Published in 1
Analog and mixed signal description languages,
Current Issues in Electronic Modeling 10, chapter 6, 103-130, 1997
which should be used for any reference to this work

BEHAVIOURAL MODELLING OF
ANALOGUE SYSTEMS
WITH ABSYNTH

Vincent Moser, Hans Peter Amann, Fausto Pellandini

Institute of Microtechnology, University of Neuchatel
Rue A.-L. Breguet 2, CH-2000 Neuchatel, Switzerland
E-mail vincent.moser@imt.unine.ch

ABSTRACT

In this paper, we present the computer-aided analogudehavioural modelling tool
ABSynth (Analogue Behaviouralmodel Synthesizer). The behaviourto model is
expressed graphicallyin the form of a Functional Diagram(FD) drawn & the
interconnection b Graphical BuildingSymbols(GBS),each ¢ which standsfor some
elementary analogubehaviour. The functional diagramdescribes thebehaviour of the
system only,not its physical structure. Thecorresponding HDL-A™ code & then
generated automatically.

The novel contribution © this work is threefold: first, analogue behaviourcan ke
described in a dedicated graphical forsgcondly,the graphicaldescriptionis translated
into behavioural AHDL code, lastly, the graphicaldescription method and the code
generationprocesshave been implementest a softwaretool. This tool, ABSynth, $
user-friendly, easyto extend, and integrated ina complete design environment. The
generated code is syntactically right by construction and, consequently, the useradoes
need to know the syntax of the target hardware description language anymore.

1. INTRODUCTION

Traditionally, analogueomponentmodelling was reserved toexperts who developed
very precisemodels of devices, particularly transistors. The models were written in
general-purpose computi&nguagese.g., C) and linked to the simulator. Nowadays,
the promotersof Analogue HardwareDescription Languages(AHDLS) intend b make
modelling more popularamongdesignersand must thereforemake ita less specialized

task. However, themostimportant point remainsinchangeda good understandingf
the system odeviceto modelis essential @ write agood model. The coding technique
comes next but for all that is not atrivial task. Therefore,we believe that some CAD
assistance must be provided to the designers who want to write their own models.

In this paper, we first introducesomedefinitions onanaloguemodelling followed by a
brief description of our coding method.Then a graphical descriptionof analogue
behaviour isproposed,followed by a codegeneration strategyThese twopoints have
been integrated into the computer-aided modeltog) ABSynth (AnalogueBehavioural
model Synthesizer). Some results will be given too, based on the examgrieanélogue
filter.

The whole work describetdere has alreadybeenthe subjectof a Ph.D. thesis [1]. Some
related work has also been the subject of conference papers [2], [3] and [4].

2. ANALOGUE MODELLING

This section introducegeneralconceptsand definitions d analoguemodelling and ar
model coding method.

A model of ananaloguesystemcan be representegither as alist of nodesand alist of

instances —both lists constituting a netlist— to describe itsstructure or as a list of

equations and/or other statemetdsdescribeits behaviour.A structuraldescription an

be hierarchical,eachinstance 6 a netlist being also described as netlist, but, & the

decomposition cannot be infinite, it always endswith instanceswhich are considered
a the behaviourallevel. This hierarchical structurecan be seeras atree, where he

behavioural instances are the leaves.

Beside thestructuralor behaviouralinternal descriptiona model alsohas an external
view, which describes itinterface. |t comprisespins and parametersThe pins are used
to instantiate the component in a structural description. The parameters arte ssédp

the model to a particular application.

2.1. Modelling Levels

In addition to different description styles (structural,behavioural), a system under
development can be described at various levels of abstractioncdintse representedn
theY-chartof figure 1, the analogue equivaletat the digital Y-chart of Gajski [5]. The
system can be described along three agashof which standsfor a different view. The
abstraction level is indicated on each axis starfiogn the centrewherethe abstraction
is at its lowest.

structural behavioural
view view
%
(V/.
2
&

device level
modelling .
macromodelling

behavioural
modelling
functional

chip, MCM [p-system modelling

physical VView

Fig. 1: Y-chart applied to analogue modelling.

As pointed outpreviously, a description of a system comprisestractural part and
behavioural descriptions of the componeinstantiated. Onthe structural axis we
indicate the type of componenisedwhile on the behavioural axis we indicate how the
component’s model is described. On the physical axis, the correspophirsical cells
aregiven. If wenow consider theconcentric circles, wean define severamodelling
levels, each of which will be described in more detail belstasting from the origin of
the axes. In tharea ofdigital design, the definition of Gbstraction levels is widely
accepted. In the analogue area, however, these modelling laweldefined more
arbitrarily. Intermediate levelsould also be defined. Furthermore, a systemussially
described in a mixed-level manner, where a combination of the modelling levels is used.
Also, note that thenotion of abstraction level iselated to thestructure —the more
detailed the structure, the less abstract description. It is notalways linked to the
accuracy of thedescription, which depends on the level of detail of tlesociated
behavioural descriptions.

Device Level Modellingalso called primitive level, is the least abstract description. The
user describes the system structurally using standard devi{eeg., transistors,
capacitors, resistors)whose behavioural modelsre included inthe simulator code.
These modelsare made ofrather detaileccharacteristic equations of the devices whereas
second-order effectarealso taken into accoun¥arious models can beseddepending
on the mode of operation of the device or on the degree of accuraayuation speed

needed. Inthe structural description, the connection pointsare electrical — o other
physical — nodes. They are describedKiychhoff’'s CurrentLaw (KCL) and Kirchhoff's
Voltage Law (KVL).

Macromodellingmakesuse & models ofideal components (e.g.resistors, capacitors,
inductors, independenand dependent sources) tbuild a circuit which mimics the
behaviour of the system instead of describing its actual structure [6].Again, the
connection pointsare electrical nodesMacromodelscan be describedin the SPICE
language or as particular circuit diagrams.

At the Behavioural Modellindevel, the user buildbehaviouralmodelsin an HDL using

differential equations, algorithmic sequences of statements ortalbéss of values. Any

analogue, mixed-signalor even non-electrical behaviour can be described.The

connection points of such models represent physical continuousstgnals, which ae

not limited to electrical ones but can beasfy nature.They aregoverned bygeneralized
conservation laws. For this reason, some typical behaviouririet impedance output

impedance and power suppdan be includedin the behavioural modelsThe parameters
of the models are either given by the useexpressspecifications pare extractedfrom

existing circuits by lower level simulation or by measurement.

Oncethe userhas becomdamiliar with the HDL, this methodbecomesvery efficient

since it is theoretically possible & describe anydynamic system. Furthermorethe

modelling level of detail can vary from idealized modisvery accurateones. However,
the currentsimulatorsare not optimized forbehavioural simulation and can encounter
convergence problems, especially in the presence of discontinuities.

Functional Modelling, the most abstractmodelling level, is used 6 describecomplex
systems withlittle accuracy. Again,the models are described usingan HDL and ae
connected togethein order b form a block diagram.The connection pointsare rot
conservative but rather indicate a transfer of informatiomaa signal-flow model. This

can be realize@ither using a dimensionless variablésometimescalled acoupling or
using eitherthe acrossor the through quantity of a physical interface. As they are ot
conservative, functional models must be handled carefully when they are integratad into
mixed-level description.

2.2. Analogue Model Generation Tools

Currently, severahnaloguemodelling tools are available but mostof them coveronly
the structuralpart d a system’sdescription. The userplaces and connects symbolsof
components usin@ graphical editor, then the netlist s automatically extracted.The
behavioural models of theomponentsare either available inthe libraries @ they must
be “hand-typed” by the user.

The behavioural modelling part, however, has not been extensively autoyeatesbme
interesting tools have been developed to generate behavioural modat®miin andz-

domain transferfunctions. The tools modgensand modgenz[7] convert transfer
functions into state-spacerepresentationsin the time-domain and generate he
corresponding behaviourahodels inC. Similarly, gensimsand gensimz[8] generate
ABCDL behavioural modelsstarting from transfer functions. ABCDL (Analogue
Behaviour Circuit Description Language) is an HDL by AT&T Bell Laboratories.

In order to let the designershenefit from all the modernmodelling possibilities,
graphical-based analogubehavioural modelgeneration toolswould be welcome,
especially suchtools which allow the user b describe somerbitrary behaviour. The
models should be&oded n a standardhardwaredescription languagen order b get
portable modelswhich give the same simulation resultson various simulators.
Furthermore the models generateghould beas compactand optimized & user-written
ones.

As we will see,the model generatorABSynth (AnalogueBehaviouralmodel Generator)
developed in this project fulfils most of these requirements.

2.3. HDL-A in Short

ABSynth has been implementéd generateHDL-A code, apurely behaviourallanguage
by ANACAD. The structural description must be expressedy means of SPICE-like
netlists. However,HDL-A is a mixed analogue-digitalHDL since it includes a relation

block for analogue descriptions angbicessblock for digital descriptions.The process
block is a sub-setof the behaviouralmodelling facility of VHDL. We briefly describe
here someHDL-A conceptsand constructs i order b allow the user © understandthe

HDL-A examples given in this text. A more complete descriptdiiDL-A can be found
in the User’'s Manual [9].As we areonly interestedin analoguemodelling, we do not

discuss the digital part of HDL-A here.

An HDL-A model is composedof two parts: an entity declaration and @& architecture
body. The entity gives an external view of the model and B associated tovarious
architecture todescribeseveral internal views — i.e., implementations, behavioural
models, etc. — of the design.

The entity declaratiomives the name of thedesignandthe variousconnectionobjects
which compose its interface:

* Generic are the parameters used to set up a model to a particular application.

« Pins are analogue connection poingspin hasan associatedhature property which
indicates the nature of the throughdacross quantitieg carries.As pins carry wo
guantities & atime, specific constructsare necessary taaccesseach of them. For
exampleinp.i designatethe current which flows through pin inp and inp.v
designate the voltage on pmp .

The architecturebody is composedof three different parts. In the first one — he
declarationblock — all the analogue and digital variables are declareesecondone —
the optional relation block — is used 6 describe analogubehaviour.The third one —
the optional processblock — is used b describe digitalbehaviour. HDL-A does rot
include any structural coding facility. We describe bekwo analogueobjects whichare
important here:

» A state— also called statgariable — $ an analogue objectlt can be writtenin the
analogue part of the modek(ation block) only but its value can be accessed time
analogue parand n the digital part (processblock). As a statehasa history, t is
possible to access its past values as well as its first time derivative and time integral.

« A variableis a neutral object which can be written and accessékeidigital part and
in the analoguepart. It is commonly used b store intermediate resulty quantities
which do not need to have a history.

Analogue behaviour is coded irr@lation block which begins with an initialization part
followed by explicit andimplicit blocks, each of which is valid fasne or more analysis
domains — i.e., DC, AC or transient analysis.

An explicit block — also calleghrocedural block — is a sequence o&naloguestatements
which canbe simple assignment statements, if-then-elsenstructsor iterative loops.

Expression can be formed using mathematical operatopsedefinedfunctions. When a
characteristic equationf a model can becoded a a direct assignment, tiis called a

explicit equationand t can becoded n the explicit block. The operator which

symbolizes a direct assignmeist:= . An additional assignmentoperator(%- hasbeen
defined to symbolize a contribution to a pin quantity.

An implicit block — also calledequationblock — & a set d characteristicequations
coded with yet another equality operafer) which just indicatesthat the left-hand side
of the equation is equal to the right-hand side.

2.4. Coding Method

The modelling methodwe propose here couldtheoretically @ implementedin any

analogue hardware description languageEven if the terminology and the lexical

definitions vary from ondanguageto another,the principles remainBasically, we try

to split the behaviourto modelinto elementarybehaviouralelements,which are coded
separatelyandthen combinedWe show here solutions for some of these elementary
elements.

2.4.1. Model Interface

In the modelling style we have established,the interfaceof a model is composedof
physical connection points (HDL-Ain) and ofparametergHDL-A generic). The pins
serve asconnections between models whethey are instantiated inthe structural
descriptionof a circuit. A pin carriesa physical quantityrepresenteds a couple ofan
acrossvariable (e.g., voltage) and athrough variable (e.g., current). The parameters
allow the user to set up a model to a particular application.

In an analoguecircuit, we can definea direction of propagation b the information
through achain of signal processingelements.The physical quantitiesthat carry this
information, however, are directionless. Each modelis influenced by the across
guantities on all the nodes tohich it is connectedand ly the throughquantitieson all

its pins. Reciprocally, each node isnfluencedby all the componentsconnected to ti

Consequently, a model can read the value of the across and of the through queaariyy
pin but it canalso imposeits own contributionsto thesevalues. The final value of the
acrossand through quantitiesare then computechat simulation timeaccordingto the
contributions of all the components.

In practice, the four read/contribute possibilities are rarely used simultaneously.
According toour experience, mosbf the modelscan be realizedvith a restrictive pn
usage:the modelusesthe valueof the acrosgjuantity on all the surroundingnodesto
calculatethe valueof the throughquantity on eachpin. Theoretically, thedual way —
i.e., readthe throughquantity andcalculate theacrossquantity — can alsobe followed
but it seems that some simulators hardly accept it.

As another convention, wattribute a positive signto any throughquantity that enters
the model. According to this choice, we can define a complete model interface dd@sh
not only include pins but also builds a complete input stage, a complete stagabr a

power supply block.

Some pins can beonsideredas passive accesseshereeither theacross orthe through
value is read and the dual value is imposed. Note that the vahgsedmay be the result
of complexnon-linear computations. Functionally, thiaccesscan be seems aninput
stage.If this input stage is modelled as a resistaRg@nd acapacitanceC,, connected n
parallel, we have the following equation

v,
/R, &)

i' :(:ln

in

which gives the following HDL-A code:
IN_PIN.i %= Cin*ddt(IN_PIN.v) + IN_PIN.v/Rin

Some other pins can be considered as non-ideal sources with an internal imp&tiance.
source-type behaviour characterizesoatput stagegoverned by the equation

iout = (Vout _VO)/Roul (2)

whereV,, is the voltage on the piN,, is the ideal voltage, i,
andR,, is the internal resistance. Coded in HDL-A, it gives:

is the currenbn the pn

OUT_PIN.i %= (OUT_PIN.v - vO)/Rout;

2.4.2. S-domain Modelling

We have seen houwo codethe interfaceof the model. Vé now look & the heartof the
model, where thelesiredbehaviour $ implemented.In this section, we will see how o
code models specified by transfer functions ingki®main.

Very often, continuoussystemsare specified in thefrequency domain by means of
transfer functions.However, HDL-A, and presumablyVHDL-AMS, offer time-domain
description facilities only. Transfer functiomsust thenbe transformednto differential
equations using the inverse Laplace transform.

The general form of a rational transfer function is

a,s
Y(s) 4
H(s :—: D M<N
(s) 1+ ans"
=T (3)

d’y(t)
dt?

=an(l)ra, 245, OX0

N-1 N
ddt ”¥Et) +Bn ddt):“(t)
M-1 M
v, d"x(t) va, d" x(t)
dt? dt da" (4)

+ "+bN71

This can becoded inHDL-A as animplicit equation according to thillowing pseudo-
code.

y + bl*dy + b2*d2y + ... + bn_1*dn_1y + bn*dny
== a0*x + al*dx + a2*d2x + ... + am_1*dm_1x + am*dmx;

As only the first derivative operator is available, ugethe internal state variablefmx
anddny to store the derivatives aft) andy(t).

A rational transfer function can also be decomposed into a product of poles and zeros as

[](e=r) 5)

where {, are the coordinatesof the zerosand p, the coordinatesof the poles. Each
member ofthose productgan be modelledeparatelyandthe wholesystemis built by
cascading all the sub-systems. For each type of sub-systegiye HDL-A solutions &
particular forms of the general differential equation coded above.

Single real pole located at coordinafem thes-plane

x + 1.0/p*dy - y == 0.0;

Pair of complex conjugate polgsp” at aptiBp

X - 1.0/(ap*ap+bp*bp)*d2y + 2.0*ap/(ap*ap+bp*bp)*dy - y == 0.0;

Single real zero &

y = X - 1.0/z*dx;

Pair of complex conjugate zerds{" at azxjB;

y = X - 2.0*az/(az*az+bz*bz)*dx + 1.0/(az*az+bz*bz)*d2x;

Besides polesindzeros, otherbuilding blocks, like limitations o delays, caralso be

defined. Additionally, it ispossible & model sample-datdehaviourusing an AHDL, as
described in [4].

3. GRAPHICAL DESCRIPTION

Modelling with an Analogue Hardware Description Language requireg very good
knowledge ofthe languagesyntax. /4 such, thistask is unfortunately reserved ¢

specialists. flwe want to promote analoguebehavioural modelling amongdesigners,
computer-aided desigtools with convenientuserinterfaces musbe provided. Ideally,

such tools should be integrated in the desigrnironmentthat is alreadyusedfor circuit

design. VHDL and Verilog have been accepted and used successfuthe digital design
community when computer-aidedmodelling tools have been available, although
automatic logic synthesitols have playeda decisiverole in this too. Furthermoreijt

has been shown that the overall design productigitinproved by the use é graphical
HDL-based design tools [10].

In the previous section, we presented a behavioural modetigthod. Here, we propose
to formalize thisknowledge in agraphical form. This representatiorcan be seeras a

10

first steptowardsan automaticcodegeneration process, whickill be exposedin the
next section.It has been designet remainof generaluse andindependent fo any
particular hardware description language.

3.1. Specifications of the Graphical Description Set

In orderto model dynamicsystems accuratelyg graphical description semust include
the following features:

» Description & the structure of a system as the interconnection D components
through a physical — i.e., across-through — interface.

» Description & the behaviour of a system or component, usingnon-physical
variables for the information propagation and processing.

» Description of generic models including a set of parameters.

e Aptitude to an implementation as a front-end to a computer program.

3.2. Existing Graphical Description Methods

Before designing anew graphical descriptiorset, we review severalexisting graphical
modelling techniques, eaabf which is discussedand compared withour specifications.
More information on these description techniques can be found in [11].

Circuit diagram modelling is well-known; it has beenwidely used ly electrical ad

electronic engineerdor years. The basic componentof electrical engineering(i.e.,

resistors, transistors, sources, etc.) are available as symbols, eabicbfis composed
of a body, pins and a set of parameters. These basic components arddiakeidplicit

model, which can be as simple as Ohm'’s law for a resistor or as complex asgution
set to describea MOS transistor. The connection pointsbetween theinstances i@

defined as electrical nodes, implicitly described by KCL and KVL.

Circuit diagram modelling is basically a structural technique. The behawfatlne circuit

is given by thediagramstructureand ly the implicit models ofall the components. @

analyse awhole circuit, we mustlist the characteristiequationsof all the components
involved andlist the equationsthat correspondto KCL on each nodeandKVL on each
mesh.

This representationhas alsobeen used ¢ describe thebehaviour of systemsin a
macromodelling approachyut thelimitations d this technique, & shown previously,
remain.

11

As explained above, the nets of a circuit diagram represenboth the acrossand the
through quantities and there are neither inpot output ports. For this reason,it is not
suitable forthe descriptionof signal propagationor signal processingelementsand,
consequently, circuit diagram modelling cannot be applied to the behaviesatiption
of analogue systems.

Block diagrams have been widely used ly engineers inmany different application
domains. Blocks, which have inpandoutput portsareconnected by oriented pathA.
path represents a signal, which dameither an acrossor a through quantity or evenan
abstract variable. A block represeradransducemhich functionality & indicatedeither
graphically @ with an equation. A take-off point is introduced m orderto bring the
signal to both blocks.

As nearly any block can be defined, block diagrams can betoseelscribelinear aswell
as non-linear systems. As the acrossand through variablesappearseparatelyin the
block diagram,it can neitherrepresentthe structureof a physical system —i.e., an
electrical circuit — nor describeany physical interface.The behaviour & a system,
however, can be represented conveniently.

The Signal-Flow Graph (SFG) representation si very similar to the block diagram. A
signal, instead of being represented by a path, is now represented as a node, whé&h can
useddirectly & a summernode or as dake-off point, whilst a path nowrepresents a
transducer. ASFG & limited to the description of linear systems. This description
techniquecan also representa behaviour but it is less intuitive than block diagrams.
However, as the number of graphical elemene@iced(path andnodes), itcanbe more
easily implemented as a front-end to a computer program.

Another graphicaldescription methodis the bond graph. A bond is representedas an

harpoon, which carrieshoth through and across variablesThe bonds are connected
together using two types of junctions. &0-junction, all acrossvariablesare equal iad

all through variablesadd p to zero:it is ageneralization DKCL. In contrast, m a 1-

junction, all throughvariablesare equal andll acrossvariablesadd p to zero: it is a
generalization DKVL. This methodis not very intuitive for the novice user, but it is

very powerful for the structural descriptiai physical systemsHowever,it is not well

suited to behavioural descriptions where non-physical variablesare used instead @

across-through couples.

3.3. Analogue Behavioural Description Method

None of the description techniques discussed in the previous section fully satisfies all
requirementsThe main problemis to find a method which supports both atructural
description usingacrossand through variablesand abehavioural signalprocessing
description usingabstractvariables. For this reason,different methods are used br
different purposes.

12

Circuit diagrams will be used for the structural description of a system as the
interconnection ofcomponents.As this classicalrepresentationis alreadyavailable n
most design frameworks, will be left asidein the rest of this text. The emphasiswill
now be onthe behavioural description & componentsand systems. However, he
physical interfaceof the components must also be describedto allow them to be
instantiated in circuit diagrams.

Theinterfacewill be represented as &on, which gives an external view of the model.

The behaviourwill be describedusing a new type of extendedblock diagram called
functional diagram (FD) which is built using standardblocks called Graphical Building

Symbols (GBS). This new description technique will be explained in the following

sections.

3.4. The Icon of a Component

The icon is the graphical object that can be used to instantiate the behaviourainmadel
circuit description. 1 is then equivalent to anystandardcomponent symbol — i.e.,
resistor symbol, transistor symbol, etc. More formally:

Theicon describes graphically thaterface of the model with its environment.
Practically, the icon consists of:

* A bodywhich should givea first visual idea d the component’s functionFor some
usual components (e.g.comparators,filters), conventional body representations
exist.

» Pinsused to interconnect the component with other elementshigher level circuit
diagram. Basically, an analogue component is influencethbéyjuantitieson all the
surrounding nodesand reciprocally influencesthem. Consequently, analogue
quantities — ©® both acrossand through type — can be read @ written &
contributions to pins. For this reasoatie pins haveto be defined & bi-directional.
Furthermore,they can be electrical or of any other physical nature (i.e., fluid,
mechanical, etc.)The pins form the interfaceof the modelwith other components
placed in the same circuit or system description.

« Optional properties, which arethe parametersf the model. Theyallow the user b
setup a genericmodelfor a particularapplication. Eachproperty & defined with a
default value. The properties are the interface of the model with the user.

» Optionaltextual commentt better describe the function of the model.

As an example,we model a fifth order elliptic low-passfilter as described in[12]. A
model icon (figure 2) has been definedvith four pins and ten properties — he

13

coordinates bthe poles andzerosof the transferfunction, the input capacitancethe
output resistance and the value of the static supply current.

signal |YOD

signal —~

signas | x|

omegal SI6-IN| “ > [sT6_0uT
omegar Sth elliptic Isupstat
omegasl \ Cin
omega4 V58 Rout

Fig. 2: Icon of a fifth order elliptic low-pass continuous-time filter.

3.5. The Functional Diagram

The functional diagram is a schemat&presentation of an analogue behaviour given in
the form of an extendeblock diagram.Somegraphical buildingsymbols, which stand

for elements of behaviour are put together and interconnectectén to describe more
complex behaviour. Expressed more formally:

TheFunctional Diagram(FD), built as an assembly of interconnect@&daphical Building
SymbolgGBS39, describes théehaviourof the model.

Note: The structure of the FD does not match the structure of any particular plfgsical
electronic) realization of the component. Only the behaviour is described.

The functional diagram contains the semantics of the model. This semantics is
determinedfirstly by the interconnection scheme of theGBSs in the diagram and
secondly by the semantics of each GBS.

The functional diagram israwnwith a graphical editor, that allowGBSs to bechosen
from alibrary, placed in a schematiand connected by wires. As in the block diagram
formalism, awire represents a one-dimensionalpn-physical, continuous-timstate
variable. Connection points on @GBS are oriented and thus indicate the direction of
propagation othe information throughoutthe model. The following connection rule
applies: the output pin of &BS can be connected to an unlimited number of inpirts
but cannot be connected to another output pin (conflict).

Once the internal behaviour has been described, bi-directional pins, which correspond to
the pins on the model’s icon, are placed around the diagram. Par@B$s areadded to
compose the interface between tpbysical quantities orthe pins and the internal
variables of the model.

14

In order to obtain the desired behaviour, the user can adjuptdpertiesof some GBSs.
The value attributed to the properties can be either numerical or it can be an expgmession
which the external parameters of the model — as defined on the icon — appear.

If we now go back to our continuous-time filter,we can draw a functional diagram
(figure 3) to describe its behaviour.

Fig. 3: Functional diagram of a fifth order elliptic low-pass continuous-time filter.

We can first recognize an RC-parallel input stagke value of thevoltage on thenput

pin is read using ®oltage probeGBS. Thisway the physical acrossquantity voltageis
translated into an abstract variable. Thislue is multiplied by theconstant which
represents the input conductance usingai GBS. In aparallel path, its derivative is
multiplied by the input capacitan@@n — a parameter of the model. The sum of these two
terms is written as a current contribution to the input pin by meanscuifrent generator
GBS. Now, theabstract variable is translated into a physitalough quantity oftype
current. Then, the transfer function is modelled as a series of GBSs, which represent a
single pole polel GBS), two pairs opoles pole2 GBS)andtwo pairs of zeroszero2
GBS)respectively. Againthe parameters of theodel — icon properties — appear on
the various GBSs.

The output of the transfer function could be used directly as the ideal output widtige

Here, we rather feed it to a resistive output stage in order to model a non-ideal output. The
ideal value is compared to the actual value of the voltage on the outpatgidivided by

the output resistana®ut. The resulting value is imposed as a curmemntribution to the
output pin.

Finally, apower supply with static supply curreisupstathas also been defined. The
positive and negative current termsare split up usingseparator GBSs andimposed as
current contributions to VSS and VDD respectively.

15

If acomponentmust be modelled differentldependingon the analysis type(DC, AC,
transient), the behaviour can be describedin several analysis-specific functional
diagrams. This facility will usually be referred to as multi-Ridpdelling. Figure 4shows
a functional diagram of our low-pass filter valid only in d@de.All the derivativesare
removed from theoriginal FD. The newinput stage isnow purely resistive and he
transfer function is replaced by a wire.

o< [| <l

vss<>— [| <k

e
W A W
10t SI6_0UT
A F

1.0/abs_rout

Fig. 4: DC-mode FD of a fifth order elliptic low-pass continuous-time filter.

3.6. The Gaphical Building Symbols

The graphical building symbolsre spare parts which represent elementsbehaviour
and which are used to build a more complex behavioural description. In other words:

A Graphical Building Symbol (GBS) is the graphicalrepresentation of an analogue
function.

A GBS is composed of:

e A graphicalbodydrawn so that it gives a goddea ofthe correspondindbehaviour.
The body and the name of ti@BS together represent the semantics of @GBS in a
graphical way. If the body is not meaningful enough, an additideatual
description must be provided to the user.

e Optional input and/or outpupins. In a functional diagram, thénformation is
transformed in theGBS and transits inthe form of a variable from on&BS to
another through pins. Therefore, theyust be oriented. Inpytins arebound to the
symbol with anincoming arrow sothat they can bevisually identified. Any pin

16

which is on the physical side of aread/write conversion GBS, however,must be
declaredbi-directional and markedvith a bi-directional arrow. Each pin mustalso
have a distinct name.

» Optional properties,which allow theuser b adjusta GBS instance & a particular
need. For example, tlgain GBS has a property, also callgdin, which canbe setto
an arbitrary value to determinethe multiplying factor between thenput and te
output.

The range of behaviour that can be representedy a GBS varies from elementary
mathematical operators to arbitrarily complex sete@fiations.However,a set of basic
GBSs is defined, which can be classified in the following categories:

» Operator GBSs: they mainly representcurrent mathematicaloperators. Beside he
four basic operators, time differentiati@md integration are defined ss.well asgain,
sign, poles, zeros and some others. Figure 5a shows a 2-input adder GBS
characterized by

OUT = IN, +IN, (6)

whereIN7 andIN, arethe two input pins d the GBS and OUT is the output pin.
Figure 5b shows a gain GBS characterized by

OUT =gainN 7)

wherelN is the input pin of the GB®)UT is the output pin andgain is a property of
the GBS.

+

+ 1.0

a) b)
Fig. 5: Examples of operator GBSs: a) 2-input adder b) gain.
» Function generation GBSsunctions like sineor cosine can be generatedo be used
in the model. Figure 6 shows a sine GBS characterized by

OUT =sin(IN))

17

wherelN is theinput pin of the GBS and OUT is the output pin. In this equationIN
carries theargumentof the sine function.

= SIN —

Fig. 6: Example of function generation GBS: sine function.

« Parameter GBSanost of the model parameters (icopperties) correspond, in the
functional diagram, to properties @BSinstances —e.g., the propertygain of a
gain GBS. However somfeee parameters must also leailable directly in the FD.
For this reason an additional parameter GBS has been defined. It hasoqresty —
the actualparameter —andone output pin which carries the value of th@ameter.
Additionally, some GBSs access simulation parameters like time or model
temperature. Figure 7a shows a free parameter GBS characterized by

OUT = parameter 9)

and figure 7b shows a temperature GBS characterized by

OUT =temperature (10)

O
5 -

a) b)

Fig. 7: Examples of parameter GBSs: a) free parameter b) model temperature.

*« Conversion GBSsdnside the FD, the wires which connect {B8Ss areoriented and
they represennon-physical variables onlyWhen the model isused in acircuit
diagram, however, its pingre connected to physical nodes. As explairgove,
these pins are not oriented and they carry a pair of quantities — an across quantity and
a through quantity. Some conversion elements are then necessary to interface the two
description modes. In th&D, the pins of the model, whichare represented by
particular connector symbols to indicate the boundary of the FDexelusively be
connected to a particular class of GBSs, catledversion GBSs. Thesare used to
access thehysical quantities omhe pinsandtranslate them intovariables, a form

18

that canbe usedinside theFD. ConversionGBSs canbe either d probe type and
represent aead functionality, ¢ of generatortype and represent acontribution
functionality @ even bothat atime. Figure 8a shows apressureprobe GBS.The
value of the pressure read on thed input pin is transmitted tthe output pin of the
GBS andcan thereforebe used a a variable inthe FD. Figure 8b shows acurrent
generator GBSThe value of the variablepresenton the input pin of the GBS is
imposed as &ontributionto the current on thelectrical output pin.

T

P

a) b)

Fig. 8: Examples of conversion GBSs: a) pressure probe b) current generator.

3.7. Hierarchical Design

In practice, functional diagranman be quitecomplex and it isobvious that a diagram
with more than dew tens ofGBSsbecomes difficult to read. Fdahis reasonhierarchy
has been introduced. The idea is as follows: amevarchical GBSs designed taeplace
part of the original functional diagram.

First the new GBS is drawn according to the rules give§ $6. The orientation of the
different pins isdefined in such avay that thenew GBS can be directly placed in the
original FD. Then, asub- functional diagram (sub-FD) is drawn, whicltontains the
portion of the original FD replaced by timew GBS.This core issurrounded byoriented
connectors,which correspond to the pins of theew GBS. The sub-F2xpresses the
semantics of the hierarchical GBS. The hierarch@BE andthe associatedub-FDform

a new generic object that can then be placed in a library for later reuse.

As an example, a hierarchical variant of our filter model is showfigime 9. The input
stage, the transfer function, the output stage and the power supply are now represented by
hierarchical GBSs. The icon’s properties also appear on the various GBSs.

19

,—< >\VDD

% abs_isupstat

= x$ W‘EJ/A slrout
SIG.INS>—=# g5 §Xé %‘3& <>S16_0UT
abs_sigmal
aEs,sjgma%
sbs_omegal — <>Vss

abs_omega?
abs_omega3l
abs_omega4

Fig. 9: Hierarchical FD of a fifth order elliptic low-pass continuous-time filter.

If we look in more detail at the output stage (figure 10), the properity defined on the
hierarchical GBS and it appears in thexpression othe gain property of a gain GBS
inside the sub-FD. The sub-FD also includesiversion GBSs (a currenjeneratorand a
voltage probe). For this reason, the hierarchical GBS is consideredoawersion GBS
with read/writefunctionality and the corresponding pin islefined bi-directional. The
other pins are an input pin and an output pin which allowsuiee toaccess thevariable

i

out*

v

R PIN_NAME

W _BéD(TOWPIN,NAME — + A >

| ouT 1.0/R
IN 1> 10UT

Fig. 10: Hierarchical GBS and sub-FD of a resistive output stage.

A sub-FD cancontain other hierarchicaGBSs without limitations onthe number of
hierarchy levels. However, recursive description — i.e., use of ahierarchical GBS in
the sub-FD associated with itself — is not allowed.

It is also possible to combine multi-Fiescription with hierarchicamodelling. Inthis
case, the component idescribed by three differentinalysis-specific functional
diagrams, each of whickontains hierarchicalGBSs. Furthermore, one can define a
hierarchical GBS associated with three analysis-specific sub-FDs.

20

4. AUTOMATIC CODE GENERATION

The modelling experiencegatheredin this project hasled o the developmentof a
graphical methodor the description 6 analoguebehaviour. In a secondstep towards
computer-aided modelling, the equivalent hardwdescriptionlanguagemodel codewill
be generatedstarting from this graphical description. The whole processwill be
considered s successful fi the resulting HDL model can be compiledvithout syntax
errors and simulated. Obviously, the simulation results must also match the
specifications.

First the specifications of the code generator are given. Tdmeantity generatorand an
architecture generatarill be describedin detail. Thesetwo code generatorsconstitute
the core of the program ABSynth.

The general objectives of the code generation tool are:

* The codegenerator todevelop must automatically translate thesemantics D an
analogue modegiven graphically as an icon and afunctional diagraminto an HDL
file.

» The generated code must contain the complete description of the modelnaust be
syntactically right by construction.

« After compilation of the generated code, it mbstpossible ¢ instantiatethe model
in a circuit description for simulation.

» The generated models should be coded in a standard HDL.

The hardware description language we choose for the long term is VHDL-AMSIEBEe
mixed-modeextension ©VHDL [13]. As VHDL-AMS has notbeen completely defined
andapproved yet(Dec. 1996), our automatic code generator musbe developedfor a

proprietary modelling language dfie VHDL family. Consequentlyjt must bedesigned
so thatit can be easily updated ¢ the standardanguage.For this reason,the code
generation approach must be as independent as poséiblparticularlanguagesyntax.

It is obvious, however, that the definitions of the targBL syntax must be includedn

one form or another in the program.

In order to determine the level of language independence we want to achievekethe
difference between songenerallanguageconstructsthat are common toall the VHDL-

like languages and some more specialized language constructskeywards, standard
functions, etc. Thanformation relative to the generalanguagestructurecan be part o

the code generation programThe more specializeddefinitions, however, shouldbe

stored out of the main program so that they can be updated easily.

21

We assumehat VHDL-AMS models will have the same entity-architecturestructureas
VHDL models. Furthermoresome entities can have several associatedarchitectures.
Consequently, we split up the code generation task into two parts:

* An entity generatorwhich translatesthe information relativeto the icon into an
entity declaration. This generator is described in more details below.

e An architecture generator, which translatesthe semanticsof a functional diagram
into an architecture description. Two strategiescan be definedo generate he
architecture partlt canbe either a behaviouraldescriptionmade é a collection d
statements 1o a structural description based on signal-flow semantics. The
behavioural architecture generator is described in detail below.

To be consideredright by construction,the generatednodels must strictly follow the
target language syntax, but we can limit our approachdob-setof the language.Here,
we implemented a sub-set ANACAD's HDL-A which seems compatiblwith the spirit
of VHDL-AMS. For instance, wenly generate purelynalogue modelsince the digital
VHDL partis already covered byther tools. Some othedimitations will be indicated
along this chapter.

4.1. Entity Generator

An HDL-A entity clause describethe interface of a model, which, in our graphical
description, corresponds to the icofhe entity must havea nameandcan haveseveral
connection points and parameters. The following correspondences have been defined:

« The name of the entity is the same as the name of the graphical component.

« Each bi-directional pin of the icon is expressed as an analggueleclarationof the
same nature.

« Eachproperty of the icon is expressedas a generic declarationwith its default
value.

We now describ¢he entity generation procedhat translates thécon descriptioninto
the HDL-A entity clause. Firsthe information & readfrom the graphical databasélhe
model namethe property namesand the correspondingdefault valuesare stored n
memory. The default values cannot be used irHBE-A entity declaration but this will
be possible in VHDL-AMS. The pin names are stored too, together with the
corresponding values of the propengture. If no natureproperty isfound, the pins ae
assumed to belectrical.

In a secondstep, the actualentity declarationcode s written in afile. Thefirst line of
code & built accordingto the syntax and using the nameof the modelas stored
previously. Then, if generics are present, the generic clsuaeitten. For eachgeneric,

22

ageneric_list line is written. Infact, thereis only one genericidentifier perline. A
samplegeneric_list codeline is copiedfrom atemplate file, the word generic is
replaced bythe actual generimameandthe resultingcustomizedline is copied to the
output file.

The generic template line is:
generic : real

Then, the pin declarations are issued in a similar way.diifierenceis that both thepin
name and theatureattribute must be set according to {iiea description. The actual pn
name takeghe place of the word pin , while the value of the optional propertynature
replaces the wordlectrical in the following template:

pin : electrical

Once the genericand pin declarationsare complete, theremainder ofthe entity
declaration clause is written.

As an illustration, we go back to our filter example. The model nare#ip§ , the icon
has tenproperties —sigma0O , 1 and3, omegal to 4, cin , rout andisupstat — and
four electricalpins — SIG_IN , VDD VSSandSIG_OUT. The propertiesare expressed |
real generic declarations

ENTITY ellip5 IS
GENERIC (
sigmao : real;
sigmal : real;
omegal : real;
omega? : real;
sigma3 : real
omega3 : real;
omega4 : real;
cin : real;
rout : real;
isupstat : real

)
and the electrical pin declarations are added.

PIN (
SIG_IN : electrical;
SIG_OUT : electrical;
VDD : electrical;
VSS : electrical
) ;
END ENTITY ellip5;

23

4.2, Behavioural Architecture Generator

In addition to the entity generator,an architecturegeneratorhas been developed.The
semantics b the functional diagram is translatedinto an architecture body using
behavioural statement§he semantics bthe GBSs & given in codetemplates thatre
written in the target language syntax and stored library. First, we give somegeneral
information @ the architecture generatioprocess.Then, the different partsof the
architecture generator are described.

4.2.1. Generalities

In order to link thegraphical model descriptionandthe code b generate, thdollowing
correspondencefave been establishedetweenthe FD and the HDL-A architecture
block.

« The name of the architecture is identical to the name of the FD.

« A GBS instance is translated into a piece of HDL code.

* A GBS propertybecomesa real variable, whichmust beinitialized accordingto the
value of the property.

e A GBS pin becomes an analogue state variable.
* A net becomes a state variable assignment statement.

The basic idea behind the architecture generator is that each GBS is associatecodéh a
template writtenin the target syntax. Based o this information, the final code &
generated in a two-step sequence:

(1) ForeachGBSinstance, aopy of the correspondingodetemplate ismadeand the
identifiers are modified accordingto the instance name in order to ensuretheir
uniqueness and the information that corresponds tontfeeconnectionsbetween le
GBSs & added ¢ the code & simple assignmenstatements.This is called the code
customizationprocess.

(2) All those customized code segments are gathered into a single code fils. CEttlisd
the gathering process.
4.2.2. Code Customization

As explained above, code customization is fingt stageof our behavioural architecture
generator. Thisprocesstransformsa generic code template relatedo a GBS into a

24

customizedcodesegment accordingo the name and b the propertiesof a particular
instance of this GBS. It must fulfil three tasks:

» In the generic code template, thaentifiers are generic; inthe final code,they must
be unique. To achieve thithe nameof the GBS instance $ used & a prefix to each
identifier.

* In the genericcodetemplate, thepropertiesof the GBS are initialized © a default
value; inthe final code,they mustbe initialized to the value of thecorresponding
property of the GBS instance. This value is changecbrdinglyin the initialization
part.

* In an FD,eachnon-interface inpubf a GBS s connected to theoutput of another
GBS. This information is expresséad the model code & a new statement: thevalue
of the outputstate of the precedingGBS i assighed tothe correspondinginput
state

For example (figure 11), the input pin of a gainGBSinstancel2 is connected tohie
output pinout of the GBS instancklL . The value of the gain is set to 1000.

. A L

1000.0
instance 11 instance 12 instance I3
"gain" = 1000

Fig. 11: GBS customization example.

The primitive code template of the gain GBS is

ARCHITECTURE imt_hdla OF gain IS
STATE in, out : analog;
VARIABLE gain : real;
BEGIN
RELATION
PROCEDURAL FOR init =>
in :=0.0;
out := 0.0;
gain := 1.0;
PROCEDURAL FOR dc, ac, transient =>
out ;= gain * in;
END RELATION;
END ARCHITECTURE imt_hdla;

The resulting code is as follows

25

ARCHITECTURE imt_hdla OF gain IS
STATE 12in, 12 out : analog;
VARIABLE 12 gain : real;

BEGIN
RELATION
PROCEDURAL FOR init =>
12 in := 0.0;
12 out := 0.0;
12 gain = 1000.0 ;

The identifiers have been modified and the value of the gain has been set to 1000.

PROCEDURAL FOR dc, ac, transient =>
12 in = 11 out;

The value of the variabldout is assigned tt?in

12 out ;= 12 gain* 12 in;
END RELATION;
END ARCHITECTURE imt_hdla;

4.2.3. Single FD Architecture Code Gathering

Codegatheringis the secondtageof the behaviourakrchitecture generatoit aims d
gathering all the previously customizedcode segments into aingle model. If the
behaviour of the model in the three analysis domardescribedn the samefunctional
diagram, graphical information reading and code customization are donerwdyThen
the code can be gathered for each block successively.thatéhe resulting code carbe
different in the three analysis domaindecause th&BS codetemplatesmay describea
different behaviour in the different analysis domains.

The gathering task is divided into several steps.
First the declarations amgeneratedThe architecture namés the nameof the functional
diagram, the entityname isthe name of thecomponent.The declarations bthe states

and variables are gathered from the customized GBS code segments.

Then, the initialization part is generated. Tgenericsareset to theirdefaultvalue. The
initial values of the various states and variables are defined in the code templates.

Then, theexplicit behaviour description of the various customized GBS code are
gathered depending on the analysis type.

Finally, the implicit behaviouris gathered foreachanalysis type,including unknown
lists and equations.

26

4.2.4. Multi-FD Architecture Code Gathering

If the graphical model includes differeRDs for different analysistypes — i.e., DC, AC
andtransient —they will be processedsuccessively. Firstthe threeanalysis-domain-
specific architectures are generated from the corresponding functional diagrams.

An intermediateDC architecturedescription, fi specified,is generated accordintgp the
code customization and code gathering procedures desaiime. As the descriptionis
specific to DC analysis, the states and variakliss differ from the statesandvariables
used inthe other analysis-specific descriptionsherefore, thestring DC is prefixedto
all the identifiersto ensuretheir uniquenessAdditionally, dummy AC and transient
equationblocks must also be generatedlndeed, the syntax requiresthat the same
unknowns must be declared in #ile three equationblocks. 70 satisfy this requirement,
each unknown that appears in th€ part mustalso be declared m the AC andtransient
parts. Moreover,as the number ofunknowns must match the number of equations,
dummy equations — i.eyy == 0.0; — must be added.

An intermediateAC architecturedescription and a intermediate transienarchitecture
descriptionare generatedoo, if specified.Finally, all this information & gathered &
form the final model code.

4.2.5. Hierarchical Code Generation

Instead of being stored as a code template, thesemanticsof a hierarchical GBS is
expressed saa sub-FD. This semanticsis translatedinto anew codetemplate sahat it
can be used by the top-level architecture generator.

The code generation process — code customization, code gathering — § applied
recursivelyto all the hierarchicalGBSsuntil all the code templatesare available. A
newly generatedcode template can be storedn a library for later reuse & that the
corresponding GBS can be considered as a flat GBS the next time it appeafRDinTdre
associated code template can then be used directly and much CPU time is saved.

As already pointed out in the previous chapter, it is possible ¢ combine multi-FD

modelling with hierarchicalmodelling. f the modelis describedby analysis-specific
functional diagrams that contain hierarchical GBSs, the hierarchy is solvedrfidsthen

the final code is generated using the newly generated code templates.

On the other hand, if a hierarchical GB&Sdescribedby three analysis-specific sub-FDs,
the corresponding code template must be generated first. Thereheodetemplate an
be used as usual.

27

In addition to hierarchical GBSs, users can alsalefine new GBSs b their own. The
symbol must bedrawn & explained aboveand the associatedode template mustbe
written too, according to the particular syntax given in the User’s Guide [14].

4.3. Example

As an exampleof generateccode,we go backto the example of the elliptic low-pass
filter. We will not give the whole model codehere, butwe will rather point out some
interesting extracts. In the functional diagram giverfigure 4, the transferfunction is
given as a series of GBSsachof which standsfor either poles @ zeros. A single pole
and apair d poles are modelled inHDL-A using the following implicit equations,
respectively

in - (-1.0/(twopi*p)) * ddt(out) - out == 0.0;
in - bl * dout - b2 * ddt(dout) - out == 0.0;

wherebl andb2 are functions of the coordinates of theles and wheredout is the first
derivative of the output stateut . A pair of zeros, however, is modelled usimgexplicit
equation. Againal anda2 are functions of the coordinates of the zeros.

out :=in + al * din + a2 * ddt(din);

The single pole GBS is instant&06 , the pair of poles areespectivelyl707 and1708 ,
the pairsof zeros1709 and 1710 . After code customization — instance namesre
prefixed tothe identifiers andassignment statementse added —and gathering e get
the following code, for instance for the AC part of the model:

PROCEDURAL FOR ac =>
-- GBS 1706 to GBS 1707 connection
1707_in := 1706_OUT;
-- 1st derivative of 1707 output
1707_dout := ddt(1707_out);
1708 _in := 1707_OUT;
1708_dout := ddt(1708_out);
1709_in := 1708_OUT;
1709_din := ddt(1709_in);
-- 1st pair of zeros
1709_out := 1709_in + 1709_al * 1709_din
+1709_a2 * ddt(1709_din);
1710_in := 1709_OUT,;
1710_din := ddt(1710_in);
-- 2nd pair of zeros
1710_out :=1710_in + 1710_al * 1710_din
+1710_a2 * ddt(1710_din);

EQUATION (
1706_out,
1707_out,

28

1708_out
) FOR ac =>
-- single pole
1706_in - (-1.0/(twopi*I706_p)) * ddt(1706_out)
- 1706_out == 0.0;

-- 1st pair of poles
I707_in - 1707_b1 * 1707_dout - 1707_b2 * ddt(I707_dout)
- 1707_out == 0.0;
-- 2nd pair of poles
1708_in - 1708_b1 * 1708_dout - 1708_b2 * ddt(I708_dout)
- 1708_out == 0.0;

5. RESULTS

The graphical description and the code generation strategy have been impleasetied
tool ABSynth and integratedin the Mentor GraphicsFalcon Frameworkin order ©
benchmark ABSynthwe first measure theode generation timein various situations.
Then vwe comparetwo ABSynth models with an HDL-A model coded manually. Q@r
criterion will be code size, simulationresults and simulation time. The benchmark
example used is the elliptic low-pass filter already tredtiethe previous sections.Code
generation timeand simulation timeare CPU time measured @ a Sun Sparc 20/71
workstation — rated 126 SpecInt92 and 121 SpecFt92.

5.1. Code generation time

We generate HDL-A models of the low-pass filter in three different ways:

» Starting from the flat functional diagram given as explained above.

» Starting from the hierarchical functional diagram of figure 9. h a first run the
generic code templates which correspaadhe hierarchical GBSs arenot available.
They must be generated and can be saved in the user library.

e Starting oncemore from thehierarchical FD. In this secondrun, the previously
generated genericodetemplates bthe hierarchical GBSs aretaken fromthe user

library. The resulting code is the same as in the previous case.

The code generation time is displayed in table 1.

29

Model Flat Hierarchical Hierarchical
(1st run) (2nd run)
CPU time 45 s 49 s 16 s

Table 1: Code generation time.

We first see thatodegeneration startingrom a hierarchicaldescription is somewhat
slower than from a flatdescription. However, when genericcode templates of
hierarchical GBSs can be reusethe CPUtime is reduced in aimportant manner — in
this case by a factor of 3.

5.2. Code size

Table 2 displaysthe size of the different models generated as well as the size of a
manually codedversion of thesamefilter. We compare thenumber of coddines, the
number ofstate s and the number efriable s.

Model Manual Flat Hierarchical
Lines 103 453 467
States 8 55 63

Variables 15 22 33

Table 2: Model code size.

Obviously, automatically generated code is less compact cbdewritten directly by a
modelling engineer. In this case, tlggest difference lies by the number dcftate
variables necessary. This is not surprising because ABSynth uses a state variable for the
output of a GBS and another one for the input of the GBS to which it is connected even if
they both carry the same information. However, the flat descrigimhthe hierarchical
description lead to code of the same complexity.

5.3. Simulation results

The different modelsare then simulatedand weobtain in all cases exactly theame
curves. The results of an AC simulation of the low-pass filter are displayed in figure 12.

30

dB ?\IDB(DUT)

@

1 Ll L
1e+iE 1e+03 Ze+iZ 1 4.8e+03 de+id le+of
asioz hz

I =12)

!
2
=
&

QLR LR L B

Ll 1 Lol L
1e+03 Je+i3 le+id 1E+(|)-{5
=z

(E‘
2%
o
2
3

B
m oz om

o % 3 3

LU/ LU LU L U

L I L T R | IR R
1e+02 1e+03 le+od 12405
=

Fig. 12: Simulation of a fifth order elliptic filter.

5.4, Simulation time

Simulation time,howevercanvary greatly from one modelto another. Table 3shows
the simulation time needed by each model in the case of an AC simudation the case
of a transient simulation.

Model Manual Flat Hierarchical
AC simulation time 10 s 16 s 16 s
_ Transient 25 s 36 s 36 s
simulation time

Table 3: Simulation time.

As the manually written model is much faster than the ones we generatedB&ynth,

the generatedodeshould be optimized. A firstdea is toreducethe number ofstate
variablesandthe number ofines of code. Thiscould be done bymodifying the code
customization process in such a way that the output of a GBS would be represented by the
same state variable as the input of the n8BS. Thisway one state variabland one
assignment statement could be saved for each inter¢®B8ection. This point has not

been investigated further and it is left for future work.

31

6. CONCLUSIONS

In this text, we searched f@away © support designersn modelling analoguesystems.
The solution we proposeis twofold. First, the usershave tographically describe he
behaviour ofthe systemthey wantto model. Second, this graphical description is
translated into an analogue hardware description language.

6.1. Main Contributions

A first contribution of this research is a method for the graptdeakriptionof analogue
behaviour. W introduce the functional diagram, an extendedblock diagram,which
allows theusersto build complex behaviouraldescriptions usingoehavioural building
blocks called graphical building symbols.The users can clearlydefine theboundary
between thdanternal behaviouraldescriptionbased orsignal flow variable processing
and the external interface of the system based on the exchange of physical quantities.

A second contribution is a code generation stratdgyelopedto translatethe semantics
of a functionaldiagraminto behaviouralHDL code. Thisstrategyincludesthe handling
of hierarchical and analysis-specific functional diagrams.

Lastly, thegraphical description method and the code generation strategyave been
implemented & a software tool called ABSynth (Analogue Behavioural model
Synthesizer). ABSyntlis the first wide-purposeanaloguebehavioural model generator
based ona dedicatedanalogueHDL. It takescare ¢ the targetHDL syntax, t is user-
friendly, easy to extend towards nemaloguefunctions, andintegrated m a commercial
design framework. However, it is still modular and would be easy to port to anatiget
language b to another design environment. ABSynth has been validated using
workbench examples — @ analogue filterand a A/D converter (presentedn [4]).

Simulation resultsof ABSynth modelswere compared withsimulation resultsof “hand-
typed” HDL modelscontaining the samesemantics.This showedthat the approachis
valid — the resultingcurvesareidentical — but also that thegeneratedcode should ke
improved to achieve better simulati@peed.For instance, aeduction ofthe numberof

state variables could be considered.

6.2. Fundamental Limitations

Severallimitations have alreadybeen mentioned. Some of themare linked to the
modelling method itself and can therefore be considered as fundamental limitations.

First of all, the methods we developed are limited to analogue models.

32

Besides, thewvhole modelling method proposedhere isbased oma “divide-and-conquer”
strategy: theusers haveto divide the behaviour of the component d model into
elementary piecesin order to describeit in the form of a functional diagram.
Unfortunately, this method cannot be applied to systems which exhilgghdy coupled
behaviour. This intrinsic limitation is probably the main drawback of this method.

Additionally, evenif the graphical description methodis quite general, thecode
generation strategiesewdevelopedare linked to the target languageHDL-A. For this
reason, thestructureof the tool ABSynth reflectsthe structure ofHDL-A. We werealso
limited to purely behavioural code. However, we believe that it will be postiblgdate
ABSynth towards VHDL-AMS.

Finally, some problemswere not investigatedfurther. For instance, algebraidoops
drawn in the functional diagram are kept unchangetthéngeneratednodelcode and ray
therefore lead to erroneous models if the associated simulator cannot solve them.

6.3. Future Work

Some othellimitations arerelated tothe implementationand couldtherefore le pushed
back in the future.

 An IEEE1076.1 VHDL-AMS generator shouldbe developedwhen this languageis
available.

« A more complete sub-set of the final languagelld also ke implemented,including,
e.g.,couplingsand wide pins (buses).

* An interfacetowardsdigital modelling could beprovided based, forinstance, o a
digital black-box used to pack existing digital HDL code.

» Similarly, anotherdescription method should & available to generatecomplex
algorithmic code.

* An assistededitor should also be providedto the userswho still need ¢ type some
new GBS code templates.

» Lastly, the tool ABSynth could beptimizedin order b reducecodegenerationtime
and generated code size.
6.4. Final Remarks

Finally, it seemsimportant to emphasizethat, whatever themodelling tools available,
engineers firsneed 6 have agood understandingof the system they want to model.

33

Secondly, they must know which effects have to be included in the model. Theangnd
then, computer-aided modelling tools can be used efficiently.

7. ACKNOWLEDGEMENTS

This work has been supportegartly by the Swiss Foundatiorfor Microtechnology
Research (FSRMjindercontracts 91/06and 91/06P and partly by the Swiss Priority
ProgramMINAST undercontract 4.01(MicroSim). We would also like tothank all the
colleagues ofus who participatedin this researchat IMT (Univ. of Neuchéatel)and &
CSEM, Neuchétel.

8. REFERENCES

[1] V. Moser, Computer-Aided BehaviouraModelling d Analogue
SystemsThése de doctorat, Université de Neuchatel, 1996.

[2] V. Moser et al., “A Graphical Approachto Analogue Behavioural
Modelling”, The EuropeanDesign and Test Conference,pp. 535-
539, 1994.

[3] V. Moser et al.,"Generating VHDL-A-like Models UsingABSynth”,

EURO-DAC'95 European Design Automation Conference &IHRO-
VHDL'95, pp. 522-527, 1995.

[4] V. Moser et al., “Behavioural Modelling of Sampled-DataSystems
with HDL-A and ABSynth”, to appear in CHDL'97 Computer
Hardware Description Languages and Their Applicatiob897.

[5] D. D. Gajski, “The Structure & a Silicon Compiler”, IEEE
International Conference on Computer Desig®87.

[6] G. R. Boyle et al., “Macromodeling dhtegratedCircuit Operational
Amplifiers”, IEEE Journalof Solid-State CircuitsVol. SC-9, No. 6,
pp. 353-363, 1974.

[7] C. Visweswariahet al., “Model Developmentand Verification for
High Level Analog Blocks”, 25th ACM/IEEE Design Automation
Conference pp. 376-382, 1988.

[8] B. A. A. Antaoand A J. Brodersen, “Techniquefor Synthesis 6
Analog IntegratedCircuits”, IEEE Design & Test of Computers,
March 1992, pp. 8-18, 1992.

(9]

[10]

[11]

[12]

[13]

[14]

34

HDL-A User's Manual, Issue 1.0, ANACAD Electrical Engineering
Software, 1994.

M. Joshi and H Kobayashi, “QuantifyingDesign Productivity: An
Effort Distribution Analysis”, EURO-DAC'95 EuropeanDesign
Automation Conference with EURO-VHDL'9ap. 476-481, 1995.

F. E. Cellier, Continuous SysterModeling, Springer-Verlag, New-
York, 1991.

M. Banu and Y. Tsividis, “An EllipticContinuous-TimeCMOS Filter
with On-Chip Automatic Tuning” IEEE Journal d Solid-State
Circuits, Vol. SC-20, No. 6, pp. 1114-1121, 1985.

C.-J. R.Shi and A Vachoux, “VHDL-A Design Objectivesand
Rationale”, Modelling n Analog Design, pp. 1-30, J.-M. Bergé,
O. Levia and J. Rouillard (eds.), Kluwer Academic PublisBarston,
1995.

V. Moserand P NussbaumABSynth User’s guide, IMT Report 30
PE 01/95, Version 1.1, Université de Neuchatel, Institut de
microtechnique, 1996.

	ABSTRACT
	1 . INTRODUCTION
	2 . ANALOGUE MODELLING
	2.1. Modelling Levels
	2.2. Analogue Model Generation Tools
	2.3. HDL-A in Short
	2.4. Coding Method
	2 .4 .1 . Model Interface
	2 .4 .2 . S-domain Modelling

	3 . GRAPHICAL DESCRIPTION
	3.1. Specifications of the Graphical Description Set
	3.2. Existing Graphical Description Methods
	3.3. Analogue Behavioural Description Method
	3.4. The Icon of a Component
	3.5. The Functional Diagram
	3.6. The Graphical Building Symbols
	3.7. Hierarchical Design

	4 . AUTOMATIC CODE GENERATION
	4.1. Entity Generator
	4.2. Behavioural Architecture Generator
	4 .2 .1 . Generalities
	4 .2 .2 . Code Customization
	4 .2 .3 . Single FD Architecture Code Gathering
	4 .2 .4 . Multi-FD Architecture Code Gathering
	4 .2 .5 . Hierarchical Code Generation

	4.3. Example

	5 . RESULTS
	5.1. Code generation time
	5.2. Code size
	5.3. Simulation results
	5.4. Simulation time

	6 . CONCLUSIONS
	6.1. Main Contributions
	6.2. Fundamental Limitations
	6.3. Future Work
	6.4. Final Remarks

	7 . ACKNOWLEDGEMENTS
	8 . REFERENCES

