant line in the header of get homologues.pl :

my $QUEUESETTINGS = ’ -q default ’;

45

• Does get homologues.pl run on Windows?

As Perl is not installed by default on Windows, not BerkeleyDB is easily installed there, we haven’t ported
this software to these systems. However, with some work, you could probably set up a windows machine
to run get homologues.pl and most of its dependencies. Nevertheless, we have tested the package only
on Linux and macOSX systems, and currently the only option for Windows users would be to set up a
VirtualBox Linux box, and then installing get homologues.pl there.

NOTE: If you don’t know how to do this please check these resources: Install-Ubuntu-on-VirtualBox or
virtualboxes.

• How much memory does my computer require to run get homologues.pl?

This depends directly on the size and number of the genomes to be analyzed. In our benchmarks, jobs
with up to approximately 40 microbial genomes can be carried out on a 8Gb RAM Linux box. On January
2014 a user reported that he had managed to analyze 176 bacterial genomes with option -M on a cluster
queue with 80GB of RAM. As mentioned in section 3.4, the -s flag option reduces the memory footprint
of your get homologues up to 20-fold, allowing running large jobs in machines with small RAM resources.
Therefore, if you are running a large job that fails to finish succesfully, the most common explanation
would be that it was killed by the operating system for taking too much memory. In those cases it is
advisable to re-run the same job with the -s flag.

Figure 18: Computing time and RAM requirements of the BDBH, COG and OMCL algorithms when processing
input volumes of increasing size. Performance is measured also with BerkeleyDB (-s flag).

46

https://www.virtualbox.org/
http://www.wikihow.com/Install-Ubuntu-on-VirtualBox
http://virtualboxes.org/images/ubuntu/

• BLAST jobs fail in my computer cluster, how can I sort this out?

When solving problems related with submitting jobs to the cluster it is necessary to check the generated
.queue files, which capture any errors that might occur during job submission. If you check one of these
files an find a message such as
blast: error while loading shared libraries: libbz2.so.1: cannot open shared object file

this means that some cluster nodes will require the installation of 32-bit compatibility library libbz2.so.1,
which can be done with root privileges typing this command from your cluster master node:
rocks run host compute "yum -y install bzip2-libs.i386"

Another solution would be to use BLAST binaries native to your cluster architecture, as explained in
section 2.2.

5.2 Run options

• Could you please explain a bit more what option -o is good for?

This option is useful in situations like the following: you have access to a compute cluster with modern
compute nodes (64bit cores and a good amount of memory), but the master computer is an old, 32bit
machine with limited RAM (say 1GB or less). Under such a setting, it would be convenient to distribute
the first steps of the pipeline (all against all BLAST jobs) on the cluster using options -o -m cluster.
The downstream parsing of the BLAST results, which is memory-consuming, could then be executed
logged in from one of the more powerful compute nodes or from a powerful server.

• Would it be possible, after running the all-against-all BLAST jobs using option -o, to log into three
different compute nodes and execute the downstream pipeline on each node for a different clustering
algorithm (i.e. BDBHs, COG and OMCL)?

No, as each get homologues.pl job requires exclusive access to the data directory and prevents other jobs
to access it simultaneously.

• Does the -I option have any impact on the calculation of the core and pan genomes, including their
graphical representations?

Of course, as this option enforces the program to sample once the list of genomes in the implicit order of
the list. The fitting of pan-/core-genome functions will be affected as there will be less points to do the
noon-linear fitting.

• What is the minimum value for BLAST neighborhood correlation parameter?

This parameter captures the concept of BLAST neighborhood explained in PubMed=18475320, and is
calculated as a a positive Pearson correlation coefficient. In this context, sequences A and B should have
a similar list of BLAST matches if they truly are orthologues. This parameter is by default set to 0, so it
takes no effect. As its values approaches to 1, it gets more difficult to call bidirectional best hits, as they
will be required to have very similar lists of BLAST hits.

• Could you explain a bit more about the meaning/effect of the -t option?

You should use -t 0 (zero) when you need to get all clusters of homologous sequences. This will generate
files containing 2 or more homologous sequences from one or more taxa. By default, get homologues.pl sets
t=numberOfTaxa, that is, it will provide the user with clusters of homologous sequences that contain at
least one sequence from each taxon. Note that singleton clusters (just one sequence per organism) will be
produced if combined with option -e, which excludes clusters containing inparalogues. In this later case,
the resulting clusters will contain only single copy genes from each taxon, i.e. the orthologues. This is
convenient if you want to use resulting gene families to do for example genome-level phylogenetic analyses
using only the repertoire of orthologous single copy genes. Note, however, that such clusters are not
suitable for pangenome analyses. For such analyses, instead, please use auxiliary script compare clusters.pl
with the set of clusters obtained with -t 0.

• And what about option -a, what are these other GenBank file features?

Thoroughly annotated genomes (see for example the GenBank file for Escherichia coli K12 MG1655: Es-
cherichia coli K 12 substr MG1655 uid225.gbk) have many features, incluing ribosomal rRNAs, integenic

47

http://www.ncbi.nlm.nih.gov/sites/ppmc/articles/PMC2377100/

spacers, tRNAas, ’mat peptide’, ’repeat region’, and miscellaneous features, noted as ’misc feature’, in the
corresponding GenBank files. Miscellaneous features report on diverse things such as cryptic prophages,
the target sites of resolvases involved in replicon replication, and many more ”miscellaneous” features.
Note that there is great heterogeneity both in the format and detail of annotating genome features. By
default, get homologues.pl will extract only the ’CDS’ feature (i.e. the sequences for protein-coding se-
quences) from the GenBank file. By using option -a the user can select which features to parse, such as
’tRNA’ or ’rRNA’.

• Could you explain what the inflation parameter of orthoMCL is and how to decide what value to use?

The original OrthoMCL paper (PubMed=12952885) explains it: ”[...] changing the inflation index affects
cluster tightness: Lower inflation values result in the inclusion of more sequences in fewer groups, whereas
increasing the inflation index fragments clusters and reduces the number of sequences included”. In our
benchmarks with bacterial genomes this parameter shows a very modest, negligible effect.

• I’ve run the get homologues.pl pipeline some time ago. I would like to add some new genomes to the
previous analysis. How do I proceed so as to reuse as much of the previous computations as possible?

If you still conserve the original input folder with FASTA or GenBank sequence files and the results
_homologues directory, both contained in the same directory, all you will have to do is to copy the new
sequence files to the input folder and re-run get homologues.pl. This will ensure that only new required
BLAST/PFam searches are completed, conserving the previous results as much as possible.

• How does get homologues.pl decide how to name a certain cluster file? Is this affected by the use of -r?

Cluster files are named using gene names from the reference genome. It is possible to change the way
clusters are named by editing subroutine extract_gene_name in file lib/phyTools.pm.

• What happens if I perform the above explained steps but using a different reference genome?

The most obvious effect is that any resulting clusters will now be named according to gene names of the
new reference genome. A more subtle consequence for BDBH jobs is that now all genomes are compared
to this reference, see figure 3, and this will change the order in which bidirectional best hits are computed.

• How are the gene clusters named if no -r reference genome is specified?

In this case the genome with the least number of genes/features will be taken as the reference, and resulting
sequence clusters will be named according to gene names of this reference genome, which might not be
the best annotated genome in your set. For this reason it is often a good idea to set as reference genome
one with a good annotation, for instamce the species or strain described in RefSeq.

• I have 40 draft genomes annotated in gbk format and I am using get homologues to obtain the core and
pan genomes. My plan is to run get homologues with BDBH and -b to speed up the process. How can I
choose the most appropriate reference genome?

Option -b is only suited for core-genome calculation, not pangenome. If this is really the desired task, the
genome with the least number of annotated genes should be used as a reference, which is what the program
would do by default, or else the best-annotated among small genomes. However, note that this sort of
core-genome calculation is most sensitive to missing genes, usually due to poor automatic annotations,
which is why compiling a pangenome matrix is recommended when possible (see Section 4.8.1), so that a
more robust soft-core can be estimated.

• Why does option ’-t 0’ not work with BDBH in get homologues.pl? Is this also the reason BDBH cannot
be used in a pangenome matrix analysis?

The reason is that BDBH uses a single reference genome and thus by definition cannot track genes not
present in the reference. Therefore, pangenome matrices produced by the BDBH algorithm would be
incomplete, considering only clusters including genes from the reference genome. For this reason BDBH
is adequate for core-genome calculation, but not for pan-genomes.

• When the initial BLAST is being performed, does get homologues.pl take into account the database size
(i.e. the number of genes being BLASTed), or because the BLASTing is not done as an all-vs-all manner,
do you not consider this as a factor in the analysis?

48

http://www.ncbi.nlm.nih.gov/sites/ppmc/articles/PMC403725/
http://www.ncbi.nlm.nih.gov/refseq/

Within lib/marfil_homology.pm there is a global variable $BLAST_DB_SIZE set to 100 000 000 for that
purpose. That value is the fixed effective search space during BLAST searches so that any resulting
E-values are comparable, even across experiments or algorithm (BDBH, OMCL, COGS).

• I would like to get information of inparalogues and orthologues from each genome. I found several files
in the tmp directory, such as inparalogues_Buch_aph_APS.faa. Could you explain about the files or a
method to extract the information?

According to our working definition, all sequences grouped together in the same .faa/.fna cluster are
likely orthologues, although you should always keep in mind that orthology is an evolutionary concept
and therefore sequence-based approaches such as those in get homologues.pl are simpler approximations.
What is different with inparalogues? They are supposed to be duplicated genes that appeared after species
separation, and therefore their orthology relationships are many-to-one or many-to-many. Inparalogues
are easy to spot in clusters produced by get homologues.pl because they are 2+ sequences from the same
genome in the same cluster cluster. If you wish to know which inparalogue is most similar to an orthologous
gene the best option is to run check BDBHs.pl, which is explained on Section 4.8.6.

• I have been using GETHOMOLOGUESandIcouldnotfigureoutwhichisthedefaultvalueforsavingblastphits, Imean, thevaluesetfor′−
maxtargetseqs

′.Couldyouclarifythattome, please?

BLAST parameter -max_target_seqs is set to the number of sequences of the query proteome, which
usually is a large number that ensures all good quality hits are recovered.

5.3 Downstream analyses

• What are pancore and pangenome files/matrices?

Pancore matrices contain estimates of core- and pan-genomes and they are produced by get homologues.pl
with option -c. These files take names such as pan_genome_algBDBH_C75.tab, which record the algorithm
employed, and are generated by random-sampling genomes. Sampling can be controlled and reproduced
by using the same random-number generator seed (see section -R in Section 3.4). Such files can be used
to render plots (and fitted functions) with script plot_pancore_matrix.pl, as shown in Section 4.8.4.

Instead, pangenome matrices are generated by accessory script compare clusters.pl, and contain informa-
tion about what which genomes contain sequences from gene clusters, with no sampling involved (see
Section 4.8.1). They take names such as pangenome_matrix_t0.tab.

• Is it possible to plot pangenome matrices with compare clusters.pl using a single cluster directory?

Yes, no problem. The script will generate the intersection_t0.cluster_list , pangenome_matrix_t0.phylip
and pangenome_matrix_t0.tab files based on the clusters found by the chosen algorithm. The only thing
you won’t find in the directory are Venn diagrams, since at least 2 cluster sets (generated by 2 algorithms)
are required to compute them.

• What is the advantage of providing multiple cluster output directories to the -d ’dir1,dir2,dir3’ option of
compare clusters.pl?

When provided with the output directories holding the clusters generated by 2 or 3 algorithms, the script
will select only those clusters that contain exactly the same sequences in each of the clusters. This may
be valuable for example if the user is interested in defining a very robust core genome set, containing
only those families with exactly the same members, independently of the chosen algorithm. However, it
is possible that several otherwise important families get lost for downstream analyses, such as presence-
absence analyses of gene families in pairs of lineages, which can be done with parse pangenome matrix.pl.

• We have sequenced 25 bacteria genomes and used get homologues.pl to get orthologs included in all the 25
strains. As I already used BDBH method for core genome analysis, now I cannot switch to COG method
for pangenome matrix generation. Could you indicate me how to get the full pangenome matrix using
BDBH method?

BDBH results cannot be used for pangenome analysis, but you could re-run the software with the same
25 input genomes, now adding -t 0 -M for OMCL, probably the best choice for such an analysis. This
will re-use all blast results previously calculated and resume until OMCL analysis is completed. Usually
core sets produced by BDBH, COGS and OCML are very similar. Therefore, most of your previously

49

tested core genes should also be picked up by OCML on this second run, and presumably you could now
proceed to pangenome analysis.

• I am a PhD student doing some work on different strains. My input is .gbk from draft genomes and my
aim at this point is to see what are core-genes in each of 3 groups and which of these are shared with the
other 2 groups. I have been working under the impression that I can make 3 different groups and compare
them or can I only make 1 big group and compare the results for different methods?

You have calculated 3 core-genomes from 3 different sets of strains and now you want to know the subset of
core-genes present in all individual core-genomes. If you check compare clusters.pl option you’ll see that it
says ”by default cluster dirs are expected to be derived from the same taxa”, which is exactly what’s failing
in your examples. If you want to find common core-clusters present if all 3 sets and also those shared by
only some of the taxa I guess you should build a pangenome matrix by running get homologues.pl with
all strains together with option -t 0. The matrix itself will give you the clusters present/absent in all and
some of the strains, which I guess is what you need. The script parse pangenome matrix.pl can read this
matrix and further help you identify these clusters.

• Could you please give a use case for compare clusters.pl -r?

Option -r can be used to compare a list of core genes from a single genome G, that is, with clusters
containing only sequences from G, to clusters of a larger group of taxa (A,B,C,...,G) that includes G.

• The parsimony tree produced by compare_cluster.pls -T cannot be opened by MEGA.

Program PARS from the PHYLIP suite often produces several alternative parsimony trees contained in the
pangenome_matrix_t0.phylip.ph file, one per line. Some phylogeny programs, such as MEGA, require
splitting these trees in separate files in order to properly read and plot them.

• Parsing a pangenome matrix with A & B lists yields zero clusters.

When a command such as ./parse_pangenome_matrix.pl -m pangenome_matrix_t0.tab -A A.txt -B B.txt -g

is invoked, the passed A & B files must contain taxon names matching exactly those of corresponding
input files, including the extension. Instead of a list such as:

taxonA

taxonB_001

...

taxonZ244

the list should be:

taxonA.faa

taxonB_001.faa

...

taxonZ244.faa

50

http://evolution.genetics.washington.edu/phylip/doc/pars.html
http://www.megasoftware.net

6 Frequent warnings and error messages

error message practical meaning
EXIT : cannot find previous input file
XXXX, please re-run everything

This can happen when re-running the program with an
input -d directory which used to contain more sequences
files, or with different names. This prevents the software to
recycle previous results, as it cannot ensure that sequences
are still numbered consistently.

WARNING: could not extract nucleotide
sequences from file XXXX

You’ll see this warning when using an uncomplete input
GenBank file, lacking the nucleotide sequence at the bot-
tom.

WARNING: can only extract genes (not
CDSs) from file XXXX

Occurs when reading a GenBank file lacking CDS features.

WARNING: cannot use nucleotide se-
quences in file XXXX as they do not
match those in file YYYY

This warning occurs when a twin XXXX .fna file (see
Table 1) contains a different number of sequences than the
corresponding YYYY .faa file, and cannot therefore be
safely used to compile DNA clusters.

EXIT, XXXX does not exist, Pfam search
failed...

Occurs when a Pfam job submitted to the cluster (option
-D) failed to report back and terminate. The solution is
often to re-run the program, as it will only re-submit the
missing Pfam jobs. When solving problems with submit-
ting jobs to the cluster queue it is helpful to check the
.queue files.

EXIT: cannot format BLAST sequence
base

Happens when for some reason the collection of input se-
quences could not be formatted for BLAST. This might
surface hard drive trouble or simply an architecture issue.

EXIT, XXXX.blastout does not exist,
BLAST search failed...

Again a BLAST error, spotted for failing to produce a
BLAST output. Often the solution is simply to re-run,
as this might be simply a cluster overload problem. When
solving problems with submitting jobs to the cluster queue
it is often helpful top check the .queue files.

EXIT: parsed XXXX output (YYYY)
seems to be empty, please remove ’in-
put homologues/’ and re-run

Another BLAST/Pfam error, which can happen if the pro-
grams fails to parse the results. The simplest solution is
usually to do as suggested and re-run.

WARNING: please remove/rename re-
sults directory: XXXX if you change the
sequences in your .gbk/.faa files or want
to re-run

This warning is issued only to make it clear that the pro-
gram is recycling previous BLAST results, which is usually
a good idea, unless you specifically changed the contents
of your input files (which should’t be that common).

EXIT: cannot compile intergenic clusters
as not all input GenBank files are valid

This message appears when the user requested intergenic
clusters (option -g) but not all parsed GenBank files con-
tained nucleotide sequences. The solution is to check the
input files and correct the offending one, which likely is
uncomplete and lacks the nucleotide sequence at the bot-
tom.

WARNING: skipping cluster
123 XXX.fna , seems to duplicate
456 YYY.fna

This is issued by compare clusters.pl when it finds, usu-
ally singleton, clusters with identical sequences produced
by the COG or OMCL algorithms. This can happen when
such clusters contain short sequences, or perhaps with com-
position biases, that yield few or even no BLAST hits when
compared to all other sequences in a given setup. As these
kinds of clusters can confound posterior analysis they are
currently ignored by compare clusters.pl.

Table 4: Frequent warnings and error messages produced by get homologues and kin scripts.

51

7 Credits and references

get homologues.pl is designed, created and maintained at the Laboratory of Computational Biology at Estación
Experimental de Aula Dei/CSIC in Zaragoza (Spain) and at the Center for Genomic Sciences of Universidad
Nacional Autónoma de México (CCG/UNAM).

The code was written mostly by Bruno Contreras-Moreira and Pablo Vinuesa, but it also includes code
and binaries from OrthoMCL v1.4 (algorithm OMCL, -M), COGtriangles v2.1 (algorithm COGS, -G), NCBI
Blast-2.2 and BioPerl 1.5.2

We ask the reader to cite the main reference describing the get homologues software,

• Contreras-Moreira,B. and Vinuesa,P. (2013) GET HOMOLOGUES, a versatile software package for scal-
able and robust microbial pangenome analysis. Appl.Environ.Microbiol. 79:7696-7701.

and also the original papers describing the included algorithms and databases, accordingly:

• Li L, Stoeckert CJ Jr, Roos DS (2003) OrthoMCL: identification of ortholog groups for eukaryotic genomes.
Genome Res. 13(9):2178-89.

• Kristensen DM, Kannan L, Coleman MK, Wolf YI, Sorokin A, Koonin EV, Mushegian A (2010) A low-
polynomial algorithm for assembling clusters of orthologous groups from intergenomic symmetric best
matches. Bioinformatics 26(12):1481-7.

• Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W and Lipman DJ (1997) Gapped
BLAST and PSI-BLAST: a new generation of protein database search programs. Nucl. Acids Res.
25(17): 3389-3402.

• Stajich JE, Block D, Boulez K, Brenner SE, Chervitz SA, Dagdigian C, Fuellen G, Gilbert JG, Korf I,
Lapp H, Lehvslaiho H, Matsalla C, Mungall CJ, Osborne BI, Pocock MR, Schattner P, Senger M, Stein
LD, Stupka E, Wilkinson MD, Birney E. (2002) The Bioperl toolkit: Perl modules for the life sciences.
Genome Res. 12(10):1611-8.

• hmmscan :: search sequence(s) against a profile database HMMER 3.0 (March 2010) http://hmmer.org
Copyright (C) 2010 Howard Hughes Medical Institute. Freely distributed under the GNU General Public
License (GPLv3).

• RD Finn, J Mistry, J Tate, P Coggill, A Heger, JE Pollington, OL Gavin, P Gunesekaran, G Ceric, K
Forslund, L Holm, EL Sonnhammer, SR Eddy, A Bateman (2010) The Pfam protein families database:
Nucl. Acids Res., 38:D211-222.

If you use the accompanying scripts the following references should also be cited:

• R Core Team (2013) R: A Language and Environment for Statistical Computing. http://www.R-project.org
R Foundation for Statistical Computing, Vienna, Austria, ISBN3-900051-07-0

52

http://www.eead.csic.es/compbio
http://www.ccg.unam.mx/~vinuesa
http://www.orthomcl.org
http://sourceforge.net/projects/cogtriangles
http://blast.ncbi.nlm.nih.gov
http://blast.ncbi.nlm.nih.gov
http://www.bioperl.org

	Description
	Requirements and installation
	Perl modules
	Required binaries
	Optional software dependencies

	User manual
	Input data
	Obtaining (bacterial) GenBank input files
	(Eukaryotic) FASTA amino acid input files
	Program options
	Accompanying scripts

	A few examples of use
	Clustering orthologous proteins from a few FASTA files
	Clustering orthologous proteins from a single FASTA file
	Clustering genes and proteins extracted from GenBank files
	Clustering genes and proteins that share Pfam domain architecture
	Clustering syntenic/neighbor genes
	Comparing clusters with external sequence sets
	Clustering intergenic segments from GenBank files
	Performing genome composition analyses
	Obtaining a pangenome matrix
	Interrogating a pangenome matrix
	Calculating cloud, shell and core genomes
	Estimating core/pan-genome size by sampling genomes
	Estimating average identity matrices
	Finding out best hits of a particular sequence

	A script to test most get_homologues features with a sample dataset

	Frequently asked questions (FAQs)
	Installation
	Run options
	Downstream analyses

	Frequent warnings and error messages
	Credits and references

