

Cameleon#1 User Manual

Aykut FIRAT

24 May 2008

Working Paper CISL# 2008-13

Contents
What is Cameleon# Server? .. 2

What is Cameleon# Studio? .. 4

Cameleon# Studio by Example .. 5

Manually Authoring Cameleon# Spec Files ... 26

Summary of Cameleon# Spec File Syntax ... 33

Appendices .. 34

A1. Related Readings and References .. 34

A.2 Regular Expressions .. 35

A.3 Installing Cameleon# Server .. 38

A.4 Installing Cameleon# Studio .. 40

Composite Information Systems Laboratory (CISL)
Sloan School of Management, Room E53-320

Massachusetts Institute of Technology
Cambridge, MA 02142

1 Cameleon# refers to Cameleon# Server and Cameleon# Studio

 Cameleon# User Manual

2 | P a g e

What is Cameleon# Server?
Cameleon# Server is a server application coded in C# to extract data from web sites
based on a specification file. For example, the following information that can be
found in the CIA World Fact-book can be extracted in table or XML format by first
1) authoring a specification (spec) file for that web site, and then 2) sending a query
to Cameleon.

The specification (spec) file for extracting data from the CIA factbook web site is
shown below. This spec file can be authored visually or manually. After the spec file
is completed a query in simplified SQL form can be sent to the Cameleon server via
the http protocol and results are returned as shown in Figure 3.

Figure 1. Available data in CIA World Fact Book site

 Cameleon# User Manual

3 | P a g e

Figure 2. Example Specification File for the CIA Web Source

Input
Attribute

Regular
Expressions

Output
Attribute

 Cameleon# User Manual

4 | P a g e

What is Cameleon# Studio?
Cameleon# Studio is a visual application that aids the development of spec files, and
converting them into web services.

It has a built in browser on the left that also shows the source of a web page, and the
forms that are in that web page. On the upper right it shows the spec file in tree form, and
original form, and the auto produced web service code. On the lower right, it has several
tabs for surfing web sites (Sources), defining attributes (Attributes), providing values for
input attributes (Input Attributes), displaying messages from the program (Messages),
displaying scripts from the web sites, and authoring custom forms (forms). Results can
also be viewed via the Results tab.

country population gdp gdp_unit milexpendpercent
Singapore 4492150 126.5 billion 4.90

Figure 3. Simple SQL Query against the wrapped CIA World Fact Book

 Cameleon# User Manual

5 | P a g e

Cameleon# Studio by Example

In this section we go through an example by authoring a specification file for the CIA
World Fact Book using Cameleon# Studio.

Step 1 – Give a name
Use the Spec File menu item, click on New and enter a spec name. (e.g. ciafactbook)

Step 2 – Go to the web site
Either type it directly in the URL text box in the Source tab on the right, or search it
in Google and find it.

Figure 4. Cameleon Studio Interface

 Cameleon# User Manual

6 | P a g e

We are trying to simulate how the extraction should happen, and this is the page
where we start. We click on Add to Spec button in the Source tab.

If you click on the Spec File Source tab you will see that spec file in XML format is
being constructed automatically.

 Cameleon# User Manual

7 | P a g e

Step 3 Define an Attribute
Our first attribute will be the link that will take us to the page that has the
information. If you view the source of the document you will notice that relative links
for each country have the following structure:

<option value="geos/al.html" >Albania</option>
Or if we generalize:

 <option value="#Link#" >#Country#</option>

Where #Country# is an input country and the #Link# is the corresponding link.

Click on the attribute tab and enter the info in the boxes as follows:

Here Link is the name of our attribute

 Cameleon# User Manual

8 | P a g e

<form name="SelectCountry"> and </form> designates the begin and end of the
region we are interested in this page via regular expressions. Pattern is the regular
expression denoting what to extract from this region. In this case the pattern2 is
<option value="([^"]+)" >#Country#</option>

But we will use an actual country name instead of the input parameter #Country# until
we are satisfied with our attribute definition for testing purposes.
(i.e. it will be: <option value="([^"]+)" >Albania</option>).
The attribute text boxes have a couple of hidden functionalities:

1) If you double click on the Begin box, it will eliminate anything before the first
match of that pattern in the Source box.

2) If you double click on the End box, it will eliminate anything after the first match
of that pattern.

3) If you double click on the Pattern box, it will highlight the text it matches in the
text in blue. If there is no match, then there will no highlighting. Note that if the
pattern matches more than once then multiple highlights will be shown.

4) If you double click on the Name box, it will restore the Source box into its original
form.

5) Note also that you can drag (not drag and drop unfortunately so be careful as it will
take the value as soon as you enter a text box, this is due to some bug in .NET)
some text from the text into attribute boxes.

Click on match and it will show you the match in the results pane:

This is what we want. Change now Albania into #Country# so that it will work for all
Countries and click on Add to Spec.

2 Please see the Cameleon# user manual at the end of this manual if you have difficulty understanding what
this pattern means.

 Cameleon# User Manual

9 | P a g e

Step 4 Define the Second Source
Go back to the web site and choose a country to proceed to the next page.

Note that the address in the Source tab has a fixed part and a part that varies based on
a selected country. This variable part is stored in our attribute Link. To go to this site
we can simply append the Link
attribute to the fixed part of the
address. Change the variable part
of the address in the Source text
box and add it to spec.

 Cameleon# User Manual

10 | P a g e

Step 5 Define more attributes
Note that before you add an attribute make sure you click on the source in the spec
tree that that attribute belongs to. Otherwise the attribute may be added to the wrong
source. In that case right click on the attribute and choose delete to remove the
attribute.

When you author attributes you can use the search menu item to find what you are
looking for in the web site or in its source.
Population, GDP and GDPUnit attributes are declared as follows:

 Cameleon# User Manual

11 | P a g e

 Cameleon# User Manual

12 | P a g e

Step 6 Define the Input Attributes
Click on Input Attributes box and enter Country and a value for a country. Note that
these attributes can either be obtained from the query or may be extracted from a
source. If they are extracted from a source they can be used in consecutive sources.

Step 7. Test
Right Click on ciafactbook in the specfile tree and choose Run.

It seems everything is fine except Population has a problem.

Step 8. Debug
Right Click on ciafactbook in the specfile tree and choose Step. Click on step a
couple of times until you arrive to the second source. Then switch to attribute tab,
right click on the attribute Population from the specfile tree and click on Transfer
Attribute – this will fill in the fields in the lower half of the screen. You will notice if
you double click on the begin first, and end later, and then pattern that the pattern
indeed fails, because population is not consistently expressed with the pattern that we
found in Albania. We need to look for a more common pattern. (Note that you can
also put a breakpoint somewhere in your spec file so that it runs until the breakpoint
by right clicking on the item of interest in the spec file tree. You can also remove the
break points by using delete break point.)

 Cameleon# User Manual

13 | P a g e

The following one works for both France and Albania so presumably will work for
others as well. Delete the existing attribute (right click, choose delete) and put the
attribute declaration. Test again with other countries.

 Cameleon# User Manual

14 | P a g e

Step 9 Transfer
Now that we are satisfied, we can transfer our spec file to a location we can reach
publicly. This can either be manually done, i.e. by saving it in your local directory
and transferring via your favorite ftp application or using Cameleon# Studio.
Click on Spec File menu item and choose save by giving the same name specified
when you first created the spec file with xml extension: (Giving a different name will
create a problem for ftp transfer)

After saving click on Spec File menu item and Transfer. Below I show a location that
I have privileges to upload my files. You should replace the boxes with your own
information. Note that you can use passive ftp if you want or your server requires by
clicking on the passive check box, and you can also save your login information by
checking the Save as default box. Once the information is entered clicking on
Transfer will ftp your spec file to a remote location. As mentioned before this step
can be achieved manually as well.

 Cameleon# User Manual

15 | P a g e

Step 10 Test on the Web
Now go to a public Cameleon# test location. For example:
1) http://interchange.mit.edu/cameleon_sharp/cameleon.html
2.) http://www.aykutfirat.com/Cameleon/Demo.aspx
In these demo pages you can use a custom spec file location by entering a registry
directory. For example if you put the spec file in your MIT www directory, use
http://www.mit.edu/~username/ as your registry directory. (Of course replace
username with your username)
Then enter the query shown below:

Note that I directly put the spec file in the local directory so I leave the custom spec
file directory empty. You should fill it appropriately pointing to the location of your
spec file.
When you click on Run you should get:

 Cameleon# User Manual

16 | P a g e

Step 11 Optional Web Service Creation
While you were going through spec file creation web service code was also created
from your spec file. In order to put that web service into action, you need to save it
first, and transfer the files into a server that supports .NET framework.
First save your web service by clicking on Web Service menu item and clicking on
Save. Identify a location to save:

Now, click on the Web Service menu item and select Transfer: Again enter the
required information for your transfer location.

 Cameleon# User Manual

17 | P a g e

Note that there are two files that are being transferred. One of them is the asmx file
that goes into the directory indicated in the ftp info above. You also need to create an
App_Code directory in your server for the vb file as that is where the vb is assumed
to exist as shown in the Web Service Code tab below:

Once I do the transfer, I can go into my web service location (which is server
name+specfilename.asmx, in my case this is:
http://www.aykutfirat.com/ciafactbook.asmx

 Cameleon# User Manual

18 | P a g e

As seen above this web service has a default method called getCIFACTBOOKData.
Click on that, enter a country name, and click on invoke. (Note: You should enable
remote testing in your server to test the method remotely.)

The returned results are in the form of XML, which takes the form of a data set in the
.NET framework.

 Cameleon# User Manual

19 | P a g e

1. Advanced Features of the Cameleon# Studio
Although the above example covers most of the features of the Cameleon# Studio,
there are a couple of things that were not mentioned. These are explained below:

 Auto form handling

If the web page you want to wrap requires form submission before you can access
your data you need to have a form submission. For example if you want to wrap
babelfish at http://world.altavista.com/tr you need to work with forms

If you click on the Forms tab in the babelfish page, you will see two forms:

 Cameleon# User Manual

20 | P a g e

The first form is the one we are interested in. If you double click on form:frmTrText
it will transferred to the specFile Tree tab as a source.

We then need to edit this form to encode the input attributes namely the text to be
translated, and the mode of translation (i.e. from which language to which language).
We will call these two input attributes as source and language mode.

 Cameleon# User Manual

21 | P a g e

Then we add an attribute for extracting the results:

And test with some Input Attribute values:

 Cameleon# User Manual

22 | P a g e

Source: Hello
Languagemode: en_es
Note that the language mode values should be taken from the acceptable values of
babelfish by examining its source as shown below.

 Cameleon# User Manual

23 | P a g e

Then save and transfer your spec file to complete the task.

 Custom Forms

If you want to use custom forms you can define them in the Forms tab by entering its
URL, method, and name value pairs and clicking on Add to Spec. This is valuable
when you cannot do the transfer as in the previous example, or your form is somehow
different than what is shown on the page.

 Cameleon# User Manual

24 | P a g e

 Scripts

This feature is not used as frequently it may sometimes be needed. Scripts in web
pages are shown in the left-most Forms tab and can be transferred to the Scripts tab
with a single click. Here the script can be edited, named and added to the spec file.

An example spec file that relies on scripts is Expedia. As shown below Expedia has a
JSCRIPT tag called Time which refers to the result of interpreting some JavaScript
code. In such a case the script can be modified in the scripts window, and added to
the spec file.

<SOURCE URI="http://www.expedia.com/pub/agent.dll">
 <COOKIE name="path"><![CDATA[/]]></COOKIE>
 <JSCRIPT name="Time"><![CDATA[var d; d = new Date(); print(d.getTime());]]></JSCRIPT>
 <POST method="GET">
 <PARAM name="qscr" value="fexp"/>
 <PARAM name="flag" value="q"/>
 <PARAM name="city1" value="#Departure#"/>
 <PARAM name="citd1" value="#Destination#" />
 <PARAM name="date1" value="#Date1#" />
 <PARAM name="time1" value="362"/>
 <PARAM name="date2" value="#Date2#"/>
 <PARAM name="time2" value="362"/>
 <PARAM name="cAdu" value="1"/>
 <PARAM name="rfrr" value="-429"/>
 <PARAM name="zz" value="#Time#"/>

 </POST>

 Other Features

You can open existing spec files with the Spec File open directive, view error
messages in the Messages pane.

 Cameleon# User Manual

25 | P a g e

2. Known Bugs

Cameleon# Studio is an experimental system and contains a number of known bugs.
Some of these are:

1) Files transferred message does not always mean that files are actually transferred.

If the file was not found in the directory it would give the message although the
file was not transferred.

2) You need to always start with the SpecFile new directive and give a name to your
spec file. If you forget this spec file transfer will not work. You can still manually
transfer your file though.

3) Cameleon# Studio and Cameleon# Server will produce different results in some

rare cases. This is because the simulation performed in Cameleon# Studio is
slightly different in some cases.

There are also some other bugs that you may find. Please keep in mind that this is a
pre-beta version, and the software is continuously being updated.

 Cameleon# User Manual

26 | P a g e

Manually Authoring Cameleon# Spec Files

The general layout of a spec file is first presented in this guide, followed by a closer look
at some of the useful features. A summary of the spec file syntax is provided at the end.

Cameleon# Spec File Structure

Cameleon# spec file is XML-based, which means that its content is organized as a
hierarchy of nodes, or tags. Always name the spec file with xml extension, e.g.,
my_spec_file.xml. Let’s examine the sample spec file below to illustrate spec file
structure, as well as some key elements of a spec file.

1 <?xml version='1.0' encoding="UTF-8"?>
2 <!DOCTYPE RELATION SYSTEM "http://interchange.mit.edu/cameleon_sharp/cameleonspec.dtd">
3 <!--Comments: This is a spec file to wrap the CIA Fact Book site.-->
4 <RELATION name="cia">
5 <SOURCE URI="http://www.odci.gov/cia/publications/factbook/index.html">
6 <ATTRIBUTE name="Link" type="String">
7 <BEGIN><![CDATA[<body]]></BEGIN>
8 <PATTERN><![CDATA[<option value="([^"]*)"[^>]*>#Country#]]></PATTERN>
9 <END><![CDATA[</[Bb][oO][dD][yY]>]]></END>
10 </ATTRIBUTE>
11 …
12 <ATTRIBUTE…>…</ATTRIBUTE>
13 </SOURCE>
14 …
15 <SOURCE…>…</SOURCE>
16 </RELATION>

Line 1: Standard XML declaration tag. Every XML document, hence every spec file,
starts with some kind of declaration similar to this. You can copy this line and use it in
your spec file as is.

Line 2: DTD schema tag. DTD schema is a way to validate a XML document. The
schema, located at http://interchange.mit.edu/cameleon_sharp/cameleonspec.dtd, contains
information about the tags and their signatures3. You can copy this second line and use it
in your spec file as is. Below is the cameleonspec.dtd

<!ELEMENT RELATION (SOURCE+)>
<!ATTLIST RELATION name CDATA #REQUIRED>
<!ELEMENT SOURCE (AUTHENTICATION?, COOKIE*, JSCRIPT?, POST?,
ATTRIBUTE*)>
<!ATTLIST SOURCE URI CDATA #REQUIRED>
<!ATTLIST SOURCE DELAY CDATA #IMPLIED>

3 Sometimes it may be a good idea to validate your spec file against the DTD schema for debugging
purpose. Here is a reliable XML validator to do that: http://www.cogsci.ed.ac.uk/~richard/xml-check.html.

 Cameleon# User Manual

27 | P a g e

<!ELEMENT AUTHENTICATION (Realm, Username, Password)>
<!ELEMENT Realm (#PCDATA)>
<!ELEMENT Username (#PCDATA)>
<!ELEMENT Password (#PCDATA)>
<!ELEMENT COOKIE (#PCDATA)>
<!ATTLIST COOKIE name CDATA #REQUIRED>
<!ELEMENT JSCRIPT (#PCDATA)>
<!ATTLIST JSCRIPT name CDATA #REQUIRED>
<!ELEMENT POST (PARAM+)>
<!ATTLIST POST method (POST|GET) "POST">
<!ELEMENT PARAM (#PCDATA)>
<!ATTLIST PARAM
 name CDATA #REQUIRED
 value CDATA #REQUIRED>
<!ELEMENT ATTRIBUTE (PREFIX?, SUFFIX?, BEGIN, OBJECT?, PATTERN+,
END)>
<!ELEMENT PREFIX (#PCDATA)>
<!ELEMENT SUFFIX (#PCDATA)>
<!ATTLIST ATTRIBUTE
 name CDATA #REQUIRED
 type (String) "String">
<!ELEMENT BEGIN (#PCDATA)>
<!ELEMENT OBJECT (OBJECT_BEGIN, OBJECT_END)>
<!ELEMENT OBJECT_BEGIN (#PCDATA)>
<!ELEMENT OBJECT_END (#PCDATA)>
<!ELEMENT PATTERN (#PCDATA)>
<!ELEMENT END (#PCDATA)>

Line 3: Comment tag. Comments in an XML file are enclosed by the <!-- your comments
--> tag. You can intersperse comments anywhere you like in your spec file, as long as
the well-formedness of the XML document is observed. Anything within the comment
tag is ignored by the Cameleon# engine.

Line 4: RELATION tag. Relation is the root element of a spec file. It contains one or
more SOURCE tags, which we will look at next. It can be thought of as the declaration
of a relation, or table, in a database. Unlike traditional database relation, a Cameleon#
relation can consist of attributes from multiple sources (much like a database view).
Although the name attribute of this tag concurrently has no function, a meaningful name
should be assigned to it for readability. A good convention is to use the same name as
the name of the spec file (i.e. the relation cia is derived from cia.xml).

Line 5: SOURCE tag. Each source tag signifies a single web resource. While static web
pages are obvious web resources, Java servlets, Perl script cgi, or any server side
programs that return data over the web can be web resources as well. The URI attribute
of the source tag specifies the location of a web resource. Use http encoding for special
characters in a URI, e.g., use & for &. The content of any specified web resource

 Cameleon# User Manual

28 | P a g e

will be retrieved for pattern matching to form attributes, as we will see in the discussion
of attribute tag below. Each source tag can contain multiple attribute tags.

Line 6: ATTRIBUTE tag. An attribute tag defines what is to be extracted from a
specified source. Pattern matching by regular expression is used to locate the information
to be extracted (see discussion of PATTERN tag below). Each attribute must be assigned
a unique name and a type. Currently, all data extracted are treated as string data type by
Cameleon#. So, you can set type=”String” for every attribute you define. Once an
attribute is defined, it can be referenced by a user issued query (i.e. via the Cameleon#
GUI), or it can be referenced internally in the spec file. The latter usage is similar to
declaring a variable to store information extracted from one source for subsequent use
within the spec file. For example, it is a common scenario to extract a URL address from
one source and use that address as the URI of the next source element. When referencing
an attribute internally, simply put # symbols around the attribute name (i.e.,
#attribute_name#). Attributes can be referenced anywhere in a spec file where string
value is expected. They can even be embedded within plain static text, such as in a
matching pattern. In these cases, an extra attribute link=”true” for the tag is needed.

Line 7: BEGIN tag. The begin tag contains a regular expression that matches the
beginning of a region of text that contains desired data to be extracted. This helps to limit
the scope of matching, and thus improves the efficiency in finding patterns. A special
XML tag <![CDATA[regular_expression]]> is used to encase the regular expression.
This tag ensures that any characters in your regular expression that potentially invalidates
the entire XML document are ignored. Remember, every spec file is parsed by a XML
parser before processed. The CDATA tag tells the XML parser not to parse the stuff
inside it. Therefore, always surround your regular expression with a CDATA tag.

Line 8: PATTERN tag. The pattern tag pinpoints the location of the desired piece of data
to be extracted. Similar to the begin tag, the content of the pattern tag is a regular
expression (surrounded by the CDATA tag). The scope of matching is only limited to the
region set by BEGIN and END tags. Notice the parenthesis “()” within the regular
expression. The parenthesis is there to indicate the segment of characters to extract,
provided the surrounding patterns match. That segment of extracted characters is set to
be the value of the particular attribute. The pattern is matched within the BEGIN/END
region as many times as possible. Therefore, an attribute can sometimes have multiple
values. When the result of a query involves two or more attributes, the Cartesian product
between the individual values of each attribute will be returned. The only time a
Cartesian product is not taken is when the number of values across all involved attributes
are the same. In that case, the values are merged instead. For instance, the ith value of
attribute a will be merged with the ith value of attribute b, and so on, to produce the ith
row of result.

Line 9: END tag. The end tag is analogous to the begin tag. It marks the end of a region
where pattern matching should be applied for a particular attribute.

Line 10: Signifies the end of an attribute declaration.

 Cameleon# User Manual

29 | P a g e

Line 11-12: Signify the possibility of more than one attribute tag per source.
Line 13: Signifies the end of a source declaration.
Line 14-15: Signify the possibility of more than one source tag per relation.
Line 16: Signifies the end of the relation declaration.

Features of Spec Files
Disjunctive Patterns
Sometimes it is not possible to discover a single pattern that would match the desired data
across all similar pages. In these types of cases we allow disjunctive patterns to specify
multiple patterns. The following is an example of such a situation in which two
disjunctive patterns are specified for a single attribute.

<ATTRIBUTE name="LastTrade " type="String">
<BEGIN><![CDATA[Last\s*Trade]]></BEGIN>
<END><![CDATA[</TR>]]></END>
<PATTERN><![CDATA[\s*(.*?)\s*<FONT\s*SIZE=1>(.*?)]]></PATTERN>
<PATTERN><![CDATA[\s*(\d+)\s*]]></PATTERN>
</ATTRIBUTE>

We should note, however, that these disjunctive patterns are not mutually exclusive and
occasionally special care must be taken to construct patterns whose intersections are
empty. Otherwise the same item will be matched multiple times and repeated in the
output.

Conjunction
In spec files it is possible to define conjunctive patterns, by simply denoting them with
enclosing parentheses. The semantics of conjunctive patterns in Cameleon# corresponds
to the concatenation of pattern matches. The first pattern element in the example above
has such a case with two groups of enclosing parentheses, the first one matching the
whole part of last trade value, the second one the fractional part. The matched elements
are then concatenated to form a single value. This feature is very useful, when data to be
extracted is not atomic, and separated by unwanted tags.

Multi-page transitions
When wrapping web pages, we sometimes need to traverse multiple pages to locate the
page we want to extract information from. This situation occurs when the URLs are
created dynamically (e.g. a session ID is assigned for each access to the page), or a
cookie needs to be established before you can go to the desired page, or there is no simple
way of deducing the desired URL without visiting a particular page, or the data is spread
through multiple pages. To handle these kinds of cases Cameleon# has a feature that lets
us wrap multiple pages for a relation.

In Figure 1 for example the link to the second page is extracted from the first web
page. We need to perform this step in this case because there is no simple way of
deducing in advance what the link is supposed to be. Then the link is supplied to the next
source element, which takes us to the page where we want to extract the values of price
and airline.

 Cameleon# User Manual

30 | P a g e

<?xml version='1.0' encoding="UTF-8"?>
<RELATION name="yahootravel">

<SOURCE URI="http://edit.travel.yahoo.com/config/ytravel">

<POST method="POST">

<PARAM name="source" value="YG"/>
<PARAM name="module" value="tripsrch"/>
<PARAM name=".intl" value="us"/>
<PARAM name=".src" value="trv" />
<PARAM name=".service" value="YHOE" />
<PARAM name=".tcycgi" value="airgcobrand.ctl"/>
<PARAM name=".smls" value="Y"/>
<PARAM name=".resform" value="YahooFlightsR"/>
<PARAM name="trip_option" value="roundtrp"/>
<PARAM name="num_count" value="9"/>
<PARAM name="dep_arp_cd_1" value="#Departure#"/>
<PARAM name="dep_dt_mn_1" value="#Month1#" />
<PARAM name="dep_dt_dy_1" value="#Day1#"/>
<PARAM name="arr_arp_cd_1" value="#Destination#"/>
<PARAM name="dep_dt_mn_2" value="#Month2#"/>
<PARAM name="dep_dt_dy_2" value="#Day2#"/>
<PARAM name="adult_pax_cnt" value="1"/>
<PARAM name="num_cnx" value="1"/>
<PARAM name=".finished" value="Search"/>

</POST>
<ATTRIBUTE name="Link" type="String" link="true">

<BEGIN><![CDATA[http-equiv="refresh"]]></BEGIN>
<END><![CDATA['>]]></END>
<PATTERN><![CDATA[url="([^"]*)"]]></PATTERN>

</ATTRIBUTE>
</SOURCE>

<SOURCE URI="#Link#">

<ATTRIBUTE name="Price" type="String">
<BEGIN><![CDATA[View\s*Results\s*by\s*Airline]]></BEGIN>

<END><![CDATA[/b></div></td>]]></END>

<PATTERN><![CDATA[>USD\s*(\d+)\s*]]></PATTERN>

</ATTRIBUTE>
<ATTRIBUTE name="Airline" type="String">

<PREFIX><![CDATA[<img
src=http://rg.travelocity.com.edgesuite.net/logos]]></PREFIX>
<SUFFIX><![CDATA[>]]></SUFFIX>

<BEGIN><![CDATA[View\s*Results\s*by\s*Airline]]></BEGIN>
<END><![CDATA[/b></div></td>]]></END>
<PATTERN><![CDATA[<img src=http://rg.travelocity.com.edgesuite.net/logos([\0-
\377]*?)\s*border=0\s*alt="Airline Logo">]]></PATTERN>

</ATTRIBUTE>
</SOURCE>

</RELATION>

Relation Name

Source declaration

Post method

Parameter
Replacements
(input from query)

Parameter Replacement
(input from extraction)

Regular
expression
patterns for
identifying the
boundaries of a
region

Pattern for
extraction

Prefix and
suffix to be
attached to
the result

Figure 1 Cameleon Spec-File for Yahoo Travel

 Cameleon# User Manual

31 | P a g e

Parameter Replacement
Parameter replacement is the use of input or extracted attribute values within the
subsequent elements in the spec file. In the multiple page traversal case, we have seen
one example of this. The value of attribute “Link” was used in the next source element. It
is also possible to supply any extracted or input attribute value within the attribute
definitions. Consider the following SQL query to the Yahoo Travel Web site:

Select Airline, Price from yahootravel where Departure=“BOS” and Destination=“SFO” and

Month1=“5” and Day1= “19” and Month2= “6” and Day2= “1”

When this query is executed, the input attribute values specified after the where clause
replace the same name attributes enclosed between # signs in the post parameters as
shown in Figure 1.

Get, Post Methods & Authentication
Cameleon# spec files support both get and post methods when connecting to Web pages.
A post example is shown in Figure 1. Method attribute of the post tag determines which
method is to be used.

Most web pages perform authentication through forms. In connecting to those Web
pages, get or post methods with parameter replacement can be used for authentication
purposes. In some other pages, however, the authentication is done through pop-up
password windows. We handle these kinds of cases with the following scheme: (The
username and password values have to be inputted within the SQL query, since they are
coded as references in this spec file.)
<SOURCE URI=" http://game.etrade.com/cgi-bin/cgitrade/TransHistory ">
<AUTHENTICATION>

<Realm>E*Trade Player (game)</Realm>
<Username>#username#</Username>
<Password>#password#</Password>

</AUTHENTICATION>

Custom Cookies
In Cameleon# cookie handling is automatic as long as the cookies are set through
headers. In some cases, cookies can be set in a non-standard way for example using
Javascript API. To handle these cases we allow custom cookie setting as shown in
example below (custom cookies used are: jscript=1;path=/)

<SOURCE URI="http://www.expedia.com/pub/agent.dll">
<COOKIE name="jscript">1</COOKIE>
<COOKIE name="path">/</COOKIE>

JavaScript Interpretation
JavaScript is used frequently in Web pages in creating the html document on the client
side. In most cases, JavaScript does not pose a problem in wrapping Web pages, because
it is usually used for cosmetic reasons. In some cases, however, not being able to interpret
JavaScript may block the wrapper engine in getting to a desired page. One real example
is the Expedia Web site, which requires interpreting JavaScript code and supplying the
result as a post parameter. Cameleon# spec files allow the interpretation of JavaScripts as
shown in the following example.

<SOURCE URI="http://www.expedia.com/pub/agent.dll">
<JSCRIPT name="Time">
var d; d = new Date(); print(d.getTime());

 Cameleon# User Manual

32 | P a g e

</JSCRIPT>
In this example, the output of the JavaScript snippet is assigned to the Time attribute. We
should note that the JavaScript code to be interpreted does not have to be static, and
parameter replacement can be used in JScript tags as well.

Prefix and Suffixes
Figure 1 shows an example of prefix and suffix declarations. With these constructs it is
possible to add static text before and after the extracted data values. By using parameter
replacement feature, it also becomes possible to glue multiple extractions together.

Delays
We should mention another useful feature in spec file creation: delays. This is used when
the wrapper engine requests data from a Web site, but has to wait a certain amount of
time before getting an answer. We cover this case by specifying a delay element in the
source declarations specifying the waiting time in terms of milliseconds. We show an
example below:

<SOURCE URI="http://www.qixo.com/#Link#" DELAY="65000">

Debugging
You can test your spec files by setting the debug parameter to true in the web-based
query testing harness (http://interchange.mit.edu/cameleon_sharp/cameleon.html). It will
output all web data retrieved by Cameloen, the sections of source data defined by your
BEGIN/END tags of each attribute, the data extracted according to your pattern
specification when your spec file works. Examine your extraction rule if the data you
want to extract has been retrieved but you are not extracting them. Examine source and
parameter specifications if Cameleon# cannot even retrieve the page content. Study the
error messages, if any.

 Cameleon# User Manual

33 | P a g e

Summary of Cameleon# Spec File Syntax

Element Signature Required Parent Attribute Comment
RELATION <RELATION

name="...">
1 none name

(required)
Root element.

SOURCE <SOURCE URI="..."
DELAY="...">

1 or more RELATION URI
(required)

Source specifies a single
web resource.

 DELAY Delay by the specified
number of milliseconds.

AUTHENTICATION <AUTHENTICATION> 0 or 1 SOURCE For websites that
authentication through
pop-up window.

Realm <Realm> 1 AUTHENTICATION Specifies an
authentication realm.

Username <Username> 1 AUTHENTICATION Username for
authentication.

Password <Password> 1 AUTHENTICATION Password for
authentication.

COOKIE <COOKIE name="..."> 0 or more SOURCE name
(required)

Each cookie has a name.

JSCRIPT <JSCRIPT name="…"> 0 or more SOURCE name
(required)

Evaluates a JavaScript
snippet and store output.

POST <POST
method="POST|GET">

0 or 1 SOURCE method Default value is "POST".
Specifies the type of http
request operation.

PARAM <PARAM name="…"
value="…">

1 or more POST name
(required)

Input parameter to http
request.

 value
(required)

Value of input
parameter.

ATTRIBUTE <ATTRIBUTE
name="…" type=""...">

0 or more SOURCE name
(required)

Stores extracted values.

 type Default is "String".
Only string type is
allowed.

PREFIX <PREFIX> 0 or 1 ATTRIBUTE Adds text to beginning
of extracted value

SUFFIX <SUFFIX> 0 or 1 ATTRIBUTE Adds text to end of
extracted value

BEGIN <BEGIN> 1 ATTRIBUTE Pattern for beginning of
search region.

END <END> 1 ATTRIBUTE Pattern for end of search
region.

OBJECT <OBJECT> 0 or more ATTRIBUTE Defines object region
that constitutes a tuple.

OBJECT_BEGIN <OBJECT_BEGIN> 1 OBJECT Pattern for beginning of
object region.

OBJECT_END <OBJECT_END> 1 OBJECT Pattern for end of object
region.

PATTERN <PATTERN> 1 or more ATTRIBUTE Pattern that contains the
data to be extracted.

 Cameleon# User Manual

34 | P a g e

Appendices

A1. Related Readings and References

[1] Aykut Firat, Stuart Madnick, Michael Siegel, “The Cameleon Web Wrapper Engine,”
Proceedings of the Workshop on Technologies for E-Services, September 14-15, 2000,
Cairo, Egypt, http://web.mit.edu/smadnick/www/wp/2000-03.pdf

[2] Aykut Firat, Denis Peleshchuk, Prakash Rao, “iWrap: Instant Web Wrapper
Generator,” http://web.mit.edu/smadnick/www/wp/2000-10.pdf

[3] Tarik Alatovic (Thesis) “Capabilities Aware Planner/Optimizer/Executioner for
COntext INterchange Project,” http://web.mit.edu/smadnick/www/wp/2002-01.pdf

[4] Aykut Firat (PhD Thesis) “Information Integration Using Contextual Knowledge and
Ontology Merging,” Massachusetts Institute of Technology, Sloan School of
Management, August, 2003.

[5] Shin Wee Chuang (Thesis), “A Taxonomy and Analysis of Web Wrapping
Technologies,” http://web.mit.edu/smadnick/www/wp/2004-08.pdf

[6] Aykut Firat, Stuart Madnick, Nor Adnan Yahaya, Choo Wai Kuan, Stéphane Bressan,
“Information Aggregation using the Caméléon# Web Wrapper,” (EC-Web)
http://web.mit.edu/smadnick/www/wp/2005-06.pdf

[7] Lynn Wu, Aykut Firat, Tarik Alatovic, Stuart Madnick, “Querying Web-Sources
within a Data Federation,” (ICIS) http://web.mit.edu/smadnick/www/wp/2006-09.pdf

 Cameleon# User Manual

35 | P a g e

A.2 Regular Expressions

Syntax

What is a regular expression?
Perl5 regular expressions

It is beyond the scope of this guide to give a detailed explanation of regular expressions to beginners. The
OROMatcher TM package is geared toward programmers who are already familiar with regular
expressions, having used them with other languages, and who now want to apply them in their Java
programs. However, we shall make a small attempt to cover the basics and summarize the Perl5 syntax
supported by the OROMatcher TM Perl5 classes. For a detailed exploration of regular expressions for both
beginners and advanced users, we recommend the book Mastering Regular Expressions by Jeffrey Friedl
published by O'Reilly & Associates.

What is a regular expression?

Part of this discussion is based on page 94 of "Compilers, Principles, Techniques, and Tools" by Aho,
Sethi and Ullman

A regular expression is a pattern denoted by a sequence of symbols representing a state-machine or mini-
program that is capable of matching particular sequences of characters. Regular expressions have their
root in lexical analysis and tokenization where a set of lexemes had to be recognized before being passed
on to a parser. Since then, regular expressions took a life of their own, appearing in such languages as
AWK, TCL, and of course Perl, for all sorts of textual data extraction and manipulation purposes.

The most basic regular expression syntax consists of 4 operations. Let A and B each represent an alphabet
(a set of characters) and s and t represent members of those alphabets.

 Operation Representation Meaning

Union of A and B A|B s is such that s is in A or s is in B

Concatentation of A and B AB st are such that s is in A and t is in B

Kleene closure of A A* Zero or more concatenations of A

Positive closure of A A+ One or more concatenations of A

Using this notation you can define a regular expression for positive integers as follows:

digit +

Here digit represents the set of characters 0 - 9. A range of characters like this can be represented in most
regular expression languages as [0-9]. Because this is such a common expression, some languages have
a special character for it: \d .

Learning a regular expression language is quite simple once you've learned one, because most of the

 Cameleon# User Manual

36 | P a g e

operations are the same. Only the notation changes.

Perl5 regular expressions

Here we summarize the syntax of Perl5 regular expressions, all of which is supported by the OROMatcher
TM Perl5 classes. However, for a definitive reference, you should consult the perlre man page that
accompanies the Perl5 distribution and also the book Programming Perl, 2nd Edition from O'Reilly &
Associates. We need to point out here that for efficiency reasons the character set operator [...] is limited to
work on only ASCII characters (Unicode characters 0 through 255). Other than that restriction, all
Unicode characters should be useable in the package's regular expressions.

• Alternatives separated by |
• Quantified atoms

{n,m} : Match at least n but not more than m times.
{n,} : Match at least n times.
{n} : Match exactly n times.
* : Match 0 or more times.
+ : Match 1 or more times.
? : Match 0 or 1 times.

• Atoms
o regular expression within parentheses
o a . matches everything except \n
o a ^ is a null token matching the beginning of a string or line (i.e., the position right after a

newline or right before the beginning of a string)
o a $ is a null token matching the end of a string or line (i.e., the position right before a

newline or right after the end of a string)
o Character classes (e.g., [abcd]) and ranges (e.g. [a-z])

 Special backslashed characters work within a character class (except for
backreferences and boundaries).

 \b is backspace inside a character class
o Special backslashed characters

\b : null token matching a word boundary (\w on one side and \W on the other)
\B : null token matching a boundary that isn't a word boundary
\A : Match only at beginning of string
\Z : Match only at end of string (or before newline at the end)
\n : newline
\r : carriage return
\t : tab
\f : formfeed
\d : digit [0-9]
\D : non-digit [^0-9]
\w : word character [0-9a-z_A-Z]
\W : a non-word character [^0-9a-z_A-Z]
\s : a whitespace character [\t\n\r\f]
\S : a non-whitespace character [^ \t\n\r\f]
\xnn : hexadecimal representation of character

 Cameleon# User Manual

37 | P a g e

\cD : matches the corresponding control character
\nn or \nnn : octal representation of character unless a backreference.
\1, \2, \3, etc. : match whatever the first, second, third, etc. parenthesized group matched.
This is called a backreference. If there is no corresponding group, the number is
interpreted as an octal representation of a character.
\0 : matches null character
Any other backslashed character matches itself

• Expressions within parentheses are matched as subpattern groups and saved for use by certain
methods.

By default, a quantified subpattern is greedy . In other words it matches as many times as possible without
causing the rest of the pattern not to match. To change the quantifiers to match the minimum number of
times possible, without causing the rest of the pattern not to match, you may use a "?" right after the
quantifier.

*? : Match 0 or more times
+? : Match 1 or more times
?? : Match 0 or 1 time
{n}? : Match exactly n times
{n,}? : Match at least n times
{n,m}? : Match at least n but not more than m times

Perl5 extended regular expressions are fully supported.

(?#text) : An embedded comment causing text to be ignored.
(?:regexp) : Groups things like "()" but doesn't cause the group match to be saved.
(?=regexp) : A zero-width positive lookahead assertion. For example, \w+(?=\s) matches a word followed

by whitespace, without including whitespace in the MatchResult.
(?!regexp) : A zero-width negative lookahead assertion. For example foo(?!bar) matches any occurrence of

"foo" that isn't followed by "bar". Remember that this is a zero-width assertion, which means
that a(?!b)d will match ad because a is followed by a character that is not b (the d) and a d
follows the zero-width assertion.

(?imsx) : One or more embedded pattern-match modifiers. i enables case insensitivity, m enables multiline
treatment of the input, s enables single line treatment of the input, and x enables extended
whitespace comments.

Copyright © 1997 ORO, Inc. All rights reserved. Original Reusable Objects, ORO, the ORO logo,
and "Component software for the Internet" are trademarks or registered trademarks of ORO, Inc.
in the United States and other countries.
Java is a trademark of Sun Microsystems. All other trademarks are the property of their respective
holders.

 Cameleon# User Manual

38 | P a g e

A.3 Installing Cameleon# Server

1. Get Cameleon.zip file. Its contents should look like:

2. Upload these files to a server that supports .NET framework. (In the snapshot

below cgi-bin, MyWeb, and _holding.htm were preexisting directories and file,
you do not need them.)

3. Spec files go under the Cameleon directory.

4. Test by using Cameleon.html

 Cameleon# User Manual

39 | P a g e

5. Now you can author spec files, upload them into your spec file directory, and run.

 Cameleon# User Manual

40 | P a g e

A.4 Installing Cameleon# Studio

1. Download CameleonStudio.zip

2. Run CamSimulator.exe

If you have any difficulties, make sure you have the latest .NET framework
components.

