
Multi-Robot Behavioural

Algorithms Implementation in

Khepera III Robots

FINAL PROJECT DEGREE IN INDUSTRIAL ENGINEERING

AUTHOR:
David Arán Bernabeu

SUPERVISOR:
Dr. Lyuba Alboul

Sheffield, 2010

Preface

This report describes the project work carried out at the Faculty of Arts, Computing,

Engineering and Sciences (ACES) at Sheffield Hallam University during the period

between February 2010 and July 2010.

The contents of the report are in accordance with the requirements for the award of the

degree of Industrial Engineering in the Universitat Politècnica de València.

I

Acknowledgements

It is my desire to express my gratitude to those people and institutions who made

possible the realization of this project, like Sheffield Hallam University for its support

and teachings and Universitat Politècnica de València, for all this years of study and

education.

Specially, I would like to say thanks to these people for their valuable contributions to

my project:

My Supervisor Dr. Lyuba Alboul, for her warming welcome to the university and for

being always thoughtful and kind. She helped when some trouble appeared and always

was really interested about the developing of the project, encouraging me with some ideas

and guidelines. Thank her for all the inestimable support.

Mr. Hussein Abdul-Rachman, who helped me in the understanding of Player/Stage and

Linux environment. Without his rewarding ideas and advices and his help in the mental

block moments I would not be able of carry on with my thesis.

Mr. Georgios Chliveros for helping me with the installation and set up of Linux.

My laboratory friends Jorge, Morgan and Nicola, for become a source of inspiration and

motivation.

My family and my girlfriend, for their endless love and support in my months in the

United Kingdom.

II

Abstract

The purpose of this study is to develop non-communicative behavioural algorithms for

being implemented in a team of two Khepera III robots. One robot is the leader, and

realize tasks such as wall following and obstacle avoidance, and the other robot is the

follower, which recognizes the leader differentiating it from the rest of the environment

and follows it. The aim is that robots are able to do the requested actions only using a

laser ranger as a sensor and its own motors and odometry measures.

With that purpose, simulations in the Player/Stage simulation software have been made

for test the developed code that lately has been run in the real robots. For the follower

robot, a movement detection system by comparing laser scans in two consecutive instants

of time has been developed to obtain the direction of the leader.

III

Contents

1 Introduction 1

1.1 Introduction . 1

1.2 Background . 2

1.3 Motivation . 2

1.4 Objectives/deliverables . 3

1.5 Project flow diagram . 3

1.6 Thesis guideline/structure . 3

2 Player/Stage 5

2.1 Introduction . 5

2.1.1 Features . 5

2.2 Player, network server . 6

2.3 Stage, robot platform simulator . 8

2.4 Gazebo, three dimensional simulator . 8

2.5 Player/Stage tools . 9

2.5.1 Sensor visualization: playerv . 10

2.5.2 Client libraries . 11

2.5.3 Proxies . 11

2.5.3.1 Position2d proxy . 12

2.5.3.2 Laser proxy . 13

2.5.4 Stage tools . 13

2.6 Programming in Player . 14

2.6.1 World file . 15

2.6.2 Configuration file . 15

2.6.3 Makefile . 15

2.6.4 Main program file . 16

2.7 Running program . 17

3 Robot and laser characteristics 19

3.1 Introduction . 19

IV

3.2 Khepera III . 19

3.2.1 Characteristics . 21

3.3 Hokuyo URG-04LX Laser . 22

3.3.1 Characteristics . 22

3.4 Robot with laser . 23

4 Literature and review 25

4.1 Introduction . 25

4.2 Wall following . 25

4.2.1 Artificial vision . 25

4.2.2 Neuro-fuzzy controllers . 26

4.2.3 Emitting signal sensor . 26

4.2.4 Autonomous robots . 26

4.2.5 3D Laser Rangefinder . 27

4.2.6 Odometry and range data . 27

4.3 Obstacle avoidance . 28

4.3.1 Fuzzy control . 28

4.3.2 Probabilistic approach . 28

4.3.3 Camera . 29

4.4 Robot following . 29

4.4.1 Attraction-repulsion forces . 29

4.4.2 Selfmade follower . 30

4.5 Localization problem . 30

4.5.1 Odometry Sensors . 30

4.5.2 Laser range finders . 31

5 Robot behaviour algorithms and theory 32

5.1 Introduction . 32

5.2 Leader robot . 33

5.2.1 Obstacle avoidance . 33

5.2.2 Wall following . 35

5.2.2.1 Calculate the turn to keep a constant distance 36

5.2.3 Simulation . 38

5.3 Follower robot . 38

5.3.1 Robot following . 40

5.3.1.1 Non-obstacles environment 40

5.3.1.2 Environment with obstacles 42

5.3.2 Obstacle avoidance . 45

V

5.3.3 Code for Khepera III . 47

5.4 Implementation in Khepera III . 49

5.4.1 Results . 49

6 Conclusion and further work 51

6.1 Conclusion . 51

6.2 Further work . 52

6.2.1 Addition of more follower robots to the system 52

6.2.2 Accumulative errors . 52

6.2.3 Loss of the leader . 53

Bibliography 54

Appendices 57

A Configuration files 58

A.1 Simulation .cfg file . 58

A.2 Khepera III .cfg file . 59

B World file 61

C functions.h library 65

D support.h library 68

VI

List of Figures

1.1 Project flow diagram . 4

2.1 The server/client control structure of Player/Stage 7

2.2 Player communication protocol . 8

2.3 Snapshot of a Stage simulation . 9

2.4 Snapshot of a Gazebo simulation . 9

2.5 Player viewer visualization tool . 10

2.6 Odmetry coordinate system . 12

3.1 Khepera III robot . 20

3.2 Ranger sensor of the Khepera III robots . 20

3.3 Laser characteristics . 22

3.4 Field of view of the laser . 23

3.5 Khepera III robot with laser range finder 24

5.1 Division of laser sensor . 33

5.2 Obstacle avoidance behaviour . 35

5.3 Robot modes flow diagram . 36

5.4 Calculate the slope of a straight line . 37

5.5 Wall following simulation . 39

5.6 Important global and local angles . 41

VII

5.7 Simulation of the first approach . 42

5.8 Follower robot detecting the position of the leader 44

5.9 Angle ranges . 45

5.10 Robot following simulation . 46

5.11 Khepera GetYaw function coordinate system 48

5.12 Snapshots of the test made with the robots 49

VIII

List of Tables

2.1 Player/Stage main features . 5

3.1 Khepera III characteristics . 21

5.1 Wall following modes . 35

IX

Chapter 1

Introduction

1.1 Introduction

The purpose of this thesis is to develop behavioural algorithms for being implemented in

real mobile robots, in this case Khepera III robots. The project has been made for being

implemented in two robots: one takes the role of the leader robot and the other one is

denominated as the follower robot. Therefore, we can consider algorithms for the real

robot like obstacle avoidance and wall following and algorithms for the follower robot,

like obstacle avoidance and robot following.

Some of this approaches in multi-robot systems include the use of fiducials makers as point

of reference or measure [JSPP08] [KLM06]. This can be very helpful when detecting the

position of the robot on the group, as one robot can automatically know the position of the

others, and therefore, if initial positions are known, its global position in the environment.

Unfortunately, this fiducial tool is only available for simulation, as it is not existing for real

robots. In addition, any similar solution in real robots implies any kind of communication

between them, which we are trying to avoid in this thesis.

The tools that use the robots are a laser range finder and the odometry. The laser range

finder is used to measure the distance to the objects in the environment. This allow the

robot, for example, to know the distance to the closest wall to follow or to the closest

object to avoid. It can also be used to detect the approximate position of the other

robot. It can be said that the laser range finder is the only way to receive data from the

environment. The odometry part is used for sending motion orders to the robot motors

and also for calculate the current orientation of the robot.

1

Final Thesis
July 2010 Introduction

Another important factor to consider is that results in simulation will vary from real

results, as there are more factors to take in account when working with physical robots.

These factors include inaccuracy of the laser and the position proxy measures, non-

exact response of the motors, wheel slipping, accumulative errors in sensors . . .Moreover,

there are a few functions from the odometry system that works with no problems in the

simulation environment but that are not available when implemented in Khepera robots.

That reduces the range of options available when looking for a solution, and makes the

simulation code being made from the functions available for the real robots.

1.2 Background

The use of multi-robot teams working together have lots of advantages in front of single-

robot systems. They can be used for environment exploration and mapping, with one

ore more robots taking data from the scenario. One of the advantages of this systems is

that they are more robust, because if one robot fails, the rest of then can keep doing the

assigned task.

The above-mentioned tasks has been implemented, for example, in the GUARDIANS and

View-Finder projects, both developed at Sheffield Hallam University in collaboration with

several European partners, including South Yorkshire Fire and Rescue Services [GUA]

[Vie]. These robots will assist in the search and rescue in dangerous circumstances by

ensuring the communication link and helping the human team to estimate the safety of

the path they are taking and the best direction to follow.

Non-communicative approaches are also wide used in robotics. The groups of robots

can operate together for accomplish a goal, but without sharing any data or sending

information [JRK04]. This concept has also the advantage of the high reliability, as if

one robot fail the others will keep working as they are not using the data from the failed

robot to do its task.

Taking in account all this information, I have tried to create two separate algorithms

using minimum physical resources (taking data only a laser sensor and the odometry) to

realize wall following, obstacle avoidance and robot following algorithms.

1.3 Motivation

The main motivation for develop this thesis is to create the aforementioned algorithms for

their implementation in real robots. There are lots of thesis and projects that rely only

in simulation codes, assuming that all the data they use is ideal, without considering the

David Arán Page 2

Final Thesis
July 2010 Introduction

non-linearities of the real systems. Likewise, they use some functions and features that

don’t exist or are very difficult to implement in physical systems.

Also, the Department had the desire of the implementation of this algorithms in the

Khepera III robots and the URG-04LX UG01 laser range finders that they own, so all the

efforts were focused to develop the best possible code with the features and characteristics

of the available hardware .

1.4 Objectives/deliverables

The main objectives of this dissertation are the followings:

• Introduction and comprehension of Linux and Player/Stage software.

• Research of information for the correct development of the thesis.

• Develop of navigation algorithms (wall following and obstacle avoidance) for the

leader robot, using laser and odometry in Player/Stage.

• Develop of following algorithms (robot following and obstacle avoidance) for the

follower robot, using laser and odometry in Player/Stage.

• Field tests of the final codes in physical Khepera III robots.

1.5 Project flow diagram

This flow diagram of the activities made in this thesis can be seen in the figure 1.1

1.6 Thesis guideline/structure

This thesis is organized as follows:

• Chapter 2 introduces and explains all the characteristics and peculiarities of the

Player/Stage software used for run programs in the robots and for make simulation

test.

• Chapter 3 shows the hardware devices used in the implementation of the code and

its characteristics.

David Arán Page 3

Final Thesis
July 2010 Introduction

Figure 1.1: Project flow diagram

• Chapter 4 exposes all the related theory and literature consulted in the research

phase.

• Chapter 5 deals with the developed robot behaviour algorithms for both leader and

follower robots.

• Chapter 6 concludes the the dissertation by discussing about the carried work and

purposes some further work guide-lines.

David Arán Page 4

Chapter 2

Player/Stage

2.1 Introduction

The Player/Stage software is a project to provide free software for research into robotics

and sensor systems. Its components include the Player network server and Stage and

Gazebo robot platform simulators. The project was founded in 2000 by Brian Gerkey,

Richard Vaughan and Andrew Howard at the University of Southern California at Los

Angeles [Vau00], and is widely used in robotics research and education. It releases its

software under the GNU General Public License with documentation under the GNU

Free Documentation License. Also, the software aims for POSIX compilance [sou].

2.1.1 Features

These are some features of the Player/Stage software (table 2.1)

Developers Brian Gerkey, Richard Vaughan and Andrew Howard

Latest release Player 3.0.2, June 28, 2010

Operating systems Linux, Mac OS X, Solaris, BSD

Languages supported C, C++, Java, Tcl, Python

License GNU General Public Licence

Website http://www.player.sourceforge.net

Table 2.1: Player/Stage main features

5

http://www.player.sourceforge.net

Final Thesis
July 2010 Player/Stage

The software is designed to be language and platform independent, if the language support

TCP sockets and the platform has a network connection to the robot, respectively. This

gives the user freedom to use the most suitable tools for each project. It also allows

support of multiple devices in the same interface, providing high flexibility.

The code made for Player can be simulated in a virtual environment thanks to the Stage

simulation tool, in which the robot and the rest of the environment are simulated in a 2D

representation. There are several advantages simulating the code before implement it on

physical systems. Here are some of them:

• Evaluating, predicting and monitoring the behavior of robot.

• Fastening error finding the implemented control algorithm.

• Reducing testing and development time.

• Avoiding robot damage and operator injures due to control algorithm failure, which

indirectly reducing robot repair cost and medical cost.

• Offering data access that is hard to be measured on real mobile robot.

• Allowing testing on several kinds of mobile robots without need of significant

adaptation of the implemented algorithm.

• Easy switching between a simulated robot and a real one.

• Providing high probability of getting success when implemented on real robot if the

algorithm tested in simulation is proved to be successful.

The communication protocol between the parts of the system is made via TCP protocol,

as shown in figure 2.1

Player uses a Server/Client structure in order to pass data and instructions the user’s

code the robot’s hardware or the simulated robots. Player is a server, and a device on the

robot (real or simulated) is subscribed as a client to the server via a thing called a proxy.

This concepts will be explained in depth in the next sections.

2.2 Player, network server

Player is a Hardware Abstraction Layer. It communicates with the devices of the robot,

such as ranger sensors, motors or camera via an IP network, and allows the user’s code

to control them, saving the user all the robot’s work. The code communicates with the

David Arán Page 6

Final Thesis
July 2010 Player/Stage

Figure 2.1: The server/client control structure of Player/Stage when used as a simulator

or in physical robots

robot via a TCP socket, sending data to the actuators and receiving it from the sensors.

Simplifying, it can be said that Player gets the code made by the user in the chosen

programming language (Player Client), “translate” it into orders that the robot and its

devices can understand and send them to the mentioned devices (Player Server).

The communication protocol used by Player can be seen in figure 2.2. The process works

as follows.

Firstly, the Player client establishes communication with the server (step 1). As has been

said, there are different connection points for each robot and devices, so the client has

to say the server which ones want to use (step 2). All this “dialogue” is made through a

TCP socket.

Once the communication is established and the devices are subscribed, it starts a

continuous loop, where the server sends data received from the sensors to the program

and the client sends orders to the actuators. This endless loop happens at high speed,

providing a fast robot response and allowing the code to behave in the expected way,

trying to minimize the delays.

David Arán Page 7

Final Thesis
July 2010 Player/Stage

Figure 2.2: Player communication protocol

2.3 Stage, robot platform simulator

Stage is a simulation software, which together with Player recreates mobile robots and

determined physical environments in two dimensions. Various physics-based models for

robot sensors and actuators are provided, including sonar, laser range finder, camera,

colour blob finder, fiducial tracking and detection, grippers, odometry localization . . .

Stage devices are usually controlled through Player. Stage simulates a population of

devices and makes them available through Player. Thus, Stage allows rapid prototyping

of controllers destined for a real robot without having a physical device.

In figure 2.3 there is an example of some robots moving and interacting in a simulated

environment.

2.4 Gazebo, three dimensional simulator

The Player/Stage suite is completed with the 3D environment simulator Gazebo. Like

Stage, it is capable of simulating a population of robots, sensors and objects, but does so

in a three-dimensional world. It generates both realistic sensor feedback and physically

plausible interactions between objects [Gaz].

Client programs written using one simulator can be used in the other one with little or

no modification. The main difference between these two simulators is that while Stage is

David Arán Page 8

Final Thesis
July 2010 Player/Stage

Figure 2.3: Snapshot of a Stage simulation

designed to simulate a very large robot population with low fidelity, Gazebo is designed

to simulate a small population with high fidelity.

Figure 2.4 shows how a Gazebo environment looks like.

Figure 2.4: Snapshot of a Gazebo simulation

2.5 Player/Stage tools

In this section, the main features and tools provided by Player/Stage will be explained,

like the playerv sensor visualization tool, client libraries, proxies and some Stage tools.

David Arán Page 9

Final Thesis
July 2010 Player/Stage

2.5.1 Sensor visualization: playerv

Player provides a sensor visualization tool called player viewer (playerv), which gives the

possibility of visualization of the robot sensors, both in simulation and in real robots.

Let’s explain how playerv works with a simulated robot. Once Player opens the

configuration file (explained in 2.6), the application is “listening” for any program or

code. After that, the program can be opened typing in shell (if working in Linux) the

next command:

-$ playerv

Then, a window is opened, where all the available devices can be shown, and even the

robot can be moved through the environment if the position device is subscribed. For

instance, figure 2.5 shows a robot in which the sonar device is subscribed. In this case,

only one robot is used, calling then playerv the default port 6665. If there were more

robots, the ports wanted to call each robot should be specified in the configuration file,

as shown in the next example.

Figure 2.5: Player viewer visualization tool

driver

(

name "stage"

provides ["6665:position2d:0" "6665:laser:0" "6665:sonar:0"]

model "robot"

)

The driver is called “stage” because it is calling a simulated robot using the 6665 port,

which has position control, laser and sonar sensors. The name of the model is “robot”.

Now, if one wants to visualize this specific robot, the line to type in shell is:

David Arán Page 10

Final Thesis
July 2010 Player/Stage

-$ playerv -p 6665

With “-p 6665”, we are telling player that the device to use is the one defined in the

configuration file in the port 6665. Therefore, if more robots are needed, they can be

defined with the successive port numbers 6666, 6667 . . .

The above mentioned shell commands are used in simulated environments. For using

playerv in real robots, slightly different changes should being made. The configuration

file should be adequate for its use in physical systems and have to be run in the robot.

The shell line to type while Player is “listening” presents this aspect:

-$ playerv -h robotIP

With this command playerv is run in a host (hence -h) which IP number is robotIP. Hence,

the robot devices actions and measurements can be monitored in the same way than in

the simulation, presenting a similar presentation as in figure 2.5.

2.5.2 Client libraries

When using the Player server (whether with hardware or simulation), client libraries can

be used to develop the robot control program. Libraries are available in various languages

to facilitate the development of TCP client programs.

There are three available libraries, although more third-party contributed libraries can be

found at [lib].

• libplayerc, library for C language

• libplayerc py , library for Python

• libplayerc++, library for C++

As the code use for develop the algorithms is c++, the library used was libplayerc++.

2.5.3 Proxies

The C++ library is built on a ”service proxy” model in which the client maintains local

objects that are proxies for remote services. There are two kinds of proxies: the special

David Arán Page 11

Final Thesis
July 2010 Player/Stage

server proxy PlayerClient and the various device-specific proxies. Each kind of proxy

is implemented separately. The user first creates a PlayerClient proxy and uses it to

establish a connection to a Player server. Next, the proxies of the appropriate device-

specific types are created and initialized using the existing PlayerClient proxy. There are

thirty-three different proxies in the version used for this dissertation (2.1.2), but it have

been used only three of them: PlayerClient proxy, Position2d proxy and Laser proxy.

PlayerClient proxy is the base class for all proxy devices. Access to a device is provided

by a device-specific proxy class. These classes all inherit from the Client proxy class which

defines an interface for device proxies.

2.5.3.1 Position2d proxy

The class Position2dProxy is the C++ proxy in Player which handles robots position

and motion. It calculates the X, Y positions and angle coordinates of the robot and

returns position information according to the client programs demands. The odometry

system takes negative angles clockwise and positive counter-clockwise, as can be seen in

the odometry coordinate system in fig 2.6.

Figure 2.6: Odmetry coordinate system

Hereafter some of the main commands available in the proxy are shown.

ResetOdometry() Reset odometry to (0,0,0) Although this command could be very

useful when working with global/local coordinates, it has been proved not to work

properly, specially in physical robots.

David Arán Page 12

Final Thesis
July 2010 Player/Stage

SetOdometry (double aX, double aY, double aYaw) . Sets the odometry to the

pose (x, y, yaw). In the same way as ResetOdometry, this function does not work

in a good way, being then usefulness.

GetXPos Get current X position.

GetYPos Get current Y position.

GetYaw Get current angular position.

SetSpeed(Xspeed, YawSpeed) Send commands to motor with linear and angular

speed.

As it will be seen in the chapter 5.3, GetYaw function will be a key function for the success

of the algorithm.

2.5.3.2 Laser proxy

One of the most important proxies used to develop this thesis algorithms is the LaserProxy

provided by Player. In fact, is the only way the robot has to interact with the environment.

It plays major role in wall following and collision avoiding processes, as well as in robot

following algorithm. Player provides standard set of commands to control LaserProxy

data such as:

GetCount() Get the number of points scanned.

GetMaxRange() Maximum range of the latest set of data, in meters.

GetRange(Index) Get the range of the beam situated in the “Index” position.

GetBearing(Index) Get the angle of the beam situated in the “Index” position.

The main properties of the laser device will be explained in chapter 3.

2.5.4 Stage tools

Stage provides a graphical interface with the user (GUI) for watching the proper working

of the simulation developed in Player. To simplify this work, Stage provides some tools.

The environment where the robots are operating in Stage is called “world”, these “worlds”

are bitmap files. So, these files can be created and changed with any drawing software.

David Arán Page 13

Final Thesis
July 2010 Player/Stage

All the white spaces will be considered as open spaces while different colors are considered

as obstacles or walls.

It is possible to zoom by clicking the right mouse button and moving in any part of the

map. A circumference in the middle of the map will appear. By dragging the mouse

towards the centre “zoom in” will be achieved and, by reversing this operation, “zoom

out” will be performed. With the left-click in any part of the map it is possible to move

the map “Up-Down-Right-Left” accordingly.

Also it is possible to change the robot position by dragging the robot with the

left mouse button; and changing its orientation with the right button. Besides the

aforementioned, it is possible to save an image of the current display of the map. Select

File→Screenshot→Single Frame. To save an image sequence with a fixed interval, use

the option File→Screenshot→Multiple Frames selecting previously the interval duration

in the same menu. The image is saved in the current working directory.

Other useful menu options can be found in the tab “view”, for example, it is possible to

represent the grid, view the path taken by the robot with the option Show trails (useful

to identify where the robot has been before), view the robot position lines projected on

the global frame of reference, view velocity vectors, display laser data and so on.

2.6 Programming in Player

This section is an overview about the different files present on a Player/Stage project.

These are:

• World files (.world)

• Configuration files (.cfg)

• Make files

• Include files (.inc)

• .h files

• Main program file

• Bitmaps

Some of this files will be explained in the next sub-sections.

David Arán Page 14

Final Thesis
July 2010 Player/Stage

2.6.1 World file

The .world file tells Player/Stage what things are available to put in the simulated world.

In this file the user describes the robots, any items which populate the world and the

layout of the world. Parameters such as resolution and time step size are also defined.

The .inc file follows the same syntax and format of a .world file but it can be included.

So if there is an object in the world wanted to be used in other worlds, such as a model

of a robot, putting the robot description in a .inc file just makes it easier to copy over,

it also means that if a robot description is wanted to be changed, then the only thing

needed to do is to change it in one place and your multiple simulations are changed too.

2.6.2 Configuration file

The .cfg file is what Player reads to get all the information about the robot. This file

tells Player which drivers it needs to use in order to interact with the robot, if the user

is using a real robot these drivers are built in to Player , alternatively, if the user wants

to make a simulation, the driver is always Stage. The .cfg file tells Player how to talk to

the driver, and how to interpret any data from the driver so that it can be presented into

the user code.

Items described in the .world file should be described in the .cfg file if the user wants the

code to be able to interact with those item (such as a robot), if the code is not needed to

interact with the item then this is not necessary. The .cfg file does all this specification

using interfaces and drivers.

For each driver we can specify the following options:

name: The name of a driver to instantiate, (required).

plugin: The name of a shared library that contains the driver, (optional).

provides: The device address or addresses through which the driver can be accessed. It

can be combination of strings (required).

requires: The device address or addresses to which the driver will subscribe. It can be

a combination of strings, (optional).

An simple example of this is shown below:

2.6.3 Makefile

David Arán Page 15

Final Thesis
July 2010 Player/Stage

driver

(

name ‘‘stage’’

provides [‘‘6665:position:0’’

‘‘6665:sonar:0’’

‘‘6665:blobfinder:0’’

‘‘6665:laser:0’’]

)

Once the Player/Stage files are ready, the client code should be compiled in order to

create the executable file to run. For that purpose, the following line should be typed in

shell:

g++ -o example ‘pkg-config --cflags playerc++‘ example.cc ‘pkg-config

--libs playerc++‘

That will compile a program to a file called example from the C++ code file example.cc.

2.6.4 Main program file

This file is the main code that the user wants to run through Player into the physical

systems or in the simulation. It can be written into C, C++, or Python, as it was

explained in the above sections.

All programs follows the same structure, as the one shown below. It’s also the similar

than in the behaviour explained in 2.1.

int main (int argc, char **argv)

{

// ESTABLISH CONNECTION

PlayerClient robot(gHostname, gPort);

// INSTANTIATE DEVICE

LaserProxy lp(&robot,0);

PositionProxy pp(&robot,0);

David Arán Page 16

Final Thesis
July 2010 Player/Stage

While(1)

{

// DATA ACQUISITION

robot.Read();

// PROCESS DATA

// send command

}

}

In first place, the PlayerClient subscribes a device called robot, with gHostaname adress

and situated in the port gPort. Secondly, the sensors and devices of the robot are

subscribed as well, in this case Laser and Position proxies. Then starts the think-act-

loop, where the code interacts with the different devices. With the robot.Read command,

the data from the robot is acquired, and after being processed the orders to the actuators

are sent.

2.7 Running program

This section explains how to run the client code into the Stage simulation or in physical

robot.

Stage simulation

For run the client code into a Stage simulation, the first thing is to open the configuration

file on a shell. This file should be linked to the .world file, where the simulation objects

are defined. Once this is done, Player is listening for any binary file to be executed. This

file is generated from the main client file (in this this case, from a .cc file) as explained in

the section 2.6.3. The only thing to is do is run it using the syntax ./file. After that, the

code would be run in the simulated world.

Physical robot

Te process for run the client code into physical systems is slightly different. The way

here explained is for the Khepera robots used in this project. The first thing that should

be done is connect the computer with the robot or robots via wireless. Once the link

is established, a secure connection is made from the computer to the robot via SSH

[BSB05]. Once inside the robot, the configuration file should be run (notice that this file

will be different than the ones for simulations). Then, the robot will be “listening” for

David Arán Page 17

Final Thesis
July 2010 Player/Stage

any program do be run. So, the user should run it from a shell window in its computer,

specifying the IP of the robot, as said in the previous sections.

David Arán Page 18

Chapter 3

Robot and laser characteristics

3.1 Introduction

This chapter explains the main features and characteristics of the robot utilized for

accomplish this project. The robots are Khepera III, from the Swiss company K-Team

[kte] and the laser used is the Hokuyo URG-04LX Laser, from the Japanese company

Hokuyo Automatic Co.,LTD [Hok].

3.2 Khepera III

The Khepera III is a small differential wheeled mobile robot(3.1). Features available

on the platform can match the performances of much bigger robots, with a upgradable

embedded computing power using the KoreBot system, multiple sensor arrays for both

long range and short range object detection, swappable battery pack system for optimal

autonomy, and differential drive odometry. The Khepera III architecture provides

exceptional modularity, using an extension bus system for a wide range of configurations.

The robot base can be used with or without a KoreBot II board. Using the KoreBot II,

it features a standard embedded Linux Operating System for quick and easy autonomous

application development. Without the KoreBot II, the robot can be remotely operated,

and it is easily interfaced with any Personal Computer. Remote operation programs can

be written with Matlab, LabView, or with any programming language supporting serial

19

Final Thesis
July 2010 Robot and laser characteristics

Figure 3.1: Khepera III robot

port communication. In this project, the robot was used with the KoreBot board, so that

the configuration files were run on it, thanks to its embedded Linux.

The robot base includes an array of 9 infrared Sensors for obstacle detection (figure

3.2,a) as well as 5 ultrasonic Sensors for long range object detection (figure 3.2,b). It also

proposes an optional front pair of ground Infrared Sensors for line following and table edge

detection. The robot motor blocks are Swiss made quality mechanical parts, using very

high quality DC motors for efficiency and accuracy. The swappable battery pack system

provides an unique solution for almost continuous experiments, as an empty battery can

be replaced in a couple of seconds.

a) Infrared b) Sonar

Figure 3.2: Ranger sensor of the Khepera III robots

David Arán Page 20

Final Thesis
July 2010 Robot and laser characteristics

Processor DsPIC 30F5011 at 60MHz

RAM 4 KB on DsPIC, 64 MB KoreBot Extension

Flash 66 KB on DsPIC, 32MB KoreBot Extension

Motion 2 DC brushed servo motors with incremental encoders (∼22 pulses

per mm of robot motion)

Speed Max: 0.5 m/s

Sensors
11 infrared proximity and ambient light sensors

5 Ultrasonic sensors with range 20cm to 4 meters

Power Power Adapater Swapable Lithium-Polymer battery pack (1400

mAh)

Communication Standard Serial Port, up to 115kbps USB communication with

KoreBot Wireless Ethernet with KoreBot and WiFi card

Size Diameter: 130 mm Height: 70 mm

Weight 690 g

Table 3.1: Khepera III characteristics

Trough the KoreBot II, the robot is also able to host standard Compact Flash extension

cards, supporting WiFi, Bluetooth, extra storage space, and many others.

Some of the Khepera III features:

• Compact

• Easy to Use

• Powerful Embedded Computing Power

• Swapable battery pack

• Multiple sensor arrays

• KoreBot compatbible Extension bus

• High quality and high accuracy DC motors

3.2.1 Characteristics

The specifications of Khepera III robot are shown in table 3.1. Further information can

be found on the “Khepera III user manual”, version 2.2 [FG].

David Arán Page 21

Final Thesis
July 2010 Robot and laser characteristics

3.3 Hokuyo URG-04LX Laser

A laser ranger is an optional component which can be added to the Khepera robot, and

gives reliable and precise length measurements. This device mechanically scans a laser

beam, producing a distance map to nearby objects, and is suitable for next generation

intelligent robots with an autonomous system and privacy security. The URG-04LX is a

lightweight, low-power laser rangefinder.

3.3.1 Characteristics

This sensor offers both serial (RS-232) and USB interfaces to provide extremely accurate

laser scans. The field-of-view for this detector is 240 degrees and the angular resolution

is 0.36 degrees with a scanning refresh rate of up to 10Hz. Distances are reported from

20mm to 4 meters. Power is a very reasonable 500mA at 5V. Some of its characteristics,

features and its physical dimensions scheme are shown in figure 3.3.

Figure 3.3: Laser characteristics

David Arán Page 22

Final Thesis
July 2010 Robot and laser characteristics

More info can be found in [Hok08], [Hl].The Laser range finder covers a range of 240

degrees. Note that the angles are measured positive counter clockwise and negative in

clockwise. The 120 degrees of area covering back side of the robot is considered as the

blind area as the laser does not operate in that area. Figure 3.4 shows the scheme of the

laser range.

Figure 3.4: Field of view of the laser

3.4 Robot with laser

The Hokuyo URG-04LX laser is connected to the Khepera III robot via USB. In the

configuration file that should be open in the Khepera, there is an instantiation of the

laser driver, as shown below:

driver

(

name "urglaser"

provides ["laser:0"]

port "/dev/ttyACM0"

)

It accesses a device called urglaser, which provides a laser ranger connected in the route

/dev/ttyACM0. The whole configuration file is shown in the appendix A.

The resultant robot-laser system can be seen in figure 3.5.

David Arán Page 23

Final Thesis
July 2010 Robot and laser characteristics

Figure 3.5: Khepera III robot with laser range finder

David Arán Page 24

Chapter 4

Literature and review

4.1 Introduction

This chapter contains a brief discussion over some basic technologies and other related

projects and researches worked by other parties to make a foundation of the main

objectives of this dissertation, which are multi-robot behaviours for different tasks such

as wall following, obstacle avoidance and robot following.

4.2 Wall following

The goal of wall following robot behaviour is to navigate through open spaces until it

encounters a wall, and then navigate along the wall at some fairly constant distance.

The successful wall follower should traverse the entire environment at least once without

straying either too close, or too far from the walls. The following subsections show different

approaches to de problem by using different kind of sensors.

4.2.1 Artificial vision

The idea of the artificial vision approach comes from source [DRGQ07]. A visual and

reactive wall following behaviour can be learned by reinforcement. With artificial vision

the environment is perceived in 3D, and it is possible to avoid obstacles that are invisible

to other sensors that are more common in mobile robotics. Reinforcement learning

25

Final Thesis
July 2010 Literature and review

reduces the need for intervention in behaviour design, and simplifies its adjustment to

the environment, the robot and the task. In order to facilitate its generalization to

other behaviours and to reduce the role of the designer, it can be used a regular image-

based codification of states. Even though this is much more difficult, its implementation

converges and is robust.

4.2.2 Neuro-fuzzy controllers

Neuro-fuzzy refers to combinations of artificial neural networks and fuzzy logic. In

[SKMM10], an intelligent wall following system that allows an autonomous car-like mobile

robot to perform wall following tasks is used. Soft computing techniques were used to

overcome the need of complex mathematical models that are traditionally used to solve

autonomous vehicle related problems. A neuro-fuzzy controller is implemented for this

purpose, which is designed for steering angle control, and is implemented with the use

of two side sensors that estimate the distance between the vehicle front side and the

wall, and the distance between the vehicle back side and the wall. These distances get

then inputted to a steering angle controller, which as a result outputs the appropriate

real steering angle. A neuro fuzzy controller overcomes the performance of the previously

implemented fuzzy logic based controller, and significantly reduces the trajectory tracking

error, but at the expense of using more DSP resources causing a slower throughput time.

This autonomous system can be realized on an FPGA platform, which has the advantage

of making the system response time much faster than software-based systems.

4.2.3 Emitting signal sensor

In [Jon] is presented a set consisting of a robot obstacle detection system which navigates

with respect to a surface and a sensor subsystem aimed at the surface for detecting the

surface. The sensor subsystem includes an emitter which sends out a signal having a field

of emission and a photon detector having a field of view which intersects with that field of

emission at a region. The subsystem detects the presence of an object proximate to the

mobile robot and determines a value of a signal corresponding to the object. It compares

the obtained value to a predetermined value, moves the mobile robot in response to the

comparison, and updates the predetermined value upon the occurrence of an event.

4.2.4 Autonomous robots

Autonomous robots are electromechanical devices that are programmed to achieve several

goals. They are involved in a few tasks such as moving and lifting objects, gathering

David Arán Page 26

Final Thesis
July 2010 Literature and review

information related to temperature and humidity, and follow walls. From a system’s

engineering point of view, a well designed autonomous robot has to be adaptable enough

to control its actions. In addition, it needs to perform desired tasks precisely and

accurately. The source of this idea is in the paper [Meh08]. The robot follows a wall

using a PIC 18F4520 microcontroller as its brain. PIC 18F4520 receives input from

Ultrasonic Distance Meter (UDM). Some computations are performed on this input and

a control signal is generated to control the robot’s position. This control signal is generated

through a PD (Proportional and Derivative) controller, which is implemented in the

microcontroller. Afterwards, microcontroller is programmed in C language using a CCS

(A Calculus of Communicating Systems) compiler.

4.2.5 3D Laser Rangefinder

The technical report [MA02] shows a technique for real-time robot navigation. Off-

line planned trajectories and motions can be modified in real-time to avoid obstacles,

using a reactive behaviour. The information about the environment is provided to the

control system of the robot by a rotating 3D laser sensor which have two degrees of

freedom. Using this sensor, three dimensional information can be obtained, and can be

used simultaneously for obstacle avoidance, robot self-localization and for 3D local map

building. Obstacle avoidance problem can also be solved with this kind of sensor. This

technique presents a great versatility to carry out typical tasks such as wall following,

door crossing and motion in a room with several obstacles.

4.2.6 Odometry and range data

In [BPC02], an enhanced odometry technique based on the heading sensor called “clino-

gyro” that fuses the data from a fibre optic gyro and a simple inclinometer is proposed.

In the proposed scheme, inclinometer data are used to compensate for the gyro drift due

to rollpitch perturbation of the vehicle while moving on the rough terrain. Providing

independent information about the rotation (yaw) of the vehicle, clino-gyro is used to

correct differential odometry adversely affected by the wheel slippage. Position estimation

using this technique can be improved significantly, however for the long term applications

it still suffers from the drifts of the gyro and translational components of wheel skidding.

Fusing this enhanced odometry with the data from environmental sensors (sonars, laser

range finder) through Kalman filter-type procedure a reliable positioning can be obtained.

Obtained precision is sufficient for navigation in underground mining drifts. For open-pit

mining applications further improvements can be obtained by fusing proposed localization

algorithm with GPS data

David Arán Page 27

Final Thesis
July 2010 Literature and review

4.3 Obstacle avoidance

The obstacle avoidance algorithm is one of the basic and common behaviour for almost

every autonomous robot systems. Here are shown some approaches to this problem.

4.3.1 Fuzzy control

Fuzzy control algorithms are used sometimes for obstacle avoidance behaviour [JXZQ09].

Autonomous obstacle avoidance technology is a good way to embody the feature of

robot strong intelligence in intelligent robot navigation system. In order to solve the

problem of autonomous obstacle avoidance of mobile robot, an intelligent model is used.

Adopting multisensor data fusion technology and obstacle avoidance algorithm based on

fuzzy control, a design of intelligent mobile robot obstacle avoidance system is obtained.

The perceptual system can be composed of a group of ultrasonic sensors to detect the

surrounding environment from different angles, enhancing the reliability of the system on

the based of redundant data between sensors, and expanding the performance of individual

sensors with its complementary data. The processor receives information from perceptual

system to calculate the exact location of obstructions to plan a better obstacle avoidance

path by rational fuzzy control reasoning and defuzzification method.

4.3.2 Probabilistic approach

In this approach, emerged after consult [BLW06], autonomous vehicles need to plan

trajectories to a specified goal that avoid obstacles. Previous approaches that used a

constrained optimization approach to solve for finite sequences of optimal control inputs

have been highly effective. For robust execution, it is essential to take into account the

inherent uncertainty in the problem, which arises due to uncertain localization, modelling

errors, and disturbances.

Prior work has handled the case of deterministically bounded uncertainty. This is an

alternative approach that uses a probabilistic representation of uncertainty, and plans the

future probabilistic distribution of the vehicle state so that the probability of collision

with obstacles is below a specified threshold. This approach has two main advantages;

first, uncertainty is often modelled more naturally using a probabilistic representation

(for example in the case of uncertain localization); second, by specifying the probability

of successful execution, the desired level of conservatism in the plan can be specified in a

meaningful manner.

David Arán Page 28

Final Thesis
July 2010 Literature and review

The key idea behind the approach is that the probabilistic obstacle avoidance problem

can be expressed as a Disjunctive Linear Program using linear chance constraints. The

resulting Disjunctive Linear Program has the same complexity as that corresponding to

the deterministic path planning problem with no representation of uncertainty. Hence the

resulting problem can be solved using existing, efficient techniques, such that planning

with uncertainty requires minimal additional computation.

4.3.3 Camera

Other interesting approach for obstacle avoidance is the use of a a vision based system

using a camera [WKPA08]. The technique is based on a single camera and no further

sensors or encoders are required. The algorithm is independent of geometry and even

moving objects can be detected. The system provides a top view map of the robot’s field of

view in realtime. First, the images are segmented reasonably. Ground motion estimation

and stereo matching is used to classify each segment either belonging to the ground plane

or belonging to an obstacle. The resulting map is used for further navigational processing

like obstacle avoidance routines, path planning or static map creation.

4.4 Robot following

Here are some ideas and theories found about robot following formation.

4.4.1 Attraction-repulsion forces

The background of this section comes from the source [BH00], where the main idea of

applying the potential functions is developed.

A potential function is a differentiable real-valued function U : ℜm → ℜ, in our case

m will be equal to 1. The value of a potential function can be viewed as energy and

therefore the gradient of the potential is force. The gradient is a vector which points in

the direction that locally maximally increases U .

There is a relationship between work and kinetic energy. Work is defined in physics as

the result of a force moving an object a distance (W = Fd). But the result of the force

being applied on the object also means that the object is moving with some given velocity

(F = ma). From those two equations, it can be shown that work is equivalent to kinetic

energy: UKE = 1
2
mv2. When U is energy, the gradient vector field has the property that

work done along any closed path is zero.

David Arán Page 29

Final Thesis
July 2010 Literature and review

4.4.2 Selfmade follower

This idea come from [FFB05]. In this approach, the control law of the follower robot

includes the states of the leader robot. This is a drawback for implementing the control

laws on real mobile robots. To overcome this drawback, a new follower’s control law

is purposed, called the self-made follower input, in which the state of the leader robot

is estimated by the relative equation between the leader and the follower robots in the

discrete-time domain. On the other hand, a control law of the leader robot is designed

with a chained system to track a given reference path.

4.5 Localization problem

For numerous tasks a mobile robot needs to know “where it is” either at the time of

its current operation or when specific events occur. The Localization problem can be

divided mainly in to two sub sections, Strong Localization and Weak Localization [GM00].

Estimating the robots position with respect to some global representation of space is

called Strong Localization. The Weak Localization is mainly based on the correspondence

problem, and in this case complete qualitative maps can be constructed using Weak

Localization.

There are many approaches to solve localization problem such as dead reckoning, simple

landmark measurements, landmark classes, Triangulation, and Kalman filtering [GM00].

There are many researches dedicated to investigate on robot localization such as Monte

Carlo, the bounded uncertainty approach, and by using Bayesian statistic. Basically

the Bayesian approach is the widely used robot localization method. Not only for the

localization, but also for building maps the Bayesian rule is widely used.

4.5.1 Odometry Sensors

Mobile robots often have odometry sensors; them calculate how far the robot has traveled

based on how many wheel rotations took place. These measurements may be inaccurate

due to many reasons such as wheel slipping, surface imperfections, and small modeling

errors. For example, suppose a bicycle wheel of a 2 meter circumference has turned 10

revolutions, then the odometry reading is 10 and the calculated answer would be 20m.

Some of the problems of the odometry sensors can be listed as below:

• Weak supposition (Slide errors, accuracy, etc)

David Arán Page 30

Final Thesis
July 2010 Literature and review

• Methodical errors

· Different wheel diameter problems

· Wheel alignment problems

· Encoders resolution and sampling problems

• Non-Systematic errors

· Wheel Slides problems

· Floor Roughness problems

· Floor Object problems

4.5.2 Laser range finders

Laser scanners mounted on mobile robots have recently become very popular for various

indoor robot navigation tasks. Their main advantage over vision sensors is that they are

capable of providing accurate range measurements of the environment in large angular

fields and at very fast rates [BAT03]. Laser range finders are playing a great role not

only in 2D map building but in 3D map building too. The laser range finder sensor data

can be also used for variety of tasks such as wall following and collision avoiding. There

are many projects and research work have used laser range finders. The efficiency and

the accuracy of the laser range finder depends on many factors such as: transmitted laser

power, carrier modulation depth, beam modulation frequency, distance from the target,

atmospherics absorption coefficient, target average reflectivity, collecting efficiency of the

receiver, and pixel sampling time [BBF+00].

ToDo: revisar los = en la bibliografia

David Arán Page 31

Chapter 5

Robot behaviour algorithms and
theory

5.1 Introduction

This chapter describes the algorithms developed for the implementation of the

robotb́ehaviour. This work was carried once understood the operation of Player/Stage

and after the research and investigation stage. With all the collected information, the

developing of the code started, using structured C++ language.

Section 5.2 shows the algorithms developed for the leader robot, which are obstacle

avoidance and wall following, with their respective sub-functions. All the codes are

first tried in a Stage simulation to determine their reliability and accuracy and to detect

and solve any problems or errors.

Section 5.3 is where the follower robot related algorithms are shown. These algorithms

can be divided in two groups: robot following and obstacle avoidance. For the robot

following algorithm, first it was made a code assuming there is no environment, just the

leader and the follower robots. After, it was improved for make the robot to move in a

environment with walls and obstacles. As with the leader algorithms, here all the codes

were first simulated in Stage, and after implemented in the Khepera III robots.

All the code generated for make the algorithms and also the Player/Stage configuration

and world files are shown in the appendixes, at the end of this document.

32

Final Thesis
July 2010 Robot behaviour algorithms and theory

5.2 Leader robot

This section explains the main solutions taken for implement the leader robot algorithms.

They can be divided into obstacle avoidance algorithms and wall following algorithms.

The only proxies used for these task are Position2dProxy and LaserProxy.

5.2.1 Obstacle avoidance

This part of the program is maybe the basic behaviour of the robot, because if it fails,

the robot can crash and suffer important damages. Then, it is important its correct

performance for the development of further algorithms.

The main idea of this algorithm is based in the measures taken by the laser ranger. It

is constantly scanning and taking samples of the environment, detecting the obstacles

around them and their distance to the robot. If this distances are smaller than a

determined value (set by the user), then the robot is too close to an obstacle and it

has to stop or change its direction.

For accomplish that, the field of view of the robot was divided in three part, as seen in

the figure 5.1.

Figure 5.1: Division of laser sensor

David Arán Page 33

Final Thesis
July 2010 Robot behaviour algorithms and theory

It can be seen that the frontal field of view defined is not very wide, otherwise the robot

would have problems when entering narrow corridors or small spaces. The pseudo code

of the function is the following.

for all laser scans do

if the obstacle is in the right part and closer than detection distance then

sum right part;

if new measure is smaller than the minimum, save new minimum;

end if

if the obstacle is in the central part and closer than detection distance then

sum central part

if new measure is smaller than the minimum, save new minimum;

end if

if the obstacle is in the left part and closer than detection distance then

sum right part

if new measure is smaller than the minimum, save new minimum;

end if

end for

calculate left mean;

calculate right mean;

if left mean < right mean and minimum < stop distance then

turn right

end if

if right mean < left mean and minimum < stop distance then

turn left

end if

The laser take measures of all the scans. When one measure is smaller than a defined

distance, a counter is increased (there is one counter for each of the three areas) and if

the measure is the minimum of those recorded in one area, it saves a new minimum value.

When the scan has finished, it compares the values of both left and right sides. Those

with a bigger counter value means that the obstacle is closer in that side. Then, if the

minimum distance is smaller than the stop distance, change direction.

Results

The results of the implementation of this functions in simulation are shown in the figure

5.2. The grey traces show the path taken by the robot. It can be seen how it turns when

it founds and obstacle on its way.

This algorithm is the most simple, but is the basis of the whole code. Next is to add the

wall following algorithm to the code.

David Arán Page 34

Final Thesis
July 2010 Robot behaviour algorithms and theory

Figure 5.2: Obstacle avoidance behaviour

Search The robot goes straight looking for a wall

Wall follow Transit state. It decides which direction to turn

Left The robot follows a wall on its left

Right The robot follows a wall on its right

Table 5.1: Wall following modes

5.2.2 Wall following

The objective of this algorithm is to find a wall and follow it in a parallel way, keeping a

certain constant distance to it. At the same time, the avoid obstacle will be active at the

same time, avoiding the robot to crash when the wall changes its slope. The approach

made for keep the constant distance to the wall is calculating the angle with respect to

the wall.

The movement of the robot is based in four behaviour modes, which depends of the laser

measures and the previous mode, as seen in the table 5.1

The transit between the different modes are explained in the flow diagram on figure 5.3.

When the code starts running, the robot is in mode SEARCH. The motors are enabled

David Arán Page 35

Final Thesis
July 2010 Robot behaviour algorithms and theory

and it starts going straight until any laser scan distance is smaller than the detection

distance, which in our case and due to the fact that the program will be implemented in

Khepera systems (considered as small robots) is 25 centimetres. When this happens, the

robot mode changes to WALL FOLLOW, which calculates in which side it has more free

space to turn, and then takes RIGHT or LEFT MODE, depending in which side of the

robot is the wall to follow. Finally, if the robot loses the wall, the mode is changed to

SEARCH and the process starts again.

Figure 5.3: Robot modes flow diagram

When the robot is in mode RIGHT or LEFT following a wall, it does it keeping a constant

distance to the wall. This is achieved by tanking two points of the laser scan (two on the

left or two on the right side, depending on the mode), and calculating the inclination of

the wall with respect the robot, obtaining then the angle to turn.

5.2.2.1 Calculate the turn to keep a constant distance

As said before, the robot take two points on the left or on the right side. With these

two points, it is possible to calculate the equation of the straight line which goes through

these points:

y = m · x + n (5.1)

David Arán Page 36

Final Thesis
July 2010 Robot behaviour algorithms and theory

Once obtained the slope of the line (m), the orientation of the wall with respect to the

robot is known, being possible to calculate the angle to turn in order to keep parallel to

the wall, making m tends to 0. The scheme of figure 5.4 illustrates how the process works.

Figure 5.4: Calculate the slope of a straight line

When the wall is on the right side, the scans situated in the angles 35 and 75 degrees

take the points, while when the wall is in the left, the scans are the ones in 165 and 205

degrees. Using simple trigonometrical relations, and using the equation of the straight

line, the slope of the wall is obtained, knowing then the necessary angle to turn. The

pseudo code of the whole program is the following.

David Arán Page 37

Final Thesis
July 2010 Robot behaviour algorithms and theory

if mode = Search then

go straight

else

calculate turn rate left/right

if left mean < right mean and mode = Wall follow

mode = Left

calculate the slope of the straight line → turnrate

if right mean < left mean and mode = Wall follow

mode = Right

calculate the slope of the straight line → turnrate

avoid obstacles();

if robot loses the wall

mode = Search

end if

if the obstacle is closer than 25cm and mode = Search then

mode = Wall follow

end if

5.2.3 Simulation

This section shows the result of the simulation of the code in an simulated environment.

The results can be found in figure 5.5. On it, there are four snapshots in of the simulation

in four different times.

Due to simulation results, we can conclude that the robot has a good response. First it

searches for a wall, and when it finds it, it keeps following it without losing it. Therefore,

the simplicity of the approach allows easily its use in other algorithms.

5.3 Follower robot

The next section explains the solutions adopted for the follower robot. The idea is that it

detects the leader robot and follows it. The main behaviour modes of the robot are robot

following and obstacle avoidance. In the same way than in chapter 5.2, this functions

are implemented using the Position2dProxie and the LaserProxie, avoiding the use of any

kind of communication between the robots, having then two independent systems.

David Arán Page 38

Final Thesis
July 2010 Robot behaviour algorithms and theory

Figure 5.5: Wall following simulation

David Arán Page 39

Final Thesis
July 2010 Robot behaviour algorithms and theory

5.3.1 Robot following

One of the main difficulties to solve in this dissertation was how to implement a system for

the follower robot to detect other robot using only a laser ranger. The idea was that they

could not use any kind of communication between them, which includes FiducialProxie.

This proxy would make the code easier and the robot response would be more accurate,

but the problem is that it only exists in simulations. there are no fiducials devices for

Khepera robots.

The developing of this algorithm was made through three different stages: a first approach

in an environment with no walls, a second in a regular environment and a third one where

the program was adapted for its implementation in a Khepera III robot.

5.3.1.1 Non-obstacles environment

The fist approach to the robot following behaviour was to create a code with the

supposition that there are not obstacles in the environment. This is, if the laser detects

something, that is the leader robot. The pseudo-code of this approach is the next:

take all laser scans

if any laser beam detects something then

leader detected

calculate relative angle to the leader robot

end if

if follower is facing the leader then

turn rate = 0

else

if robot on the right

turn clockwise until angle difference ≃ 0

if robot on the left

turn counter clockwise until angle difference ≃ 0

end if

if distance to the robot > stop distance then

go forward until distance to the robot < stop distance

end if

Firstly the robot scans all its laser range. If any measure is smaller than 5 meters, which

is the maximum range of the robot, then the robot is detecting the leader. An average

of all the scans detecting the leader is made, and then the relative angle α of the leader

with respect to the front of the robot is calculated with the order GetBearing(index).

After it, the robot calculates its global orientation (β) with respect of the initial position

David Arán Page 40

Final Thesis
July 2010 Robot behaviour algorithms and theory

using the order GetYaw(). A graphic explanation of both angles is made in figure 5.6.

Once both angles are know, it calculates the difference between them. If the difference is

≃ 0, then the follower is facing the leader and the robot does not turn. On the contrary,

if the angle is different, the robot starts turning right or left (depends where the robot

are) until the difference is ≃ 0. Once the follower faces the leader, it checks the distance

between them. If it is bigger than a parameter called stop distance, then the follower will

go straight to the leader until their distance is equal or smaller than stop distance. All

this process is inside an endless loop, being the robot taking points and measures each

loop and updating the data.

Figure 5.6: Important global and local angles

Simulation

The system was simulated in a world file which map has no wall nor obstacles, only two

robots. The leader is moved in the scenario using playerv and the follower tries to find

it and move to it, as seen in figure 5.7. The blue robot is the leader, while the red is the

follower. At the beginning (image a) both robots are static, because the program is still

not run. When it is run, as the leader is further than the stop distance (in this case 40

centimetres), it turns and moves until its laser measure is smaller than that value (figure

b). As the trails made by the robots shown, when the leader is moving in the environment,

the follower turns facing it and starts following it when the distance to it is smaller than

the limit.

Results

The algorithm is working properly, as the robot follows the leader wherever it goes and

keeps a limit distance to it for avoid any kind of collision. Nevertheless, this approach

David Arán Page 41

Final Thesis
July 2010 Robot behaviour algorithms and theory

a) System at the beginning, static b) System with the paths taken by the

robots

Figure 5.7: Simulation of the first approach

is not useful because it does not take in account the possibility of find any other object

different than the robot, while in real systems the robots will finds walls and obstacles to

deal with. Anyway, it is a first approach and the basis of the next.

5.3.1.2 Environment with obstacles

In this approach, the robots move in a environment with walls and obstacles, similar than

real life. The follower have to differentiate what is a wall or and obstacle and what is the

leader robot to follow it. This goal has been accomplished using a movement recognition

algorithm. It will work properly only with one more robot and with a static environment,

so if something is moving, that is the leader robot. The pseudo code and its explanation

are the following.

David Arán Page 42

Final Thesis
July 2010 Robot behaviour algorithms and theory

stop robot. Laser scan → save in a vector

wait one cycle

scan again → save in a different vector

compare both vectors index by index → substraction

calculate relative angle to the robot

if in any index, any subtraction 6= 0 then

something has moved → it is the leader robot

get laser scans where the leader is → calculate average beam

end if

if any laser beam detects something then

leader detected

calculate relative angle to the leader robot

end if

if follower is facing the leader then

turn rate = 0

else

if robot on the right

turn clockwise until angle difference ≃ 0

if robot on the left

turn counter clockwise until angle difference ≃ 0

end if

if distance to the robot > stop distance then

go forward until distance to the robot < stop distance

end if

Before take any scan, the robot should be still, otherwise it will think all the environment

is moving and will behave in a inappropriate way. The robot takes a scan and store it in a

vector, then waits one cycle and takes another scan, saving it in a different vector. While

the program is working normally, this process is continuous, and while two vectors and

being compared, the current measure is stored for compare it with the following one in

the next cycle. Then, both vectors (former and current measures) are subtracted element

by element, storing it in a new vector called diff vectors. If the values of the different

indexes of the vectors are equal to zero, then nothing has moved in the system during the

time between those two scans, and consequently the follower robot keeps still, waiting and

scanning to find any movement. If any of the values of the vector diff vectors is different

than 0, then the leader has moved on the environment during the instant between the two

scans. The follower acquires the laser scans indexes where the movement was registered

and calculate the average index of them. With it, it obtains the direction the follower has

to turn to face the leader. A graphic explanation is shown in figure 5.8.

Once the direction to the leader is obtained, the algorithm is the same that the developed

in the first approach, explained in 5.3.1.1. The follower uses the order GetBearing(index)

for finding its relative position with respect to the leader and also the command GetYaw()

for calculate its angular orientation in global coordinates. For operate with them, both

have to stay in the same coordinate system. Thus, the local position of the leader robot

David Arán Page 43

Final Thesis
July 2010 Robot behaviour algorithms and theory

Figure 5.8: Follower robot detecting the position of the leader

was converted into global coordinates by adding the local position angle to the last position

recorded into a global counter, which provide the leader angle in global coordinates.

robot angle =

last global position
︷ ︸︸ ︷

robot angle +

relative leader orientation
︷ ︸︸ ︷

lp1.GetBearing(index) (5.2)

The commands GetBearing and GetYaw() work in a range between [0,−π] when the

angles are in the right side of the robot and between [0, π] when the angles are in the left

side (figure 5.9). So, the variable robot angle should be between [−π, π], but due to the

fact that the program is adding every time the new positions, the value could be out of

the interval. In order to avoid that, the next algorithm is implemented:

robot angle = robot angle + lp1.GetBearing(index) (5.3)

if(robot angle < −π) robot angle = robot angle + 2π;

if(robot angle > π) robot angle = robot angle − 2π;

With this function, the value of the variable robot angle will be always inside the desired

interval.

David Arán Page 44

Final Thesis
July 2010 Robot behaviour algorithms and theory

Figure 5.9: Angle ranges

Simulation

The program has been tried in a Stage simulation, in a bounded environment with walls.

As the obstacle avoidance algorithm has not already been described, in this simulation

the follower is far enough to the wall for have any problem. The leader robot is again

moved using playerv, shown in figure 5.10.

Results

As results shown in 5.10, the follower robot follows the leader with no problem. When

the leader is closer than the stop distance, the follower just turns facing the other one,

without moving straight. When the leader is further, the code makes the follower walk

into leader’s direction.

When this code was implemented in the real Khepera robot, some functions did not work

in the same way than in simulation. Then, some functions were adapted for its correct

work into the physical robot, but this will be shown in section 5.3.3.

5.3.2 Obstacle avoidance

This section explains how the robot detects the walls and avoid to crash against them.

The algorithm used to achieve this is very simple. As the robot will always be following

the leader, in theory it will stop when the follower finds it. However, sometimes the

follower can lose the leader. This could happen for some reasons. One of them is because

the leader has a excessive speed and the follower is way further than the stop distance.

As we said, the follower does not take new scans while it is moving, and goes straight just

David Arán Page 45

Final Thesis
July 2010 Robot behaviour algorithms and theory

Figure 5.10: Robot following simulation

David Arán Page 46

Final Thesis
July 2010 Robot behaviour algorithms and theory

to the last calculated direction until it finds the other robot. So maybe, if the leader is

moving too fast, when the follower arrives where the leader was supposed to stay it finds

nothing and keeps going straight until it finds a wall to stop and scan the environment

again looking for the leader. This problem is solved in section 5.3.3. It can also happen

because of imprecisions of the robot or delays when running the code in the real Khepera

III robot.

For detecting the minimum distance of the objects in front of the robot, the same function

DivideLaser utilized for the obstacle avoidance behaviour of the leader robot is used. So

basically, the robot follow this pattern:

once the robot direction is computed, go to it following this vector

if front minimum < stop distance then

stop

scan again to find the robot

else

keep going straight until minimum distance < stop distance

end if

5.3.3 Code for Khepera III

As was explained in the previous section, the robot answers in a different way that it does

in simulation. This happens because of the delays that appears when running the code

on it, because the response time is not as ideal as in simulation. Therefore, sometimes

the robot could lose the leader because it moves too fast, and then the follower would go

following an erroneous path. In order to avoid that, there have been added a new series

of commands, presented in the pseudo-code behind.

when follower is moving through last computed direction

if minimum distance > alone distance then

keep moving 2 seconds

stop moving

scan again to find the robot

end if

The robot moves following the last computed direction. If its minimum distance is bigger

than a variable called alone distance the robot stops and scans again. The mission of alone

distance is to detect if the leader is in front of the follower or if it has got lost. This variable

should not be small enough to be confused with stop distance nor big enough so that the

follower detects a wall and thought it is the leader robot. In this dissertation, as the

available arena in the laboratory is about one squared meter, its value is 45 centimetres.

David Arán Page 47

Final Thesis
July 2010 Robot behaviour algorithms and theory

Another different characteristic of the real Khepera robot with respect to its simulation

model is the coordinate system of the GetWay function, which returns the global

orientation of the robot with respect of the initial position. While Stage uses the

coordinate system explained in the figure 5.9, whose measurements are included in the

interval [−π, π], the real robot uses the system of the figure 5.11.

Figure 5.11: Khepera GetYaw function coordinate system

If the robot starts turning clockwise, the function will return negative values, and it will

no change from −π to π when it changes from the fourth to the third quadrant. Instead

of it, it will be keep incrementing with negative values, and it will decrement the global

counter and start return positive values when the robot turns counter clockwise. For that

reason and to ensure that the data provided by the functions GetYaw and GetBearing

is in the same coordinate systems, a function was developed in order to maintain the

data obtained from the GetYaw function in the interval [−π, π]. This function is called

calc yaw and can be consulted in appendix D.

David Arán Page 48

Final Thesis
July 2010 Robot behaviour algorithms and theory

5.4 Implementation in Khepera III

Once all the explained algorithms have been tested and work in simulation, and after the

adaptation of the follower robot’s code, the system is ready for being implemented in the

real Khepera III robots.

The process to run the code into the robots was explained at the end of chapter 2. After

connect to the robot’s wireless network called Khepera Network, the user opens a secure

shell connection (SSH) in the robot, one for the leader and one for the follower robot.

Then, the configuration file is run in each robot. This file instantiates the KheperaIII

driver, which supports the position interface. It also defines a laser driver for a device

called urglaser. This file can be found in appendix A. Finally, the follower and leader

codes are run in their respective hosts.

5.4.1 Results

The results of the implementation are satisfactory. The test was made in the arena that

has the department in the laboratory, whose size is about 1x1 meter. A one minute video

with the robots interacting and moving in the environment can be seen in the next url:

http://vimeo.com/13212126

It can be seen how the leader is moving following a wall, maintaining a constant distance

of 20 centimetres more or less with the wall. Meanwhile, the follower scans, finds the

leader and follows it. There are some snapshots of the exercise in figure 5.12.

Figure 5.12: Snapshots of the test made with the robots

David Arán Page 49

http://vimeo.com/13212126

Final Thesis
July 2010 Robot behaviour algorithms and theory

Although the response is good, the computational time of the robots is elevated, and

consequently it takes sometime until the response is executed. Eventually, the follower

can loose the leader and get stuck “staring” at a wall because the leader is out of the laser

field of view. However, when the leader enters the laser field of view again, the follower

will work properly again. Some principles of solution for this problem are purposed in

section 6.2.

David Arán Page 50

Chapter 6

Conclusion and further work

This chapter shows the conclusions reached after the accomplishment of the project. It

should be kept in mind that the present code has been developed for its simulation in

Player/Stage software, and subsequently for its implementation in Khepera III robots with

the Hokuyo URG-04LX Laser. Therefore, if the user wants to use the code in different

software and hardware devices, it is necessary to bear in mind that the final behaviour

may be not the expected.

In addition, the use of the code in a specific Khepera system may differ from its use in

a different Khepera robot. This may be due to the difference of the odometry and laser

measures, an unbalanced pair of motors, ageing and deterioration of components, different

computational times . . .

6.1 Conclusion

In this thesis a two-robot non-communicative system has been developed, where the first

one (know as the leader) tries to find a wall and follows it maintaining a certain distance

to it while avoids obstacles and the second one (know as the follower) tries to detect the

leader using the laser ranger and follows it. For accomplish this, each code program has

been tested first in a computer simulation to prove its correct behaviour and ensure the

reliability of the system. After it, each system has been tried individually in the physical

robots, and finally both have been tested in the same arena successfully.

The leader robot behaviour has been proved of being reliable, accurate and precise. Due

to each cycle takes some time for the robot to compute, the program works properly for

51

Final Thesis
July 2010 Conclusion and further work

speeds smaller than 0.2 meters per second, otherwise the robot is going very fast and the

processor has no time for compute and send all the information required.

The code developed for the follower robot provides a simple and easy implementation of

the robot following algorithm using laser. Its accuracy is not very high because of the

high computational time that the robot needs for each cycle and for the small size of the

laser, which makes the detection of the leader complicated. However, it provides a first

and simple approach to robot following using laser that can be the basis of further and

more sophisticated algorithms.

6.2 Further work

6.2.1 Addition of more follower robots to the system

This code is made for a team composed by two robots: the leader and the follower. This

is because of the supposition that any movement that the follower detects, is made by the

leader. However, maybe a team with more follower robots is needed for a specific task.

Then, instead of a change in a small region in the comparison vector (explained in 5.3,

there would be changes in two different areas of the scan, and the robot should act in

consequence. Even in this case, another algorithms should be developed to determine in

which of these two directions is the leader and in which one is the other follower.

6.2.2 Accumulative errors

As was said in section 5.3.3, the order GetWay returns the robot global orientation in

a different way than in the Stage simulation, hence the function created to keep it in a

[−π, π] range. Despite this feature, if the robot turns lots of time in a row in the same

direction, the global counter will keep rising, accumulating consequently all the position

errors, and maybe at one point, the measurements and direction vectors obtained would

be wrong.

As there is a reset function in the Position proxy for this task called ResetOdometry but

it does not work does not properly, and interesting idea could be the implementation of

any kind of reset for the odometry counter. With that, each time the robot turns more

than a certain value that can provide wrong measures, the orientation counter will restart

again, getting rid of all the accumulate position errors.

David Arán Page 52

Final Thesis
July 2010 Conclusion and further work

6.2.3 Loss of the leader

In the follower robot algorithm, if the leader is further than the detection distance, the

robot will stop and scan to find it again. This will work if the leader is in the field of

view of the laser. However, it is possible that eventually the follower loses the leader and

this was behind the field of view of the robot. In this case, the follower will keep going

straight, stopping each certain period of time for make a scan again until it arrives in

front of a wall and stops. The robot would not move until the leader arrives close to it

again.

A possibility for avoid it could be to make any kind of counter that activates when the

robot is closer than the variable stop distance to something (could be a wall or a robot)

and the environment does not change in a period of time (then, it could only be a wall).

If this happens, the robot could rotate on its own axis and making scans each 90 degrees.

Thus, the follower can detect the leader again move to it.

David Arán Page 53

Bibliography

[BAT03] H. Baltzakis, A. Argyros, and P. Trahanias, Fusion of laser and visual data

for robot motion planning and collision avoidance, Tech. report, Institute of

Computer Science, Foundation for Research and Technology, 2003. 4.5.2

[BBF+00] L. Bartolini, A. Bordone, R. Fantoni, M. Ferri de Collibus, G. Fornetti,

C. Moriconi, and C. Poggi, Development of a laser range finder for the

Antartic Plateau, Tech. report, Division of Applied Physics, ENEA, 2000.

4.5.2

[BH00] T. Balch and M. Hybinette, Social potentials for scalable multi-robots

formation, Tech. report, The Robotics Institute, Carnegie Mellon University,

Pittsburgh PA, USA, 2000. 4.4.1

[BLW06] L. Blackmore, H. Li, and B. Williams, A Probabilistic Approach to Optimal

Robust Path Planning with Obstacles, Tech. report, 2006. 4.3.2

[BPC02] J. Nsasi Bakambu, V. Polotski, and P. Cohen, Heading-aided odometry

and range-data integration for positioning of autonomous mining vehicles,

Tech. report, Perception and Robotics Laboratory, Ecole Polytechnique de

Montreal, Canada, 2002. 4.2.6

[BSB05] Daniel J. Barrett, Richard E. Silverman, and Robert G. Byrnes, SSH, the

secure shell: The definitive guide, O’Reilly Media, Inc., 2005. 2.7

[DRGQ07] Jose E. Domenech, Carlos V. Regueiro, C. Gamallo, and Pablo Quintia,

Learning Wall Following Behaviour in Robotics through Reinforcement and

Image-based States, Tech. report, Facultad de Informatica”, address =, 2007.

4.2.1

[FFB05] A. Fujimori, T. Fujimoto, and G. Bohatcs, Distributed Leader-Follower

Navigation of Mobile robots, Tech. report, 2005. 4.4.2

54

Final Thesis
July 2010 Conclusion and further work

[FG] F.Lambercy and G.Caprari, Khepera III robot user manual, K-Team. 3.2.1

[Gaz] Gazebo user / reference manual,

http://playerstage.sourceforge.net/doc/Gazebo-manual-0.8.0-pre1-html/

last accessed 15 March. 2.4

[GM00] Dudek. G and Jenkin. M, Computational principles of mobile robotics, 1 ed.,

Cambridge University Press, 2000. 4.5

[GUA] The GUARDIANS Project, http://www.guardians-project.eu/

last accessed 11 March. 1.2

[Hl] Hokuyo URG-04LX Laser,

http://www.hokuyo-aut.jp/02sensor/07scanner/urg_04lx.html

last accessed 14 April. 3.3.1

[Hok] Hokuyo Automatic Co. LTD,

http://www.hokuyo-aut.jp/

last accessed 14 April. 3.1

[Hok08] Hokuyo, Scanning laser range finder URG-04LX specifications, Hokuyo

Automatics Co, LTD, 2008. 3.3.1

[Jon] Joseph L. Jones, Robot obstacle detection system,

Patent in http://www.eipa-patents.org/

last accessed 20 April. 4.2.3

[JRK04] N. Vlassis Jelle R. Kok, Matthijs T.J. Spaan, Non-communicative multi-robot

coordination in dynamic environments, Tech. report, Informatics Institute,

Faculty of Science, University of Amsterdam, The Netherlands, 2004. 1.2

[JSPP08] V. Gazi J. Saez-Pons, L. Alboul and J. Penders, Non-communicative robot

swarming in the guardians project, Tech. report, Materials and Engineerig

Research Institute, Sheffield Hallam University, UK, 2008. 1.1

[JXZQ09] Y. Jincong, Z. Xiuping, N. Zhengyuan, and H. Quanzhen, Intelligent Robot

Obstacle Avoidance System Based on Fuzzy Control, Tech. report, College

of Computer and Information Science, Fujian Agriculture and Forestry

University, Fuzhou, China, 2009. 4.3.1

[KLM06] A. Galstyan K. Lerman, C. Jones and Maja J Mataric, Analysis of dynamic

task allocation in multi-robot systems, The International Journal of Robotics

Research (2006). 1.1

David Arán Page 55

http://playerstage.sourceforge.net/doc/Gazebo-manual-0.8.0-pre1-html/
http://www.guardians-project.eu/
http://www.hokuyo-aut.jp/02sensor/07scanner/urg_04lx.html
http://www.hokuyo-aut.jp/
http://www.eipa-patents.org/

Final Thesis
July 2010 Conclusion and further work

[kte] K-Team,

http://www.k-team.com/

last accessed 14 April. 3.1

[lib] Player client libraries,

http://playerstage.sourceforge.net/wiki/PlayerClientLibraries

last accessed 6 April. 2.5.2

[MA02] L. Montano and Jose R. Asensio, Real-Time Robot Navigation in Unstructured

Environments Using a 3D Laser Rangefinder, Tech. report, Dpto. de

Informatica e Ingenieria de Sistemas, Centro Politenico Superior, Universidad

de Zaragoza, Spain, 2002. 4.2.5

[Meh08] S. Mehta, Robo 3.1. An Autonomous Wall Following Robot, Tech. report,

Department of Electrical and Computer Engineering, Cleveland State

University, USA, 2008. 4.2.4

[SKMM10] J. Abou Saleh, F. Karray, M. Slim Masmoudi, and M. Masmoudi, Soft

Computing Techniques in Intelligent Wall Following Control for a Car-

like Mobile Robot, Tech. report, Electrical and Computer Engineering

Department, University of Waterloo, Canada, 2010. 4.2.2

[sou] Player/Stage on SourceForge,

http://sourceforge.net/projects/playerstage/

last accessed 15 March. 2.1

[Vau00] Richard T. Vaughan, Stage: A multiple robot simulator, Tech. Report IRIS-

00-394, Institute for Robotics and Intelligent Systems, School of Engineering,

University of Southern California, USA, 2000. 2.1

[Vie] The View-Finder Project,

http://www.shu.ac.uk/mmvl/research/viewfinder/

last accessed 11 March. 1.2

[WKPA08] T. Wekel, O. Kroll-Peters, and S. Albayrak, Vision Based Obstacle Detection

for Wheeled Robots, Tech. report, Electrical Engineering and Computer

Science, Technische Universitat Berlin, Germany, 2008. 4.3.3

David Arán Page 56

http://www.k-team.com/
http://playerstage.sourceforge.net/wiki/PlayerClientLibraries
http://sourceforge.net/projects/playerstage/
http://www.shu.ac.uk/mmvl/research/viewfinder/

Appendices

Appendix A

Configuration files

A.1 Simulation .cfg file

Used in simulations for the second approach.

load the Stage plugin simulation driver

driver

(

name "stage"

provides ["simulation:0"]

plugin "libstageplugin"

load the named file into the simulator

worldfile "first.world"

)

Create a Stage driver and attach position2d and laser interfaces

to the model "robot1"

driver

(

name "stage"

provides ["6665:position2d:0" "6665:laser:0" "6665:fiducial:0"]

58

Final Thesis
July 2010 Configuration files

model "robot1"

)

driver

(

name "stage"

provides ["6666:position2d:0" "6666:laser:0" "6666:fiducial:0"]

model "robot2"

)

A.2 Khepera III .cfg file

Instantiate the KheperaIII driver, which supports the position interface

driver

(

name "KheperaIII"

plugin "KheperaIII"

provides ["position2d:0" "ir:0" "sonar:0" "power:0"]

scale_factor 1

#The wheel encoder resolution

encoder_res 4

#The pose of the robot in player coordinates (m, m, deg).

position_pose [0 0 0]

position_size [0.127 0.127]

ir_pose_count 9

ir_poses [-0.043 0.054 128 0

0.019 0.071 75 0

0.056 0.050 42 0

0.075 0.017 13 0

0.075 -0.017 -13 0

David Arán Page 59

Final Thesis
July 2010 Configuration files

0.056 -0.050 -42 0

0.019 -0.071 -75 0

-0.043 -0.054 -142 0

-0.061 0 180 0

]

sonar_count 5

sonar_poses [

0.0005 0.075 90

0.046 0.044 45

0.061 0 0

0.046 -0.044 -45

0.0005 -0.075 -90

]

)

driver

(

name "urglaser"

provides ["laser:0"]

port "/dev/ttyACM0"

)

David Arán Page 60

Appendix B

World file

Desc: 1 pioneer robot with laser

CVS: $Id: simple.world,v 1.63 2006/03/22 00:22:44 rtv Exp $

size of the world in meters

size [1.5 1.6]

set the resolution of the underlying raytrace model in meters

resolution 0.02

set the ratio of simulation and real time

interval_sim 100 # milliseconds per update step

interval_real 100 # real-time milliseconds per update step

configure the GUI window

window

(

size [680.000 700.000]

center [0 0]

scale 0.003

)

load a pre-defined model type from the named file

include "map.inc"

create an instance of the pre-defined model

map

61

Final Thesis
July 2010 World file

(

color "black" #Colour of the map’s frame

polygons 4

polygon[0].points 4

polygon[0].point[0] [0 0]

polygon[0].point[1] [1 0]

polygon[0].point[2] [1 0.01]

polygon[0].point[3] [0 0.01]

polygon[1].points 4

polygon[1].point[0] [0 1]

polygon[1].point[1] [1 1]

polygon[1].point[2] [1 0.99]

polygon[1].point[3] [0 0.99]

polygon[2].points 4

polygon[2].point[0] [0 0]

polygon[2].point[1] [0 1]

polygon[2].point[2] [0.01 1]

polygon[2].point[3] [0.01 0]

polygon[3].points 4

polygon[3].point[0] [1 0]

polygon[3].point[1] [1 1]

polygon[3].point[2] [0.99 1]

polygon[3].point[3] [0.99 0]

size [15 15]

)

uncomment this section to load some obstacles from the bitmap

map

(

bitmap "./bitmaps/arena.png"

name "map"

size [1.5 1.6]

border 0

)

define a URG1-like laser scanner model, based on the built-in "laser" model

define urg_laser laser

David Arán Page 62

Final Thesis
July 2010 World file

(

range_min 0.0

range_max 5.0

fov 240

samples 685

color "black"

size [0.02 0.02]

)

define an khepera-like robot model, based on the built-in "position" model

define khepera position

(

actual size

size [0.08 0.1]

the center of rotation is offset from its center of area

origin [0.01 0 0]

draw a nose on the robot so we can see which way it points

gui_nose 1

estimated mass in KG

mass 0.7

this polygon approximates the shape of a Khepera III

polygons 1

polygon[0].points 9

polygon[0].point[0] [-0.04 0.05]

polygon[0].point[1] [-0.01 0.055]

polygon[0].point[2] [0.02 0.05]

polygon[0].point[3] [0.035 0.025]

polygon[0].point[4] [0.04 0]

polygon[0].point[5] [0.035 -0.025]

polygon[0].point[6] [0.02 -0.05]

polygon[0].point[7] [-0.01 -0.055]

polygon[0].point[8] [-0.04 -0.05]

create an instance of our "urg_laser" model

urg_laser

(

speed hack: raytrace only every 5th laser sample, interpolate the rest

David Arán Page 63

Final Thesis
July 2010 World file

laser_sample_skip 5

fiducialfinder(range_max 5 range_max_id 10 fov 360)

)

)

create some instances of our khepera robot model

khepera

(

name "robot1"

color "blue"

pose [0.5 0.5 90]

fiducial_return 1

)

khepera

(

name "robot2"

color "red"

pose [0 0 90]

fiducial_return 2

)

David Arán Page 64

Appendix C

functions.h library

Some support functions

//

////////////// Functions //////////////

////////////// Support Library //////////////

////////////// //////////////

///

////////////// Function that return the //////////////

////////////// orientation of the robot //////////////

////////////// in degrees between 0-360o //////////////

///

double bearing (PlayerCc::Position2dProxy &P)

{

double orientacion;

orientacion=P.GetYaw();

orientacion=RTOD(orientacion);

if (orientacion>=-90 && orientacion<=180)

{orientacion=orientacion+90;}

if (orientacion>-180 && orientacion<-90)

{orientacion=orientacion+450;}

return orientacion;

65

Final Thesis
July 2010 functions.h library

}

///

////////////// Function that return the ////////////

////////////// orientation of the other ////////////

////////////// robot detected with the ////////////

////////////// laser in degrees between 0-360o ////////////

///

double bearing_laser (double obstacle_angle)

{

obstacle_angle=RTOD(obstacle_angle);

if (obstacle_angle>=-90 && obstacle_angle<=180)

{obstacle_angle=obstacle_angle+90;}

if (obstacle_angle>-180 && obstacle_angle<-90)

{obstacle_angle=obstacle_angle+450;}

return obstacle_angle;

}

///

////////////// Function that return the //////////////

////////////// final orientation of robot //////////////

///

double final_bearing (double angulo_giro, double orientacion_inicial)

{

double resto,orientacion_final,angulo;

if (angulo_giro<0)

{

if (-angulo_giro>orientacion_inicial)

{resto=orientacion_inicial+angulo_giro; //sale -

orientacion_final=360+resto;}

if (-angulo_giro<orientacion_inicial)

{orientacion_final=orientacion_inicial+angulo_giro;}

} //if<0

if (angulo_giro>0)

{

David Arán Page 66

Final Thesis
July 2010 functions.h library

angulo=angulo_giro+orientacion_inicial;

if (angulo>360)

{resto=orientacion_inicial+angulo_giro;

orientacion_final=resto-360;}

if (angulo<360)

{orientacion_final=angulo_giro+orientacion_inicial;}

} //if >0

std::cout<<"Angulo Giro: "<<angulo_giro<<std::endl;

std::cout<<"Orientacion Inicial: "<<orientacion_inicial<<std::endl;

std::cout<<"Orientacion Final: "<<orientacion_final<<std::endl;

return orientacion_final;

}

David Arán Page 67

Appendix D

support.h library

Some support functions

//////////// FUNCTIONS & PARAMATERS

//////////////////////////////////

//// DEFINITIONS ////

//////////////////////////////////

#define PI 3.14159265358979323846

enum MODE {SEARCH,WALL_FOLLOW,RIGHT,LEFT,STOP};

enum SITUACION {ALONE,ALL,VECTOR};

//ROBOT PARAMETERS

const uint VIEW = 25; //Field of view of the robot

const uint ANGLE_DIST = 60; //Angle from towards to the wall

const double VEL = 0.2; //Maximal linear speed ////// 0.2

const double TURN_RATE = 30; //Maximal wall_following turnrate

const uint K_P = 100; //Wall_following constant used to no

//exceed the maximal turn_rate

const double W_F_DIST = 0.25; //Wall distance to enter in WALL_FOLLOW mode

const double DIST = 1; //Preferred_wall_following_distance

//STATES PARAMETERS

68

Final Thesis
July 2010 support.h library

const double WALL_DIST = 0.25; //Distance to find the wall or obstacle

const double STOP_DIST = 0.15; //Stop distance to avoid wall collision

const double STOP_ROT = 25; //Rotation speed to avoid wall collision

const double ALONE_DIST = 0.35; //Distance to return SEARCH mode (was 2)

const double CLST_ROB = 1.5; //If the closest robot is nearer than that

//distance, it stops.

///

//// CALCULATE RANGES ////

//// Calculate ranges of the laser ////

///

void calc_range(PlayerCc::LaserProxy &L, double range[], int scans)

{

for (int j=1;j<scans;j++)

{

range[j] = L.GetRange(j);

}

}

//

//// CALCULATE YAW ////

//// Changes the value of the robot angle ////

//// into a [0,-pi] or [0,pi] interval ////

//

double calc_yaw(PlayerCc::Position2dProxy &P)

{

double n;

int turns;

double current_yaw = P.GetYaw();

if (current_yaw<0) // right side

{

n = (-PI-current_yaw)/(2*PI);

if (n<0) current_yaw = current_yaw;

if (n>0)

{

turns = floor(n)+1;

current_yaw = current_yaw+(turns*2*PI);

}

David Arán Page 69

Final Thesis
July 2010 support.h library

}

if (current_yaw>0) // left side

{

n = (current_yaw-PI)/(2*PI);

if (n<0) current_yaw = current_yaw;

if (n>0)

{

turns = floor(n)+1;

current_yaw = current_yaw-(turns*2*PI);

}

}

return current_yaw;

}

//

//// CALCULATE FORMER RANGE ////

//// Calculate the former ranges of the laser ////

//

void calc_former_range(double former_vector[], double range[],

double other_former_vector[], double& sum_scans, double& sum_distances,

int& count, int scans, bool detected)

{

double diff_vectors[scans];

for (int j=1;j<scans;j++)

{

former_vector[j] = range[j];

if (detected==false) diff_vectors[j] = other_former_vector[j] - range[j];

if (detected==true) diff_vectors[j] = range[j] - range[j];

if ((fabs(diff_vectors[j])>0.05)&&(detected==false))

{

sum_scans=sum_scans+j;

sum_distances=sum_distances+range[j];

count++;

}

}

David Arán Page 70

Final Thesis
July 2010 support.h library

}

//

//// FRONT DISTANCE ////

//// Calculates the average distance to the front of the robot ////

//// 100 scans ////

//

double front_distance (PlayerCc::LaserProxy &L)

{

double SCANS;

double sum_dist = 0, cont = 0,front_dist;

// Loop

SCANS = L.GetCount();

for (int j= (SCANS/2)-100;j< (SCANS/2)+100;j++)

{

sum_dist = sum_dist+L.GetRange(j);

cont++;

}

front_dist = sum_dist/cont;

std::cout << "Front distance: " << front_dist << std::endl;

std::cout << "I’m in" << std::endl;

return front_dist;

}

///

//// EUCLIDEAN DISTANCE ////

//// Calculate the euclidian distance to a point ////

///

double hip (double x, double y)

{

double res;

res=sqrt(x*x + y*y);

return res;

}

David Arán Page 71

Final Thesis
July 2010 support.h library

///

//// DEGREES TO RADIANS ////

//// Turn degrees into radians ////

///

double D2R (double degree)

{

double rad;

rad=degree*(PI/180);

return rad;

}

//

//// DEGREES TO SCANS ////

//// Turn degrees into scans ////

//

int DtoS (int degree)

{

double scan;

int res;

scan=degree*685/240;

for (uint d=1;d<685;++d)

{

if ((scan<=d+0.5)&&(scan>d-0.5))

res=d; //calculate the entire part rounded

}

return res;

}

//

//// MAXIMUM TURN ////

//// Is not allowed to exceed a maximum turn given. If it ////

//// happens the turn is fixed to the maximum value allowed ////

//

double turn_max (double turn_lat, double turn_rate_max)

{

double turn;

turn = turn_lat;

David Arán Page 72

Final Thesis
July 2010 support.h library

if (turn_lat>turn_rate_max)

turn = turn_rate_max;

return turn;

}

///

//// COLLISION AVOIDANCE ////

////If the obstacle in front of the robot is nearer than 0.15////

////then it turn left or right depending on the previous mode////

///

void collision_avoidance(double min_dist, uint mode, double &speed, double &turn)

{

if (min_dist < 0.15)

{

speed = 0;

if (mode==LEFT) // right turn

turn = D2R(-STOP_ROT); //STOP_ROT=30;

if (mode==RIGHT) // left turn

turn = D2R(STOP_ROT);

}

}

//

//// AVOID OBSTACLES ////

//// When there is an obstacle in the robot’s way, it avoids it ////

//// turning 45o left or right depending if the obstacle is on ////

//// the right or on the left ////

//

void avoid_obstacles (PlayerCc::LaserProxy &L, PlayerCc::Position2dProxy &P)

//pass by reference

{

double NumScan=L.GetCount();

double minDist=1.0;

int abs;

// Loop for avoid obstacles;

for(int i=0;i<NumScan;i++)

{

if (L.GetRange(i)<minDist && L.GetRange(i)!=0

David Arán Page 73

Final Thesis
July 2010 support.h library

{

minDist=L.GetRange(i);

abs=i; //Save the minimum distance to the obstacle

}

if(minDist<0.8) //If is closer than 0.8m it stops and turn

{

if (L.GetBearing(abs)<0) //If the obstacle is on its right

P.SetCarlike(0.0, DTOR(45)); //Turn left

else //else, the obstacle is on its left

P.SetCarlike(0.0, DTOR(-45)); //Turn right

}

}

}

//

//// AVOID OBSTACLES 2 ////

//// When there is an obstacle in the robot’s way, it avoids it ////

//// turning 45o left or right depending if the obstacle is on ////

//// the right or on the left (smaller distance) ////

//

void avoid_obstacles2 (PlayerCc::LaserProxy &L, PlayerCc::Position2dProxy &P)

{

double NumScan=L.GetCount();

double minDist=1.0;

int abs;

// Loop for avoid obstacles;

for(int i=0;i<NumScan;i++)

{

if (L.GetRange(i)<minDist && L.GetRange(i)!=0)

{

minDist=L.GetRange(i);

abs=i; //Save the minimum distance to the obstacle

}

if(minDist<0.2) //If is nearer than 0.8m it stops and turn

{

David Arán Page 74

Final Thesis
July 2010 support.h library

if (L.GetBearing(abs)<0) //If the obstacle is on its right

P.SetCarlike(0.0, DTOR(45)); //Turn left

else //else, the obstacle is on its left

P.SetCarlike(0.0, DTOR(-45)); //Turn right

}

}

}

//

//// DIVIDE LASER ////

//// Separates the laser’s FOV in tree parts (right, center and ////

//// left) and gives in what of those parts is the closest ////

//// obstacle calculating different means ////

//

void divide_laser(PlayerCc::LaserProxy &L, double &left_mean, double &right_mean,

double &min_right, double &min_left, double &min_dist)

{

double NumScan=L.GetCount();

uint right_view=DtoS(120-VIEW), left_view=DtoS(120+VIEW); //VIEW=25;

double right_sum=0, left_sum=0;

uint i, right_count=0, left_count=0;

min_right=1; //10

min_left=1; //10

min_dist=1; //10

left_mean=0;

right_mean=0;

for (i = 0; i <NumScan ; ++i)

{

if (L.GetRange(i)!=0)

{

if (i<right_view)

{

right_sum += L.GetRange(i);

++right_count;

if (L.GetRange(i)<min_right)

min_right = L.GetRange(i);

}

if ((i>right_view)&&(i<left_view)&&(L.GetRange(i)<min_dist))

David Arán Page 75

Final Thesis
July 2010 support.h library

min_dist = L.GetRange(i);

if (i>left_view)

{

left_sum += L.GetRange(i);

++left_count;

if (L.GetRange(i)<min_left)

min_left = L.GetRange(i);

}

}

}

left_mean = left_sum/left_count;

right_mean = right_sum/right_count;

}

///

//// CALCULATE straight line SLOPE ////

//// Takes two points from an obstacle then obtains the straight ////

//// line between them and calculate it slope. With this we have ////

//// the robot’s orientation ////

///

void calculate_slope (double &turn, uint mode, PlayerCc::LaserProxy &L)

{

double m, b, heading;

double x1_right, x2_right, y1_right, y2_right;

double x1_left, x2_left, y1_left, y2_left;

if(mode==RIGHT)

{

x1_right=L.GetRange(DtoS(35))*cos(L.GetBearing(DtoS(35)));//+W)+X;

y1_right=L.GetRange(DtoS(35))*sin(L.GetBearing(DtoS(35)));//+W)+Y;

x2_right=L.GetRange(DtoS(75))*cos(L.GetBearing(DtoS(75)));//+W)+X;

y2_right=L.GetRange(DtoS(75))*sin(L.GetBearing(DtoS(75)));//+W)+Y;

m=(y1_right-y2_right)/(x1_right-x2_right);

b=y1_right-m*x1_right;

std::cout << "(" << x1_right << "," << y1_right << ")" << std::endl;

std::cout << "(" << x2_right << "," << y2_right << ")" << std::endl;

heading=atan(m);

David Arán Page 76

Final Thesis
July 2010 support.h library

turn=heading;

}

if(mode==LEFT) // el modo LEFT ya va bien

{

x1_left=L.GetRange(DtoS(205))*cos(L.GetBearing(DtoS(205)));//+W)+X;

//1er punto: x1,y1

y1_left=L.GetRange(DtoS(205))*sin(L.GetBearing(DtoS(205)));//+W)+Y;

x2_left=L.GetRange(DtoS(165))*cos(L.GetBearing(DtoS(165)));//+W)+X;

//2n punto: x2,y2

y2_left=L.GetRange(DtoS(165))*sin(L.GetBearing(DtoS(165)));//+W)+Y;

m=(y1_left-y2_left)/(x1_left-x2_left);

b=y1_left-m*x1_left;

std::cout << "(" << x1_left << "," << y1_left << ")" << std::endl;

std::cout << "(" << x2_left << "," << y2_left << ")" << std::endl;

heading=atan(m);

turn=heading;

}

}

//

//// KEEP DISTANCE TO THE WALL ////

//// These expresions are useful for calculate the distance to ////

//// keep the robot and the wall ////

//

void keep_wall_distance (double &turn_left, double &turn_right,

PlayerCc::LaserProxy &L)

{

uint on_the_right=DtoS(120-ANGLE_DIST), on_the_left=DtoS(120+ANGLE_DIST);

turn_left = D2R(K_P*(L.GetRange(on_the_left)-WALL_DIST));

turn_right = D2R(K_P*(L.GetRange(on_the_right)-WALL_DIST));

}

///

//// TAKE MODE (Straight line) ////

//// Selects the working mode calculating the slope of a ////

David Arán Page 77

Final Thesis
July 2010 support.h library

//// straight line formed by two points ////

///

void take_linear_mode(double &turn, double &speed, uint &mode,

PlayerCc::LaserProxy &L, double left_mean, double right_mean,

double min_right, double min_left, double min_dist)

{

double turn_left, turn_right;

if (mode == SEARCH)

{

turn=0;

}

else

{

keep_wall_distance (turn_left, turn_right, L);

if ((right_mean<left_mean)&&(mode==WALL_FOLLOW))

mode=RIGHT;

if ((left_mean<right_mean)&&(mode==WALL_FOLLOW))

mode=LEFT;

calculate_slope (turn, mode, L);

if ((mode == RIGHT)&&(L.GetRange(DtoS(60))<WALL_DIST))

{

turn = -turn_max (turn_right,D2R(TURN_RATE));//turn = -turn_right;

}

if ((mode == LEFT)&&(L.GetRange(DtoS(180))<WALL_DIST))

{

turn = turn_max (turn_left,D2R(TURN_RATE));//turn = turn_left;

}

collision_avoidance (min_dist, mode, speed, turn);

if ((min_left>ALONE_DIST) && (min_right>ALONE_DIST) && (min_dist>ALONE_DIST))

mode = SEARCH;

David Arán Page 78

Final Thesis
July 2010 support.h library

if (mode == STOP)

{

speed=0;

turn=0;

}

} /////////// close else

if (((L.GetRange(DtoS(210)) < W_F_DIST) || (L.GetRange(DtoS(30)) < W_F_DIST)

|| (min_dist < W_F_DIST)) && (mode==SEARCH) && (min_dist!=0))

mode=WALL_FOLLOW;

}

//

//// TAKE MODE (Wall following) ////

//// Selects the working mode with the wall following formule ////

//

//The robot go forward and try to search some obstacle or wall

void take_wall_follow_mode(double &turn, double &speed, uint &mode,

PlayerCc::LaserProxy &L, double left_mean, double right_mean,

double min_right, double min_left, double min_dist)

{

double turn_left, turn_right;

if (mode == SEARCH)

turn=0;

else

{

keep_wall_distance (turn_left, turn_right, L);

if ((left_mean<right_mean)&&(mode==WALL_FOLLOW))

mode = LEFT;

if ((left_mean>right_mean)&&(mode==WALL_FOLLOW))

mode = RIGHT;

if (mode==LEFT)

turn = turn_max (turn_left,D2R(TURN_RATE));//turn = turn_left;

David Arán Page 79

Final Thesis
July 2010 support.h library

if (mode==RIGHT)

turn = -turn_max (turn_right,D2R(TURN_RATE));//turn = -turn_right;

if (min_dist < STOP_DIST)

{

speed = 0;

if (left_mean<right_mean)

turn = D2R(-STOP_ROT);

if (left_mean>right_mean)

turn = D2R(STOP_ROT);

}

if ((min_left>ALONE_DIST) && (min_right>ALONE_DIST) &&

(min_dist>ALONE_DIST))

mode = SEARCH;

if (mode == STOP)

{

speed=0;

turn=0;

}

} //close else

if ((min_dist<1)&&(mode == SEARCH)&&(min_dist!=0)&&(mode!=STOP))

mode = WALL_FOLLOW;

}

David Arán Page 80

	1 Introduction
	1.1 Introduction
	1.2 Background
	1.3 Motivation
	1.4 Objectives/deliverables
	1.5 Project flow diagram
	1.6 Thesis guideline/structure

	2 Player/Stage
	2.1 Introduction
	2.1.1 Features

	2.2 Player, network server
	2.3 Stage, robot platform simulator
	2.4 Gazebo, three dimensional simulator
	2.5 Player/Stage tools
	2.5.1 Sensor visualization: playerv
	2.5.2 Client libraries
	2.5.3 Proxies
	2.5.3.1 Position2d proxy
	2.5.3.2 Laser proxy

	2.5.4 Stage tools

	2.6 Programming in Player
	2.6.1 World file
	2.6.2 Configuration file
	2.6.3 Makefile
	2.6.4 Main program file

	2.7 Running program

	3 Robot and laser characteristics
	3.1 Introduction
	3.2 Khepera III
	3.2.1 Characteristics

	3.3 Hokuyo URG-04LX Laser
	3.3.1 Characteristics

	3.4 Robot with laser

	4 Literature and review
	4.1 Introduction
	4.2 Wall following
	4.2.1 Artificial vision
	4.2.2 Neuro-fuzzy controllers
	4.2.3 Emitting signal sensor
	4.2.4 Autonomous robots
	4.2.5 3D Laser Rangefinder
	4.2.6 Odometry and range data

	4.3 Obstacle avoidance
	4.3.1 Fuzzy control
	4.3.2 Probabilistic approach
	4.3.3 Camera

	4.4 Robot following
	4.4.1 Attraction-repulsion forces
	4.4.2 Selfmade follower

	4.5 Localization problem
	4.5.1 Odometry Sensors
	4.5.2 Laser range finders

	5 Robot behaviour algorithms and theory
	5.1 Introduction
	5.2 Leader robot
	5.2.1 Obstacle avoidance
	5.2.2 Wall following
	5.2.2.1 Calculate the turn to keep a constant distance

	5.2.3 Simulation

	5.3 Follower robot
	5.3.1 Robot following
	5.3.1.1 Non-obstacles environment
	5.3.1.2 Environment with obstacles

	5.3.2 Obstacle avoidance
	5.3.3 Code for Khepera III

	5.4 Implementation in Khepera III
	5.4.1 Results

	6 Conclusion and further work
	6.1 Conclusion
	6.2 Further work
	6.2.1 Addition of more follower robots to the system
	6.2.2 Accumulative errors
	6.2.3 Loss of the leader

	Bibliography
	Appendices
	A Configuration files
	A.1 Simulation .cfg file
	A.2 Khepera III .cfg file

	B World file
	C functions.h library
	D support.h library

